1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
29
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
33
34 /* Templated vector type and associated interfaces.
35
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
39
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
45
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
60
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
71
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
75
76 Four allocation strategies are supported:
77
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
80
81 - GC: allocation is done using ggc_alloc/ggc_free.
82
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
89
90 Two physical layouts are supported:
91
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
98
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
105
106 The type, allocation and layout are specified when the vector is
107 declared.
108
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
113
114 Notes on the different layout strategies
115
116 * Embeddable vectors (vec<T, A, vl_embed>)
117
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
121
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
128
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
132
133 Properties of embeddable vectors:
134
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
143
144
145 * Space efficient vector (vec<T, A, vl_ptr>)
146
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
151
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
156
157 Properties:
158
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
166
167 An example of their use would be,
168
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
172 };
173
174 struct my_struct *s;
175
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
180 */
181
182 /* Support function for statistics. */
183 extern void dump_vec_loc_statistics (void);
184
185 /* Hashtable mapping vec addresses to descriptors. */
186 extern htab_t vec_mem_usage_hash;
187
188 /* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
190
191 struct vec_prefix
192 {
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
195
196 /* Memory allocation support routines in vec.c. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
201
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
205
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
209
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
214
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
218 };
219
220 /* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
223
224 inline unsigned
calculate_allocation(vec_prefix * pfx,unsigned reserve,bool exact)225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
227 {
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
233 }
234
235 template<typename, typename, typename> struct vec;
236
237 /* Valid vector layouts
238
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242 struct vl_embed { };
243 struct vl_ptr { };
244
245
246 /* Types of supported allocations
247
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
252
253 /* Allocator type for heap vectors. */
254 struct va_heap
255 {
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
259
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
263
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
266 };
267
268
269 /* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
273
274 template<typename T>
275 inline void
reserve(vec<T,va_heap,vl_embed> * & v,unsigned reserve,bool exact MEM_STAT_DECL)276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
278 {
279 size_t elt_size = sizeof (T);
280 unsigned alloc
281 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
282 gcc_checking_assert (alloc);
283
284 if (GATHER_STATISTICS && v)
285 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
286 v->allocated (), false);
287
288 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
289 unsigned nelem = v ? v->length () : 0;
290 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
291 v->embedded_init (alloc, nelem);
292
293 if (GATHER_STATISTICS)
294 v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
295 }
296
297
298 #if GCC_VERSION >= 4007
299 #pragma GCC diagnostic push
300 #pragma GCC diagnostic ignored "-Wfree-nonheap-object"
301 #endif
302
303 /* Free the heap space allocated for vector V. */
304
305 template<typename T>
306 void
release(vec<T,va_heap,vl_embed> * & v)307 va_heap::release (vec<T, va_heap, vl_embed> *&v)
308 {
309 size_t elt_size = sizeof (T);
310 if (v == NULL)
311 return;
312
313 if (GATHER_STATISTICS)
314 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
315 v->allocated (), true);
316 ::free (v);
317 v = NULL;
318 }
319
320 #if GCC_VERSION >= 4007
321 #pragma GCC diagnostic pop
322 #endif
323
324 /* Allocator type for GC vectors. Notice that we need the structure
325 declaration even if GC is not enabled. */
326
327 struct va_gc
328 {
329 /* Use vl_embed as the default layout for GC vectors. Due to GTY
330 limitations, GC vectors must always be pointers, so it is more
331 efficient to use a pointer to the vl_embed layout, rather than
332 using a pointer to a pointer as would be the case with vl_ptr. */
333 typedef vl_embed default_layout;
334
335 template<typename T, typename A>
336 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
337 CXX_MEM_STAT_INFO);
338
339 template<typename T, typename A>
340 static void release (vec<T, A, vl_embed> *&v);
341 };
342
343
344 /* Free GC memory used by V and reset V to NULL. */
345
346 template<typename T, typename A>
347 inline void
release(vec<T,A,vl_embed> * & v)348 va_gc::release (vec<T, A, vl_embed> *&v)
349 {
350 if (v)
351 ::ggc_free (v);
352 v = NULL;
353 }
354
355
356 /* Allocator for GC memory. Ensure there are at least RESERVE free
357 slots in V. If EXACT is true, grow exactly, else grow
358 exponentially. As a special case, if the vector had not been
359 allocated and RESERVE is 0, no vector will be created. */
360
361 template<typename T, typename A>
362 void
reserve(vec<T,A,vl_embed> * & v,unsigned reserve,bool exact MEM_STAT_DECL)363 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
364 MEM_STAT_DECL)
365 {
366 unsigned alloc
367 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
368 if (!alloc)
369 {
370 ::ggc_free (v);
371 v = NULL;
372 return;
373 }
374
375 /* Calculate the amount of space we want. */
376 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
377
378 /* Ask the allocator how much space it will really give us. */
379 size = ::ggc_round_alloc_size (size);
380
381 /* Adjust the number of slots accordingly. */
382 size_t vec_offset = sizeof (vec_prefix);
383 size_t elt_size = sizeof (T);
384 alloc = (size - vec_offset) / elt_size;
385
386 /* And finally, recalculate the amount of space we ask for. */
387 size = vec_offset + alloc * elt_size;
388
389 unsigned nelem = v ? v->length () : 0;
390 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
391 PASS_MEM_STAT));
392 v->embedded_init (alloc, nelem);
393 }
394
395
396 /* Allocator type for GC vectors. This is for vectors of types
397 atomics w.r.t. collection, so allocation and deallocation is
398 completely inherited from va_gc. */
399 struct va_gc_atomic : va_gc
400 {
401 };
402
403
404 /* Generic vector template. Default values for A and L indicate the
405 most commonly used strategies.
406
407 FIXME - Ideally, they would all be vl_ptr to encourage using regular
408 instances for vectors, but the existing GTY machinery is limited
409 in that it can only deal with GC objects that are pointers
410 themselves.
411
412 This means that vector operations that need to deal with
413 potentially NULL pointers, must be provided as free
414 functions (see the vec_safe_* functions above). */
415 template<typename T,
416 typename A = va_heap,
417 typename L = typename A::default_layout>
418 struct GTY((user)) vec
419 {
420 };
421
422 /* Generic vec<> debug helpers.
423
424 These need to be instantiated for each vec<TYPE> used throughout
425 the compiler like this:
426
427 DEFINE_DEBUG_VEC (TYPE)
428
429 The reason we have a debug_helper() is because GDB can't
430 disambiguate a plain call to debug(some_vec), and it must be called
431 like debug<TYPE>(some_vec). */
432
433 template<typename T>
434 void
debug_helper(vec<T> & ref)435 debug_helper (vec<T> &ref)
436 {
437 unsigned i;
438 for (i = 0; i < ref.length (); ++i)
439 {
440 fprintf (stderr, "[%d] = ", i);
441 debug_slim (ref[i]);
442 fputc ('\n', stderr);
443 }
444 }
445
446 /* We need a separate va_gc variant here because default template
447 argument for functions cannot be used in c++-98. Once this
448 restriction is removed, those variant should be folded with the
449 above debug_helper. */
450
451 template<typename T>
452 void
debug_helper(vec<T,va_gc> & ref)453 debug_helper (vec<T, va_gc> &ref)
454 {
455 unsigned i;
456 for (i = 0; i < ref.length (); ++i)
457 {
458 fprintf (stderr, "[%d] = ", i);
459 debug_slim (ref[i]);
460 fputc ('\n', stderr);
461 }
462 }
463
464 /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
465 functions for a type T. */
466
467 #define DEFINE_DEBUG_VEC(T) \
468 template void debug_helper (vec<T> &); \
469 template void debug_helper (vec<T, va_gc> &); \
470 /* Define the vec<T> debug functions. */ \
471 DEBUG_FUNCTION void \
472 debug (vec<T> &ref) \
473 { \
474 debug_helper <T> (ref); \
475 } \
476 DEBUG_FUNCTION void \
477 debug (vec<T> *ptr) \
478 { \
479 if (ptr) \
480 debug (*ptr); \
481 else \
482 fprintf (stderr, "<nil>\n"); \
483 } \
484 /* Define the vec<T, va_gc> debug functions. */ \
485 DEBUG_FUNCTION void \
486 debug (vec<T, va_gc> &ref) \
487 { \
488 debug_helper <T> (ref); \
489 } \
490 DEBUG_FUNCTION void \
491 debug (vec<T, va_gc> *ptr) \
492 { \
493 if (ptr) \
494 debug (*ptr); \
495 else \
496 fprintf (stderr, "<nil>\n"); \
497 }
498
499 /* Default-construct N elements in DST. */
500
501 template <typename T>
502 inline void
vec_default_construct(T * dst,unsigned n)503 vec_default_construct (T *dst, unsigned n)
504 {
505 #ifdef BROKEN_VALUE_INITIALIZATION
506 /* Versions of GCC before 4.4 sometimes leave certain objects
507 uninitialized when value initialized, though if the type has
508 user defined default ctor, that ctor is invoked. As a workaround
509 perform clearing first and then the value initialization, which
510 fixes the case when value initialization doesn't initialize due to
511 the bugs and should initialize to all zeros, but still allows
512 vectors for types with user defined default ctor that initializes
513 some or all elements to non-zero. If T has no user defined
514 default ctor and some non-static data members have user defined
515 default ctors that initialize to non-zero the workaround will
516 still not work properly; in that case we just need to provide
517 user defined default ctor. */
518 memset (dst, '\0', sizeof (T) * n);
519 #endif
520 for ( ; n; ++dst, --n)
521 ::new (static_cast<void*>(dst)) T ();
522 }
523
524 /* Copy-construct N elements in DST from *SRC. */
525
526 template <typename T>
527 inline void
vec_copy_construct(T * dst,const T * src,unsigned n)528 vec_copy_construct (T *dst, const T *src, unsigned n)
529 {
530 for ( ; n; ++dst, ++src, --n)
531 ::new (static_cast<void*>(dst)) T (*src);
532 }
533
534 /* Type to provide NULL values for vec<T, A, L>. This is used to
535 provide nil initializers for vec instances. Since vec must be
536 a POD, we cannot have proper ctor/dtor for it. To initialize
537 a vec instance, you can assign it the value vNULL. This isn't
538 needed for file-scope and function-local static vectors, which
539 are zero-initialized by default. */
540 struct vnull
541 {
542 template <typename T, typename A, typename L>
543 CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); }
544 };
545 extern vnull vNULL;
546
547
548 /* Embeddable vector. These vectors are suitable to be embedded
549 in other data structures so that they can be pre-allocated in a
550 contiguous memory block.
551
552 Embeddable vectors are implemented using the trailing array idiom,
553 thus they are not resizeable without changing the address of the
554 vector object itself. This means you cannot have variables or
555 fields of embeddable vector type -- always use a pointer to a
556 vector. The one exception is the final field of a structure, which
557 could be a vector type.
558
559 You will have to use the embedded_size & embedded_init calls to
560 create such objects, and they will not be resizeable (so the 'safe'
561 allocation variants are not available).
562
563 Properties:
564
565 - The whole vector and control data are allocated in a single
566 contiguous block. It uses the trailing-vector idiom, so
567 allocation must reserve enough space for all the elements
568 in the vector plus its control data.
569 - The vector cannot be re-allocated.
570 - The vector cannot grow nor shrink.
571 - No indirections needed for access/manipulation.
572 - It requires 2 words of storage (prior to vector allocation). */
573
574 template<typename T, typename A>
575 struct GTY((user)) vec<T, A, vl_embed>
576 {
577 public:
578 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
579 unsigned length (void) const { return m_vecpfx.m_num; }
580 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
581 T *address (void) { return m_vecdata; }
582 const T *address (void) const { return m_vecdata; }
583 T *begin () { return address (); }
584 const T *begin () const { return address (); }
585 T *end () { return address () + length (); }
586 const T *end () const { return address () + length (); }
587 const T &operator[] (unsigned) const;
588 T &operator[] (unsigned);
589 T &last (void);
590 bool space (unsigned) const;
591 bool iterate (unsigned, T *) const;
592 bool iterate (unsigned, T **) const;
593 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
594 void splice (const vec &);
595 void splice (const vec *src);
596 T *quick_push (const T &);
597 T &pop (void);
598 void truncate (unsigned);
599 void quick_insert (unsigned, const T &);
600 void ordered_remove (unsigned);
601 void unordered_remove (unsigned);
602 void block_remove (unsigned, unsigned);
603 void qsort (int (*) (const void *, const void *));
604 void sort (int (*) (const void *, const void *, void *), void *);
605 T *bsearch (const void *key, int (*compar)(const void *, const void *));
606 T *bsearch (const void *key,
607 int (*compar)(const void *, const void *, void *), void *);
608 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
609 bool contains (const T &search) const;
610 static size_t embedded_size (unsigned);
611 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
612 void quick_grow (unsigned len);
613 void quick_grow_cleared (unsigned len);
614
615 /* vec class can access our internal data and functions. */
616 template <typename, typename, typename> friend struct vec;
617
618 /* The allocator types also need access to our internals. */
619 friend struct va_gc;
620 friend struct va_gc_atomic;
621 friend struct va_heap;
622
623 /* FIXME - These fields should be private, but we need to cater to
624 compilers that have stricter notions of PODness for types. */
625 vec_prefix m_vecpfx;
626 T m_vecdata[1];
627 };
628
629
630 /* Convenience wrapper functions to use when dealing with pointers to
631 embedded vectors. Some functionality for these vectors must be
632 provided via free functions for these reasons:
633
634 1- The pointer may be NULL (e.g., before initial allocation).
635
636 2- When the vector needs to grow, it must be reallocated, so
637 the pointer will change its value.
638
639 Because of limitations with the current GC machinery, all vectors
640 in GC memory *must* be pointers. */
641
642
643 /* If V contains no room for NELEMS elements, return false. Otherwise,
644 return true. */
645 template<typename T, typename A>
646 inline bool
647 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
648 {
649 return v ? v->space (nelems) : nelems == 0;
650 }
651
652
653 /* If V is NULL, return 0. Otherwise, return V->length(). */
654 template<typename T, typename A>
655 inline unsigned
656 vec_safe_length (const vec<T, A, vl_embed> *v)
657 {
658 return v ? v->length () : 0;
659 }
660
661
662 /* If V is NULL, return NULL. Otherwise, return V->address(). */
663 template<typename T, typename A>
664 inline T *
665 vec_safe_address (vec<T, A, vl_embed> *v)
666 {
667 return v ? v->address () : NULL;
668 }
669
670
671 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
672 template<typename T, typename A>
673 inline bool
674 vec_safe_is_empty (vec<T, A, vl_embed> *v)
675 {
676 return v ? v->is_empty () : true;
677 }
678
679 /* If V does not have space for NELEMS elements, call
680 V->reserve(NELEMS, EXACT). */
681 template<typename T, typename A>
682 inline bool
683 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
684 CXX_MEM_STAT_INFO)
685 {
686 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
687 if (extend)
688 A::reserve (v, nelems, exact PASS_MEM_STAT);
689 return extend;
690 }
691
692 template<typename T, typename A>
693 inline bool
694 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
695 CXX_MEM_STAT_INFO)
696 {
697 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
698 }
699
700
701 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
702 is 0, V is initialized to NULL. */
703
704 template<typename T, typename A>
705 inline void
706 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
707 {
708 v = NULL;
709 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
710 }
711
712
713 /* Free the GC memory allocated by vector V and set it to NULL. */
714
715 template<typename T, typename A>
716 inline void
717 vec_free (vec<T, A, vl_embed> *&v)
718 {
719 A::release (v);
720 }
721
722
723 /* Grow V to length LEN. Allocate it, if necessary. */
724 template<typename T, typename A>
725 inline void
726 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
727 {
728 unsigned oldlen = vec_safe_length (v);
729 gcc_checking_assert (len >= oldlen);
730 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
731 v->quick_grow (len);
732 }
733
734
735 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
736 template<typename T, typename A>
737 inline void
738 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
739 {
740 unsigned oldlen = vec_safe_length (v);
741 vec_safe_grow (v, len PASS_MEM_STAT);
742 vec_default_construct (v->address () + oldlen, len - oldlen);
743 }
744
745
746 /* Assume V is not NULL. */
747
748 template<typename T>
749 inline void
750 vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
751 unsigned len CXX_MEM_STAT_INFO)
752 {
753 v->safe_grow_cleared (len PASS_MEM_STAT);
754 }
755
756 /* If V does not have space for NELEMS elements, call
757 V->reserve(NELEMS, EXACT). */
758
759 template<typename T>
760 inline bool
761 vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false
762 CXX_MEM_STAT_INFO)
763 {
764 return v->reserve (nelems, exact);
765 }
766
767
768 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
769 template<typename T, typename A>
770 inline bool
771 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
772 {
773 if (v)
774 return v->iterate (ix, ptr);
775 else
776 {
777 *ptr = 0;
778 return false;
779 }
780 }
781
782 template<typename T, typename A>
783 inline bool
784 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
785 {
786 if (v)
787 return v->iterate (ix, ptr);
788 else
789 {
790 *ptr = 0;
791 return false;
792 }
793 }
794
795
796 /* If V has no room for one more element, reallocate it. Then call
797 V->quick_push(OBJ). */
798 template<typename T, typename A>
799 inline T *
800 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
801 {
802 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
803 return v->quick_push (obj);
804 }
805
806
807 /* if V has no room for one more element, reallocate it. Then call
808 V->quick_insert(IX, OBJ). */
809 template<typename T, typename A>
810 inline void
811 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
812 CXX_MEM_STAT_INFO)
813 {
814 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
815 v->quick_insert (ix, obj);
816 }
817
818
819 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
820 template<typename T, typename A>
821 inline void
822 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
823 {
824 if (v)
825 v->truncate (size);
826 }
827
828
829 /* If SRC is not NULL, return a pointer to a copy of it. */
830 template<typename T, typename A>
831 inline vec<T, A, vl_embed> *
832 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
833 {
834 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
835 }
836
837 /* Copy the elements from SRC to the end of DST as if by memcpy.
838 Reallocate DST, if necessary. */
839 template<typename T, typename A>
840 inline void
841 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
842 CXX_MEM_STAT_INFO)
843 {
844 unsigned src_len = vec_safe_length (src);
845 if (src_len)
846 {
847 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
848 PASS_MEM_STAT);
849 dst->splice (*src);
850 }
851 }
852
853 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
854 size of the vector and so should be used with care. */
855
856 template<typename T, typename A>
857 inline bool
858 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
859 {
860 return v ? v->contains (search) : false;
861 }
862
863 /* Index into vector. Return the IX'th element. IX must be in the
864 domain of the vector. */
865
866 template<typename T, typename A>
867 inline const T &
868 vec<T, A, vl_embed>::operator[] (unsigned ix) const
869 {
870 gcc_checking_assert (ix < m_vecpfx.m_num);
871 return m_vecdata[ix];
872 }
873
874 template<typename T, typename A>
875 inline T &
876 vec<T, A, vl_embed>::operator[] (unsigned ix)
877 {
878 gcc_checking_assert (ix < m_vecpfx.m_num);
879 return m_vecdata[ix];
880 }
881
882
883 /* Get the final element of the vector, which must not be empty. */
884
885 template<typename T, typename A>
886 inline T &
887 vec<T, A, vl_embed>::last (void)
888 {
889 gcc_checking_assert (m_vecpfx.m_num > 0);
890 return (*this)[m_vecpfx.m_num - 1];
891 }
892
893
894 /* If this vector has space for NELEMS additional entries, return
895 true. You usually only need to use this if you are doing your
896 own vector reallocation, for instance on an embedded vector. This
897 returns true in exactly the same circumstances that vec::reserve
898 will. */
899
900 template<typename T, typename A>
901 inline bool
902 vec<T, A, vl_embed>::space (unsigned nelems) const
903 {
904 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
905 }
906
907
908 /* Return iteration condition and update PTR to point to the IX'th
909 element of this vector. Use this to iterate over the elements of a
910 vector as follows,
911
912 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
913 continue; */
914
915 template<typename T, typename A>
916 inline bool
917 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
918 {
919 if (ix < m_vecpfx.m_num)
920 {
921 *ptr = m_vecdata[ix];
922 return true;
923 }
924 else
925 {
926 *ptr = 0;
927 return false;
928 }
929 }
930
931
932 /* Return iteration condition and update *PTR to point to the
933 IX'th element of this vector. Use this to iterate over the
934 elements of a vector as follows,
935
936 for (ix = 0; v->iterate (ix, &ptr); ix++)
937 continue;
938
939 This variant is for vectors of objects. */
940
941 template<typename T, typename A>
942 inline bool
943 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
944 {
945 if (ix < m_vecpfx.m_num)
946 {
947 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
948 return true;
949 }
950 else
951 {
952 *ptr = 0;
953 return false;
954 }
955 }
956
957
958 /* Return a pointer to a copy of this vector. */
959
960 template<typename T, typename A>
961 inline vec<T, A, vl_embed> *
962 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
963 {
964 vec<T, A, vl_embed> *new_vec = NULL;
965 unsigned len = length ();
966 if (len)
967 {
968 vec_alloc (new_vec, len PASS_MEM_STAT);
969 new_vec->embedded_init (len, len);
970 vec_copy_construct (new_vec->address (), m_vecdata, len);
971 }
972 return new_vec;
973 }
974
975
976 /* Copy the elements from SRC to the end of this vector as if by memcpy.
977 The vector must have sufficient headroom available. */
978
979 template<typename T, typename A>
980 inline void
981 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
982 {
983 unsigned len = src.length ();
984 if (len)
985 {
986 gcc_checking_assert (space (len));
987 vec_copy_construct (end (), src.address (), len);
988 m_vecpfx.m_num += len;
989 }
990 }
991
992 template<typename T, typename A>
993 inline void
994 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
995 {
996 if (src)
997 splice (*src);
998 }
999
1000
1001 /* Push OBJ (a new element) onto the end of the vector. There must be
1002 sufficient space in the vector. Return a pointer to the slot
1003 where OBJ was inserted. */
1004
1005 template<typename T, typename A>
1006 inline T *
1007 vec<T, A, vl_embed>::quick_push (const T &obj)
1008 {
1009 gcc_checking_assert (space (1));
1010 T *slot = &m_vecdata[m_vecpfx.m_num++];
1011 *slot = obj;
1012 return slot;
1013 }
1014
1015
1016 /* Pop and return the last element off the end of the vector. */
1017
1018 template<typename T, typename A>
1019 inline T &
1020 vec<T, A, vl_embed>::pop (void)
1021 {
1022 gcc_checking_assert (length () > 0);
1023 return m_vecdata[--m_vecpfx.m_num];
1024 }
1025
1026
1027 /* Set the length of the vector to SIZE. The new length must be less
1028 than or equal to the current length. This is an O(1) operation. */
1029
1030 template<typename T, typename A>
1031 inline void
1032 vec<T, A, vl_embed>::truncate (unsigned size)
1033 {
1034 gcc_checking_assert (length () >= size);
1035 m_vecpfx.m_num = size;
1036 }
1037
1038
1039 /* Insert an element, OBJ, at the IXth position of this vector. There
1040 must be sufficient space. */
1041
1042 template<typename T, typename A>
1043 inline void
1044 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
1045 {
1046 gcc_checking_assert (length () < allocated ());
1047 gcc_checking_assert (ix <= length ());
1048 T *slot = &m_vecdata[ix];
1049 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
1050 *slot = obj;
1051 }
1052
1053
1054 /* Remove an element from the IXth position of this vector. Ordering of
1055 remaining elements is preserved. This is an O(N) operation due to
1056 memmove. */
1057
1058 template<typename T, typename A>
1059 inline void
1060 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1061 {
1062 gcc_checking_assert (ix < length ());
1063 T *slot = &m_vecdata[ix];
1064 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1065 }
1066
1067
1068 /* Remove elements in [START, END) from VEC for which COND holds. Ordering of
1069 remaining elements is preserved. This is an O(N) operation. */
1070
1071 #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \
1072 elem_ptr, start, end, cond) \
1073 { \
1074 gcc_assert ((end) <= (vec).length ()); \
1075 for (read_index = write_index = (start); read_index < (end); \
1076 ++read_index) \
1077 { \
1078 elem_ptr = &(vec)[read_index]; \
1079 bool remove_p = (cond); \
1080 if (remove_p) \
1081 continue; \
1082 \
1083 if (read_index != write_index) \
1084 (vec)[write_index] = (vec)[read_index]; \
1085 \
1086 write_index++; \
1087 } \
1088 \
1089 if (read_index - write_index > 0) \
1090 (vec).block_remove (write_index, read_index - write_index); \
1091 }
1092
1093
1094 /* Remove elements from VEC for which COND holds. Ordering of remaining
1095 elements is preserved. This is an O(N) operation. */
1096
1097 #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \
1098 cond) \
1099 VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \
1100 elem_ptr, 0, (vec).length (), (cond))
1101
1102 /* Remove an element from the IXth position of this vector. Ordering of
1103 remaining elements is destroyed. This is an O(1) operation. */
1104
1105 template<typename T, typename A>
1106 inline void
1107 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1108 {
1109 gcc_checking_assert (ix < length ());
1110 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
1111 }
1112
1113
1114 /* Remove LEN elements starting at the IXth. Ordering is retained.
1115 This is an O(N) operation due to memmove. */
1116
1117 template<typename T, typename A>
1118 inline void
1119 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1120 {
1121 gcc_checking_assert (ix + len <= length ());
1122 T *slot = &m_vecdata[ix];
1123 m_vecpfx.m_num -= len;
1124 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1125 }
1126
1127
1128 /* Sort the contents of this vector with qsort. CMP is the comparison
1129 function to pass to qsort. */
1130
1131 template<typename T, typename A>
1132 inline void
1133 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1134 {
1135 if (length () > 1)
1136 gcc_qsort (address (), length (), sizeof (T), cmp);
1137 }
1138
1139 /* Sort the contents of this vector with qsort. CMP is the comparison
1140 function to pass to qsort. */
1141
1142 template<typename T, typename A>
1143 inline void
1144 vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *),
1145 void *data)
1146 {
1147 if (length () > 1)
1148 gcc_sort_r (address (), length (), sizeof (T), cmp, data);
1149 }
1150
1151
1152 /* Search the contents of the sorted vector with a binary search.
1153 CMP is the comparison function to pass to bsearch. */
1154
1155 template<typename T, typename A>
1156 inline T *
1157 vec<T, A, vl_embed>::bsearch (const void *key,
1158 int (*compar) (const void *, const void *))
1159 {
1160 const void *base = this->address ();
1161 size_t nmemb = this->length ();
1162 size_t size = sizeof (T);
1163 /* The following is a copy of glibc stdlib-bsearch.h. */
1164 size_t l, u, idx;
1165 const void *p;
1166 int comparison;
1167
1168 l = 0;
1169 u = nmemb;
1170 while (l < u)
1171 {
1172 idx = (l + u) / 2;
1173 p = (const void *) (((const char *) base) + (idx * size));
1174 comparison = (*compar) (key, p);
1175 if (comparison < 0)
1176 u = idx;
1177 else if (comparison > 0)
1178 l = idx + 1;
1179 else
1180 return (T *)const_cast<void *>(p);
1181 }
1182
1183 return NULL;
1184 }
1185
1186 /* Search the contents of the sorted vector with a binary search.
1187 CMP is the comparison function to pass to bsearch. */
1188
1189 template<typename T, typename A>
1190 inline T *
1191 vec<T, A, vl_embed>::bsearch (const void *key,
1192 int (*compar) (const void *, const void *,
1193 void *), void *data)
1194 {
1195 const void *base = this->address ();
1196 size_t nmemb = this->length ();
1197 size_t size = sizeof (T);
1198 /* The following is a copy of glibc stdlib-bsearch.h. */
1199 size_t l, u, idx;
1200 const void *p;
1201 int comparison;
1202
1203 l = 0;
1204 u = nmemb;
1205 while (l < u)
1206 {
1207 idx = (l + u) / 2;
1208 p = (const void *) (((const char *) base) + (idx * size));
1209 comparison = (*compar) (key, p, data);
1210 if (comparison < 0)
1211 u = idx;
1212 else if (comparison > 0)
1213 l = idx + 1;
1214 else
1215 return (T *)const_cast<void *>(p);
1216 }
1217
1218 return NULL;
1219 }
1220
1221 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1222 size of the vector and so should be used with care. */
1223
1224 template<typename T, typename A>
1225 inline bool
1226 vec<T, A, vl_embed>::contains (const T &search) const
1227 {
1228 unsigned int len = length ();
1229 for (unsigned int i = 0; i < len; i++)
1230 if ((*this)[i] == search)
1231 return true;
1232
1233 return false;
1234 }
1235
1236 /* Find and return the first position in which OBJ could be inserted
1237 without changing the ordering of this vector. LESSTHAN is a
1238 function that returns true if the first argument is strictly less
1239 than the second. */
1240
1241 template<typename T, typename A>
1242 unsigned
1243 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1244 const
1245 {
1246 unsigned int len = length ();
1247 unsigned int half, middle;
1248 unsigned int first = 0;
1249 while (len > 0)
1250 {
1251 half = len / 2;
1252 middle = first;
1253 middle += half;
1254 T middle_elem = (*this)[middle];
1255 if (lessthan (middle_elem, obj))
1256 {
1257 first = middle;
1258 ++first;
1259 len = len - half - 1;
1260 }
1261 else
1262 len = half;
1263 }
1264 return first;
1265 }
1266
1267
1268 /* Return the number of bytes needed to embed an instance of an
1269 embeddable vec inside another data structure.
1270
1271 Use these methods to determine the required size and initialization
1272 of a vector V of type T embedded within another structure (as the
1273 final member):
1274
1275 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1276 void v->embedded_init (unsigned alloc, unsigned num);
1277
1278 These allow the caller to perform the memory allocation. */
1279
1280 template<typename T, typename A>
1281 inline size_t
1282 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1283 {
1284 typedef vec<T, A, vl_embed> vec_embedded;
1285 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1286 }
1287
1288
1289 /* Initialize the vector to contain room for ALLOC elements and
1290 NUM active elements. */
1291
1292 template<typename T, typename A>
1293 inline void
1294 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1295 {
1296 m_vecpfx.m_alloc = alloc;
1297 m_vecpfx.m_using_auto_storage = aut;
1298 m_vecpfx.m_num = num;
1299 }
1300
1301
1302 /* Grow the vector to a specific length. LEN must be as long or longer than
1303 the current length. The new elements are uninitialized. */
1304
1305 template<typename T, typename A>
1306 inline void
1307 vec<T, A, vl_embed>::quick_grow (unsigned len)
1308 {
1309 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1310 m_vecpfx.m_num = len;
1311 }
1312
1313
1314 /* Grow the vector to a specific length. LEN must be as long or longer than
1315 the current length. The new elements are initialized to zero. */
1316
1317 template<typename T, typename A>
1318 inline void
1319 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1320 {
1321 unsigned oldlen = length ();
1322 size_t growby = len - oldlen;
1323 quick_grow (len);
1324 if (growby != 0)
1325 vec_default_construct (address () + oldlen, growby);
1326 }
1327
1328 /* Garbage collection support for vec<T, A, vl_embed>. */
1329
1330 template<typename T>
1331 void
1332 gt_ggc_mx (vec<T, va_gc> *v)
1333 {
1334 extern void gt_ggc_mx (T &);
1335 for (unsigned i = 0; i < v->length (); i++)
1336 gt_ggc_mx ((*v)[i]);
1337 }
1338
1339 template<typename T>
1340 void
1341 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1342 {
1343 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1344 be traversed. */
1345 }
1346
1347
1348 /* PCH support for vec<T, A, vl_embed>. */
1349
1350 template<typename T, typename A>
1351 void
1352 gt_pch_nx (vec<T, A, vl_embed> *v)
1353 {
1354 extern void gt_pch_nx (T &);
1355 for (unsigned i = 0; i < v->length (); i++)
1356 gt_pch_nx ((*v)[i]);
1357 }
1358
1359 template<typename T, typename A>
1360 void
1361 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1362 {
1363 for (unsigned i = 0; i < v->length (); i++)
1364 op (&((*v)[i]), cookie);
1365 }
1366
1367 template<typename T, typename A>
1368 void
1369 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1370 {
1371 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1372 for (unsigned i = 0; i < v->length (); i++)
1373 gt_pch_nx (&((*v)[i]), op, cookie);
1374 }
1375
1376
1377 /* Space efficient vector. These vectors can grow dynamically and are
1378 allocated together with their control data. They are suited to be
1379 included in data structures. Prior to initial allocation, they
1380 only take a single word of storage.
1381
1382 These vectors are implemented as a pointer to an embeddable vector.
1383 The semantics allow for this pointer to be NULL to represent empty
1384 vectors. This way, empty vectors occupy minimal space in the
1385 structure containing them.
1386
1387 Properties:
1388
1389 - The whole vector and control data are allocated in a single
1390 contiguous block.
1391 - The whole vector may be re-allocated.
1392 - Vector data may grow and shrink.
1393 - Access and manipulation requires a pointer test and
1394 indirection.
1395 - It requires 1 word of storage (prior to vector allocation).
1396
1397
1398 Limitations:
1399
1400 These vectors must be PODs because they are stored in unions.
1401 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1402 As long as we use C++03, we cannot have constructors nor
1403 destructors in classes that are stored in unions. */
1404
1405 template<typename T>
1406 struct vec<T, va_heap, vl_ptr>
1407 {
1408 public:
1409 /* Memory allocation and deallocation for the embedded vector.
1410 Needed because we cannot have proper ctors/dtors defined. */
1411 void create (unsigned nelems CXX_MEM_STAT_INFO);
1412 void release (void);
1413
1414 /* Vector operations. */
1415 bool exists (void) const
1416 { return m_vec != NULL; }
1417
1418 bool is_empty (void) const
1419 { return m_vec ? m_vec->is_empty () : true; }
1420
1421 unsigned length (void) const
1422 { return m_vec ? m_vec->length () : 0; }
1423
1424 T *address (void)
1425 { return m_vec ? m_vec->m_vecdata : NULL; }
1426
1427 const T *address (void) const
1428 { return m_vec ? m_vec->m_vecdata : NULL; }
1429
1430 T *begin () { return address (); }
1431 const T *begin () const { return address (); }
1432 T *end () { return begin () + length (); }
1433 const T *end () const { return begin () + length (); }
1434 const T &operator[] (unsigned ix) const
1435 { return (*m_vec)[ix]; }
1436
1437 bool operator!=(const vec &other) const
1438 { return !(*this == other); }
1439
1440 bool operator==(const vec &other) const
1441 { return address () == other.address (); }
1442
1443 T &operator[] (unsigned ix)
1444 { return (*m_vec)[ix]; }
1445
1446 T &last (void)
1447 { return m_vec->last (); }
1448
1449 bool space (int nelems) const
1450 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1451
1452 bool iterate (unsigned ix, T *p) const;
1453 bool iterate (unsigned ix, T **p) const;
1454 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1455 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1456 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1457 void splice (const vec &);
1458 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1459 T *quick_push (const T &);
1460 T *safe_push (const T &CXX_MEM_STAT_INFO);
1461 T &pop (void);
1462 void truncate (unsigned);
1463 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1464 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1465 void quick_grow (unsigned);
1466 void quick_grow_cleared (unsigned);
1467 void quick_insert (unsigned, const T &);
1468 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1469 void ordered_remove (unsigned);
1470 void unordered_remove (unsigned);
1471 void block_remove (unsigned, unsigned);
1472 void qsort (int (*) (const void *, const void *));
1473 void sort (int (*) (const void *, const void *, void *), void *);
1474 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1475 T *bsearch (const void *key,
1476 int (*compar)(const void *, const void *, void *), void *);
1477 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1478 bool contains (const T &search) const;
1479 void reverse (void);
1480
1481 bool using_auto_storage () const;
1482
1483 /* FIXME - This field should be private, but we need to cater to
1484 compilers that have stricter notions of PODness for types. */
1485 vec<T, va_heap, vl_embed> *m_vec;
1486 };
1487
1488
1489 /* auto_vec is a subclass of vec that automatically manages creating and
1490 releasing the internal vector. If N is non zero then it has N elements of
1491 internal storage. The default is no internal storage, and you probably only
1492 want to ask for internal storage for vectors on the stack because if the
1493 size of the vector is larger than the internal storage that space is wasted.
1494 */
1495 template<typename T, size_t N = 0>
1496 class auto_vec : public vec<T, va_heap>
1497 {
1498 public:
1499 auto_vec ()
1500 {
1501 m_auto.embedded_init (MAX (N, 2), 0, 1);
1502 this->m_vec = &m_auto;
1503 }
1504
1505 auto_vec (size_t s)
1506 {
1507 if (s > N)
1508 {
1509 this->create (s);
1510 return;
1511 }
1512
1513 m_auto.embedded_init (MAX (N, 2), 0, 1);
1514 this->m_vec = &m_auto;
1515 }
1516
1517 ~auto_vec ()
1518 {
1519 this->release ();
1520 }
1521
1522 private:
1523 vec<T, va_heap, vl_embed> m_auto;
1524 T m_data[MAX (N - 1, 1)];
1525 };
1526
1527 /* auto_vec is a sub class of vec whose storage is released when it is
1528 destroyed. */
1529 template<typename T>
1530 class auto_vec<T, 0> : public vec<T, va_heap>
1531 {
1532 public:
1533 auto_vec () { this->m_vec = NULL; }
1534 auto_vec (size_t n) { this->create (n); }
1535 ~auto_vec () { this->release (); }
1536 };
1537
1538
1539 /* Allocate heap memory for pointer V and create the internal vector
1540 with space for NELEMS elements. If NELEMS is 0, the internal
1541 vector is initialized to empty. */
1542
1543 template<typename T>
1544 inline void
1545 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1546 {
1547 v = new vec<T>;
1548 v->create (nelems PASS_MEM_STAT);
1549 }
1550
1551
1552 /* A subclass of auto_vec <char *> that frees all of its elements on
1553 deletion. */
1554
1555 class auto_string_vec : public auto_vec <char *>
1556 {
1557 public:
1558 ~auto_string_vec ();
1559 };
1560
1561 /* A subclass of auto_vec <T *> that deletes all of its elements on
1562 destruction.
1563
1564 This is a crude way for a vec to "own" the objects it points to
1565 and clean up automatically.
1566
1567 For example, no attempt is made to delete elements when an item
1568 within the vec is overwritten.
1569
1570 We can't rely on gnu::unique_ptr within a container,
1571 since we can't rely on move semantics in C++98. */
1572
1573 template <typename T>
1574 class auto_delete_vec : public auto_vec <T *>
1575 {
1576 public:
1577 auto_delete_vec () {}
1578 auto_delete_vec (size_t s) : auto_vec <T *> (s) {}
1579
1580 ~auto_delete_vec ();
1581
1582 private:
1583 DISABLE_COPY_AND_ASSIGN(auto_delete_vec);
1584 };
1585
1586 /* Conditionally allocate heap memory for VEC and its internal vector. */
1587
1588 template<typename T>
1589 inline void
1590 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1591 {
1592 if (!vec)
1593 vec_alloc (vec, nelems PASS_MEM_STAT);
1594 }
1595
1596
1597 /* Free the heap memory allocated by vector V and set it to NULL. */
1598
1599 template<typename T>
1600 inline void
1601 vec_free (vec<T> *&v)
1602 {
1603 if (v == NULL)
1604 return;
1605
1606 v->release ();
1607 delete v;
1608 v = NULL;
1609 }
1610
1611
1612 /* Return iteration condition and update PTR to point to the IX'th
1613 element of this vector. Use this to iterate over the elements of a
1614 vector as follows,
1615
1616 for (ix = 0; v.iterate (ix, &ptr); ix++)
1617 continue; */
1618
1619 template<typename T>
1620 inline bool
1621 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1622 {
1623 if (m_vec)
1624 return m_vec->iterate (ix, ptr);
1625 else
1626 {
1627 *ptr = 0;
1628 return false;
1629 }
1630 }
1631
1632
1633 /* Return iteration condition and update *PTR to point to the
1634 IX'th element of this vector. Use this to iterate over the
1635 elements of a vector as follows,
1636
1637 for (ix = 0; v->iterate (ix, &ptr); ix++)
1638 continue;
1639
1640 This variant is for vectors of objects. */
1641
1642 template<typename T>
1643 inline bool
1644 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1645 {
1646 if (m_vec)
1647 return m_vec->iterate (ix, ptr);
1648 else
1649 {
1650 *ptr = 0;
1651 return false;
1652 }
1653 }
1654
1655
1656 /* Convenience macro for forward iteration. */
1657 #define FOR_EACH_VEC_ELT(V, I, P) \
1658 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1659
1660 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1661 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1662
1663 /* Likewise, but start from FROM rather than 0. */
1664 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1665 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1666
1667 /* Convenience macro for reverse iteration. */
1668 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1669 for (I = (V).length () - 1; \
1670 (V).iterate ((I), &(P)); \
1671 (I)--)
1672
1673 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1674 for (I = vec_safe_length (V) - 1; \
1675 vec_safe_iterate ((V), (I), &(P)); \
1676 (I)--)
1677
1678 /* auto_string_vec's dtor, freeing all contained strings, automatically
1679 chaining up to ~auto_vec <char *>, which frees the internal buffer. */
1680
1681 inline
1682 auto_string_vec::~auto_string_vec ()
1683 {
1684 int i;
1685 char *str;
1686 FOR_EACH_VEC_ELT (*this, i, str)
1687 free (str);
1688 }
1689
1690 /* auto_delete_vec's dtor, deleting all contained items, automatically
1691 chaining up to ~auto_vec <T*>, which frees the internal buffer. */
1692
1693 template <typename T>
1694 inline
1695 auto_delete_vec<T>::~auto_delete_vec ()
1696 {
1697 int i;
1698 T *item;
1699 FOR_EACH_VEC_ELT (*this, i, item)
1700 delete item;
1701 }
1702
1703
1704 /* Return a copy of this vector. */
1705
1706 template<typename T>
1707 inline vec<T, va_heap, vl_ptr>
1708 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1709 {
1710 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1711 if (length ())
1712 new_vec.m_vec = m_vec->copy ();
1713 return new_vec;
1714 }
1715
1716
1717 /* Ensure that the vector has at least RESERVE slots available (if
1718 EXACT is false), or exactly RESERVE slots available (if EXACT is
1719 true).
1720
1721 This may create additional headroom if EXACT is false.
1722
1723 Note that this can cause the embedded vector to be reallocated.
1724 Returns true iff reallocation actually occurred. */
1725
1726 template<typename T>
1727 inline bool
1728 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1729 {
1730 if (space (nelems))
1731 return false;
1732
1733 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1734 this is necessary because it doesn't have enough information to know the
1735 embedded vector is in auto storage, and so should not be freed. */
1736 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1737 unsigned int oldsize = 0;
1738 bool handle_auto_vec = m_vec && using_auto_storage ();
1739 if (handle_auto_vec)
1740 {
1741 m_vec = NULL;
1742 oldsize = oldvec->length ();
1743 nelems += oldsize;
1744 }
1745
1746 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1747 if (handle_auto_vec)
1748 {
1749 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1750 m_vec->m_vecpfx.m_num = oldsize;
1751 }
1752
1753 return true;
1754 }
1755
1756
1757 /* Ensure that this vector has exactly NELEMS slots available. This
1758 will not create additional headroom. Note this can cause the
1759 embedded vector to be reallocated. Returns true iff reallocation
1760 actually occurred. */
1761
1762 template<typename T>
1763 inline bool
1764 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1765 {
1766 return reserve (nelems, true PASS_MEM_STAT);
1767 }
1768
1769
1770 /* Create the internal vector and reserve NELEMS for it. This is
1771 exactly like vec::reserve, but the internal vector is
1772 unconditionally allocated from scratch. The old one, if it
1773 existed, is lost. */
1774
1775 template<typename T>
1776 inline void
1777 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1778 {
1779 m_vec = NULL;
1780 if (nelems > 0)
1781 reserve_exact (nelems PASS_MEM_STAT);
1782 }
1783
1784
1785 /* Free the memory occupied by the embedded vector. */
1786
1787 template<typename T>
1788 inline void
1789 vec<T, va_heap, vl_ptr>::release (void)
1790 {
1791 if (!m_vec)
1792 return;
1793
1794 if (using_auto_storage ())
1795 {
1796 m_vec->m_vecpfx.m_num = 0;
1797 return;
1798 }
1799
1800 va_heap::release (m_vec);
1801 }
1802
1803 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1804 SRC and this vector must be allocated with the same memory
1805 allocation mechanism. This vector is assumed to have sufficient
1806 headroom available. */
1807
1808 template<typename T>
1809 inline void
1810 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1811 {
1812 if (src.length ())
1813 m_vec->splice (*(src.m_vec));
1814 }
1815
1816
1817 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1818 SRC and this vector must be allocated with the same mechanism.
1819 If there is not enough headroom in this vector, it will be reallocated
1820 as needed. */
1821
1822 template<typename T>
1823 inline void
1824 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1825 MEM_STAT_DECL)
1826 {
1827 if (src.length ())
1828 {
1829 reserve_exact (src.length ());
1830 splice (src);
1831 }
1832 }
1833
1834
1835 /* Push OBJ (a new element) onto the end of the vector. There must be
1836 sufficient space in the vector. Return a pointer to the slot
1837 where OBJ was inserted. */
1838
1839 template<typename T>
1840 inline T *
1841 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1842 {
1843 return m_vec->quick_push (obj);
1844 }
1845
1846
1847 /* Push a new element OBJ onto the end of this vector. Reallocates
1848 the embedded vector, if needed. Return a pointer to the slot where
1849 OBJ was inserted. */
1850
1851 template<typename T>
1852 inline T *
1853 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1854 {
1855 reserve (1, false PASS_MEM_STAT);
1856 return quick_push (obj);
1857 }
1858
1859
1860 /* Pop and return the last element off the end of the vector. */
1861
1862 template<typename T>
1863 inline T &
1864 vec<T, va_heap, vl_ptr>::pop (void)
1865 {
1866 return m_vec->pop ();
1867 }
1868
1869
1870 /* Set the length of the vector to LEN. The new length must be less
1871 than or equal to the current length. This is an O(1) operation. */
1872
1873 template<typename T>
1874 inline void
1875 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1876 {
1877 if (m_vec)
1878 m_vec->truncate (size);
1879 else
1880 gcc_checking_assert (size == 0);
1881 }
1882
1883
1884 /* Grow the vector to a specific length. LEN must be as long or
1885 longer than the current length. The new elements are
1886 uninitialized. Reallocate the internal vector, if needed. */
1887
1888 template<typename T>
1889 inline void
1890 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1891 {
1892 unsigned oldlen = length ();
1893 gcc_checking_assert (oldlen <= len);
1894 reserve_exact (len - oldlen PASS_MEM_STAT);
1895 if (m_vec)
1896 m_vec->quick_grow (len);
1897 else
1898 gcc_checking_assert (len == 0);
1899 }
1900
1901
1902 /* Grow the embedded vector to a specific length. LEN must be as
1903 long or longer than the current length. The new elements are
1904 initialized to zero. Reallocate the internal vector, if needed. */
1905
1906 template<typename T>
1907 inline void
1908 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1909 {
1910 unsigned oldlen = length ();
1911 size_t growby = len - oldlen;
1912 safe_grow (len PASS_MEM_STAT);
1913 if (growby != 0)
1914 vec_default_construct (address () + oldlen, growby);
1915 }
1916
1917
1918 /* Same as vec::safe_grow but without reallocation of the internal vector.
1919 If the vector cannot be extended, a runtime assertion will be triggered. */
1920
1921 template<typename T>
1922 inline void
1923 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1924 {
1925 gcc_checking_assert (m_vec);
1926 m_vec->quick_grow (len);
1927 }
1928
1929
1930 /* Same as vec::quick_grow_cleared but without reallocation of the
1931 internal vector. If the vector cannot be extended, a runtime
1932 assertion will be triggered. */
1933
1934 template<typename T>
1935 inline void
1936 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1937 {
1938 gcc_checking_assert (m_vec);
1939 m_vec->quick_grow_cleared (len);
1940 }
1941
1942
1943 /* Insert an element, OBJ, at the IXth position of this vector. There
1944 must be sufficient space. */
1945
1946 template<typename T>
1947 inline void
1948 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1949 {
1950 m_vec->quick_insert (ix, obj);
1951 }
1952
1953
1954 /* Insert an element, OBJ, at the IXth position of the vector.
1955 Reallocate the embedded vector, if necessary. */
1956
1957 template<typename T>
1958 inline void
1959 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1960 {
1961 reserve (1, false PASS_MEM_STAT);
1962 quick_insert (ix, obj);
1963 }
1964
1965
1966 /* Remove an element from the IXth position of this vector. Ordering of
1967 remaining elements is preserved. This is an O(N) operation due to
1968 a memmove. */
1969
1970 template<typename T>
1971 inline void
1972 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1973 {
1974 m_vec->ordered_remove (ix);
1975 }
1976
1977
1978 /* Remove an element from the IXth position of this vector. Ordering
1979 of remaining elements is destroyed. This is an O(1) operation. */
1980
1981 template<typename T>
1982 inline void
1983 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1984 {
1985 m_vec->unordered_remove (ix);
1986 }
1987
1988
1989 /* Remove LEN elements starting at the IXth. Ordering is retained.
1990 This is an O(N) operation due to memmove. */
1991
1992 template<typename T>
1993 inline void
1994 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1995 {
1996 m_vec->block_remove (ix, len);
1997 }
1998
1999
2000 /* Sort the contents of this vector with qsort. CMP is the comparison
2001 function to pass to qsort. */
2002
2003 template<typename T>
2004 inline void
2005 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
2006 {
2007 if (m_vec)
2008 m_vec->qsort (cmp);
2009 }
2010
2011 /* Sort the contents of this vector with qsort. CMP is the comparison
2012 function to pass to qsort. */
2013
2014 template<typename T>
2015 inline void
2016 vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *,
2017 void *), void *data)
2018 {
2019 if (m_vec)
2020 m_vec->sort (cmp, data);
2021 }
2022
2023
2024 /* Search the contents of the sorted vector with a binary search.
2025 CMP is the comparison function to pass to bsearch. */
2026
2027 template<typename T>
2028 inline T *
2029 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
2030 int (*cmp) (const void *, const void *))
2031 {
2032 if (m_vec)
2033 return m_vec->bsearch (key, cmp);
2034 return NULL;
2035 }
2036
2037 /* Search the contents of the sorted vector with a binary search.
2038 CMP is the comparison function to pass to bsearch. */
2039
2040 template<typename T>
2041 inline T *
2042 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
2043 int (*cmp) (const void *, const void *,
2044 void *), void *data)
2045 {
2046 if (m_vec)
2047 return m_vec->bsearch (key, cmp, data);
2048 return NULL;
2049 }
2050
2051
2052 /* Find and return the first position in which OBJ could be inserted
2053 without changing the ordering of this vector. LESSTHAN is a
2054 function that returns true if the first argument is strictly less
2055 than the second. */
2056
2057 template<typename T>
2058 inline unsigned
2059 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
2060 bool (*lessthan)(const T &, const T &))
2061 const
2062 {
2063 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
2064 }
2065
2066 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
2067 size of the vector and so should be used with care. */
2068
2069 template<typename T>
2070 inline bool
2071 vec<T, va_heap, vl_ptr>::contains (const T &search) const
2072 {
2073 return m_vec ? m_vec->contains (search) : false;
2074 }
2075
2076 /* Reverse content of the vector. */
2077
2078 template<typename T>
2079 inline void
2080 vec<T, va_heap, vl_ptr>::reverse (void)
2081 {
2082 unsigned l = length ();
2083 T *ptr = address ();
2084
2085 for (unsigned i = 0; i < l / 2; i++)
2086 std::swap (ptr[i], ptr[l - i - 1]);
2087 }
2088
2089 template<typename T>
2090 inline bool
2091 vec<T, va_heap, vl_ptr>::using_auto_storage () const
2092 {
2093 return m_vec->m_vecpfx.m_using_auto_storage;
2094 }
2095
2096 /* Release VEC and call release of all element vectors. */
2097
2098 template<typename T>
2099 inline void
2100 release_vec_vec (vec<vec<T> > &vec)
2101 {
2102 for (unsigned i = 0; i < vec.length (); i++)
2103 vec[i].release ();
2104
2105 vec.release ();
2106 }
2107
2108 #if (GCC_VERSION >= 3000)
2109 # pragma GCC poison m_vec m_vecpfx m_vecdata
2110 #endif
2111
2112 #endif // GCC_VEC_H
2113