1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ U T I L                              --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26--  Package containing utility procedures used throughout the semantics
27
28with Atree;   use Atree;
29with Einfo;   use Einfo;
30with Exp_Tss; use Exp_Tss;
31with Namet;   use Namet;
32with Opt;     use Opt;
33with Snames;  use Snames;
34with Types;   use Types;
35with Uintp;   use Uintp;
36with Urealp;  use Urealp;
37
38package Sem_Util is
39
40   function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
41   --  The list of interfaces implemented by Typ. Empty if there are none,
42   --  including the cases where there can't be any because e.g. the type is
43   --  not tagged.
44
45   function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
46   --  Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
47   --  the given string argument, adding leading and trailing asterisks if they
48   --  are not already present.  Str_Lit is the static value of the pragma
49   --  argument.
50
51   procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
52   --  Add A to the list of access types to process when expanding the
53   --  freeze node of E.
54
55   procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
56   --  Given a block statement N, generate an internal E_Block label and make
57   --  it the identifier of the block. Id denotes the generated entity. If the
58   --  block already has an identifier, Id returns the entity of its label.
59
60   procedure Add_Global_Declaration (N : Node_Id);
61   --  These procedures adds a declaration N at the library level, to be
62   --  elaborated before any other code in the unit. It is used for example
63   --  for the entity that marks whether a unit has been elaborated. The
64   --  declaration is added to the Declarations list of the Aux_Decls_Node
65   --  for the current unit. The declarations are added in the current scope,
66   --  so the caller should push a new scope as required before the call.
67
68   function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
69   --  Returns the name of E adding Suffix
70
71   function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
72   --  Given two types, returns True if we are in Allow_Integer_Address mode
73   --  and one of the types is (a descendant of) System.Address (and this type
74   --  is private), and the other type is any integer type.
75
76   function Address_Value (N : Node_Id) return Node_Id;
77   --  Return the underlying value of the expression N of an address clause
78
79   function Addressable (V : Uint) return Boolean;
80   function Addressable (V : Int)  return Boolean;
81   pragma Inline (Addressable);
82   --  Returns True if the value of V is the word size or an addressable factor
83   --  of the word size (typically 8, 16, 32 or 64).
84
85   procedure Aggregate_Constraint_Checks
86     (Exp       : Node_Id;
87      Check_Typ : Entity_Id);
88   --  Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
89   --  and Check_Typ a constrained record type with discriminants, we generate
90   --  the appropriate discriminant checks. If Exp is an array aggregate then
91   --  emit the appropriate length checks. If Exp is a scalar type, or a string
92   --  literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
93   --  are performed at run time. Also used for expressions in the argument of
94   --  'Update, which shares some of the features of an aggregate.
95
96   function Alignment_In_Bits (E : Entity_Id) return Uint;
97   --  If the alignment of the type or object E is currently known to the
98   --  compiler, then this function returns the alignment value in bits.
99   --  Otherwise Uint_0 is returned, indicating that the alignment of the
100   --  entity is not yet known to the compiler.
101
102   function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
103   --  Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
104   --  Given a constraint or subtree of a constraint on a composite
105   --  subtype/object, returns True if there are no nonstatic constraints,
106   --  which might cause objects to be created with dynamic size.
107   --  Called for subtype declarations (including implicit ones created for
108   --  subtype indications in object declarations, as well as discriminated
109   --  record aggregate cases). For record aggregates, only records containing
110   --  discriminant-dependent arrays matter, because the discriminants must be
111   --  static when governing a variant part. Access discriminants are
112   --  irrelevant. Also called for array aggregates, but only named notation,
113   --  because those are the only dynamic cases.
114
115   procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
116   --  Recursive procedure to construct string for qualified name of enclosing
117   --  program unit. The qualification stops at an enclosing scope has no
118   --  source name (block or loop). If entity is a subprogram instance, skip
119   --  enclosing wrapper package. The name is appended to Buf.
120
121   procedure Append_Inherited_Subprogram (S : Entity_Id);
122   --  If the parent of the operation is declared in the visible part of
123   --  the current scope, the inherited operation is visible even though the
124   --  derived type that inherits the operation may be completed in the private
125   --  part of the current package.
126
127   procedure Apply_Compile_Time_Constraint_Error
128     (N      : Node_Id;
129      Msg    : String;
130      Reason : RT_Exception_Code;
131      Ent    : Entity_Id  := Empty;
132      Typ    : Entity_Id  := Empty;
133      Loc    : Source_Ptr := No_Location;
134      Rep    : Boolean    := True;
135      Warn   : Boolean    := False);
136   --  N is a subexpression that will raise Constraint_Error when evaluated
137   --  at run time. Msg is a message that explains the reason for raising the
138   --  exception. The last character is ? if the message is always a warning,
139   --  even in Ada 95, and is not a ? if the message represents an illegality
140   --  (because of violation of static expression rules) in Ada 95 (but not
141   --  in Ada 83). Typically this routine posts all messages at the Sloc of
142   --  node N. However, if Loc /= No_Location, Loc is the Sloc used to output
143   --  the message. After posting the appropriate message, and if the flag
144   --  Rep is set, this routine replaces the expression with an appropriate
145   --  N_Raise_Constraint_Error node using the given Reason code. This node
146   --  is then marked as being static if the original node is static, but
147   --  sets the flag Raises_Constraint_Error, preventing further evaluation.
148   --  The error message may contain a } or & insertion character. This
149   --  normally references Etype (N), unless the Ent argument is given
150   --  explicitly, in which case it is used instead. The type of the raise
151   --  node that is built is normally Etype (N), but if the Typ parameter
152   --  is present, this is used instead. Warn is normally False. If it is
153   --  True then the message is treated as a warning even though it does
154   --  not end with a ? (this is used when the caller wants to parameterize
155   --  whether an error or warning is given), or when the message should be
156   --  treated as a warning even when SPARK_Mode is On (which otherwise would
157   --  force an error).
158
159   function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
160   --  Given the entity of an abstract state or a variable, determine whether
161   --  Id is subject to external property Async_Readers and if it is, the
162   --  related expression evaluates to True.
163
164   function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
165   --  Given the entity of an abstract state or a variable, determine whether
166   --  Id is subject to external property Async_Writers and if it is, the
167   --  related expression evaluates to True.
168
169   function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
170   --  If at the point of declaration an array type has a private or limited
171   --  component, several array operations are not available on the type, and
172   --  the array type is flagged accordingly. If in the immediate scope of
173   --  the array type the component becomes non-private or non-limited, these
174   --  operations become available. This can happen if the scopes of both types
175   --  are open, and the scope of the array is not outside the scope of the
176   --  component.
177
178   procedure Bad_Attribute
179     (N    : Node_Id;
180      Nam  : Name_Id;
181      Warn : Boolean := False);
182   --  Called when node N is expected to contain a valid attribute name, and
183   --  Nam is found instead. If Warn is set True this is a warning, else this
184   --  is an error.
185
186   procedure Bad_Predicated_Subtype_Use
187     (Msg            : String;
188      N              : Node_Id;
189      Typ            : Entity_Id;
190      Suggest_Static : Boolean := False);
191   --  This is called when Typ, a predicated subtype, is used in a context
192   --  which does not allow the use of a predicated subtype. Msg is passed to
193   --  Error_Msg_FE to output an appropriate message using N as the location,
194   --  and Typ as the entity. The caller must set up any insertions other than
195   --  the & for the type itself. Note that if Typ is a generic actual type,
196   --  then the message will be output as a warning, and a raise Program_Error
197   --  is inserted using Insert_Action with node N as the insertion point. Node
198   --  N also supplies the source location for construction of the raise node.
199   --  If Typ does not have any predicates, the call has no effect. Set flag
200   --  Suggest_Static when the context warrants an advice on how to avoid the
201   --  use error.
202
203   function Bad_Unordered_Enumeration_Reference
204     (N : Node_Id;
205      T : Entity_Id) return Boolean;
206   --  Node N contains a potentially dubious reference to type T, either an
207   --  explicit comparison, or an explicit range. This function returns True
208   --  if the type T is an enumeration type for which No pragma Order has been
209   --  given, and the reference N is not in the same extended source unit as
210   --  the declaration of T.
211
212   function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
213   --  Given block statement, entry body, package body, subprogram body, or
214   --  task body N, return the closest source location to the "begin" keyword.
215
216   function Build_Actual_Subtype
217     (T : Entity_Id;
218      N : Node_Or_Entity_Id) return Node_Id;
219   --  Build an anonymous subtype for an entity or expression, using the
220   --  bounds of the entity or the discriminants of the enclosing record.
221   --  T is the type for which the actual subtype is required, and N is either
222   --  a defining identifier, or any subexpression.
223
224   function Build_Actual_Subtype_Of_Component
225     (T : Entity_Id;
226      N : Node_Id) return Node_Id;
227   --  Determine whether a selected component has a type that depends on
228   --  discriminants, and build actual subtype for it if so.
229
230   --  Handling of inherited primitives whose ancestors have class-wide
231   --  pre/postconditions.
232
233   --  If a primitive operation of a parent type has a class-wide pre/post-
234   --  condition that includes calls to other primitives, and that operation
235   --  is inherited by a descendant type that also overrides some of these
236   --  other primitives, the condition that applies to the inherited
237   --  operation has a modified condition in which the overridden primitives
238   --  have been replaced by the primitives of the descendent type. A call
239   --  to the inherited operation cannot be simply a call to the parent
240   --  operation (with an appropriate conversion) as is the case for other
241   --  inherited operations, but must appear with a wrapper subprogram to which
242   --  the modified conditions apply. Furthermore the call to the parent
243   --  operation must not be subject to the original class-wide condition,
244   --  given that modified conditions apply. To implement these semantics
245   --  economically we create a subprogram body (a "class-wide clone") to
246   --  which no pre/postconditions apply, and we create bodies for the
247   --  original and the inherited operation that have their respective
248   --  pre/postconditions and simply call the clone. The following operations
249   --  take care of constructing declaration and body of the clone, and
250   --  building the calls to it within the appropriate wrappers.
251
252   procedure Build_Class_Wide_Clone_Body
253     (Spec_Id  : Entity_Id;
254      Bod      : Node_Id);
255   --  Build body of subprogram that has a class-wide condition that contains
256   --  calls to other primitives. Spec_Id is the Id of the subprogram, and B
257   --  is its source body, which becomes the body of the clone.
258
259   function Build_Class_Wide_Clone_Call
260    (Loc      : Source_Ptr;
261     Decls    : List_Id;
262     Spec_Id  : Entity_Id;
263     Spec     : Node_Id) return Node_Id;
264   --  Build a call to the common class-wide clone of a subprogram with
265   --  class-wide conditions. The body of the subprogram becomes a wrapper
266   --  for a call to the clone. The inherited operation becomes a similar
267   --  wrapper to which modified conditions apply, and the call to the
268   --  clone includes the proper conversion in a call the parent operation.
269
270   procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id);
271   --  For a subprogram that has a class-wide condition that contains calls
272   --  to other primitives, build an internal subprogram that is invoked
273   --  through a type-specific wrapper for all inherited subprograms that
274   --  may have a modified condition.
275
276   function Build_Default_Subtype
277     (T : Entity_Id;
278      N : Node_Id) return Entity_Id;
279   --  If T is an unconstrained type with defaulted discriminants, build a
280   --  subtype constrained by the default values, insert the subtype
281   --  declaration in the tree before N, and return the entity of that
282   --  subtype. Otherwise, simply return T.
283
284   function Build_Discriminal_Subtype_Of_Component
285     (T : Entity_Id) return Node_Id;
286   --  Determine whether a record component has a type that depends on
287   --  discriminants, and build actual subtype for it if so.
288
289   procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
290   --  Given a compilation unit node N, allocate an elaboration counter for
291   --  the compilation unit, and install it in the Elaboration_Entity field
292   --  of Spec_Id, the entity for the compilation unit.
293
294   function Build_Overriding_Spec
295     (Op  : Node_Id;
296      Typ : Entity_Id) return Node_Id;
297   --  Build a subprogram specification for the wrapper of an inherited
298   --  operation with a modified pre- or postcondition (See AI12-0113).
299   --  Op is the parent operation, and Typ is the descendant type that
300   --  inherits the operation.
301
302   procedure Build_Explicit_Dereference
303     (Expr : Node_Id;
304      Disc : Entity_Id);
305   --  AI05-139: Names with implicit dereference. If the expression N is a
306   --  reference type and the context imposes the corresponding designated
307   --  type, convert N into N.Disc.all. Such expressions are always over-
308   --  loaded with both interpretations, and the dereference interpretation
309   --  carries the name of the reference discriminant.
310
311   function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
312   --  Returns True if the expression cannot possibly raise Constraint_Error.
313   --  The response is conservative in the sense that a result of False does
314   --  not necessarily mean that CE could be raised, but a response of True
315   --  means that for sure CE cannot be raised.
316
317   procedure Check_Dynamically_Tagged_Expression
318     (Expr        : Node_Id;
319      Typ         : Entity_Id;
320      Related_Nod : Node_Id);
321   --  Check wrong use of dynamically tagged expression
322
323   procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
324   --  Verify that the full declaration of type T has been seen. If not, place
325   --  error message on node N. Used in object declarations, type conversions
326   --  and qualified expressions.
327
328   procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
329   --  A subprogram that has an Address parameter and is declared in a Pure
330   --  package is not considered Pure, because the parameter may be used as a
331   --  pointer and the referenced data may change even if the address value
332   --  itself does not.
333   --  If the programmer gave an explicit Pure_Function pragma, then we respect
334   --  the pragma and leave the subprogram Pure.
335
336   procedure Check_Function_Writable_Actuals (N : Node_Id);
337   --  (Ada 2012): If the construct N has two or more direct constituents that
338   --  are names or expressions whose evaluation may occur in an arbitrary
339   --  order, at least one of which contains a function call with an in out or
340   --  out parameter, then the construct is legal only if: for each name that
341   --  is passed as a parameter of mode in out or out to some inner function
342   --  call C2 (not including the construct N itself), there is no other name
343   --  anywhere within a direct constituent of the construct C other than
344   --  the one containing C2, that is known to refer to the same object (RM
345   --  6.4.1(6.17/3)).
346
347   procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
348   --  AI05-139-2: Accessors and iterators for containers. This procedure
349   --  checks whether T is a reference type, and if so it adds an interprettion
350   --  to N whose type is the designated type of the reference_discriminant.
351   --  If N is a generalized indexing operation, the interpretation is added
352   --  both to the corresponding function call, and to the indexing node.
353
354   procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
355   --  Within a protected function, the current object is a constant, and
356   --  internal calls to a procedure or entry are illegal. Similarly, other
357   --  uses of a protected procedure in a renaming or a generic instantiation
358   --  in the context of a protected function are illegal (AI05-0225).
359
360   procedure Check_Later_Vs_Basic_Declarations
361     (Decls          : List_Id;
362      During_Parsing : Boolean);
363   --  If During_Parsing is True, check for misplacement of later vs basic
364   --  declarations in Ada 83. If During_Parsing is False, and the SPARK
365   --  restriction is set, do the same: although SPARK 95 removes the
366   --  distinction between initial and later declarative items, the distinction
367   --  remains in the Examiner (JB01-005). Note that the Examiner does not
368   --  count package declarations in later declarative items.
369
370   procedure Check_No_Hidden_State (Id : Entity_Id);
371   --  Determine whether object or state Id introduces a hidden state. If this
372   --  is the case, emit an error.
373
374   procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
375   --  Verify that the profile of nonvolatile function Func_Id does not contain
376   --  effectively volatile parameters or return type.
377
378   procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
379   --  Verify the legality of reference Ref to variable Var_Id when the
380   --  variable is a constituent of a single protected/task type.
381
382   procedure Check_Potentially_Blocking_Operation (N : Node_Id);
383   --  N is one of the statement forms that is a potentially blocking
384   --  operation. If it appears within a protected action, emit warning.
385
386   procedure Check_Previous_Null_Procedure
387     (Decl : Node_Id;
388      Prev : Entity_Id);
389   --  A null procedure or a subprogram renaming can complete a previous
390   --  declaration, unless that previous declaration is itself a null
391   --  procedure. This must be treated specially because the analysis of
392   --  the null procedure leaves the corresponding entity as having no
393   --  completion, because its completion is provided by a generated body
394   --  inserted after all other declarations.
395
396   procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
397   --  Determine whether the contract of subprogram Subp_Id mentions attribute
398   --  'Result and it contains an expression that evaluates differently in pre-
399   --  and post-state.
400
401   procedure Check_State_Refinements
402     (Context      : Node_Id;
403      Is_Main_Unit : Boolean := False);
404   --  Verify that all abstract states declared in a block statement, entry
405   --  body, package body, protected body, subprogram body, task body, or a
406   --  package declaration denoted by Context have proper refinement. Emit an
407   --  error if this is not the case. Flag Is_Main_Unit should be set when
408   --  Context denotes the main compilation unit.
409
410   procedure Check_Unused_Body_States (Body_Id : Entity_Id);
411   --  Verify that all abstract states and objects declared in the state space
412   --  of package body Body_Id are used as constituents. Emit an error if this
413   --  is not the case.
414
415   procedure Check_Unprotected_Access
416     (Context : Node_Id;
417      Expr    : Node_Id);
418   --  Check whether the expression is a pointer to a protected component,
419   --  and the context is external to the protected operation, to warn against
420   --  a possible unlocked access to data.
421
422   function Choice_List (N : Node_Id) return List_Id;
423   --  Utility to retrieve the choices of a Component_Association or the
424   --  Discrete_Choices of an Iterated_Component_Association. For various
425   --  reasons these nodes have a different structure even though they play
426   --  similar roles in array aggregates.
427
428   function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
429   --  Gather the entities of all abstract states and objects declared in the
430   --  body state space of package body Body_Id.
431
432   procedure Collect_Interfaces
433     (T               : Entity_Id;
434      Ifaces_List     : out Elist_Id;
435      Exclude_Parents : Boolean := False;
436      Use_Full_View   : Boolean := True);
437   --  Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
438   --  directly or indirectly implemented by T. Exclude_Parents is used to
439   --  avoid the addition of inherited interfaces to the generated list.
440   --  Use_Full_View is used to collect the interfaces using the full-view
441   --  (if available).
442
443   procedure Collect_Interface_Components
444     (Tagged_Type     : Entity_Id;
445      Components_List : out Elist_Id);
446   --  Ada 2005 (AI-251): Collect all the tag components associated with the
447   --  secondary dispatch tables of a tagged type.
448
449   procedure Collect_Interfaces_Info
450     (T               : Entity_Id;
451      Ifaces_List     : out Elist_Id;
452      Components_List : out Elist_Id;
453      Tags_List       : out Elist_Id);
454   --  Ada 2005 (AI-251): Collect all the interfaces associated with T plus
455   --  the record component and tag associated with each of these interfaces.
456   --  On exit Ifaces_List, Components_List and Tags_List have the same number
457   --  of elements, and elements at the same position on these tables provide
458   --  information on the same interface type.
459
460   procedure Collect_Parents
461     (T             : Entity_Id;
462      List          : out Elist_Id;
463      Use_Full_View : Boolean := True);
464   --  Collect all the parents of Typ. Use_Full_View is used to collect them
465   --  using the full-view of private parents (if available).
466
467   function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
468   --  Called upon type derivation and extension. We scan the declarative part
469   --  in which the type appears, and collect subprograms that have one
470   --  subsidiary subtype of the type. These subprograms can only appear after
471   --  the type itself.
472
473   function Compile_Time_Constraint_Error
474     (N         : Node_Id;
475      Msg       : String;
476      Ent       : Entity_Id  := Empty;
477      Loc       : Source_Ptr := No_Location;
478      Warn      : Boolean    := False;
479      Extra_Msg : String     := "") return Node_Id;
480   --  This is similar to Apply_Compile_Time_Constraint_Error in that it
481   --  generates a warning (or error) message in the same manner, but it does
482   --  not replace any nodes. For convenience, the function always returns its
483   --  first argument. The message is a warning if the message ends with ?, or
484   --  we are operating in Ada 83 mode, or the Warn parameter is set to True.
485   --  If Extra_Msg is not a null string, then it's associated with N and
486   --  emitted immediately after the main message (and before output of any
487   --  message indicating that Constraint_Error will be raised).
488
489   procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
490   --  Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
491   --  of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
492   --  False).
493
494   function Copy_Component_List
495     (R_Typ : Entity_Id;
496      Loc   : Source_Ptr) return List_Id;
497   --  Copy components from record type R_Typ that come from source. Used to
498   --  create a new compatible record type. Loc is the source location assigned
499   --  to the created nodes.
500
501   function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
502   --  Utility to create a parameter profile for a new subprogram spec, when
503   --  the subprogram has a body that acts as spec. This is done for some cases
504   --  of inlining, and for private protected ops. Also used to create bodies
505   --  for stubbed subprograms.
506
507   procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
508   --  Copy the SPARK_Mode aspect if present in the aspect specifications
509   --  of node From to node To. On entry it is assumed that To does not have
510   --  aspect specifications. If From has no aspects, the routine has no
511   --  effect.
512
513   function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
514   --  Replicate a function or a procedure specification denoted by Spec. The
515   --  resulting tree is an exact duplicate of the original tree. New entities
516   --  are created for the unit name and the formal parameters.
517
518   function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
519   --  If a type is a generic actual type, return the corresponding formal in
520   --  the generic parent unit. There is no direct link in the tree for this
521   --  attribute, except in the case of formal private and derived types.
522   --  Possible optimization???
523
524   function Current_Entity (N : Node_Id) return Entity_Id;
525   pragma Inline (Current_Entity);
526   --  Find the currently visible definition for a given identifier, that is to
527   --  say the first entry in the visibility chain for the Chars of N.
528
529   function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
530   --  Find whether there is a previous definition for identifier N in the
531   --  current scope. Because declarations for a scope are not necessarily
532   --  contiguous (e.g. for packages) the first entry on the visibility chain
533   --  for N is not necessarily in the current scope.
534
535   function Current_Scope return Entity_Id;
536   --  Get entity representing current scope
537
538   function Current_Scope_No_Loops return Entity_Id;
539   --  Return the current scope ignoring internally generated loops
540
541   function Current_Subprogram return Entity_Id;
542   --  Returns current enclosing subprogram. If Current_Scope is a subprogram,
543   --  then that is what is returned, otherwise the Enclosing_Subprogram of the
544   --  Current_Scope is returned. The returned value is Empty if this is called
545   --  from a library package which is not within any subprogram.
546
547   function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
548   --  Same as Type_Access_Level, except that if the type is the type of an Ada
549   --  2012 stand-alone object of an anonymous access type, then return the
550   --  static accessibility level of the object. In that case, the dynamic
551   --  accessibility level of the object may take on values in a range. The low
552   --  bound of that range is returned by Type_Access_Level; this function
553   --  yields the high bound of that range. Also differs from Type_Access_Level
554   --  in the case of a descendant of a generic formal type (returns Int'Last
555   --  instead of 0).
556
557   function Defining_Entity (N : Node_Id) return Entity_Id;
558   --  Given a declaration N, returns the associated defining entity. If the
559   --  declaration has a specification, the entity is obtained from the
560   --  specification. If the declaration has a defining unit name, then the
561   --  defining entity is obtained from the defining unit name ignoring any
562   --  child unit prefixes.
563   --
564   --  Iterator loops also have a defining entity, which holds the list of
565   --  local entities declared during loop expansion. These entities need
566   --  debugging information, generated through Qualify_Entity_Names, and
567   --  the loop declaration must be placed in the table Name_Qualify_Units.
568
569   --  WARNING: There is a matching C declaration of this subprogram in fe.h
570
571   function Denotes_Discriminant
572     (N                : Node_Id;
573      Check_Concurrent : Boolean := False) return Boolean;
574   --  Returns True if node N is an Entity_Name node for a discriminant. If the
575   --  flag Check_Concurrent is true, function also returns true when N denotes
576   --  the discriminal of the discriminant of a concurrent type. This is needed
577   --  to disable some optimizations on private components of protected types,
578   --  and constraint checks on entry families constrained by discriminants.
579
580   function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
581   --  Detect suspicious overlapping between actuals in a call, when both are
582   --  writable (RM 2012 6.4.1(6.4/3)).
583
584   function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
585   --  Functions to detect suspicious overlapping between actuals in a call,
586   --  when one of them is writable. The predicates are those proposed in
587   --  AI05-0144, to detect dangerous order dependence in complex calls.
588   --  I would add a parameter Warn which enables more extensive testing of
589   --  cases as we find appropriate when we are only warning ??? Or perhaps
590   --  return an indication of (Error, Warn, OK) ???
591
592   function Denotes_Variable (N : Node_Id) return Boolean;
593   --  Returns True if node N denotes a single variable without parentheses
594
595   function Depends_On_Discriminant (N : Node_Id) return Boolean;
596   --  Returns True if N denotes a discriminant or if N is a range, a subtype
597   --  indication or a scalar subtype where one of the bounds is a
598   --  discriminant.
599
600   function Designate_Same_Unit
601     (Name1 : Node_Id;
602      Name2 : Node_Id) return  Boolean;
603   --  Returns True if Name1 and Name2 designate the same unit name; each of
604   --  these names is supposed to be a selected component name, an expanded
605   --  name, a defining program unit name or an identifier.
606
607   procedure Diagnose_Iterated_Component_Association (N : Node_Id);
608   --  Emit an error if iterated component association N is actually an illegal
609   --  quantified expression lacking a quantifier.
610
611   function Discriminated_Size (Comp : Entity_Id) return Boolean;
612   --  If a component size is not static then a warning will be emitted
613   --  in Ravenscar or other restricted contexts. When a component is non-
614   --  static because of a discriminant constraint we can specialize the
615   --  warning by mentioning discriminants explicitly. This was created for
616   --  private components of protected objects, but is generally useful when
617   --  restriction No_Implicit_Heap_Allocation is active.
618
619   function Dynamic_Accessibility_Level (N : Node_Id) return Node_Id;
620   --  N should be an expression of an access type. Builds an integer literal
621   --  except in cases involving anonymous access types, where accessibility
622   --  levels are tracked at run time (access parameters and Ada 2012 stand-
623   --  alone objects).
624
625   function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
626   --  Same as Einfo.Extra_Accessibility except thtat object renames
627   --  are looked through.
628
629   function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
630   --  Given the entity of an abstract state or a variable, determine whether
631   --  Id is subject to external property Effective_Reads and if it is, the
632   --  related expression evaluates to True.
633
634   function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
635   --  Given the entity of an abstract state or a variable, determine whether
636   --  Id is subject to external property Effective_Writes and if it is, the
637   --  related expression evaluates to True.
638
639   function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
640   --  Returns the enclosing N_Compilation_Unit node that is the root of a
641   --  subtree containing N.
642
643   function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
644   --  Returns the closest ancestor of Typ that is a CPP type.
645
646   function Enclosing_Declaration (N : Node_Id) return Node_Id;
647   --  Returns the declaration node enclosing N (including possibly N itself),
648   --  if any, or Empty otherwise.
649
650   function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
651   --  Returns the Node_Id associated with the innermost enclosing generic
652   --  body, if any. If none, then returns Empty.
653
654   function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
655   --  Returns the Node_Id associated with the innermost enclosing generic
656   --  unit, if any. If none, then returns Empty.
657
658   function Enclosing_Lib_Unit_Entity
659     (E : Entity_Id := Current_Scope) return Entity_Id;
660   --  Returns the entity of enclosing library unit node which is the root of
661   --  the current scope (which must not be Standard_Standard, and the caller
662   --  is responsible for ensuring this condition) or other specified entity.
663
664   function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
665   --  Returns the N_Compilation_Unit node of the library unit that is directly
666   --  or indirectly (through a subunit) at the root of a subtree containing
667   --  N. This may be either the same as Enclosing_Comp_Unit_Node, or if
668   --  Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
669   --  library unit. If no such item is found, returns Empty.
670
671   function Enclosing_Package (E : Entity_Id) return Entity_Id;
672   --  Utility function to return the Ada entity of the package enclosing
673   --  the entity E, if any. Returns Empty if no enclosing package.
674
675   function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
676   --  Returns the entity of the package or subprogram enclosing E, if any.
677   --  Returns Empty if no enclosing package or subprogram.
678
679   function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
680   --  Utility function to return the Ada entity of the subprogram enclosing
681   --  the entity E, if any. Returns Empty if no enclosing subprogram.
682
683   function End_Keyword_Location (N : Node_Id) return Source_Ptr;
684   --  Given block statement, entry body, package body, package declaration,
685   --  protected body, [single] protected type declaration, subprogram body,
686   --  task body, or [single] task type declaration N, return the closest
687   --  source location of the "end" keyword.
688
689   procedure Ensure_Freeze_Node (E : Entity_Id);
690   --  Make sure a freeze node is allocated for entity E. If necessary, build
691   --  and initialize a new freeze node and set Has_Delayed_Freeze True for E.
692
693   procedure Enter_Name (Def_Id : Entity_Id);
694   --  Insert new name in symbol table of current scope with check for
695   --  duplications (error message is issued if a conflict is found).
696   --  Note: Enter_Name is not used for overloadable entities, instead these
697   --  are entered using Sem_Ch6.Enter_Overloadable_Entity.
698
699   function Entity_Of (N : Node_Id) return Entity_Id;
700   --  Obtain the entity of arbitrary node N. If N is a renaming, return the
701   --  entity of the earliest renamed source abstract state or whole object.
702   --  If no suitable entity is available, return Empty. This routine carries
703   --  out actions that are tied to SPARK semantics.
704
705   function Exceptions_OK return Boolean;
706   --  Determine whether exceptions are allowed to be caught, propagated, or
707   --  raised.
708
709   procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
710   --  This procedure is called after issuing a message complaining about an
711   --  inappropriate use of limited type T. If useful, it adds additional
712   --  continuation lines to the message explaining why type T is limited.
713   --  Messages are placed at node N.
714
715   function Expression_Of_Expression_Function
716     (Subp : Entity_Id) return Node_Id;
717   --  Return the expression of expression function Subp
718
719   type Extensions_Visible_Mode is
720     (Extensions_Visible_None,
721      --  Extensions_Visible does not yield a mode when SPARK_Mode is off. This
722      --  value acts as a default in a non-SPARK compilation.
723
724      Extensions_Visible_False,
725      --  A value of "False" signifies that Extensions_Visible is either
726      --  missing or the pragma is present and the value of its Boolean
727      --  expression is False.
728
729      Extensions_Visible_True);
730      --  A value of "True" signifies that Extensions_Visible is present and
731      --  the value of its Boolean expression is True.
732
733   function Extensions_Visible_Status
734     (Id : Entity_Id) return Extensions_Visible_Mode;
735   --  Given the entity of a subprogram or formal parameter subject to pragma
736   --  Extensions_Visible, return the Boolean value denoted by the expression
737   --  of the pragma.
738
739   procedure Find_Actual
740     (N      : Node_Id;
741      Formal : out Entity_Id;
742      Call   : out Node_Id);
743   --  Determines if the node N is an actual parameter of a function or a
744   --  procedure call. If so, then Formal points to the entity for the formal
745   --  (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
746   --  Call is set to the node for the corresponding call. If the node N is not
747   --  an actual parameter then Formal and Call are set to Empty.
748
749   function Find_Body_Discriminal
750     (Spec_Discriminant : Entity_Id) return Entity_Id;
751   --  Given a discriminant of the record type that implements a task or
752   --  protected type, return the discriminal of the corresponding discriminant
753   --  of the actual concurrent type.
754
755   function Find_Corresponding_Discriminant
756     (Id   : Node_Id;
757      Typ  : Entity_Id) return Entity_Id;
758   --  Because discriminants may have different names in a generic unit and in
759   --  an instance, they are resolved positionally when possible. A reference
760   --  to a discriminant carries the discriminant that it denotes when it is
761   --  analyzed. Subsequent uses of this id on a different type denotes the
762   --  discriminant at the same position in this new type.
763
764   function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
765   --  Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
766   --  defines the Default_Initial_Condition pragma of type Typ. This is either
767   --  Typ itself or a parent type when the pragma is inherited.
768
769   function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
770   --  Find the nearest iterator loop which encloses arbitrary entity Id. If
771   --  such a loop exists, return the entity of its identifier (E_Loop scope),
772   --  otherwise return Empty.
773
774   function Find_Enclosing_Scope (N : Node_Id) return Entity_Id;
775   --  Find the nearest scope which encloses arbitrary node N
776
777   function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
778   --  Find the nested loop statement in a conditional block. Loops subject to
779   --  attribute 'Loop_Entry are transformed into blocks. Parts of the original
780   --  loop are nested within the block.
781
782   procedure Find_Overlaid_Entity
783     (N   : Node_Id;
784      Ent : out Entity_Id;
785      Off : out Boolean);
786   --  The node N should be an address representation clause. Determines if
787   --  the target expression is the address of an entity with an optional
788   --  offset. If so, set Ent to the entity and, if there is an offset, set
789   --  Off to True, otherwise to False. If N is not an address representation
790   --  clause, or if it is not possible to determine that the address is of
791   --  this form, then set Ent to Empty.
792
793   function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
794   --  Return the type of formal parameter Param as determined by its
795   --  specification.
796
797   --  The following type describes the placement of an arbitrary entity with
798   --  respect to SPARK visible / hidden state space.
799
800   type State_Space_Kind is
801     (Not_In_Package,
802      --  An entity is not in the visible, private or body state space when
803      --  the immediate enclosing construct is not a package.
804
805      Visible_State_Space,
806      --  An entity is in the visible state space when it appears immediately
807      --  within the visible declarations of a package or when it appears in
808      --  the visible state space of a nested package which in turn is declared
809      --  in the visible declarations of an enclosing package:
810
811      --    package Pack is
812      --       Visible_Variable : ...
813      --       package Nested
814      --         with Abstract_State => Visible_State
815      --       is
816      --          Visible_Nested_Variable : ...
817      --       end Nested;
818      --    end Pack;
819
820      --  Entities associated with a package instantiation inherit the state
821      --  space from the instance placement:
822
823      --     generic
824      --     package Gen is
825      --        Generic_Variable : ...
826      --     end Gen;
827
828      --     with Gen;
829      --     package Pack is
830      --        package Inst is new Gen;
831      --        --  Generic_Variable is in the visible state space of Pack
832      --     end Pack;
833
834      Private_State_Space,
835      --  An entity is in the private state space when it appears immediately
836      --  within the private declarations of a package or when it appears in
837      --  the visible state space of a nested package which in turn is declared
838      --  in the private declarations of an enclosing package:
839
840      --    package Pack is
841      --    private
842      --       Private_Variable : ...
843      --       package Nested
844      --         with Abstract_State => Private_State
845      --       is
846      --          Private_Nested_Variable : ...
847      --       end Nested;
848      --    end Pack;
849
850      --  The same placement principle applies to package instantiations
851
852      Body_State_Space);
853      --  An entity is in the body state space when it appears immediately
854      --  within the declarations of a package body or when it appears in the
855      --  visible state space of a nested package which in turn is declared in
856      --  the declarations of an enclosing package body:
857
858      --    package body Pack is
859      --       Body_Variable : ...
860      --       package Nested
861      --         with Abstract_State => Body_State
862      --       is
863      --          Body_Nested_Variable : ...
864      --       end Nested;
865      --    end Pack;
866
867      --  The same placement principle applies to package instantiations
868
869   procedure Find_Placement_In_State_Space
870     (Item_Id   : Entity_Id;
871      Placement : out State_Space_Kind;
872      Pack_Id   : out Entity_Id);
873   --  Determine the state space placement of an item. Item_Id denotes the
874   --  entity of an abstract state, object, or package instantiation. Placement
875   --  captures the precise placement of the item in the enclosing state space.
876   --  If the state space is that of a package, Pack_Id denotes its entity,
877   --  otherwise Pack_Id is Empty.
878
879   function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
880   --  Locate primitive equality for type if it exists. Return Empty if it is
881   --  not available.
882
883   function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
884   --  Find specific type of a class-wide type, and handle the case of an
885   --  incomplete type coming either from a limited_with clause or from an
886   --  incomplete type declaration. If resulting type is private return its
887   --  full view.
888
889   function Find_Static_Alternative (N : Node_Id) return Node_Id;
890   --  N is a case statement whose expression is a compile-time value.
891   --  Determine the alternative chosen, so that the code of non-selected
892   --  alternatives, and the warnings that may apply to them, are removed.
893
894   function First_Actual (Node : Node_Id) return Node_Id;
895   --  Node is an N_Function_Call, N_Procedure_Call_Statement or
896   --  N_Entry_Call_Statement node. The result returned is the first actual
897   --  parameter in declaration order (not the order of parameters as they
898   --  appeared in the source, which can be quite different as a result of the
899   --  use of named parameters). Empty is returned for a call with no
900   --  parameters. The procedure for iterating through the actuals in
901   --  declaration order is to use this function to find the first actual, and
902   --  then use Next_Actual to obtain the next actual in declaration order.
903   --  Note that the value returned is always the expression (not the
904   --  N_Parameter_Association nodes, even if named association is used).
905
906   --  WARNING: There is a matching C declaration of this subprogram in fe.h
907
908   function First_Global
909     (Subp        : Entity_Id;
910      Global_Mode : Name_Id;
911      Refined     : Boolean := False) return Node_Id;
912   --  Returns the first global item of mode Global_Mode (which can be
913   --  Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
914   --  subprogram Subp, or Empty otherwise. If Refined is True, the global item
915   --  is retrieved from the Refined_Global aspect/pragma associated to the
916   --  body of Subp if present. Next_Global can be used to get the next global
917   --  item with the same mode.
918
919   function Fix_Msg (Id : Entity_Id; Msg : String) return String;
920   --  Replace all occurrences of a particular word in string Msg depending on
921   --  the Ekind of Id as follows:
922   --    * Replace "subprogram" with
923   --      - "entry" when Id is an entry [family]
924   --      - "task type" when Id is a single task object, task type or task
925   --         body.
926   --    * Replace "protected" with
927   --      - "task" when Id is a single task object, task type or task body
928   --  All other non-matching words remain as is
929
930   function From_Nested_Package (T : Entity_Id) return Boolean;
931   --  A type declared in a nested package may be frozen by a declaration
932   --  appearing after the package but before the package is frozen. If the
933   --  type has aspects that generate subprograms, these may contain references
934   --  to entities local to the nested package. In that case the package must
935   --  be installed on the scope stack to prevent spurious visibility errors.
936
937   procedure Gather_Components
938     (Typ           : Entity_Id;
939      Comp_List     : Node_Id;
940      Governed_By   : List_Id;
941      Into          : Elist_Id;
942      Report_Errors : out Boolean);
943   --  The purpose of this procedure is to gather the valid components in a
944   --  record type according to the values of its discriminants, in order to
945   --  validate the components of a record aggregate.
946   --
947   --    Typ is the type of the aggregate when its constrained discriminants
948   --      need to be collected, otherwise it is Empty.
949   --
950   --    Comp_List is an N_Component_List node.
951   --
952   --    Governed_By is a list of N_Component_Association nodes, where each
953   --     choice list contains the name of a discriminant and the expression
954   --     field gives its value. The values of the discriminants governing
955   --     the (possibly nested) variant parts in Comp_List are found in this
956   --     Component_Association List.
957   --
958   --    Into is the list where the valid components are appended. Note that
959   --     Into need not be an Empty list. If it's not, components are attached
960   --     to its tail.
961   --
962   --    Report_Errors is set to True if the values of the discriminants are
963   --     non-static.
964   --
965   --  This procedure is also used when building a record subtype. If the
966   --  discriminant constraint of the subtype is static, the components of the
967   --  subtype are only those of the variants selected by the values of the
968   --  discriminants. Otherwise all components of the parent must be included
969   --  in the subtype for semantic analysis.
970
971   function Get_Accessibility (E : Entity_Id) return Node_Id;
972   --  Obtain the accessibility level for a given entity formal taking into
973   --  account both extra and minimum accessibility.
974
975   function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
976   --  Given a node for an expression, obtain the actual subtype of the
977   --  expression. In the case of a parameter where the formal is an
978   --  unconstrained array or discriminated type, this will be the previously
979   --  constructed subtype of the actual. Note that this is not quite the
980   --  "Actual Subtype" of the RM, since it is always a constrained type, i.e.
981   --  it is the subtype of the value of the actual. The actual subtype is also
982   --  returned in other cases where it has already been constructed for an
983   --  object. Otherwise the expression type is returned unchanged, except for
984   --  the case of an unconstrained array type, where an actual subtype is
985   --  created, using Insert_Actions if necessary to insert any associated
986   --  actions.
987
988   function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
989   --  This is like Get_Actual_Subtype, except that it never constructs an
990   --  actual subtype. If an actual subtype is already available, i.e. the
991   --  Actual_Subtype field of the corresponding entity is set, then it is
992   --  returned. Otherwise the Etype of the node is returned.
993
994   function Get_Body_From_Stub (N : Node_Id) return Node_Id;
995   --  Return the body node for a stub
996
997   function Get_Cursor_Type
998     (Aspect : Node_Id;
999      Typ    : Entity_Id) return Entity_Id;
1000   --  Find Cursor type in scope of type Typ with Iterable aspect, by locating
1001   --  primitive operation First. For use in resolving the other primitive
1002   --  operations of an Iterable type and expanding loops and quantified
1003   --  expressions over formal containers.
1004
1005   function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1006   --  Find Cursor type in scope of type Typ with Iterable aspect, by locating
1007   --  primitive operation First. For use after resolving the primitive
1008   --  operations of an Iterable type.
1009
1010   function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1011   --  This is used to construct the string literal node representing a
1012   --  default external name, i.e. one that is constructed from the name of an
1013   --  entity, or (in the case of extended DEC import/export pragmas) an
1014   --  identifier provided as the external name. Letters in the name are
1015   --  according to the setting of Opt.External_Name_Default_Casing.
1016
1017   function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1018   --  If expression N references a part of an object, return this object.
1019   --  Otherwise return Empty. Expression N should have been resolved already.
1020
1021   function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1022   --  Returns the true generic entity in an instantiation. If the name in the
1023   --  instantiation is a renaming, the function returns the renamed generic.
1024
1025   function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1026   --  Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1027   --  in a child unit a derived type is within the derivation class of an
1028   --  ancestor declared in a parent unit, even if there is an intermediate
1029   --  derivation that does not see the full view of that ancestor.
1030
1031   procedure Get_Index_Bounds
1032     (N             : Node_Id;
1033      L             : out Node_Id;
1034      H             : out Node_Id;
1035      Use_Full_View : Boolean := False);
1036   --  This procedure assigns to L and H respectively the values of the low and
1037   --  high bounds of node N, which must be a range, subtype indication, or the
1038   --  name of a scalar subtype. The result in L, H may be set to Error if
1039   --  there was an earlier error in the range.
1040   --  Use_Full_View is intended for use by clients other than the compiler
1041   --  (specifically, gnat2scil) to indicate that we want the full view if
1042   --  the index type turns out to be a partial view; this case should not
1043   --  arise during normal compilation of semantically correct programs.
1044
1045   procedure Get_Interfacing_Aspects
1046     (Iface_Asp : Node_Id;
1047      Conv_Asp  : out Node_Id;
1048      EN_Asp    : out Node_Id;
1049      Expo_Asp  : out Node_Id;
1050      Imp_Asp   : out Node_Id;
1051      LN_Asp    : out Node_Id;
1052      Do_Checks : Boolean := False);
1053   --  Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1054   --  aspects that apply to the same related entity. The aspects considered by
1055   --  this routine are as follows:
1056   --
1057   --    Conv_Asp - aspect Convention
1058   --    EN_Asp   - aspect External_Name
1059   --    Expo_Asp - aspect Export
1060   --    Imp_Asp  - aspect Import
1061   --    LN_Asp   - aspect Link_Name
1062   --
1063   --  When flag Do_Checks is set, this routine will flag duplicate uses of
1064   --  aspects.
1065
1066   function Get_Enum_Lit_From_Pos
1067     (T   : Entity_Id;
1068      Pos : Uint;
1069      Loc : Source_Ptr) return Node_Id;
1070   --  This function returns an identifier denoting the E_Enumeration_Literal
1071   --  entity for the specified value from the enumeration type or subtype T.
1072   --  The second argument is the Pos value. Constraint_Error is raised if
1073   --  argument Pos is not in range. The third argument supplies a source
1074   --  location for constructed nodes returned by this function. If No_Location
1075   --  is supplied as source location, the location of the returned node is
1076   --  copied from the original source location for the enumeration literal,
1077   --  when available.
1078
1079   function Get_Iterable_Type_Primitive
1080     (Typ : Entity_Id;
1081      Nam : Name_Id) return Entity_Id;
1082   --  Retrieve one of the primitives First, Next, Has_Element, Element from
1083   --  the value of the Iterable aspect of a type.
1084
1085   procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
1086   --  Retrieve the fully expanded name of the library unit declared by
1087   --  Decl_Node into the name buffer.
1088
1089   function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1090   --  Return the argument of pragma Max_Queue_Length or zero if the annotation
1091   --  is not present. It is assumed that Id denotes an entry.
1092
1093   function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1094   pragma Inline (Get_Name_Entity_Id);
1095   --  An entity value is associated with each name in the name table. The
1096   --  Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1097   --  is the innermost visible entity with the given name. See the body of
1098   --  Sem_Ch8 for further details on handling of entity visibility.
1099
1100   function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1101   --  Return the Name component of Test_Case pragma N
1102   --  Bad name now that this no longer applies to Contract_Case ???
1103
1104   function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1105   --  Get defining entity of parent unit of a child unit. In most cases this
1106   --  is the defining entity of the unit, but for a child instance whose
1107   --  parent needs a body for inlining, the instantiation node of the parent
1108   --  has not yet been rewritten as a package declaration, and the entity has
1109   --  to be retrieved from the Instance_Spec of the unit.
1110
1111   function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1112   pragma Inline (Get_Pragma_Id);
1113   --  Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1114
1115   function Get_Qualified_Name
1116     (Id     : Entity_Id;
1117      Suffix : Entity_Id := Empty) return Name_Id;
1118   --  Obtain the fully qualified form of entity Id. The format is:
1119   --    scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1120
1121   function Get_Qualified_Name
1122     (Nam    : Name_Id;
1123      Suffix : Name_Id   := No_Name;
1124      Scop   : Entity_Id := Current_Scope) return Name_Id;
1125   --  Obtain the fully qualified form of name Nam assuming it appears in scope
1126   --  Scop. The format is:
1127   --    scop-1__scop__nam__suffix
1128
1129   procedure Get_Reason_String (N : Node_Id);
1130   --  Recursive routine to analyze reason argument for pragma Warnings. The
1131   --  value of the reason argument is appended to the current string using
1132   --  Store_String_Chars. The reason argument is expected to be a string
1133   --  literal or concatenation of string literals. An error is given for
1134   --  any other form.
1135
1136   function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1137   --  If Typ has Implicit_Dereference, return discriminant specified in the
1138   --  corresponding aspect.
1139
1140   function Get_Referenced_Object (N : Node_Id) return Node_Id;
1141   --  Given a node, return the renamed object if the node represents a renamed
1142   --  object, otherwise return the node unchanged. The node may represent an
1143   --  arbitrary expression.
1144
1145   function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1146   --  Given an entity for an exception, package, subprogram or generic unit,
1147   --  returns the ultimately renamed entity if this is a renaming. If this is
1148   --  not a renamed entity, returns its argument. It is an error to call this
1149   --  with any other kind of entity.
1150
1151   function Get_Return_Object (N : Node_Id) return Entity_Id;
1152   --  Given an extended return statement, return the corresponding return
1153   --  object, identified as the one for which Is_Return_Object = True.
1154
1155   function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1156   --  Nod is either a procedure call statement, or a function call, or an
1157   --  accept statement node. This procedure finds the Entity_Id of the related
1158   --  subprogram or entry and returns it, or if no subprogram can be found,
1159   --  returns Empty.
1160
1161   function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1162   --  Given an entity for a task type or subtype, retrieves the
1163   --  Task_Body_Procedure field from the corresponding task type declaration.
1164
1165   function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
1166   --  For a type entity, return the entity of the primitive equality function
1167   --  for the type if it exists, otherwise return Empty.
1168
1169   procedure Get_Views
1170     (Typ       : Entity_Id;
1171      Priv_Typ  : out Entity_Id;
1172      Full_Typ  : out Entity_Id;
1173      Full_Base : out Entity_Id;
1174      CRec_Typ  : out Entity_Id);
1175   --  Obtain the partial and full view of type Typ and in addition any extra
1176   --  types the full view may have. The return entities are as follows:
1177   --
1178   --    Priv_Typ  - the partial view (a private type)
1179   --    Full_Typ  - the full view
1180   --    Full_Base - the base type of the full view
1181   --    CRec_Typ  - the corresponding record type of the full view
1182
1183   function Has_Access_Values (T : Entity_Id) return Boolean;
1184   --  Returns true if type or subtype T is an access type, or has a component
1185   --  (at any recursive level) that is an access type. This is a conservative
1186   --  predicate, if it is not known whether or not T contains access values
1187   --  (happens for generic formals in some cases), then False is returned.
1188   --  Note that tagged types return False. Even though the tag is implemented
1189   --  as an access type internally, this function tests only for access types
1190   --  known to the programmer. See also Has_Tagged_Component.
1191
1192   type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1193   --  Result of Has_Compatible_Alignment test, description found below. Note
1194   --  that the values are arranged in increasing order of problematicness.
1195
1196   function Has_Compatible_Alignment
1197     (Obj         : Entity_Id;
1198      Expr        : Node_Id;
1199      Layout_Done : Boolean) return Alignment_Result;
1200   --  Obj is an object entity, and expr is a node for an object reference. If
1201   --  the alignment of the object referenced by Expr is known to be compatible
1202   --  with the alignment of Obj (i.e. is larger or the same), then the result
1203   --  is Known_Compatible. If the alignment of the object referenced by Expr
1204   --  is known to be less than the alignment of Obj, then Known_Incompatible
1205   --  is returned. If neither condition can be reliably established at compile
1206   --  time, then Unknown is returned. If Layout_Done is True, the function can
1207   --  assume that the information on size and alignment of types and objects
1208   --  is present in the tree. This is used to determine if alignment checks
1209   --  are required for address clauses (Layout_Done is False in this case) as
1210   --  well as to issue appropriate warnings for them in the post compilation
1211   --  phase (Layout_Done is True in this case).
1212   --
1213   --  Note: Known_Incompatible does not mean that at run time the alignment
1214   --  of Expr is known to be wrong for Obj, just that it can be determined
1215   --  that alignments have been explicitly or implicitly specified which are
1216   --  incompatible (whereas Unknown means that even this is not known). The
1217   --  appropriate reaction of a caller to Known_Incompatible is to treat it as
1218   --  Unknown, but issue a warning that there may be an alignment error.
1219
1220   function Has_Declarations (N : Node_Id) return Boolean;
1221   --  Determines if the node can have declarations
1222
1223   function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1224   --  Simple predicate to test for defaulted discriminants
1225
1226   function Has_Denormals (E : Entity_Id) return Boolean;
1227   --  Determines if the floating-point type E supports denormal numbers.
1228   --  Returns False if E is not a floating-point type.
1229
1230   function Has_Discriminant_Dependent_Constraint
1231     (Comp : Entity_Id) return Boolean;
1232   --  Returns True if and only if Comp has a constrained subtype that depends
1233   --  on a discriminant.
1234
1235   function Has_Effectively_Volatile_Profile
1236     (Subp_Id : Entity_Id) return Boolean;
1237   --  Determine whether subprogram Subp_Id has an effectively volatile formal
1238   --  parameter or returns an effectively volatile value.
1239
1240   function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1241   --  Determine whether type Typ defines "full default initialization" as
1242   --  specified by SPARK RM 3.1. To qualify as such, the type must be
1243   --    * A scalar type with specified Default_Value
1244   --    * An array-of-scalar type with specified Default_Component_Value
1245   --    * An array type whose element type defines full default initialization
1246   --    * A protected type, record type or type extension whose components
1247   --      either include a default expression or have a type which defines
1248   --      full default initialization. In the case of type extensions, the
1249   --      parent type defines full default initialization.
1250   --    * A task type
1251   --    * A private type with pragma Default_Initial_Condition that provides
1252   --      full default initialization.
1253
1254   function Has_Fully_Default_Initializing_DIC_Pragma
1255     (Typ : Entity_Id) return Boolean;
1256   --  Determine whether type Typ has a suitable Default_Initial_Condition
1257   --  pragma which provides the full default initialization of the type.
1258
1259   function Has_Infinities (E : Entity_Id) return Boolean;
1260   --  Determines if the range of the floating-point type E includes
1261   --  infinities. Returns False if E is not a floating-point type.
1262
1263   function Has_Interfaces
1264     (T             : Entity_Id;
1265      Use_Full_View : Boolean := True) return Boolean;
1266   --  Where T is a concurrent type or a record type, returns true if T covers
1267   --  any abstract interface types. In case of private types the argument
1268   --  Use_Full_View controls if the check is done using its full view (if
1269   --  available).
1270
1271   function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1272   --  Determine whether Id is subject to pragma Max_Queue_Length. It is
1273   --  assumed that Id denotes an entry.
1274
1275   function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1276   --  This is a simple minded function for determining whether an expression
1277   --  has no obvious side effects. It is used only for determining whether
1278   --  warnings are needed in certain situations, and is not guaranteed to
1279   --  be accurate in either direction. Exceptions may mean an expression
1280   --  does in fact have side effects, but this may be ignored and True is
1281   --  returned, or a complex expression may in fact be side effect free
1282   --  but we don't recognize it here and return False. The Side_Effect_Free
1283   --  routine in Remove_Side_Effects is much more extensive and perhaps could
1284   --  be shared, so that this routine would be more accurate.
1285
1286   function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1287   --  Determine whether abstract state Id has at least one nonnull constituent
1288   --  as expressed in pragma Refined_State. This function does not take into
1289   --  account the visible refinement region of abstract state Id.
1290
1291   function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1292   --  Determine whether subprogram Subp has a class-wide precondition that is
1293   --  not statically True.
1294
1295   function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1296   --  Determine whether the body of procedure Proc_Id contains a sole null
1297   --  statement, possibly followed by an optional return. Used to optimize
1298   --  useless calls to assertion checks.
1299
1300   function Has_Null_Exclusion (N : Node_Id) return Boolean;
1301   --  Determine whether node N has a null exclusion
1302
1303   function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1304   --  Determine whether abstract state Id has a null refinement as expressed
1305   --  in pragma Refined_State. This function does not take into account the
1306   --  visible refinement region of abstract state Id.
1307
1308   function Has_Non_Null_Statements (L : List_Id) return Boolean;
1309   --  Return True if L has non-null statements
1310
1311   function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1312   --  Predicate to determine whether a controlled type has a user-defined
1313   --  Initialize primitive (and, in Ada 2012, whether that primitive is
1314   --  non-null), which causes the type to not have preelaborable
1315   --  initialization.
1316
1317   function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1318   --  Return True iff type E has preelaborable initialization as defined in
1319   --  Ada 2005 (see AI-161 for details of the definition of this attribute).
1320
1321   function Has_Prefix (N : Node_Id) return Boolean;
1322   --  Return True if N has attribute Prefix
1323
1324   function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1325   --  Check if a type has a (sub)component of a private type that has not
1326   --  yet received a full declaration.
1327
1328   function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1329   --  Determines if the floating-point type E supports signed zeros.
1330   --  Returns False if E is not a floating-point type.
1331
1332   function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1333   --  Determine whether subprogram [body] Subp_Id has a significant contract.
1334   --  All subprograms have a N_Contract node, but this does not mean that the
1335   --  contract is useful.
1336
1337   function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1338   --  Return whether an array type has static bounds
1339
1340   function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1341   --  Determine whether array type Typ has static non-empty bounds
1342
1343   function Has_Stream (T : Entity_Id) return Boolean;
1344   --  Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1345   --  case of a composite type, has a component for which this predicate is
1346   --  True, and if so returns True. Otherwise a result of False means that
1347   --  there is no Stream type in sight. For a private type, the test is
1348   --  applied to the underlying type (or returns False if there is no
1349   --  underlying type).
1350
1351   function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1352   --  Returns true if the last character of E is Suffix. Used in Assertions.
1353
1354   function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1355   --  Returns True if Typ is a composite type (array or record) that is either
1356   --  a tagged type or has a subcomponent that is tagged. Returns False for a
1357   --  noncomposite type, or if no tagged subcomponents are present. This
1358   --  function is used to check if "=" has to be expanded into a bunch
1359   --  component comparisons.
1360
1361   function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1362   --  Given arbitrary expression Expr, determine whether it contains at
1363   --  least one name whose entity is Any_Id.
1364
1365   function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1366   --  Given arbitrary type Typ, determine whether it contains at least one
1367   --  volatile component.
1368
1369   function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1370   --  Subp is a subprogram marked with pragma Implemented. Return the specific
1371   --  implementation requirement which the pragma imposes. The return value is
1372   --  either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1373
1374   function Implements_Interface
1375     (Typ_Ent         : Entity_Id;
1376      Iface_Ent       : Entity_Id;
1377      Exclude_Parents : Boolean := False) return Boolean;
1378   --  Returns true if the Typ_Ent implements interface Iface_Ent
1379
1380   function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1381   --  Returns True if node N appears within a pragma that acts as an assertion
1382   --  expression. See Sem_Prag for the list of qualifying pragmas.
1383
1384   function In_Generic_Scope (E : Entity_Id) return Boolean;
1385   --  Returns True if entity E is inside a generic scope
1386
1387   function In_Instance return Boolean;
1388   --  Returns True if the current scope is within a generic instance
1389
1390   function In_Instance_Body return Boolean;
1391   --  Returns True if current scope is within the body of an instance, where
1392   --  several semantic checks (e.g. accessibility checks) are relaxed.
1393
1394   function In_Instance_Not_Visible return Boolean;
1395   --  Returns True if current scope is with the private part or the body of
1396   --  an instance. Other semantic checks are suppressed in this context.
1397
1398   function In_Instance_Visible_Part
1399     (Id : Entity_Id := Current_Scope) return Boolean;
1400   --  Returns True if arbitrary entity Id is within the visible part of a
1401   --  package instance, where several additional semantic checks apply.
1402
1403   function In_Package_Body return Boolean;
1404   --  Returns True if current scope is within a package body
1405
1406   function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1407   --  Returns true if the expression N occurs within a pragma with name Nam
1408
1409   function In_Pre_Post_Condition (N : Node_Id) return Boolean;
1410   --  Returns True if node N appears within a pre/postcondition pragma. Note
1411   --  the pragma Check equivalents are NOT considered.
1412
1413   function In_Quantified_Expression (N : Node_Id) return Boolean;
1414   --  Returns true if the expression N occurs within a quantified expression
1415
1416   function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1417   --  Returns True if N denotes a component or subcomponent in a record or
1418   --  array that has Reverse_Storage_Order.
1419
1420   function In_Same_Declarative_Part
1421     (Context : Node_Id;
1422      N       : Node_Id) return Boolean;
1423   --  True if the node N appears within the same declarative part denoted by
1424   --  the node Context.
1425
1426   function In_Subprogram_Or_Concurrent_Unit return Boolean;
1427   --  Determines if the current scope is within a subprogram compilation unit
1428   --  (inside a subprogram declaration, subprogram body, or generic subprogram
1429   --  declaration) or within a task or protected body. The test is for
1430   --  appearing anywhere within such a construct (that is it does not need
1431   --  to be directly within).
1432
1433   function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1434   --  Determine whether node N is within the subtree rooted at Root
1435
1436   function In_Subtree
1437     (N     : Node_Id;
1438      Root1 : Node_Id;
1439      Root2 : Node_Id) return Boolean;
1440   --  Determine whether node N is within the subtree rooted at Root1 or Root2.
1441   --  This version is more efficient than calling the single root version of
1442   --  Is_Subtree twice.
1443
1444   function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1445   --  Determine whether a declaration occurs within the visible part of a
1446   --  package specification. The package must be on the scope stack, and the
1447   --  corresponding private part must not.
1448
1449   function In_While_Loop_Condition (N : Node_Id) return Boolean;
1450   --  Returns true if the expression N occurs within the condition of a while
1451
1452   function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1453   --  Given the entity of a constant or a type, retrieve the incomplete or
1454   --  partial view of the same entity. Note that Id may not have a partial
1455   --  view in which case the function returns Empty.
1456
1457   function Incomplete_View_From_Limited_With
1458     (Typ : Entity_Id) return Entity_Id;
1459   --  Typ is a type entity. This normally returns Typ. However, if there is
1460   --  an incomplete view of this entity that comes from a limited-with'ed
1461   --  package, then this returns that incomplete view.
1462
1463   function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1464   --  Given an N_Indexed_Component node, return the first bit position of the
1465   --  component if it is known at compile time. A value of No_Uint means that
1466   --  either the value is not yet known before back-end processing or it is
1467   --  not known at compile time after back-end processing.
1468
1469   procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1470   --  Inherit the rep item chain of type From_Typ without clobbering any
1471   --  existing rep items on Typ's chain. Typ is the destination type.
1472
1473   function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1474   pragma Inline (Inherits_From_Tagged_Full_View);
1475   --  Return True if Typ is an untagged private type completed with a
1476   --  derivation of an untagged private type declaration whose full view
1477   --  is a tagged type.
1478
1479   procedure Insert_Explicit_Dereference (N : Node_Id);
1480   --  In a context that requires a composite or subprogram type and where a
1481   --  prefix is an access type, rewrite the access type node N (which is the
1482   --  prefix, e.g. of an indexed component) as an explicit dereference.
1483
1484   procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1485   --  Examine all deferred constants in the declaration list Decls and check
1486   --  whether they have been completed by a full constant declaration or an
1487   --  Import pragma. Emit the error message if that is not the case.
1488
1489   procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1490   --  Install the elaboration model specified by pragma Elaboration_Checks
1491   --  associated with compilation unit Unit_Id. No action is taken when the
1492   --  unit lacks such pragma.
1493
1494   procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1495   --  Install both the generic formal parameters and the formal parameters of
1496   --  generic subprogram Subp_Id into visibility.
1497
1498   procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1499   --  Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1500
1501   function Invalid_Scalar_Value
1502     (Loc      : Source_Ptr;
1503      Scal_Typ : Scalar_Id) return Node_Id;
1504   --  Obtain the invalid value for scalar type Scal_Typ as either specified by
1505   --  pragma Initialize_Scalars or by the binder. Return an expression created
1506   --  at source location Loc, which denotes the invalid value.
1507
1508   function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1509   --  Determines if N is an actual parameter of out mode in a subprogram call
1510
1511   function Is_Actual_Parameter (N : Node_Id) return Boolean;
1512   --  Determines if N is an actual parameter in a subprogram call
1513
1514   function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1515   --  Determines if N is an actual parameter of a formal of tagged type in a
1516   --  subprogram call.
1517
1518   function Is_Aliased_View (Obj : Node_Id) return Boolean;
1519   --  Determine if Obj is an aliased view, i.e. the name of an object to which
1520   --  'Access or 'Unchecked_Access can apply. Note that this routine uses the
1521   --  rules of the language, it does not take into account the restriction
1522   --  No_Implicit_Aliasing, so it can return True if the restriction is active
1523   --  and Obj violates the restriction. The caller is responsible for calling
1524   --  Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1525   --  requirement for obeying the restriction in the call context.
1526
1527   function Is_Ancestor_Package
1528     (E1 : Entity_Id;
1529      E2 : Entity_Id) return Boolean;
1530   --  Determine whether package E1 is an ancestor of E2
1531
1532   function Is_Atomic_Object (N : Node_Id) return Boolean;
1533   --  Determine whether arbitrary node N denotes a reference to an atomic
1534   --  object as per RM C.6(7) and the crucial remark in RM C.6(8).
1535
1536   function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean;
1537   --  Determine whether arbitrary node N denotes a reference to an object
1538   --  which is either atomic or Volatile_Full_Access.
1539
1540   function Is_Attribute_Old (N : Node_Id) return Boolean;
1541   --  Determine whether node N denotes attribute 'Old
1542
1543   function Is_Attribute_Result (N : Node_Id) return Boolean;
1544   --  Determine whether node N denotes attribute 'Result
1545
1546   function Is_Attribute_Update (N : Node_Id) return Boolean;
1547   --  Determine whether node N denotes attribute 'Update
1548
1549   function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1550   --  Determine whether node N denotes a body or a package declaration
1551
1552   function Is_Bounded_String (T : Entity_Id) return Boolean;
1553   --  True if T is a bounded string type. Used to make sure "=" composes
1554   --  properly for bounded string types.
1555
1556   function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1557   --  Exp is the expression for an array bound. Determines whether the
1558   --  bound is a compile-time known value, or a constant entity, or an
1559   --  enumeration literal, or an expression composed of constant-bound
1560   --  subexpressions which are evaluated by means of standard operators.
1561
1562   function Is_Container_Element (Exp : Node_Id) return Boolean;
1563   --  This routine recognizes expressions that denote an element of one of
1564   --  the predefined containers, when the source only contains an indexing
1565   --  operation and an implicit dereference is inserted by the compiler.
1566   --  In the absence of this optimization, the indexing creates a temporary
1567   --  controlled cursor that sets the tampering bit of the container, and
1568   --  restricts the use of the convenient notation C (X) to contexts that
1569   --  do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1570   --  explicit dereference. The transformation applies when it has the form
1571   --  F (X).Discr.all.
1572
1573   function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1574   --  Determine whether aspect specification or pragma Item is a contract
1575   --  annotation.
1576
1577   function Is_Controlling_Limited_Procedure
1578     (Proc_Nam : Entity_Id) return Boolean;
1579   --  Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1580   --  of a limited interface with a controlling first parameter.
1581
1582   function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1583   --  Returns True if N is a call to a CPP constructor
1584
1585   function Is_CCT_Instance
1586     (Ref_Id     : Entity_Id;
1587      Context_Id : Entity_Id) return Boolean;
1588   --  Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1589   --  Global; also used when analyzing default expressions of protected and
1590   --  record components. Determine whether entity Ref_Id (which must represent
1591   --  either a protected type or a task type) denotes the current instance of
1592   --  a concurrent type. Context_Id denotes the associated context where the
1593   --  pragma appears.
1594
1595   function Is_Child_Or_Sibling
1596     (Pack_1 : Entity_Id;
1597      Pack_2 : Entity_Id) return Boolean;
1598   --  Determine the following relations between two arbitrary packages:
1599   --    1) One package is the parent of a child package
1600   --    2) Both packages are siblings and share a common parent
1601
1602   function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1603   --  First determine whether type T is an interface and then check whether
1604   --  it is of protected, synchronized or task kind.
1605
1606   function Is_Current_Instance (N : Node_Id) return Boolean;
1607   --  Predicate is true if N legally denotes a type name within its own
1608   --  declaration. Prior to Ada 2012 this covered only synchronized type
1609   --  declarations. In Ada 2012 it also covers type and subtype declarations
1610   --  with aspects: Invariant, Predicate, and Default_Initial_Condition.
1611
1612   function Is_Declaration
1613     (N                : Node_Id;
1614      Body_OK          : Boolean := True;
1615      Concurrent_OK    : Boolean := True;
1616      Formal_OK        : Boolean := True;
1617      Generic_OK       : Boolean := True;
1618      Instantiation_OK : Boolean := True;
1619      Renaming_OK      : Boolean := True;
1620      Stub_OK          : Boolean := True;
1621      Subprogram_OK    : Boolean := True;
1622      Type_OK          : Boolean := True) return Boolean;
1623   --  Determine whether arbitrary node N denotes a declaration depending
1624   --  on the allowed subsets of declarations. Set the following flags to
1625   --  consider specific subsets of declarations:
1626   --
1627   --    * Body_OK - body declarations
1628   --
1629   --    * Concurrent_OK - concurrent type declarations
1630   --
1631   --    * Formal_OK - formal declarations
1632   --
1633   --    * Generic_OK - generic declarations, including generic renamings
1634   --
1635   --    * Instantiation_OK - generic instantiations
1636   --
1637   --    * Renaming_OK - renaming declarations, including generic renamings
1638   --
1639   --    * Stub_OK - stub declarations
1640   --
1641   --    * Subprogram_OK - entry, expression function, and subprogram
1642   --      declarations.
1643   --
1644   --    * Type_OK - type declarations, including concurrent types
1645
1646   function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1647   --  Returns True iff component Comp is declared within a variant part
1648
1649   function Is_Dependent_Component_Of_Mutable_Object
1650     (Object : Node_Id) return Boolean;
1651   --  Returns True if Object is the name of a subcomponent that depends on
1652   --  discriminants of a variable whose nominal subtype is unconstrained and
1653   --  not indefinite, and the variable is not aliased. Otherwise returns
1654   --  False. The nodes passed to this function are assumed to denote objects.
1655
1656   function Is_Dereferenced (N : Node_Id) return Boolean;
1657   --  N is a subexpression node of an access type. This function returns true
1658   --  if N appears as the prefix of a node that does a dereference of the
1659   --  access value (selected/indexed component, explicit dereference or a
1660   --  slice), and false otherwise.
1661
1662   function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1663   --  Returns True if type T1 is a descendant of type T2, and false otherwise.
1664   --  This is the RM definition, a type is a descendant of another type if it
1665   --  is the same type or is derived from a descendant of the other type.
1666
1667   function Is_Descendant_Of_Suspension_Object
1668     (Typ : Entity_Id) return Boolean;
1669   --  Determine whether type Typ is a descendant of type Suspension_Object
1670   --  defined in Ada.Synchronous_Task_Control. This version is different from
1671   --  Is_Descendant_Of as the detection of Suspension_Object does not involve
1672   --  an entity and by extension a call to RTSfind.
1673
1674   function Is_Double_Precision_Floating_Point_Type
1675     (E : Entity_Id) return Boolean;
1676   --  Return whether E is a double precision floating point type,
1677   --  characterized by:
1678   --  . machine_radix = 2
1679   --  . machine_mantissa = 53
1680   --  . machine_emax = 2**10
1681   --  . machine_emin = 3 - machine_emax
1682
1683   function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1684   --  Determine whether a type or object denoted by entity Id is effectively
1685   --  volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1686   --    * Volatile without No_Caching
1687   --    * An array type subject to aspect Volatile_Components
1688   --    * An array type whose component type is effectively volatile
1689   --    * A protected type
1690   --    * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1691
1692   function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1693   --  Determine whether an arbitrary node denotes an effectively volatile
1694   --  object (SPARK RM 7.1.2).
1695
1696   function Is_Entry_Body (Id : Entity_Id) return Boolean;
1697   --  Determine whether entity Id is the body entity of an entry [family]
1698
1699   function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1700   --  Determine whether entity Id is the spec entity of an entry [family]
1701
1702   function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
1703   --  Check whether a function in a call is an expanded priority attribute,
1704   --  which is transformed into an Rtsfind call to Get_Ceiling. This expansion
1705   --  does not take place in a configurable runtime.
1706
1707   function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1708   --  Determine whether subprogram [body] Subp denotes an expression function
1709
1710   function Is_Expression_Function_Or_Completion
1711     (Subp : Entity_Id) return Boolean;
1712   --  Determine whether subprogram [body] Subp denotes an expression function
1713   --  or is completed by an expression function body.
1714
1715   function Is_EVF_Expression (N : Node_Id) return Boolean;
1716   --  Determine whether node N denotes a reference to a formal parameter of
1717   --  a specific tagged type whose related subprogram is subject to pragma
1718   --  Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
1719   --  constructs fall under this category:
1720   --    1) A qualified expression whose operand is EVF
1721   --    2) A type conversion whose operand is EVF
1722   --    3) An if expression with at least one EVF dependent_expression
1723   --    4) A case expression with at least one EVF dependent_expression
1724
1725   function Is_False (U : Uint) return Boolean;
1726   pragma Inline (Is_False);
1727   --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
1728   --  operand (i.e. is either 0 for False, or 1 for True). This function tests
1729   --  if it is False (i.e. zero).
1730
1731   function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1732   --  Returns True iff the number U is a model number of the fixed-point type
1733   --  T, i.e. if it is an exact multiple of Small.
1734
1735   function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1736   --  Typ is a type entity. This function returns true if this type is fully
1737   --  initialized, meaning that an object of the type is fully initialized.
1738   --  Note that initialization resulting from use of pragma Normalize_Scalars
1739   --  does not count. Note that this is only used for the purpose of issuing
1740   --  warnings for objects that are potentially referenced uninitialized. This
1741   --  means that the result returned is not crucial, but should err on the
1742   --  side of thinking things are fully initialized if it does not know.
1743
1744   function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1745   --  Determine whether arbitrary declaration Decl denotes a generic package,
1746   --  a generic subprogram or a generic body.
1747
1748   function Is_Independent_Object (N : Node_Id) return Boolean;
1749   --  Determine whether arbitrary node N denotes a reference to an independent
1750   --  object as per RM C.6(8).
1751
1752   function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1753   --  E is a subprogram. Return True is E is an implicit operation inherited
1754   --  by a derived type declaration.
1755
1756   function Is_Inherited_Operation_For_Type
1757     (E   : Entity_Id;
1758      Typ : Entity_Id) return Boolean;
1759   --  E is a subprogram. Return True is E is an implicit operation inherited
1760   --  by the derived type declaration for type Typ.
1761
1762   function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
1763   --  Return True if Subp is an expression function that fulfills all the
1764   --  following requirements for inlining:
1765   --     1. pragma/aspect Inline_Always
1766   --     2. No formals
1767   --     3. No contracts
1768   --     4. No dispatching primitive
1769   --     5. Result subtype controlled (or with controlled components)
1770   --     6. Result subtype not subject to type-invariant checks
1771   --     7. Result subtype not a class-wide type
1772   --     8. Return expression naming an object global to the function
1773   --     9. Nominal subtype of the returned object statically compatible
1774   --        with the result subtype of the expression function.
1775
1776   function Is_Iterator (Typ : Entity_Id) return Boolean;
1777   --  AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1778   --  Ada.Iterator_Interfaces, or it is derived from one.
1779
1780   function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
1781   --  N is an iterator specification. Returns True iff N is an iterator over
1782   --  an array, either inside a loop of the form 'for X of A' or a quantified
1783   --  expression of the form 'for all/some X of A' where A is of array type.
1784
1785   type Is_LHS_Result is (Yes, No, Unknown);
1786   function Is_LHS (N : Node_Id) return Is_LHS_Result;
1787   --  Returns Yes if N is definitely used as Name in an assignment statement.
1788   --  Returns No if N is definitely NOT used as a Name in an assignment
1789   --  statement. Returns Unknown if we can't tell at this stage (happens in
1790   --  the case where we don't know the type of N yet, and we have something
1791   --  like N.A := 3, where this counts as N being used on the left side of
1792   --  an assignment only if N is not an access type. If it is an access type
1793   --  then it is N.all.A that is assigned, not N.
1794
1795   function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1796   --  A library-level declaration is one that is accessible from Standard,
1797   --  i.e. a library unit or an entity declared in a library package.
1798
1799   function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1800   --  Determine whether a given type is a limited class-wide type, in which
1801   --  case it needs a Master_Id, because extensions of its designated type
1802   --  may include task components. A class-wide type that comes from a
1803   --  limited view must be treated in the same way.
1804
1805   function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1806   --  Determines whether Expr is a reference to a variable or IN OUT mode
1807   --  parameter of the current enclosing subprogram.
1808   --  Why are OUT parameters not considered here ???
1809
1810   function Is_Name_Reference (N : Node_Id) return Boolean;
1811   --  Determine whether arbitrary node N is a reference to a name. This is
1812   --  similar to Is_Object_Reference but returns True only if N can be renamed
1813   --  without the need for a temporary, the typical example of an object not
1814   --  in this category being a function call.
1815
1816   function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
1817   --  Determine whether arbitrary construct N violates preelaborability as
1818   --  defined in ARM 10.2.1 5-9/3. This routine takes into account both the
1819   --  syntactic and semantic properties of the construct.
1820
1821   function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
1822   --  Determine whether entity Id denotes the procedure that verifies the
1823   --  assertion expression of pragma Default_Initial_Condition and if it does,
1824   --  the encapsulated expression is nontrivial.
1825
1826   function Is_Null_Record_Type (T : Entity_Id) return Boolean;
1827   --  Determine whether T is declared with a null record definition or a
1828   --  null component list.
1829
1830   function Is_Object_Image (Prefix : Node_Id) return Boolean;
1831   --  Returns True if an 'Image, 'Wide_Image, or 'Wide_Wide_Image attribute
1832   --  is applied to a given object or named value prefix (see below).
1833
1834   --  AI12-00124: The ARG has adopted the GNAT semantics of 'Img for scalar
1835   --  types, so that the prefix of any 'Image attribute can be an object, a
1836   --  named value, or a type, and there is no need for an argument in the
1837   --  case it is an object reference.
1838
1839   function Is_Object_Reference (N : Node_Id) return Boolean;
1840   --  Determines if the tree referenced by N represents an object. Both
1841   --  variable and constant objects return True (compare Is_Variable).
1842
1843   function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1844   --  Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1845   --  Note that the Is_Variable function is not quite the right test because
1846   --  this is a case in which conversions whose expression is a variable (in
1847   --  the Is_Variable sense) with an untagged type target are considered view
1848   --  conversions and hence variables.
1849
1850   function Is_OK_Volatile_Context
1851     (Context : Node_Id;
1852      Obj_Ref : Node_Id) return Boolean;
1853   --  Determine whether node Context denotes a "non-interfering context" (as
1854   --  defined in SPARK RM 7.1.3(12)) where volatile reference Obj_Ref can
1855   --  safely reside.
1856
1857   function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
1858   --  Determine whether aspect specification or pragma Item is one of the
1859   --  following package contract annotations:
1860   --    Abstract_State
1861   --    Initial_Condition
1862   --    Initializes
1863   --    Refined_State
1864
1865   function Is_Partially_Initialized_Type
1866     (Typ              : Entity_Id;
1867      Include_Implicit : Boolean := True) return Boolean;
1868   --  Typ is a type entity. This function returns true if this type is partly
1869   --  initialized, meaning that an object of the type is at least partly
1870   --  initialized (in particular in the record case, that at least one
1871   --  component has an initialization expression). Note that initialization
1872   --  resulting from the use of pragma Normalize_Scalars does not count.
1873   --  Include_Implicit controls whether implicit initialization of access
1874   --  values to null, and of discriminant values, is counted as making the
1875   --  type be partially initialized. For the default setting of True, these
1876   --  implicit cases do count, and discriminated types or types containing
1877   --  access values not explicitly initialized will return True. Otherwise
1878   --  if Include_Implicit is False, these cases do not count as making the
1879   --  type be partially initialized.
1880
1881   function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1882   --  Predicate to implement definition given in RM 6.1.1 (20/3)
1883
1884   function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1885   --  Determines if type T is a potentially persistent type. A potentially
1886   --  persistent type is defined (recursively) as a scalar type, an untagged
1887   --  record whose components are all of a potentially persistent type, or an
1888   --  array with all static constraints whose component type is potentially
1889   --  persistent. A private type is potentially persistent if the full type
1890   --  is potentially persistent.
1891
1892   function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
1893   --  Ada 2005 (AI-251): Determines if E is a predefined primitive operation
1894
1895   function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
1896   --  Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
1897   --  required to implement interfaces.
1898
1899   function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
1900   --  Similar to the previous one, but excludes stream operations, because
1901   --  these may be overridden, and need extra formals, like user-defined
1902   --  operations.
1903
1904   function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
1905   --  Determine whether aggregate Aggr violates the restrictions of
1906   --  preelaborable constructs as defined in ARM 10.2.1(5-9).
1907
1908   function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
1909   --  Determine whether arbitrary node N violates the restrictions of
1910   --  preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
1911   --  Is_Non_Preelaborable_Construct takes into account the syntactic
1912   --  and semantic properties of N for a more accurate diagnostic.
1913
1914   function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1915   --  Return True if node N denotes a protected type name which represents
1916   --  the current instance of a protected object according to RM 9.4(21/2).
1917
1918   function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1919   --  Return True if a compilation unit is the specification or the
1920   --  body of a remote call interface package.
1921
1922   function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1923   --  Return True if E is a remote access-to-class-wide type
1924
1925   function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1926   --  Return True if E is a remote access to subprogram type
1927
1928   function Is_Remote_Call (N : Node_Id) return Boolean;
1929   --  Return True if N denotes a potentially remote call
1930
1931   function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1932   --  Return True if Proc_Nam is a procedure renaming of an entry
1933
1934   function Is_Renaming_Declaration (N : Node_Id) return Boolean;
1935   --  Determine whether arbitrary node N denotes a renaming declaration
1936
1937   function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1938   --  AI05-0139-2: Check whether Typ is derived from the predefined interface
1939   --  Ada.Iterator_Interfaces.Reversible_Iterator.
1940
1941   function Is_Selector_Name (N : Node_Id) return Boolean;
1942   --  Given an N_Identifier node N, determines if it is a Selector_Name.
1943   --  As described in Sinfo, Selector_Names are special because they
1944   --  represent use of the N_Identifier node for a true identifier, when
1945   --  normally such nodes represent a direct name.
1946
1947   function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
1948   --  Determine whether arbitrary entity Id denotes the anonymous object
1949   --  created for a single protected or single task type.
1950
1951   function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
1952   --  Determine whether arbitrary entity Id denotes a single protected or
1953   --  single task type.
1954
1955   function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
1956   --  Determine whether arbitrary node N denotes the declaration of a single
1957   --  protected type or single task type.
1958
1959   function Is_Single_Precision_Floating_Point_Type
1960     (E : Entity_Id) return Boolean;
1961   --  Return whether E is a single precision floating point type,
1962   --  characterized by:
1963   --  . machine_radix = 2
1964   --  . machine_mantissa = 24
1965   --  . machine_emax = 2**7
1966   --  . machine_emin = 3 - machine_emax
1967
1968   function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
1969   --  Determine whether arbitrary entity Id denotes the anonymous object
1970   --  created for a single protected type.
1971
1972   function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
1973   --  Determine whether arbitrary entity Id denotes the anonymous object
1974   --  created for a single task type.
1975
1976   function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean;
1977   --  Determines if the tree referenced by N represents an initialization
1978   --  expression in SPARK 2005, suitable for initializing an object in an
1979   --  object declaration.
1980
1981   function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean;
1982   --  Determines if the tree referenced by N represents an object in SPARK
1983   --  2005. This differs from Is_Object_Reference in that only variables,
1984   --  constants, formal parameters, and selected_components of those are
1985   --  valid objects in SPARK 2005.
1986
1987   function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
1988   --  Determine whether an arbitrary [private] type is specifically tagged
1989
1990   function Is_Statement (N : Node_Id) return Boolean;
1991   pragma Inline (Is_Statement);
1992   --  Check if the node N is a statement node. Note that this includes
1993   --  the case of procedure call statements (unlike the direct use of
1994   --  the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1995   --  Note that a label is *not* a statement, and will return False.
1996
1997   function Is_Subcomponent_Of_Atomic_Object (N : Node_Id) return Boolean;
1998   --  Determine whether arbitrary node N denotes a reference to a subcomponent
1999   --  of an atomic object as per RM C.6(7).
2000
2001   function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2002   --  Determine whether aspect specification or pragma Item is one of the
2003   --  following subprogram contract annotations:
2004   --    Contract_Cases
2005   --    Depends
2006   --    Extensions_Visible
2007   --    Global
2008   --    Post
2009   --    Post_Class
2010   --    Postcondition
2011   --    Pre
2012   --    Pre_Class
2013   --    Precondition
2014   --    Refined_Depends
2015   --    Refined_Global
2016   --    Refined_Post
2017   --    Test_Case
2018
2019   function Is_Subprogram_Stub_Without_Prior_Declaration
2020     (N : Node_Id) return Boolean;
2021   --  Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2022   --  stub with no prior subprogram declaration.
2023
2024   function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2025   --  Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2026   --  an arbitrary tagged type.
2027
2028   function Is_Suspension_Object (Id : Entity_Id) return Boolean;
2029   --  Determine whether arbitrary entity Id denotes Suspension_Object defined
2030   --  in Ada.Synchronous_Task_Control.
2031
2032   function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2033   --  Determine whether entity Id denotes an object and if it does, whether
2034   --  this object is synchronized as specified in SPARK RM 9.1. To qualify as
2035   --  such, the object must be
2036   --    * Of a type that yields a synchronized object
2037   --    * An atomic object with enabled Async_Writers
2038   --    * A constant
2039   --    * A variable subject to pragma Constant_After_Elaboration
2040
2041   function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2042   --  Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2043
2044   function Is_Transfer (N : Node_Id) return Boolean;
2045   --  Returns True if the node N is a statement which is known to cause an
2046   --  unconditional transfer of control at run time, i.e. the following
2047   --  statement definitely will not be executed.
2048
2049   function Is_True (U : Uint) return Boolean;
2050   pragma Inline (Is_True);
2051   --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
2052   --  operand (i.e. is either 0 for False, or 1 for True). This function tests
2053   --  if it is True (i.e. non-zero).
2054
2055   function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2056   --  Determine whether an arbitrary entity denotes an instance of function
2057   --  Ada.Unchecked_Conversion.
2058
2059   function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2060   pragma Inline (Is_Universal_Numeric_Type);
2061   --  True if T is Universal_Integer or Universal_Real
2062
2063   function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2064   --  Determine whether an entity denotes a user-defined equality
2065
2066   function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2067   --  Determine whether N denotes a reference to a variable which captures the
2068   --  value of an object for validation purposes.
2069
2070   function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2071   --  Returns true if E has variable size components
2072
2073   function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2074   --  Returns true if E has variable size components
2075
2076   --  WARNING: There is a matching C declaration of this subprogram in fe.h
2077
2078   function Is_Variable
2079     (N                 : Node_Id;
2080      Use_Original_Node : Boolean := True) return Boolean;
2081   --  Determines if the tree referenced by N represents a variable, i.e. can
2082   --  appear on the left side of an assignment. There is one situation (formal
2083   --  parameters) in which untagged type conversions are also considered
2084   --  variables, but Is_Variable returns False for such cases, since it has
2085   --  no knowledge of the context. Note that this is the point at which
2086   --  Assignment_OK is checked, and True is returned for any tree thus marked.
2087   --  Use_Original_Node is used to perform the test on Original_Node (N). By
2088   --  default is True since this routine is commonly invoked as part of the
2089   --  semantic analysis and it must not be disturbed by the rewriten nodes.
2090
2091   function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2092   --  Check whether T is derived from a visibly controlled type. This is true
2093   --  if the root type is declared in Ada.Finalization. If T is derived
2094   --  instead from a private type whose full view is controlled, an explicit
2095   --  Initialize/Adjust/Finalize subprogram does not override the inherited
2096   --  one.
2097
2098   function Is_Volatile_Full_Access_Object (N : Node_Id) return Boolean;
2099   --  Determine whether arbitrary node N denotes a reference to an object
2100   --  which is Volatile_Full_Access.
2101
2102   function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2103   --  Determine whether [generic] function Func_Id is subject to enabled
2104   --  pragma Volatile_Function. Protected functions are treated as volatile
2105   --  (SPARK RM 7.1.2).
2106
2107   function Is_Volatile_Object (N : Node_Id) return Boolean;
2108   --  Determine whether arbitrary node N denotes a reference to a volatile
2109   --  object as per RM C.6(8). Note that the test here is for something that
2110   --  is actually declared as volatile, not for an object that gets treated
2111   --  as volatile (see Einfo.Treat_As_Volatile).
2112
2113   generic
2114      with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2115   procedure Iterate_Call_Parameters (Call : Node_Id);
2116   --  Calls Handle_Parameter for each pair of formal and actual parameters of
2117   --  a function, procedure, or entry call.
2118
2119   function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
2120   --  Applies to Itypes. True if the Itype is attached to a declaration for
2121   --  the type through its Parent field, which may or not be present in the
2122   --  tree.
2123
2124   procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2125   --  This procedure is called to clear all constant indications from all
2126   --  entities in the current scope and in any parent scopes if the current
2127   --  scope is a block or a package (and that recursion continues to the top
2128   --  scope that is not a block or a package). This is used when the
2129   --  sequential flow-of-control assumption is violated (occurrence of a
2130   --  label, head of a loop, or start of an exception handler). The effect of
2131   --  the call is to clear the Current_Value field (but we do not need to
2132   --  clear the Is_True_Constant flag, since that only gets reset if there
2133   --  really is an assignment somewhere in the entity scope). This procedure
2134   --  also calls Kill_All_Checks, since this is a special case of needing to
2135   --  forget saved values. This procedure also clears the Is_Known_Null and
2136   --  Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2137   --  parameters since these are also not known to be trustable any more.
2138   --
2139   --  The Last_Assignment_Only flag is set True to clear only Last_Assignment
2140   --  fields and leave other fields unchanged. This is used when we encounter
2141   --  an unconditional flow of control change (return, goto, raise). In such
2142   --  cases we don't need to clear the current values, since it may be that
2143   --  the flow of control change occurs in a conditional context, and if it
2144   --  is not taken, then it is just fine to keep the current values. But the
2145   --  Last_Assignment field is different, if we have a sequence assign-to-v,
2146   --  conditional-return, assign-to-v, we do not want to complain that the
2147   --  second assignment clobbers the first.
2148
2149   procedure Kill_Current_Values
2150     (Ent                  : Entity_Id;
2151      Last_Assignment_Only : Boolean := False);
2152   --  This performs the same processing as described above for the form with
2153   --  no argument, but for the specific entity given. The call has no effect
2154   --  if the entity Ent is not for an object. Last_Assignment_Only has the
2155   --  same meaning as for the call with no Ent.
2156
2157   procedure Kill_Size_Check_Code (E : Entity_Id);
2158   --  Called when an address clause or pragma Import is applied to an entity.
2159   --  If the entity is a variable or a constant, and size check code is
2160   --  present, this size check code is killed, since the object will not be
2161   --  allocated by the program.
2162
2163   function Known_Non_Null (N : Node_Id) return Boolean;
2164   --  Given a node N for a subexpression of an access type, determines if
2165   --  this subexpression yields a value that is known at compile time to
2166   --  be non-null and returns True if so. Returns False otherwise. It is
2167   --  an error to call this function if N is not of an access type.
2168
2169   function Known_Null (N : Node_Id) return Boolean;
2170   --  Given a node N for a subexpression of an access type, determines if this
2171   --  subexpression yields a value that is known at compile time to be null
2172   --  and returns True if so. Returns False otherwise. It is an error to call
2173   --  this function if N is not of an access type.
2174
2175   function Known_To_Be_Assigned (N : Node_Id) return Boolean;
2176   --  The node N is an entity reference. This function determines whether the
2177   --  reference is for sure an assignment of the entity, returning True if
2178   --  so. This differs from May_Be_Lvalue in that it defaults in the other
2179   --  direction. Cases which may possibly be assignments but are not known to
2180   --  be may return True from May_Be_Lvalue, but False from this function.
2181
2182   function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2183   --  HSS is a handled statement sequence. This function returns the last
2184   --  statement in Statements (HSS) that has Comes_From_Source set. If no
2185   --  such statement exists, Empty is returned.
2186
2187   procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2188   --  Given a node which designates the context of analysis and an origin in
2189   --  the tree, traverse from Root_Nod and mark all allocators as either
2190   --  dynamic or static depending on Context_Nod. Any incorrect marking is
2191   --  cleaned up during resolution.
2192
2193   procedure Mark_Elaboration_Attributes
2194     (N_Id     : Node_Or_Entity_Id;
2195      Checks   : Boolean := False;
2196      Level    : Boolean := False;
2197      Modes    : Boolean := False;
2198      Warnings : Boolean := False);
2199   --  Preserve relevant elaboration-related properties of the context in
2200   --  arbitrary entity or node N_Id. The flags control the properties as
2201   --  follows:
2202   --
2203   --    Checks   - Save the status of Elaboration_Check
2204   --    Level    - Save the declaration level of N_Id (if appicable)
2205   --    Modes    - Save the Ghost and SPARK modes in effect (if applicable)
2206   --    Warnings - Save the status of Elab_Warnings
2207
2208   procedure Mark_Save_Invocation_Graph_Of_Body;
2209   --  Notify the body of the main unit that the invocation constructs and
2210   --  relations expressed within it must be recorded by the ABE mechanism.
2211
2212   function Matching_Static_Array_Bounds
2213     (L_Typ : Node_Id;
2214      R_Typ : Node_Id) return Boolean;
2215   --  L_Typ and R_Typ are two array types. Returns True when they have the
2216   --  same number of dimensions, and the same static bounds for each index
2217   --  position.
2218
2219   function May_Be_Lvalue (N : Node_Id) return Boolean;
2220   --  Determines if N could be an lvalue (e.g. an assignment left hand side).
2221   --  An lvalue is defined as any expression which appears in a context where
2222   --  a name is required by the syntax, and the identity, rather than merely
2223   --  the value of the node is needed (for example, the prefix of an Access
2224   --  attribute is in this category). Note that, as implied by the name, this
2225   --  test is conservative. If it cannot be sure that N is NOT an lvalue, then
2226   --  it returns True. It tries hard to get the answer right, but it is hard
2227   --  to guarantee this in all cases. Note that it is more possible to give
2228   --  correct answer if the tree is fully analyzed.
2229
2230   function Might_Raise (N : Node_Id) return Boolean;
2231   --  True if evaluation of N might raise an exception. This is conservative;
2232   --  if we're not sure, we return True. If N is a subprogram body, this is
2233   --  about whether execution of that body can raise.
2234
2235   function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2236   --  Return the entity of the nearest enclosing instance which encapsulates
2237   --  entity E. If no such instance exits, return Empty.
2238
2239   function Needs_Finalization (Typ : Entity_Id) return Boolean;
2240   --  Determine whether type Typ is controlled and this requires finalization
2241   --  actions.
2242
2243   function Needs_One_Actual (E : Entity_Id) return Boolean;
2244   --  Returns True if a function has defaults for all but its first formal,
2245   --  which is a controlling formal. Used in Ada 2005 mode to solve the
2246   --  syntactic ambiguity that results from an indexing of a function call
2247   --  that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2248
2249   function Needs_Simple_Initialization
2250     (Typ         : Entity_Id;
2251      Consider_IS : Boolean := True) return Boolean;
2252   --  Certain types need initialization even though there is no specific
2253   --  initialization routine:
2254   --    Access types (which need initializing to null)
2255   --    All scalar types if Normalize_Scalars mode set
2256   --    Descendants of standard string types if Normalize_Scalars mode set
2257   --    Scalar types having a Default_Value attribute
2258   --  Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2259   --  set to False, but if Consider_IS is set to True, then the cases above
2260   --  mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2261
2262   function Needs_Variable_Reference_Marker
2263     (N        : Node_Id;
2264      Calls_OK : Boolean) return Boolean;
2265   --  Determine whether arbitrary node N denotes a reference to a variable
2266   --  which is suitable for SPARK elaboration checks. Flag Calls_OK should
2267   --  be set when the reference is allowed to appear within calls.
2268
2269   function New_Copy_List_Tree (List : List_Id) return List_Id;
2270   --  Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2271   --  below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2272   --  nodes (entities) either directly or indirectly using this function.
2273
2274   function New_Copy_Tree
2275     (Source           : Node_Id;
2276      Map              : Elist_Id   := No_Elist;
2277      New_Sloc         : Source_Ptr := No_Location;
2278      New_Scope        : Entity_Id  := Empty;
2279      Scopes_In_EWA_OK : Boolean    := False) return Node_Id;
2280   --  Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2281   --  and nodes are handled separately as follows:
2282   --
2283   --    * A node is replicated by first creating a shallow copy, then copying
2284   --      its syntactic fields, where all Parent pointers of the fields are
2285   --      updated to refer to the copy. In addition, the following semantic
2286   --      fields are recreated after the replication takes place.
2287   --
2288   --        First_Named_Actual
2289   --        First_Real_Statement
2290   --        Next_Named_Actual
2291   --
2292   --      If applicable, the Etype field (if any) is updated to refer to a
2293   --      local itype or type (see below).
2294   --
2295   --    * An entity defined within an N_Expression_With_Actions node in the
2296   --      subtree is given a new entity, and all references to the original
2297   --      entity are updated to refer to the new entity. In addition, the
2298   --      following semantic fields are replicated and/or updated to refer
2299   --      to a local entity or itype.
2300   --
2301   --        Discriminant_Constraint
2302   --        Etype
2303   --        First_Index
2304   --        Next_Entity
2305   --        Packed_Array_Impl_Type
2306   --        Scalar_Range
2307   --        Scope
2308   --
2309   --      Note that currently no other expression can define entities.
2310   --
2311   --    * An itype whose Associated_Node_For_Itype node is in the subtree
2312   --      is given a new entity, and all references to the original itype
2313   --      are updated to refer to the new itype. In addition, the following
2314   --      semantic fields are replicated and/or updated to refer to a local
2315   --      entity or itype.
2316   --
2317   --        Discriminant_Constraint
2318   --        Etype
2319   --        First_Index
2320   --        Next_Entity
2321   --        Packed_Array_Impl_Type
2322   --        Scalar_Range
2323   --        Scope
2324   --
2325   --      The Associated_Node_For_Itype is updated to refer to a replicated
2326   --      node.
2327   --
2328   --  The routine can replicate both analyzed and unanalyzed trees. Copying an
2329   --  Empty or Error node yields the same node.
2330   --
2331   --  Parameter Map may be used to specify a set of mappings between entities.
2332   --  These mappings are then taken into account when replicating entities.
2333   --  The format of Map must be as follows:
2334   --
2335   --    old entity 1
2336   --    new entity to replace references to entity 1
2337   --    old entity 2
2338   --    new entity to replace references to entity 2
2339   --    ...
2340   --
2341   --  Map and its contents are left unchanged.
2342   --
2343   --  Parameter New_Sloc may be used to specify a new source location for all
2344   --  replicated entities, itypes, and nodes. The Comes_From_Source indicator
2345   --  is defaulted if a new source location is provided.
2346   --
2347   --  Parameter New_Scope may be used to specify a new scope for all copied
2348   --  entities and itypes.
2349   --
2350   --  Parameter Scopes_In_EWA_OK may be used to force the replication of both
2351   --  scoping entities and non-scoping entities found within expression with
2352   --  actions nodes.
2353
2354   function New_External_Entity
2355     (Kind         : Entity_Kind;
2356      Scope_Id     : Entity_Id;
2357      Sloc_Value   : Source_Ptr;
2358      Related_Id   : Entity_Id;
2359      Suffix       : Character;
2360      Suffix_Index : Int := 0;
2361      Prefix       : Character := ' ') return Entity_Id;
2362   --  This function creates an N_Defining_Identifier node for an internal
2363   --  created entity, such as an implicit type or subtype, or a record
2364   --  initialization procedure. The entity name is constructed with a call
2365   --  to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2366   --  that the generated name may be referenced as a public entry, and the
2367   --  Is_Public flag is set if needed (using Set_Public_Status). If the
2368   --  entity is for a type or subtype, the size/align fields are initialized
2369   --  to unknown (Uint_0).
2370
2371   function New_Internal_Entity
2372     (Kind       : Entity_Kind;
2373      Scope_Id   : Entity_Id;
2374      Sloc_Value : Source_Ptr;
2375      Id_Char    : Character) return Entity_Id;
2376   --  This function is similar to New_External_Entity, except that the
2377   --  name is constructed by New_Internal_Name (Id_Char). This is used
2378   --  when the resulting entity does not have to be referenced as a
2379   --  public entity (and in this case Is_Public is not set).
2380
2381   function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2382   --  Find next actual parameter in declaration order. As described for
2383   --  First_Actual, this is the next actual in the declaration order, not
2384   --  the call order, so this does not correspond to simply taking the
2385   --  next entry of the Parameter_Associations list. The argument is an
2386   --  actual previously returned by a call to First_Actual or Next_Actual.
2387   --  Note that the result produced is always an expression, not a parameter
2388   --  association node, even if named notation was used.
2389
2390   --  WARNING: There is a matching C declaration of this subprogram in fe.h
2391
2392   procedure Next_Actual (Actual_Id : in out Node_Id);
2393   pragma Inline (Next_Actual);
2394   --  Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2395   --  inline this procedural form, but not the functional form above.
2396
2397   function Next_Global (Node : Node_Id) return Node_Id;
2398   --  Node is a global item from a list, obtained through calling First_Global
2399   --  and possibly Next_Global a number of times. Returns the next global item
2400   --  with the same mode.
2401
2402   procedure Next_Global (Node : in out Node_Id);
2403   pragma Inline (Next_Actual);
2404   --  Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2405   --  inline this procedural form, but not the functional form above.
2406
2407   function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2408   --  Given the entity of a variable, determine whether Id is subject to
2409   --  volatility property No_Caching and if it is, the related expression
2410   --  evaluates to True.
2411
2412   function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2413   --  Determine whether type Typ is subject to pragma No_Heap_Finalization
2414
2415   procedure Normalize_Actuals
2416     (N       : Node_Id;
2417      S       : Entity_Id;
2418      Report  : Boolean;
2419      Success : out Boolean);
2420   --  Reorders lists of actuals according to names of formals, value returned
2421   --  in Success indicates success of reordering. For more details, see body.
2422   --  Errors are reported only if Report is set to True.
2423
2424   procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2425   --  This routine is called if the sub-expression N maybe the target of
2426   --  an assignment (e.g. it is the left side of an assignment, used as
2427   --  an out parameters, or used as prefixes of access attributes). It
2428   --  sets May_Be_Modified in the associated entity if there is one,
2429   --  taking into account the rule that in the case of renamed objects,
2430   --  it is the flag in the renamed object that must be set.
2431   --
2432   --  The parameter Sure is set True if the modification is sure to occur
2433   --  (e.g. target of assignment, or out parameter), and to False if the
2434   --  modification is only potential (e.g. address of entity taken).
2435
2436   function Null_To_Null_Address_Convert_OK
2437     (N   : Node_Id;
2438      Typ : Entity_Id := Empty) return Boolean;
2439   --  Return True if we are compiling in relaxed RM semantics mode and:
2440   --   1) N is a N_Null node and Typ is a descendant of System.Address, or
2441   --   2) N is a comparison operator, one of the operands is null, and the
2442   --      type of the other operand is a descendant of System.Address.
2443
2444   function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2445   --  Returns the number of elements in the array T if the index bounds of T
2446   --  is known at compile time. If the bounds are not known at compile time,
2447   --  the function returns the value zero.
2448
2449   function Object_Access_Level (Obj : Node_Id) return Uint;
2450   --  Return the accessibility level of the view of the object Obj. For
2451   --  convenience, qualified expressions applied to object names are also
2452   --  allowed as actuals for this function.
2453
2454   function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2455   --  Retrieve the name of aspect or pragma N, taking into account a possible
2456   --  rewrite and whether the pragma is generated from an aspect as the names
2457   --  may be different. The routine also deals with 'Class in which case it
2458   --  returns the following values:
2459   --
2460   --    Invariant            -> Name_uInvariant
2461   --    Post'Class           -> Name_uPost
2462   --    Pre'Class            -> Name_uPre
2463   --    Type_Invariant       -> Name_uType_Invariant
2464   --    Type_Invariant'Class -> Name_uType_Invariant
2465
2466   function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2467   --  [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2468   --  or overrides an inherited dispatching primitive S2, the original
2469   --  corresponding operation of S is the original corresponding operation of
2470   --  S2. Otherwise, it is S itself.
2471
2472   procedure Output_Entity (Id : Entity_Id);
2473   --  Print entity Id to standard output. The name of the entity appears in
2474   --  fully qualified form.
2475   --
2476   --  WARNING: this routine should be used in debugging scenarios such as
2477   --  tracking down undefined symbols as it is fairly low level.
2478
2479   procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2480   --  Print name Nam to standard output. The name appears in fully qualified
2481   --  form assuming it appears in scope Scop. Note that this may not reflect
2482   --  the final qualification as the entity which carries the name may be
2483   --  relocated to a different scope.
2484   --
2485   --  WARNING: this routine should be used in debugging scenarios such as
2486   --  tracking down undefined symbols as it is fairly low level.
2487
2488   function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2489   --  Given a policy, return the policy identifier associated with it. If no
2490   --  such policy is in effect, the value returned is No_Name.
2491
2492   function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2493   --  Subp is the entity for a subprogram call. This function returns True if
2494   --  predicate tests are required for the arguments in this call (this is the
2495   --  normal case). It returns False for special cases where these predicate
2496   --  tests should be skipped (see body for details).
2497
2498   function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2499   --  Returns True if the names of both entities correspond with matching
2500   --  primitives. This routine includes support for the case in which one
2501   --  or both entities correspond with entities built by Derive_Subprogram
2502   --  with a special name to avoid being overridden (i.e. return true in case
2503   --  of entities with names "nameP" and "name" or vice versa).
2504
2505   function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2506   --  Returns some private component (if any) of the given Type_Id.
2507   --  Used to enforce the rules on visibility of operations on composite
2508   --  types, that depend on the full view of the component type. For a
2509   --  record type there may be several such components, we just return
2510   --  the first one.
2511
2512   procedure Process_End_Label
2513     (N   : Node_Id;
2514      Typ : Character;
2515      Ent : Entity_Id);
2516   --  N is a node whose End_Label is to be processed, generating all
2517   --  appropriate cross-reference entries, and performing style checks
2518   --  for any identifier references in the end label. Typ is either
2519   --  'e' or 't indicating the type of the cross-reference entity
2520   --  (e for spec, t for body, see Lib.Xref spec for details). The
2521   --  parameter Ent gives the entity to which the End_Label refers,
2522   --  and to which cross-references are to be generated.
2523
2524   procedure Propagate_Concurrent_Flags
2525     (Typ      : Entity_Id;
2526      Comp_Typ : Entity_Id);
2527   --  Set Has_Task, Has_Protected and Has_Timing_Event on Typ when the flags
2528   --  are set on Comp_Typ. This follows the definition of these flags which
2529   --  are set (recursively) on any composite type which has a component marked
2530   --  by one of these flags. This procedure can only set flags for Typ, and
2531   --  never clear them. Comp_Typ is the type of a component or a parent.
2532
2533   procedure Propagate_DIC_Attributes
2534     (Typ      : Entity_Id;
2535      From_Typ : Entity_Id);
2536   --  Inherit all Default_Initial_Condition-related attributes from type
2537   --  From_Typ. Typ is the destination type.
2538
2539   procedure Propagate_Invariant_Attributes
2540     (Typ      : Entity_Id;
2541      From_Typ : Entity_Id);
2542   --  Inherit all invariant-related attributes form type From_Typ. Typ is the
2543   --  destination type.
2544
2545   procedure Record_Possible_Part_Of_Reference
2546     (Var_Id : Entity_Id;
2547      Ref    : Node_Id);
2548   --  Save reference Ref to variable Var_Id when the variable is subject to
2549   --  pragma Part_Of. If the variable is known to be a constituent of a single
2550   --  protected/task type, the legality of the reference is verified and the
2551   --  save does not take place.
2552
2553   function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2554   --  Determine whether entity Id is referenced within expression Expr
2555
2556   function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2557   --  Returns True if the expression Expr contains any references to a generic
2558   --  type. This can only happen within a generic template.
2559
2560   procedure Remove_Entity_And_Homonym (Id : Entity_Id);
2561   --  Remove arbitrary entity Id from both the homonym and scope chains. Use
2562   --  Remove_Overloaded_Entity for overloadable entities. Note: the removal
2563   --  performed by this routine does not affect the visibility of existing
2564   --  homonyms.
2565
2566   procedure Remove_Homonym (Id : Entity_Id);
2567   --  Removes entity Id from the homonym chain
2568
2569   procedure Remove_Overloaded_Entity (Id : Entity_Id);
2570   --  Remove arbitrary entity Id from the homonym chain, the scope chain and
2571   --  the primitive operations list of the associated controlling type. Use
2572   --  Remove_Entity for non-overloadable entities. Note: the removal performed
2573   --  by this routine does not affect the visibility of existing homonyms.
2574
2575   function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2576   --  Returns the name of E without Suffix
2577
2578   procedure Replace_Null_By_Null_Address (N : Node_Id);
2579   --  N is N_Null or a binary comparison operator, we are compiling in relaxed
2580   --  RM semantics mode, and one of the operands is null. Replace null with
2581   --  System.Null_Address.
2582
2583   function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2584   --  This is used to construct the second argument in a call to Rep_To_Pos
2585   --  which is Standard_True if range checks are enabled (E is an entity to
2586   --  which the Range_Checks_Suppressed test is applied), and Standard_False
2587   --  if range checks are suppressed. Loc is the location for the node that
2588   --  is returned (which is a New_Occurrence of the appropriate entity).
2589   --
2590   --  Note: one might think that it would be fine to always use True and
2591   --  to ignore the suppress in this case, but it is generally better to
2592   --  believe a request to suppress exceptions if possible, and further
2593   --  more there is at least one case in the generated code (the code for
2594   --  array assignment in a loop) that depends on this suppression.
2595
2596   procedure Require_Entity (N : Node_Id);
2597   --  N is a node which should have an entity value if it is an entity name.
2598   --  If not, then check if there were previous errors. If so, just fill
2599   --  in with Any_Id and ignore. Otherwise signal a program error exception.
2600   --  This is used as a defense mechanism against ill-formed trees caused by
2601   --  previous errors (particularly in -gnatq mode).
2602
2603   function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
2604   --  Id is a type entity. The result is True when temporaries of this type
2605   --  need to be wrapped in a transient scope to be reclaimed properly when a
2606   --  secondary stack is in use. Examples of types requiring such wrapping are
2607   --  controlled types and variable-sized types including unconstrained
2608   --  arrays.
2609
2610   --  WARNING: There is a matching C declaration of this subprogram in fe.h
2611
2612   procedure Reset_Analyzed_Flags (N : Node_Id);
2613   --  Reset the Analyzed flags in all nodes of the tree whose root is N
2614
2615   procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
2616   --  Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
2617   --  routine must be used in tandem with Set_SPARK_Mode.
2618
2619   function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2620   --  Return true if Subp is a function that returns an unconstrained type
2621
2622   function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
2623   --  Similar to attribute Root_Type, but this version always follows the
2624   --  Full_View of a private type (if available) while searching for the
2625   --  ultimate derivation ancestor.
2626
2627   function Safe_To_Capture_Value
2628     (N    : Node_Id;
2629      Ent  : Entity_Id;
2630      Cond : Boolean := False) return Boolean;
2631   --  The caller is interested in capturing a value (either the current value,
2632   --  or an indication that the value is non-null) for the given entity Ent.
2633   --  This value can only be captured if sequential execution semantics can be
2634   --  properly guaranteed so that a subsequent reference will indeed be sure
2635   --  that this current value indication is correct. The node N is the
2636   --  construct which resulted in the possible capture of the value (this
2637   --  is used to check if we are in a conditional).
2638   --
2639   --  Cond is used to skip the test for being inside a conditional. It is used
2640   --  in the case of capturing values from if/while tests, which already do a
2641   --  proper job of handling scoping issues without this help.
2642   --
2643   --  The only entities whose values can be captured are OUT and IN OUT formal
2644   --  parameters, and variables unless Cond is True, in which case we also
2645   --  allow IN formals, loop parameters and constants, where we cannot ever
2646   --  capture actual value information, but we can capture conditional tests.
2647
2648   function Same_Name (N1, N2 : Node_Id) return Boolean;
2649   --  Determine if two (possibly expanded) names are the same name. This is
2650   --  a purely syntactic test, and N1 and N2 need not be analyzed.
2651
2652   function Same_Object (Node1, Node2 : Node_Id) return Boolean;
2653   --  Determine if Node1 and Node2 are known to designate the same object.
2654   --  This is a semantic test and both nodes must be fully analyzed. A result
2655   --  of True is decisively correct. A result of False does not necessarily
2656   --  mean that different objects are designated, just that this could not
2657   --  be reliably determined at compile time.
2658
2659   function Same_Type (T1, T2 : Entity_Id) return Boolean;
2660   --  Determines if T1 and T2 represent exactly the same type. Two types
2661   --  are the same if they are identical, or if one is an unconstrained
2662   --  subtype of the other, or they are both common subtypes of the same
2663   --  type with identical constraints. The result returned is conservative.
2664   --  It is True if the types are known to be the same, but a result of
2665   --  False is indecisive (e.g. the compiler may not be able to tell that
2666   --  two constraints are identical).
2667
2668   function Same_Value (Node1, Node2 : Node_Id) return Boolean;
2669   --  Determines if Node1 and Node2 are known to be the same value, which is
2670   --  true if they are both compile time known values and have the same value,
2671   --  or if they are the same object (in the sense of function Same_Object).
2672   --  A result of False does not necessarily mean they have different values,
2673   --  just that it is not possible to determine they have the same value.
2674
2675   function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
2676   --  Determine whether arbitrary type Typ is a scalar type, or contains at
2677   --  least one scalar subcomponent.
2678
2679   function Scope_Within
2680     (Inner : Entity_Id;
2681      Outer : Entity_Id) return Boolean;
2682   --  Determine whether scope Inner appears within scope Outer. Note that
2683   --  scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
2684   --  (B, A) may both return False.
2685
2686   function Scope_Within_Or_Same
2687     (Inner : Entity_Id;
2688      Outer : Entity_Id) return Boolean;
2689   --  Determine whether scope Inner appears within scope Outer or both denote
2690   --  the same scope. Note that scopes are partially ordered, so Scope_Within
2691   --  (A, B) and Scope_Within (B, A) may both return False.
2692
2693   procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
2694   --  Same as Basic_Set_Convention, but with an extra check for access types.
2695   --  In particular, if E is an access-to-subprogram type, and Val is a
2696   --  foreign convention, then we set Can_Use_Internal_Rep to False on E.
2697   --  Also, if the Etype of E is set and is an anonymous access type with
2698   --  no convention set, this anonymous type inherits the convention of E.
2699
2700   procedure Set_Current_Entity (E : Entity_Id);
2701   pragma Inline (Set_Current_Entity);
2702   --  Establish the entity E as the currently visible definition of its
2703   --  associated name (i.e. the Node_Id associated with its name).
2704
2705   procedure Set_Debug_Info_Needed (T : Entity_Id);
2706   --  Sets the Debug_Info_Needed flag on entity T , and also on any entities
2707   --  that are needed by T (for an object, the type of the object is needed,
2708   --  and for a type, various subsidiary types are needed -- see body for
2709   --  details). Never has any effect on T if the Debug_Info_Off flag is set.
2710   --  This routine should always be used instead of Set_Needs_Debug_Info to
2711   --  ensure that subsidiary entities are properly handled.
2712
2713   procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
2714   --  This procedure has the same calling sequence as Set_Entity, but it
2715   --  performs additional checks as follows:
2716   --
2717   --    If Style_Check is set, then it calls a style checking routine which
2718   --    can check identifier spelling style. This procedure also takes care
2719   --    of checking the restriction No_Implementation_Identifiers.
2720   --
2721   --    If restriction No_Abort_Statements is set, then it checks that the
2722   --    entity is not Ada.Task_Identification.Abort_Task.
2723   --
2724   --    If restriction No_Dynamic_Attachment is set, then it checks that the
2725   --    entity is not one of the restricted names for this restriction.
2726   --
2727   --    If restriction No_Long_Long_Integers is set, then it checks that the
2728   --    entity is not Standard.Long_Long_Integer.
2729   --
2730   --    If restriction No_Implementation_Identifiers is set, then it checks
2731   --    that the entity is not implementation defined.
2732
2733   procedure Set_Invalid_Scalar_Value
2734     (Scal_Typ : Float_Scalar_Id;
2735      Value    : Ureal);
2736   --  Associate invalid value Value with scalar type Scal_Typ as specified by
2737   --  pragma Initialize_Scalars.
2738
2739   procedure Set_Invalid_Scalar_Value
2740     (Scal_Typ : Integer_Scalar_Id;
2741      Value    : Uint);
2742   --  Associate invalid value Value with scalar type Scal_Typ as specified by
2743   --  pragma Initialize_Scalars.
2744
2745   procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
2746   pragma Inline (Set_Name_Entity_Id);
2747   --  Sets the Entity_Id value associated with the given name, which is the
2748   --  Id of the innermost visible entity with the given name. See the body
2749   --  of package Sem_Ch8 for further details on the handling of visibility.
2750
2751   procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
2752   --  The arguments may be parameter associations, whose descendants
2753   --  are the optional formal name and the actual parameter. Positional
2754   --  parameters are already members of a list, and do not need to be
2755   --  chained separately. See also First_Actual and Next_Actual.
2756
2757   procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
2758   pragma Inline (Set_Optimize_Alignment_Flags);
2759   --  Sets Optimize_Alignment_Space/Time flags in E from current settings
2760
2761   procedure Set_Public_Status (Id : Entity_Id);
2762   --  If an entity (visible or otherwise) is defined in a library
2763   --  package, or a package that is itself public, then this subprogram
2764   --  labels the entity public as well.
2765
2766   procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
2767   --  N is the node for either a left hand side (Out_Param set to False),
2768   --  or an Out or In_Out parameter (Out_Param set to True). If there is
2769   --  an assignable entity being referenced, then the appropriate flag
2770   --  (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
2771   --  if Out_Param is True) is set True, and the other flag set False.
2772
2773   procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
2774   pragma Inline (Set_Rep_Info);
2775   --  Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
2776   --  from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
2777   --  if T1 is a base type.
2778
2779   procedure Set_Scope_Is_Transient (V : Boolean := True);
2780   --  Set the flag Is_Transient of the current scope
2781
2782   procedure Set_Size_Info (T1, T2 : Entity_Id);
2783   pragma Inline (Set_Size_Info);
2784   --  Copies the Esize field and Has_Biased_Representation flag from sub(type)
2785   --  entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
2786   --  in the fixed-point and discrete cases, and also copies the alignment
2787   --  value from T2 to T1. It does NOT copy the RM_Size field, which must be
2788   --  separately set if this is required to be copied also.
2789
2790   procedure Set_SPARK_Mode (Context : Entity_Id);
2791   --  Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
2792   --  a subprogram denoted by Context. This routine must be used in tandem
2793   --  with Restore_SPARK_Mode.
2794
2795   function Scope_Is_Transient return Boolean;
2796   --  True if the current scope is transient
2797
2798   function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
2799   function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
2800   --  True if we should ignore pragmas with the specified name. In particular,
2801   --  this returns True if pragma Ignore_Pragma applies, and we are not in a
2802   --  predefined unit. The _Par version should be called only from the parser;
2803   --  the _Sem version should be called only during semantic analysis.
2804
2805   function Static_Boolean (N : Node_Id) return Uint;
2806   --  This function analyzes the given expression node and then resolves it
2807   --  as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
2808   --  returned corresponding to the value, otherwise an error message is
2809   --  output and No_Uint is returned.
2810
2811   function Static_Integer (N : Node_Id) return Uint;
2812   --  This function analyzes the given expression node and then resolves it
2813   --  as any integer type. If the result is static, then the value of the
2814   --  universal expression is returned, otherwise an error message is output
2815   --  and a value of No_Uint is returned.
2816
2817   function Statically_Different (E1, E2 : Node_Id) return Boolean;
2818   --  Return True if it can be statically determined that the Expressions
2819   --  E1 and E2 refer to different objects
2820
2821   function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
2822   --  Determine whether node N is a loop statement subject to at least one
2823   --  'Loop_Entry attribute.
2824
2825   function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
2826   --  Return the accessibility level of the view denoted by Subp
2827
2828   function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
2829   --  Return True if Typ supports the GCC built-in atomic operations (i.e. if
2830   --  Typ is properly sized and aligned).
2831
2832   procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
2833   --  Print debugging information on entry to each unit being analyzed
2834
2835   procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
2836   --  Move a list of entities from one scope to another, and recompute
2837   --  Is_Public based upon the new scope.
2838
2839   generic
2840      with function Process (N : Node_Id) return Traverse_Result is <>;
2841      Process_Itypes : Boolean := False;
2842   function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
2843   --  This is a version of Atree.Traverse_Func that not only traverses
2844   --  syntactic children of nodes, but also semantic children which are
2845   --  logically children of the node. This concerns currently lists of
2846   --  action nodes and ranges under Itypes, both inserted by the compiler.
2847   --  Itypes are only traversed when Process_Itypes is True.
2848
2849   generic
2850      with function Process (N : Node_Id) return Traverse_Result is <>;
2851      Process_Itypes : Boolean := False;
2852   procedure Traverse_More_Proc (Node : Node_Id);
2853   pragma Inline (Traverse_More_Proc);
2854   --  This is the same as Traverse_More_Func except that no result is
2855   --  returned, i.e. Traverse_More_Func is called and the result is simply
2856   --  discarded.
2857
2858   function Type_Access_Level (Typ : Entity_Id) return Uint;
2859   --  Return the accessibility level of Typ
2860
2861   function Type_Without_Stream_Operation
2862     (T  : Entity_Id;
2863      Op : TSS_Name_Type := TSS_Null) return Entity_Id;
2864   --  AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2865   --  is active then we cannot generate stream subprograms for composite types
2866   --  with elementary subcomponents that lack user-defined stream subprograms.
2867   --  This predicate determines whether a type has such an elementary
2868   --  subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
2869   --  prevents the construction of a composite stream operation. If Op is
2870   --  specified we check only for the given stream operation.
2871
2872   function Ultimate_Prefix (N : Node_Id) return Node_Id;
2873   --  Obtain the "outermost" prefix of arbitrary node N. Return N if no such
2874   --  prefix exists.
2875
2876   function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
2877   --  Return the entity that represents declaration N, so that different
2878   --  views of the same entity have the same unique defining entity:
2879   --    * private view and full view of a deferred constant
2880   --        --> full view
2881   --    * entry spec and entry body
2882   --        --> entry spec
2883   --    * formal parameter on spec and body
2884   --        --> formal parameter on spec
2885   --    * package spec, body, and body stub
2886   --        --> package spec
2887   --    * protected type, protected body, and protected body stub
2888   --        --> protected type (full view if private)
2889   --    * subprogram spec, body, and body stub
2890   --        --> subprogram spec
2891   --    * task type, task body, and task body stub
2892   --        --> task type (full view if private)
2893   --    * private or incomplete view and full view of a type
2894   --        --> full view
2895   --  In other cases, return the defining entity for N.
2896
2897   function Unique_Entity (E : Entity_Id) return Entity_Id;
2898   --  Return the unique entity for entity E, which would be returned by
2899   --  Unique_Defining_Entity if applied to the enclosing declaration of E.
2900
2901   function Unique_Name (E : Entity_Id) return String;
2902   --  Return a unique name for entity E, which could be used to identify E
2903   --  across compilation units.
2904
2905   Child_Prefix : constant String := "ada___";
2906   --  Prefix for child packages when building a unique name for an entity. It
2907   --  is included here to share between Unique_Name and gnatprove.
2908
2909   function Unit_Is_Visible (U : Entity_Id) return Boolean;
2910   --  Determine whether a compilation unit is visible in the current context,
2911   --  because there is a with_clause that makes the unit available. Used to
2912   --  provide better messages on common visiblity errors on operators.
2913
2914   function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
2915   --  Yields Universal_Integer or Universal_Real if this is a candidate
2916
2917   function Unqualify (Expr : Node_Id) return Node_Id;
2918   pragma Inline (Unqualify);
2919   --  Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2920   --  returns X. If Expr is not a qualified expression, returns Expr.
2921
2922   function Unqual_Conv (Expr : Node_Id) return Node_Id;
2923   pragma Inline (Unqual_Conv);
2924   --  Similar to Unqualify, but removes qualified expressions, type
2925   --  conversions, and unchecked conversions.
2926
2927   function Validated_View (Typ : Entity_Id) return Entity_Id;
2928   --  Obtain the "validated view" of arbitrary type Typ which is suitable
2929   --  for verification by attributes 'Valid and 'Valid_Scalars. This view
2930   --  is the type itself or its full view while stripping away concurrency,
2931   --  derivations, and privacy.
2932
2933   function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
2934   --  [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2935   --  of a type extension or private extension declaration. If the full-view
2936   --  of private parents and progenitors is available then it is used to
2937   --  generate the list of visible ancestors; otherwise their partial
2938   --  view is added to the resulting list.
2939
2940   function Within_Init_Proc return Boolean;
2941   --  Determines if Current_Scope is within an init proc
2942
2943   function Within_Protected_Type (E : Entity_Id) return Boolean;
2944   --  Returns True if entity E is declared within a protected type
2945
2946   function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
2947   --  Returns True if entity E is declared within scope S
2948
2949   function Within_Subprogram_Call (N : Node_Id) return Boolean;
2950   --  Determine whether arbitrary node N appears in an entry, function, or
2951   --  procedure call.
2952
2953   procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
2954   --  Output error message for incorrectly typed expression. Expr is the node
2955   --  for the incorrectly typed construct (Etype (Expr) is the type found),
2956   --  and Expected_Type is the entity for the expected type. Note that Expr
2957   --  does not have to be a subexpression, anything with an Etype field may
2958   --  be used.
2959
2960   function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
2961   --  Determine whether type Typ "yields synchronized object" as specified by
2962   --  SPARK RM 9.1. To qualify as such, a type must be
2963   --    * An array type whose element type yields a synchronized object
2964   --    * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2965   --    * A protected type
2966   --    * A record type or type extension without defaulted discriminants
2967   --      whose components are of a type that yields a synchronized object.
2968   --    * A synchronized interface type
2969   --    * A task type
2970
2971   function Yields_Universal_Type (N : Node_Id) return Boolean;
2972   --  Determine whether unanalyzed node N yields a universal type
2973
2974   package Interval_Lists is
2975      type Discrete_Interval is
2976         record
2977            Low, High : Uint;
2978         end record;
2979
2980      type Discrete_Interval_List is
2981        array (Pos range <>) of Discrete_Interval;
2982      --  A sorted (in ascending order) list of non-empty pairwise-disjoint
2983      --  intervals, always with a gap of at least one value between
2984      --  successive intervals (i.e., mergeable intervals are merged).
2985      --  Low bound is one; high bound is nonnegative.
2986
2987      function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
2988      --  Given a static discrete type or subtype, returns the (unique)
2989      --  interval list representing the values of the type/subtype.
2990      --  If no static predicates are involved, the length of the result
2991      --  will be at most one.
2992
2993      function Choice_List_Intervals (Discrete_Choices : List_Id)
2994                                     return Discrete_Interval_List;
2995      --  Given a discrete choice list, returns the (unique) interval
2996      --  list representing the chosen values.
2997
2998      function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
2999        return Boolean;
3000      --  Returns True iff every value belonging to some interval of
3001      --  Subset also belongs to some interval of Of_Set.
3002
3003      --  TBD: When we get around to implementing "is statically compatible"
3004      --  correctly for real types with static predicates, we may need
3005      --  an analogous Real_Interval_List type. Most of the language
3006      --  rules that reference "is statically compatible" pertain to
3007      --  discriminants and therefore do require support for real types;
3008      --  the exception is 12.5.1(8).
3009   end Interval_Lists;
3010end Sem_Util;
3011