1 /* Implementation of the MAXLOC intrinsic 2 Copyright (C) 2002-2020 Free Software Foundation, Inc. 3 Contributed by Paul Brook <paul@nowt.org> 4 5 This file is part of the GNU Fortran runtime library (libgfortran). 6 7 Libgfortran is free software; you can redistribute it and/or 8 modify it under the terms of the GNU General Public 9 License as published by the Free Software Foundation; either 10 version 3 of the License, or (at your option) any later version. 11 12 Libgfortran is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 Under Section 7 of GPL version 3, you are granted additional 18 permissions described in the GCC Runtime Library Exception, version 19 3.1, as published by the Free Software Foundation. 20 21 You should have received a copy of the GNU General Public License and 22 a copy of the GCC Runtime Library Exception along with this program; 23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24 <http://www.gnu.org/licenses/>. */ 25 26 #include "libgfortran.h" 27 #include <assert.h> 28 29 30 #if defined (HAVE_GFC_INTEGER_1) && defined (HAVE_GFC_INTEGER_4) 31 32 #define HAVE_BACK_ARG 1 33 34 35 extern void maxloc1_4_i1 (gfc_array_i4 * const restrict, 36 gfc_array_i1 * const restrict, const index_type * const restrict, GFC_LOGICAL_4 back); 37 export_proto(maxloc1_4_i1); 38 39 void 40 maxloc1_4_i1 (gfc_array_i4 * const restrict retarray, 41 gfc_array_i1 * const restrict array, 42 const index_type * const restrict pdim, GFC_LOGICAL_4 back) 43 { 44 index_type count[GFC_MAX_DIMENSIONS]; 45 index_type extent[GFC_MAX_DIMENSIONS]; 46 index_type sstride[GFC_MAX_DIMENSIONS]; 47 index_type dstride[GFC_MAX_DIMENSIONS]; 48 const GFC_INTEGER_1 * restrict base; 49 GFC_INTEGER_4 * restrict dest; 50 index_type rank; 51 index_type n; 52 index_type len; 53 index_type delta; 54 index_type dim; 55 int continue_loop; 56 57 /* Make dim zero based to avoid confusion. */ 58 rank = GFC_DESCRIPTOR_RANK (array) - 1; 59 dim = (*pdim) - 1; 60 61 if (unlikely (dim < 0 || dim > rank)) 62 { 63 runtime_error ("Dim argument incorrect in MAXLOC intrinsic: " 64 "is %ld, should be between 1 and %ld", 65 (long int) dim + 1, (long int) rank + 1); 66 } 67 68 len = GFC_DESCRIPTOR_EXTENT(array,dim); 69 if (len < 0) 70 len = 0; 71 delta = GFC_DESCRIPTOR_STRIDE(array,dim); 72 73 for (n = 0; n < dim; n++) 74 { 75 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); 76 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); 77 78 if (extent[n] < 0) 79 extent[n] = 0; 80 } 81 for (n = dim; n < rank; n++) 82 { 83 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1); 84 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); 85 86 if (extent[n] < 0) 87 extent[n] = 0; 88 } 89 90 if (retarray->base_addr == NULL) 91 { 92 size_t alloc_size, str; 93 94 for (n = 0; n < rank; n++) 95 { 96 if (n == 0) 97 str = 1; 98 else 99 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; 100 101 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); 102 103 } 104 105 retarray->offset = 0; 106 retarray->dtype.rank = rank; 107 108 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; 109 110 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); 111 if (alloc_size == 0) 112 { 113 /* Make sure we have a zero-sized array. */ 114 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); 115 return; 116 117 } 118 } 119 else 120 { 121 if (rank != GFC_DESCRIPTOR_RANK (retarray)) 122 runtime_error ("rank of return array incorrect in" 123 " MAXLOC intrinsic: is %ld, should be %ld", 124 (long int) (GFC_DESCRIPTOR_RANK (retarray)), 125 (long int) rank); 126 127 if (unlikely (compile_options.bounds_check)) 128 bounds_ifunction_return ((array_t *) retarray, extent, 129 "return value", "MAXLOC"); 130 } 131 132 for (n = 0; n < rank; n++) 133 { 134 count[n] = 0; 135 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); 136 if (extent[n] <= 0) 137 return; 138 } 139 140 base = array->base_addr; 141 dest = retarray->base_addr; 142 143 continue_loop = 1; 144 while (continue_loop) 145 { 146 const GFC_INTEGER_1 * restrict src; 147 GFC_INTEGER_4 result; 148 src = base; 149 { 150 151 GFC_INTEGER_1 maxval; 152 #if defined (GFC_INTEGER_1_INFINITY) 153 maxval = -GFC_INTEGER_1_INFINITY; 154 #else 155 maxval = (-GFC_INTEGER_1_HUGE-1); 156 #endif 157 result = 1; 158 if (len <= 0) 159 *dest = 0; 160 else 161 { 162 #if ! defined HAVE_BACK_ARG 163 for (n = 0; n < len; n++, src += delta) 164 { 165 #endif 166 167 #if defined (GFC_INTEGER_1_QUIET_NAN) 168 for (n = 0; n < len; n++, src += delta) 169 { 170 if (*src >= maxval) 171 { 172 maxval = *src; 173 result = (GFC_INTEGER_4)n + 1; 174 break; 175 } 176 } 177 #else 178 n = 0; 179 #endif 180 for (; n < len; n++, src += delta) 181 { 182 if (back ? *src >= maxval : *src > maxval) 183 { 184 maxval = *src; 185 result = (GFC_INTEGER_4)n + 1; 186 } 187 } 188 189 *dest = result; 190 } 191 } 192 /* Advance to the next element. */ 193 count[0]++; 194 base += sstride[0]; 195 dest += dstride[0]; 196 n = 0; 197 while (count[n] == extent[n]) 198 { 199 /* When we get to the end of a dimension, reset it and increment 200 the next dimension. */ 201 count[n] = 0; 202 /* We could precalculate these products, but this is a less 203 frequently used path so probably not worth it. */ 204 base -= sstride[n] * extent[n]; 205 dest -= dstride[n] * extent[n]; 206 n++; 207 if (n >= rank) 208 { 209 /* Break out of the loop. */ 210 continue_loop = 0; 211 break; 212 } 213 else 214 { 215 count[n]++; 216 base += sstride[n]; 217 dest += dstride[n]; 218 } 219 } 220 } 221 } 222 223 224 extern void mmaxloc1_4_i1 (gfc_array_i4 * const restrict, 225 gfc_array_i1 * const restrict, const index_type * const restrict, 226 gfc_array_l1 * const restrict, GFC_LOGICAL_4 back); 227 export_proto(mmaxloc1_4_i1); 228 229 void 230 mmaxloc1_4_i1 (gfc_array_i4 * const restrict retarray, 231 gfc_array_i1 * const restrict array, 232 const index_type * const restrict pdim, 233 gfc_array_l1 * const restrict mask, GFC_LOGICAL_4 back) 234 { 235 index_type count[GFC_MAX_DIMENSIONS]; 236 index_type extent[GFC_MAX_DIMENSIONS]; 237 index_type sstride[GFC_MAX_DIMENSIONS]; 238 index_type dstride[GFC_MAX_DIMENSIONS]; 239 index_type mstride[GFC_MAX_DIMENSIONS]; 240 GFC_INTEGER_4 * restrict dest; 241 const GFC_INTEGER_1 * restrict base; 242 const GFC_LOGICAL_1 * restrict mbase; 243 index_type rank; 244 index_type dim; 245 index_type n; 246 index_type len; 247 index_type delta; 248 index_type mdelta; 249 int mask_kind; 250 251 if (mask == NULL) 252 { 253 #ifdef HAVE_BACK_ARG 254 maxloc1_4_i1 (retarray, array, pdim, back); 255 #else 256 maxloc1_4_i1 (retarray, array, pdim); 257 #endif 258 return; 259 } 260 261 dim = (*pdim) - 1; 262 rank = GFC_DESCRIPTOR_RANK (array) - 1; 263 264 265 if (unlikely (dim < 0 || dim > rank)) 266 { 267 runtime_error ("Dim argument incorrect in MAXLOC intrinsic: " 268 "is %ld, should be between 1 and %ld", 269 (long int) dim + 1, (long int) rank + 1); 270 } 271 272 len = GFC_DESCRIPTOR_EXTENT(array,dim); 273 if (len <= 0) 274 return; 275 276 mbase = mask->base_addr; 277 278 mask_kind = GFC_DESCRIPTOR_SIZE (mask); 279 280 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 281 #ifdef HAVE_GFC_LOGICAL_16 282 || mask_kind == 16 283 #endif 284 ) 285 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); 286 else 287 runtime_error ("Funny sized logical array"); 288 289 delta = GFC_DESCRIPTOR_STRIDE(array,dim); 290 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim); 291 292 for (n = 0; n < dim; n++) 293 { 294 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); 295 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); 296 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); 297 298 if (extent[n] < 0) 299 extent[n] = 0; 300 301 } 302 for (n = dim; n < rank; n++) 303 { 304 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1); 305 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1); 306 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); 307 308 if (extent[n] < 0) 309 extent[n] = 0; 310 } 311 312 if (retarray->base_addr == NULL) 313 { 314 size_t alloc_size, str; 315 316 for (n = 0; n < rank; n++) 317 { 318 if (n == 0) 319 str = 1; 320 else 321 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; 322 323 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); 324 325 } 326 327 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; 328 329 retarray->offset = 0; 330 retarray->dtype.rank = rank; 331 332 if (alloc_size == 0) 333 { 334 /* Make sure we have a zero-sized array. */ 335 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); 336 return; 337 } 338 else 339 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); 340 341 } 342 else 343 { 344 if (rank != GFC_DESCRIPTOR_RANK (retarray)) 345 runtime_error ("rank of return array incorrect in MAXLOC intrinsic"); 346 347 if (unlikely (compile_options.bounds_check)) 348 { 349 bounds_ifunction_return ((array_t *) retarray, extent, 350 "return value", "MAXLOC"); 351 bounds_equal_extents ((array_t *) mask, (array_t *) array, 352 "MASK argument", "MAXLOC"); 353 } 354 } 355 356 for (n = 0; n < rank; n++) 357 { 358 count[n] = 0; 359 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); 360 if (extent[n] <= 0) 361 return; 362 } 363 364 dest = retarray->base_addr; 365 base = array->base_addr; 366 367 while (base) 368 { 369 const GFC_INTEGER_1 * restrict src; 370 const GFC_LOGICAL_1 * restrict msrc; 371 GFC_INTEGER_4 result; 372 src = base; 373 msrc = mbase; 374 { 375 376 GFC_INTEGER_1 maxval; 377 #if defined (GFC_INTEGER_1_INFINITY) 378 maxval = -GFC_INTEGER_1_INFINITY; 379 #else 380 maxval = (-GFC_INTEGER_1_HUGE-1); 381 #endif 382 #if defined (GFC_INTEGER_1_QUIET_NAN) 383 GFC_INTEGER_4 result2 = 0; 384 #endif 385 result = 0; 386 for (n = 0; n < len; n++, src += delta, msrc += mdelta) 387 { 388 389 if (*msrc) 390 { 391 #if defined (GFC_INTEGER_1_QUIET_NAN) 392 if (!result2) 393 result2 = (GFC_INTEGER_4)n + 1; 394 if (*src >= maxval) 395 #endif 396 { 397 maxval = *src; 398 result = (GFC_INTEGER_4)n + 1; 399 break; 400 } 401 } 402 } 403 #if defined (GFC_INTEGER_1_QUIET_NAN) 404 if (unlikely (n >= len)) 405 result = result2; 406 else 407 #endif 408 if (back) 409 for (; n < len; n++, src += delta, msrc += mdelta) 410 { 411 if (*msrc && unlikely (*src >= maxval)) 412 { 413 maxval = *src; 414 result = (GFC_INTEGER_4)n + 1; 415 } 416 } 417 else 418 for (; n < len; n++, src += delta, msrc += mdelta) 419 { 420 if (*msrc && unlikely (*src > maxval)) 421 { 422 maxval = *src; 423 result = (GFC_INTEGER_4)n + 1; 424 } 425 } 426 *dest = result; 427 } 428 /* Advance to the next element. */ 429 count[0]++; 430 base += sstride[0]; 431 mbase += mstride[0]; 432 dest += dstride[0]; 433 n = 0; 434 while (count[n] == extent[n]) 435 { 436 /* When we get to the end of a dimension, reset it and increment 437 the next dimension. */ 438 count[n] = 0; 439 /* We could precalculate these products, but this is a less 440 frequently used path so probably not worth it. */ 441 base -= sstride[n] * extent[n]; 442 mbase -= mstride[n] * extent[n]; 443 dest -= dstride[n] * extent[n]; 444 n++; 445 if (n >= rank) 446 { 447 /* Break out of the loop. */ 448 base = NULL; 449 break; 450 } 451 else 452 { 453 count[n]++; 454 base += sstride[n]; 455 mbase += mstride[n]; 456 dest += dstride[n]; 457 } 458 } 459 } 460 } 461 462 463 extern void smaxloc1_4_i1 (gfc_array_i4 * const restrict, 464 gfc_array_i1 * const restrict, const index_type * const restrict, 465 GFC_LOGICAL_4 *, GFC_LOGICAL_4 back); 466 export_proto(smaxloc1_4_i1); 467 468 void 469 smaxloc1_4_i1 (gfc_array_i4 * const restrict retarray, 470 gfc_array_i1 * const restrict array, 471 const index_type * const restrict pdim, 472 GFC_LOGICAL_4 * mask, GFC_LOGICAL_4 back) 473 { 474 index_type count[GFC_MAX_DIMENSIONS]; 475 index_type extent[GFC_MAX_DIMENSIONS]; 476 index_type dstride[GFC_MAX_DIMENSIONS]; 477 GFC_INTEGER_4 * restrict dest; 478 index_type rank; 479 index_type n; 480 index_type dim; 481 482 483 if (mask == NULL || *mask) 484 { 485 #ifdef HAVE_BACK_ARG 486 maxloc1_4_i1 (retarray, array, pdim, back); 487 #else 488 maxloc1_4_i1 (retarray, array, pdim); 489 #endif 490 return; 491 } 492 /* Make dim zero based to avoid confusion. */ 493 dim = (*pdim) - 1; 494 rank = GFC_DESCRIPTOR_RANK (array) - 1; 495 496 if (unlikely (dim < 0 || dim > rank)) 497 { 498 runtime_error ("Dim argument incorrect in MAXLOC intrinsic: " 499 "is %ld, should be between 1 and %ld", 500 (long int) dim + 1, (long int) rank + 1); 501 } 502 503 for (n = 0; n < dim; n++) 504 { 505 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); 506 507 if (extent[n] <= 0) 508 extent[n] = 0; 509 } 510 511 for (n = dim; n < rank; n++) 512 { 513 extent[n] = 514 GFC_DESCRIPTOR_EXTENT(array,n + 1); 515 516 if (extent[n] <= 0) 517 extent[n] = 0; 518 } 519 520 if (retarray->base_addr == NULL) 521 { 522 size_t alloc_size, str; 523 524 for (n = 0; n < rank; n++) 525 { 526 if (n == 0) 527 str = 1; 528 else 529 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; 530 531 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); 532 533 } 534 535 retarray->offset = 0; 536 retarray->dtype.rank = rank; 537 538 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; 539 540 if (alloc_size == 0) 541 { 542 /* Make sure we have a zero-sized array. */ 543 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); 544 return; 545 } 546 else 547 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); 548 } 549 else 550 { 551 if (rank != GFC_DESCRIPTOR_RANK (retarray)) 552 runtime_error ("rank of return array incorrect in" 553 " MAXLOC intrinsic: is %ld, should be %ld", 554 (long int) (GFC_DESCRIPTOR_RANK (retarray)), 555 (long int) rank); 556 557 if (unlikely (compile_options.bounds_check)) 558 { 559 for (n=0; n < rank; n++) 560 { 561 index_type ret_extent; 562 563 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); 564 if (extent[n] != ret_extent) 565 runtime_error ("Incorrect extent in return value of" 566 " MAXLOC intrinsic in dimension %ld:" 567 " is %ld, should be %ld", (long int) n + 1, 568 (long int) ret_extent, (long int) extent[n]); 569 } 570 } 571 } 572 573 for (n = 0; n < rank; n++) 574 { 575 count[n] = 0; 576 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); 577 } 578 579 dest = retarray->base_addr; 580 581 while(1) 582 { 583 *dest = 0; 584 count[0]++; 585 dest += dstride[0]; 586 n = 0; 587 while (count[n] == extent[n]) 588 { 589 /* When we get to the end of a dimension, reset it and increment 590 the next dimension. */ 591 count[n] = 0; 592 /* We could precalculate these products, but this is a less 593 frequently used path so probably not worth it. */ 594 dest -= dstride[n] * extent[n]; 595 n++; 596 if (n >= rank) 597 return; 598 else 599 { 600 count[n]++; 601 dest += dstride[n]; 602 } 603 } 604 } 605 } 606 607 #endif 608