1 /* Compute different info about registers.
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 /* This file contains regscan pass of the compiler and passes for
22    dealing with info about modes of pseudo-registers inside
23    subregisters.  It also defines some tables of information about the
24    hardware registers, function init_reg_sets to initialize the
25    tables, and other auxiliary functions to deal with info about
26    registers and their classes.  */
27 
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "backend.h"
32 #include "target.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "df.h"
36 #include "memmodel.h"
37 #include "tm_p.h"
38 #include "insn-config.h"
39 #include "regs.h"
40 #include "ira.h"
41 #include "recog.h"
42 #include "diagnostic-core.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "tree-pass.h"
46 #include "function-abi.h"
47 
48 /* Maximum register number used in this function, plus one.  */
49 
50 int max_regno;
51 
52 /* Used to cache the results of simplifiable_subregs.  SHAPE is the input
53    parameter and SIMPLIFIABLE_REGS is the result.  */
54 class simplifiable_subreg
55 {
56 public:
57   simplifiable_subreg (const subreg_shape &);
58 
59   subreg_shape shape;
60   HARD_REG_SET simplifiable_regs;
61 };
62 
63 struct target_hard_regs default_target_hard_regs;
64 struct target_regs default_target_regs;
65 #if SWITCHABLE_TARGET
66 struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
67 struct target_regs *this_target_regs = &default_target_regs;
68 #endif
69 
70 #define call_used_regs \
71   (this_target_hard_regs->x_call_used_regs)
72 #define regs_invalidated_by_call \
73   (this_target_hard_regs->x_regs_invalidated_by_call)
74 
75 /* Data for initializing fixed_regs.  */
76 static const char initial_fixed_regs[] = FIXED_REGISTERS;
77 
78 /* Data for initializing call_used_regs.  */
79 #ifdef CALL_REALLY_USED_REGISTERS
80 #ifdef CALL_USED_REGISTERS
81 #error CALL_USED_REGISTERS and CALL_REALLY_USED_REGISTERS are both defined
82 #endif
83 static const char initial_call_used_regs[] = CALL_REALLY_USED_REGISTERS;
84 #else
85 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
86 #endif
87 
88 /* Indexed by hard register number, contains 1 for registers
89    that are being used for global register decls.
90    These must be exempt from ordinary flow analysis
91    and are also considered fixed.  */
92 char global_regs[FIRST_PSEUDO_REGISTER];
93 
94 /* Declaration for the global register. */
95 tree global_regs_decl[FIRST_PSEUDO_REGISTER];
96 
97 /* Used to initialize reg_alloc_order.  */
98 #ifdef REG_ALLOC_ORDER
99 static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
100 #endif
101 
102 /* The same information, but as an array of unsigned ints.  We copy from
103    these unsigned ints to the table above.  We do this so the tm.h files
104    do not have to be aware of the wordsize for machines with <= 64 regs.
105    Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
106 #define N_REG_INTS  \
107   ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
108 
109 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
110   = REG_CLASS_CONTENTS;
111 
112 /* Array containing all of the register names.  */
113 static const char *const initial_reg_names[] = REGISTER_NAMES;
114 
115 /* Array containing all of the register class names.  */
116 const char * reg_class_names[] = REG_CLASS_NAMES;
117 
118 /* No more global register variables may be declared; true once
119    reginfo has been initialized.  */
120 static int no_global_reg_vars = 0;
121 
122 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
123    correspond to the hard registers, if any, set in that map.  This
124    could be done far more efficiently by having all sorts of special-cases
125    with moving single words, but probably isn't worth the trouble.  */
126 void
reg_set_to_hard_reg_set(HARD_REG_SET * to,const_bitmap from)127 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
128 {
129   unsigned i;
130   bitmap_iterator bi;
131 
132   EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
133     {
134       if (i >= FIRST_PSEUDO_REGISTER)
135 	return;
136       SET_HARD_REG_BIT (*to, i);
137     }
138 }
139 
140 /* Function called only once per target_globals to initialize the
141    target_hard_regs structure.  Once this is done, various switches
142    may override.  */
143 void
init_reg_sets(void)144 init_reg_sets (void)
145 {
146   int i, j;
147 
148   /* First copy the register information from the initial int form into
149      the regsets.  */
150 
151   for (i = 0; i < N_REG_CLASSES; i++)
152     {
153       CLEAR_HARD_REG_SET (reg_class_contents[i]);
154 
155       /* Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
156       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
157 	if (int_reg_class_contents[i][j / 32]
158 	    & ((unsigned) 1 << (j % 32)))
159 	  SET_HARD_REG_BIT (reg_class_contents[i], j);
160     }
161 
162   /* Sanity check: make sure the target macros FIXED_REGISTERS and
163      CALL_USED_REGISTERS had the right number of initializers.  */
164   gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
165   gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
166 #ifdef REG_ALLOC_ORDER
167   gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
168 #endif
169   gcc_assert (sizeof reg_names == sizeof initial_reg_names);
170 
171   memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
172   memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
173 #ifdef REG_ALLOC_ORDER
174   memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
175 #endif
176   memcpy (reg_names, initial_reg_names, sizeof reg_names);
177 
178   SET_HARD_REG_SET (accessible_reg_set);
179   SET_HARD_REG_SET (operand_reg_set);
180 }
181 
182 /* We need to save copies of some of the register information which
183    can be munged by command-line switches so we can restore it during
184    subsequent back-end reinitialization.  */
185 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
186 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
187 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
188 static HARD_REG_SET saved_accessible_reg_set;
189 static HARD_REG_SET saved_operand_reg_set;
190 
191 /* Save the register information.  */
192 void
save_register_info(void)193 save_register_info (void)
194 {
195   /* Sanity check:  make sure the target macros FIXED_REGISTERS and
196      CALL_USED_REGISTERS had the right number of initializers.  */
197   gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
198   gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
199   memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
200   memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
201 
202   /* And similarly for reg_names.  */
203   gcc_assert (sizeof reg_names == sizeof saved_reg_names);
204   memcpy (saved_reg_names, reg_names, sizeof reg_names);
205   saved_accessible_reg_set = accessible_reg_set;
206   saved_operand_reg_set = operand_reg_set;
207 }
208 
209 /* Restore the register information.  */
210 static void
restore_register_info(void)211 restore_register_info (void)
212 {
213   memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
214   memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
215 
216   memcpy (reg_names, saved_reg_names, sizeof reg_names);
217   accessible_reg_set = saved_accessible_reg_set;
218   operand_reg_set = saved_operand_reg_set;
219 }
220 
221 /* After switches have been processed, which perhaps alter
222    `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */
223 static void
init_reg_sets_1(void)224 init_reg_sets_1 (void)
225 {
226   unsigned int i, j;
227   unsigned int /* machine_mode */ m;
228 
229   restore_register_info ();
230 
231 #ifdef REG_ALLOC_ORDER
232   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
233     inv_reg_alloc_order[reg_alloc_order[i]] = i;
234 #endif
235 
236   /* Let the target tweak things if necessary.  */
237 
238   targetm.conditional_register_usage ();
239 
240   /* Compute number of hard regs in each class.  */
241 
242   memset (reg_class_size, 0, sizeof reg_class_size);
243   for (i = 0; i < N_REG_CLASSES; i++)
244     {
245       bool any_nonfixed = false;
246       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
247 	if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
248 	  {
249 	    reg_class_size[i]++;
250 	    if (!fixed_regs[j])
251 	      any_nonfixed = true;
252 	  }
253       class_only_fixed_regs[i] = !any_nonfixed;
254     }
255 
256   /* Initialize the table of subunions.
257      reg_class_subunion[I][J] gets the largest-numbered reg-class
258      that is contained in the union of classes I and J.  */
259 
260   memset (reg_class_subunion, 0, sizeof reg_class_subunion);
261   for (i = 0; i < N_REG_CLASSES; i++)
262     {
263       for (j = 0; j < N_REG_CLASSES; j++)
264 	{
265 	  HARD_REG_SET c;
266 	  int k;
267 
268 	  c = reg_class_contents[i] | reg_class_contents[j];
269 	  for (k = 0; k < N_REG_CLASSES; k++)
270 	    if (hard_reg_set_subset_p (reg_class_contents[k], c)
271 		&& !hard_reg_set_subset_p (reg_class_contents[k],
272 					  reg_class_contents
273 					  [(int) reg_class_subunion[i][j]]))
274 	      reg_class_subunion[i][j] = (enum reg_class) k;
275 	}
276     }
277 
278   /* Initialize the table of superunions.
279      reg_class_superunion[I][J] gets the smallest-numbered reg-class
280      containing the union of classes I and J.  */
281 
282   memset (reg_class_superunion, 0, sizeof reg_class_superunion);
283   for (i = 0; i < N_REG_CLASSES; i++)
284     {
285       for (j = 0; j < N_REG_CLASSES; j++)
286 	{
287 	  HARD_REG_SET c;
288 	  int k;
289 
290 	  c = reg_class_contents[i] | reg_class_contents[j];
291 	  for (k = 0; k < N_REG_CLASSES; k++)
292 	    if (hard_reg_set_subset_p (c, reg_class_contents[k]))
293 	      break;
294 
295 	  reg_class_superunion[i][j] = (enum reg_class) k;
296 	}
297     }
298 
299   /* Initialize the tables of subclasses and superclasses of each reg class.
300      First clear the whole table, then add the elements as they are found.  */
301 
302   for (i = 0; i < N_REG_CLASSES; i++)
303     {
304       for (j = 0; j < N_REG_CLASSES; j++)
305 	reg_class_subclasses[i][j] = LIM_REG_CLASSES;
306     }
307 
308   for (i = 0; i < N_REG_CLASSES; i++)
309     {
310       if (i == (int) NO_REGS)
311 	continue;
312 
313       for (j = i + 1; j < N_REG_CLASSES; j++)
314 	if (hard_reg_set_subset_p (reg_class_contents[i],
315 				  reg_class_contents[j]))
316 	  {
317 	    /* Reg class I is a subclass of J.
318 	       Add J to the table of superclasses of I.  */
319 	    enum reg_class *p;
320 
321 	    /* Add I to the table of superclasses of J.  */
322 	    p = &reg_class_subclasses[j][0];
323 	    while (*p != LIM_REG_CLASSES) p++;
324 	    *p = (enum reg_class) i;
325 	  }
326     }
327 
328   /* Initialize "constant" tables.  */
329 
330   CLEAR_HARD_REG_SET (fixed_reg_set);
331   CLEAR_HARD_REG_SET (regs_invalidated_by_call);
332 
333   operand_reg_set &= accessible_reg_set;
334   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
335     {
336       /* As a special exception, registers whose class is NO_REGS are
337 	 not accepted by `register_operand'.  The reason for this change
338 	 is to allow the representation of special architecture artifacts
339 	 (such as a condition code register) without extending the rtl
340 	 definitions.  Since registers of class NO_REGS cannot be used
341 	 as registers in any case where register classes are examined,
342 	 it is better to apply this exception in a target-independent way.  */
343       if (REGNO_REG_CLASS (i) == NO_REGS)
344 	CLEAR_HARD_REG_BIT (operand_reg_set, i);
345 
346       /* If a register is too limited to be treated as a register operand,
347 	 then it should never be allocated to a pseudo.  */
348       if (!TEST_HARD_REG_BIT (operand_reg_set, i))
349 	fixed_regs[i] = 1;
350 
351       if (fixed_regs[i])
352 	SET_HARD_REG_BIT (fixed_reg_set, i);
353 
354       /* There are a couple of fixed registers that we know are safe to
355 	 exclude from being clobbered by calls:
356 
357 	 The frame pointer is always preserved across calls.  The arg
358 	 pointer is if it is fixed.  The stack pointer usually is,
359 	 unless TARGET_RETURN_POPS_ARGS, in which case an explicit
360 	 CLOBBER will be present.  If we are generating PIC code, the
361 	 PIC offset table register is preserved across calls, though the
362 	 target can override that.  */
363 
364       if (i == STACK_POINTER_REGNUM)
365 	;
366       else if (global_regs[i])
367 	SET_HARD_REG_BIT (regs_invalidated_by_call, i);
368       else if (i == FRAME_POINTER_REGNUM)
369 	;
370       else if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
371 	       && i == HARD_FRAME_POINTER_REGNUM)
372 	;
373       else if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
374 	       && i == ARG_POINTER_REGNUM && fixed_regs[i])
375 	;
376       else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
377 	       && i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
378 	;
379       else if (call_used_regs[i])
380 	SET_HARD_REG_BIT (regs_invalidated_by_call, i);
381     }
382 
383   SET_HARD_REG_SET (savable_regs);
384   fixed_nonglobal_reg_set = fixed_reg_set;
385 
386   /* Preserve global registers if called more than once.  */
387   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
388     {
389       if (global_regs[i])
390 	{
391 	  fixed_regs[i] = call_used_regs[i] = 1;
392 	  SET_HARD_REG_BIT (fixed_reg_set, i);
393 	}
394     }
395 
396   memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
397   memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
398   for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
399     {
400       HARD_REG_SET ok_regs, ok_regs2;
401       CLEAR_HARD_REG_SET (ok_regs);
402       CLEAR_HARD_REG_SET (ok_regs2);
403       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
404 	if (!TEST_HARD_REG_BIT (fixed_nonglobal_reg_set, j)
405 	    && targetm.hard_regno_mode_ok (j, (machine_mode) m))
406 	  {
407 	    SET_HARD_REG_BIT (ok_regs, j);
408 	    if (!fixed_regs[j])
409 	      SET_HARD_REG_BIT (ok_regs2, j);
410 	  }
411 
412       for (i = 0; i < N_REG_CLASSES; i++)
413 	if ((targetm.class_max_nregs ((reg_class_t) i, (machine_mode) m)
414 	     <= reg_class_size[i])
415 	    && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
416 	  {
417 	     contains_reg_of_mode[i][m] = 1;
418 	     if (hard_reg_set_intersect_p (ok_regs2, reg_class_contents[i]))
419 	       {
420 		 have_regs_of_mode[m] = 1;
421 		 contains_allocatable_reg_of_mode[i][m] = 1;
422 	       }
423 	  }
424      }
425 
426   default_function_abi.initialize (0, regs_invalidated_by_call);
427 }
428 
429 /* Compute the table of register modes.
430    These values are used to record death information for individual registers
431    (as opposed to a multi-register mode).
432    This function might be invoked more than once, if the target has support
433    for changing register usage conventions on a per-function basis.
434 */
435 void
init_reg_modes_target(void)436 init_reg_modes_target (void)
437 {
438   int i, j;
439 
440   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441     for (j = 0; j < MAX_MACHINE_MODE; j++)
442       this_target_regs->x_hard_regno_nregs[i][j]
443 	= targetm.hard_regno_nregs (i, (machine_mode) j);
444 
445   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
446     {
447       reg_raw_mode[i] = choose_hard_reg_mode (i, 1, NULL);
448 
449       /* If we couldn't find a valid mode, just use the previous mode
450 	 if it is suitable, otherwise fall back on word_mode.  */
451       if (reg_raw_mode[i] == VOIDmode)
452     	{
453 	  if (i > 0 && hard_regno_nregs (i, reg_raw_mode[i - 1]) == 1)
454 	    reg_raw_mode[i] = reg_raw_mode[i - 1];
455 	  else
456 	    reg_raw_mode[i] = word_mode;
457 	}
458     }
459 }
460 
461 /* Finish initializing the register sets and initialize the register modes.
462    This function might be invoked more than once, if the target has support
463    for changing register usage conventions on a per-function basis.
464 */
465 void
init_regs(void)466 init_regs (void)
467 {
468   /* This finishes what was started by init_reg_sets, but couldn't be done
469      until after register usage was specified.  */
470   init_reg_sets_1 ();
471 }
472 
473 /* The same as previous function plus initializing IRA.  */
474 void
reinit_regs(void)475 reinit_regs (void)
476 {
477   init_regs ();
478   /* caller_save needs to be re-initialized.  */
479   caller_save_initialized_p = false;
480   if (this_target_rtl->target_specific_initialized)
481     {
482       ira_init ();
483       recog_init ();
484     }
485 }
486 
487 /* Initialize some fake stack-frame MEM references for use in
488    memory_move_secondary_cost.  */
489 void
init_fake_stack_mems(void)490 init_fake_stack_mems (void)
491 {
492   int i;
493 
494   for (i = 0; i < MAX_MACHINE_MODE; i++)
495     top_of_stack[i] = gen_rtx_MEM ((machine_mode) i, stack_pointer_rtx);
496 }
497 
498 
499 /* Compute cost of moving data from a register of class FROM to one of
500    TO, using MODE.  */
501 
502 int
register_move_cost(machine_mode mode,reg_class_t from,reg_class_t to)503 register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to)
504 {
505   return targetm.register_move_cost (mode, from, to);
506 }
507 
508 /* Compute cost of moving registers to/from memory.  */
509 
510 int
memory_move_cost(machine_mode mode,reg_class_t rclass,bool in)511 memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
512 {
513   return targetm.memory_move_cost (mode, rclass, in);
514 }
515 
516 /* Compute extra cost of moving registers to/from memory due to reloads.
517    Only needed if secondary reloads are required for memory moves.  */
518 int
memory_move_secondary_cost(machine_mode mode,reg_class_t rclass,bool in)519 memory_move_secondary_cost (machine_mode mode, reg_class_t rclass,
520 			    bool in)
521 {
522   reg_class_t altclass;
523   int partial_cost = 0;
524   /* We need a memory reference to feed to SECONDARY... macros.  */
525   /* mem may be unused even if the SECONDARY_ macros are defined.  */
526   rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
527 
528   altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
529 
530   if (altclass == NO_REGS)
531     return 0;
532 
533   if (in)
534     partial_cost = register_move_cost (mode, altclass, rclass);
535   else
536     partial_cost = register_move_cost (mode, rclass, altclass);
537 
538   if (rclass == altclass)
539     /* This isn't simply a copy-to-temporary situation.  Can't guess
540        what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
541        calling here in that case.
542 
543        I'm tempted to put in an assert here, but returning this will
544        probably only give poor estimates, which is what we would've
545        had before this code anyways.  */
546     return partial_cost;
547 
548   /* Check if the secondary reload register will also need a
549      secondary reload.  */
550   return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
551 }
552 
553 /* Return a machine mode that is legitimate for hard reg REGNO and large
554    enough to save nregs.  If we can't find one, return VOIDmode.
555    If ABI is nonnull, only consider modes that are preserved across
556    calls that use ABI.  */
557 machine_mode
choose_hard_reg_mode(unsigned int regno ATTRIBUTE_UNUSED,unsigned int nregs,const predefined_function_abi * abi)558 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
559 		      unsigned int nregs, const predefined_function_abi *abi)
560 {
561   unsigned int /* machine_mode */ m;
562   machine_mode found_mode = VOIDmode, mode;
563 
564   /* We first look for the largest integer mode that can be validly
565      held in REGNO.  If none, we look for the largest floating-point mode.
566      If we still didn't find a valid mode, try CCmode.
567 
568      The tests use maybe_gt rather than known_gt because we want (for example)
569      N V4SFs to win over plain V4SF even though N might be 1.  */
570   FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
571     if (hard_regno_nregs (regno, mode) == nregs
572 	&& targetm.hard_regno_mode_ok (regno, mode)
573 	&& (!abi || !abi->clobbers_reg_p (mode, regno))
574 	&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
575       found_mode = mode;
576 
577   FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
578     if (hard_regno_nregs (regno, mode) == nregs
579 	&& targetm.hard_regno_mode_ok (regno, mode)
580 	&& (!abi || !abi->clobbers_reg_p (mode, regno))
581 	&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
582       found_mode = mode;
583 
584   FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
585     if (hard_regno_nregs (regno, mode) == nregs
586 	&& targetm.hard_regno_mode_ok (regno, mode)
587 	&& (!abi || !abi->clobbers_reg_p (mode, regno))
588 	&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
589       found_mode = mode;
590 
591   FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
592     if (hard_regno_nregs (regno, mode) == nregs
593 	&& targetm.hard_regno_mode_ok (regno, mode)
594 	&& (!abi || !abi->clobbers_reg_p (mode, regno))
595 	&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
596       found_mode = mode;
597 
598   if (found_mode != VOIDmode)
599     return found_mode;
600 
601   /* Iterate over all of the CCmodes.  */
602   for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
603     {
604       mode = (machine_mode) m;
605       if (hard_regno_nregs (regno, mode) == nregs
606 	  && targetm.hard_regno_mode_ok (regno, mode)
607 	  && (!abi || !abi->clobbers_reg_p (mode, regno)))
608 	return mode;
609     }
610 
611   /* We can't find a mode valid for this register.  */
612   return VOIDmode;
613 }
614 
615 /* Specify the usage characteristics of the register named NAME.
616    It should be a fixed register if FIXED and a
617    call-used register if CALL_USED.  */
618 void
fix_register(const char * name,int fixed,int call_used)619 fix_register (const char *name, int fixed, int call_used)
620 {
621   int i;
622   int reg, nregs;
623 
624   /* Decode the name and update the primary form of
625      the register info.  */
626 
627   if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
628     {
629       gcc_assert (nregs >= 1);
630       for (i = reg; i < reg + nregs; i++)
631 	{
632 	  if ((i == STACK_POINTER_REGNUM
633 #ifdef HARD_FRAME_POINTER_REGNUM
634 	       || i == HARD_FRAME_POINTER_REGNUM
635 #else
636 	       || i == FRAME_POINTER_REGNUM
637 #endif
638 	       )
639 	      && (fixed == 0 || call_used == 0))
640 	    {
641 	      switch (fixed)
642 		{
643 		case 0:
644 		  switch (call_used)
645 		    {
646 		    case 0:
647 		      error ("cannot use %qs as a call-saved register", name);
648 		      break;
649 
650 		    case 1:
651 		      error ("cannot use %qs as a call-used register", name);
652 		      break;
653 
654 		    default:
655 		      gcc_unreachable ();
656 		    }
657 		  break;
658 
659 		case 1:
660 		  switch (call_used)
661 		    {
662 		    case 1:
663 		      error ("cannot use %qs as a fixed register", name);
664 		      break;
665 
666 		    case 0:
667 		    default:
668 		      gcc_unreachable ();
669 		    }
670 		  break;
671 
672 		default:
673 		  gcc_unreachable ();
674 		}
675 	    }
676 	  else
677 	    {
678 	      fixed_regs[i] = fixed;
679 #ifdef CALL_REALLY_USED_REGISTERS
680 	      if (fixed == 0)
681 		call_used_regs[i] = call_used;
682 #else
683 	      call_used_regs[i] = call_used;
684 #endif
685 	    }
686 	}
687     }
688   else
689     {
690       warning (0, "unknown register name: %s", name);
691     }
692 }
693 
694 /* Mark register number I as global.  */
695 void
globalize_reg(tree decl,int i)696 globalize_reg (tree decl, int i)
697 {
698   location_t loc = DECL_SOURCE_LOCATION (decl);
699 
700 #ifdef STACK_REGS
701   if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
702     {
703       error ("stack register used for global register variable");
704       return;
705     }
706 #endif
707 
708   if (fixed_regs[i] == 0 && no_global_reg_vars)
709     error_at (loc, "global register variable follows a function definition");
710 
711   if (global_regs[i])
712     {
713       auto_diagnostic_group d;
714       warning_at (loc, 0,
715 		  "register of %qD used for multiple global register variables",
716 		  decl);
717       inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
718 	      "conflicts with %qD", global_regs_decl[i]);
719       return;
720     }
721 
722   if (call_used_regs[i] && ! fixed_regs[i])
723     warning_at (loc, 0, "call-clobbered register used for global register variable");
724 
725   global_regs[i] = 1;
726   global_regs_decl[i] = decl;
727 
728   /* If we're globalizing the frame pointer, we need to set the
729      appropriate regs_invalidated_by_call bit, even if it's already
730      set in fixed_regs.  */
731   if (i != STACK_POINTER_REGNUM)
732     {
733       SET_HARD_REG_BIT (regs_invalidated_by_call, i);
734       for (unsigned int j = 0; j < NUM_ABI_IDS; ++j)
735 	function_abis[j].add_full_reg_clobber (i);
736     }
737 
738   /* If already fixed, nothing else to do.  */
739   if (fixed_regs[i])
740     return;
741 
742   fixed_regs[i] = call_used_regs[i] = 1;
743 
744   SET_HARD_REG_BIT (fixed_reg_set, i);
745 
746   reinit_regs ();
747 }
748 
749 
750 /* Structure used to record preferences of given pseudo.  */
751 struct reg_pref
752 {
753   /* (enum reg_class) prefclass is the preferred class.  May be
754      NO_REGS if no class is better than memory.  */
755   char prefclass;
756 
757   /* altclass is a register class that we should use for allocating
758      pseudo if no register in the preferred class is available.
759      If no register in this class is available, memory is preferred.
760 
761      It might appear to be more general to have a bitmask of classes here,
762      but since it is recommended that there be a class corresponding to the
763      union of most major pair of classes, that generality is not required.  */
764   char altclass;
765 
766   /* allocnoclass is a register class that IRA uses for allocating
767      the pseudo.  */
768   char allocnoclass;
769 };
770 
771 /* Record preferences of each pseudo.  This is available after RA is
772    run.  */
773 static struct reg_pref *reg_pref;
774 
775 /* Current size of reg_info.  */
776 static int reg_info_size;
777 /* Max_reg_num still last resize_reg_info call.  */
778 static int max_regno_since_last_resize;
779 
780 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
781    This function is sometimes called before the info has been computed.
782    When that happens, just return GENERAL_REGS, which is innocuous.  */
783 enum reg_class
reg_preferred_class(int regno)784 reg_preferred_class (int regno)
785 {
786   if (reg_pref == 0)
787     return GENERAL_REGS;
788 
789   gcc_assert (regno < reg_info_size);
790   return (enum reg_class) reg_pref[regno].prefclass;
791 }
792 
793 enum reg_class
reg_alternate_class(int regno)794 reg_alternate_class (int regno)
795 {
796   if (reg_pref == 0)
797     return ALL_REGS;
798 
799   gcc_assert (regno < reg_info_size);
800   return (enum reg_class) reg_pref[regno].altclass;
801 }
802 
803 /* Return the reg_class which is used by IRA for its allocation.  */
804 enum reg_class
reg_allocno_class(int regno)805 reg_allocno_class (int regno)
806 {
807   if (reg_pref == 0)
808     return NO_REGS;
809 
810   gcc_assert (regno < reg_info_size);
811   return (enum reg_class) reg_pref[regno].allocnoclass;
812 }
813 
814 
815 
816 /* Allocate space for reg info and initilize it.  */
817 static void
allocate_reg_info(void)818 allocate_reg_info (void)
819 {
820   int i;
821 
822   max_regno_since_last_resize = max_reg_num ();
823   reg_info_size = max_regno_since_last_resize * 3 / 2 + 1;
824   gcc_assert (! reg_pref && ! reg_renumber);
825   reg_renumber = XNEWVEC (short, reg_info_size);
826   reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
827   memset (reg_renumber, -1, reg_info_size * sizeof (short));
828   for (i = 0; i < reg_info_size; i++)
829     {
830       reg_pref[i].prefclass = GENERAL_REGS;
831       reg_pref[i].altclass = ALL_REGS;
832       reg_pref[i].allocnoclass = GENERAL_REGS;
833     }
834 }
835 
836 
837 /* Resize reg info. The new elements will be initialized.  Return TRUE
838    if new pseudos were added since the last call.  */
839 bool
resize_reg_info(void)840 resize_reg_info (void)
841 {
842   int old, i;
843   bool change_p;
844 
845   if (reg_pref == NULL)
846     {
847       allocate_reg_info ();
848       return true;
849     }
850   change_p = max_regno_since_last_resize != max_reg_num ();
851   max_regno_since_last_resize = max_reg_num ();
852   if (reg_info_size >= max_reg_num ())
853     return change_p;
854   old = reg_info_size;
855   reg_info_size = max_reg_num () * 3 / 2 + 1;
856   gcc_assert (reg_pref && reg_renumber);
857   reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
858   reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
859   memset (reg_pref + old, -1,
860 	  (reg_info_size - old) * sizeof (struct reg_pref));
861   memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
862   for (i = old; i < reg_info_size; i++)
863     {
864       reg_pref[i].prefclass = GENERAL_REGS;
865       reg_pref[i].altclass = ALL_REGS;
866       reg_pref[i].allocnoclass = GENERAL_REGS;
867     }
868   return true;
869 }
870 
871 
872 /* Free up the space allocated by allocate_reg_info.  */
873 void
free_reg_info(void)874 free_reg_info (void)
875 {
876   if (reg_pref)
877     {
878       free (reg_pref);
879       reg_pref = NULL;
880     }
881 
882   if (reg_renumber)
883     {
884       free (reg_renumber);
885       reg_renumber = NULL;
886     }
887 }
888 
889 /* Initialize some global data for this pass.  */
890 static unsigned int
reginfo_init(void)891 reginfo_init (void)
892 {
893   if (df)
894     df_compute_regs_ever_live (true);
895 
896   /* This prevents dump_reg_info from losing if called
897      before reginfo is run.  */
898   reg_pref = NULL;
899   reg_info_size = max_regno_since_last_resize = 0;
900   /* No more global register variables may be declared.  */
901   no_global_reg_vars = 1;
902   return 1;
903 }
904 
905 namespace {
906 
907 const pass_data pass_data_reginfo_init =
908 {
909   RTL_PASS, /* type */
910   "reginfo", /* name */
911   OPTGROUP_NONE, /* optinfo_flags */
912   TV_NONE, /* tv_id */
913   0, /* properties_required */
914   0, /* properties_provided */
915   0, /* properties_destroyed */
916   0, /* todo_flags_start */
917   0, /* todo_flags_finish */
918 };
919 
920 class pass_reginfo_init : public rtl_opt_pass
921 {
922 public:
pass_reginfo_init(gcc::context * ctxt)923   pass_reginfo_init (gcc::context *ctxt)
924     : rtl_opt_pass (pass_data_reginfo_init, ctxt)
925   {}
926 
927   /* opt_pass methods: */
execute(function *)928   virtual unsigned int execute (function *) { return reginfo_init (); }
929 
930 }; // class pass_reginfo_init
931 
932 } // anon namespace
933 
934 rtl_opt_pass *
make_pass_reginfo_init(gcc::context * ctxt)935 make_pass_reginfo_init (gcc::context *ctxt)
936 {
937   return new pass_reginfo_init (ctxt);
938 }
939 
940 
941 
942 /* Set up preferred, alternate, and allocno classes for REGNO as
943    PREFCLASS, ALTCLASS, and ALLOCNOCLASS.  */
944 void
setup_reg_classes(int regno,enum reg_class prefclass,enum reg_class altclass,enum reg_class allocnoclass)945 setup_reg_classes (int regno,
946 		   enum reg_class prefclass, enum reg_class altclass,
947 		   enum reg_class allocnoclass)
948 {
949   if (reg_pref == NULL)
950     return;
951   gcc_assert (reg_info_size >= max_reg_num ());
952   reg_pref[regno].prefclass = prefclass;
953   reg_pref[regno].altclass = altclass;
954   reg_pref[regno].allocnoclass = allocnoclass;
955 }
956 
957 
958 /* This is the `regscan' pass of the compiler, run just before cse and
959    again just before loop.  It finds the first and last use of each
960    pseudo-register.  */
961 
962 static void reg_scan_mark_refs (rtx, rtx_insn *);
963 
964 void
reg_scan(rtx_insn * f,unsigned int nregs ATTRIBUTE_UNUSED)965 reg_scan (rtx_insn *f, unsigned int nregs ATTRIBUTE_UNUSED)
966 {
967   rtx_insn *insn;
968 
969   timevar_push (TV_REG_SCAN);
970 
971   for (insn = f; insn; insn = NEXT_INSN (insn))
972     if (INSN_P (insn))
973       {
974 	reg_scan_mark_refs (PATTERN (insn), insn);
975 	if (REG_NOTES (insn))
976 	  reg_scan_mark_refs (REG_NOTES (insn), insn);
977       }
978 
979   timevar_pop (TV_REG_SCAN);
980 }
981 
982 
983 /* X is the expression to scan.  INSN is the insn it appears in.
984    NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
985    We should only record information for REGs with numbers
986    greater than or equal to MIN_REGNO.  */
987 static void
reg_scan_mark_refs(rtx x,rtx_insn * insn)988 reg_scan_mark_refs (rtx x, rtx_insn *insn)
989 {
990   enum rtx_code code;
991   rtx dest;
992   rtx note;
993 
994   if (!x)
995     return;
996   code = GET_CODE (x);
997   switch (code)
998     {
999     case CONST:
1000     CASE_CONST_ANY:
1001     case CC0:
1002     case PC:
1003     case SYMBOL_REF:
1004     case LABEL_REF:
1005     case ADDR_VEC:
1006     case ADDR_DIFF_VEC:
1007     case REG:
1008       return;
1009 
1010     case EXPR_LIST:
1011       if (XEXP (x, 0))
1012 	reg_scan_mark_refs (XEXP (x, 0), insn);
1013       if (XEXP (x, 1))
1014 	reg_scan_mark_refs (XEXP (x, 1), insn);
1015       break;
1016 
1017     case INSN_LIST:
1018     case INT_LIST:
1019       if (XEXP (x, 1))
1020 	reg_scan_mark_refs (XEXP (x, 1), insn);
1021       break;
1022 
1023     case CLOBBER:
1024       if (MEM_P (XEXP (x, 0)))
1025 	reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1026       break;
1027 
1028     case SET:
1029       /* Count a set of the destination if it is a register.  */
1030       for (dest = SET_DEST (x);
1031 	   GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1032 	   || GET_CODE (dest) == ZERO_EXTRACT;
1033 	   dest = XEXP (dest, 0))
1034 	;
1035 
1036       /* If this is setting a pseudo from another pseudo or the sum of a
1037 	 pseudo and a constant integer and the other pseudo is known to be
1038 	 a pointer, set the destination to be a pointer as well.
1039 
1040 	 Likewise if it is setting the destination from an address or from a
1041 	 value equivalent to an address or to the sum of an address and
1042 	 something else.
1043 
1044 	 But don't do any of this if the pseudo corresponds to a user
1045 	 variable since it should have already been set as a pointer based
1046 	 on the type.  */
1047 
1048       if (REG_P (SET_DEST (x))
1049 	  && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1050 	  /* If the destination pseudo is set more than once, then other
1051 	     sets might not be to a pointer value (consider access to a
1052 	     union in two threads of control in the presence of global
1053 	     optimizations).  So only set REG_POINTER on the destination
1054 	     pseudo if this is the only set of that pseudo.  */
1055 	  && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1056 	  && ! REG_USERVAR_P (SET_DEST (x))
1057 	  && ! REG_POINTER (SET_DEST (x))
1058 	  && ((REG_P (SET_SRC (x))
1059 	       && REG_POINTER (SET_SRC (x)))
1060 	      || ((GET_CODE (SET_SRC (x)) == PLUS
1061 		   || GET_CODE (SET_SRC (x)) == LO_SUM)
1062 		  && CONST_INT_P (XEXP (SET_SRC (x), 1))
1063 		  && REG_P (XEXP (SET_SRC (x), 0))
1064 		  && REG_POINTER (XEXP (SET_SRC (x), 0)))
1065 	      || GET_CODE (SET_SRC (x)) == CONST
1066 	      || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1067 	      || GET_CODE (SET_SRC (x)) == LABEL_REF
1068 	      || (GET_CODE (SET_SRC (x)) == HIGH
1069 		  && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1070 		      || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1071 		      || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1072 	      || ((GET_CODE (SET_SRC (x)) == PLUS
1073 		   || GET_CODE (SET_SRC (x)) == LO_SUM)
1074 		  && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1075 		      || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1076 		      || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1077 	      || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1078 		  && (GET_CODE (XEXP (note, 0)) == CONST
1079 		      || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1080 		      || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1081 	REG_POINTER (SET_DEST (x)) = 1;
1082 
1083       /* If this is setting a register from a register or from a simple
1084 	 conversion of a register, propagate REG_EXPR.  */
1085       if (REG_P (dest) && !REG_ATTRS (dest))
1086 	set_reg_attrs_from_value (dest, SET_SRC (x));
1087 
1088       /* fall through */
1089 
1090     default:
1091       {
1092 	const char *fmt = GET_RTX_FORMAT (code);
1093 	int i;
1094 	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1095 	  {
1096 	    if (fmt[i] == 'e')
1097 	      reg_scan_mark_refs (XEXP (x, i), insn);
1098 	    else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1099 	      {
1100 		int j;
1101 		for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1102 		  reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1103 	      }
1104 	  }
1105       }
1106     }
1107 }
1108 
1109 
1110 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1111    is also in C2.  */
1112 int
reg_class_subset_p(reg_class_t c1,reg_class_t c2)1113 reg_class_subset_p (reg_class_t c1, reg_class_t c2)
1114 {
1115   return (c1 == c2
1116 	  || c2 == ALL_REGS
1117 	  || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1118 				   reg_class_contents[(int) c2]));
1119 }
1120 
1121 /* Return nonzero if there is a register that is in both C1 and C2.  */
1122 int
reg_classes_intersect_p(reg_class_t c1,reg_class_t c2)1123 reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
1124 {
1125   return (c1 == c2
1126 	  || c1 == ALL_REGS
1127 	  || c2 == ALL_REGS
1128 	  || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1129 				      reg_class_contents[(int) c2]));
1130 }
1131 
1132 
1133 inline hashval_t
hash(const simplifiable_subreg * value)1134 simplifiable_subregs_hasher::hash (const simplifiable_subreg *value)
1135 {
1136   inchash::hash h;
1137   h.add_hwi (value->shape.unique_id ());
1138   return h.end ();
1139 }
1140 
1141 inline bool
equal(const simplifiable_subreg * value,const subreg_shape * compare)1142 simplifiable_subregs_hasher::equal (const simplifiable_subreg *value,
1143 				    const subreg_shape *compare)
1144 {
1145   return value->shape == *compare;
1146 }
1147 
simplifiable_subreg(const subreg_shape & shape_in)1148 inline simplifiable_subreg::simplifiable_subreg (const subreg_shape &shape_in)
1149   : shape (shape_in)
1150 {
1151   CLEAR_HARD_REG_SET (simplifiable_regs);
1152 }
1153 
1154 /* Return the set of hard registers that are able to form the subreg
1155    described by SHAPE.  */
1156 
1157 const HARD_REG_SET &
simplifiable_subregs(const subreg_shape & shape)1158 simplifiable_subregs (const subreg_shape &shape)
1159 {
1160   if (!this_target_hard_regs->x_simplifiable_subregs)
1161     this_target_hard_regs->x_simplifiable_subregs
1162       = new hash_table <simplifiable_subregs_hasher> (30);
1163   inchash::hash h;
1164   h.add_hwi (shape.unique_id ());
1165   simplifiable_subreg **slot
1166     = (this_target_hard_regs->x_simplifiable_subregs
1167        ->find_slot_with_hash (&shape, h.end (), INSERT));
1168 
1169   if (!*slot)
1170     {
1171       simplifiable_subreg *info = new simplifiable_subreg (shape);
1172       for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1173 	if (targetm.hard_regno_mode_ok (i, shape.inner_mode)
1174 	    && simplify_subreg_regno (i, shape.inner_mode, shape.offset,
1175 				      shape.outer_mode) >= 0)
1176 	  SET_HARD_REG_BIT (info->simplifiable_regs, i);
1177       *slot = info;
1178     }
1179   return (*slot)->simplifiable_regs;
1180 }
1181 
1182 /* Passes for keeping and updating info about modes of registers
1183    inside subregisters.  */
1184 
1185 static HARD_REG_SET **valid_mode_changes;
1186 static obstack valid_mode_changes_obstack;
1187 
1188 /* Restrict the choice of register for SUBREG_REG (SUBREG) based
1189    on information about SUBREG.
1190 
1191    If PARTIAL_DEF, SUBREG is a partial definition of a multipart inner
1192    register and we want to ensure that the other parts of the inner
1193    register are correctly preserved.  If !PARTIAL_DEF we need to
1194    ensure that SUBREG itself can be formed.  */
1195 
1196 static void
record_subregs_of_mode(rtx subreg,bool partial_def)1197 record_subregs_of_mode (rtx subreg, bool partial_def)
1198 {
1199   unsigned int regno;
1200 
1201   if (!REG_P (SUBREG_REG (subreg)))
1202     return;
1203 
1204   regno = REGNO (SUBREG_REG (subreg));
1205   if (regno < FIRST_PSEUDO_REGISTER)
1206     return;
1207 
1208   subreg_shape shape (shape_of_subreg (subreg));
1209   if (partial_def)
1210     {
1211       /* The number of independently-accessible SHAPE.outer_mode values
1212 	 in SHAPE.inner_mode is GET_MODE_SIZE (SHAPE.inner_mode) / SIZE.
1213 	 We need to check that the assignment will preserve all the other
1214 	 SIZE-byte chunks in the inner register besides the one that
1215 	 includes SUBREG.
1216 
1217 	 In practice it is enough to check whether an equivalent
1218 	 SHAPE.inner_mode value in an adjacent SIZE-byte chunk can be formed.
1219 	 If the underlying registers are small enough, both subregs will
1220 	 be valid.  If the underlying registers are too large, one of the
1221 	 subregs will be invalid.
1222 
1223 	 This relies on the fact that we've already been passed
1224 	 SUBREG with PARTIAL_DEF set to false.
1225 
1226 	 The size of the outer mode must ordered wrt the size of the
1227 	 inner mode's registers, since otherwise we wouldn't know at
1228 	 compile time how many registers the outer mode occupies.  */
1229       poly_uint64 size = ordered_max (REGMODE_NATURAL_SIZE (shape.inner_mode),
1230 				      GET_MODE_SIZE (shape.outer_mode));
1231       gcc_checking_assert (known_lt (size, GET_MODE_SIZE (shape.inner_mode)));
1232       if (known_ge (shape.offset, size))
1233 	shape.offset -= size;
1234       else
1235 	shape.offset += size;
1236     }
1237 
1238   if (valid_mode_changes[regno])
1239     *valid_mode_changes[regno] &= simplifiable_subregs (shape);
1240   else
1241     {
1242       valid_mode_changes[regno]
1243 	= XOBNEW (&valid_mode_changes_obstack, HARD_REG_SET);
1244       *valid_mode_changes[regno] = simplifiable_subregs (shape);
1245     }
1246 }
1247 
1248 /* Call record_subregs_of_mode for all the subregs in X.  */
1249 static void
find_subregs_of_mode(rtx x)1250 find_subregs_of_mode (rtx x)
1251 {
1252   enum rtx_code code = GET_CODE (x);
1253   const char * const fmt = GET_RTX_FORMAT (code);
1254   int i;
1255 
1256   if (code == SUBREG)
1257     record_subregs_of_mode (x, false);
1258 
1259   /* Time for some deep diving.  */
1260   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1261     {
1262       if (fmt[i] == 'e')
1263 	find_subregs_of_mode (XEXP (x, i));
1264       else if (fmt[i] == 'E')
1265 	{
1266 	  int j;
1267 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1268 	    find_subregs_of_mode (XVECEXP (x, i, j));
1269 	}
1270     }
1271 }
1272 
1273 void
init_subregs_of_mode(void)1274 init_subregs_of_mode (void)
1275 {
1276   basic_block bb;
1277   rtx_insn *insn;
1278 
1279   gcc_obstack_init (&valid_mode_changes_obstack);
1280   valid_mode_changes = XCNEWVEC (HARD_REG_SET *, max_reg_num ());
1281 
1282   FOR_EACH_BB_FN (bb, cfun)
1283     FOR_BB_INSNS (bb, insn)
1284       if (NONDEBUG_INSN_P (insn))
1285 	{
1286 	  find_subregs_of_mode (PATTERN (insn));
1287 	  df_ref def;
1288 	  FOR_EACH_INSN_DEF (def, insn)
1289 	    if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
1290 		&& read_modify_subreg_p (DF_REF_REG (def)))
1291 	      record_subregs_of_mode (DF_REF_REG (def), true);
1292 	}
1293 }
1294 
1295 const HARD_REG_SET *
valid_mode_changes_for_regno(unsigned int regno)1296 valid_mode_changes_for_regno (unsigned int regno)
1297 {
1298   return valid_mode_changes[regno];
1299 }
1300 
1301 void
finish_subregs_of_mode(void)1302 finish_subregs_of_mode (void)
1303 {
1304   XDELETEVEC (valid_mode_changes);
1305   obstack_free (&valid_mode_changes_obstack, NULL);
1306 }
1307 
1308 /* Free all data attached to the structure.  This isn't a destructor because
1309    we don't want to run on exit.  */
1310 
1311 void
finalize()1312 target_hard_regs::finalize ()
1313 {
1314   delete x_simplifiable_subregs;
1315 }
1316