1 /* Functions to support general ended bitmaps.
2    Copyright (C) 1997-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_BITMAP_H
21 #define GCC_BITMAP_H
22 
23 /* Implementation of sparse integer sets as a linked list or tree.
24 
25    This sparse set representation is suitable for sparse sets with an
26    unknown (a priori) universe.
27 
28    Sets are represented as double-linked lists of container nodes of
29    type "struct bitmap_element" or as a binary trees of the same
30    container nodes.  Each container node consists of an index for the
31    first member that could be held in the container, a small array of
32    integers that represent the members in the container, and pointers
33    to the next and previous element in the linked list, or left and
34    right children in the tree.  In linked-list form, the container
35    nodes in the list are sorted in ascending order, i.e. the head of
36    the list holds the element with the smallest member of the set.
37    In tree form, nodes to the left have a smaller container index.
38 
39    For a given member I in the set:
40      - the element for I will have index is I / (bits per element)
41      - the position for I within element is I % (bits per element)
42 
43    This representation is very space-efficient for large sparse sets, and
44    the size of the set can be changed dynamically without much overhead.
45    An important parameter is the number of bits per element.  In this
46    implementation, there are 128 bits per element.  This results in a
47    high storage overhead *per element*, but a small overall overhead if
48    the set is very sparse.
49 
50    The storage requirements for linked-list sparse sets are O(E), with E->N
51    in the worst case (a sparse set with large distances between the values
52    of the set members).
53 
54    This representation also works well for data flow problems where the size
55    of the set may grow dynamically, but care must be taken that the member_p,
56    add_member, and remove_member operations occur with a suitable access
57    pattern.
58 
59    The linked-list set representation works well for problems involving very
60    sparse sets.  The canonical example in GCC is, of course, the "set of
61    sets" for some CFG-based data flow problems (liveness analysis, dominance
62    frontiers, etc.).
63 
64    For random-access sparse sets of unknown universe, the binary tree
65    representation is likely to be a more suitable choice.  Theoretical
66    access times for the binary tree representation are better than those
67    for the linked-list, but in practice this is only true for truely
68    random access.
69 
70    Often the most suitable representation during construction of the set
71    is not the best choice for the usage of the set.  For such cases, the
72    "view" of the set can be changed from one representation to the other.
73    This is an O(E) operation:
74 
75      * from list to tree view	: bitmap_tree_view
76      * from tree to list view	: bitmap_list_view
77 
78    Traversing linked lists or trees can be cache-unfriendly.  Performance
79    can be improved by keeping container nodes in the set grouped together
80    in  memory, using a dedicated obstack for a set (or group of related
81    sets).  Elements allocated on obstacks are released to a free-list and
82    taken off the free list.  If multiple sets are allocated on the same
83    obstack, elements freed from one set may be re-used for one of the other
84    sets.  This usually helps avoid cache misses.
85 
86    A single free-list is used for all sets allocated in GGC space.  This is
87    bad for persistent sets, so persistent sets should be allocated on an
88    obstack whenever possible.
89 
90    For random-access sets with a known, relatively small universe size, the
91    SparseSet or simple bitmap representations may be more efficient than a
92    linked-list set.
93 
94 
95    LINKED LIST FORM
96    ================
97 
98    In linked-list form, in-order iterations of the set can be executed
99    efficiently.  The downside is that many random-access operations are
100    relatively slow, because the linked list has to be traversed to test
101    membership (i.e. member_p/ add_member/remove_member).
102 
103    To improve the performance of this set representation, the last
104    accessed element and its index are cached.  For membership tests on
105    members close to recently accessed members, the cached last element
106    improves membership test to a constant-time operation.
107 
108    The following operations can always be performed in O(1) time in
109    list view:
110 
111      * clear			: bitmap_clear
112      * smallest_member		: bitmap_first_set_bit
113      * choose_one		: (not implemented, but could be
114 				   in constant time)
115 
116    The following operations can be performed in O(E) time worst-case in
117    list view (with E the number of elements in the linked list), but in
118    O(1) time with a suitable access patterns:
119 
120      * member_p			: bitmap_bit_p
121      * add_member		: bitmap_set_bit / bitmap_set_range
122      * remove_member		: bitmap_clear_bit / bitmap_clear_range
123 
124    The following operations can be performed in O(E) time in list view:
125 
126      * cardinality		: bitmap_count_bits
127      * largest_member		: bitmap_last_set_bit (but this could
128 				  in constant time with a pointer to
129 				  the last element in the chain)
130      * set_size			: bitmap_last_set_bit
131 
132    In tree view the following operations can all be performed in O(log E)
133    amortized time with O(E) worst-case behavior.
134 
135      * smallest_member
136      * largest_member
137      * set_size
138      * member_p
139      * add_member
140      * remove_member
141 
142    Additionally, the linked-list sparse set representation supports
143    enumeration of the members in O(E) time:
144 
145      * forall			: EXECUTE_IF_SET_IN_BITMAP
146      * set_copy			: bitmap_copy
147      * set_intersection		: bitmap_intersect_p /
148 				  bitmap_and / bitmap_and_into /
149 				  EXECUTE_IF_AND_IN_BITMAP
150      * set_union		: bitmap_ior / bitmap_ior_into
151      * set_difference		: bitmap_intersect_compl_p /
152 				  bitmap_and_comp / bitmap_and_comp_into /
153 				  EXECUTE_IF_AND_COMPL_IN_BITMAP
154      * set_disjuction		: bitmap_xor_comp / bitmap_xor_comp_into
155      * set_compare		: bitmap_equal_p
156 
157    Some operations on 3 sets that occur frequently in data flow problems
158    are also implemented:
159 
160      * A | (B & C)		: bitmap_ior_and_into
161      * A | (B & ~C)		: bitmap_ior_and_compl /
162 				  bitmap_ior_and_compl_into
163 
164 
165    BINARY TREE FORM
166    ================
167    An alternate "view" of a bitmap is its binary tree representation.
168    For this representation, splay trees are used because they can be
169    implemented using the same data structures as the linked list, with
170    no overhead for meta-data (like color, or rank) on the tree nodes.
171 
172    In binary tree form, random-access to the set is much more efficient
173    than for the linked-list representation.  Downsides are the high cost
174    of clearing the set, and the relatively large number of operations
175    necessary to balance the tree.  Also, iterating the set members is
176    not supported.
177 
178    As for the linked-list representation, the last accessed element and
179    its index are cached, so that membership tests on the latest accessed
180    members is a constant-time operation.  Other lookups take O(logE)
181    time amortized (but O(E) time worst-case).
182 
183    The following operations can always be performed in O(1) time:
184 
185      * choose_one		: (not implemented, but could be
186 				   implemented in constant time)
187 
188    The following operations can be performed in O(logE) time amortized
189    but O(E) time worst-case, but in O(1) time if the same element is
190    accessed.
191 
192      * member_p			: bitmap_bit_p
193      * add_member		: bitmap_set_bit
194      * remove_member		: bitmap_clear_bit
195 
196    The following operations can be performed in O(logE) time amortized
197    but O(E) time worst-case:
198 
199      * smallest_member		: bitmap_first_set_bit
200      * largest_member		: bitmap_last_set_bit
201      * set_size			: bitmap_last_set_bit
202 
203    The following operations can be performed in O(E) time:
204 
205      * clear			: bitmap_clear
206 
207    The binary tree sparse set representation does *not* support any form
208    of enumeration, and does also *not* support logical operations on sets.
209    The binary tree representation is only supposed to be used for sets
210    on which many random-access membership tests will happen.  */
211 
212 #include "obstack.h"
213 #include "array-traits.h"
214 
215 /* Bitmap memory usage.  */
216 class bitmap_usage: public mem_usage
217 {
218 public:
219   /* Default contructor.  */
bitmap_usage()220   bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
221   /* Constructor.  */
bitmap_usage(size_t allocated,size_t times,size_t peak,uint64_t nsearches,uint64_t search_iter)222   bitmap_usage (size_t allocated, size_t times, size_t peak,
223 	     uint64_t nsearches, uint64_t search_iter)
224     : mem_usage (allocated, times, peak),
225     m_nsearches (nsearches), m_search_iter (search_iter) {}
226 
227   /* Sum the usage with SECOND usage.  */
228   bitmap_usage
229   operator+ (const bitmap_usage &second)
230   {
231     return bitmap_usage (m_allocated + second.m_allocated,
232 			     m_times + second.m_times,
233 			     m_peak + second.m_peak,
234 			     m_nsearches + second.m_nsearches,
235 			     m_search_iter + second.m_search_iter);
236   }
237 
238   /* Dump usage coupled to LOC location, where TOTAL is sum of all rows.  */
239   inline void
dump(mem_location * loc,mem_usage & total)240   dump (mem_location *loc, mem_usage &total) const
241   {
242     char *location_string = loc->to_string ();
243 
244     fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%"
245 	     PRsa (9) PRsa (9) ":%5.1f%%"
246 	     PRsa (11) PRsa (11) "%10s\n",
247 	     location_string, SIZE_AMOUNT (m_allocated),
248 	     get_percent (m_allocated, total.m_allocated),
249 	     SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times),
250 	     get_percent (m_times, total.m_times),
251 	     SIZE_AMOUNT (m_nsearches), SIZE_AMOUNT (m_search_iter),
252 	     loc->m_ggc ? "ggc" : "heap");
253 
254     free (location_string);
255   }
256 
257   /* Dump header with NAME.  */
258   static inline void
dump_header(const char * name)259   dump_header (const char *name)
260   {
261     fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
262 	     "Times", "N searches", "Search iter", "Type");
263   }
264 
265   /* Number search operations.  */
266   uint64_t m_nsearches;
267   /* Number of search iterations.  */
268   uint64_t m_search_iter;
269 };
270 
271 /* Bitmap memory description.  */
272 extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
273 
274 /* Fundamental storage type for bitmap.  */
275 
276 typedef unsigned long BITMAP_WORD;
277 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
278    it is used in preprocessor directives -- hence the 1u.  */
279 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
280 
281 /* Number of words to use for each element in the linked list.  */
282 
283 #ifndef BITMAP_ELEMENT_WORDS
284 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
285 #endif
286 
287 /* Number of bits in each actual element of a bitmap.  */
288 
289 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
290 
291 /* Obstack for allocating bitmaps and elements from.  */
292 struct bitmap_obstack {
293   struct bitmap_element *elements;
294   bitmap_head *heads;
295   struct obstack obstack;
296 };
297 
298 /* Bitmap set element.  We use a linked list to hold only the bits that
299    are set.  This allows for use to grow the bitset dynamically without
300    having to realloc and copy a giant bit array.
301 
302    The free list is implemented as a list of lists.  There is one
303    outer list connected together by prev fields.  Each element of that
304    outer is an inner list (that may consist only of the outer list
305    element) that are connected by the next fields.  The prev pointer
306    is undefined for interior elements.  This allows
307    bitmap_elt_clear_from to be implemented in unit time rather than
308    linear in the number of elements to be freed.  */
309 
310 struct GTY((chain_next ("%h.next"))) bitmap_element {
311   /* In list form, the next element in the linked list;
312      in tree form, the left child node in the tree.  */
313   struct bitmap_element *next;
314   /* In list form, the previous element in the linked list;
315      in tree form, the right child node in the tree.  */
316   struct bitmap_element *prev;
317   /* regno/BITMAP_ELEMENT_ALL_BITS.  */
318   unsigned int indx;
319   /* Bits that are set, counting from INDX, inclusive  */
320   BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
321 };
322 
323 /* Head of bitmap linked list.  The 'current' member points to something
324    already pointed to by the chain started by first, so GTY((skip)) it.  */
325 
class()326 class GTY(()) bitmap_head {
327 public:
328   static bitmap_obstack crashme;
329   /* Poison obstack to not make it not a valid initialized GC bitmap.  */
330   CONSTEXPR bitmap_head()
331     : indx (0), tree_form (false), padding (0), alloc_descriptor (0), first (NULL),
332       current (NULL), obstack (&crashme)
333   {}
334   /* Index of last element looked at.  */
335   unsigned int indx;
336   /* False if the bitmap is in list form; true if the bitmap is in tree form.
337      Bitmap iterators only work on bitmaps in list form.  */
338   unsigned tree_form: 1;
339   /* Next integer is shifted, so padding is needed.  */
340   unsigned padding: 2;
341   /* Bitmap UID used for memory allocation statistics.  */
342   unsigned alloc_descriptor: 29;
343   /* In list form, the first element in the linked list;
344      in tree form, the root of the tree.   */
345   bitmap_element *first;
346   /* Last element looked at.  */
347   bitmap_element * GTY((skip(""))) current;
348   /* Obstack to allocate elements from.  If NULL, then use GGC allocation.  */
349   bitmap_obstack * GTY((skip(""))) obstack;
350 
351   /* Dump bitmap.  */
352   void dump ();
353 
354   /* Get bitmap descriptor UID casted to an unsigned integer pointer.
355      Shift the descriptor because pointer_hash<Type>::hash is
356      doing >> 3 shift operation.  */
357   unsigned *get_descriptor ()
358   {
359     return (unsigned *)(ptrdiff_t)(alloc_descriptor << 3);
360   }
361 };
362 
363 /* Global data */
364 extern bitmap_element bitmap_zero_bits;	/* Zero bitmap element */
365 extern bitmap_obstack bitmap_default_obstack;   /* Default bitmap obstack */
366 
367 /* Change the view of the bitmap to list, or tree.  */
368 void bitmap_list_view (bitmap);
369 void bitmap_tree_view (bitmap);
370 
371 /* Clear a bitmap by freeing up the linked list.  */
372 extern void bitmap_clear (bitmap);
373 
374 /* Copy a bitmap to another bitmap.  */
375 extern void bitmap_copy (bitmap, const_bitmap);
376 
377 /* Move a bitmap to another bitmap.  */
378 extern void bitmap_move (bitmap, bitmap);
379 
380 /* True if two bitmaps are identical.  */
381 extern bool bitmap_equal_p (const_bitmap, const_bitmap);
382 
383 /* True if the bitmaps intersect (their AND is non-empty).  */
384 extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
385 
386 /* True if the complement of the second intersects the first (their
387    AND_COMPL is non-empty).  */
388 extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
389 
390 /* True if MAP is an empty bitmap.  */
bitmap_empty_p(const_bitmap map)391 inline bool bitmap_empty_p (const_bitmap map)
392 {
393   return !map->first;
394 }
395 
396 /* True if the bitmap has only a single bit set.  */
397 extern bool bitmap_single_bit_set_p (const_bitmap);
398 
399 /* Count the number of bits set in the bitmap.  */
400 extern unsigned long bitmap_count_bits (const_bitmap);
401 
402 /* Count the number of unique bits set across the two bitmaps.  */
403 extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);
404 
405 /* Boolean operations on bitmaps.  The _into variants are two operand
406    versions that modify the first source operand.  The other variants
407    are three operand versions that to not destroy the source bitmaps.
408    The operations supported are &, & ~, |, ^.  */
409 extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
410 extern bool bitmap_and_into (bitmap, const_bitmap);
411 extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
412 extern bool bitmap_and_compl_into (bitmap, const_bitmap);
413 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
414 extern void bitmap_compl_and_into (bitmap, const_bitmap);
415 extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
416 extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
417 extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
418 extern bool bitmap_ior_into (bitmap, const_bitmap);
419 extern bool bitmap_ior_into_and_free (bitmap, bitmap *);
420 extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
421 extern void bitmap_xor_into (bitmap, const_bitmap);
422 
423 /* DST = A | (B & C).  Return true if DST changes.  */
424 extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
425 /* DST = A | (B & ~C).  Return true if DST changes.  */
426 extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
427 				  const_bitmap B, const_bitmap C);
428 /* A |= (B & ~C).  Return true if A changes.  */
429 extern bool bitmap_ior_and_compl_into (bitmap A,
430 				       const_bitmap B, const_bitmap C);
431 
432 /* Clear a single bit in a bitmap.  Return true if the bit changed.  */
433 extern bool bitmap_clear_bit (bitmap, int);
434 
435 /* Set a single bit in a bitmap.  Return true if the bit changed.  */
436 extern bool bitmap_set_bit (bitmap, int);
437 
438 /* Return true if a bit is set in a bitmap.  */
439 extern int bitmap_bit_p (const_bitmap, int);
440 
441 /* Debug functions to print a bitmap.  */
442 extern void debug_bitmap (const_bitmap);
443 extern void debug_bitmap_file (FILE *, const_bitmap);
444 
445 /* Print a bitmap.  */
446 extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
447 
448 /* Initialize and release a bitmap obstack.  */
449 extern void bitmap_obstack_initialize (bitmap_obstack *);
450 extern void bitmap_obstack_release (bitmap_obstack *);
451 extern void bitmap_register (bitmap MEM_STAT_DECL);
452 extern void dump_bitmap_statistics (void);
453 
454 /* Initialize a bitmap header.  OBSTACK indicates the bitmap obstack
455    to allocate from, NULL for GC'd bitmap.  */
456 
457 static inline void
bitmap_initialize(bitmap head,bitmap_obstack * obstack CXX_MEM_STAT_INFO)458 bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO)
459 {
460   head->first = head->current = NULL;
461   head->indx = head->tree_form = 0;
462   head->padding = 0;
463   head->alloc_descriptor = 0;
464   head->obstack = obstack;
465   if (GATHER_STATISTICS)
466     bitmap_register (head PASS_MEM_STAT);
467 }
468 
469 /* Release a bitmap (but not its head).  This is suitable for pairing with
470    bitmap_initialize.  */
471 
472 static inline void
bitmap_release(bitmap head)473 bitmap_release (bitmap head)
474 {
475   bitmap_clear (head);
476   /* Poison the obstack pointer so the obstack can be safely released.
477      Do not zero it as the bitmap then becomes initialized GC.  */
478   head->obstack = &bitmap_head::crashme;
479 }
480 
481 /* Allocate and free bitmaps from obstack, malloc and gc'd memory.  */
482 extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO);
483 #define BITMAP_ALLOC bitmap_alloc
484 extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO);
485 #define BITMAP_GGC_ALLOC bitmap_gc_alloc
486 extern void bitmap_obstack_free (bitmap);
487 
488 /* A few compatibility/functions macros for compatibility with sbitmaps */
dump_bitmap(FILE * file,const_bitmap map)489 inline void dump_bitmap (FILE *file, const_bitmap map)
490 {
491   bitmap_print (file, map, "", "\n");
492 }
493 extern void debug (const bitmap_head &ref);
494 extern void debug (const bitmap_head *ptr);
495 
496 extern unsigned bitmap_first_set_bit (const_bitmap);
497 extern unsigned bitmap_last_set_bit (const_bitmap);
498 
499 /* Compute bitmap hash (for purposes of hashing etc.)  */
500 extern hashval_t bitmap_hash (const_bitmap);
501 
502 /* Do any cleanup needed on a bitmap when it is no longer used.  */
503 #define BITMAP_FREE(BITMAP) \
504        ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
505 
506 /* Iterator for bitmaps.  */
507 
508 struct bitmap_iterator
509 {
510   /* Pointer to the current bitmap element.  */
511   bitmap_element *elt1;
512 
513   /* Pointer to 2nd bitmap element when two are involved.  */
514   bitmap_element *elt2;
515 
516   /* Word within the current element.  */
517   unsigned word_no;
518 
519   /* Contents of the actually processed word.  When finding next bit
520      it is shifted right, so that the actual bit is always the least
521      significant bit of ACTUAL.  */
522   BITMAP_WORD bits;
523 };
524 
525 /* Initialize a single bitmap iterator.  START_BIT is the first bit to
526    iterate from.  */
527 
528 static inline void
bmp_iter_set_init(bitmap_iterator * bi,const_bitmap map,unsigned start_bit,unsigned * bit_no)529 bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
530 		   unsigned start_bit, unsigned *bit_no)
531 {
532   bi->elt1 = map->first;
533   bi->elt2 = NULL;
534 
535   gcc_checking_assert (!map->tree_form);
536 
537   /* Advance elt1 until it is not before the block containing start_bit.  */
538   while (1)
539     {
540       if (!bi->elt1)
541 	{
542 	  bi->elt1 = &bitmap_zero_bits;
543 	  break;
544 	}
545 
546       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
547 	break;
548       bi->elt1 = bi->elt1->next;
549     }
550 
551   /* We might have gone past the start bit, so reinitialize it.  */
552   if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
553     start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
554 
555   /* Initialize for what is now start_bit.  */
556   bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
557   bi->bits = bi->elt1->bits[bi->word_no];
558   bi->bits >>= start_bit % BITMAP_WORD_BITS;
559 
560   /* If this word is zero, we must make sure we're not pointing at the
561      first bit, otherwise our incrementing to the next word boundary
562      will fail.  It won't matter if this increment moves us into the
563      next word.  */
564   start_bit += !bi->bits;
565 
566   *bit_no = start_bit;
567 }
568 
569 /* Initialize an iterator to iterate over the intersection of two
570    bitmaps.  START_BIT is the bit to commence from.  */
571 
572 static inline void
bmp_iter_and_init(bitmap_iterator * bi,const_bitmap map1,const_bitmap map2,unsigned start_bit,unsigned * bit_no)573 bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
574 		   unsigned start_bit, unsigned *bit_no)
575 {
576   bi->elt1 = map1->first;
577   bi->elt2 = map2->first;
578 
579   gcc_checking_assert (!map1->tree_form && !map2->tree_form);
580 
581   /* Advance elt1 until it is not before the block containing
582      start_bit.  */
583   while (1)
584     {
585       if (!bi->elt1)
586 	{
587 	  bi->elt2 = NULL;
588 	  break;
589 	}
590 
591       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
592 	break;
593       bi->elt1 = bi->elt1->next;
594     }
595 
596   /* Advance elt2 until it is not before elt1.  */
597   while (1)
598     {
599       if (!bi->elt2)
600 	{
601 	  bi->elt1 = bi->elt2 = &bitmap_zero_bits;
602 	  break;
603 	}
604 
605       if (bi->elt2->indx >= bi->elt1->indx)
606 	break;
607       bi->elt2 = bi->elt2->next;
608     }
609 
610   /* If we're at the same index, then we have some intersecting bits.  */
611   if (bi->elt1->indx == bi->elt2->indx)
612     {
613       /* We might have advanced beyond the start_bit, so reinitialize
614 	 for that.  */
615       if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
616 	start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
617 
618       bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
619       bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
620       bi->bits >>= start_bit % BITMAP_WORD_BITS;
621     }
622   else
623     {
624       /* Otherwise we must immediately advance elt1, so initialize for
625 	 that.  */
626       bi->word_no = BITMAP_ELEMENT_WORDS - 1;
627       bi->bits = 0;
628     }
629 
630   /* If this word is zero, we must make sure we're not pointing at the
631      first bit, otherwise our incrementing to the next word boundary
632      will fail.  It won't matter if this increment moves us into the
633      next word.  */
634   start_bit += !bi->bits;
635 
636   *bit_no = start_bit;
637 }
638 
639 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.  */
640 
641 static inline void
bmp_iter_and_compl_init(bitmap_iterator * bi,const_bitmap map1,const_bitmap map2,unsigned start_bit,unsigned * bit_no)642 bmp_iter_and_compl_init (bitmap_iterator *bi,
643 			 const_bitmap map1, const_bitmap map2,
644 			 unsigned start_bit, unsigned *bit_no)
645 {
646   bi->elt1 = map1->first;
647   bi->elt2 = map2->first;
648 
649   gcc_checking_assert (!map1->tree_form && !map2->tree_form);
650 
651   /* Advance elt1 until it is not before the block containing start_bit.  */
652   while (1)
653     {
654       if (!bi->elt1)
655 	{
656 	  bi->elt1 = &bitmap_zero_bits;
657 	  break;
658 	}
659 
660       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
661 	break;
662       bi->elt1 = bi->elt1->next;
663     }
664 
665   /* Advance elt2 until it is not before elt1.  */
666   while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
667     bi->elt2 = bi->elt2->next;
668 
669   /* We might have advanced beyond the start_bit, so reinitialize for
670      that.  */
671   if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
672     start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
673 
674   bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
675   bi->bits = bi->elt1->bits[bi->word_no];
676   if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
677     bi->bits &= ~bi->elt2->bits[bi->word_no];
678   bi->bits >>= start_bit % BITMAP_WORD_BITS;
679 
680   /* If this word is zero, we must make sure we're not pointing at the
681      first bit, otherwise our incrementing to the next word boundary
682      will fail.  It won't matter if this increment moves us into the
683      next word.  */
684   start_bit += !bi->bits;
685 
686   *bit_no = start_bit;
687 }
688 
689 /* Advance to the next bit in BI.  We don't advance to the next
690    nonzero bit yet.  */
691 
692 static inline void
bmp_iter_next(bitmap_iterator * bi,unsigned * bit_no)693 bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
694 {
695   bi->bits >>= 1;
696   *bit_no += 1;
697 }
698 
699 /* Advance to first set bit in BI.  */
700 
701 static inline void
bmp_iter_next_bit(bitmap_iterator * bi,unsigned * bit_no)702 bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
703 {
704 #if (GCC_VERSION >= 3004)
705   {
706     unsigned int n = __builtin_ctzl (bi->bits);
707     gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
708     bi->bits >>= n;
709     *bit_no += n;
710   }
711 #else
712   while (!(bi->bits & 1))
713     {
714       bi->bits >>= 1;
715       *bit_no += 1;
716     }
717 #endif
718 }
719 
720 /* Advance to the next nonzero bit of a single bitmap, we will have
721    already advanced past the just iterated bit.  Return true if there
722    is a bit to iterate.  */
723 
724 static inline bool
bmp_iter_set(bitmap_iterator * bi,unsigned * bit_no)725 bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
726 {
727   /* If our current word is nonzero, it contains the bit we want.  */
728   if (bi->bits)
729     {
730     next_bit:
731       bmp_iter_next_bit (bi, bit_no);
732       return true;
733     }
734 
735   /* Round up to the word boundary.  We might have just iterated past
736      the end of the last word, hence the -1.  It is not possible for
737      bit_no to point at the beginning of the now last word.  */
738   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
739 	     / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
740   bi->word_no++;
741 
742   while (1)
743     {
744       /* Find the next nonzero word in this elt.  */
745       while (bi->word_no != BITMAP_ELEMENT_WORDS)
746 	{
747 	  bi->bits = bi->elt1->bits[bi->word_no];
748 	  if (bi->bits)
749 	    goto next_bit;
750 	  *bit_no += BITMAP_WORD_BITS;
751 	  bi->word_no++;
752 	}
753 
754       /* Make sure we didn't remove the element while iterating.  */
755       gcc_checking_assert (bi->elt1->indx != -1U);
756 
757       /* Advance to the next element.  */
758       bi->elt1 = bi->elt1->next;
759       if (!bi->elt1)
760 	return false;
761       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
762       bi->word_no = 0;
763     }
764 }
765 
766 /* Advance to the next nonzero bit of an intersecting pair of
767    bitmaps.  We will have already advanced past the just iterated bit.
768    Return true if there is a bit to iterate.  */
769 
770 static inline bool
bmp_iter_and(bitmap_iterator * bi,unsigned * bit_no)771 bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
772 {
773   /* If our current word is nonzero, it contains the bit we want.  */
774   if (bi->bits)
775     {
776     next_bit:
777       bmp_iter_next_bit (bi, bit_no);
778       return true;
779     }
780 
781   /* Round up to the word boundary.  We might have just iterated past
782      the end of the last word, hence the -1.  It is not possible for
783      bit_no to point at the beginning of the now last word.  */
784   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
785 	     / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
786   bi->word_no++;
787 
788   while (1)
789     {
790       /* Find the next nonzero word in this elt.  */
791       while (bi->word_no != BITMAP_ELEMENT_WORDS)
792 	{
793 	  bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
794 	  if (bi->bits)
795 	    goto next_bit;
796 	  *bit_no += BITMAP_WORD_BITS;
797 	  bi->word_no++;
798 	}
799 
800       /* Advance to the next identical element.  */
801       do
802 	{
803 	  /* Make sure we didn't remove the element while iterating.  */
804 	  gcc_checking_assert (bi->elt1->indx != -1U);
805 
806 	  /* Advance elt1 while it is less than elt2.  We always want
807 	     to advance one elt.  */
808 	  do
809 	    {
810 	      bi->elt1 = bi->elt1->next;
811 	      if (!bi->elt1)
812 		return false;
813 	    }
814 	  while (bi->elt1->indx < bi->elt2->indx);
815 
816 	  /* Make sure we didn't remove the element while iterating.  */
817 	  gcc_checking_assert (bi->elt2->indx != -1U);
818 
819 	  /* Advance elt2 to be no less than elt1.  This might not
820 	     advance.  */
821 	  while (bi->elt2->indx < bi->elt1->indx)
822 	    {
823 	      bi->elt2 = bi->elt2->next;
824 	      if (!bi->elt2)
825 		return false;
826 	    }
827 	}
828       while (bi->elt1->indx != bi->elt2->indx);
829 
830       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
831       bi->word_no = 0;
832     }
833 }
834 
835 /* Advance to the next nonzero bit in the intersection of
836    complemented bitmaps.  We will have already advanced past the just
837    iterated bit.  */
838 
839 static inline bool
bmp_iter_and_compl(bitmap_iterator * bi,unsigned * bit_no)840 bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
841 {
842   /* If our current word is nonzero, it contains the bit we want.  */
843   if (bi->bits)
844     {
845     next_bit:
846       bmp_iter_next_bit (bi, bit_no);
847       return true;
848     }
849 
850   /* Round up to the word boundary.  We might have just iterated past
851      the end of the last word, hence the -1.  It is not possible for
852      bit_no to point at the beginning of the now last word.  */
853   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
854 	     / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
855   bi->word_no++;
856 
857   while (1)
858     {
859       /* Find the next nonzero word in this elt.  */
860       while (bi->word_no != BITMAP_ELEMENT_WORDS)
861 	{
862 	  bi->bits = bi->elt1->bits[bi->word_no];
863 	  if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
864 	    bi->bits &= ~bi->elt2->bits[bi->word_no];
865 	  if (bi->bits)
866 	    goto next_bit;
867 	  *bit_no += BITMAP_WORD_BITS;
868 	  bi->word_no++;
869 	}
870 
871       /* Make sure we didn't remove the element while iterating.  */
872       gcc_checking_assert (bi->elt1->indx != -1U);
873 
874       /* Advance to the next element of elt1.  */
875       bi->elt1 = bi->elt1->next;
876       if (!bi->elt1)
877 	return false;
878 
879       /* Make sure we didn't remove the element while iterating.  */
880       gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U);
881 
882       /* Advance elt2 until it is no less than elt1.  */
883       while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
884 	bi->elt2 = bi->elt2->next;
885 
886       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
887       bi->word_no = 0;
888     }
889 }
890 
891 /* If you are modifying a bitmap you are currently iterating over you
892    have to ensure to
893      - never remove the current bit;
894      - if you set or clear a bit before the current bit this operation
895        will not affect the set of bits you are visiting during the iteration;
896      - if you set or clear a bit after the current bit it is unspecified
897        whether that affects the set of bits you are visiting during the
898        iteration.
899    If you want to remove the current bit you can delay this to the next
900    iteration (and after the iteration in case the last iteration is
901    affected).  */
902 
903 /* Loop over all bits set in BITMAP, starting with MIN and setting
904    BITNUM to the bit number.  ITER is a bitmap iterator.  BITNUM
905    should be treated as a read-only variable as it contains loop
906    state.  */
907 
908 #ifndef EXECUTE_IF_SET_IN_BITMAP
909 /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP.  */
910 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER)		\
911   for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM));		\
912        bmp_iter_set (&(ITER), &(BITNUM));				\
913        bmp_iter_next (&(ITER), &(BITNUM)))
914 #endif
915 
916 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
917    and setting BITNUM to the bit number.  ITER is a bitmap iterator.
918    BITNUM should be treated as a read-only variable as it contains
919    loop state.  */
920 
921 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER)	\
922   for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),		\
923 			  &(BITNUM));					\
924        bmp_iter_and (&(ITER), &(BITNUM));				\
925        bmp_iter_next (&(ITER), &(BITNUM)))
926 
927 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
928    and setting BITNUM to the bit number.  ITER is a bitmap iterator.
929    BITNUM should be treated as a read-only variable as it contains
930    loop state.  */
931 
932 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
933   for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),	\
934 				&(BITNUM));				\
935        bmp_iter_and_compl (&(ITER), &(BITNUM));				\
936        bmp_iter_next (&(ITER), &(BITNUM)))
937 
938 /* A class that ties the lifetime of a bitmap to its scope.  */
939 class auto_bitmap
940 {
941  public:
auto_bitmap()942   auto_bitmap () { bitmap_initialize (&m_bits, &bitmap_default_obstack); }
auto_bitmap(bitmap_obstack * o)943   explicit auto_bitmap (bitmap_obstack *o) { bitmap_initialize (&m_bits, o); }
~auto_bitmap()944   ~auto_bitmap () { bitmap_clear (&m_bits); }
945   // Allow calling bitmap functions on our bitmap.
bitmap()946   operator bitmap () { return &m_bits; }
947 
948  private:
949   // Prevent making a copy that references our bitmap.
950   auto_bitmap (const auto_bitmap &);
951   auto_bitmap &operator = (const auto_bitmap &);
952 #if __cplusplus >= 201103L
953   auto_bitmap (auto_bitmap &&);
954   auto_bitmap &operator = (auto_bitmap &&);
955 #endif
956 
957   bitmap_head m_bits;
958 };
959 
960 /* Base class for bitmap_view; see there for details.  */
961 template<typename T, typename Traits = array_traits<T> >
962 class base_bitmap_view
963 {
964 public:
965   typedef typename Traits::element_type array_element_type;
966 
967   base_bitmap_view (const T &, bitmap_element *);
const_bitmap()968   operator const_bitmap () const { return &m_head; }
969 
970 private:
971   base_bitmap_view (const base_bitmap_view &);
972 
973   bitmap_head m_head;
974 };
975 
976 /* Provides a read-only bitmap view of a single integer bitmask or a
977    constant-sized array of integer bitmasks, or of a wrapper around such
978    bitmasks.  */
979 template<typename T, typename Traits>
980 class bitmap_view<T, Traits, true> : public base_bitmap_view<T, Traits>
981 {
982 public:
bitmap_view(const T & array)983   bitmap_view (const T &array)
984     : base_bitmap_view<T, Traits> (array, m_bitmap_elements) {}
985 
986 private:
987   /* How many bitmap_elements we need to hold a full T.  */
988   static const size_t num_bitmap_elements
989     = CEIL (CHAR_BIT
990 	    * sizeof (typename Traits::element_type)
991 	    * Traits::constant_size,
992 	    BITMAP_ELEMENT_ALL_BITS);
993   bitmap_element m_bitmap_elements[num_bitmap_elements];
994 };
995 
996 /* Initialize the view for array ARRAY, using the array of bitmap
997    elements in BITMAP_ELEMENTS (which is known to contain enough
998    entries).  */
999 template<typename T, typename Traits>
base_bitmap_view(const T & array,bitmap_element * bitmap_elements)1000 base_bitmap_view<T, Traits>::base_bitmap_view (const T &array,
1001 					       bitmap_element *bitmap_elements)
1002 {
1003   m_head.obstack = NULL;
1004 
1005   /* The code currently assumes that each element of ARRAY corresponds
1006      to exactly one bitmap_element.  */
1007   const size_t array_element_bits = CHAR_BIT * sizeof (array_element_type);
1008   STATIC_ASSERT (BITMAP_ELEMENT_ALL_BITS % array_element_bits == 0);
1009   size_t array_step = BITMAP_ELEMENT_ALL_BITS / array_element_bits;
1010   size_t array_size = Traits::size (array);
1011 
1012   /* Process each potential bitmap_element in turn.  The loop is written
1013      this way rather than per array element because usually there are
1014      only a small number of array elements per bitmap element (typically
1015      two or four).  The inner loops should therefore unroll completely.  */
1016   const array_element_type *array_elements = Traits::base (array);
1017   unsigned int indx = 0;
1018   for (size_t array_base = 0;
1019        array_base < array_size;
1020        array_base += array_step, indx += 1)
1021     {
1022       /* How many array elements are in this particular bitmap_element.  */
1023       unsigned int array_count
1024 	= (STATIC_CONSTANT_P (array_size % array_step == 0)
1025 	   ? array_step : MIN (array_step, array_size - array_base));
1026 
1027       /* See whether we need this bitmap element.  */
1028       array_element_type ior = array_elements[array_base];
1029       for (size_t i = 1; i < array_count; ++i)
1030 	ior |= array_elements[array_base + i];
1031       if (ior == 0)
1032 	continue;
1033 
1034       /* Grab the next bitmap element and chain it.  */
1035       bitmap_element *bitmap_element = bitmap_elements++;
1036       if (m_head.current)
1037 	m_head.current->next = bitmap_element;
1038       else
1039 	m_head.first = bitmap_element;
1040       bitmap_element->prev = m_head.current;
1041       bitmap_element->next = NULL;
1042       bitmap_element->indx = indx;
1043       m_head.current = bitmap_element;
1044       m_head.indx = indx;
1045 
1046       /* Fill in the bits of the bitmap element.  */
1047       if (array_element_bits < BITMAP_WORD_BITS)
1048 	{
1049 	  /* Multiple array elements fit in one element of
1050 	     bitmap_element->bits.  */
1051 	  size_t array_i = array_base;
1052 	  for (unsigned int word_i = 0; word_i < BITMAP_ELEMENT_WORDS;
1053 	       ++word_i)
1054 	    {
1055 	      BITMAP_WORD word = 0;
1056 	      for (unsigned int shift = 0;
1057 		   shift < BITMAP_WORD_BITS && array_i < array_size;
1058 		   shift += array_element_bits)
1059 		word |= array_elements[array_i++] << shift;
1060 	      bitmap_element->bits[word_i] = word;
1061 	    }
1062 	}
1063       else
1064 	{
1065 	  /* Array elements are the same size as elements of
1066 	     bitmap_element->bits, or are an exact multiple of that size.  */
1067 	  unsigned int word_i = 0;
1068 	  for (unsigned int i = 0; i < array_count; ++i)
1069 	    for (unsigned int shift = 0; shift < array_element_bits;
1070 		 shift += BITMAP_WORD_BITS)
1071 	      bitmap_element->bits[word_i++]
1072 		= array_elements[array_base + i] >> shift;
1073 	  while (word_i < BITMAP_ELEMENT_WORDS)
1074 	    bitmap_element->bits[word_i++] = 0;
1075 	}
1076     }
1077 }
1078 
1079 #endif /* GCC_BITMAP_H */
1080