1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package time provides functionality for measuring and displaying time.
6//
7// The calendrical calculations always assume a Gregorian calendar, with
8// no leap seconds.
9//
10// Monotonic Clocks
11//
12// Operating systems provide both a “wall clock,” which is subject to
13// changes for clock synchronization, and a “monotonic clock,” which is
14// not. The general rule is that the wall clock is for telling time and
15// the monotonic clock is for measuring time. Rather than split the API,
16// in this package the Time returned by time.Now contains both a wall
17// clock reading and a monotonic clock reading; later time-telling
18// operations use the wall clock reading, but later time-measuring
19// operations, specifically comparisons and subtractions, use the
20// monotonic clock reading.
21//
22// For example, this code always computes a positive elapsed time of
23// approximately 20 milliseconds, even if the wall clock is changed during
24// the operation being timed:
25//
26//	start := time.Now()
27//	... operation that takes 20 milliseconds ...
28//	t := time.Now()
29//	elapsed := t.Sub(start)
30//
31// Other idioms, such as time.Since(start), time.Until(deadline), and
32// time.Now().Before(deadline), are similarly robust against wall clock
33// resets.
34//
35// The rest of this section gives the precise details of how operations
36// use monotonic clocks, but understanding those details is not required
37// to use this package.
38//
39// The Time returned by time.Now contains a monotonic clock reading.
40// If Time t has a monotonic clock reading, t.Add adds the same duration to
41// both the wall clock and monotonic clock readings to compute the result.
42// Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
43// computations, they always strip any monotonic clock reading from their results.
44// Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
45// of the wall time, they also strip any monotonic clock reading from their results.
46// The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
47//
48// If Times t and u both contain monotonic clock readings, the operations
49// t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out
50// using the monotonic clock readings alone, ignoring the wall clock
51// readings. If either t or u contains no monotonic clock reading, these
52// operations fall back to using the wall clock readings.
53//
54// On some systems the monotonic clock will stop if the computer goes to sleep.
55// On such a system, t.Sub(u) may not accurately reflect the actual
56// time that passed between t and u.
57//
58// Because the monotonic clock reading has no meaning outside
59// the current process, the serialized forms generated by t.GobEncode,
60// t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
61// clock reading, and t.Format provides no format for it. Similarly, the
62// constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix,
63// as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
64// t.UnmarshalJSON, and t.UnmarshalText always create times with
65// no monotonic clock reading.
66//
67// Note that the Go == operator compares not just the time instant but
68// also the Location and the monotonic clock reading. See the
69// documentation for the Time type for a discussion of equality
70// testing for Time values.
71//
72// For debugging, the result of t.String does include the monotonic
73// clock reading if present. If t != u because of different monotonic clock readings,
74// that difference will be visible when printing t.String() and u.String().
75//
76package time
77
78import (
79	"errors"
80	_ "unsafe" // for go:linkname
81)
82
83// A Time represents an instant in time with nanosecond precision.
84//
85// Programs using times should typically store and pass them as values,
86// not pointers. That is, time variables and struct fields should be of
87// type time.Time, not *time.Time.
88//
89// A Time value can be used by multiple goroutines simultaneously except
90// that the methods GobDecode, UnmarshalBinary, UnmarshalJSON and
91// UnmarshalText are not concurrency-safe.
92//
93// Time instants can be compared using the Before, After, and Equal methods.
94// The Sub method subtracts two instants, producing a Duration.
95// The Add method adds a Time and a Duration, producing a Time.
96//
97// The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
98// As this time is unlikely to come up in practice, the IsZero method gives
99// a simple way of detecting a time that has not been initialized explicitly.
100//
101// Each Time has associated with it a Location, consulted when computing the
102// presentation form of the time, such as in the Format, Hour, and Year methods.
103// The methods Local, UTC, and In return a Time with a specific location.
104// Changing the location in this way changes only the presentation; it does not
105// change the instant in time being denoted and therefore does not affect the
106// computations described in earlier paragraphs.
107//
108// Representations of a Time value saved by the GobEncode, MarshalBinary,
109// MarshalJSON, and MarshalText methods store the Time.Location's offset, but not
110// the location name. They therefore lose information about Daylight Saving Time.
111//
112// In addition to the required “wall clock” reading, a Time may contain an optional
113// reading of the current process's monotonic clock, to provide additional precision
114// for comparison or subtraction.
115// See the “Monotonic Clocks” section in the package documentation for details.
116//
117// Note that the Go == operator compares not just the time instant but also the
118// Location and the monotonic clock reading. Therefore, Time values should not
119// be used as map or database keys without first guaranteeing that the
120// identical Location has been set for all values, which can be achieved
121// through use of the UTC or Local method, and that the monotonic clock reading
122// has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
123// to t == u, since t.Equal uses the most accurate comparison available and
124// correctly handles the case when only one of its arguments has a monotonic
125// clock reading.
126//
127type Time struct {
128	// wall and ext encode the wall time seconds, wall time nanoseconds,
129	// and optional monotonic clock reading in nanoseconds.
130	//
131	// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
132	// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
133	// The nanoseconds field is in the range [0, 999999999].
134	// If the hasMonotonic bit is 0, then the 33-bit field must be zero
135	// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
136	// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
137	// unsigned wall seconds since Jan 1 year 1885, and ext holds a
138	// signed 64-bit monotonic clock reading, nanoseconds since process start.
139	wall uint64
140	ext  int64
141
142	// loc specifies the Location that should be used to
143	// determine the minute, hour, month, day, and year
144	// that correspond to this Time.
145	// The nil location means UTC.
146	// All UTC times are represented with loc==nil, never loc==&utcLoc.
147	loc *Location
148}
149
150const (
151	hasMonotonic = 1 << 63
152	maxWall      = wallToInternal + (1<<33 - 1) // year 2157
153	minWall      = wallToInternal               // year 1885
154	nsecMask     = 1<<30 - 1
155	nsecShift    = 30
156)
157
158// These helpers for manipulating the wall and monotonic clock readings
159// take pointer receivers, even when they don't modify the time,
160// to make them cheaper to call.
161
162// nsec returns the time's nanoseconds.
163func (t *Time) nsec() int32 {
164	return int32(t.wall & nsecMask)
165}
166
167// sec returns the time's seconds since Jan 1 year 1.
168func (t *Time) sec() int64 {
169	if t.wall&hasMonotonic != 0 {
170		return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
171	}
172	return t.ext
173}
174
175// unixSec returns the time's seconds since Jan 1 1970 (Unix time).
176func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
177
178// addSec adds d seconds to the time.
179func (t *Time) addSec(d int64) {
180	if t.wall&hasMonotonic != 0 {
181		sec := int64(t.wall << 1 >> (nsecShift + 1))
182		dsec := sec + d
183		if 0 <= dsec && dsec <= 1<<33-1 {
184			t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
185			return
186		}
187		// Wall second now out of range for packed field.
188		// Move to ext.
189		t.stripMono()
190	}
191
192	// TODO: Check for overflow.
193	t.ext += d
194}
195
196// setLoc sets the location associated with the time.
197func (t *Time) setLoc(loc *Location) {
198	if loc == &utcLoc {
199		loc = nil
200	}
201	t.stripMono()
202	t.loc = loc
203}
204
205// stripMono strips the monotonic clock reading in t.
206func (t *Time) stripMono() {
207	if t.wall&hasMonotonic != 0 {
208		t.ext = t.sec()
209		t.wall &= nsecMask
210	}
211}
212
213// setMono sets the monotonic clock reading in t.
214// If t cannot hold a monotonic clock reading,
215// because its wall time is too large,
216// setMono is a no-op.
217func (t *Time) setMono(m int64) {
218	if t.wall&hasMonotonic == 0 {
219		sec := t.ext
220		if sec < minWall || maxWall < sec {
221			return
222		}
223		t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
224	}
225	t.ext = m
226}
227
228// mono returns t's monotonic clock reading.
229// It returns 0 for a missing reading.
230// This function is used only for testing,
231// so it's OK that technically 0 is a valid
232// monotonic clock reading as well.
233func (t *Time) mono() int64 {
234	if t.wall&hasMonotonic == 0 {
235		return 0
236	}
237	return t.ext
238}
239
240// After reports whether the time instant t is after u.
241func (t Time) After(u Time) bool {
242	if t.wall&u.wall&hasMonotonic != 0 {
243		return t.ext > u.ext
244	}
245	ts := t.sec()
246	us := u.sec()
247	return ts > us || ts == us && t.nsec() > u.nsec()
248}
249
250// Before reports whether the time instant t is before u.
251func (t Time) Before(u Time) bool {
252	if t.wall&u.wall&hasMonotonic != 0 {
253		return t.ext < u.ext
254	}
255	return t.sec() < u.sec() || t.sec() == u.sec() && t.nsec() < u.nsec()
256}
257
258// Equal reports whether t and u represent the same time instant.
259// Two times can be equal even if they are in different locations.
260// For example, 6:00 +0200 and 4:00 UTC are Equal.
261// See the documentation on the Time type for the pitfalls of using == with
262// Time values; most code should use Equal instead.
263func (t Time) Equal(u Time) bool {
264	if t.wall&u.wall&hasMonotonic != 0 {
265		return t.ext == u.ext
266	}
267	return t.sec() == u.sec() && t.nsec() == u.nsec()
268}
269
270// A Month specifies a month of the year (January = 1, ...).
271type Month int
272
273const (
274	January Month = 1 + iota
275	February
276	March
277	April
278	May
279	June
280	July
281	August
282	September
283	October
284	November
285	December
286)
287
288var months = [...]string{
289	"January",
290	"February",
291	"March",
292	"April",
293	"May",
294	"June",
295	"July",
296	"August",
297	"September",
298	"October",
299	"November",
300	"December",
301}
302
303// String returns the English name of the month ("January", "February", ...).
304func (m Month) String() string {
305	if January <= m && m <= December {
306		return months[m-1]
307	}
308	buf := make([]byte, 20)
309	n := fmtInt(buf, uint64(m))
310	return "%!Month(" + string(buf[n:]) + ")"
311}
312
313// A Weekday specifies a day of the week (Sunday = 0, ...).
314type Weekday int
315
316const (
317	Sunday Weekday = iota
318	Monday
319	Tuesday
320	Wednesday
321	Thursday
322	Friday
323	Saturday
324)
325
326var days = [...]string{
327	"Sunday",
328	"Monday",
329	"Tuesday",
330	"Wednesday",
331	"Thursday",
332	"Friday",
333	"Saturday",
334}
335
336// String returns the English name of the day ("Sunday", "Monday", ...).
337func (d Weekday) String() string {
338	if Sunday <= d && d <= Saturday {
339		return days[d]
340	}
341	buf := make([]byte, 20)
342	n := fmtInt(buf, uint64(d))
343	return "%!Weekday(" + string(buf[n:]) + ")"
344}
345
346// Computations on time.
347//
348// The zero value for a Time is defined to be
349//	January 1, year 1, 00:00:00.000000000 UTC
350// which (1) looks like a zero, or as close as you can get in a date
351// (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
352// be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
353// non-negative year even in time zones west of UTC, unlike 1-1-0
354// 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
355//
356// The zero Time value does not force a specific epoch for the time
357// representation. For example, to use the Unix epoch internally, we
358// could define that to distinguish a zero value from Jan 1 1970, that
359// time would be represented by sec=-1, nsec=1e9. However, it does
360// suggest a representation, namely using 1-1-1 00:00:00 UTC as the
361// epoch, and that's what we do.
362//
363// The Add and Sub computations are oblivious to the choice of epoch.
364//
365// The presentation computations - year, month, minute, and so on - all
366// rely heavily on division and modulus by positive constants. For
367// calendrical calculations we want these divisions to round down, even
368// for negative values, so that the remainder is always positive, but
369// Go's division (like most hardware division instructions) rounds to
370// zero. We can still do those computations and then adjust the result
371// for a negative numerator, but it's annoying to write the adjustment
372// over and over. Instead, we can change to a different epoch so long
373// ago that all the times we care about will be positive, and then round
374// to zero and round down coincide. These presentation routines already
375// have to add the zone offset, so adding the translation to the
376// alternate epoch is cheap. For example, having a non-negative time t
377// means that we can write
378//
379//	sec = t % 60
380//
381// instead of
382//
383//	sec = t % 60
384//	if sec < 0 {
385//		sec += 60
386//	}
387//
388// everywhere.
389//
390// The calendar runs on an exact 400 year cycle: a 400-year calendar
391// printed for 1970-2369 will apply as well to 2370-2769. Even the days
392// of the week match up. It simplifies the computations to choose the
393// cycle boundaries so that the exceptional years are always delayed as
394// long as possible. That means choosing a year equal to 1 mod 400, so
395// that the first leap year is the 4th year, the first missed leap year
396// is the 100th year, and the missed missed leap year is the 400th year.
397// So we'd prefer instead to print a calendar for 2001-2400 and reuse it
398// for 2401-2800.
399//
400// Finally, it's convenient if the delta between the Unix epoch and
401// long-ago epoch is representable by an int64 constant.
402//
403// These three considerations—choose an epoch as early as possible, that
404// uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
405// earlier than 1970—bring us to the year -292277022399. We refer to
406// this year as the absolute zero year, and to times measured as a uint64
407// seconds since this year as absolute times.
408//
409// Times measured as an int64 seconds since the year 1—the representation
410// used for Time's sec field—are called internal times.
411//
412// Times measured as an int64 seconds since the year 1970 are called Unix
413// times.
414//
415// It is tempting to just use the year 1 as the absolute epoch, defining
416// that the routines are only valid for years >= 1. However, the
417// routines would then be invalid when displaying the epoch in time zones
418// west of UTC, since it is year 0. It doesn't seem tenable to say that
419// printing the zero time correctly isn't supported in half the time
420// zones. By comparison, it's reasonable to mishandle some times in
421// the year -292277022399.
422//
423// All this is opaque to clients of the API and can be changed if a
424// better implementation presents itself.
425
426const (
427	// The unsigned zero year for internal calculations.
428	// Must be 1 mod 400, and times before it will not compute correctly,
429	// but otherwise can be changed at will.
430	absoluteZeroYear = -292277022399
431
432	// The year of the zero Time.
433	// Assumed by the unixToInternal computation below.
434	internalYear = 1
435
436	// Offsets to convert between internal and absolute or Unix times.
437	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
438	internalToAbsolute       = -absoluteToInternal
439
440	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
441	internalToUnix int64 = -unixToInternal
442
443	wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
444	internalToWall int64 = -wallToInternal
445)
446
447// IsZero reports whether t represents the zero time instant,
448// January 1, year 1, 00:00:00 UTC.
449func (t Time) IsZero() bool {
450	return t.sec() == 0 && t.nsec() == 0
451}
452
453// abs returns the time t as an absolute time, adjusted by the zone offset.
454// It is called when computing a presentation property like Month or Hour.
455func (t Time) abs() uint64 {
456	l := t.loc
457	// Avoid function calls when possible.
458	if l == nil || l == &localLoc {
459		l = l.get()
460	}
461	sec := t.unixSec()
462	if l != &utcLoc {
463		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
464			sec += int64(l.cacheZone.offset)
465		} else {
466			_, offset, _, _ := l.lookup(sec)
467			sec += int64(offset)
468		}
469	}
470	return uint64(sec + (unixToInternal + internalToAbsolute))
471}
472
473// locabs is a combination of the Zone and abs methods,
474// extracting both return values from a single zone lookup.
475func (t Time) locabs() (name string, offset int, abs uint64) {
476	l := t.loc
477	if l == nil || l == &localLoc {
478		l = l.get()
479	}
480	// Avoid function call if we hit the local time cache.
481	sec := t.unixSec()
482	if l != &utcLoc {
483		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
484			name = l.cacheZone.name
485			offset = l.cacheZone.offset
486		} else {
487			name, offset, _, _ = l.lookup(sec)
488		}
489		sec += int64(offset)
490	} else {
491		name = "UTC"
492	}
493	abs = uint64(sec + (unixToInternal + internalToAbsolute))
494	return
495}
496
497// Date returns the year, month, and day in which t occurs.
498func (t Time) Date() (year int, month Month, day int) {
499	year, month, day, _ = t.date(true)
500	return
501}
502
503// Year returns the year in which t occurs.
504func (t Time) Year() int {
505	year, _, _, _ := t.date(false)
506	return year
507}
508
509// Month returns the month of the year specified by t.
510func (t Time) Month() Month {
511	_, month, _, _ := t.date(true)
512	return month
513}
514
515// Day returns the day of the month specified by t.
516func (t Time) Day() int {
517	_, _, day, _ := t.date(true)
518	return day
519}
520
521// Weekday returns the day of the week specified by t.
522func (t Time) Weekday() Weekday {
523	return absWeekday(t.abs())
524}
525
526// absWeekday is like Weekday but operates on an absolute time.
527func absWeekday(abs uint64) Weekday {
528	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
529	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
530	return Weekday(int(sec) / secondsPerDay)
531}
532
533// ISOWeek returns the ISO 8601 year and week number in which t occurs.
534// Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
535// week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
536// of year n+1.
537func (t Time) ISOWeek() (year, week int) {
538	year, month, day, yday := t.date(true)
539	wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
540	const (
541		Mon int = iota
542		Tue
543		Wed
544		Thu
545		Fri
546		Sat
547		Sun
548	)
549
550	// Calculate week as number of Mondays in year up to
551	// and including today, plus 1 because the first week is week 0.
552	// Putting the + 1 inside the numerator as a + 7 keeps the
553	// numerator from being negative, which would cause it to
554	// round incorrectly.
555	week = (yday - wday + 7) / 7
556
557	// The week number is now correct under the assumption
558	// that the first Monday of the year is in week 1.
559	// If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
560	// is actually in week 2.
561	jan1wday := (wday - yday + 7*53) % 7
562	if Tue <= jan1wday && jan1wday <= Thu {
563		week++
564	}
565
566	// If the week number is still 0, we're in early January but in
567	// the last week of last year.
568	if week == 0 {
569		year--
570		week = 52
571		// A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
572		// meaning Jan 1 of the next year is a Friday
573		// or it was a leap year and Jan 1 of the next year is a Saturday.
574		if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
575			week++
576		}
577	}
578
579	// December 29 to 31 are in week 1 of next year if
580	// they are after the last Thursday of the year and
581	// December 31 is a Monday, Tuesday, or Wednesday.
582	if month == December && day >= 29 && wday < Thu {
583		if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
584			year++
585			week = 1
586		}
587	}
588
589	return
590}
591
592// Clock returns the hour, minute, and second within the day specified by t.
593func (t Time) Clock() (hour, min, sec int) {
594	return absClock(t.abs())
595}
596
597// absClock is like clock but operates on an absolute time.
598func absClock(abs uint64) (hour, min, sec int) {
599	sec = int(abs % secondsPerDay)
600	hour = sec / secondsPerHour
601	sec -= hour * secondsPerHour
602	min = sec / secondsPerMinute
603	sec -= min * secondsPerMinute
604	return
605}
606
607// Hour returns the hour within the day specified by t, in the range [0, 23].
608func (t Time) Hour() int {
609	return int(t.abs()%secondsPerDay) / secondsPerHour
610}
611
612// Minute returns the minute offset within the hour specified by t, in the range [0, 59].
613func (t Time) Minute() int {
614	return int(t.abs()%secondsPerHour) / secondsPerMinute
615}
616
617// Second returns the second offset within the minute specified by t, in the range [0, 59].
618func (t Time) Second() int {
619	return int(t.abs() % secondsPerMinute)
620}
621
622// Nanosecond returns the nanosecond offset within the second specified by t,
623// in the range [0, 999999999].
624func (t Time) Nanosecond() int {
625	return int(t.nsec())
626}
627
628// YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
629// and [1,366] in leap years.
630func (t Time) YearDay() int {
631	_, _, _, yday := t.date(false)
632	return yday + 1
633}
634
635// A Duration represents the elapsed time between two instants
636// as an int64 nanosecond count. The representation limits the
637// largest representable duration to approximately 290 years.
638type Duration int64
639
640const (
641	minDuration Duration = -1 << 63
642	maxDuration Duration = 1<<63 - 1
643)
644
645// Common durations. There is no definition for units of Day or larger
646// to avoid confusion across daylight savings time zone transitions.
647//
648// To count the number of units in a Duration, divide:
649//	second := time.Second
650//	fmt.Print(int64(second/time.Millisecond)) // prints 1000
651//
652// To convert an integer number of units to a Duration, multiply:
653//	seconds := 10
654//	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
655//
656const (
657	Nanosecond  Duration = 1
658	Microsecond          = 1000 * Nanosecond
659	Millisecond          = 1000 * Microsecond
660	Second               = 1000 * Millisecond
661	Minute               = 60 * Second
662	Hour                 = 60 * Minute
663)
664
665// String returns a string representing the duration in the form "72h3m0.5s".
666// Leading zero units are omitted. As a special case, durations less than one
667// second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
668// that the leading digit is non-zero. The zero duration formats as 0s.
669func (d Duration) String() string {
670	// Largest time is 2540400h10m10.000000000s
671	var buf [32]byte
672	w := len(buf)
673
674	u := uint64(d)
675	neg := d < 0
676	if neg {
677		u = -u
678	}
679
680	if u < uint64(Second) {
681		// Special case: if duration is smaller than a second,
682		// use smaller units, like 1.2ms
683		var prec int
684		w--
685		buf[w] = 's'
686		w--
687		switch {
688		case u == 0:
689			return "0s"
690		case u < uint64(Microsecond):
691			// print nanoseconds
692			prec = 0
693			buf[w] = 'n'
694		case u < uint64(Millisecond):
695			// print microseconds
696			prec = 3
697			// U+00B5 'µ' micro sign == 0xC2 0xB5
698			w-- // Need room for two bytes.
699			copy(buf[w:], "µ")
700		default:
701			// print milliseconds
702			prec = 6
703			buf[w] = 'm'
704		}
705		w, u = fmtFrac(buf[:w], u, prec)
706		w = fmtInt(buf[:w], u)
707	} else {
708		w--
709		buf[w] = 's'
710
711		w, u = fmtFrac(buf[:w], u, 9)
712
713		// u is now integer seconds
714		w = fmtInt(buf[:w], u%60)
715		u /= 60
716
717		// u is now integer minutes
718		if u > 0 {
719			w--
720			buf[w] = 'm'
721			w = fmtInt(buf[:w], u%60)
722			u /= 60
723
724			// u is now integer hours
725			// Stop at hours because days can be different lengths.
726			if u > 0 {
727				w--
728				buf[w] = 'h'
729				w = fmtInt(buf[:w], u)
730			}
731		}
732	}
733
734	if neg {
735		w--
736		buf[w] = '-'
737	}
738
739	return string(buf[w:])
740}
741
742// fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
743// tail of buf, omitting trailing zeros. It omits the decimal
744// point too when the fraction is 0. It returns the index where the
745// output bytes begin and the value v/10**prec.
746func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
747	// Omit trailing zeros up to and including decimal point.
748	w := len(buf)
749	print := false
750	for i := 0; i < prec; i++ {
751		digit := v % 10
752		print = print || digit != 0
753		if print {
754			w--
755			buf[w] = byte(digit) + '0'
756		}
757		v /= 10
758	}
759	if print {
760		w--
761		buf[w] = '.'
762	}
763	return w, v
764}
765
766// fmtInt formats v into the tail of buf.
767// It returns the index where the output begins.
768func fmtInt(buf []byte, v uint64) int {
769	w := len(buf)
770	if v == 0 {
771		w--
772		buf[w] = '0'
773	} else {
774		for v > 0 {
775			w--
776			buf[w] = byte(v%10) + '0'
777			v /= 10
778		}
779	}
780	return w
781}
782
783// Nanoseconds returns the duration as an integer nanosecond count.
784func (d Duration) Nanoseconds() int64 { return int64(d) }
785
786// Microseconds returns the duration as an integer microsecond count.
787func (d Duration) Microseconds() int64 { return int64(d) / 1e3 }
788
789// Milliseconds returns the duration as an integer millisecond count.
790func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 }
791
792// These methods return float64 because the dominant
793// use case is for printing a floating point number like 1.5s, and
794// a truncation to integer would make them not useful in those cases.
795// Splitting the integer and fraction ourselves guarantees that
796// converting the returned float64 to an integer rounds the same
797// way that a pure integer conversion would have, even in cases
798// where, say, float64(d.Nanoseconds())/1e9 would have rounded
799// differently.
800
801// Seconds returns the duration as a floating point number of seconds.
802func (d Duration) Seconds() float64 {
803	sec := d / Second
804	nsec := d % Second
805	return float64(sec) + float64(nsec)/1e9
806}
807
808// Minutes returns the duration as a floating point number of minutes.
809func (d Duration) Minutes() float64 {
810	min := d / Minute
811	nsec := d % Minute
812	return float64(min) + float64(nsec)/(60*1e9)
813}
814
815// Hours returns the duration as a floating point number of hours.
816func (d Duration) Hours() float64 {
817	hour := d / Hour
818	nsec := d % Hour
819	return float64(hour) + float64(nsec)/(60*60*1e9)
820}
821
822// Truncate returns the result of rounding d toward zero to a multiple of m.
823// If m <= 0, Truncate returns d unchanged.
824func (d Duration) Truncate(m Duration) Duration {
825	if m <= 0 {
826		return d
827	}
828	return d - d%m
829}
830
831// lessThanHalf reports whether x+x < y but avoids overflow,
832// assuming x and y are both positive (Duration is signed).
833func lessThanHalf(x, y Duration) bool {
834	return uint64(x)+uint64(x) < uint64(y)
835}
836
837// Round returns the result of rounding d to the nearest multiple of m.
838// The rounding behavior for halfway values is to round away from zero.
839// If the result exceeds the maximum (or minimum)
840// value that can be stored in a Duration,
841// Round returns the maximum (or minimum) duration.
842// If m <= 0, Round returns d unchanged.
843func (d Duration) Round(m Duration) Duration {
844	if m <= 0 {
845		return d
846	}
847	r := d % m
848	if d < 0 {
849		r = -r
850		if lessThanHalf(r, m) {
851			return d + r
852		}
853		if d1 := d - m + r; d1 < d {
854			return d1
855		}
856		return minDuration // overflow
857	}
858	if lessThanHalf(r, m) {
859		return d - r
860	}
861	if d1 := d + m - r; d1 > d {
862		return d1
863	}
864	return maxDuration // overflow
865}
866
867// Add returns the time t+d.
868func (t Time) Add(d Duration) Time {
869	dsec := int64(d / 1e9)
870	nsec := t.nsec() + int32(d%1e9)
871	if nsec >= 1e9 {
872		dsec++
873		nsec -= 1e9
874	} else if nsec < 0 {
875		dsec--
876		nsec += 1e9
877	}
878	t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
879	t.addSec(dsec)
880	if t.wall&hasMonotonic != 0 {
881		te := t.ext + int64(d)
882		if d < 0 && te > t.ext || d > 0 && te < t.ext {
883			// Monotonic clock reading now out of range; degrade to wall-only.
884			t.stripMono()
885		} else {
886			t.ext = te
887		}
888	}
889	return t
890}
891
892// Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
893// value that can be stored in a Duration, the maximum (or minimum) duration
894// will be returned.
895// To compute t-d for a duration d, use t.Add(-d).
896func (t Time) Sub(u Time) Duration {
897	if t.wall&u.wall&hasMonotonic != 0 {
898		te := t.ext
899		ue := u.ext
900		d := Duration(te - ue)
901		if d < 0 && te > ue {
902			return maxDuration // t - u is positive out of range
903		}
904		if d > 0 && te < ue {
905			return minDuration // t - u is negative out of range
906		}
907		return d
908	}
909	d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
910	// Check for overflow or underflow.
911	switch {
912	case u.Add(d).Equal(t):
913		return d // d is correct
914	case t.Before(u):
915		return minDuration // t - u is negative out of range
916	default:
917		return maxDuration // t - u is positive out of range
918	}
919}
920
921// Since returns the time elapsed since t.
922// It is shorthand for time.Now().Sub(t).
923func Since(t Time) Duration {
924	var now Time
925	if t.wall&hasMonotonic != 0 {
926		// Common case optimization: if t has monotonic time, then Sub will use only it.
927		now = Time{hasMonotonic, runtimeNano() - startNano, nil}
928	} else {
929		now = Now()
930	}
931	return now.Sub(t)
932}
933
934// Until returns the duration until t.
935// It is shorthand for t.Sub(time.Now()).
936func Until(t Time) Duration {
937	var now Time
938	if t.wall&hasMonotonic != 0 {
939		// Common case optimization: if t has monotonic time, then Sub will use only it.
940		now = Time{hasMonotonic, runtimeNano() - startNano, nil}
941	} else {
942		now = Now()
943	}
944	return t.Sub(now)
945}
946
947// AddDate returns the time corresponding to adding the
948// given number of years, months, and days to t.
949// For example, AddDate(-1, 2, 3) applied to January 1, 2011
950// returns March 4, 2010.
951//
952// AddDate normalizes its result in the same way that Date does,
953// so, for example, adding one month to October 31 yields
954// December 1, the normalized form for November 31.
955func (t Time) AddDate(years int, months int, days int) Time {
956	year, month, day := t.Date()
957	hour, min, sec := t.Clock()
958	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
959}
960
961const (
962	secondsPerMinute = 60
963	secondsPerHour   = 60 * secondsPerMinute
964	secondsPerDay    = 24 * secondsPerHour
965	secondsPerWeek   = 7 * secondsPerDay
966	daysPer400Years  = 365*400 + 97
967	daysPer100Years  = 365*100 + 24
968	daysPer4Years    = 365*4 + 1
969)
970
971// date computes the year, day of year, and when full=true,
972// the month and day in which t occurs.
973func (t Time) date(full bool) (year int, month Month, day int, yday int) {
974	return absDate(t.abs(), full)
975}
976
977// absDate is like date but operates on an absolute time.
978func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
979	// Split into time and day.
980	d := abs / secondsPerDay
981
982	// Account for 400 year cycles.
983	n := d / daysPer400Years
984	y := 400 * n
985	d -= daysPer400Years * n
986
987	// Cut off 100-year cycles.
988	// The last cycle has one extra leap year, so on the last day
989	// of that year, day / daysPer100Years will be 4 instead of 3.
990	// Cut it back down to 3 by subtracting n>>2.
991	n = d / daysPer100Years
992	n -= n >> 2
993	y += 100 * n
994	d -= daysPer100Years * n
995
996	// Cut off 4-year cycles.
997	// The last cycle has a missing leap year, which does not
998	// affect the computation.
999	n = d / daysPer4Years
1000	y += 4 * n
1001	d -= daysPer4Years * n
1002
1003	// Cut off years within a 4-year cycle.
1004	// The last year is a leap year, so on the last day of that year,
1005	// day / 365 will be 4 instead of 3. Cut it back down to 3
1006	// by subtracting n>>2.
1007	n = d / 365
1008	n -= n >> 2
1009	y += n
1010	d -= 365 * n
1011
1012	year = int(int64(y) + absoluteZeroYear)
1013	yday = int(d)
1014
1015	if !full {
1016		return
1017	}
1018
1019	day = yday
1020	if isLeap(year) {
1021		// Leap year
1022		switch {
1023		case day > 31+29-1:
1024			// After leap day; pretend it wasn't there.
1025			day--
1026		case day == 31+29-1:
1027			// Leap day.
1028			month = February
1029			day = 29
1030			return
1031		}
1032	}
1033
1034	// Estimate month on assumption that every month has 31 days.
1035	// The estimate may be too low by at most one month, so adjust.
1036	month = Month(day / 31)
1037	end := int(daysBefore[month+1])
1038	var begin int
1039	if day >= end {
1040		month++
1041		begin = end
1042	} else {
1043		begin = int(daysBefore[month])
1044	}
1045
1046	month++ // because January is 1
1047	day = day - begin + 1
1048	return
1049}
1050
1051// daysBefore[m] counts the number of days in a non-leap year
1052// before month m begins. There is an entry for m=12, counting
1053// the number of days before January of next year (365).
1054var daysBefore = [...]int32{
1055	0,
1056	31,
1057	31 + 28,
1058	31 + 28 + 31,
1059	31 + 28 + 31 + 30,
1060	31 + 28 + 31 + 30 + 31,
1061	31 + 28 + 31 + 30 + 31 + 30,
1062	31 + 28 + 31 + 30 + 31 + 30 + 31,
1063	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
1064	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
1065	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
1066	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
1067	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
1068}
1069
1070func daysIn(m Month, year int) int {
1071	if m == February && isLeap(year) {
1072		return 29
1073	}
1074	return int(daysBefore[m] - daysBefore[m-1])
1075}
1076
1077// Provided by package runtime.
1078func now() (sec int64, nsec int32, mono int64)
1079
1080// runtimeNano returns the current value of the runtime clock in nanoseconds.
1081//go:linkname runtimeNano runtime.nanotime
1082func runtimeNano() int64
1083
1084// Monotonic times are reported as offsets from startNano.
1085// We initialize startNano to runtimeNano() - 1 so that on systems where
1086// monotonic time resolution is fairly low (e.g. Windows 2008
1087// which appears to have a default resolution of 15ms),
1088// we avoid ever reporting a monotonic time of 0.
1089// (Callers may want to use 0 as "time not set".)
1090var startNano int64 = runtimeNano() - 1
1091
1092// Now returns the current local time.
1093func Now() Time {
1094	sec, nsec, mono := now()
1095	mono -= startNano
1096	sec += unixToInternal - minWall
1097	if uint64(sec)>>33 != 0 {
1098		return Time{uint64(nsec), sec + minWall, Local}
1099	}
1100	return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local}
1101}
1102
1103func unixTime(sec int64, nsec int32) Time {
1104	return Time{uint64(nsec), sec + unixToInternal, Local}
1105}
1106
1107// UTC returns t with the location set to UTC.
1108func (t Time) UTC() Time {
1109	t.setLoc(&utcLoc)
1110	return t
1111}
1112
1113// Local returns t with the location set to local time.
1114func (t Time) Local() Time {
1115	t.setLoc(Local)
1116	return t
1117}
1118
1119// In returns a copy of t representing the same time instant, but
1120// with the copy's location information set to loc for display
1121// purposes.
1122//
1123// In panics if loc is nil.
1124func (t Time) In(loc *Location) Time {
1125	if loc == nil {
1126		panic("time: missing Location in call to Time.In")
1127	}
1128	t.setLoc(loc)
1129	return t
1130}
1131
1132// Location returns the time zone information associated with t.
1133func (t Time) Location() *Location {
1134	l := t.loc
1135	if l == nil {
1136		l = UTC
1137	}
1138	return l
1139}
1140
1141// Zone computes the time zone in effect at time t, returning the abbreviated
1142// name of the zone (such as "CET") and its offset in seconds east of UTC.
1143func (t Time) Zone() (name string, offset int) {
1144	name, offset, _, _ = t.loc.lookup(t.unixSec())
1145	return
1146}
1147
1148// Unix returns t as a Unix time, the number of seconds elapsed
1149// since January 1, 1970 UTC. The result does not depend on the
1150// location associated with t.
1151// Unix-like operating systems often record time as a 32-bit
1152// count of seconds, but since the method here returns a 64-bit
1153// value it is valid for billions of years into the past or future.
1154func (t Time) Unix() int64 {
1155	return t.unixSec()
1156}
1157
1158// UnixNano returns t as a Unix time, the number of nanoseconds elapsed
1159// since January 1, 1970 UTC. The result is undefined if the Unix time
1160// in nanoseconds cannot be represented by an int64 (a date before the year
1161// 1678 or after 2262). Note that this means the result of calling UnixNano
1162// on the zero Time is undefined. The result does not depend on the
1163// location associated with t.
1164func (t Time) UnixNano() int64 {
1165	return (t.unixSec())*1e9 + int64(t.nsec())
1166}
1167
1168const timeBinaryVersion byte = 1
1169
1170// MarshalBinary implements the encoding.BinaryMarshaler interface.
1171func (t Time) MarshalBinary() ([]byte, error) {
1172	var offsetMin int16 // minutes east of UTC. -1 is UTC.
1173
1174	if t.Location() == UTC {
1175		offsetMin = -1
1176	} else {
1177		_, offset := t.Zone()
1178		if offset%60 != 0 {
1179			return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
1180		}
1181		offset /= 60
1182		if offset < -32768 || offset == -1 || offset > 32767 {
1183			return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
1184		}
1185		offsetMin = int16(offset)
1186	}
1187
1188	sec := t.sec()
1189	nsec := t.nsec()
1190	enc := []byte{
1191		timeBinaryVersion, // byte 0 : version
1192		byte(sec >> 56),   // bytes 1-8: seconds
1193		byte(sec >> 48),
1194		byte(sec >> 40),
1195		byte(sec >> 32),
1196		byte(sec >> 24),
1197		byte(sec >> 16),
1198		byte(sec >> 8),
1199		byte(sec),
1200		byte(nsec >> 24), // bytes 9-12: nanoseconds
1201		byte(nsec >> 16),
1202		byte(nsec >> 8),
1203		byte(nsec),
1204		byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
1205		byte(offsetMin),
1206	}
1207
1208	return enc, nil
1209}
1210
1211// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
1212func (t *Time) UnmarshalBinary(data []byte) error {
1213	buf := data
1214	if len(buf) == 0 {
1215		return errors.New("Time.UnmarshalBinary: no data")
1216	}
1217
1218	if buf[0] != timeBinaryVersion {
1219		return errors.New("Time.UnmarshalBinary: unsupported version")
1220	}
1221
1222	if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
1223		return errors.New("Time.UnmarshalBinary: invalid length")
1224	}
1225
1226	buf = buf[1:]
1227	sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
1228		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
1229
1230	buf = buf[8:]
1231	nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
1232
1233	buf = buf[4:]
1234	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
1235
1236	*t = Time{}
1237	t.wall = uint64(nsec)
1238	t.ext = sec
1239
1240	if offset == -1*60 {
1241		t.setLoc(&utcLoc)
1242	} else if _, localoff, _, _ := Local.lookup(t.unixSec()); offset == localoff {
1243		t.setLoc(Local)
1244	} else {
1245		t.setLoc(FixedZone("", offset))
1246	}
1247
1248	return nil
1249}
1250
1251// TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
1252// The same semantics will be provided by the generic MarshalBinary, MarshalText,
1253// UnmarshalBinary, UnmarshalText.
1254
1255// GobEncode implements the gob.GobEncoder interface.
1256func (t Time) GobEncode() ([]byte, error) {
1257	return t.MarshalBinary()
1258}
1259
1260// GobDecode implements the gob.GobDecoder interface.
1261func (t *Time) GobDecode(data []byte) error {
1262	return t.UnmarshalBinary(data)
1263}
1264
1265// MarshalJSON implements the json.Marshaler interface.
1266// The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
1267func (t Time) MarshalJSON() ([]byte, error) {
1268	if y := t.Year(); y < 0 || y >= 10000 {
1269		// RFC 3339 is clear that years are 4 digits exactly.
1270		// See golang.org/issue/4556#c15 for more discussion.
1271		return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
1272	}
1273
1274	b := make([]byte, 0, len(RFC3339Nano)+2)
1275	b = append(b, '"')
1276	b = t.AppendFormat(b, RFC3339Nano)
1277	b = append(b, '"')
1278	return b, nil
1279}
1280
1281// UnmarshalJSON implements the json.Unmarshaler interface.
1282// The time is expected to be a quoted string in RFC 3339 format.
1283func (t *Time) UnmarshalJSON(data []byte) error {
1284	// Ignore null, like in the main JSON package.
1285	if string(data) == "null" {
1286		return nil
1287	}
1288	// Fractional seconds are handled implicitly by Parse.
1289	var err error
1290	*t, err = Parse(`"`+RFC3339+`"`, string(data))
1291	return err
1292}
1293
1294// MarshalText implements the encoding.TextMarshaler interface.
1295// The time is formatted in RFC 3339 format, with sub-second precision added if present.
1296func (t Time) MarshalText() ([]byte, error) {
1297	if y := t.Year(); y < 0 || y >= 10000 {
1298		return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
1299	}
1300
1301	b := make([]byte, 0, len(RFC3339Nano))
1302	return t.AppendFormat(b, RFC3339Nano), nil
1303}
1304
1305// UnmarshalText implements the encoding.TextUnmarshaler interface.
1306// The time is expected to be in RFC 3339 format.
1307func (t *Time) UnmarshalText(data []byte) error {
1308	// Fractional seconds are handled implicitly by Parse.
1309	var err error
1310	*t, err = Parse(RFC3339, string(data))
1311	return err
1312}
1313
1314// Unix returns the local Time corresponding to the given Unix time,
1315// sec seconds and nsec nanoseconds since January 1, 1970 UTC.
1316// It is valid to pass nsec outside the range [0, 999999999].
1317// Not all sec values have a corresponding time value. One such
1318// value is 1<<63-1 (the largest int64 value).
1319func Unix(sec int64, nsec int64) Time {
1320	if nsec < 0 || nsec >= 1e9 {
1321		n := nsec / 1e9
1322		sec += n
1323		nsec -= n * 1e9
1324		if nsec < 0 {
1325			nsec += 1e9
1326			sec--
1327		}
1328	}
1329	return unixTime(sec, int32(nsec))
1330}
1331
1332func isLeap(year int) bool {
1333	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
1334}
1335
1336// norm returns nhi, nlo such that
1337//	hi * base + lo == nhi * base + nlo
1338//	0 <= nlo < base
1339func norm(hi, lo, base int) (nhi, nlo int) {
1340	if lo < 0 {
1341		n := (-lo-1)/base + 1
1342		hi -= n
1343		lo += n * base
1344	}
1345	if lo >= base {
1346		n := lo / base
1347		hi += n
1348		lo -= n * base
1349	}
1350	return hi, lo
1351}
1352
1353// Date returns the Time corresponding to
1354//	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
1355// in the appropriate zone for that time in the given location.
1356//
1357// The month, day, hour, min, sec, and nsec values may be outside
1358// their usual ranges and will be normalized during the conversion.
1359// For example, October 32 converts to November 1.
1360//
1361// A daylight savings time transition skips or repeats times.
1362// For example, in the United States, March 13, 2011 2:15am never occurred,
1363// while November 6, 2011 1:15am occurred twice. In such cases, the
1364// choice of time zone, and therefore the time, is not well-defined.
1365// Date returns a time that is correct in one of the two zones involved
1366// in the transition, but it does not guarantee which.
1367//
1368// Date panics if loc is nil.
1369func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
1370	if loc == nil {
1371		panic("time: missing Location in call to Date")
1372	}
1373
1374	// Normalize month, overflowing into year.
1375	m := int(month) - 1
1376	year, m = norm(year, m, 12)
1377	month = Month(m) + 1
1378
1379	// Normalize nsec, sec, min, hour, overflowing into day.
1380	sec, nsec = norm(sec, nsec, 1e9)
1381	min, sec = norm(min, sec, 60)
1382	hour, min = norm(hour, min, 60)
1383	day, hour = norm(day, hour, 24)
1384
1385	y := uint64(int64(year) - absoluteZeroYear)
1386
1387	// Compute days since the absolute epoch.
1388
1389	// Add in days from 400-year cycles.
1390	n := y / 400
1391	y -= 400 * n
1392	d := daysPer400Years * n
1393
1394	// Add in 100-year cycles.
1395	n = y / 100
1396	y -= 100 * n
1397	d += daysPer100Years * n
1398
1399	// Add in 4-year cycles.
1400	n = y / 4
1401	y -= 4 * n
1402	d += daysPer4Years * n
1403
1404	// Add in non-leap years.
1405	n = y
1406	d += 365 * n
1407
1408	// Add in days before this month.
1409	d += uint64(daysBefore[month-1])
1410	if isLeap(year) && month >= March {
1411		d++ // February 29
1412	}
1413
1414	// Add in days before today.
1415	d += uint64(day - 1)
1416
1417	// Add in time elapsed today.
1418	abs := d * secondsPerDay
1419	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
1420
1421	unix := int64(abs) + (absoluteToInternal + internalToUnix)
1422
1423	// Look for zone offset for t, so we can adjust to UTC.
1424	// The lookup function expects UTC, so we pass t in the
1425	// hope that it will not be too close to a zone transition,
1426	// and then adjust if it is.
1427	_, offset, start, end := loc.lookup(unix)
1428	if offset != 0 {
1429		switch utc := unix - int64(offset); {
1430		case utc < start:
1431			_, offset, _, _ = loc.lookup(start - 1)
1432		case utc >= end:
1433			_, offset, _, _ = loc.lookup(end)
1434		}
1435		unix -= int64(offset)
1436	}
1437
1438	t := unixTime(unix, int32(nsec))
1439	t.setLoc(loc)
1440	return t
1441}
1442
1443// Truncate returns the result of rounding t down to a multiple of d (since the zero time).
1444// If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
1445//
1446// Truncate operates on the time as an absolute duration since the
1447// zero time; it does not operate on the presentation form of the
1448// time. Thus, Truncate(Hour) may return a time with a non-zero
1449// minute, depending on the time's Location.
1450func (t Time) Truncate(d Duration) Time {
1451	t.stripMono()
1452	if d <= 0 {
1453		return t
1454	}
1455	_, r := div(t, d)
1456	return t.Add(-r)
1457}
1458
1459// Round returns the result of rounding t to the nearest multiple of d (since the zero time).
1460// The rounding behavior for halfway values is to round up.
1461// If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
1462//
1463// Round operates on the time as an absolute duration since the
1464// zero time; it does not operate on the presentation form of the
1465// time. Thus, Round(Hour) may return a time with a non-zero
1466// minute, depending on the time's Location.
1467func (t Time) Round(d Duration) Time {
1468	t.stripMono()
1469	if d <= 0 {
1470		return t
1471	}
1472	_, r := div(t, d)
1473	if lessThanHalf(r, d) {
1474		return t.Add(-r)
1475	}
1476	return t.Add(d - r)
1477}
1478
1479// div divides t by d and returns the quotient parity and remainder.
1480// We don't use the quotient parity anymore (round half up instead of round to even)
1481// but it's still here in case we change our minds.
1482func div(t Time, d Duration) (qmod2 int, r Duration) {
1483	neg := false
1484	nsec := t.nsec()
1485	sec := t.sec()
1486	if sec < 0 {
1487		// Operate on absolute value.
1488		neg = true
1489		sec = -sec
1490		nsec = -nsec
1491		if nsec < 0 {
1492			nsec += 1e9
1493			sec-- // sec >= 1 before the -- so safe
1494		}
1495	}
1496
1497	switch {
1498	// Special case: 2d divides 1 second.
1499	case d < Second && Second%(d+d) == 0:
1500		qmod2 = int(nsec/int32(d)) & 1
1501		r = Duration(nsec % int32(d))
1502
1503	// Special case: d is a multiple of 1 second.
1504	case d%Second == 0:
1505		d1 := int64(d / Second)
1506		qmod2 = int(sec/d1) & 1
1507		r = Duration(sec%d1)*Second + Duration(nsec)
1508
1509	// General case.
1510	// This could be faster if more cleverness were applied,
1511	// but it's really only here to avoid special case restrictions in the API.
1512	// No one will care about these cases.
1513	default:
1514		// Compute nanoseconds as 128-bit number.
1515		sec := uint64(sec)
1516		tmp := (sec >> 32) * 1e9
1517		u1 := tmp >> 32
1518		u0 := tmp << 32
1519		tmp = (sec & 0xFFFFFFFF) * 1e9
1520		u0x, u0 := u0, u0+tmp
1521		if u0 < u0x {
1522			u1++
1523		}
1524		u0x, u0 = u0, u0+uint64(nsec)
1525		if u0 < u0x {
1526			u1++
1527		}
1528
1529		// Compute remainder by subtracting r<<k for decreasing k.
1530		// Quotient parity is whether we subtract on last round.
1531		d1 := uint64(d)
1532		for d1>>63 != 1 {
1533			d1 <<= 1
1534		}
1535		d0 := uint64(0)
1536		for {
1537			qmod2 = 0
1538			if u1 > d1 || u1 == d1 && u0 >= d0 {
1539				// subtract
1540				qmod2 = 1
1541				u0x, u0 = u0, u0-d0
1542				if u0 > u0x {
1543					u1--
1544				}
1545				u1 -= d1
1546			}
1547			if d1 == 0 && d0 == uint64(d) {
1548				break
1549			}
1550			d0 >>= 1
1551			d0 |= (d1 & 1) << 63
1552			d1 >>= 1
1553		}
1554		r = Duration(u0)
1555	}
1556
1557	if neg && r != 0 {
1558		// If input was negative and not an exact multiple of d, we computed q, r such that
1559		//	q*d + r = -t
1560		// But the right answers are given by -(q-1), d-r:
1561		//	q*d + r = -t
1562		//	-q*d - r = t
1563		//	-(q-1)*d + (d - r) = t
1564		qmod2 ^= 1
1565		r = d - r
1566	}
1567	return
1568}
1569