1 /* Implementation of gamma function according to ISO C.
2    Copyright (C) 1997-2018 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
5 		  Jakub Jelinek <jj@ultra.linux.cz, 1999.
6 
7    The GNU C Library is free software; you can redistribute it and/or
8    modify it under the terms of the GNU Lesser General Public
9    License as published by the Free Software Foundation; either
10    version 2.1 of the License, or (at your option) any later version.
11 
12    The GNU C Library is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15    Lesser General Public License for more details.
16 
17    You should have received a copy of the GNU Lesser General Public
18    License along with the GNU C Library; if not, see
19    <http://www.gnu.org/licenses/>.  */
20 
21 #include "quadmath-imp.h"
22 __float128
tgammaq(__float128 x)23 tgammaq (__float128 x)
24 {
25   int sign;
26   __float128 ret;
27   ret = __quadmath_gammaq_r (x, &sign);
28   return sign < 0 ? -ret : ret;
29 }
30 
31 /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
32    approximation to gamma function.  */
33 
34 static const __float128 gamma_coeff[] =
35   {
36     0x1.5555555555555555555555555555p-4Q,
37     -0xb.60b60b60b60b60b60b60b60b60b8p-12Q,
38     0x3.4034034034034034034034034034p-12Q,
39     -0x2.7027027027027027027027027028p-12Q,
40     0x3.72a3c5631fe46ae1d4e700dca8f2p-12Q,
41     -0x7.daac36664f1f207daac36664f1f4p-12Q,
42     0x1.a41a41a41a41a41a41a41a41a41ap-8Q,
43     -0x7.90a1b2c3d4e5f708192a3b4c5d7p-8Q,
44     0x2.dfd2c703c0cfff430edfd2c703cp-4Q,
45     -0x1.6476701181f39edbdb9ce625987dp+0Q,
46     0xd.672219167002d3a7a9c886459cp+0Q,
47     -0x9.cd9292e6660d55b3f712eb9e07c8p+4Q,
48     0x8.911a740da740da740da740da741p+8Q,
49     -0x8.d0cc570e255bf59ff6eec24b49p+12Q,
50   };
51 
52 #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
53 
54 /* Return gamma (X), for positive X less than 1775, in the form R *
55    2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
56    avoid overflow or underflow in intermediate calculations.  */
57 
58 static __float128
gammal_positive(__float128 x,int * exp2_adj)59 gammal_positive (__float128 x, int *exp2_adj)
60 {
61   int local_signgam;
62   if (x < 0.5Q)
63     {
64       *exp2_adj = 0;
65       return expq (__quadmath_lgammaq_r (x + 1, &local_signgam)) / x;
66     }
67   else if (x <= 1.5Q)
68     {
69       *exp2_adj = 0;
70       return expq (__quadmath_lgammaq_r (x, &local_signgam));
71     }
72   else if (x < 12.5Q)
73     {
74       /* Adjust into the range for using exp (lgamma).  */
75       *exp2_adj = 0;
76       __float128 n = ceilq (x - 1.5Q);
77       __float128 x_adj = x - n;
78       __float128 eps;
79       __float128 prod = __quadmath_gamma_productq (x_adj, 0, n, &eps);
80       return (expq (__quadmath_lgammaq_r (x_adj, &local_signgam))
81 	      * prod * (1 + eps));
82     }
83   else
84     {
85       __float128 eps = 0;
86       __float128 x_eps = 0;
87       __float128 x_adj = x;
88       __float128 prod = 1;
89       if (x < 24)
90 	{
91 	  /* Adjust into the range for applying Stirling's
92 	     approximation.  */
93 	  __float128 n = ceilq (24 - x);
94 	  x_adj = x + n;
95 	  x_eps = (x - (x_adj - n));
96 	  prod = __quadmath_gamma_productq (x_adj - n, x_eps, n, &eps);
97 	}
98       /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
99 	 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
100 	 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
101 	 factored out.  */
102       __float128 exp_adj = -eps;
103       __float128 x_adj_int = roundq (x_adj);
104       __float128 x_adj_frac = x_adj - x_adj_int;
105       int x_adj_log2;
106       __float128 x_adj_mant = frexpq (x_adj, &x_adj_log2);
107       if (x_adj_mant < M_SQRT1_2q)
108 	{
109 	  x_adj_log2--;
110 	  x_adj_mant *= 2;
111 	}
112       *exp2_adj = x_adj_log2 * (int) x_adj_int;
113       __float128 ret = (powq (x_adj_mant, x_adj)
114 		       * exp2q (x_adj_log2 * x_adj_frac)
115 		       * expq (-x_adj)
116 		       * sqrtq (2 * M_PIq / x_adj)
117 		       / prod);
118       exp_adj += x_eps * logq (x_adj);
119       __float128 bsum = gamma_coeff[NCOEFF - 1];
120       __float128 x_adj2 = x_adj * x_adj;
121       for (size_t i = 1; i <= NCOEFF - 1; i++)
122 	bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
123       exp_adj += bsum / x_adj;
124       return ret + ret * expm1q (exp_adj);
125     }
126 }
127 
128 __float128
__quadmath_gammaq_r(__float128 x,int * signgamp)129 __quadmath_gammaq_r (__float128 x, int *signgamp)
130 {
131   int64_t hx;
132   uint64_t lx;
133   __float128 ret;
134 
135   GET_FLT128_WORDS64 (hx, lx, x);
136 
137   if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
138     {
139       /* Return value for x == 0 is Inf with divide by zero exception.  */
140       *signgamp = 0;
141       return 1.0 / x;
142     }
143   if (hx < 0 && (uint64_t) hx < 0xffff000000000000ULL && rintq (x) == x)
144     {
145       /* Return value for integer x < 0 is NaN with invalid exception.  */
146       *signgamp = 0;
147       return (x - x) / (x - x);
148     }
149   if (hx == 0xffff000000000000ULL && lx == 0)
150     {
151       /* x == -Inf.  According to ISO this is NaN.  */
152       *signgamp = 0;
153       return x - x;
154     }
155   if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL)
156     {
157       /* Positive infinity (return positive infinity) or NaN (return
158 	 NaN).  */
159       *signgamp = 0;
160       return x + x;
161     }
162 
163   if (x >= 1756)
164     {
165       /* Overflow.  */
166       *signgamp = 0;
167       return FLT128_MAX * FLT128_MAX;
168     }
169   else
170     {
171       SET_RESTORE_ROUNDF128 (FE_TONEAREST);
172       if (x > 0)
173 	{
174 	  *signgamp = 0;
175 	  int exp2_adj;
176 	  ret = gammal_positive (x, &exp2_adj);
177 	  ret = scalbnq (ret, exp2_adj);
178 	}
179       else if (x >= -FLT128_EPSILON / 4)
180 	{
181 	  *signgamp = 0;
182 	  ret = 1 / x;
183 	}
184       else
185 	{
186 	  __float128 tx = truncq (x);
187 	  *signgamp = (tx == 2 * truncq (tx / 2)) ? -1 : 1;
188 	  if (x <= -1775)
189 	    /* Underflow.  */
190 	    ret = FLT128_MIN * FLT128_MIN;
191 	  else
192 	    {
193 	      __float128 frac = tx - x;
194 	      if (frac > 0.5Q)
195 		frac = 1 - frac;
196 	      __float128 sinpix = (frac <= 0.25Q
197 				  ? sinq (M_PIq * frac)
198 				  : cosq (M_PIq * (0.5Q - frac)));
199 	      int exp2_adj;
200 	      ret = M_PIq / (-x * sinpix
201 			     * gammal_positive (-x, &exp2_adj));
202 	      ret = scalbnq (ret, -exp2_adj);
203 	      math_check_force_underflow_nonneg (ret);
204 	    }
205 	}
206     }
207   if (isinfq (ret) && x != 0)
208     {
209       if (*signgamp < 0)
210 	return -(-copysignq (FLT128_MAX, ret) * FLT128_MAX);
211       else
212 	return copysignq (FLT128_MAX, ret) * FLT128_MAX;
213     }
214   else if (ret == 0)
215     {
216       if (*signgamp < 0)
217 	return -(-copysignq (FLT128_MIN, ret) * FLT128_MIN);
218       else
219 	return copysignq (FLT128_MIN, ret) * FLT128_MIN;
220     }
221   else
222     return ret;
223 }
224