1 /* If-conversion support.
2    Copyright (C) 2000-2020 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 
37 #include "cfgrtl.h"
38 #include "cfganal.h"
39 #include "cfgcleanup.h"
40 #include "expr.h"
41 #include "output.h"
42 #include "cfgloop.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "shrink-wrap.h"
46 #include "rtl-iter.h"
47 #include "ifcvt.h"
48 
49 #ifndef MAX_CONDITIONAL_EXECUTE
50 #define MAX_CONDITIONAL_EXECUTE \
51   (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
52    + 1)
53 #endif
54 
55 #define IFCVT_MULTIPLE_DUMPS 1
56 
57 #define NULL_BLOCK	((basic_block) NULL)
58 
59 /* True if after combine pass.  */
60 static bool ifcvt_after_combine;
61 
62 /* True if the target has the cbranchcc4 optab.  */
63 static bool have_cbranchcc4;
64 
65 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at  */
66 static int num_possible_if_blocks;
67 
68 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
69    execution.  */
70 static int num_updated_if_blocks;
71 
72 /* # of changes made.  */
73 static int num_true_changes;
74 
75 /* Whether conditional execution changes were made.  */
76 static int cond_exec_changed_p;
77 
78 /* Forward references.  */
79 static int count_bb_insns (const_basic_block);
80 static bool cheap_bb_rtx_cost_p (const_basic_block, profile_probability, int);
81 static rtx_insn *first_active_insn (basic_block);
82 static rtx_insn *last_active_insn (basic_block, int);
83 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
84 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
85 static basic_block block_fallthru (basic_block);
86 static rtx cond_exec_get_condition (rtx_insn *);
87 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
88 static int noce_operand_ok (const_rtx);
89 static void merge_if_block (ce_if_block *);
90 static int find_cond_trap (basic_block, edge, edge);
91 static basic_block find_if_header (basic_block, int);
92 static int block_jumps_and_fallthru_p (basic_block, basic_block);
93 static int noce_find_if_block (basic_block, edge, edge, int);
94 static int cond_exec_find_if_block (ce_if_block *);
95 static int find_if_case_1 (basic_block, edge, edge);
96 static int find_if_case_2 (basic_block, edge, edge);
97 static int dead_or_predicable (basic_block, basic_block, basic_block,
98 			       edge, int);
99 static void noce_emit_move_insn (rtx, rtx);
100 static rtx_insn *block_has_only_trap (basic_block);
101 
102 /* Count the number of non-jump active insns in BB.  */
103 
104 static int
count_bb_insns(const_basic_block bb)105 count_bb_insns (const_basic_block bb)
106 {
107   int count = 0;
108   rtx_insn *insn = BB_HEAD (bb);
109 
110   while (1)
111     {
112       if (active_insn_p (insn) && !JUMP_P (insn))
113 	count++;
114 
115       if (insn == BB_END (bb))
116 	break;
117       insn = NEXT_INSN (insn);
118     }
119 
120   return count;
121 }
122 
123 /* Determine whether the total insn_cost on non-jump insns in
124    basic block BB is less than MAX_COST.  This function returns
125    false if the cost of any instruction could not be estimated.
126 
127    The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
128    as those insns are being speculated.  MAX_COST is scaled with SCALE
129    plus a small fudge factor.  */
130 
131 static bool
cheap_bb_rtx_cost_p(const_basic_block bb,profile_probability prob,int max_cost)132 cheap_bb_rtx_cost_p (const_basic_block bb,
133 		     profile_probability prob, int max_cost)
134 {
135   int count = 0;
136   rtx_insn *insn = BB_HEAD (bb);
137   bool speed = optimize_bb_for_speed_p (bb);
138   int scale = prob.initialized_p () ? prob.to_reg_br_prob_base ()
139 	      : REG_BR_PROB_BASE;
140 
141   /* Set scale to REG_BR_PROB_BASE to void the identical scaling
142      applied to insn_cost when optimizing for size.  Only do
143      this after combine because if-conversion might interfere with
144      passes before combine.
145 
146      Use optimize_function_for_speed_p instead of the pre-defined
147      variable speed to make sure it is set to same value for all
148      basic blocks in one if-conversion transformation.  */
149   if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
150     scale = REG_BR_PROB_BASE;
151   /* Our branch probability/scaling factors are just estimates and don't
152      account for cases where we can get speculation for free and other
153      secondary benefits.  So we fudge the scale factor to make speculating
154      appear a little more profitable when optimizing for performance.  */
155   else
156     scale += REG_BR_PROB_BASE / 8;
157 
158 
159   max_cost *= scale;
160 
161   while (1)
162     {
163       if (NONJUMP_INSN_P (insn))
164 	{
165 	  int cost = insn_cost (insn, speed) * REG_BR_PROB_BASE;
166 	  if (cost == 0)
167 	    return false;
168 
169 	  /* If this instruction is the load or set of a "stack" register,
170 	     such as a floating point register on x87, then the cost of
171 	     speculatively executing this insn may need to include
172 	     the additional cost of popping its result off of the
173 	     register stack.  Unfortunately, correctly recognizing and
174 	     accounting for this additional overhead is tricky, so for
175 	     now we simply prohibit such speculative execution.  */
176 #ifdef STACK_REGS
177 	  {
178 	    rtx set = single_set (insn);
179 	    if (set && STACK_REG_P (SET_DEST (set)))
180 	      return false;
181 	  }
182 #endif
183 
184 	  count += cost;
185 	  if (count >= max_cost)
186 	    return false;
187 	}
188       else if (CALL_P (insn))
189 	return false;
190 
191       if (insn == BB_END (bb))
192 	break;
193       insn = NEXT_INSN (insn);
194     }
195 
196   return true;
197 }
198 
199 /* Return the first non-jump active insn in the basic block.  */
200 
201 static rtx_insn *
first_active_insn(basic_block bb)202 first_active_insn (basic_block bb)
203 {
204   rtx_insn *insn = BB_HEAD (bb);
205 
206   if (LABEL_P (insn))
207     {
208       if (insn == BB_END (bb))
209 	return NULL;
210       insn = NEXT_INSN (insn);
211     }
212 
213   while (NOTE_P (insn) || DEBUG_INSN_P (insn))
214     {
215       if (insn == BB_END (bb))
216 	return NULL;
217       insn = NEXT_INSN (insn);
218     }
219 
220   if (JUMP_P (insn))
221     return NULL;
222 
223   return insn;
224 }
225 
226 /* Return the last non-jump active (non-jump) insn in the basic block.  */
227 
228 static rtx_insn *
last_active_insn(basic_block bb,int skip_use_p)229 last_active_insn (basic_block bb, int skip_use_p)
230 {
231   rtx_insn *insn = BB_END (bb);
232   rtx_insn *head = BB_HEAD (bb);
233 
234   while (NOTE_P (insn)
235 	 || JUMP_P (insn)
236 	 || DEBUG_INSN_P (insn)
237 	 || (skip_use_p
238 	     && NONJUMP_INSN_P (insn)
239 	     && GET_CODE (PATTERN (insn)) == USE))
240     {
241       if (insn == head)
242 	return NULL;
243       insn = PREV_INSN (insn);
244     }
245 
246   if (LABEL_P (insn))
247     return NULL;
248 
249   return insn;
250 }
251 
252 /* Return the active insn before INSN inside basic block CURR_BB. */
253 
254 static rtx_insn *
find_active_insn_before(basic_block curr_bb,rtx_insn * insn)255 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
256 {
257   if (!insn || insn == BB_HEAD (curr_bb))
258     return NULL;
259 
260   while ((insn = PREV_INSN (insn)) != NULL_RTX)
261     {
262       if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
263         break;
264 
265       /* No other active insn all the way to the start of the basic block. */
266       if (insn == BB_HEAD (curr_bb))
267         return NULL;
268     }
269 
270   return insn;
271 }
272 
273 /* Return the active insn after INSN inside basic block CURR_BB. */
274 
275 static rtx_insn *
find_active_insn_after(basic_block curr_bb,rtx_insn * insn)276 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
277 {
278   if (!insn || insn == BB_END (curr_bb))
279     return NULL;
280 
281   while ((insn = NEXT_INSN (insn)) != NULL_RTX)
282     {
283       if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
284         break;
285 
286       /* No other active insn all the way to the end of the basic block. */
287       if (insn == BB_END (curr_bb))
288         return NULL;
289     }
290 
291   return insn;
292 }
293 
294 /* Return the basic block reached by falling though the basic block BB.  */
295 
296 static basic_block
block_fallthru(basic_block bb)297 block_fallthru (basic_block bb)
298 {
299   edge e = find_fallthru_edge (bb->succs);
300 
301   return (e) ? e->dest : NULL_BLOCK;
302 }
303 
304 /* Return true if RTXs A and B can be safely interchanged.  */
305 
306 static bool
rtx_interchangeable_p(const_rtx a,const_rtx b)307 rtx_interchangeable_p (const_rtx a, const_rtx b)
308 {
309   if (!rtx_equal_p (a, b))
310     return false;
311 
312   if (GET_CODE (a) != MEM)
313     return true;
314 
315   /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
316      reference is not.  Interchanging a dead type-unsafe memory reference with
317      a live type-safe one creates a live type-unsafe memory reference, in other
318      words, it makes the program illegal.
319      We check here conservatively whether the two memory references have equal
320      memory attributes.  */
321 
322   return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
323 }
324 
325 
326 /* Go through a bunch of insns, converting them to conditional
327    execution format if possible.  Return TRUE if all of the non-note
328    insns were processed.  */
329 
330 static int
cond_exec_process_insns(ce_if_block * ce_info ATTRIBUTE_UNUSED,rtx_insn * start,rtx end,rtx test,profile_probability prob_val,int mod_ok)331 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
332 			 /* if block information */rtx_insn *start,
333 			 /* first insn to look at */rtx end,
334 			 /* last insn to look at */rtx test,
335 			 /* conditional execution test */profile_probability
336 							    prob_val,
337 			 /* probability of branch taken. */int mod_ok)
338 {
339   int must_be_last = FALSE;
340   rtx_insn *insn;
341   rtx xtest;
342   rtx pattern;
343 
344   if (!start || !end)
345     return FALSE;
346 
347   for (insn = start; ; insn = NEXT_INSN (insn))
348     {
349       /* dwarf2out can't cope with conditional prologues.  */
350       if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
351 	return FALSE;
352 
353       if (NOTE_P (insn) || DEBUG_INSN_P (insn))
354 	goto insn_done;
355 
356       gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
357 
358       /* dwarf2out can't cope with conditional unwind info.  */
359       if (RTX_FRAME_RELATED_P (insn))
360 	return FALSE;
361 
362       /* Remove USE insns that get in the way.  */
363       if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
364 	{
365 	  /* ??? Ug.  Actually unlinking the thing is problematic,
366 	     given what we'd have to coordinate with our callers.  */
367 	  SET_INSN_DELETED (insn);
368 	  goto insn_done;
369 	}
370 
371       /* Last insn wasn't last?  */
372       if (must_be_last)
373 	return FALSE;
374 
375       if (modified_in_p (test, insn))
376 	{
377 	  if (!mod_ok)
378 	    return FALSE;
379 	  must_be_last = TRUE;
380 	}
381 
382       /* Now build the conditional form of the instruction.  */
383       pattern = PATTERN (insn);
384       xtest = copy_rtx (test);
385 
386       /* If this is already a COND_EXEC, rewrite the test to be an AND of the
387          two conditions.  */
388       if (GET_CODE (pattern) == COND_EXEC)
389 	{
390 	  if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
391 	    return FALSE;
392 
393 	  xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
394 			       COND_EXEC_TEST (pattern));
395 	  pattern = COND_EXEC_CODE (pattern);
396 	}
397 
398       pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
399 
400       /* If the machine needs to modify the insn being conditionally executed,
401          say for example to force a constant integer operand into a temp
402          register, do so here.  */
403 #ifdef IFCVT_MODIFY_INSN
404       IFCVT_MODIFY_INSN (ce_info, pattern, insn);
405       if (! pattern)
406 	return FALSE;
407 #endif
408 
409       validate_change (insn, &PATTERN (insn), pattern, 1);
410 
411       if (CALL_P (insn) && prob_val.initialized_p ())
412 	validate_change (insn, &REG_NOTES (insn),
413 			 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
414 					   prob_val.to_reg_br_prob_note (),
415 					   REG_NOTES (insn)), 1);
416 
417     insn_done:
418       if (insn == end)
419 	break;
420     }
421 
422   return TRUE;
423 }
424 
425 /* Return the condition for a jump.  Do not do any special processing.  */
426 
427 static rtx
cond_exec_get_condition(rtx_insn * jump)428 cond_exec_get_condition (rtx_insn *jump)
429 {
430   rtx test_if, cond;
431 
432   if (any_condjump_p (jump))
433     test_if = SET_SRC (pc_set (jump));
434   else
435     return NULL_RTX;
436   cond = XEXP (test_if, 0);
437 
438   /* If this branches to JUMP_LABEL when the condition is false,
439      reverse the condition.  */
440   if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
441       && label_ref_label (XEXP (test_if, 2)) == JUMP_LABEL (jump))
442     {
443       enum rtx_code rev = reversed_comparison_code (cond, jump);
444       if (rev == UNKNOWN)
445 	return NULL_RTX;
446 
447       cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
448 			     XEXP (cond, 1));
449     }
450 
451   return cond;
452 }
453 
454 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
455    to conditional execution.  Return TRUE if we were successful at
456    converting the block.  */
457 
458 static int
cond_exec_process_if_block(ce_if_block * ce_info,int do_multiple_p)459 cond_exec_process_if_block (ce_if_block * ce_info,
460 			    /* if block information */int do_multiple_p)
461 {
462   basic_block test_bb = ce_info->test_bb;	/* last test block */
463   basic_block then_bb = ce_info->then_bb;	/* THEN */
464   basic_block else_bb = ce_info->else_bb;	/* ELSE or NULL */
465   rtx test_expr;		/* expression in IF_THEN_ELSE that is tested */
466   rtx_insn *then_start;		/* first insn in THEN block */
467   rtx_insn *then_end;		/* last insn + 1 in THEN block */
468   rtx_insn *else_start = NULL;	/* first insn in ELSE block or NULL */
469   rtx_insn *else_end = NULL;	/* last insn + 1 in ELSE block */
470   int max;			/* max # of insns to convert.  */
471   int then_mod_ok;		/* whether conditional mods are ok in THEN */
472   rtx true_expr;		/* test for else block insns */
473   rtx false_expr;		/* test for then block insns */
474   profile_probability true_prob_val;/* probability of else block */
475   profile_probability false_prob_val;/* probability of then block */
476   rtx_insn *then_last_head = NULL;	/* Last match at the head of THEN */
477   rtx_insn *else_last_head = NULL;	/* Last match at the head of ELSE */
478   rtx_insn *then_first_tail = NULL;	/* First match at the tail of THEN */
479   rtx_insn *else_first_tail = NULL;	/* First match at the tail of ELSE */
480   int then_n_insns, else_n_insns, n_insns;
481   enum rtx_code false_code;
482   rtx note;
483 
484   /* If test is comprised of && or || elements, and we've failed at handling
485      all of them together, just use the last test if it is the special case of
486      && elements without an ELSE block.  */
487   if (!do_multiple_p && ce_info->num_multiple_test_blocks)
488     {
489       if (else_bb || ! ce_info->and_and_p)
490 	return FALSE;
491 
492       ce_info->test_bb = test_bb = ce_info->last_test_bb;
493       ce_info->num_multiple_test_blocks = 0;
494       ce_info->num_and_and_blocks = 0;
495       ce_info->num_or_or_blocks = 0;
496     }
497 
498   /* Find the conditional jump to the ELSE or JOIN part, and isolate
499      the test.  */
500   test_expr = cond_exec_get_condition (BB_END (test_bb));
501   if (! test_expr)
502     return FALSE;
503 
504   /* If the conditional jump is more than just a conditional jump,
505      then we cannot do conditional execution conversion on this block.  */
506   if (! onlyjump_p (BB_END (test_bb)))
507     return FALSE;
508 
509   /* Collect the bounds of where we're to search, skipping any labels, jumps
510      and notes at the beginning and end of the block.  Then count the total
511      number of insns and see if it is small enough to convert.  */
512   then_start = first_active_insn (then_bb);
513   then_end = last_active_insn (then_bb, TRUE);
514   then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
515   n_insns = then_n_insns;
516   max = MAX_CONDITIONAL_EXECUTE;
517 
518   if (else_bb)
519     {
520       int n_matching;
521 
522       max *= 2;
523       else_start = first_active_insn (else_bb);
524       else_end = last_active_insn (else_bb, TRUE);
525       else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
526       n_insns += else_n_insns;
527 
528       /* Look for matching sequences at the head and tail of the two blocks,
529 	 and limit the range of insns to be converted if possible.  */
530       n_matching = flow_find_cross_jump (then_bb, else_bb,
531 					 &then_first_tail, &else_first_tail,
532 					 NULL);
533       if (then_first_tail == BB_HEAD (then_bb))
534 	then_start = then_end = NULL;
535       if (else_first_tail == BB_HEAD (else_bb))
536 	else_start = else_end = NULL;
537 
538       if (n_matching > 0)
539 	{
540 	  if (then_end)
541 	    then_end = find_active_insn_before (then_bb, then_first_tail);
542 	  if (else_end)
543 	    else_end = find_active_insn_before (else_bb, else_first_tail);
544 	  n_insns -= 2 * n_matching;
545 	}
546 
547       if (then_start
548 	  && else_start
549 	  && then_n_insns > n_matching
550 	  && else_n_insns > n_matching)
551 	{
552 	  int longest_match = MIN (then_n_insns - n_matching,
553 				   else_n_insns - n_matching);
554 	  n_matching
555 	    = flow_find_head_matching_sequence (then_bb, else_bb,
556 						&then_last_head,
557 						&else_last_head,
558 						longest_match);
559 
560 	  if (n_matching > 0)
561 	    {
562 	      rtx_insn *insn;
563 
564 	      /* We won't pass the insns in the head sequence to
565 		 cond_exec_process_insns, so we need to test them here
566 		 to make sure that they don't clobber the condition.  */
567 	      for (insn = BB_HEAD (then_bb);
568 		   insn != NEXT_INSN (then_last_head);
569 		   insn = NEXT_INSN (insn))
570 		if (!LABEL_P (insn) && !NOTE_P (insn)
571 		    && !DEBUG_INSN_P (insn)
572 		    && modified_in_p (test_expr, insn))
573 		  return FALSE;
574 	    }
575 
576 	  if (then_last_head == then_end)
577 	    then_start = then_end = NULL;
578 	  if (else_last_head == else_end)
579 	    else_start = else_end = NULL;
580 
581 	  if (n_matching > 0)
582 	    {
583 	      if (then_start)
584 		then_start = find_active_insn_after (then_bb, then_last_head);
585 	      if (else_start)
586 		else_start = find_active_insn_after (else_bb, else_last_head);
587 	      n_insns -= 2 * n_matching;
588 	    }
589 	}
590     }
591 
592   if (n_insns > max)
593     return FALSE;
594 
595   /* Map test_expr/test_jump into the appropriate MD tests to use on
596      the conditionally executed code.  */
597 
598   true_expr = test_expr;
599 
600   false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
601   if (false_code != UNKNOWN)
602     false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
603 				 XEXP (true_expr, 0), XEXP (true_expr, 1));
604   else
605     false_expr = NULL_RTX;
606 
607 #ifdef IFCVT_MODIFY_TESTS
608   /* If the machine description needs to modify the tests, such as setting a
609      conditional execution register from a comparison, it can do so here.  */
610   IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
611 
612   /* See if the conversion failed.  */
613   if (!true_expr || !false_expr)
614     goto fail;
615 #endif
616 
617   note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
618   if (note)
619     {
620       true_prob_val = profile_probability::from_reg_br_prob_note (XINT (note, 0));
621       false_prob_val = true_prob_val.invert ();
622     }
623   else
624     {
625       true_prob_val = profile_probability::uninitialized ();
626       false_prob_val = profile_probability::uninitialized ();
627     }
628 
629   /* If we have && or || tests, do them here.  These tests are in the adjacent
630      blocks after the first block containing the test.  */
631   if (ce_info->num_multiple_test_blocks > 0)
632     {
633       basic_block bb = test_bb;
634       basic_block last_test_bb = ce_info->last_test_bb;
635 
636       if (! false_expr)
637 	goto fail;
638 
639       do
640 	{
641 	  rtx_insn *start, *end;
642 	  rtx t, f;
643 	  enum rtx_code f_code;
644 
645 	  bb = block_fallthru (bb);
646 	  start = first_active_insn (bb);
647 	  end = last_active_insn (bb, TRUE);
648 	  if (start
649 	      && ! cond_exec_process_insns (ce_info, start, end, false_expr,
650 					    false_prob_val, FALSE))
651 	    goto fail;
652 
653 	  /* If the conditional jump is more than just a conditional jump, then
654 	     we cannot do conditional execution conversion on this block.  */
655 	  if (! onlyjump_p (BB_END (bb)))
656 	    goto fail;
657 
658 	  /* Find the conditional jump and isolate the test.  */
659 	  t = cond_exec_get_condition (BB_END (bb));
660 	  if (! t)
661 	    goto fail;
662 
663 	  f_code = reversed_comparison_code (t, BB_END (bb));
664 	  if (f_code == UNKNOWN)
665 	    goto fail;
666 
667 	  f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
668 	  if (ce_info->and_and_p)
669 	    {
670 	      t = gen_rtx_AND (GET_MODE (t), true_expr, t);
671 	      f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
672 	    }
673 	  else
674 	    {
675 	      t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
676 	      f = gen_rtx_AND (GET_MODE (t), false_expr, f);
677 	    }
678 
679 	  /* If the machine description needs to modify the tests, such as
680 	     setting a conditional execution register from a comparison, it can
681 	     do so here.  */
682 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
683 	  IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
684 
685 	  /* See if the conversion failed.  */
686 	  if (!t || !f)
687 	    goto fail;
688 #endif
689 
690 	  true_expr = t;
691 	  false_expr = f;
692 	}
693       while (bb != last_test_bb);
694     }
695 
696   /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
697      on then THEN block.  */
698   then_mod_ok = (else_bb == NULL_BLOCK);
699 
700   /* Go through the THEN and ELSE blocks converting the insns if possible
701      to conditional execution.  */
702 
703   if (then_end
704       && (! false_expr
705 	  || ! cond_exec_process_insns (ce_info, then_start, then_end,
706 					false_expr, false_prob_val,
707 					then_mod_ok)))
708     goto fail;
709 
710   if (else_bb && else_end
711       && ! cond_exec_process_insns (ce_info, else_start, else_end,
712 				    true_expr, true_prob_val, TRUE))
713     goto fail;
714 
715   /* If we cannot apply the changes, fail.  Do not go through the normal fail
716      processing, since apply_change_group will call cancel_changes.  */
717   if (! apply_change_group ())
718     {
719 #ifdef IFCVT_MODIFY_CANCEL
720       /* Cancel any machine dependent changes.  */
721       IFCVT_MODIFY_CANCEL (ce_info);
722 #endif
723       return FALSE;
724     }
725 
726 #ifdef IFCVT_MODIFY_FINAL
727   /* Do any machine dependent final modifications.  */
728   IFCVT_MODIFY_FINAL (ce_info);
729 #endif
730 
731   /* Conversion succeeded.  */
732   if (dump_file)
733     fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
734 	     n_insns, (n_insns == 1) ? " was" : "s were");
735 
736   /* Merge the blocks!  If we had matching sequences, make sure to delete one
737      copy at the appropriate location first: delete the copy in the THEN branch
738      for a tail sequence so that the remaining one is executed last for both
739      branches, and delete the copy in the ELSE branch for a head sequence so
740      that the remaining one is executed first for both branches.  */
741   if (then_first_tail)
742     {
743       rtx_insn *from = then_first_tail;
744       if (!INSN_P (from))
745 	from = find_active_insn_after (then_bb, from);
746       delete_insn_chain (from, get_last_bb_insn (then_bb), false);
747     }
748   if (else_last_head)
749     delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
750 
751   merge_if_block (ce_info);
752   cond_exec_changed_p = TRUE;
753   return TRUE;
754 
755  fail:
756 #ifdef IFCVT_MODIFY_CANCEL
757   /* Cancel any machine dependent changes.  */
758   IFCVT_MODIFY_CANCEL (ce_info);
759 #endif
760 
761   cancel_changes (0);
762   return FALSE;
763 }
764 
765 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
766 static int noce_try_move (struct noce_if_info *);
767 static int noce_try_ifelse_collapse (struct noce_if_info *);
768 static int noce_try_store_flag (struct noce_if_info *);
769 static int noce_try_addcc (struct noce_if_info *);
770 static int noce_try_store_flag_constants (struct noce_if_info *);
771 static int noce_try_store_flag_mask (struct noce_if_info *);
772 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
773 			    rtx, rtx, rtx);
774 static int noce_try_cmove (struct noce_if_info *);
775 static int noce_try_cmove_arith (struct noce_if_info *);
776 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
777 static int noce_try_minmax (struct noce_if_info *);
778 static int noce_try_abs (struct noce_if_info *);
779 static int noce_try_sign_mask (struct noce_if_info *);
780 
781 /* Return the comparison code for reversed condition for IF_INFO,
782    or UNKNOWN if reversing the condition is not possible.  */
783 
784 static inline enum rtx_code
noce_reversed_cond_code(struct noce_if_info * if_info)785 noce_reversed_cond_code (struct noce_if_info *if_info)
786 {
787   if (if_info->rev_cond)
788     return GET_CODE (if_info->rev_cond);
789   return reversed_comparison_code (if_info->cond, if_info->jump);
790 }
791 
792 /* Return true if SEQ is a good candidate as a replacement for the
793    if-convertible sequence described in IF_INFO.
794    This is the default implementation that targets can override
795    through a target hook.  */
796 
797 bool
default_noce_conversion_profitable_p(rtx_insn * seq,struct noce_if_info * if_info)798 default_noce_conversion_profitable_p (rtx_insn *seq,
799 				      struct noce_if_info *if_info)
800 {
801   bool speed_p = if_info->speed_p;
802 
803   /* Cost up the new sequence.  */
804   unsigned int cost = seq_cost (seq, speed_p);
805 
806   if (cost <= if_info->original_cost)
807     return true;
808 
809   /* When compiling for size, we can make a reasonably accurately guess
810      at the size growth.  When compiling for speed, use the maximum.  */
811   return speed_p && cost <= if_info->max_seq_cost;
812 }
813 
814 /* Helper function for noce_try_store_flag*.  */
815 
816 static rtx
noce_emit_store_flag(struct noce_if_info * if_info,rtx x,int reversep,int normalize)817 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
818 		      int normalize)
819 {
820   rtx cond = if_info->cond;
821   int cond_complex;
822   enum rtx_code code;
823 
824   cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
825 		  || ! general_operand (XEXP (cond, 1), VOIDmode));
826 
827   /* If earliest == jump, or when the condition is complex, try to
828      build the store_flag insn directly.  */
829 
830   if (cond_complex)
831     {
832       rtx set = pc_set (if_info->jump);
833       cond = XEXP (SET_SRC (set), 0);
834       if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
835 	  && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
836 	reversep = !reversep;
837       if (if_info->then_else_reversed)
838 	reversep = !reversep;
839     }
840   else if (reversep
841 	   && if_info->rev_cond
842 	   && general_operand (XEXP (if_info->rev_cond, 0), VOIDmode)
843 	   && general_operand (XEXP (if_info->rev_cond, 1), VOIDmode))
844     {
845       cond = if_info->rev_cond;
846       reversep = false;
847     }
848 
849   if (reversep)
850     code = reversed_comparison_code (cond, if_info->jump);
851   else
852     code = GET_CODE (cond);
853 
854   if ((if_info->cond_earliest == if_info->jump || cond_complex)
855       && (normalize == 0 || STORE_FLAG_VALUE == normalize))
856     {
857       rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
858 				XEXP (cond, 1));
859       rtx set = gen_rtx_SET (x, src);
860 
861       start_sequence ();
862       rtx_insn *insn = emit_insn (set);
863 
864       if (recog_memoized (insn) >= 0)
865 	{
866 	  rtx_insn *seq = get_insns ();
867 	  end_sequence ();
868 	  emit_insn (seq);
869 
870 	  if_info->cond_earliest = if_info->jump;
871 
872 	  return x;
873 	}
874 
875       end_sequence ();
876     }
877 
878   /* Don't even try if the comparison operands or the mode of X are weird.  */
879   if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
880     return NULL_RTX;
881 
882   return emit_store_flag (x, code, XEXP (cond, 0),
883 			  XEXP (cond, 1), VOIDmode,
884 			  (code == LTU || code == LEU
885 			   || code == GEU || code == GTU), normalize);
886 }
887 
888 /* Return true if X can be safely forced into a register by copy_to_mode_reg
889    / force_operand.  */
890 
891 static bool
noce_can_force_operand(rtx x)892 noce_can_force_operand (rtx x)
893 {
894   if (general_operand (x, VOIDmode))
895     return true;
896   if (SUBREG_P (x))
897     {
898       if (!noce_can_force_operand (SUBREG_REG (x)))
899 	return false;
900       return true;
901     }
902   if (ARITHMETIC_P (x))
903     {
904       if (!noce_can_force_operand (XEXP (x, 0))
905 	  || !noce_can_force_operand (XEXP (x, 1)))
906 	return false;
907       switch (GET_CODE (x))
908 	{
909 	case MULT:
910 	case DIV:
911 	case MOD:
912 	case UDIV:
913 	case UMOD:
914 	  return true;
915 	default:
916 	  return code_to_optab (GET_CODE (x));
917 	}
918     }
919   if (UNARY_P (x))
920     {
921       if (!noce_can_force_operand (XEXP (x, 0)))
922 	return false;
923       switch (GET_CODE (x))
924 	{
925 	case ZERO_EXTEND:
926 	case SIGN_EXTEND:
927 	case TRUNCATE:
928 	case FLOAT_EXTEND:
929 	case FLOAT_TRUNCATE:
930 	case FIX:
931 	case UNSIGNED_FIX:
932 	case FLOAT:
933 	case UNSIGNED_FLOAT:
934 	  return true;
935 	default:
936 	  return code_to_optab (GET_CODE (x));
937 	}
938     }
939   return false;
940 }
941 
942 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
943    X is the destination/target and Y is the value to copy.  */
944 
945 static void
noce_emit_move_insn(rtx x,rtx y)946 noce_emit_move_insn (rtx x, rtx y)
947 {
948   machine_mode outmode;
949   rtx outer, inner;
950   poly_int64 bitpos;
951 
952   if (GET_CODE (x) != STRICT_LOW_PART)
953     {
954       rtx_insn *seq, *insn;
955       rtx target;
956       optab ot;
957 
958       start_sequence ();
959       /* Check that the SET_SRC is reasonable before calling emit_move_insn,
960 	 otherwise construct a suitable SET pattern ourselves.  */
961       insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
962 	     ? emit_move_insn (x, y)
963 	     : emit_insn (gen_rtx_SET (x, y));
964       seq = get_insns ();
965       end_sequence ();
966 
967       if (recog_memoized (insn) <= 0)
968 	{
969 	  if (GET_CODE (x) == ZERO_EXTRACT)
970 	    {
971 	      rtx op = XEXP (x, 0);
972 	      unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
973 	      unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
974 
975 	      /* store_bit_field expects START to be relative to
976 		 BYTES_BIG_ENDIAN and adjusts this value for machines with
977 		 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN.  In order to be able to
978 		 invoke store_bit_field again it is necessary to have the START
979 		 value from the first call.  */
980 	      if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
981 		{
982 		  if (MEM_P (op))
983 		    start = BITS_PER_UNIT - start - size;
984 		  else
985 		    {
986 		      gcc_assert (REG_P (op));
987 		      start = BITS_PER_WORD - start - size;
988 		    }
989 		}
990 
991 	      gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
992 	      store_bit_field (op, size, start, 0, 0, GET_MODE (x), y, false);
993 	      return;
994 	    }
995 
996 	  switch (GET_RTX_CLASS (GET_CODE (y)))
997 	    {
998 	    case RTX_UNARY:
999 	      ot = code_to_optab (GET_CODE (y));
1000 	      if (ot && noce_can_force_operand (XEXP (y, 0)))
1001 		{
1002 		  start_sequence ();
1003 		  target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
1004 		  if (target != NULL_RTX)
1005 		    {
1006 		      if (target != x)
1007 			emit_move_insn (x, target);
1008 		      seq = get_insns ();
1009 		    }
1010 		  end_sequence ();
1011 		}
1012 	      break;
1013 
1014 	    case RTX_BIN_ARITH:
1015 	    case RTX_COMM_ARITH:
1016 	      ot = code_to_optab (GET_CODE (y));
1017 	      if (ot
1018 		  && noce_can_force_operand (XEXP (y, 0))
1019 		  && noce_can_force_operand (XEXP (y, 1)))
1020 		{
1021 		  start_sequence ();
1022 		  target = expand_binop (GET_MODE (y), ot,
1023 					 XEXP (y, 0), XEXP (y, 1),
1024 					 x, 0, OPTAB_DIRECT);
1025 		  if (target != NULL_RTX)
1026 		    {
1027 		      if (target != x)
1028 			  emit_move_insn (x, target);
1029 		      seq = get_insns ();
1030 		    }
1031 		  end_sequence ();
1032 		}
1033 	      break;
1034 
1035 	    default:
1036 	      break;
1037 	    }
1038 	}
1039 
1040       emit_insn (seq);
1041       return;
1042     }
1043 
1044   outer = XEXP (x, 0);
1045   inner = XEXP (outer, 0);
1046   outmode = GET_MODE (outer);
1047   bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1048   store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1049 		   0, 0, outmode, y, false);
1050 }
1051 
1052 /* Return the CC reg if it is used in COND.  */
1053 
1054 static rtx
cc_in_cond(rtx cond)1055 cc_in_cond (rtx cond)
1056 {
1057   if (have_cbranchcc4 && cond
1058       && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1059     return XEXP (cond, 0);
1060 
1061   return NULL_RTX;
1062 }
1063 
1064 /* Return sequence of instructions generated by if conversion.  This
1065    function calls end_sequence() to end the current stream, ensures
1066    that the instructions are unshared, recognizable non-jump insns.
1067    On failure, this function returns a NULL_RTX.  */
1068 
1069 static rtx_insn *
end_ifcvt_sequence(struct noce_if_info * if_info)1070 end_ifcvt_sequence (struct noce_if_info *if_info)
1071 {
1072   rtx_insn *insn;
1073   rtx_insn *seq = get_insns ();
1074   rtx cc = cc_in_cond (if_info->cond);
1075 
1076   set_used_flags (if_info->x);
1077   set_used_flags (if_info->cond);
1078   set_used_flags (if_info->a);
1079   set_used_flags (if_info->b);
1080 
1081   for (insn = seq; insn; insn = NEXT_INSN (insn))
1082     set_used_flags (insn);
1083 
1084   unshare_all_rtl_in_chain (seq);
1085   end_sequence ();
1086 
1087   /* Make sure that all of the instructions emitted are recognizable,
1088      and that we haven't introduced a new jump instruction.
1089      As an exercise for the reader, build a general mechanism that
1090      allows proper placement of required clobbers.  */
1091   for (insn = seq; insn; insn = NEXT_INSN (insn))
1092     if (JUMP_P (insn)
1093 	|| recog_memoized (insn) == -1
1094 	   /* Make sure new generated code does not clobber CC.  */
1095 	|| (cc && set_of (cc, insn)))
1096       return NULL;
1097 
1098   return seq;
1099 }
1100 
1101 /* Return true iff the then and else basic block (if it exists)
1102    consist of a single simple set instruction.  */
1103 
1104 static bool
noce_simple_bbs(struct noce_if_info * if_info)1105 noce_simple_bbs (struct noce_if_info *if_info)
1106 {
1107   if (!if_info->then_simple)
1108     return false;
1109 
1110   if (if_info->else_bb)
1111     return if_info->else_simple;
1112 
1113   return true;
1114 }
1115 
1116 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1117    "if (a == b) x = a; else x = b" into "x = b".  */
1118 
1119 static int
noce_try_move(struct noce_if_info * if_info)1120 noce_try_move (struct noce_if_info *if_info)
1121 {
1122   rtx cond = if_info->cond;
1123   enum rtx_code code = GET_CODE (cond);
1124   rtx y;
1125   rtx_insn *seq;
1126 
1127   if (code != NE && code != EQ)
1128     return FALSE;
1129 
1130   if (!noce_simple_bbs (if_info))
1131     return FALSE;
1132 
1133   /* This optimization isn't valid if either A or B could be a NaN
1134      or a signed zero.  */
1135   if (HONOR_NANS (if_info->x)
1136       || HONOR_SIGNED_ZEROS (if_info->x))
1137     return FALSE;
1138 
1139   /* Check whether the operands of the comparison are A and in
1140      either order.  */
1141   if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1142        && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1143       || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1144 	  && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1145     {
1146       if (!rtx_interchangeable_p (if_info->a, if_info->b))
1147 	return FALSE;
1148 
1149       y = (code == EQ) ? if_info->a : if_info->b;
1150 
1151       /* Avoid generating the move if the source is the destination.  */
1152       if (! rtx_equal_p (if_info->x, y))
1153 	{
1154 	  start_sequence ();
1155 	  noce_emit_move_insn (if_info->x, y);
1156 	  seq = end_ifcvt_sequence (if_info);
1157 	  if (!seq)
1158 	    return FALSE;
1159 
1160 	  emit_insn_before_setloc (seq, if_info->jump,
1161 				   INSN_LOCATION (if_info->insn_a));
1162 	}
1163       if_info->transform_name = "noce_try_move";
1164       return TRUE;
1165     }
1166   return FALSE;
1167 }
1168 
1169 /* Try forming an IF_THEN_ELSE (cond, b, a) and collapsing that
1170    through simplify_rtx.  Sometimes that can eliminate the IF_THEN_ELSE.
1171    If that is the case, emit the result into x.  */
1172 
1173 static int
noce_try_ifelse_collapse(struct noce_if_info * if_info)1174 noce_try_ifelse_collapse (struct noce_if_info * if_info)
1175 {
1176   if (!noce_simple_bbs (if_info))
1177     return FALSE;
1178 
1179   machine_mode mode = GET_MODE (if_info->x);
1180   rtx if_then_else = simplify_gen_ternary (IF_THEN_ELSE, mode, mode,
1181 					    if_info->cond, if_info->b,
1182 					    if_info->a);
1183 
1184   if (GET_CODE (if_then_else) == IF_THEN_ELSE)
1185     return FALSE;
1186 
1187   rtx_insn *seq;
1188   start_sequence ();
1189   noce_emit_move_insn (if_info->x, if_then_else);
1190   seq = end_ifcvt_sequence (if_info);
1191   if (!seq)
1192     return FALSE;
1193 
1194   emit_insn_before_setloc (seq, if_info->jump,
1195 			  INSN_LOCATION (if_info->insn_a));
1196 
1197   if_info->transform_name = "noce_try_ifelse_collapse";
1198   return TRUE;
1199 }
1200 
1201 
1202 /* Convert "if (test) x = 1; else x = 0".
1203 
1204    Only try 0 and STORE_FLAG_VALUE here.  Other combinations will be
1205    tried in noce_try_store_flag_constants after noce_try_cmove has had
1206    a go at the conversion.  */
1207 
1208 static int
noce_try_store_flag(struct noce_if_info * if_info)1209 noce_try_store_flag (struct noce_if_info *if_info)
1210 {
1211   int reversep;
1212   rtx target;
1213   rtx_insn *seq;
1214 
1215   if (!noce_simple_bbs (if_info))
1216     return FALSE;
1217 
1218   if (CONST_INT_P (if_info->b)
1219       && INTVAL (if_info->b) == STORE_FLAG_VALUE
1220       && if_info->a == const0_rtx)
1221     reversep = 0;
1222   else if (if_info->b == const0_rtx
1223 	   && CONST_INT_P (if_info->a)
1224 	   && INTVAL (if_info->a) == STORE_FLAG_VALUE
1225 	   && noce_reversed_cond_code (if_info) != UNKNOWN)
1226     reversep = 1;
1227   else
1228     return FALSE;
1229 
1230   start_sequence ();
1231 
1232   target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1233   if (target)
1234     {
1235       if (target != if_info->x)
1236 	noce_emit_move_insn (if_info->x, target);
1237 
1238       seq = end_ifcvt_sequence (if_info);
1239       if (! seq)
1240 	return FALSE;
1241 
1242       emit_insn_before_setloc (seq, if_info->jump,
1243 			       INSN_LOCATION (if_info->insn_a));
1244       if_info->transform_name = "noce_try_store_flag";
1245       return TRUE;
1246     }
1247   else
1248     {
1249       end_sequence ();
1250       return FALSE;
1251     }
1252 }
1253 
1254 
1255 /* Convert "if (test) x = -A; else x = A" into
1256    x = A; if (test) x = -x if the machine can do the
1257    conditional negate form of this cheaply.
1258    Try this before noce_try_cmove that will just load the
1259    immediates into two registers and do a conditional select
1260    between them.  If the target has a conditional negate or
1261    conditional invert operation we can save a potentially
1262    expensive constant synthesis.  */
1263 
1264 static bool
noce_try_inverse_constants(struct noce_if_info * if_info)1265 noce_try_inverse_constants (struct noce_if_info *if_info)
1266 {
1267   if (!noce_simple_bbs (if_info))
1268     return false;
1269 
1270   if (!CONST_INT_P (if_info->a)
1271       || !CONST_INT_P (if_info->b)
1272       || !REG_P (if_info->x))
1273     return false;
1274 
1275   machine_mode mode = GET_MODE (if_info->x);
1276 
1277   HOST_WIDE_INT val_a = INTVAL (if_info->a);
1278   HOST_WIDE_INT val_b = INTVAL (if_info->b);
1279 
1280   rtx cond = if_info->cond;
1281 
1282   rtx x = if_info->x;
1283   rtx target;
1284 
1285   start_sequence ();
1286 
1287   rtx_code code;
1288   if (val_b != HOST_WIDE_INT_MIN && val_a == -val_b)
1289     code = NEG;
1290   else if (val_a == ~val_b)
1291     code = NOT;
1292   else
1293     {
1294       end_sequence ();
1295       return false;
1296     }
1297 
1298   rtx tmp = gen_reg_rtx (mode);
1299   noce_emit_move_insn (tmp, if_info->a);
1300 
1301   target = emit_conditional_neg_or_complement (x, code, mode, cond, tmp, tmp);
1302 
1303   if (target)
1304     {
1305       rtx_insn *seq = get_insns ();
1306 
1307       if (!seq)
1308 	{
1309 	  end_sequence ();
1310 	  return false;
1311 	}
1312 
1313       if (target != if_info->x)
1314 	noce_emit_move_insn (if_info->x, target);
1315 
1316       seq = end_ifcvt_sequence (if_info);
1317 
1318       if (!seq)
1319 	return false;
1320 
1321       emit_insn_before_setloc (seq, if_info->jump,
1322 			       INSN_LOCATION (if_info->insn_a));
1323       if_info->transform_name = "noce_try_inverse_constants";
1324       return true;
1325     }
1326 
1327   end_sequence ();
1328   return false;
1329 }
1330 
1331 
1332 /* Convert "if (test) x = a; else x = b", for A and B constant.
1333    Also allow A = y + c1, B = y + c2, with a common y between A
1334    and B.  */
1335 
1336 static int
noce_try_store_flag_constants(struct noce_if_info * if_info)1337 noce_try_store_flag_constants (struct noce_if_info *if_info)
1338 {
1339   rtx target;
1340   rtx_insn *seq;
1341   bool reversep;
1342   HOST_WIDE_INT itrue, ifalse, diff, tmp;
1343   int normalize;
1344   bool can_reverse;
1345   machine_mode mode = GET_MODE (if_info->x);
1346   rtx common = NULL_RTX;
1347 
1348   rtx a = if_info->a;
1349   rtx b = if_info->b;
1350 
1351   /* Handle cases like x := test ? y + 3 : y + 4.  */
1352   if (GET_CODE (a) == PLUS
1353       && GET_CODE (b) == PLUS
1354       && CONST_INT_P (XEXP (a, 1))
1355       && CONST_INT_P (XEXP (b, 1))
1356       && rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
1357       /* Allow expressions that are not using the result or plain
1358          registers where we handle overlap below.  */
1359       && (REG_P (XEXP (a, 0))
1360 	  || (noce_operand_ok (XEXP (a, 0))
1361 	      && ! reg_overlap_mentioned_p (if_info->x, XEXP (a, 0)))))
1362     {
1363       common = XEXP (a, 0);
1364       a = XEXP (a, 1);
1365       b = XEXP (b, 1);
1366     }
1367 
1368   if (!noce_simple_bbs (if_info))
1369     return FALSE;
1370 
1371   if (CONST_INT_P (a)
1372       && CONST_INT_P (b))
1373     {
1374       ifalse = INTVAL (a);
1375       itrue = INTVAL (b);
1376       bool subtract_flag_p = false;
1377 
1378       diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1379       /* Make sure we can represent the difference between the two values.  */
1380       if ((diff > 0)
1381 	  != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1382 	return FALSE;
1383 
1384       diff = trunc_int_for_mode (diff, mode);
1385 
1386       can_reverse = noce_reversed_cond_code (if_info) != UNKNOWN;
1387       reversep = false;
1388       if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1389 	{
1390 	  normalize = 0;
1391 	  /* We could collapse these cases but it is easier to follow the
1392 	     diff/STORE_FLAG_VALUE combinations when they are listed
1393 	     explicitly.  */
1394 
1395 	  /* test ? 3 : 4
1396 	     => 4 + (test != 0).  */
1397 	  if (diff < 0 && STORE_FLAG_VALUE < 0)
1398 	      reversep = false;
1399 	  /* test ? 4 : 3
1400 	     => can_reverse  | 4 + (test == 0)
1401 		!can_reverse | 3 - (test != 0).  */
1402 	  else if (diff > 0 && STORE_FLAG_VALUE < 0)
1403 	    {
1404 	      reversep = can_reverse;
1405 	      subtract_flag_p = !can_reverse;
1406 	      /* If we need to subtract the flag and we have PLUS-immediate
1407 		 A and B then it is unlikely to be beneficial to play tricks
1408 		 here.  */
1409 	      if (subtract_flag_p && common)
1410 		return FALSE;
1411 	    }
1412 	  /* test ? 3 : 4
1413 	     => can_reverse  | 3 + (test == 0)
1414 		!can_reverse | 4 - (test != 0).  */
1415 	  else if (diff < 0 && STORE_FLAG_VALUE > 0)
1416 	    {
1417 	      reversep = can_reverse;
1418 	      subtract_flag_p = !can_reverse;
1419 	      /* If we need to subtract the flag and we have PLUS-immediate
1420 		 A and B then it is unlikely to be beneficial to play tricks
1421 		 here.  */
1422 	      if (subtract_flag_p && common)
1423 		return FALSE;
1424 	    }
1425 	  /* test ? 4 : 3
1426 	     => 4 + (test != 0).  */
1427 	  else if (diff > 0 && STORE_FLAG_VALUE > 0)
1428 	    reversep = false;
1429 	  else
1430 	    gcc_unreachable ();
1431 	}
1432       /* Is this (cond) ? 2^n : 0?  */
1433       else if (ifalse == 0 && pow2p_hwi (itrue)
1434 	       && STORE_FLAG_VALUE == 1)
1435 	normalize = 1;
1436       /* Is this (cond) ? 0 : 2^n?  */
1437       else if (itrue == 0 && pow2p_hwi (ifalse) && can_reverse
1438 	       && STORE_FLAG_VALUE == 1)
1439 	{
1440 	  normalize = 1;
1441 	  reversep = true;
1442 	}
1443       /* Is this (cond) ? -1 : x?  */
1444       else if (itrue == -1
1445 	       && STORE_FLAG_VALUE == -1)
1446 	normalize = -1;
1447       /* Is this (cond) ? x : -1?  */
1448       else if (ifalse == -1 && can_reverse
1449 	       && STORE_FLAG_VALUE == -1)
1450 	{
1451 	  normalize = -1;
1452 	  reversep = true;
1453 	}
1454       else
1455 	return FALSE;
1456 
1457       if (reversep)
1458 	{
1459 	  std::swap (itrue, ifalse);
1460 	  diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1461 	}
1462 
1463       start_sequence ();
1464 
1465       /* If we have x := test ? x + 3 : x + 4 then move the original
1466 	 x out of the way while we store flags.  */
1467       if (common && rtx_equal_p (common, if_info->x))
1468 	{
1469 	  common = gen_reg_rtx (mode);
1470 	  noce_emit_move_insn (common, if_info->x);
1471 	}
1472 
1473       target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1474       if (! target)
1475 	{
1476 	  end_sequence ();
1477 	  return FALSE;
1478 	}
1479 
1480       /* if (test) x = 3; else x = 4;
1481 	 =>   x = 3 + (test == 0);  */
1482       if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1483 	{
1484 	  /* Add the common part now.  This may allow combine to merge this
1485 	     with the store flag operation earlier into some sort of conditional
1486 	     increment/decrement if the target allows it.  */
1487 	  if (common)
1488 	    target = expand_simple_binop (mode, PLUS,
1489 					   target, common,
1490 					   target, 0, OPTAB_WIDEN);
1491 
1492 	  /* Always use ifalse here.  It should have been swapped with itrue
1493 	     when appropriate when reversep is true.  */
1494 	  target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1495 					gen_int_mode (ifalse, mode), target,
1496 					if_info->x, 0, OPTAB_WIDEN);
1497 	}
1498       /* Other cases are not beneficial when the original A and B are PLUS
1499 	 expressions.  */
1500       else if (common)
1501 	{
1502 	  end_sequence ();
1503 	  return FALSE;
1504 	}
1505       /* if (test) x = 8; else x = 0;
1506 	 =>   x = (test != 0) << 3;  */
1507       else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1508 	{
1509 	  target = expand_simple_binop (mode, ASHIFT,
1510 					target, GEN_INT (tmp), if_info->x, 0,
1511 					OPTAB_WIDEN);
1512 	}
1513 
1514       /* if (test) x = -1; else x = b;
1515 	 =>   x = -(test != 0) | b;  */
1516       else if (itrue == -1)
1517 	{
1518 	  target = expand_simple_binop (mode, IOR,
1519 					target, gen_int_mode (ifalse, mode),
1520 					if_info->x, 0, OPTAB_WIDEN);
1521 	}
1522       else
1523 	{
1524 	  end_sequence ();
1525 	  return FALSE;
1526 	}
1527 
1528       if (! target)
1529 	{
1530 	  end_sequence ();
1531 	  return FALSE;
1532 	}
1533 
1534       if (target != if_info->x)
1535 	noce_emit_move_insn (if_info->x, target);
1536 
1537       seq = end_ifcvt_sequence (if_info);
1538       if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1539 	return FALSE;
1540 
1541       emit_insn_before_setloc (seq, if_info->jump,
1542 			       INSN_LOCATION (if_info->insn_a));
1543       if_info->transform_name = "noce_try_store_flag_constants";
1544 
1545       return TRUE;
1546     }
1547 
1548   return FALSE;
1549 }
1550 
1551 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1552    similarly for "foo--".  */
1553 
1554 static int
noce_try_addcc(struct noce_if_info * if_info)1555 noce_try_addcc (struct noce_if_info *if_info)
1556 {
1557   rtx target;
1558   rtx_insn *seq;
1559   int subtract, normalize;
1560 
1561   if (!noce_simple_bbs (if_info))
1562     return FALSE;
1563 
1564   if (GET_CODE (if_info->a) == PLUS
1565       && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1566       && noce_reversed_cond_code (if_info) != UNKNOWN)
1567     {
1568       rtx cond = if_info->rev_cond;
1569       enum rtx_code code;
1570 
1571       if (cond == NULL_RTX)
1572 	{
1573 	  cond = if_info->cond;
1574 	  code = reversed_comparison_code (cond, if_info->jump);
1575 	}
1576       else
1577 	code = GET_CODE (cond);
1578 
1579       /* First try to use addcc pattern.  */
1580       if (general_operand (XEXP (cond, 0), VOIDmode)
1581 	  && general_operand (XEXP (cond, 1), VOIDmode))
1582 	{
1583 	  start_sequence ();
1584 	  target = emit_conditional_add (if_info->x, code,
1585 					 XEXP (cond, 0),
1586 					 XEXP (cond, 1),
1587 					 VOIDmode,
1588 					 if_info->b,
1589 					 XEXP (if_info->a, 1),
1590 					 GET_MODE (if_info->x),
1591 					 (code == LTU || code == GEU
1592 					  || code == LEU || code == GTU));
1593 	  if (target)
1594 	    {
1595 	      if (target != if_info->x)
1596 		noce_emit_move_insn (if_info->x, target);
1597 
1598 	      seq = end_ifcvt_sequence (if_info);
1599 	      if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1600 		return FALSE;
1601 
1602 	      emit_insn_before_setloc (seq, if_info->jump,
1603 				       INSN_LOCATION (if_info->insn_a));
1604 	      if_info->transform_name = "noce_try_addcc";
1605 
1606 	      return TRUE;
1607 	    }
1608 	  end_sequence ();
1609 	}
1610 
1611       /* If that fails, construct conditional increment or decrement using
1612 	 setcc.  We're changing a branch and an increment to a comparison and
1613 	 an ADD/SUB.  */
1614       if (XEXP (if_info->a, 1) == const1_rtx
1615 	  || XEXP (if_info->a, 1) == constm1_rtx)
1616         {
1617 	  start_sequence ();
1618 	  if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1619 	    subtract = 0, normalize = 0;
1620 	  else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1621 	    subtract = 1, normalize = 0;
1622 	  else
1623 	    subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1624 
1625 
1626 	  target = noce_emit_store_flag (if_info,
1627 					 gen_reg_rtx (GET_MODE (if_info->x)),
1628 					 1, normalize);
1629 
1630 	  if (target)
1631 	    target = expand_simple_binop (GET_MODE (if_info->x),
1632 					  subtract ? MINUS : PLUS,
1633 					  if_info->b, target, if_info->x,
1634 					  0, OPTAB_WIDEN);
1635 	  if (target)
1636 	    {
1637 	      if (target != if_info->x)
1638 		noce_emit_move_insn (if_info->x, target);
1639 
1640 	      seq = end_ifcvt_sequence (if_info);
1641 	      if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1642 		return FALSE;
1643 
1644 	      emit_insn_before_setloc (seq, if_info->jump,
1645 				       INSN_LOCATION (if_info->insn_a));
1646 	      if_info->transform_name = "noce_try_addcc";
1647 	      return TRUE;
1648 	    }
1649 	  end_sequence ();
1650 	}
1651     }
1652 
1653   return FALSE;
1654 }
1655 
1656 /* Convert "if (test) x = 0;" to "x &= -(test == 0);"  */
1657 
1658 static int
noce_try_store_flag_mask(struct noce_if_info * if_info)1659 noce_try_store_flag_mask (struct noce_if_info *if_info)
1660 {
1661   rtx target;
1662   rtx_insn *seq;
1663   int reversep;
1664 
1665   if (!noce_simple_bbs (if_info))
1666     return FALSE;
1667 
1668   reversep = 0;
1669 
1670   if ((if_info->a == const0_rtx
1671        && rtx_equal_p (if_info->b, if_info->x))
1672       || ((reversep = (noce_reversed_cond_code (if_info) != UNKNOWN))
1673 	  && if_info->b == const0_rtx
1674 	  && rtx_equal_p (if_info->a, if_info->x)))
1675     {
1676       start_sequence ();
1677       target = noce_emit_store_flag (if_info,
1678 				     gen_reg_rtx (GET_MODE (if_info->x)),
1679 				     reversep, -1);
1680       if (target)
1681         target = expand_simple_binop (GET_MODE (if_info->x), AND,
1682 				      if_info->x,
1683 				      target, if_info->x, 0,
1684 				      OPTAB_WIDEN);
1685 
1686       if (target)
1687 	{
1688 	  if (target != if_info->x)
1689 	    noce_emit_move_insn (if_info->x, target);
1690 
1691 	  seq = end_ifcvt_sequence (if_info);
1692 	  if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1693 	    return FALSE;
1694 
1695 	  emit_insn_before_setloc (seq, if_info->jump,
1696 				   INSN_LOCATION (if_info->insn_a));
1697 	  if_info->transform_name = "noce_try_store_flag_mask";
1698 
1699 	  return TRUE;
1700 	}
1701 
1702       end_sequence ();
1703     }
1704 
1705   return FALSE;
1706 }
1707 
1708 /* Helper function for noce_try_cmove and noce_try_cmove_arith.  */
1709 
1710 static rtx
noce_emit_cmove(struct noce_if_info * if_info,rtx x,enum rtx_code code,rtx cmp_a,rtx cmp_b,rtx vfalse,rtx vtrue)1711 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1712 		 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1713 {
1714   rtx target ATTRIBUTE_UNUSED;
1715   int unsignedp ATTRIBUTE_UNUSED;
1716 
1717   /* If earliest == jump, try to build the cmove insn directly.
1718      This is helpful when combine has created some complex condition
1719      (like for alpha's cmovlbs) that we can't hope to regenerate
1720      through the normal interface.  */
1721 
1722   if (if_info->cond_earliest == if_info->jump)
1723     {
1724       rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1725       rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1726 					       cond, vtrue, vfalse);
1727       rtx set = gen_rtx_SET (x, if_then_else);
1728 
1729       start_sequence ();
1730       rtx_insn *insn = emit_insn (set);
1731 
1732       if (recog_memoized (insn) >= 0)
1733 	{
1734 	  rtx_insn *seq = get_insns ();
1735 	  end_sequence ();
1736 	  emit_insn (seq);
1737 
1738 	  return x;
1739 	}
1740 
1741       end_sequence ();
1742     }
1743 
1744   /* Don't even try if the comparison operands are weird
1745      except that the target supports cbranchcc4.  */
1746   if (! general_operand (cmp_a, GET_MODE (cmp_a))
1747       || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1748     {
1749       if (!have_cbranchcc4
1750 	  || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1751 	  || cmp_b != const0_rtx)
1752 	return NULL_RTX;
1753     }
1754 
1755   unsignedp = (code == LTU || code == GEU
1756 	       || code == LEU || code == GTU);
1757 
1758   target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1759 				  vtrue, vfalse, GET_MODE (x),
1760 				  unsignedp);
1761   if (target)
1762     return target;
1763 
1764   /* We might be faced with a situation like:
1765 
1766      x = (reg:M TARGET)
1767      vtrue = (subreg:M (reg:N VTRUE) BYTE)
1768      vfalse = (subreg:M (reg:N VFALSE) BYTE)
1769 
1770      We can't do a conditional move in mode M, but it's possible that we
1771      could do a conditional move in mode N instead and take a subreg of
1772      the result.
1773 
1774      If we can't create new pseudos, though, don't bother.  */
1775   if (reload_completed)
1776     return NULL_RTX;
1777 
1778   if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1779     {
1780       rtx reg_vtrue = SUBREG_REG (vtrue);
1781       rtx reg_vfalse = SUBREG_REG (vfalse);
1782       poly_uint64 byte_vtrue = SUBREG_BYTE (vtrue);
1783       poly_uint64 byte_vfalse = SUBREG_BYTE (vfalse);
1784       rtx promoted_target;
1785 
1786       if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1787 	  || maybe_ne (byte_vtrue, byte_vfalse)
1788 	  || (SUBREG_PROMOTED_VAR_P (vtrue)
1789 	      != SUBREG_PROMOTED_VAR_P (vfalse))
1790 	  || (SUBREG_PROMOTED_GET (vtrue)
1791 	      != SUBREG_PROMOTED_GET (vfalse)))
1792 	return NULL_RTX;
1793 
1794       promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1795 
1796       target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1797 				      VOIDmode, reg_vtrue, reg_vfalse,
1798 				      GET_MODE (reg_vtrue), unsignedp);
1799       /* Nope, couldn't do it in that mode either.  */
1800       if (!target)
1801 	return NULL_RTX;
1802 
1803       target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1804       SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1805       SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1806       emit_move_insn (x, target);
1807       return x;
1808     }
1809   else
1810     return NULL_RTX;
1811 }
1812 
1813 /* Try only simple constants and registers here.  More complex cases
1814    are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1815    has had a go at it.  */
1816 
1817 static int
noce_try_cmove(struct noce_if_info * if_info)1818 noce_try_cmove (struct noce_if_info *if_info)
1819 {
1820   enum rtx_code code;
1821   rtx target;
1822   rtx_insn *seq;
1823 
1824   if (!noce_simple_bbs (if_info))
1825     return FALSE;
1826 
1827   if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1828       && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1829     {
1830       start_sequence ();
1831 
1832       code = GET_CODE (if_info->cond);
1833       target = noce_emit_cmove (if_info, if_info->x, code,
1834 				XEXP (if_info->cond, 0),
1835 				XEXP (if_info->cond, 1),
1836 				if_info->a, if_info->b);
1837 
1838       if (target)
1839 	{
1840 	  if (target != if_info->x)
1841 	    noce_emit_move_insn (if_info->x, target);
1842 
1843 	  seq = end_ifcvt_sequence (if_info);
1844 	  if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1845 	    return FALSE;
1846 
1847 	  emit_insn_before_setloc (seq, if_info->jump,
1848 				   INSN_LOCATION (if_info->insn_a));
1849 	  if_info->transform_name = "noce_try_cmove";
1850 
1851 	  return TRUE;
1852 	}
1853       /* If both a and b are constants try a last-ditch transformation:
1854 	 if (test) x = a; else x = b;
1855 	 =>   x = (-(test != 0) & (b - a)) + a;
1856 	 Try this only if the target-specific expansion above has failed.
1857 	 The target-specific expander may want to generate sequences that
1858 	 we don't know about, so give them a chance before trying this
1859 	 approach.  */
1860       else if (!targetm.have_conditional_execution ()
1861 		&& CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b))
1862 	{
1863 	  machine_mode mode = GET_MODE (if_info->x);
1864 	  HOST_WIDE_INT ifalse = INTVAL (if_info->a);
1865 	  HOST_WIDE_INT itrue = INTVAL (if_info->b);
1866 	  rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
1867 	  if (!target)
1868 	    {
1869 	      end_sequence ();
1870 	      return FALSE;
1871 	    }
1872 
1873 	  HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1874 	  /* Make sure we can represent the difference
1875 	     between the two values.  */
1876 	  if ((diff > 0)
1877 	      != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1878 	    {
1879 	      end_sequence ();
1880 	      return FALSE;
1881 	    }
1882 
1883 	  diff = trunc_int_for_mode (diff, mode);
1884 	  target = expand_simple_binop (mode, AND,
1885 					target, gen_int_mode (diff, mode),
1886 					if_info->x, 0, OPTAB_WIDEN);
1887 	  if (target)
1888 	    target = expand_simple_binop (mode, PLUS,
1889 					  target, gen_int_mode (ifalse, mode),
1890 					  if_info->x, 0, OPTAB_WIDEN);
1891 	  if (target)
1892 	    {
1893 	      if (target != if_info->x)
1894 		noce_emit_move_insn (if_info->x, target);
1895 
1896 	      seq = end_ifcvt_sequence (if_info);
1897 	      if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1898 		return FALSE;
1899 
1900 	      emit_insn_before_setloc (seq, if_info->jump,
1901 				   INSN_LOCATION (if_info->insn_a));
1902 	      if_info->transform_name = "noce_try_cmove";
1903 	      return TRUE;
1904 	    }
1905 	  else
1906 	    {
1907 	      end_sequence ();
1908 	      return FALSE;
1909 	    }
1910 	}
1911       else
1912 	end_sequence ();
1913     }
1914 
1915   return FALSE;
1916 }
1917 
1918 /* Return true if X contains a conditional code mode rtx.  */
1919 
1920 static bool
contains_ccmode_rtx_p(rtx x)1921 contains_ccmode_rtx_p (rtx x)
1922 {
1923   subrtx_iterator::array_type array;
1924   FOR_EACH_SUBRTX (iter, array, x, ALL)
1925     if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
1926       return true;
1927 
1928   return false;
1929 }
1930 
1931 /* Helper for bb_valid_for_noce_process_p.  Validate that
1932    the rtx insn INSN is a single set that does not set
1933    the conditional register CC and is in general valid for
1934    if-conversion.  */
1935 
1936 static bool
insn_valid_noce_process_p(rtx_insn * insn,rtx cc)1937 insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
1938 {
1939   if (!insn
1940       || !NONJUMP_INSN_P (insn)
1941       || (cc && set_of (cc, insn)))
1942       return false;
1943 
1944   rtx sset = single_set (insn);
1945 
1946   /* Currently support only simple single sets in test_bb.  */
1947   if (!sset
1948       || !noce_operand_ok (SET_DEST (sset))
1949       || contains_ccmode_rtx_p (SET_DEST (sset))
1950       || !noce_operand_ok (SET_SRC (sset)))
1951     return false;
1952 
1953   return true;
1954 }
1955 
1956 
1957 /* Return true iff the registers that the insns in BB_A set do not get
1958    used in BB_B.  If TO_RENAME is non-NULL then it is a location that will be
1959    renamed later by the caller and so conflicts on it should be ignored
1960    in this function.  */
1961 
1962 static bool
bbs_ok_for_cmove_arith(basic_block bb_a,basic_block bb_b,rtx to_rename)1963 bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b, rtx to_rename)
1964 {
1965   rtx_insn *a_insn;
1966   bitmap bba_sets = BITMAP_ALLOC (&reg_obstack);
1967 
1968   df_ref def;
1969   df_ref use;
1970 
1971   FOR_BB_INSNS (bb_a, a_insn)
1972     {
1973       if (!active_insn_p (a_insn))
1974 	continue;
1975 
1976       rtx sset_a = single_set (a_insn);
1977 
1978       if (!sset_a)
1979 	{
1980 	  BITMAP_FREE (bba_sets);
1981 	  return false;
1982 	}
1983       /* Record all registers that BB_A sets.  */
1984       FOR_EACH_INSN_DEF (def, a_insn)
1985 	if (!(to_rename && DF_REF_REG (def) == to_rename))
1986 	  bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
1987     }
1988 
1989   rtx_insn *b_insn;
1990 
1991   FOR_BB_INSNS (bb_b, b_insn)
1992     {
1993       if (!active_insn_p (b_insn))
1994 	continue;
1995 
1996       rtx sset_b = single_set (b_insn);
1997 
1998       if (!sset_b)
1999 	{
2000 	  BITMAP_FREE (bba_sets);
2001 	  return false;
2002 	}
2003 
2004       /* Make sure this is a REG and not some instance
2005 	 of ZERO_EXTRACT or SUBREG or other dangerous stuff.
2006 	 If we have a memory destination then we have a pair of simple
2007 	 basic blocks performing an operation of the form [addr] = c ? a : b.
2008 	 bb_valid_for_noce_process_p will have ensured that these are
2009 	 the only stores present.  In that case [addr] should be the location
2010 	 to be renamed.  Assert that the callers set this up properly.  */
2011       if (MEM_P (SET_DEST (sset_b)))
2012 	gcc_assert (rtx_equal_p (SET_DEST (sset_b), to_rename));
2013       else if (!REG_P (SET_DEST (sset_b)))
2014 	{
2015 	  BITMAP_FREE (bba_sets);
2016 	  return false;
2017 	}
2018 
2019       /* If the insn uses a reg set in BB_A return false.  */
2020       FOR_EACH_INSN_USE (use, b_insn)
2021 	{
2022 	  if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
2023 	    {
2024 	      BITMAP_FREE (bba_sets);
2025 	      return false;
2026 	    }
2027 	}
2028 
2029     }
2030 
2031   BITMAP_FREE (bba_sets);
2032   return true;
2033 }
2034 
2035 /* Emit copies of all the active instructions in BB except the last.
2036    This is a helper for noce_try_cmove_arith.  */
2037 
2038 static void
noce_emit_all_but_last(basic_block bb)2039 noce_emit_all_but_last (basic_block bb)
2040 {
2041   rtx_insn *last = last_active_insn (bb, FALSE);
2042   rtx_insn *insn;
2043   FOR_BB_INSNS (bb, insn)
2044     {
2045       if (insn != last && active_insn_p (insn))
2046 	{
2047 	  rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
2048 
2049 	  emit_insn (PATTERN (to_emit));
2050 	}
2051     }
2052 }
2053 
2054 /* Helper for noce_try_cmove_arith.  Emit the pattern TO_EMIT and return
2055    the resulting insn or NULL if it's not a valid insn.  */
2056 
2057 static rtx_insn *
noce_emit_insn(rtx to_emit)2058 noce_emit_insn (rtx to_emit)
2059 {
2060   gcc_assert (to_emit);
2061   rtx_insn *insn = emit_insn (to_emit);
2062 
2063   if (recog_memoized (insn) < 0)
2064     return NULL;
2065 
2066   return insn;
2067 }
2068 
2069 /* Helper for noce_try_cmove_arith.  Emit a copy of the insns up to
2070    and including the penultimate one in BB if it is not simple
2071    (as indicated by SIMPLE).  Then emit LAST_INSN as the last
2072    insn in the block.  The reason for that is that LAST_INSN may
2073    have been modified by the preparation in noce_try_cmove_arith.  */
2074 
2075 static bool
noce_emit_bb(rtx last_insn,basic_block bb,bool simple)2076 noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
2077 {
2078   if (bb && !simple)
2079     noce_emit_all_but_last (bb);
2080 
2081   if (last_insn && !noce_emit_insn (last_insn))
2082     return false;
2083 
2084   return true;
2085 }
2086 
2087 /* Try more complex cases involving conditional_move.  */
2088 
2089 static int
noce_try_cmove_arith(struct noce_if_info * if_info)2090 noce_try_cmove_arith (struct noce_if_info *if_info)
2091 {
2092   rtx a = if_info->a;
2093   rtx b = if_info->b;
2094   rtx x = if_info->x;
2095   rtx orig_a, orig_b;
2096   rtx_insn *insn_a, *insn_b;
2097   bool a_simple = if_info->then_simple;
2098   bool b_simple = if_info->else_simple;
2099   basic_block then_bb = if_info->then_bb;
2100   basic_block else_bb = if_info->else_bb;
2101   rtx target;
2102   int is_mem = 0;
2103   enum rtx_code code;
2104   rtx cond = if_info->cond;
2105   rtx_insn *ifcvt_seq;
2106 
2107   /* A conditional move from two memory sources is equivalent to a
2108      conditional on their addresses followed by a load.  Don't do this
2109      early because it'll screw alias analysis.  Note that we've
2110      already checked for no side effects.  */
2111   if (cse_not_expected
2112       && MEM_P (a) && MEM_P (b)
2113       && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b))
2114     {
2115       machine_mode address_mode = get_address_mode (a);
2116 
2117       a = XEXP (a, 0);
2118       b = XEXP (b, 0);
2119       x = gen_reg_rtx (address_mode);
2120       is_mem = 1;
2121     }
2122 
2123   /* ??? We could handle this if we knew that a load from A or B could
2124      not trap or fault.  This is also true if we've already loaded
2125      from the address along the path from ENTRY.  */
2126   else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
2127     return FALSE;
2128 
2129   /* if (test) x = a + b; else x = c - d;
2130      => y = a + b;
2131         x = c - d;
2132 	if (test)
2133 	  x = y;
2134   */
2135 
2136   code = GET_CODE (cond);
2137   insn_a = if_info->insn_a;
2138   insn_b = if_info->insn_b;
2139 
2140   machine_mode x_mode = GET_MODE (x);
2141 
2142   if (!can_conditionally_move_p (x_mode))
2143     return FALSE;
2144 
2145   /* Possibly rearrange operands to make things come out more natural.  */
2146   if (noce_reversed_cond_code (if_info) != UNKNOWN)
2147     {
2148       int reversep = 0;
2149       if (rtx_equal_p (b, x))
2150 	reversep = 1;
2151       else if (general_operand (b, GET_MODE (b)))
2152 	reversep = 1;
2153 
2154       if (reversep)
2155 	{
2156 	  if (if_info->rev_cond)
2157 	    {
2158 	      cond = if_info->rev_cond;
2159 	      code = GET_CODE (cond);
2160 	    }
2161 	  else
2162 	    code = reversed_comparison_code (cond, if_info->jump);
2163 	  std::swap (a, b);
2164 	  std::swap (insn_a, insn_b);
2165 	  std::swap (a_simple, b_simple);
2166 	  std::swap (then_bb, else_bb);
2167 	}
2168     }
2169 
2170   if (then_bb && else_bb
2171       && (!bbs_ok_for_cmove_arith (then_bb, else_bb,  if_info->orig_x)
2172 	  || !bbs_ok_for_cmove_arith (else_bb, then_bb,  if_info->orig_x)))
2173     return FALSE;
2174 
2175   start_sequence ();
2176 
2177   /* If one of the blocks is empty then the corresponding B or A value
2178      came from the test block.  The non-empty complex block that we will
2179      emit might clobber the register used by B or A, so move it to a pseudo
2180      first.  */
2181 
2182   rtx tmp_a = NULL_RTX;
2183   rtx tmp_b = NULL_RTX;
2184 
2185   if (b_simple || !else_bb)
2186     tmp_b = gen_reg_rtx (x_mode);
2187 
2188   if (a_simple || !then_bb)
2189     tmp_a = gen_reg_rtx (x_mode);
2190 
2191   orig_a = a;
2192   orig_b = b;
2193 
2194   rtx emit_a = NULL_RTX;
2195   rtx emit_b = NULL_RTX;
2196   rtx_insn *tmp_insn = NULL;
2197   bool modified_in_a = false;
2198   bool modified_in_b = false;
2199   /* If either operand is complex, load it into a register first.
2200      The best way to do this is to copy the original insn.  In this
2201      way we preserve any clobbers etc that the insn may have had.
2202      This is of course not possible in the IS_MEM case.  */
2203 
2204   if (! general_operand (a, GET_MODE (a)) || tmp_a)
2205     {
2206 
2207       if (is_mem)
2208 	{
2209 	  rtx reg = gen_reg_rtx (GET_MODE (a));
2210 	  emit_a = gen_rtx_SET (reg, a);
2211 	}
2212       else
2213 	{
2214 	  if (insn_a)
2215 	    {
2216 	      a = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2217 
2218 	      rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
2219 	      rtx set = single_set (copy_of_a);
2220 	      SET_DEST (set) = a;
2221 
2222 	      emit_a = PATTERN (copy_of_a);
2223 	    }
2224 	  else
2225 	    {
2226 	      rtx tmp_reg = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2227 	      emit_a = gen_rtx_SET (tmp_reg, a);
2228 	      a = tmp_reg;
2229 	    }
2230 	}
2231     }
2232 
2233   if (! general_operand (b, GET_MODE (b)) || tmp_b)
2234     {
2235       if (is_mem)
2236 	{
2237           rtx reg = gen_reg_rtx (GET_MODE (b));
2238 	  emit_b = gen_rtx_SET (reg, b);
2239 	}
2240       else
2241 	{
2242 	  if (insn_b)
2243 	    {
2244 	      b = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2245 	      rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
2246 	      rtx set = single_set (copy_of_b);
2247 
2248 	      SET_DEST (set) = b;
2249 	      emit_b = PATTERN (copy_of_b);
2250 	    }
2251 	  else
2252 	    {
2253 	      rtx tmp_reg = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2254 	      emit_b = gen_rtx_SET (tmp_reg, b);
2255 	      b = tmp_reg;
2256 	    }
2257 	}
2258     }
2259 
2260   modified_in_a = emit_a != NULL_RTX && modified_in_p (orig_b, emit_a);
2261   if (tmp_b && then_bb)
2262     {
2263       FOR_BB_INSNS (then_bb, tmp_insn)
2264 	/* Don't check inside insn_a.  We will have changed it to emit_a
2265 	   with a destination that doesn't conflict.  */
2266 	if (!(insn_a && tmp_insn == insn_a)
2267 	    && modified_in_p (orig_b, tmp_insn))
2268 	  {
2269 	    modified_in_a = true;
2270 	    break;
2271 	  }
2272 
2273     }
2274 
2275   modified_in_b = emit_b != NULL_RTX && modified_in_p (orig_a, emit_b);
2276   if (tmp_a && else_bb)
2277     {
2278       FOR_BB_INSNS (else_bb, tmp_insn)
2279       /* Don't check inside insn_b.  We will have changed it to emit_b
2280 	 with a destination that doesn't conflict.  */
2281       if (!(insn_b && tmp_insn == insn_b)
2282 	  && modified_in_p (orig_a, tmp_insn))
2283 	{
2284 	  modified_in_b = true;
2285 	  break;
2286 	}
2287     }
2288 
2289   /* If insn to set up A clobbers any registers B depends on, try to
2290      swap insn that sets up A with the one that sets up B.  If even
2291      that doesn't help, punt.  */
2292   if (modified_in_a && !modified_in_b)
2293     {
2294       if (!noce_emit_bb (emit_b, else_bb, b_simple))
2295 	goto end_seq_and_fail;
2296 
2297       if (!noce_emit_bb (emit_a, then_bb, a_simple))
2298 	goto end_seq_and_fail;
2299     }
2300   else if (!modified_in_a)
2301     {
2302       if (!noce_emit_bb (emit_a, then_bb, a_simple))
2303 	goto end_seq_and_fail;
2304 
2305       if (!noce_emit_bb (emit_b, else_bb, b_simple))
2306 	goto end_seq_and_fail;
2307     }
2308   else
2309     goto end_seq_and_fail;
2310 
2311   target = noce_emit_cmove (if_info, x, code, XEXP (cond, 0), XEXP (cond, 1),
2312 			    a, b);
2313 
2314   if (! target)
2315     goto end_seq_and_fail;
2316 
2317   /* If we're handling a memory for above, emit the load now.  */
2318   if (is_mem)
2319     {
2320       rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
2321 
2322       /* Copy over flags as appropriate.  */
2323       if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
2324 	MEM_VOLATILE_P (mem) = 1;
2325       if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
2326 	set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
2327       set_mem_align (mem,
2328 		     MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
2329 
2330       gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
2331       set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
2332 
2333       noce_emit_move_insn (if_info->x, mem);
2334     }
2335   else if (target != x)
2336     noce_emit_move_insn (x, target);
2337 
2338   ifcvt_seq = end_ifcvt_sequence (if_info);
2339   if (!ifcvt_seq || !targetm.noce_conversion_profitable_p (ifcvt_seq, if_info))
2340     return FALSE;
2341 
2342   emit_insn_before_setloc (ifcvt_seq, if_info->jump,
2343 			   INSN_LOCATION (if_info->insn_a));
2344   if_info->transform_name = "noce_try_cmove_arith";
2345   return TRUE;
2346 
2347  end_seq_and_fail:
2348   end_sequence ();
2349   return FALSE;
2350 }
2351 
2352 /* For most cases, the simplified condition we found is the best
2353    choice, but this is not the case for the min/max/abs transforms.
2354    For these we wish to know that it is A or B in the condition.  */
2355 
2356 static rtx
noce_get_alt_condition(struct noce_if_info * if_info,rtx target,rtx_insn ** earliest)2357 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
2358 			rtx_insn **earliest)
2359 {
2360   rtx cond, set;
2361   rtx_insn *insn;
2362   int reverse;
2363 
2364   /* If target is already mentioned in the known condition, return it.  */
2365   if (reg_mentioned_p (target, if_info->cond))
2366     {
2367       *earliest = if_info->cond_earliest;
2368       return if_info->cond;
2369     }
2370 
2371   set = pc_set (if_info->jump);
2372   cond = XEXP (SET_SRC (set), 0);
2373   reverse
2374     = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2375       && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
2376   if (if_info->then_else_reversed)
2377     reverse = !reverse;
2378 
2379   /* If we're looking for a constant, try to make the conditional
2380      have that constant in it.  There are two reasons why it may
2381      not have the constant we want:
2382 
2383      1. GCC may have needed to put the constant in a register, because
2384         the target can't compare directly against that constant.  For
2385         this case, we look for a SET immediately before the comparison
2386         that puts a constant in that register.
2387 
2388      2. GCC may have canonicalized the conditional, for example
2389 	replacing "if x < 4" with "if x <= 3".  We can undo that (or
2390 	make equivalent types of changes) to get the constants we need
2391 	if they're off by one in the right direction.  */
2392 
2393   if (CONST_INT_P (target))
2394     {
2395       enum rtx_code code = GET_CODE (if_info->cond);
2396       rtx op_a = XEXP (if_info->cond, 0);
2397       rtx op_b = XEXP (if_info->cond, 1);
2398       rtx_insn *prev_insn;
2399 
2400       /* First, look to see if we put a constant in a register.  */
2401       prev_insn = prev_nonnote_insn (if_info->cond_earliest);
2402       if (prev_insn
2403 	  && BLOCK_FOR_INSN (prev_insn)
2404 	     == BLOCK_FOR_INSN (if_info->cond_earliest)
2405 	  && INSN_P (prev_insn)
2406 	  && GET_CODE (PATTERN (prev_insn)) == SET)
2407 	{
2408 	  rtx src = find_reg_equal_equiv_note (prev_insn);
2409 	  if (!src)
2410 	    src = SET_SRC (PATTERN (prev_insn));
2411 	  if (CONST_INT_P (src))
2412 	    {
2413 	      if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
2414 		op_a = src;
2415 	      else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
2416 		op_b = src;
2417 
2418 	      if (CONST_INT_P (op_a))
2419 		{
2420 		  std::swap (op_a, op_b);
2421 		  code = swap_condition (code);
2422 		}
2423 	    }
2424 	}
2425 
2426       /* Now, look to see if we can get the right constant by
2427 	 adjusting the conditional.  */
2428       if (CONST_INT_P (op_b))
2429 	{
2430 	  HOST_WIDE_INT desired_val = INTVAL (target);
2431 	  HOST_WIDE_INT actual_val = INTVAL (op_b);
2432 
2433 	  switch (code)
2434 	    {
2435 	    case LT:
2436 	      if (desired_val != HOST_WIDE_INT_MAX
2437 		  && actual_val == desired_val + 1)
2438 		{
2439 		  code = LE;
2440 		  op_b = GEN_INT (desired_val);
2441 		}
2442 	      break;
2443 	    case LE:
2444 	      if (desired_val != HOST_WIDE_INT_MIN
2445 		  && actual_val == desired_val - 1)
2446 		{
2447 		  code = LT;
2448 		  op_b = GEN_INT (desired_val);
2449 		}
2450 	      break;
2451 	    case GT:
2452 	      if (desired_val != HOST_WIDE_INT_MIN
2453 		  && actual_val == desired_val - 1)
2454 		{
2455 		  code = GE;
2456 		  op_b = GEN_INT (desired_val);
2457 		}
2458 	      break;
2459 	    case GE:
2460 	      if (desired_val != HOST_WIDE_INT_MAX
2461 		  && actual_val == desired_val + 1)
2462 		{
2463 		  code = GT;
2464 		  op_b = GEN_INT (desired_val);
2465 		}
2466 	      break;
2467 	    default:
2468 	      break;
2469 	    }
2470 	}
2471 
2472       /* If we made any changes, generate a new conditional that is
2473 	 equivalent to what we started with, but has the right
2474 	 constants in it.  */
2475       if (code != GET_CODE (if_info->cond)
2476 	  || op_a != XEXP (if_info->cond, 0)
2477 	  || op_b != XEXP (if_info->cond, 1))
2478 	{
2479 	  cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
2480 	  *earliest = if_info->cond_earliest;
2481 	  return cond;
2482 	}
2483     }
2484 
2485   cond = canonicalize_condition (if_info->jump, cond, reverse,
2486 				 earliest, target, have_cbranchcc4, true);
2487   if (! cond || ! reg_mentioned_p (target, cond))
2488     return NULL;
2489 
2490   /* We almost certainly searched back to a different place.
2491      Need to re-verify correct lifetimes.  */
2492 
2493   /* X may not be mentioned in the range (cond_earliest, jump].  */
2494   for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
2495     if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
2496       return NULL;
2497 
2498   /* A and B may not be modified in the range [cond_earliest, jump).  */
2499   for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
2500     if (INSN_P (insn)
2501 	&& (modified_in_p (if_info->a, insn)
2502 	    || modified_in_p (if_info->b, insn)))
2503       return NULL;
2504 
2505   return cond;
2506 }
2507 
2508 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc.  */
2509 
2510 static int
noce_try_minmax(struct noce_if_info * if_info)2511 noce_try_minmax (struct noce_if_info *if_info)
2512 {
2513   rtx cond, target;
2514   rtx_insn *earliest, *seq;
2515   enum rtx_code code, op;
2516   int unsignedp;
2517 
2518   if (!noce_simple_bbs (if_info))
2519     return FALSE;
2520 
2521   /* ??? Reject modes with NaNs or signed zeros since we don't know how
2522      they will be resolved with an SMIN/SMAX.  It wouldn't be too hard
2523      to get the target to tell us...  */
2524   if (HONOR_SIGNED_ZEROS (if_info->x)
2525       || HONOR_NANS (if_info->x))
2526     return FALSE;
2527 
2528   cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
2529   if (!cond)
2530     return FALSE;
2531 
2532   /* Verify the condition is of the form we expect, and canonicalize
2533      the comparison code.  */
2534   code = GET_CODE (cond);
2535   if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2536     {
2537       if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2538 	return FALSE;
2539     }
2540   else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2541     {
2542       if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2543 	return FALSE;
2544       code = swap_condition (code);
2545     }
2546   else
2547     return FALSE;
2548 
2549   /* Determine what sort of operation this is.  Note that the code is for
2550      a taken branch, so the code->operation mapping appears backwards.  */
2551   switch (code)
2552     {
2553     case LT:
2554     case LE:
2555     case UNLT:
2556     case UNLE:
2557       op = SMAX;
2558       unsignedp = 0;
2559       break;
2560     case GT:
2561     case GE:
2562     case UNGT:
2563     case UNGE:
2564       op = SMIN;
2565       unsignedp = 0;
2566       break;
2567     case LTU:
2568     case LEU:
2569       op = UMAX;
2570       unsignedp = 1;
2571       break;
2572     case GTU:
2573     case GEU:
2574       op = UMIN;
2575       unsignedp = 1;
2576       break;
2577     default:
2578       return FALSE;
2579     }
2580 
2581   start_sequence ();
2582 
2583   target = expand_simple_binop (GET_MODE (if_info->x), op,
2584 				if_info->a, if_info->b,
2585 				if_info->x, unsignedp, OPTAB_WIDEN);
2586   if (! target)
2587     {
2588       end_sequence ();
2589       return FALSE;
2590     }
2591   if (target != if_info->x)
2592     noce_emit_move_insn (if_info->x, target);
2593 
2594   seq = end_ifcvt_sequence (if_info);
2595   if (!seq)
2596     return FALSE;
2597 
2598   emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2599   if_info->cond = cond;
2600   if_info->cond_earliest = earliest;
2601   if_info->rev_cond = NULL_RTX;
2602   if_info->transform_name = "noce_try_minmax";
2603 
2604   return TRUE;
2605 }
2606 
2607 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2608    "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2609    etc.  */
2610 
2611 static int
noce_try_abs(struct noce_if_info * if_info)2612 noce_try_abs (struct noce_if_info *if_info)
2613 {
2614   rtx cond, target, a, b, c;
2615   rtx_insn *earliest, *seq;
2616   int negate;
2617   bool one_cmpl = false;
2618 
2619   if (!noce_simple_bbs (if_info))
2620     return FALSE;
2621 
2622   /* Reject modes with signed zeros.  */
2623   if (HONOR_SIGNED_ZEROS (if_info->x))
2624     return FALSE;
2625 
2626   /* Recognize A and B as constituting an ABS or NABS.  The canonical
2627      form is a branch around the negation, taken when the object is the
2628      first operand of a comparison against 0 that evaluates to true.  */
2629   a = if_info->a;
2630   b = if_info->b;
2631   if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2632     negate = 0;
2633   else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2634     {
2635       std::swap (a, b);
2636       negate = 1;
2637     }
2638   else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2639     {
2640       negate = 0;
2641       one_cmpl = true;
2642     }
2643   else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2644     {
2645       std::swap (a, b);
2646       negate = 1;
2647       one_cmpl = true;
2648     }
2649   else
2650     return FALSE;
2651 
2652   cond = noce_get_alt_condition (if_info, b, &earliest);
2653   if (!cond)
2654     return FALSE;
2655 
2656   /* Verify the condition is of the form we expect.  */
2657   if (rtx_equal_p (XEXP (cond, 0), b))
2658     c = XEXP (cond, 1);
2659   else if (rtx_equal_p (XEXP (cond, 1), b))
2660     {
2661       c = XEXP (cond, 0);
2662       negate = !negate;
2663     }
2664   else
2665     return FALSE;
2666 
2667   /* Verify that C is zero.  Search one step backward for a
2668      REG_EQUAL note or a simple source if necessary.  */
2669   if (REG_P (c))
2670     {
2671       rtx set;
2672       rtx_insn *insn = prev_nonnote_insn (earliest);
2673       if (insn
2674 	  && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2675 	  && (set = single_set (insn))
2676 	  && rtx_equal_p (SET_DEST (set), c))
2677 	{
2678 	  rtx note = find_reg_equal_equiv_note (insn);
2679 	  if (note)
2680 	    c = XEXP (note, 0);
2681 	  else
2682 	    c = SET_SRC (set);
2683 	}
2684       else
2685 	return FALSE;
2686     }
2687   if (MEM_P (c)
2688       && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2689       && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2690     c = get_pool_constant (XEXP (c, 0));
2691 
2692   /* Work around funny ideas get_condition has wrt canonicalization.
2693      Note that these rtx constants are known to be CONST_INT, and
2694      therefore imply integer comparisons.
2695      The one_cmpl case is more complicated, as we want to handle
2696      only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2697      and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2698      but not other cases (x > -1 is equivalent of x >= 0).  */
2699   if (c == constm1_rtx && GET_CODE (cond) == GT)
2700     ;
2701   else if (c == const1_rtx && GET_CODE (cond) == LT)
2702     {
2703       if (one_cmpl)
2704 	return FALSE;
2705     }
2706   else if (c == CONST0_RTX (GET_MODE (b)))
2707     {
2708       if (one_cmpl
2709 	  && GET_CODE (cond) != GE
2710 	  && GET_CODE (cond) != LT)
2711 	return FALSE;
2712     }
2713   else
2714     return FALSE;
2715 
2716   /* Determine what sort of operation this is.  */
2717   switch (GET_CODE (cond))
2718     {
2719     case LT:
2720     case LE:
2721     case UNLT:
2722     case UNLE:
2723       negate = !negate;
2724       break;
2725     case GT:
2726     case GE:
2727     case UNGT:
2728     case UNGE:
2729       break;
2730     default:
2731       return FALSE;
2732     }
2733 
2734   start_sequence ();
2735   if (one_cmpl)
2736     target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2737                                          if_info->x);
2738   else
2739     target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2740 
2741   /* ??? It's a quandary whether cmove would be better here, especially
2742      for integers.  Perhaps combine will clean things up.  */
2743   if (target && negate)
2744     {
2745       if (one_cmpl)
2746         target = expand_simple_unop (GET_MODE (target), NOT, target,
2747                                      if_info->x, 0);
2748       else
2749         target = expand_simple_unop (GET_MODE (target), NEG, target,
2750                                      if_info->x, 0);
2751     }
2752 
2753   if (! target)
2754     {
2755       end_sequence ();
2756       return FALSE;
2757     }
2758 
2759   if (target != if_info->x)
2760     noce_emit_move_insn (if_info->x, target);
2761 
2762   seq = end_ifcvt_sequence (if_info);
2763   if (!seq)
2764     return FALSE;
2765 
2766   emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2767   if_info->cond = cond;
2768   if_info->cond_earliest = earliest;
2769   if_info->rev_cond = NULL_RTX;
2770   if_info->transform_name = "noce_try_abs";
2771 
2772   return TRUE;
2773 }
2774 
2775 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;".  */
2776 
2777 static int
noce_try_sign_mask(struct noce_if_info * if_info)2778 noce_try_sign_mask (struct noce_if_info *if_info)
2779 {
2780   rtx cond, t, m, c;
2781   rtx_insn *seq;
2782   machine_mode mode;
2783   enum rtx_code code;
2784   bool t_unconditional;
2785 
2786   if (!noce_simple_bbs (if_info))
2787     return FALSE;
2788 
2789   cond = if_info->cond;
2790   code = GET_CODE (cond);
2791   m = XEXP (cond, 0);
2792   c = XEXP (cond, 1);
2793 
2794   t = NULL_RTX;
2795   if (if_info->a == const0_rtx)
2796     {
2797       if ((code == LT && c == const0_rtx)
2798 	  || (code == LE && c == constm1_rtx))
2799 	t = if_info->b;
2800     }
2801   else if (if_info->b == const0_rtx)
2802     {
2803       if ((code == GE && c == const0_rtx)
2804 	  || (code == GT && c == constm1_rtx))
2805 	t = if_info->a;
2806     }
2807 
2808   if (! t || side_effects_p (t))
2809     return FALSE;
2810 
2811   /* We currently don't handle different modes.  */
2812   mode = GET_MODE (t);
2813   if (GET_MODE (m) != mode)
2814     return FALSE;
2815 
2816   /* This is only profitable if T is unconditionally executed/evaluated in the
2817      original insn sequence or T is cheap.  The former happens if B is the
2818      non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2819      INSN_B which can happen for e.g. conditional stores to memory.  For the
2820      cost computation use the block TEST_BB where the evaluation will end up
2821      after the transformation.  */
2822   t_unconditional
2823     = (t == if_info->b
2824        && (if_info->insn_b == NULL_RTX
2825 	   || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2826   if (!(t_unconditional
2827 	|| (set_src_cost (t, mode, if_info->speed_p)
2828 	    < COSTS_N_INSNS (2))))
2829     return FALSE;
2830 
2831   if (!noce_can_force_operand (t))
2832     return FALSE;
2833 
2834   start_sequence ();
2835   /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2836      "(signed) m >> 31" directly.  This benefits targets with specialized
2837      insns to obtain the signmask, but still uses ashr_optab otherwise.  */
2838   m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2839   t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2840 	: NULL_RTX;
2841 
2842   if (!t)
2843     {
2844       end_sequence ();
2845       return FALSE;
2846     }
2847 
2848   noce_emit_move_insn (if_info->x, t);
2849 
2850   seq = end_ifcvt_sequence (if_info);
2851   if (!seq)
2852     return FALSE;
2853 
2854   emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2855   if_info->transform_name = "noce_try_sign_mask";
2856 
2857   return TRUE;
2858 }
2859 
2860 
2861 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2862    transformations.  */
2863 
2864 static int
noce_try_bitop(struct noce_if_info * if_info)2865 noce_try_bitop (struct noce_if_info *if_info)
2866 {
2867   rtx cond, x, a, result;
2868   rtx_insn *seq;
2869   scalar_int_mode mode;
2870   enum rtx_code code;
2871   int bitnum;
2872 
2873   x = if_info->x;
2874   cond = if_info->cond;
2875   code = GET_CODE (cond);
2876 
2877   /* Check for an integer operation.  */
2878   if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
2879     return FALSE;
2880 
2881   if (!noce_simple_bbs (if_info))
2882     return FALSE;
2883 
2884   /* Check for no else condition.  */
2885   if (! rtx_equal_p (x, if_info->b))
2886     return FALSE;
2887 
2888   /* Check for a suitable condition.  */
2889   if (code != NE && code != EQ)
2890     return FALSE;
2891   if (XEXP (cond, 1) != const0_rtx)
2892     return FALSE;
2893   cond = XEXP (cond, 0);
2894 
2895   /* ??? We could also handle AND here.  */
2896   if (GET_CODE (cond) == ZERO_EXTRACT)
2897     {
2898       if (XEXP (cond, 1) != const1_rtx
2899 	  || !CONST_INT_P (XEXP (cond, 2))
2900 	  || ! rtx_equal_p (x, XEXP (cond, 0)))
2901 	return FALSE;
2902       bitnum = INTVAL (XEXP (cond, 2));
2903       if (BITS_BIG_ENDIAN)
2904 	bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2905       if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2906 	return FALSE;
2907     }
2908   else
2909     return FALSE;
2910 
2911   a = if_info->a;
2912   if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2913     {
2914       /* Check for "if (X & C) x = x op C".  */
2915       if (! rtx_equal_p (x, XEXP (a, 0))
2916           || !CONST_INT_P (XEXP (a, 1))
2917 	  || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2918 	     != HOST_WIDE_INT_1U << bitnum)
2919         return FALSE;
2920 
2921       /* if ((x & C) == 0) x |= C; is transformed to x |= C.   */
2922       /* if ((x & C) != 0) x |= C; is transformed to nothing.  */
2923       if (GET_CODE (a) == IOR)
2924 	result = (code == NE) ? a : NULL_RTX;
2925       else if (code == NE)
2926 	{
2927 	  /* if ((x & C) == 0) x ^= C; is transformed to x |= C.   */
2928 	  result = gen_int_mode (HOST_WIDE_INT_1 << bitnum, mode);
2929 	  result = simplify_gen_binary (IOR, mode, x, result);
2930 	}
2931       else
2932 	{
2933 	  /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C.  */
2934 	  result = gen_int_mode (~(HOST_WIDE_INT_1 << bitnum), mode);
2935 	  result = simplify_gen_binary (AND, mode, x, result);
2936 	}
2937     }
2938   else if (GET_CODE (a) == AND)
2939     {
2940       /* Check for "if (X & C) x &= ~C".  */
2941       if (! rtx_equal_p (x, XEXP (a, 0))
2942 	  || !CONST_INT_P (XEXP (a, 1))
2943 	  || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2944 	     != (~(HOST_WIDE_INT_1 << bitnum) & GET_MODE_MASK (mode)))
2945         return FALSE;
2946 
2947       /* if ((x & C) == 0) x &= ~C; is transformed to nothing.  */
2948       /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C.  */
2949       result = (code == EQ) ? a : NULL_RTX;
2950     }
2951   else
2952     return FALSE;
2953 
2954   if (result)
2955     {
2956       start_sequence ();
2957       noce_emit_move_insn (x, result);
2958       seq = end_ifcvt_sequence (if_info);
2959       if (!seq)
2960 	return FALSE;
2961 
2962       emit_insn_before_setloc (seq, if_info->jump,
2963 			       INSN_LOCATION (if_info->insn_a));
2964     }
2965   if_info->transform_name = "noce_try_bitop";
2966   return TRUE;
2967 }
2968 
2969 
2970 /* Similar to get_condition, only the resulting condition must be
2971    valid at JUMP, instead of at EARLIEST.
2972 
2973    If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2974    THEN block of the caller, and we have to reverse the condition.  */
2975 
2976 static rtx
noce_get_condition(rtx_insn * jump,rtx_insn ** earliest,bool then_else_reversed)2977 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2978 {
2979   rtx cond, set, tmp;
2980   bool reverse;
2981 
2982   if (! any_condjump_p (jump))
2983     return NULL_RTX;
2984 
2985   set = pc_set (jump);
2986 
2987   /* If this branches to JUMP_LABEL when the condition is false,
2988      reverse the condition.  */
2989   reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2990 	     && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2991 
2992   /* We may have to reverse because the caller's if block is not canonical,
2993      i.e. the THEN block isn't the fallthrough block for the TEST block
2994      (see find_if_header).  */
2995   if (then_else_reversed)
2996     reverse = !reverse;
2997 
2998   /* If the condition variable is a register and is MODE_INT, accept it.  */
2999 
3000   cond = XEXP (SET_SRC (set), 0);
3001   tmp = XEXP (cond, 0);
3002   if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
3003       && (GET_MODE (tmp) != BImode
3004           || !targetm.small_register_classes_for_mode_p (BImode)))
3005     {
3006       *earliest = jump;
3007 
3008       if (reverse)
3009 	cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
3010 			       GET_MODE (cond), tmp, XEXP (cond, 1));
3011       return cond;
3012     }
3013 
3014   /* Otherwise, fall back on canonicalize_condition to do the dirty
3015      work of manipulating MODE_CC values and COMPARE rtx codes.  */
3016   tmp = canonicalize_condition (jump, cond, reverse, earliest,
3017 				NULL_RTX, have_cbranchcc4, true);
3018 
3019   /* We don't handle side-effects in the condition, like handling
3020      REG_INC notes and making sure no duplicate conditions are emitted.  */
3021   if (tmp != NULL_RTX && side_effects_p (tmp))
3022     return NULL_RTX;
3023 
3024   return tmp;
3025 }
3026 
3027 /* Return true if OP is ok for if-then-else processing.  */
3028 
3029 static int
noce_operand_ok(const_rtx op)3030 noce_operand_ok (const_rtx op)
3031 {
3032   if (side_effects_p (op))
3033     return FALSE;
3034 
3035   /* We special-case memories, so handle any of them with
3036      no address side effects.  */
3037   if (MEM_P (op))
3038     return ! side_effects_p (XEXP (op, 0));
3039 
3040   return ! may_trap_p (op);
3041 }
3042 
3043 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
3044    The condition used in this if-conversion is in COND.
3045    In practice, check that TEST_BB ends with a single set
3046    x := a and all previous computations
3047    in TEST_BB don't produce any values that are live after TEST_BB.
3048    In other words, all the insns in TEST_BB are there only
3049    to compute a value for x.  Add the rtx cost of the insns
3050    in TEST_BB to COST.  Record whether TEST_BB is a single simple
3051    set instruction in SIMPLE_P.  */
3052 
3053 static bool
bb_valid_for_noce_process_p(basic_block test_bb,rtx cond,unsigned int * cost,bool * simple_p)3054 bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
3055 			      unsigned int *cost, bool *simple_p)
3056 {
3057   if (!test_bb)
3058     return false;
3059 
3060   rtx_insn *last_insn = last_active_insn (test_bb, FALSE);
3061   rtx last_set = NULL_RTX;
3062 
3063   rtx cc = cc_in_cond (cond);
3064 
3065   if (!insn_valid_noce_process_p (last_insn, cc))
3066     return false;
3067   last_set = single_set (last_insn);
3068 
3069   rtx x = SET_DEST (last_set);
3070   rtx_insn *first_insn = first_active_insn (test_bb);
3071   rtx first_set = single_set (first_insn);
3072 
3073   if (!first_set)
3074     return false;
3075 
3076   /* We have a single simple set, that's okay.  */
3077   bool speed_p = optimize_bb_for_speed_p (test_bb);
3078 
3079   if (first_insn == last_insn)
3080     {
3081       *simple_p = noce_operand_ok (SET_DEST (first_set));
3082       *cost += pattern_cost (first_set, speed_p);
3083       return *simple_p;
3084     }
3085 
3086   rtx_insn *prev_last_insn = PREV_INSN (last_insn);
3087   gcc_assert (prev_last_insn);
3088 
3089   /* For now, disallow setting x multiple times in test_bb.  */
3090   if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
3091     return false;
3092 
3093   bitmap test_bb_temps = BITMAP_ALLOC (&reg_obstack);
3094 
3095   /* The regs that are live out of test_bb.  */
3096   bitmap test_bb_live_out = df_get_live_out (test_bb);
3097 
3098   int potential_cost = pattern_cost (last_set, speed_p);
3099   rtx_insn *insn;
3100   FOR_BB_INSNS (test_bb, insn)
3101     {
3102       if (insn != last_insn)
3103 	{
3104 	  if (!active_insn_p (insn))
3105 	    continue;
3106 
3107 	  if (!insn_valid_noce_process_p (insn, cc))
3108 	    goto free_bitmap_and_fail;
3109 
3110 	  rtx sset = single_set (insn);
3111 	  gcc_assert (sset);
3112 
3113 	  if (contains_mem_rtx_p (SET_SRC (sset))
3114 	      || !REG_P (SET_DEST (sset))
3115 	      || reg_overlap_mentioned_p (SET_DEST (sset), cond))
3116 	    goto free_bitmap_and_fail;
3117 
3118 	  potential_cost += pattern_cost (sset, speed_p);
3119 	  bitmap_set_bit (test_bb_temps, REGNO (SET_DEST (sset)));
3120 	}
3121     }
3122 
3123   /* If any of the intermediate results in test_bb are live after test_bb
3124      then fail.  */
3125   if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
3126     goto free_bitmap_and_fail;
3127 
3128   BITMAP_FREE (test_bb_temps);
3129   *cost += potential_cost;
3130   *simple_p = false;
3131   return true;
3132 
3133  free_bitmap_and_fail:
3134   BITMAP_FREE (test_bb_temps);
3135   return false;
3136 }
3137 
3138 /* We have something like:
3139 
3140      if (x > y)
3141        { i = a; j = b; k = c; }
3142 
3143    Make it:
3144 
3145      tmp_i = (x > y) ? a : i;
3146      tmp_j = (x > y) ? b : j;
3147      tmp_k = (x > y) ? c : k;
3148      i = tmp_i;
3149      j = tmp_j;
3150      k = tmp_k;
3151 
3152    Subsequent passes are expected to clean up the extra moves.
3153 
3154    Look for special cases such as writes to one register which are
3155    read back in another SET, as might occur in a swap idiom or
3156    similar.
3157 
3158    These look like:
3159 
3160    if (x > y)
3161      i = a;
3162      j = i;
3163 
3164    Which we want to rewrite to:
3165 
3166      tmp_i = (x > y) ? a : i;
3167      tmp_j = (x > y) ? tmp_i : j;
3168      i = tmp_i;
3169      j = tmp_j;
3170 
3171    We can catch these when looking at (SET x y) by keeping a list of the
3172    registers we would have targeted before if-conversion and looking back
3173    through it for an overlap with Y.  If we find one, we rewire the
3174    conditional set to use the temporary we introduced earlier.
3175 
3176    IF_INFO contains the useful information about the block structure and
3177    jump instructions.  */
3178 
3179 static int
noce_convert_multiple_sets(struct noce_if_info * if_info)3180 noce_convert_multiple_sets (struct noce_if_info *if_info)
3181 {
3182   basic_block test_bb = if_info->test_bb;
3183   basic_block then_bb = if_info->then_bb;
3184   basic_block join_bb = if_info->join_bb;
3185   rtx_insn *jump = if_info->jump;
3186   rtx_insn *cond_earliest;
3187   rtx_insn *insn;
3188 
3189   start_sequence ();
3190 
3191   /* Decompose the condition attached to the jump.  */
3192   rtx cond = noce_get_condition (jump, &cond_earliest, false);
3193   rtx x = XEXP (cond, 0);
3194   rtx y = XEXP (cond, 1);
3195   rtx_code cond_code = GET_CODE (cond);
3196 
3197   /* The true targets for a conditional move.  */
3198   auto_vec<rtx> targets;
3199   /* The temporaries introduced to allow us to not consider register
3200      overlap.  */
3201   auto_vec<rtx> temporaries;
3202   /* The insns we've emitted.  */
3203   auto_vec<rtx_insn *> unmodified_insns;
3204   int count = 0;
3205 
3206   FOR_BB_INSNS (then_bb, insn)
3207     {
3208       /* Skip over non-insns.  */
3209       if (!active_insn_p (insn))
3210 	continue;
3211 
3212       rtx set = single_set (insn);
3213       gcc_checking_assert (set);
3214 
3215       rtx target = SET_DEST (set);
3216       rtx temp = gen_reg_rtx (GET_MODE (target));
3217       rtx new_val = SET_SRC (set);
3218       rtx old_val = target;
3219 
3220       /* If we were supposed to read from an earlier write in this block,
3221 	 we've changed the register allocation.  Rewire the read.  While
3222 	 we are looking, also try to catch a swap idiom.  */
3223       for (int i = count - 1; i >= 0; --i)
3224 	if (reg_overlap_mentioned_p (new_val, targets[i]))
3225 	  {
3226 	    /* Catch a "swap" style idiom.  */
3227 	    if (find_reg_note (insn, REG_DEAD, new_val) != NULL_RTX)
3228 	      /* The write to targets[i] is only live until the read
3229 		 here.  As the condition codes match, we can propagate
3230 		 the set to here.  */
3231 	      new_val = SET_SRC (single_set (unmodified_insns[i]));
3232 	    else
3233 	      new_val = temporaries[i];
3234 	    break;
3235 	  }
3236 
3237       /* If we had a non-canonical conditional jump (i.e. one where
3238 	 the fallthrough is to the "else" case) we need to reverse
3239 	 the conditional select.  */
3240       if (if_info->then_else_reversed)
3241 	std::swap (old_val, new_val);
3242 
3243 
3244       /* We allow simple lowpart register subreg SET sources in
3245 	 bb_ok_for_noce_convert_multiple_sets.  Be careful when processing
3246 	 sequences like:
3247 	 (set (reg:SI r1) (reg:SI r2))
3248 	 (set (reg:HI r3) (subreg:HI (r1)))
3249 	 For the second insn new_val or old_val (r1 in this example) will be
3250 	 taken from the temporaries and have the wider mode which will not
3251 	 match with the mode of the other source of the conditional move, so
3252 	 we'll end up trying to emit r4:HI = cond ? (r1:SI) : (r3:HI).
3253 	 Wrap the two cmove operands into subregs if appropriate to prevent
3254 	 that.  */
3255       if (GET_MODE (new_val) != GET_MODE (temp))
3256 	{
3257 	  machine_mode src_mode = GET_MODE (new_val);
3258 	  machine_mode dst_mode = GET_MODE (temp);
3259 	  if (!partial_subreg_p (dst_mode, src_mode))
3260 	    {
3261 	      end_sequence ();
3262 	      return FALSE;
3263 	    }
3264 	  new_val = lowpart_subreg (dst_mode, new_val, src_mode);
3265 	}
3266       if (GET_MODE (old_val) != GET_MODE (temp))
3267 	{
3268 	  machine_mode src_mode = GET_MODE (old_val);
3269 	  machine_mode dst_mode = GET_MODE (temp);
3270 	  if (!partial_subreg_p (dst_mode, src_mode))
3271 	    {
3272 	      end_sequence ();
3273 	      return FALSE;
3274 	    }
3275 	  old_val = lowpart_subreg (dst_mode, old_val, src_mode);
3276 	}
3277 
3278       /* Actually emit the conditional move.  */
3279       rtx temp_dest = noce_emit_cmove (if_info, temp, cond_code,
3280 				       x, y, new_val, old_val);
3281 
3282       /* If we failed to expand the conditional move, drop out and don't
3283 	 try to continue.  */
3284       if (temp_dest == NULL_RTX)
3285 	{
3286 	  end_sequence ();
3287 	  return FALSE;
3288 	}
3289 
3290       /* Bookkeeping.  */
3291       count++;
3292       targets.safe_push (target);
3293       temporaries.safe_push (temp_dest);
3294       unmodified_insns.safe_push (insn);
3295     }
3296 
3297   /* We must have seen some sort of insn to insert, otherwise we were
3298      given an empty BB to convert, and we can't handle that.  */
3299   gcc_assert (!unmodified_insns.is_empty ());
3300 
3301   /* Now fixup the assignments.  */
3302   for (int i = 0; i < count; i++)
3303     noce_emit_move_insn (targets[i], temporaries[i]);
3304 
3305   /* Actually emit the sequence if it isn't too expensive.  */
3306   rtx_insn *seq = get_insns ();
3307 
3308   if (!targetm.noce_conversion_profitable_p (seq, if_info))
3309     {
3310       end_sequence ();
3311       return FALSE;
3312     }
3313 
3314   for (insn = seq; insn; insn = NEXT_INSN (insn))
3315     set_used_flags (insn);
3316 
3317   /* Mark all our temporaries and targets as used.  */
3318   for (int i = 0; i < count; i++)
3319     {
3320       set_used_flags (temporaries[i]);
3321       set_used_flags (targets[i]);
3322     }
3323 
3324   set_used_flags (cond);
3325   set_used_flags (x);
3326   set_used_flags (y);
3327 
3328   unshare_all_rtl_in_chain (seq);
3329   end_sequence ();
3330 
3331   if (!seq)
3332     return FALSE;
3333 
3334   for (insn = seq; insn; insn = NEXT_INSN (insn))
3335     if (JUMP_P (insn)
3336 	|| recog_memoized (insn) == -1)
3337       return FALSE;
3338 
3339   emit_insn_before_setloc (seq, if_info->jump,
3340 			   INSN_LOCATION (unmodified_insns.last ()));
3341 
3342   /* Clean up THEN_BB and the edges in and out of it.  */
3343   remove_edge (find_edge (test_bb, join_bb));
3344   remove_edge (find_edge (then_bb, join_bb));
3345   redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3346   delete_basic_block (then_bb);
3347   num_true_changes++;
3348 
3349   /* Maybe merge blocks now the jump is simple enough.  */
3350   if (can_merge_blocks_p (test_bb, join_bb))
3351     {
3352       merge_blocks (test_bb, join_bb);
3353       num_true_changes++;
3354     }
3355 
3356   num_updated_if_blocks++;
3357   if_info->transform_name = "noce_convert_multiple_sets";
3358   return TRUE;
3359 }
3360 
3361 /* Return true iff basic block TEST_BB is comprised of only
3362    (SET (REG) (REG)) insns suitable for conversion to a series
3363    of conditional moves.  Also check that we have more than one set
3364    (other routines can handle a single set better than we would), and
3365    fewer than PARAM_MAX_RTL_IF_CONVERSION_INSNS sets.  */
3366 
3367 static bool
bb_ok_for_noce_convert_multiple_sets(basic_block test_bb)3368 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb)
3369 {
3370   rtx_insn *insn;
3371   unsigned count = 0;
3372   unsigned param = param_max_rtl_if_conversion_insns;
3373 
3374   FOR_BB_INSNS (test_bb, insn)
3375     {
3376       /* Skip over notes etc.  */
3377       if (!active_insn_p (insn))
3378 	continue;
3379 
3380       /* We only handle SET insns.  */
3381       rtx set = single_set (insn);
3382       if (set == NULL_RTX)
3383 	return false;
3384 
3385       rtx dest = SET_DEST (set);
3386       rtx src = SET_SRC (set);
3387 
3388       /* We can possibly relax this, but for now only handle REG to REG
3389 	 (including subreg) moves.  This avoids any issues that might come
3390 	 from introducing loads/stores that might violate data-race-freedom
3391 	 guarantees.  */
3392       if (!REG_P (dest))
3393 	return false;
3394 
3395       if (!(REG_P (src)
3396 	   || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3397 	       && subreg_lowpart_p (src))))
3398 	return false;
3399 
3400       /* Destination must be appropriate for a conditional write.  */
3401       if (!noce_operand_ok (dest))
3402 	return false;
3403 
3404       /* We must be able to conditionally move in this mode.  */
3405       if (!can_conditionally_move_p (GET_MODE (dest)))
3406 	return false;
3407 
3408       count++;
3409     }
3410 
3411   /* If we would only put out one conditional move, the other strategies
3412      this pass tries are better optimized and will be more appropriate.
3413      Some targets want to strictly limit the number of conditional moves
3414      that are emitted, they set this through PARAM, we need to respect
3415      that.  */
3416   return count > 1 && count <= param;
3417 }
3418 
3419 /* Compute average of two given costs weighted by relative probabilities
3420    of respective basic blocks in an IF-THEN-ELSE.  E is the IF-THEN edge.
3421    With P as the probability to take the IF-THEN branch, return
3422    P * THEN_COST + (1 - P) * ELSE_COST.  */
3423 static unsigned
average_cost(unsigned then_cost,unsigned else_cost,edge e)3424 average_cost (unsigned then_cost, unsigned else_cost, edge e)
3425 {
3426   return else_cost + e->probability.apply ((signed) (then_cost - else_cost));
3427 }
3428 
3429 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3430    it without using conditional execution.  Return TRUE if we were successful
3431    at converting the block.  */
3432 
3433 static int
noce_process_if_block(struct noce_if_info * if_info)3434 noce_process_if_block (struct noce_if_info *if_info)
3435 {
3436   basic_block test_bb = if_info->test_bb;	/* test block */
3437   basic_block then_bb = if_info->then_bb;	/* THEN */
3438   basic_block else_bb = if_info->else_bb;	/* ELSE or NULL */
3439   basic_block join_bb = if_info->join_bb;	/* JOIN */
3440   rtx_insn *jump = if_info->jump;
3441   rtx cond = if_info->cond;
3442   rtx_insn *insn_a, *insn_b;
3443   rtx set_a, set_b;
3444   rtx orig_x, x, a, b;
3445 
3446   /* We're looking for patterns of the form
3447 
3448      (1) if (...) x = a; else x = b;
3449      (2) x = b; if (...) x = a;
3450      (3) if (...) x = a;   // as if with an initial x = x.
3451      (4) if (...) { x = a; y = b; z = c; }  // Like 3, for multiple SETS.
3452      The later patterns require jumps to be more expensive.
3453      For the if (...) x = a; else x = b; case we allow multiple insns
3454      inside the then and else blocks as long as their only effect is
3455      to calculate a value for x.
3456      ??? For future expansion, further expand the "multiple X" rules.  */
3457 
3458   /* First look for multiple SETS.  */
3459   if (!else_bb
3460       && HAVE_conditional_move
3461       && !HAVE_cc0
3462       && bb_ok_for_noce_convert_multiple_sets (then_bb))
3463     {
3464       if (noce_convert_multiple_sets (if_info))
3465 	{
3466 	  if (dump_file && if_info->transform_name)
3467 	    fprintf (dump_file, "if-conversion succeeded through %s\n",
3468 		     if_info->transform_name);
3469 	  return TRUE;
3470 	}
3471     }
3472 
3473   bool speed_p = optimize_bb_for_speed_p (test_bb);
3474   unsigned int then_cost = 0, else_cost = 0;
3475   if (!bb_valid_for_noce_process_p (then_bb, cond, &then_cost,
3476 				    &if_info->then_simple))
3477     return false;
3478 
3479   if (else_bb
3480       && !bb_valid_for_noce_process_p (else_bb, cond, &else_cost,
3481 				       &if_info->else_simple))
3482     return false;
3483 
3484   if (speed_p)
3485     if_info->original_cost += average_cost (then_cost, else_cost,
3486 					    find_edge (test_bb, then_bb));
3487   else
3488     if_info->original_cost += then_cost + else_cost;
3489 
3490   insn_a = last_active_insn (then_bb, FALSE);
3491   set_a = single_set (insn_a);
3492   gcc_assert (set_a);
3493 
3494   x = SET_DEST (set_a);
3495   a = SET_SRC (set_a);
3496 
3497   /* Look for the other potential set.  Make sure we've got equivalent
3498      destinations.  */
3499   /* ??? This is overconservative.  Storing to two different mems is
3500      as easy as conditionally computing the address.  Storing to a
3501      single mem merely requires a scratch memory to use as one of the
3502      destination addresses; often the memory immediately below the
3503      stack pointer is available for this.  */
3504   set_b = NULL_RTX;
3505   if (else_bb)
3506     {
3507       insn_b = last_active_insn (else_bb, FALSE);
3508       set_b = single_set (insn_b);
3509       gcc_assert (set_b);
3510 
3511       if (!rtx_interchangeable_p (x, SET_DEST (set_b)))
3512 	return FALSE;
3513     }
3514   else
3515     {
3516       insn_b = if_info->cond_earliest;
3517       do
3518 	insn_b = prev_nonnote_nondebug_insn (insn_b);
3519       while (insn_b
3520 	     && (BLOCK_FOR_INSN (insn_b)
3521 		 == BLOCK_FOR_INSN (if_info->cond_earliest))
3522 	     && !modified_in_p (x, insn_b));
3523 
3524       /* We're going to be moving the evaluation of B down from above
3525 	 COND_EARLIEST to JUMP.  Make sure the relevant data is still
3526 	 intact.  */
3527       if (! insn_b
3528 	  || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
3529 	  || !NONJUMP_INSN_P (insn_b)
3530 	  || (set_b = single_set (insn_b)) == NULL_RTX
3531 	  || ! rtx_interchangeable_p (x, SET_DEST (set_b))
3532 	  || ! noce_operand_ok (SET_SRC (set_b))
3533 	  || reg_overlap_mentioned_p (x, SET_SRC (set_b))
3534 	  || modified_between_p (SET_SRC (set_b), insn_b, jump)
3535 	  /* Avoid extending the lifetime of hard registers on small
3536 	     register class machines.  */
3537 	  || (REG_P (SET_SRC (set_b))
3538 	      && HARD_REGISTER_P (SET_SRC (set_b))
3539 	      && targetm.small_register_classes_for_mode_p
3540 		   (GET_MODE (SET_SRC (set_b))))
3541 	  /* Likewise with X.  In particular this can happen when
3542 	     noce_get_condition looks farther back in the instruction
3543 	     stream than one might expect.  */
3544 	  || reg_overlap_mentioned_p (x, cond)
3545 	  || reg_overlap_mentioned_p (x, a)
3546 	  || modified_between_p (x, insn_b, jump))
3547 	{
3548 	  insn_b = NULL;
3549 	  set_b = NULL_RTX;
3550 	}
3551     }
3552 
3553   /* If x has side effects then only the if-then-else form is safe to
3554      convert.  But even in that case we would need to restore any notes
3555      (such as REG_INC) at then end.  That can be tricky if
3556      noce_emit_move_insn expands to more than one insn, so disable the
3557      optimization entirely for now if there are side effects.  */
3558   if (side_effects_p (x))
3559     return FALSE;
3560 
3561   b = (set_b ? SET_SRC (set_b) : x);
3562 
3563   /* Only operate on register destinations, and even then avoid extending
3564      the lifetime of hard registers on small register class machines.  */
3565   orig_x = x;
3566   if_info->orig_x = orig_x;
3567   if (!REG_P (x)
3568       || (HARD_REGISTER_P (x)
3569 	  && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
3570     {
3571       if (GET_MODE (x) == BLKmode)
3572 	return FALSE;
3573 
3574       if (GET_CODE (x) == ZERO_EXTRACT
3575 	  && (!CONST_INT_P (XEXP (x, 1))
3576 	      || !CONST_INT_P (XEXP (x, 2))))
3577 	return FALSE;
3578 
3579       x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
3580 				 ? XEXP (x, 0) : x));
3581     }
3582 
3583   /* Don't operate on sources that may trap or are volatile.  */
3584   if (! noce_operand_ok (a) || ! noce_operand_ok (b))
3585     return FALSE;
3586 
3587  retry:
3588   /* Set up the info block for our subroutines.  */
3589   if_info->insn_a = insn_a;
3590   if_info->insn_b = insn_b;
3591   if_info->x = x;
3592   if_info->a = a;
3593   if_info->b = b;
3594 
3595   /* Try optimizations in some approximation of a useful order.  */
3596   /* ??? Should first look to see if X is live incoming at all.  If it
3597      isn't, we don't need anything but an unconditional set.  */
3598 
3599   /* Look and see if A and B are really the same.  Avoid creating silly
3600      cmove constructs that no one will fix up later.  */
3601   if (noce_simple_bbs (if_info)
3602       && rtx_interchangeable_p (a, b))
3603     {
3604       /* If we have an INSN_B, we don't have to create any new rtl.  Just
3605 	 move the instruction that we already have.  If we don't have an
3606 	 INSN_B, that means that A == X, and we've got a noop move.  In
3607 	 that case don't do anything and let the code below delete INSN_A.  */
3608       if (insn_b && else_bb)
3609 	{
3610 	  rtx note;
3611 
3612 	  if (else_bb && insn_b == BB_END (else_bb))
3613 	    BB_END (else_bb) = PREV_INSN (insn_b);
3614 	  reorder_insns (insn_b, insn_b, PREV_INSN (jump));
3615 
3616 	  /* If there was a REG_EQUAL note, delete it since it may have been
3617 	     true due to this insn being after a jump.  */
3618 	  if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
3619 	    remove_note (insn_b, note);
3620 
3621 	  insn_b = NULL;
3622 	}
3623       /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3624 	 x must be executed twice.  */
3625       else if (insn_b && side_effects_p (orig_x))
3626 	return FALSE;
3627 
3628       x = orig_x;
3629       goto success;
3630     }
3631 
3632   if (!set_b && MEM_P (orig_x))
3633     /* We want to avoid store speculation to avoid cases like
3634 	 if (pthread_mutex_trylock(mutex))
3635 	   ++global_variable;
3636        Rather than go to much effort here, we rely on the SSA optimizers,
3637        which do a good enough job these days.  */
3638     return FALSE;
3639 
3640   if (noce_try_move (if_info))
3641     goto success;
3642   if (noce_try_ifelse_collapse (if_info))
3643     goto success;
3644   if (noce_try_store_flag (if_info))
3645     goto success;
3646   if (noce_try_bitop (if_info))
3647     goto success;
3648   if (noce_try_minmax (if_info))
3649     goto success;
3650   if (noce_try_abs (if_info))
3651     goto success;
3652   if (noce_try_inverse_constants (if_info))
3653     goto success;
3654   if (!targetm.have_conditional_execution ()
3655       && noce_try_store_flag_constants (if_info))
3656     goto success;
3657   if (HAVE_conditional_move
3658       && noce_try_cmove (if_info))
3659     goto success;
3660   if (! targetm.have_conditional_execution ())
3661     {
3662       if (noce_try_addcc (if_info))
3663 	goto success;
3664       if (noce_try_store_flag_mask (if_info))
3665 	goto success;
3666       if (HAVE_conditional_move
3667 	  && noce_try_cmove_arith (if_info))
3668 	goto success;
3669       if (noce_try_sign_mask (if_info))
3670 	goto success;
3671     }
3672 
3673   if (!else_bb && set_b)
3674     {
3675       insn_b = NULL;
3676       set_b = NULL_RTX;
3677       b = orig_x;
3678       goto retry;
3679     }
3680 
3681   return FALSE;
3682 
3683  success:
3684   if (dump_file && if_info->transform_name)
3685     fprintf (dump_file, "if-conversion succeeded through %s\n",
3686 	     if_info->transform_name);
3687 
3688   /* If we used a temporary, fix it up now.  */
3689   if (orig_x != x)
3690     {
3691       rtx_insn *seq;
3692 
3693       start_sequence ();
3694       noce_emit_move_insn (orig_x, x);
3695       seq = get_insns ();
3696       set_used_flags (orig_x);
3697       unshare_all_rtl_in_chain (seq);
3698       end_sequence ();
3699 
3700       emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
3701     }
3702 
3703   /* The original THEN and ELSE blocks may now be removed.  The test block
3704      must now jump to the join block.  If the test block and the join block
3705      can be merged, do so.  */
3706   if (else_bb)
3707     {
3708       delete_basic_block (else_bb);
3709       num_true_changes++;
3710     }
3711   else
3712     remove_edge (find_edge (test_bb, join_bb));
3713 
3714   remove_edge (find_edge (then_bb, join_bb));
3715   redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3716   delete_basic_block (then_bb);
3717   num_true_changes++;
3718 
3719   if (can_merge_blocks_p (test_bb, join_bb))
3720     {
3721       merge_blocks (test_bb, join_bb);
3722       num_true_changes++;
3723     }
3724 
3725   num_updated_if_blocks++;
3726   return TRUE;
3727 }
3728 
3729 /* Check whether a block is suitable for conditional move conversion.
3730    Every insn must be a simple set of a register to a constant or a
3731    register.  For each assignment, store the value in the pointer map
3732    VALS, keyed indexed by register pointer, then store the register
3733    pointer in REGS.  COND is the condition we will test.  */
3734 
3735 static int
check_cond_move_block(basic_block bb,hash_map<rtx,rtx> * vals,vec<rtx> * regs,rtx cond)3736 check_cond_move_block (basic_block bb,
3737 		       hash_map<rtx, rtx> *vals,
3738 		       vec<rtx> *regs,
3739 		       rtx cond)
3740 {
3741   rtx_insn *insn;
3742   rtx cc = cc_in_cond (cond);
3743 
3744    /* We can only handle simple jumps at the end of the basic block.
3745       It is almost impossible to update the CFG otherwise.  */
3746   insn = BB_END (bb);
3747   if (JUMP_P (insn) && !onlyjump_p (insn))
3748     return FALSE;
3749 
3750   FOR_BB_INSNS (bb, insn)
3751     {
3752       rtx set, dest, src;
3753 
3754       if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3755 	continue;
3756       set = single_set (insn);
3757       if (!set)
3758 	return FALSE;
3759 
3760       dest = SET_DEST (set);
3761       src = SET_SRC (set);
3762       if (!REG_P (dest)
3763 	  || (HARD_REGISTER_P (dest)
3764 	      && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
3765 	return FALSE;
3766 
3767       if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
3768 	return FALSE;
3769 
3770       if (side_effects_p (src) || side_effects_p (dest))
3771 	return FALSE;
3772 
3773       if (may_trap_p (src) || may_trap_p (dest))
3774 	return FALSE;
3775 
3776       /* Don't try to handle this if the source register was
3777 	 modified earlier in the block.  */
3778       if ((REG_P (src)
3779 	   && vals->get (src))
3780 	  || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3781 	      && vals->get (SUBREG_REG (src))))
3782 	return FALSE;
3783 
3784       /* Don't try to handle this if the destination register was
3785 	 modified earlier in the block.  */
3786       if (vals->get (dest))
3787 	return FALSE;
3788 
3789       /* Don't try to handle this if the condition uses the
3790 	 destination register.  */
3791       if (reg_overlap_mentioned_p (dest, cond))
3792 	return FALSE;
3793 
3794       /* Don't try to handle this if the source register is modified
3795 	 later in the block.  */
3796       if (!CONSTANT_P (src)
3797 	  && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
3798 	return FALSE;
3799 
3800       /* Skip it if the instruction to be moved might clobber CC.  */
3801       if (cc && set_of (cc, insn))
3802 	return FALSE;
3803 
3804       vals->put (dest, src);
3805 
3806       regs->safe_push (dest);
3807     }
3808 
3809   return TRUE;
3810 }
3811 
3812 /* Given a basic block BB suitable for conditional move conversion,
3813    a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
3814    the register values depending on COND, emit the insns in the block as
3815    conditional moves.  If ELSE_BLOCK is true, THEN_BB was already
3816    processed.  The caller has started a sequence for the conversion.
3817    Return true if successful, false if something goes wrong.  */
3818 
3819 static bool
cond_move_convert_if_block(struct noce_if_info * if_infop,basic_block bb,rtx cond,hash_map<rtx,rtx> * then_vals,hash_map<rtx,rtx> * else_vals,bool else_block_p)3820 cond_move_convert_if_block (struct noce_if_info *if_infop,
3821 			    basic_block bb, rtx cond,
3822 			    hash_map<rtx, rtx> *then_vals,
3823 			    hash_map<rtx, rtx> *else_vals,
3824 			    bool else_block_p)
3825 {
3826   enum rtx_code code;
3827   rtx_insn *insn;
3828   rtx cond_arg0, cond_arg1;
3829 
3830   code = GET_CODE (cond);
3831   cond_arg0 = XEXP (cond, 0);
3832   cond_arg1 = XEXP (cond, 1);
3833 
3834   FOR_BB_INSNS (bb, insn)
3835     {
3836       rtx set, target, dest, t, e;
3837 
3838       /* ??? Maybe emit conditional debug insn?  */
3839       if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3840 	continue;
3841       set = single_set (insn);
3842       gcc_assert (set && REG_P (SET_DEST (set)));
3843 
3844       dest = SET_DEST (set);
3845 
3846       rtx *then_slot = then_vals->get (dest);
3847       rtx *else_slot = else_vals->get (dest);
3848       t = then_slot ? *then_slot : NULL_RTX;
3849       e = else_slot ? *else_slot : NULL_RTX;
3850 
3851       if (else_block_p)
3852 	{
3853 	  /* If this register was set in the then block, we already
3854 	     handled this case there.  */
3855 	  if (t)
3856 	    continue;
3857 	  t = dest;
3858 	  gcc_assert (e);
3859 	}
3860       else
3861 	{
3862 	  gcc_assert (t);
3863 	  if (!e)
3864 	    e = dest;
3865 	}
3866 
3867       target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
3868 				t, e);
3869       if (!target)
3870 	return false;
3871 
3872       if (target != dest)
3873 	noce_emit_move_insn (dest, target);
3874     }
3875 
3876   return true;
3877 }
3878 
3879 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3880    it using only conditional moves.  Return TRUE if we were successful at
3881    converting the block.  */
3882 
3883 static int
cond_move_process_if_block(struct noce_if_info * if_info)3884 cond_move_process_if_block (struct noce_if_info *if_info)
3885 {
3886   basic_block test_bb = if_info->test_bb;
3887   basic_block then_bb = if_info->then_bb;
3888   basic_block else_bb = if_info->else_bb;
3889   basic_block join_bb = if_info->join_bb;
3890   rtx_insn *jump = if_info->jump;
3891   rtx cond = if_info->cond;
3892   rtx_insn *seq, *loc_insn;
3893   rtx reg;
3894   int c;
3895   vec<rtx> then_regs = vNULL;
3896   vec<rtx> else_regs = vNULL;
3897   unsigned int i;
3898   int success_p = FALSE;
3899   int limit = param_max_rtl_if_conversion_insns;
3900 
3901   /* Build a mapping for each block to the value used for each
3902      register.  */
3903   hash_map<rtx, rtx> then_vals;
3904   hash_map<rtx, rtx> else_vals;
3905 
3906   /* Make sure the blocks are suitable.  */
3907   if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3908       || (else_bb
3909 	  && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3910     goto done;
3911 
3912   /* Make sure the blocks can be used together.  If the same register
3913      is set in both blocks, and is not set to a constant in both
3914      cases, then both blocks must set it to the same register.  We
3915      have already verified that if it is set to a register, that the
3916      source register does not change after the assignment.  Also count
3917      the number of registers set in only one of the blocks.  */
3918   c = 0;
3919   FOR_EACH_VEC_ELT (then_regs, i, reg)
3920     {
3921       rtx *then_slot = then_vals.get (reg);
3922       rtx *else_slot = else_vals.get (reg);
3923 
3924       gcc_checking_assert (then_slot);
3925       if (!else_slot)
3926 	++c;
3927       else
3928 	{
3929 	  rtx then_val = *then_slot;
3930 	  rtx else_val = *else_slot;
3931 	  if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3932 	      && !rtx_equal_p (then_val, else_val))
3933 	    goto done;
3934 	}
3935     }
3936 
3937   /* Finish off c for MAX_CONDITIONAL_EXECUTE.  */
3938   FOR_EACH_VEC_ELT (else_regs, i, reg)
3939     {
3940       gcc_checking_assert (else_vals.get (reg));
3941       if (!then_vals.get (reg))
3942 	++c;
3943     }
3944 
3945   /* Make sure it is reasonable to convert this block.  What matters
3946      is the number of assignments currently made in only one of the
3947      branches, since if we convert we are going to always execute
3948      them.  */
3949   if (c > MAX_CONDITIONAL_EXECUTE
3950       || c > limit)
3951     goto done;
3952 
3953   /* Try to emit the conditional moves.  First do the then block,
3954      then do anything left in the else blocks.  */
3955   start_sequence ();
3956   if (!cond_move_convert_if_block (if_info, then_bb, cond,
3957 				   &then_vals, &else_vals, false)
3958       || (else_bb
3959 	  && !cond_move_convert_if_block (if_info, else_bb, cond,
3960 					  &then_vals, &else_vals, true)))
3961     {
3962       end_sequence ();
3963       goto done;
3964     }
3965   seq = end_ifcvt_sequence (if_info);
3966   if (!seq)
3967     goto done;
3968 
3969   loc_insn = first_active_insn (then_bb);
3970   if (!loc_insn)
3971     {
3972       loc_insn = first_active_insn (else_bb);
3973       gcc_assert (loc_insn);
3974     }
3975   emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3976 
3977   if (else_bb)
3978     {
3979       delete_basic_block (else_bb);
3980       num_true_changes++;
3981     }
3982   else
3983     remove_edge (find_edge (test_bb, join_bb));
3984 
3985   remove_edge (find_edge (then_bb, join_bb));
3986   redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3987   delete_basic_block (then_bb);
3988   num_true_changes++;
3989 
3990   if (can_merge_blocks_p (test_bb, join_bb))
3991     {
3992       merge_blocks (test_bb, join_bb);
3993       num_true_changes++;
3994     }
3995 
3996   num_updated_if_blocks++;
3997   success_p = TRUE;
3998 
3999 done:
4000   then_regs.release ();
4001   else_regs.release ();
4002   return success_p;
4003 }
4004 
4005 
4006 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
4007    IF-THEN-ELSE-JOIN block.
4008 
4009    If so, we'll try to convert the insns to not require the branch,
4010    using only transformations that do not require conditional execution.
4011 
4012    Return TRUE if we were successful at converting the block.  */
4013 
4014 static int
noce_find_if_block(basic_block test_bb,edge then_edge,edge else_edge,int pass)4015 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
4016 		    int pass)
4017 {
4018   basic_block then_bb, else_bb, join_bb;
4019   bool then_else_reversed = false;
4020   rtx_insn *jump;
4021   rtx cond;
4022   rtx_insn *cond_earliest;
4023   struct noce_if_info if_info;
4024   bool speed_p = optimize_bb_for_speed_p (test_bb);
4025 
4026   /* We only ever should get here before reload.  */
4027   gcc_assert (!reload_completed);
4028 
4029   /* Recognize an IF-THEN-ELSE-JOIN block.  */
4030   if (single_pred_p (then_edge->dest)
4031       && single_succ_p (then_edge->dest)
4032       && single_pred_p (else_edge->dest)
4033       && single_succ_p (else_edge->dest)
4034       && single_succ (then_edge->dest) == single_succ (else_edge->dest))
4035     {
4036       then_bb = then_edge->dest;
4037       else_bb = else_edge->dest;
4038       join_bb = single_succ (then_bb);
4039     }
4040   /* Recognize an IF-THEN-JOIN block.  */
4041   else if (single_pred_p (then_edge->dest)
4042 	   && single_succ_p (then_edge->dest)
4043 	   && single_succ (then_edge->dest) == else_edge->dest)
4044     {
4045       then_bb = then_edge->dest;
4046       else_bb = NULL_BLOCK;
4047       join_bb = else_edge->dest;
4048     }
4049   /* Recognize an IF-ELSE-JOIN block.  We can have those because the order
4050      of basic blocks in cfglayout mode does not matter, so the fallthrough
4051      edge can go to any basic block (and not just to bb->next_bb, like in
4052      cfgrtl mode).  */
4053   else if (single_pred_p (else_edge->dest)
4054 	   && single_succ_p (else_edge->dest)
4055 	   && single_succ (else_edge->dest) == then_edge->dest)
4056     {
4057       /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
4058 	 To make this work, we have to invert the THEN and ELSE blocks
4059 	 and reverse the jump condition.  */
4060       then_bb = else_edge->dest;
4061       else_bb = NULL_BLOCK;
4062       join_bb = single_succ (then_bb);
4063       then_else_reversed = true;
4064     }
4065   else
4066     /* Not a form we can handle.  */
4067     return FALSE;
4068 
4069   /* The edges of the THEN and ELSE blocks cannot have complex edges.  */
4070   if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4071     return FALSE;
4072   if (else_bb
4073       && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4074     return FALSE;
4075 
4076   num_possible_if_blocks++;
4077 
4078   if (dump_file)
4079     {
4080       fprintf (dump_file,
4081 	       "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
4082 	       (else_bb) ? "-ELSE" : "",
4083 	       pass, test_bb->index, then_bb->index);
4084 
4085       if (else_bb)
4086 	fprintf (dump_file, ", else %d", else_bb->index);
4087 
4088       fprintf (dump_file, ", join %d\n", join_bb->index);
4089     }
4090 
4091   /* If the conditional jump is more than just a conditional
4092      jump, then we cannot do if-conversion on this block.  */
4093   jump = BB_END (test_bb);
4094   if (! onlyjump_p (jump))
4095     return FALSE;
4096 
4097   /* If this is not a standard conditional jump, we can't parse it.  */
4098   cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
4099   if (!cond)
4100     return FALSE;
4101 
4102   /* We must be comparing objects whose modes imply the size.  */
4103   if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4104     return FALSE;
4105 
4106   /* Initialize an IF_INFO struct to pass around.  */
4107   memset (&if_info, 0, sizeof if_info);
4108   if_info.test_bb = test_bb;
4109   if_info.then_bb = then_bb;
4110   if_info.else_bb = else_bb;
4111   if_info.join_bb = join_bb;
4112   if_info.cond = cond;
4113   rtx_insn *rev_cond_earliest;
4114   if_info.rev_cond = noce_get_condition (jump, &rev_cond_earliest,
4115 					 !then_else_reversed);
4116   gcc_assert (if_info.rev_cond == NULL_RTX
4117 	      || rev_cond_earliest == cond_earliest);
4118   if_info.cond_earliest = cond_earliest;
4119   if_info.jump = jump;
4120   if_info.then_else_reversed = then_else_reversed;
4121   if_info.speed_p = speed_p;
4122   if_info.max_seq_cost
4123     = targetm.max_noce_ifcvt_seq_cost (then_edge);
4124   /* We'll add in the cost of THEN_BB and ELSE_BB later, when we check
4125      that they are valid to transform.  We can't easily get back to the insn
4126      for COND (and it may not exist if we had to canonicalize to get COND),
4127      and jump_insns are always given a cost of 1 by seq_cost, so treat
4128      both instructions as having cost COSTS_N_INSNS (1).  */
4129   if_info.original_cost = COSTS_N_INSNS (2);
4130 
4131 
4132   /* Do the real work.  */
4133 
4134   if (noce_process_if_block (&if_info))
4135     return TRUE;
4136 
4137   if (HAVE_conditional_move
4138       && cond_move_process_if_block (&if_info))
4139     return TRUE;
4140 
4141   return FALSE;
4142 }
4143 
4144 
4145 /* Merge the blocks and mark for local life update.  */
4146 
4147 static void
merge_if_block(struct ce_if_block * ce_info)4148 merge_if_block (struct ce_if_block * ce_info)
4149 {
4150   basic_block test_bb = ce_info->test_bb;	/* last test block */
4151   basic_block then_bb = ce_info->then_bb;	/* THEN */
4152   basic_block else_bb = ce_info->else_bb;	/* ELSE or NULL */
4153   basic_block join_bb = ce_info->join_bb;	/* join block */
4154   basic_block combo_bb;
4155 
4156   /* All block merging is done into the lower block numbers.  */
4157 
4158   combo_bb = test_bb;
4159   df_set_bb_dirty (test_bb);
4160 
4161   /* Merge any basic blocks to handle && and || subtests.  Each of
4162      the blocks are on the fallthru path from the predecessor block.  */
4163   if (ce_info->num_multiple_test_blocks > 0)
4164     {
4165       basic_block bb = test_bb;
4166       basic_block last_test_bb = ce_info->last_test_bb;
4167       basic_block fallthru = block_fallthru (bb);
4168 
4169       do
4170 	{
4171 	  bb = fallthru;
4172 	  fallthru = block_fallthru (bb);
4173 	  merge_blocks (combo_bb, bb);
4174 	  num_true_changes++;
4175 	}
4176       while (bb != last_test_bb);
4177     }
4178 
4179   /* Merge TEST block into THEN block.  Normally the THEN block won't have a
4180      label, but it might if there were || tests.  That label's count should be
4181      zero, and it normally should be removed.  */
4182 
4183   if (then_bb)
4184     {
4185       /* If THEN_BB has no successors, then there's a BARRIER after it.
4186 	 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4187 	 is no longer needed, and in fact it is incorrect to leave it in
4188 	 the insn stream.  */
4189       if (EDGE_COUNT (then_bb->succs) == 0
4190 	  && EDGE_COUNT (combo_bb->succs) > 1)
4191 	{
4192 	  rtx_insn *end = NEXT_INSN (BB_END (then_bb));
4193 	  while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4194 	    end = NEXT_INSN (end);
4195 
4196 	  if (end && BARRIER_P (end))
4197 	    delete_insn (end);
4198 	}
4199       merge_blocks (combo_bb, then_bb);
4200       num_true_changes++;
4201     }
4202 
4203   /* The ELSE block, if it existed, had a label.  That label count
4204      will almost always be zero, but odd things can happen when labels
4205      get their addresses taken.  */
4206   if (else_bb)
4207     {
4208       /* If ELSE_BB has no successors, then there's a BARRIER after it.
4209 	 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4210 	 is no longer needed, and in fact it is incorrect to leave it in
4211 	 the insn stream.  */
4212       if (EDGE_COUNT (else_bb->succs) == 0
4213 	  && EDGE_COUNT (combo_bb->succs) > 1)
4214 	{
4215 	  rtx_insn *end = NEXT_INSN (BB_END (else_bb));
4216 	  while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4217 	    end = NEXT_INSN (end);
4218 
4219 	  if (end && BARRIER_P (end))
4220 	    delete_insn (end);
4221 	}
4222       merge_blocks (combo_bb, else_bb);
4223       num_true_changes++;
4224     }
4225 
4226   /* If there was no join block reported, that means it was not adjacent
4227      to the others, and so we cannot merge them.  */
4228 
4229   if (! join_bb)
4230     {
4231       rtx_insn *last = BB_END (combo_bb);
4232 
4233       /* The outgoing edge for the current COMBO block should already
4234 	 be correct.  Verify this.  */
4235       if (EDGE_COUNT (combo_bb->succs) == 0)
4236 	gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
4237 		    || (NONJUMP_INSN_P (last)
4238 			&& GET_CODE (PATTERN (last)) == TRAP_IF
4239 			&& (TRAP_CONDITION (PATTERN (last))
4240 			    == const_true_rtx)));
4241 
4242       else
4243       /* There should still be something at the end of the THEN or ELSE
4244          blocks taking us to our final destination.  */
4245 	gcc_assert (JUMP_P (last)
4246 		    || (EDGE_SUCC (combo_bb, 0)->dest
4247 			== EXIT_BLOCK_PTR_FOR_FN (cfun)
4248 			&& CALL_P (last)
4249 			&& SIBLING_CALL_P (last))
4250 		    || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
4251 			&& can_throw_internal (last)));
4252     }
4253 
4254   /* The JOIN block may have had quite a number of other predecessors too.
4255      Since we've already merged the TEST, THEN and ELSE blocks, we should
4256      have only one remaining edge from our if-then-else diamond.  If there
4257      is more than one remaining edge, it must come from elsewhere.  There
4258      may be zero incoming edges if the THEN block didn't actually join
4259      back up (as with a call to a non-return function).  */
4260   else if (EDGE_COUNT (join_bb->preds) < 2
4261 	   && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4262     {
4263       /* We can merge the JOIN cleanly and update the dataflow try
4264 	 again on this pass.*/
4265       merge_blocks (combo_bb, join_bb);
4266       num_true_changes++;
4267     }
4268   else
4269     {
4270       /* We cannot merge the JOIN.  */
4271 
4272       /* The outgoing edge for the current COMBO block should already
4273 	 be correct.  Verify this.  */
4274       gcc_assert (single_succ_p (combo_bb)
4275 		  && single_succ (combo_bb) == join_bb);
4276 
4277       /* Remove the jump and cruft from the end of the COMBO block.  */
4278       if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4279 	tidy_fallthru_edge (single_succ_edge (combo_bb));
4280     }
4281 
4282   num_updated_if_blocks++;
4283 }
4284 
4285 /* Find a block ending in a simple IF condition and try to transform it
4286    in some way.  When converting a multi-block condition, put the new code
4287    in the first such block and delete the rest.  Return a pointer to this
4288    first block if some transformation was done.  Return NULL otherwise.  */
4289 
4290 static basic_block
find_if_header(basic_block test_bb,int pass)4291 find_if_header (basic_block test_bb, int pass)
4292 {
4293   ce_if_block ce_info;
4294   edge then_edge;
4295   edge else_edge;
4296 
4297   /* The kind of block we're looking for has exactly two successors.  */
4298   if (EDGE_COUNT (test_bb->succs) != 2)
4299     return NULL;
4300 
4301   then_edge = EDGE_SUCC (test_bb, 0);
4302   else_edge = EDGE_SUCC (test_bb, 1);
4303 
4304   if (df_get_bb_dirty (then_edge->dest))
4305     return NULL;
4306   if (df_get_bb_dirty (else_edge->dest))
4307     return NULL;
4308 
4309   /* Neither edge should be abnormal.  */
4310   if ((then_edge->flags & EDGE_COMPLEX)
4311       || (else_edge->flags & EDGE_COMPLEX))
4312     return NULL;
4313 
4314   /* Nor exit the loop.  */
4315   if ((then_edge->flags & EDGE_LOOP_EXIT)
4316       || (else_edge->flags & EDGE_LOOP_EXIT))
4317     return NULL;
4318 
4319   /* The THEN edge is canonically the one that falls through.  */
4320   if (then_edge->flags & EDGE_FALLTHRU)
4321     ;
4322   else if (else_edge->flags & EDGE_FALLTHRU)
4323     std::swap (then_edge, else_edge);
4324   else
4325     /* Otherwise this must be a multiway branch of some sort.  */
4326     return NULL;
4327 
4328   memset (&ce_info, 0, sizeof (ce_info));
4329   ce_info.test_bb = test_bb;
4330   ce_info.then_bb = then_edge->dest;
4331   ce_info.else_bb = else_edge->dest;
4332   ce_info.pass = pass;
4333 
4334 #ifdef IFCVT_MACHDEP_INIT
4335   IFCVT_MACHDEP_INIT (&ce_info);
4336 #endif
4337 
4338   if (!reload_completed
4339       && noce_find_if_block (test_bb, then_edge, else_edge, pass))
4340     goto success;
4341 
4342   if (reload_completed
4343       && targetm.have_conditional_execution ()
4344       && cond_exec_find_if_block (&ce_info))
4345     goto success;
4346 
4347   if (targetm.have_trap ()
4348       && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
4349       && find_cond_trap (test_bb, then_edge, else_edge))
4350     goto success;
4351 
4352   if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
4353       && (reload_completed || !targetm.have_conditional_execution ()))
4354     {
4355       if (find_if_case_1 (test_bb, then_edge, else_edge))
4356 	goto success;
4357       if (find_if_case_2 (test_bb, then_edge, else_edge))
4358 	goto success;
4359     }
4360 
4361   return NULL;
4362 
4363  success:
4364   if (dump_file)
4365     fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
4366   /* Set this so we continue looking.  */
4367   cond_exec_changed_p = TRUE;
4368   return ce_info.test_bb;
4369 }
4370 
4371 /* Return true if a block has two edges, one of which falls through to the next
4372    block, and the other jumps to a specific block, so that we can tell if the
4373    block is part of an && test or an || test.  Returns either -1 or the number
4374    of non-note, non-jump, non-USE/CLOBBER insns in the block.  */
4375 
4376 static int
block_jumps_and_fallthru_p(basic_block cur_bb,basic_block target_bb)4377 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
4378 {
4379   edge cur_edge;
4380   int fallthru_p = FALSE;
4381   int jump_p = FALSE;
4382   rtx_insn *insn;
4383   rtx_insn *end;
4384   int n_insns = 0;
4385   edge_iterator ei;
4386 
4387   if (!cur_bb || !target_bb)
4388     return -1;
4389 
4390   /* If no edges, obviously it doesn't jump or fallthru.  */
4391   if (EDGE_COUNT (cur_bb->succs) == 0)
4392     return FALSE;
4393 
4394   FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
4395     {
4396       if (cur_edge->flags & EDGE_COMPLEX)
4397 	/* Anything complex isn't what we want.  */
4398 	return -1;
4399 
4400       else if (cur_edge->flags & EDGE_FALLTHRU)
4401 	fallthru_p = TRUE;
4402 
4403       else if (cur_edge->dest == target_bb)
4404 	jump_p = TRUE;
4405 
4406       else
4407 	return -1;
4408     }
4409 
4410   if ((jump_p & fallthru_p) == 0)
4411     return -1;
4412 
4413   /* Don't allow calls in the block, since this is used to group && and ||
4414      together for conditional execution support.  ??? we should support
4415      conditional execution support across calls for IA-64 some day, but
4416      for now it makes the code simpler.  */
4417   end = BB_END (cur_bb);
4418   insn = BB_HEAD (cur_bb);
4419 
4420   while (insn != NULL_RTX)
4421     {
4422       if (CALL_P (insn))
4423 	return -1;
4424 
4425       if (INSN_P (insn)
4426 	  && !JUMP_P (insn)
4427 	  && !DEBUG_INSN_P (insn)
4428 	  && GET_CODE (PATTERN (insn)) != USE
4429 	  && GET_CODE (PATTERN (insn)) != CLOBBER)
4430 	n_insns++;
4431 
4432       if (insn == end)
4433 	break;
4434 
4435       insn = NEXT_INSN (insn);
4436     }
4437 
4438   return n_insns;
4439 }
4440 
4441 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4442    block.  If so, we'll try to convert the insns to not require the branch.
4443    Return TRUE if we were successful at converting the block.  */
4444 
4445 static int
cond_exec_find_if_block(struct ce_if_block * ce_info)4446 cond_exec_find_if_block (struct ce_if_block * ce_info)
4447 {
4448   basic_block test_bb = ce_info->test_bb;
4449   basic_block then_bb = ce_info->then_bb;
4450   basic_block else_bb = ce_info->else_bb;
4451   basic_block join_bb = NULL_BLOCK;
4452   edge cur_edge;
4453   basic_block next;
4454   edge_iterator ei;
4455 
4456   ce_info->last_test_bb = test_bb;
4457 
4458   /* We only ever should get here after reload,
4459      and if we have conditional execution.  */
4460   gcc_assert (reload_completed && targetm.have_conditional_execution ());
4461 
4462   /* Discover if any fall through predecessors of the current test basic block
4463      were && tests (which jump to the else block) or || tests (which jump to
4464      the then block).  */
4465   if (single_pred_p (test_bb)
4466       && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
4467     {
4468       basic_block bb = single_pred (test_bb);
4469       basic_block target_bb;
4470       int max_insns = MAX_CONDITIONAL_EXECUTE;
4471       int n_insns;
4472 
4473       /* Determine if the preceding block is an && or || block.  */
4474       if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
4475 	{
4476 	  ce_info->and_and_p = TRUE;
4477 	  target_bb = else_bb;
4478 	}
4479       else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
4480 	{
4481 	  ce_info->and_and_p = FALSE;
4482 	  target_bb = then_bb;
4483 	}
4484       else
4485 	target_bb = NULL_BLOCK;
4486 
4487       if (target_bb && n_insns <= max_insns)
4488 	{
4489 	  int total_insns = 0;
4490 	  int blocks = 0;
4491 
4492 	  ce_info->last_test_bb = test_bb;
4493 
4494 	  /* Found at least one && or || block, look for more.  */
4495 	  do
4496 	    {
4497 	      ce_info->test_bb = test_bb = bb;
4498 	      total_insns += n_insns;
4499 	      blocks++;
4500 
4501 	      if (!single_pred_p (bb))
4502 		break;
4503 
4504 	      bb = single_pred (bb);
4505 	      n_insns = block_jumps_and_fallthru_p (bb, target_bb);
4506 	    }
4507 	  while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
4508 
4509 	  ce_info->num_multiple_test_blocks = blocks;
4510 	  ce_info->num_multiple_test_insns = total_insns;
4511 
4512 	  if (ce_info->and_and_p)
4513 	    ce_info->num_and_and_blocks = blocks;
4514 	  else
4515 	    ce_info->num_or_or_blocks = blocks;
4516 	}
4517     }
4518 
4519   /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4520      other than any || blocks which jump to the THEN block.  */
4521   if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
4522     return FALSE;
4523 
4524   /* The edges of the THEN and ELSE blocks cannot have complex edges.  */
4525   FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
4526     {
4527       if (cur_edge->flags & EDGE_COMPLEX)
4528 	return FALSE;
4529     }
4530 
4531   FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
4532     {
4533       if (cur_edge->flags & EDGE_COMPLEX)
4534 	return FALSE;
4535     }
4536 
4537   /* The THEN block of an IF-THEN combo must have zero or one successors.  */
4538   if (EDGE_COUNT (then_bb->succs) > 0
4539       && (!single_succ_p (then_bb)
4540           || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4541 	  || (epilogue_completed
4542 	      && tablejump_p (BB_END (then_bb), NULL, NULL))))
4543     return FALSE;
4544 
4545   /* If the THEN block has no successors, conditional execution can still
4546      make a conditional call.  Don't do this unless the ELSE block has
4547      only one incoming edge -- the CFG manipulation is too ugly otherwise.
4548      Check for the last insn of the THEN block being an indirect jump, which
4549      is listed as not having any successors, but confuses the rest of the CE
4550      code processing.  ??? we should fix this in the future.  */
4551   if (EDGE_COUNT (then_bb->succs) == 0)
4552     {
4553       if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4554 	{
4555 	  rtx_insn *last_insn = BB_END (then_bb);
4556 
4557 	  while (last_insn
4558 		 && NOTE_P (last_insn)
4559 		 && last_insn != BB_HEAD (then_bb))
4560 	    last_insn = PREV_INSN (last_insn);
4561 
4562 	  if (last_insn
4563 	      && JUMP_P (last_insn)
4564 	      && ! simplejump_p (last_insn))
4565 	    return FALSE;
4566 
4567 	  join_bb = else_bb;
4568 	  else_bb = NULL_BLOCK;
4569 	}
4570       else
4571 	return FALSE;
4572     }
4573 
4574   /* If the THEN block's successor is the other edge out of the TEST block,
4575      then we have an IF-THEN combo without an ELSE.  */
4576   else if (single_succ (then_bb) == else_bb)
4577     {
4578       join_bb = else_bb;
4579       else_bb = NULL_BLOCK;
4580     }
4581 
4582   /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4583      has exactly one predecessor and one successor, and the outgoing edge
4584      is not complex, then we have an IF-THEN-ELSE combo.  */
4585   else if (single_succ_p (else_bb)
4586 	   && single_succ (then_bb) == single_succ (else_bb)
4587 	   && single_pred_p (else_bb)
4588 	   && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4589 	   && !(epilogue_completed
4590 		&& tablejump_p (BB_END (else_bb), NULL, NULL)))
4591     join_bb = single_succ (else_bb);
4592 
4593   /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination.  */
4594   else
4595     return FALSE;
4596 
4597   num_possible_if_blocks++;
4598 
4599   if (dump_file)
4600     {
4601       fprintf (dump_file,
4602 	       "\nIF-THEN%s block found, pass %d, start block %d "
4603 	       "[insn %d], then %d [%d]",
4604 	       (else_bb) ? "-ELSE" : "",
4605 	       ce_info->pass,
4606 	       test_bb->index,
4607 	       BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
4608 	       then_bb->index,
4609 	       BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
4610 
4611       if (else_bb)
4612 	fprintf (dump_file, ", else %d [%d]",
4613 		 else_bb->index,
4614 		 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
4615 
4616       fprintf (dump_file, ", join %d [%d]",
4617 	       join_bb->index,
4618 	       BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
4619 
4620       if (ce_info->num_multiple_test_blocks > 0)
4621 	fprintf (dump_file, ", %d %s block%s last test %d [%d]",
4622 		 ce_info->num_multiple_test_blocks,
4623 		 (ce_info->and_and_p) ? "&&" : "||",
4624 		 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
4625 		 ce_info->last_test_bb->index,
4626 		 ((BB_HEAD (ce_info->last_test_bb))
4627 		  ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
4628 		  : -1));
4629 
4630       fputc ('\n', dump_file);
4631     }
4632 
4633   /* Make sure IF, THEN, and ELSE, blocks are adjacent.  Actually, we get the
4634      first condition for free, since we've already asserted that there's a
4635      fallthru edge from IF to THEN.  Likewise for the && and || blocks, since
4636      we checked the FALLTHRU flag, those are already adjacent to the last IF
4637      block.  */
4638   /* ??? As an enhancement, move the ELSE block.  Have to deal with
4639      BLOCK notes, if by no other means than backing out the merge if they
4640      exist.  Sticky enough I don't want to think about it now.  */
4641   next = then_bb;
4642   if (else_bb && (next = next->next_bb) != else_bb)
4643     return FALSE;
4644   if ((next = next->next_bb) != join_bb
4645       && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4646     {
4647       if (else_bb)
4648 	join_bb = NULL;
4649       else
4650 	return FALSE;
4651     }
4652 
4653   /* Do the real work.  */
4654 
4655   ce_info->else_bb = else_bb;
4656   ce_info->join_bb = join_bb;
4657 
4658   /* If we have && and || tests, try to first handle combining the && and ||
4659      tests into the conditional code, and if that fails, go back and handle
4660      it without the && and ||, which at present handles the && case if there
4661      was no ELSE block.  */
4662   if (cond_exec_process_if_block (ce_info, TRUE))
4663     return TRUE;
4664 
4665   if (ce_info->num_multiple_test_blocks)
4666     {
4667       cancel_changes (0);
4668 
4669       if (cond_exec_process_if_block (ce_info, FALSE))
4670 	return TRUE;
4671     }
4672 
4673   return FALSE;
4674 }
4675 
4676 /* Convert a branch over a trap, or a branch
4677    to a trap, into a conditional trap.  */
4678 
4679 static int
find_cond_trap(basic_block test_bb,edge then_edge,edge else_edge)4680 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
4681 {
4682   basic_block then_bb = then_edge->dest;
4683   basic_block else_bb = else_edge->dest;
4684   basic_block other_bb, trap_bb;
4685   rtx_insn *trap, *jump;
4686   rtx cond;
4687   rtx_insn *cond_earliest;
4688 
4689   /* Locate the block with the trap instruction.  */
4690   /* ??? While we look for no successors, we really ought to allow
4691      EH successors.  Need to fix merge_if_block for that to work.  */
4692   if ((trap = block_has_only_trap (then_bb)) != NULL)
4693     trap_bb = then_bb, other_bb = else_bb;
4694   else if ((trap = block_has_only_trap (else_bb)) != NULL)
4695     trap_bb = else_bb, other_bb = then_bb;
4696   else
4697     return FALSE;
4698 
4699   if (dump_file)
4700     {
4701       fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
4702 	       test_bb->index, trap_bb->index);
4703     }
4704 
4705   /* If this is not a standard conditional jump, we can't parse it.  */
4706   jump = BB_END (test_bb);
4707   cond = noce_get_condition (jump, &cond_earliest, then_bb == trap_bb);
4708   if (! cond)
4709     return FALSE;
4710 
4711   /* If the conditional jump is more than just a conditional jump, then
4712      we cannot do if-conversion on this block.  Give up for returnjump_p,
4713      changing a conditional return followed by unconditional trap for
4714      conditional trap followed by unconditional return is likely not
4715      beneficial and harder to handle.  */
4716   if (! onlyjump_p (jump) || returnjump_p (jump))
4717     return FALSE;
4718 
4719   /* We must be comparing objects whose modes imply the size.  */
4720   if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4721     return FALSE;
4722 
4723   /* Attempt to generate the conditional trap.  */
4724   rtx_insn *seq = gen_cond_trap (GET_CODE (cond), copy_rtx (XEXP (cond, 0)),
4725 				 copy_rtx (XEXP (cond, 1)),
4726 				 TRAP_CODE (PATTERN (trap)));
4727   if (seq == NULL)
4728     return FALSE;
4729 
4730   /* If that results in an invalid insn, back out.  */
4731   for (rtx_insn *x = seq; x; x = NEXT_INSN (x))
4732     if (recog_memoized (x) < 0)
4733       return FALSE;
4734 
4735   /* Emit the new insns before cond_earliest.  */
4736   emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
4737 
4738   /* Delete the trap block if possible.  */
4739   remove_edge (trap_bb == then_bb ? then_edge : else_edge);
4740   df_set_bb_dirty (test_bb);
4741   df_set_bb_dirty (then_bb);
4742   df_set_bb_dirty (else_bb);
4743 
4744   if (EDGE_COUNT (trap_bb->preds) == 0)
4745     {
4746       delete_basic_block (trap_bb);
4747       num_true_changes++;
4748     }
4749 
4750   /* Wire together the blocks again.  */
4751   if (current_ir_type () == IR_RTL_CFGLAYOUT)
4752     single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
4753   else if (trap_bb == then_bb)
4754     {
4755       rtx lab = JUMP_LABEL (jump);
4756       rtx_insn *seq = targetm.gen_jump (lab);
4757       rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
4758       LABEL_NUSES (lab) += 1;
4759       JUMP_LABEL (newjump) = lab;
4760       emit_barrier_after (newjump);
4761     }
4762   delete_insn (jump);
4763 
4764   if (can_merge_blocks_p (test_bb, other_bb))
4765     {
4766       merge_blocks (test_bb, other_bb);
4767       num_true_changes++;
4768     }
4769 
4770   num_updated_if_blocks++;
4771   return TRUE;
4772 }
4773 
4774 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
4775    return it.  */
4776 
4777 static rtx_insn *
block_has_only_trap(basic_block bb)4778 block_has_only_trap (basic_block bb)
4779 {
4780   rtx_insn *trap;
4781 
4782   /* We're not the exit block.  */
4783   if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4784     return NULL;
4785 
4786   /* The block must have no successors.  */
4787   if (EDGE_COUNT (bb->succs) > 0)
4788     return NULL;
4789 
4790   /* The only instruction in the THEN block must be the trap.  */
4791   trap = first_active_insn (bb);
4792   if (! (trap == BB_END (bb)
4793 	 && GET_CODE (PATTERN (trap)) == TRAP_IF
4794          && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
4795     return NULL;
4796 
4797   return trap;
4798 }
4799 
4800 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
4801    transformable, but not necessarily the other.  There need be no
4802    JOIN block.
4803 
4804    Return TRUE if we were successful at converting the block.
4805 
4806    Cases we'd like to look at:
4807 
4808    (1)
4809 	if (test) goto over; // x not live
4810 	x = a;
4811 	goto label;
4812 	over:
4813 
4814    becomes
4815 
4816 	x = a;
4817 	if (! test) goto label;
4818 
4819    (2)
4820 	if (test) goto E; // x not live
4821 	x = big();
4822 	goto L;
4823 	E:
4824 	x = b;
4825 	goto M;
4826 
4827    becomes
4828 
4829 	x = b;
4830 	if (test) goto M;
4831 	x = big();
4832 	goto L;
4833 
4834    (3) // This one's really only interesting for targets that can do
4835        // multiway branching, e.g. IA-64 BBB bundles.  For other targets
4836        // it results in multiple branches on a cache line, which often
4837        // does not sit well with predictors.
4838 
4839 	if (test1) goto E; // predicted not taken
4840 	x = a;
4841 	if (test2) goto F;
4842 	...
4843 	E:
4844 	x = b;
4845 	J:
4846 
4847    becomes
4848 
4849 	x = a;
4850 	if (test1) goto E;
4851 	if (test2) goto F;
4852 
4853    Notes:
4854 
4855    (A) Don't do (2) if the branch is predicted against the block we're
4856    eliminating.  Do it anyway if we can eliminate a branch; this requires
4857    that the sole successor of the eliminated block postdominate the other
4858    side of the if.
4859 
4860    (B) With CE, on (3) we can steal from both sides of the if, creating
4861 
4862 	if (test1) x = a;
4863 	if (!test1) x = b;
4864 	if (test1) goto J;
4865 	if (test2) goto F;
4866 	...
4867 	J:
4868 
4869    Again, this is most useful if J postdominates.
4870 
4871    (C) CE substitutes for helpful life information.
4872 
4873    (D) These heuristics need a lot of work.  */
4874 
4875 /* Tests for case 1 above.  */
4876 
4877 static int
find_if_case_1(basic_block test_bb,edge then_edge,edge else_edge)4878 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
4879 {
4880   basic_block then_bb = then_edge->dest;
4881   basic_block else_bb = else_edge->dest;
4882   basic_block new_bb;
4883   int then_bb_index;
4884   profile_probability then_prob;
4885   rtx else_target = NULL_RTX;
4886 
4887   /* If we are partitioning hot/cold basic blocks, we don't want to
4888      mess up unconditional or indirect jumps that cross between hot
4889      and cold sections.
4890 
4891      Basic block partitioning may result in some jumps that appear to
4892      be optimizable (or blocks that appear to be mergeable), but which really
4893      must be left untouched (they are required to make it safely across
4894      partition boundaries).  See  the comments at the top of
4895      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
4896 
4897   if ((BB_END (then_bb)
4898        && JUMP_P (BB_END (then_bb))
4899        && CROSSING_JUMP_P (BB_END (then_bb)))
4900       || (BB_END (test_bb)
4901 	  && JUMP_P (BB_END (test_bb))
4902 	  && CROSSING_JUMP_P (BB_END (test_bb)))
4903       || (BB_END (else_bb)
4904 	  && JUMP_P (BB_END (else_bb))
4905 	  && CROSSING_JUMP_P (BB_END (else_bb))))
4906     return FALSE;
4907 
4908   /* THEN has one successor.  */
4909   if (!single_succ_p (then_bb))
4910     return FALSE;
4911 
4912   /* THEN does not fall through, but is not strange either.  */
4913   if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4914     return FALSE;
4915 
4916   /* THEN has one predecessor.  */
4917   if (!single_pred_p (then_bb))
4918     return FALSE;
4919 
4920   /* THEN must do something.  */
4921   if (forwarder_block_p (then_bb))
4922     return FALSE;
4923 
4924   num_possible_if_blocks++;
4925   if (dump_file)
4926     fprintf (dump_file,
4927 	     "\nIF-CASE-1 found, start %d, then %d\n",
4928 	     test_bb->index, then_bb->index);
4929 
4930   then_prob = then_edge->probability.invert ();
4931 
4932   /* We're speculating from the THEN path, we want to make sure the cost
4933      of speculation is within reason.  */
4934   if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4935 	COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4936 				    predictable_edge_p (then_edge)))))
4937     return FALSE;
4938 
4939   if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4940     {
4941       rtx_insn *jump = BB_END (else_edge->src);
4942       gcc_assert (JUMP_P (jump));
4943       else_target = JUMP_LABEL (jump);
4944     }
4945 
4946   /* Registers set are dead, or are predicable.  */
4947   if (! dead_or_predicable (test_bb, then_bb, else_bb,
4948 			    single_succ_edge (then_bb), 1))
4949     return FALSE;
4950 
4951   /* Conversion went ok, including moving the insns and fixing up the
4952      jump.  Adjust the CFG to match.  */
4953 
4954   /* We can avoid creating a new basic block if then_bb is immediately
4955      followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4956      through to else_bb.  */
4957 
4958   if (then_bb->next_bb == else_bb
4959       && then_bb->prev_bb == test_bb
4960       && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4961     {
4962       redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4963       new_bb = 0;
4964     }
4965   else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4966     new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4967 					     else_bb, else_target);
4968   else
4969     new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4970 					     else_bb);
4971 
4972   df_set_bb_dirty (test_bb);
4973   df_set_bb_dirty (else_bb);
4974 
4975   then_bb_index = then_bb->index;
4976   delete_basic_block (then_bb);
4977 
4978   /* Make rest of code believe that the newly created block is the THEN_BB
4979      block we removed.  */
4980   if (new_bb)
4981     {
4982       df_bb_replace (then_bb_index, new_bb);
4983       /* This should have been done above via force_nonfallthru_and_redirect
4984          (possibly called from redirect_edge_and_branch_force).  */
4985       gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4986     }
4987 
4988   num_true_changes++;
4989   num_updated_if_blocks++;
4990   return TRUE;
4991 }
4992 
4993 /* Test for case 2 above.  */
4994 
4995 static int
find_if_case_2(basic_block test_bb,edge then_edge,edge else_edge)4996 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4997 {
4998   basic_block then_bb = then_edge->dest;
4999   basic_block else_bb = else_edge->dest;
5000   edge else_succ;
5001   profile_probability then_prob, else_prob;
5002 
5003   /* We do not want to speculate (empty) loop latches.  */
5004   if (current_loops
5005       && else_bb->loop_father->latch == else_bb)
5006     return FALSE;
5007 
5008   /* If we are partitioning hot/cold basic blocks, we don't want to
5009      mess up unconditional or indirect jumps that cross between hot
5010      and cold sections.
5011 
5012      Basic block partitioning may result in some jumps that appear to
5013      be optimizable (or blocks that appear to be mergeable), but which really
5014      must be left untouched (they are required to make it safely across
5015      partition boundaries).  See  the comments at the top of
5016      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
5017 
5018   if ((BB_END (then_bb)
5019        && JUMP_P (BB_END (then_bb))
5020        && CROSSING_JUMP_P (BB_END (then_bb)))
5021       || (BB_END (test_bb)
5022 	  && JUMP_P (BB_END (test_bb))
5023 	  && CROSSING_JUMP_P (BB_END (test_bb)))
5024       || (BB_END (else_bb)
5025 	  && JUMP_P (BB_END (else_bb))
5026 	  && CROSSING_JUMP_P (BB_END (else_bb))))
5027     return FALSE;
5028 
5029   /* ELSE has one successor.  */
5030   if (!single_succ_p (else_bb))
5031     return FALSE;
5032   else
5033     else_succ = single_succ_edge (else_bb);
5034 
5035   /* ELSE outgoing edge is not complex.  */
5036   if (else_succ->flags & EDGE_COMPLEX)
5037     return FALSE;
5038 
5039   /* ELSE has one predecessor.  */
5040   if (!single_pred_p (else_bb))
5041     return FALSE;
5042 
5043   /* THEN is not EXIT.  */
5044   if (then_bb->index < NUM_FIXED_BLOCKS)
5045     return FALSE;
5046 
5047   else_prob = else_edge->probability;
5048   then_prob = else_prob.invert ();
5049 
5050   /* ELSE is predicted or SUCC(ELSE) postdominates THEN.  */
5051   if (else_prob > then_prob)
5052     ;
5053   else if (else_succ->dest->index < NUM_FIXED_BLOCKS
5054 	   || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
5055 			      else_succ->dest))
5056     ;
5057   else
5058     return FALSE;
5059 
5060   num_possible_if_blocks++;
5061   if (dump_file)
5062     fprintf (dump_file,
5063 	     "\nIF-CASE-2 found, start %d, else %d\n",
5064 	     test_bb->index, else_bb->index);
5065 
5066   /* We're speculating from the ELSE path, we want to make sure the cost
5067      of speculation is within reason.  */
5068   if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
5069 	COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
5070 				    predictable_edge_p (else_edge)))))
5071     return FALSE;
5072 
5073   /* Registers set are dead, or are predicable.  */
5074   if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
5075     return FALSE;
5076 
5077   /* Conversion went ok, including moving the insns and fixing up the
5078      jump.  Adjust the CFG to match.  */
5079 
5080   df_set_bb_dirty (test_bb);
5081   df_set_bb_dirty (then_bb);
5082   delete_basic_block (else_bb);
5083 
5084   num_true_changes++;
5085   num_updated_if_blocks++;
5086 
5087   /* ??? We may now fallthru from one of THEN's successors into a join
5088      block.  Rerun cleanup_cfg?  Examine things manually?  Wait?  */
5089 
5090   return TRUE;
5091 }
5092 
5093 /* Used by the code above to perform the actual rtl transformations.
5094    Return TRUE if successful.
5095 
5096    TEST_BB is the block containing the conditional branch.  MERGE_BB
5097    is the block containing the code to manipulate.  DEST_EDGE is an
5098    edge representing a jump to the join block; after the conversion,
5099    TEST_BB should be branching to its destination.
5100    REVERSEP is true if the sense of the branch should be reversed.  */
5101 
5102 static int
dead_or_predicable(basic_block test_bb,basic_block merge_bb,basic_block other_bb,edge dest_edge,int reversep)5103 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
5104 		    basic_block other_bb, edge dest_edge, int reversep)
5105 {
5106   basic_block new_dest = dest_edge->dest;
5107   rtx_insn *head, *end, *jump;
5108   rtx_insn *earliest = NULL;
5109   rtx old_dest;
5110   bitmap merge_set = NULL;
5111   /* Number of pending changes.  */
5112   int n_validated_changes = 0;
5113   rtx new_dest_label = NULL_RTX;
5114 
5115   jump = BB_END (test_bb);
5116 
5117   /* Find the extent of the real code in the merge block.  */
5118   head = BB_HEAD (merge_bb);
5119   end = BB_END (merge_bb);
5120 
5121   while (DEBUG_INSN_P (end) && end != head)
5122     end = PREV_INSN (end);
5123 
5124   /* If merge_bb ends with a tablejump, predicating/moving insn's
5125      into test_bb and then deleting merge_bb will result in the jumptable
5126      that follows merge_bb being removed along with merge_bb and then we
5127      get an unresolved reference to the jumptable.  */
5128   if (tablejump_p (end, NULL, NULL))
5129     return FALSE;
5130 
5131   if (LABEL_P (head))
5132     head = NEXT_INSN (head);
5133   while (DEBUG_INSN_P (head) && head != end)
5134     head = NEXT_INSN (head);
5135   if (NOTE_P (head))
5136     {
5137       if (head == end)
5138 	{
5139 	  head = end = NULL;
5140 	  goto no_body;
5141 	}
5142       head = NEXT_INSN (head);
5143       while (DEBUG_INSN_P (head) && head != end)
5144 	head = NEXT_INSN (head);
5145     }
5146 
5147   if (JUMP_P (end))
5148     {
5149       if (!onlyjump_p (end))
5150 	return FALSE;
5151       if (head == end)
5152 	{
5153 	  head = end = NULL;
5154 	  goto no_body;
5155 	}
5156       end = PREV_INSN (end);
5157       while (DEBUG_INSN_P (end) && end != head)
5158 	end = PREV_INSN (end);
5159     }
5160 
5161   /* Don't move frame-related insn across the conditional branch.  This
5162      can lead to one of the paths of the branch having wrong unwind info.  */
5163   if (epilogue_completed)
5164     {
5165       rtx_insn *insn = head;
5166       while (1)
5167 	{
5168 	  if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
5169 	    return FALSE;
5170 	  if (insn == end)
5171 	    break;
5172 	  insn = NEXT_INSN (insn);
5173 	}
5174     }
5175 
5176   /* Disable handling dead code by conditional execution if the machine needs
5177      to do anything funny with the tests, etc.  */
5178 #ifndef IFCVT_MODIFY_TESTS
5179   if (targetm.have_conditional_execution ())
5180     {
5181       /* In the conditional execution case, we have things easy.  We know
5182 	 the condition is reversible.  We don't have to check life info
5183 	 because we're going to conditionally execute the code anyway.
5184 	 All that's left is making sure the insns involved can actually
5185 	 be predicated.  */
5186 
5187       rtx cond;
5188 
5189       cond = cond_exec_get_condition (jump);
5190       if (! cond)
5191 	return FALSE;
5192 
5193       rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
5194       profile_probability prob_val
5195 	  = (note ? profile_probability::from_reg_br_prob_note (XINT (note, 0))
5196 	     : profile_probability::uninitialized ());
5197 
5198       if (reversep)
5199 	{
5200 	  enum rtx_code rev = reversed_comparison_code (cond, jump);
5201 	  if (rev == UNKNOWN)
5202 	    return FALSE;
5203 	  cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
5204 			         XEXP (cond, 1));
5205 	  prob_val = prob_val.invert ();
5206 	}
5207 
5208       if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
5209 	  && verify_changes (0))
5210 	n_validated_changes = num_validated_changes ();
5211       else
5212 	cancel_changes (0);
5213 
5214       earliest = jump;
5215     }
5216 #endif
5217 
5218   /* If we allocated new pseudos (e.g. in the conditional move
5219      expander called from noce_emit_cmove), we must resize the
5220      array first.  */
5221   if (max_regno < max_reg_num ())
5222     max_regno = max_reg_num ();
5223 
5224   /* Try the NCE path if the CE path did not result in any changes.  */
5225   if (n_validated_changes == 0)
5226     {
5227       rtx cond;
5228       rtx_insn *insn;
5229       regset live;
5230       bool success;
5231 
5232       /* In the non-conditional execution case, we have to verify that there
5233 	 are no trapping operations, no calls, no references to memory, and
5234 	 that any registers modified are dead at the branch site.  */
5235 
5236       if (!any_condjump_p (jump))
5237 	return FALSE;
5238 
5239       /* Find the extent of the conditional.  */
5240       cond = noce_get_condition (jump, &earliest, false);
5241       if (!cond)
5242 	return FALSE;
5243 
5244       live = BITMAP_ALLOC (&reg_obstack);
5245       simulate_backwards_to_point (merge_bb, live, end);
5246       success = can_move_insns_across (head, end, earliest, jump,
5247 				       merge_bb, live,
5248 				       df_get_live_in (other_bb), NULL);
5249       BITMAP_FREE (live);
5250       if (!success)
5251 	return FALSE;
5252 
5253       /* Collect the set of registers set in MERGE_BB.  */
5254       merge_set = BITMAP_ALLOC (&reg_obstack);
5255 
5256       FOR_BB_INSNS (merge_bb, insn)
5257 	if (NONDEBUG_INSN_P (insn))
5258 	  df_simulate_find_defs (insn, merge_set);
5259 
5260       /* If shrink-wrapping, disable this optimization when test_bb is
5261 	 the first basic block and merge_bb exits.  The idea is to not
5262 	 move code setting up a return register as that may clobber a
5263 	 register used to pass function parameters, which then must be
5264 	 saved in caller-saved regs.  A caller-saved reg requires the
5265 	 prologue, killing a shrink-wrap opportunity.  */
5266       if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
5267 	  && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
5268 	  && single_succ_p (new_dest)
5269 	  && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
5270 	  && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
5271 	{
5272 	  regset return_regs;
5273 	  unsigned int i;
5274 
5275 	  return_regs = BITMAP_ALLOC (&reg_obstack);
5276 
5277 	  /* Start off with the intersection of regs used to pass
5278 	     params and regs used to return values.  */
5279 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5280 	    if (FUNCTION_ARG_REGNO_P (i)
5281 		&& targetm.calls.function_value_regno_p (i))
5282 	      bitmap_set_bit (return_regs, INCOMING_REGNO (i));
5283 
5284 	  bitmap_and_into (return_regs,
5285 			   df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5286 	  bitmap_and_into (return_regs,
5287 			   df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
5288 	  if (!bitmap_empty_p (return_regs))
5289 	    {
5290 	      FOR_BB_INSNS_REVERSE (new_dest, insn)
5291 		if (NONDEBUG_INSN_P (insn))
5292 		  {
5293 		    df_ref def;
5294 
5295 		    /* If this insn sets any reg in return_regs, add all
5296 		       reg uses to the set of regs we're interested in.  */
5297 		    FOR_EACH_INSN_DEF (def, insn)
5298 		      if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
5299 			{
5300 			  df_simulate_uses (insn, return_regs);
5301 			  break;
5302 			}
5303 		  }
5304 	      if (bitmap_intersect_p (merge_set, return_regs))
5305 		{
5306 		  BITMAP_FREE (return_regs);
5307 		  BITMAP_FREE (merge_set);
5308 		  return FALSE;
5309 		}
5310 	    }
5311 	  BITMAP_FREE (return_regs);
5312 	}
5313     }
5314 
5315  no_body:
5316   /* We don't want to use normal invert_jump or redirect_jump because
5317      we don't want to delete_insn called.  Also, we want to do our own
5318      change group management.  */
5319 
5320   old_dest = JUMP_LABEL (jump);
5321   if (other_bb != new_dest)
5322     {
5323       if (!any_condjump_p (jump))
5324 	goto cancel;
5325 
5326       if (JUMP_P (BB_END (dest_edge->src)))
5327 	new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
5328       else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5329 	new_dest_label = ret_rtx;
5330       else
5331 	new_dest_label = block_label (new_dest);
5332 
5333       rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
5334       if (reversep
5335 	  ? ! invert_jump_1 (jump_insn, new_dest_label)
5336 	  : ! redirect_jump_1 (jump_insn, new_dest_label))
5337 	goto cancel;
5338     }
5339 
5340   if (verify_changes (n_validated_changes))
5341     confirm_change_group ();
5342   else
5343     goto cancel;
5344 
5345   if (other_bb != new_dest)
5346     {
5347       redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
5348 		       0, reversep);
5349 
5350       redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
5351       if (reversep)
5352 	{
5353 	  std::swap (BRANCH_EDGE (test_bb)->probability,
5354 		     FALLTHRU_EDGE (test_bb)->probability);
5355 	  update_br_prob_note (test_bb);
5356 	}
5357     }
5358 
5359   /* Move the insns out of MERGE_BB to before the branch.  */
5360   if (head != NULL)
5361     {
5362       rtx_insn *insn;
5363 
5364       if (end == BB_END (merge_bb))
5365 	BB_END (merge_bb) = PREV_INSN (head);
5366 
5367       /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5368 	 notes being moved might become invalid.  */
5369       insn = head;
5370       do
5371 	{
5372 	  rtx note;
5373 
5374 	  if (! INSN_P (insn))
5375 	    continue;
5376 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5377 	  if (! note)
5378 	    continue;
5379 	  remove_note (insn, note);
5380 	} while (insn != end && (insn = NEXT_INSN (insn)));
5381 
5382       /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5383 	 notes referring to the registers being set might become invalid.  */
5384       if (merge_set)
5385 	{
5386 	  unsigned i;
5387 	  bitmap_iterator bi;
5388 
5389 	  EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
5390 	    remove_reg_equal_equiv_notes_for_regno (i);
5391 
5392 	  BITMAP_FREE (merge_set);
5393 	}
5394 
5395       reorder_insns (head, end, PREV_INSN (earliest));
5396     }
5397 
5398   /* Remove the jump and edge if we can.  */
5399   if (other_bb == new_dest)
5400     {
5401       delete_insn (jump);
5402       remove_edge (BRANCH_EDGE (test_bb));
5403       /* ??? Can't merge blocks here, as then_bb is still in use.
5404 	 At minimum, the merge will get done just before bb-reorder.  */
5405     }
5406 
5407   return TRUE;
5408 
5409  cancel:
5410   cancel_changes (0);
5411 
5412   if (merge_set)
5413     BITMAP_FREE (merge_set);
5414 
5415   return FALSE;
5416 }
5417 
5418 /* Main entry point for all if-conversion.  AFTER_COMBINE is true if
5419    we are after combine pass.  */
5420 
5421 static void
if_convert(bool after_combine)5422 if_convert (bool after_combine)
5423 {
5424   basic_block bb;
5425   int pass;
5426 
5427   if (optimize == 1)
5428     {
5429       df_live_add_problem ();
5430       df_live_set_all_dirty ();
5431     }
5432 
5433   /* Record whether we are after combine pass.  */
5434   ifcvt_after_combine = after_combine;
5435   have_cbranchcc4 = (direct_optab_handler (cbranch_optab, CCmode)
5436 		     != CODE_FOR_nothing);
5437   num_possible_if_blocks = 0;
5438   num_updated_if_blocks = 0;
5439   num_true_changes = 0;
5440 
5441   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5442   mark_loop_exit_edges ();
5443   loop_optimizer_finalize ();
5444   free_dominance_info (CDI_DOMINATORS);
5445 
5446   /* Compute postdominators.  */
5447   calculate_dominance_info (CDI_POST_DOMINATORS);
5448 
5449   df_set_flags (DF_LR_RUN_DCE);
5450 
5451   /* Go through each of the basic blocks looking for things to convert.  If we
5452      have conditional execution, we make multiple passes to allow us to handle
5453      IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks.  */
5454   pass = 0;
5455   do
5456     {
5457       df_analyze ();
5458       /* Only need to do dce on the first pass.  */
5459       df_clear_flags (DF_LR_RUN_DCE);
5460       cond_exec_changed_p = FALSE;
5461       pass++;
5462 
5463 #ifdef IFCVT_MULTIPLE_DUMPS
5464       if (dump_file && pass > 1)
5465 	fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
5466 #endif
5467 
5468       FOR_EACH_BB_FN (bb, cfun)
5469 	{
5470           basic_block new_bb;
5471           while (!df_get_bb_dirty (bb)
5472                  && (new_bb = find_if_header (bb, pass)) != NULL)
5473             bb = new_bb;
5474 	}
5475 
5476 #ifdef IFCVT_MULTIPLE_DUMPS
5477       if (dump_file && cond_exec_changed_p)
5478 	print_rtl_with_bb (dump_file, get_insns (), dump_flags);
5479 #endif
5480     }
5481   while (cond_exec_changed_p);
5482 
5483 #ifdef IFCVT_MULTIPLE_DUMPS
5484   if (dump_file)
5485     fprintf (dump_file, "\n\n========== no more changes\n");
5486 #endif
5487 
5488   free_dominance_info (CDI_POST_DOMINATORS);
5489 
5490   if (dump_file)
5491     fflush (dump_file);
5492 
5493   clear_aux_for_blocks ();
5494 
5495   /* If we allocated new pseudos, we must resize the array for sched1.  */
5496   if (max_regno < max_reg_num ())
5497     max_regno = max_reg_num ();
5498 
5499   /* Write the final stats.  */
5500   if (dump_file && num_possible_if_blocks > 0)
5501     {
5502       fprintf (dump_file,
5503 	       "\n%d possible IF blocks searched.\n",
5504 	       num_possible_if_blocks);
5505       fprintf (dump_file,
5506 	       "%d IF blocks converted.\n",
5507 	       num_updated_if_blocks);
5508       fprintf (dump_file,
5509 	       "%d true changes made.\n\n\n",
5510 	       num_true_changes);
5511     }
5512 
5513   if (optimize == 1)
5514     df_remove_problem (df_live);
5515 
5516   /* Some non-cold blocks may now be only reachable from cold blocks.
5517      Fix that up.  */
5518   fixup_partitions ();
5519 
5520   checking_verify_flow_info ();
5521 }
5522 
5523 /* If-conversion and CFG cleanup.  */
5524 static unsigned int
rest_of_handle_if_conversion(void)5525 rest_of_handle_if_conversion (void)
5526 {
5527   int flags = 0;
5528 
5529   if (flag_if_conversion)
5530     {
5531       if (dump_file)
5532 	{
5533 	  dump_reg_info (dump_file);
5534 	  dump_flow_info (dump_file, dump_flags);
5535 	}
5536       cleanup_cfg (CLEANUP_EXPENSIVE);
5537       if_convert (false);
5538       if (num_updated_if_blocks)
5539 	/* Get rid of any dead CC-related instructions.  */
5540 	flags |= CLEANUP_FORCE_FAST_DCE;
5541     }
5542 
5543   cleanup_cfg (flags);
5544   return 0;
5545 }
5546 
5547 namespace {
5548 
5549 const pass_data pass_data_rtl_ifcvt =
5550 {
5551   RTL_PASS, /* type */
5552   "ce1", /* name */
5553   OPTGROUP_NONE, /* optinfo_flags */
5554   TV_IFCVT, /* tv_id */
5555   0, /* properties_required */
5556   0, /* properties_provided */
5557   0, /* properties_destroyed */
5558   0, /* todo_flags_start */
5559   TODO_df_finish, /* todo_flags_finish */
5560 };
5561 
5562 class pass_rtl_ifcvt : public rtl_opt_pass
5563 {
5564 public:
pass_rtl_ifcvt(gcc::context * ctxt)5565   pass_rtl_ifcvt (gcc::context *ctxt)
5566     : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
5567   {}
5568 
5569   /* opt_pass methods: */
gate(function *)5570   virtual bool gate (function *)
5571     {
5572       return (optimize > 0) && dbg_cnt (if_conversion);
5573     }
5574 
execute(function *)5575   virtual unsigned int execute (function *)
5576     {
5577       return rest_of_handle_if_conversion ();
5578     }
5579 
5580 }; // class pass_rtl_ifcvt
5581 
5582 } // anon namespace
5583 
5584 rtl_opt_pass *
make_pass_rtl_ifcvt(gcc::context * ctxt)5585 make_pass_rtl_ifcvt (gcc::context *ctxt)
5586 {
5587   return new pass_rtl_ifcvt (ctxt);
5588 }
5589 
5590 
5591 /* Rerun if-conversion, as combine may have simplified things enough
5592    to now meet sequence length restrictions.  */
5593 
5594 namespace {
5595 
5596 const pass_data pass_data_if_after_combine =
5597 {
5598   RTL_PASS, /* type */
5599   "ce2", /* name */
5600   OPTGROUP_NONE, /* optinfo_flags */
5601   TV_IFCVT, /* tv_id */
5602   0, /* properties_required */
5603   0, /* properties_provided */
5604   0, /* properties_destroyed */
5605   0, /* todo_flags_start */
5606   TODO_df_finish, /* todo_flags_finish */
5607 };
5608 
5609 class pass_if_after_combine : public rtl_opt_pass
5610 {
5611 public:
pass_if_after_combine(gcc::context * ctxt)5612   pass_if_after_combine (gcc::context *ctxt)
5613     : rtl_opt_pass (pass_data_if_after_combine, ctxt)
5614   {}
5615 
5616   /* opt_pass methods: */
gate(function *)5617   virtual bool gate (function *)
5618     {
5619       return optimize > 0 && flag_if_conversion
5620 	&& dbg_cnt (if_after_combine);
5621     }
5622 
execute(function *)5623   virtual unsigned int execute (function *)
5624     {
5625       if_convert (true);
5626       return 0;
5627     }
5628 
5629 }; // class pass_if_after_combine
5630 
5631 } // anon namespace
5632 
5633 rtl_opt_pass *
make_pass_if_after_combine(gcc::context * ctxt)5634 make_pass_if_after_combine (gcc::context *ctxt)
5635 {
5636   return new pass_if_after_combine (ctxt);
5637 }
5638 
5639 
5640 namespace {
5641 
5642 const pass_data pass_data_if_after_reload =
5643 {
5644   RTL_PASS, /* type */
5645   "ce3", /* name */
5646   OPTGROUP_NONE, /* optinfo_flags */
5647   TV_IFCVT2, /* tv_id */
5648   0, /* properties_required */
5649   0, /* properties_provided */
5650   0, /* properties_destroyed */
5651   0, /* todo_flags_start */
5652   TODO_df_finish, /* todo_flags_finish */
5653 };
5654 
5655 class pass_if_after_reload : public rtl_opt_pass
5656 {
5657 public:
pass_if_after_reload(gcc::context * ctxt)5658   pass_if_after_reload (gcc::context *ctxt)
5659     : rtl_opt_pass (pass_data_if_after_reload, ctxt)
5660   {}
5661 
5662   /* opt_pass methods: */
gate(function *)5663   virtual bool gate (function *)
5664     {
5665       return optimize > 0 && flag_if_conversion2
5666 	&& dbg_cnt (if_after_reload);
5667     }
5668 
execute(function *)5669   virtual unsigned int execute (function *)
5670     {
5671       if_convert (true);
5672       return 0;
5673     }
5674 
5675 }; // class pass_if_after_reload
5676 
5677 } // anon namespace
5678 
5679 rtl_opt_pass *
make_pass_if_after_reload(gcc::context * ctxt)5680 make_pass_if_after_reload (gcc::context *ctxt)
5681 {
5682   return new pass_if_after_reload (ctxt);
5683 }
5684