1// Copyright 2013 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package sync
6
7import (
8	"internal/race"
9	"runtime"
10	"sync/atomic"
11	"unsafe"
12)
13
14// A Pool is a set of temporary objects that may be individually saved and
15// retrieved.
16//
17// Any item stored in the Pool may be removed automatically at any time without
18// notification. If the Pool holds the only reference when this happens, the
19// item might be deallocated.
20//
21// A Pool is safe for use by multiple goroutines simultaneously.
22//
23// Pool's purpose is to cache allocated but unused items for later reuse,
24// relieving pressure on the garbage collector. That is, it makes it easy to
25// build efficient, thread-safe free lists. However, it is not suitable for all
26// free lists.
27//
28// An appropriate use of a Pool is to manage a group of temporary items
29// silently shared among and potentially reused by concurrent independent
30// clients of a package. Pool provides a way to amortize allocation overhead
31// across many clients.
32//
33// An example of good use of a Pool is in the fmt package, which maintains a
34// dynamically-sized store of temporary output buffers. The store scales under
35// load (when many goroutines are actively printing) and shrinks when
36// quiescent.
37//
38// On the other hand, a free list maintained as part of a short-lived object is
39// not a suitable use for a Pool, since the overhead does not amortize well in
40// that scenario. It is more efficient to have such objects implement their own
41// free list.
42//
43// A Pool must not be copied after first use.
44type Pool struct {
45	noCopy noCopy
46
47	local     unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
48	localSize uintptr        // size of the local array
49
50	victim     unsafe.Pointer // local from previous cycle
51	victimSize uintptr        // size of victims array
52
53	// New optionally specifies a function to generate
54	// a value when Get would otherwise return nil.
55	// It may not be changed concurrently with calls to Get.
56	New func() interface{}
57}
58
59// Local per-P Pool appendix.
60type poolLocalInternal struct {
61	private interface{} // Can be used only by the respective P.
62	shared  poolChain   // Local P can pushHead/popHead; any P can popTail.
63}
64
65type poolLocal struct {
66	poolLocalInternal
67
68	// Prevents false sharing on widespread platforms with
69	// 128 mod (cache line size) = 0 .
70	pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
71}
72
73// from runtime
74func fastrand() uint32
75
76var poolRaceHash [128]uint64
77
78// poolRaceAddr returns an address to use as the synchronization point
79// for race detector logic. We don't use the actual pointer stored in x
80// directly, for fear of conflicting with other synchronization on that address.
81// Instead, we hash the pointer to get an index into poolRaceHash.
82// See discussion on golang.org/cl/31589.
83func poolRaceAddr(x interface{}) unsafe.Pointer {
84	ptr := uintptr((*[2]unsafe.Pointer)(unsafe.Pointer(&x))[1])
85	h := uint32((uint64(uint32(ptr)) * 0x85ebca6b) >> 16)
86	return unsafe.Pointer(&poolRaceHash[h%uint32(len(poolRaceHash))])
87}
88
89// Put adds x to the pool.
90func (p *Pool) Put(x interface{}) {
91	if x == nil {
92		return
93	}
94	if race.Enabled {
95		if fastrand()%4 == 0 {
96			// Randomly drop x on floor.
97			return
98		}
99		race.ReleaseMerge(poolRaceAddr(x))
100		race.Disable()
101	}
102	l, _ := p.pin()
103	if l.private == nil {
104		l.private = x
105		x = nil
106	}
107	if x != nil {
108		l.shared.pushHead(x)
109	}
110	runtime_procUnpin()
111	if race.Enabled {
112		race.Enable()
113	}
114}
115
116// Get selects an arbitrary item from the Pool, removes it from the
117// Pool, and returns it to the caller.
118// Get may choose to ignore the pool and treat it as empty.
119// Callers should not assume any relation between values passed to Put and
120// the values returned by Get.
121//
122// If Get would otherwise return nil and p.New is non-nil, Get returns
123// the result of calling p.New.
124func (p *Pool) Get() interface{} {
125	if race.Enabled {
126		race.Disable()
127	}
128	l, pid := p.pin()
129	x := l.private
130	l.private = nil
131	if x == nil {
132		// Try to pop the head of the local shard. We prefer
133		// the head over the tail for temporal locality of
134		// reuse.
135		x, _ = l.shared.popHead()
136		if x == nil {
137			x = p.getSlow(pid)
138		}
139	}
140	runtime_procUnpin()
141	if race.Enabled {
142		race.Enable()
143		if x != nil {
144			race.Acquire(poolRaceAddr(x))
145		}
146	}
147	if x == nil && p.New != nil {
148		x = p.New()
149	}
150	return x
151}
152
153func (p *Pool) getSlow(pid int) interface{} {
154	// See the comment in pin regarding ordering of the loads.
155	size := atomic.LoadUintptr(&p.localSize) // load-acquire
156	locals := p.local                        // load-consume
157	// Try to steal one element from other procs.
158	for i := 0; i < int(size); i++ {
159		l := indexLocal(locals, (pid+i+1)%int(size))
160		if x, _ := l.shared.popTail(); x != nil {
161			return x
162		}
163	}
164
165	// Try the victim cache. We do this after attempting to steal
166	// from all primary caches because we want objects in the
167	// victim cache to age out if at all possible.
168	size = atomic.LoadUintptr(&p.victimSize)
169	if uintptr(pid) >= size {
170		return nil
171	}
172	locals = p.victim
173	l := indexLocal(locals, pid)
174	if x := l.private; x != nil {
175		l.private = nil
176		return x
177	}
178	for i := 0; i < int(size); i++ {
179		l := indexLocal(locals, (pid+i)%int(size))
180		if x, _ := l.shared.popTail(); x != nil {
181			return x
182		}
183	}
184
185	// Mark the victim cache as empty for future gets don't bother
186	// with it.
187	atomic.StoreUintptr(&p.victimSize, 0)
188
189	return nil
190}
191
192// pin pins the current goroutine to P, disables preemption and
193// returns poolLocal pool for the P and the P's id.
194// Caller must call runtime_procUnpin() when done with the pool.
195func (p *Pool) pin() (*poolLocal, int) {
196	pid := runtime_procPin()
197	// In pinSlow we store to local and then to localSize, here we load in opposite order.
198	// Since we've disabled preemption, GC cannot happen in between.
199	// Thus here we must observe local at least as large localSize.
200	// We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
201	s := atomic.LoadUintptr(&p.localSize) // load-acquire
202	l := p.local                          // load-consume
203	if uintptr(pid) < s {
204		return indexLocal(l, pid), pid
205	}
206	return p.pinSlow()
207}
208
209func (p *Pool) pinSlow() (*poolLocal, int) {
210	// Retry under the mutex.
211	// Can not lock the mutex while pinned.
212	runtime_procUnpin()
213	allPoolsMu.Lock()
214	defer allPoolsMu.Unlock()
215	pid := runtime_procPin()
216	// poolCleanup won't be called while we are pinned.
217	s := p.localSize
218	l := p.local
219	if uintptr(pid) < s {
220		return indexLocal(l, pid), pid
221	}
222	if p.local == nil {
223		allPools = append(allPools, p)
224	}
225	// If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
226	size := runtime.GOMAXPROCS(0)
227	local := make([]poolLocal, size)
228	atomic.StorePointer(&p.local, unsafe.Pointer(&local[0])) // store-release
229	atomic.StoreUintptr(&p.localSize, uintptr(size))         // store-release
230	return &local[pid], pid
231}
232
233func poolCleanup() {
234	// This function is called with the world stopped, at the beginning of a garbage collection.
235	// It must not allocate and probably should not call any runtime functions.
236
237	// Because the world is stopped, no pool user can be in a
238	// pinned section (in effect, this has all Ps pinned).
239
240	// Drop victim caches from all pools.
241	for _, p := range oldPools {
242		p.victim = nil
243		p.victimSize = 0
244	}
245
246	// Move primary cache to victim cache.
247	for _, p := range allPools {
248		p.victim = p.local
249		p.victimSize = p.localSize
250		p.local = nil
251		p.localSize = 0
252	}
253
254	// The pools with non-empty primary caches now have non-empty
255	// victim caches and no pools have primary caches.
256	oldPools, allPools = allPools, nil
257}
258
259var (
260	allPoolsMu Mutex
261
262	// allPools is the set of pools that have non-empty primary
263	// caches. Protected by either 1) allPoolsMu and pinning or 2)
264	// STW.
265	allPools []*Pool
266
267	// oldPools is the set of pools that may have non-empty victim
268	// caches. Protected by STW.
269	oldPools []*Pool
270)
271
272func init() {
273	runtime_registerPoolCleanup(poolCleanup)
274}
275
276func indexLocal(l unsafe.Pointer, i int) *poolLocal {
277	lp := unsafe.Pointer(uintptr(l) + uintptr(i)*unsafe.Sizeof(poolLocal{}))
278	return (*poolLocal)(lp)
279}
280
281// Implemented in runtime.
282func runtime_registerPoolCleanup(cleanup func())
283func runtime_procPin() int
284func runtime_procUnpin()
285