1 /* Common subexpression elimination library for GNU compiler.
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "dumpfile.h"
33 #include "cselib.h"
34 #include "function-abi.h"
35 
36 /* A list of cselib_val structures.  */
37 struct elt_list
38 {
39   struct elt_list *next;
40   cselib_val *elt;
41 };
42 
43 static bool cselib_record_memory;
44 static bool cselib_preserve_constants;
45 static bool cselib_any_perm_equivs;
46 static inline void promote_debug_loc (struct elt_loc_list *l);
47 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
48 static void new_elt_loc_list (cselib_val *, rtx);
49 static void unchain_one_value (cselib_val *);
50 static void unchain_one_elt_list (struct elt_list **);
51 static void unchain_one_elt_loc_list (struct elt_loc_list **);
52 static void remove_useless_values (void);
53 static unsigned int cselib_hash_rtx (rtx, int, machine_mode);
54 static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx);
55 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
56 static cselib_val *cselib_lookup_mem (rtx, int);
57 static void cselib_invalidate_regno (unsigned int, machine_mode);
58 static void cselib_invalidate_mem (rtx);
59 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
60 static void cselib_record_sets (rtx_insn *);
61 static rtx autoinc_split (rtx, rtx *, machine_mode);
62 
63 #define PRESERVED_VALUE_P(RTX) \
64   (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
65 
66 #define SP_BASED_VALUE_P(RTX) \
67   (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
68 
69 #define SP_DERIVED_VALUE_P(RTX) \
70   (RTL_FLAG_CHECK1 ("SP_DERIVED_VALUE_P", (RTX), VALUE)->call)
71 
72 struct expand_value_data
73 {
74   bitmap regs_active;
75   cselib_expand_callback callback;
76   void *callback_arg;
77   bool dummy;
78 };
79 
80 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
81 
82 /* There are three ways in which cselib can look up an rtx:
83    - for a REG, the reg_values table (which is indexed by regno) is used
84    - for a MEM, we recursively look up its address and then follow the
85      addr_list of that value
86    - for everything else, we compute a hash value and go through the hash
87      table.  Since different rtx's can still have the same hash value,
88      this involves walking the table entries for a given value and comparing
89      the locations of the entries with the rtx we are looking up.  */
90 
91 struct cselib_hasher : nofree_ptr_hash <cselib_val>
92 {
93   struct key {
94     /* The rtx value and its mode (needed separately for constant
95        integers).  */
96     machine_mode mode;
97     rtx x;
98     /* The mode of the contaning MEM, if any, otherwise VOIDmode.  */
99     machine_mode memmode;
100   };
101   typedef key *compare_type;
102   static inline hashval_t hash (const cselib_val *);
103   static inline bool equal (const cselib_val *, const key *);
104 };
105 
106 /* The hash function for our hash table.  The value is always computed with
107    cselib_hash_rtx when adding an element; this function just extracts the
108    hash value from a cselib_val structure.  */
109 
110 inline hashval_t
hash(const cselib_val * v)111 cselib_hasher::hash (const cselib_val *v)
112 {
113   return v->hash;
114 }
115 
116 /* The equality test for our hash table.  The first argument V is a table
117    element (i.e. a cselib_val), while the second arg X is an rtx.  We know
118    that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
119    CONST of an appropriate mode.  */
120 
121 inline bool
equal(const cselib_val * v,const key * x_arg)122 cselib_hasher::equal (const cselib_val *v, const key *x_arg)
123 {
124   struct elt_loc_list *l;
125   rtx x = x_arg->x;
126   machine_mode mode = x_arg->mode;
127   machine_mode memmode = x_arg->memmode;
128 
129   if (mode != GET_MODE (v->val_rtx))
130     return false;
131 
132   if (GET_CODE (x) == VALUE)
133     return x == v->val_rtx;
134 
135   if (SP_DERIVED_VALUE_P (v->val_rtx) && GET_MODE (x) == Pmode)
136     {
137       rtx xoff = NULL;
138       if (autoinc_split (x, &xoff, memmode) == v->val_rtx && xoff == NULL_RTX)
139 	return true;
140     }
141 
142   /* We don't guarantee that distinct rtx's have different hash values,
143      so we need to do a comparison.  */
144   for (l = v->locs; l; l = l->next)
145     if (rtx_equal_for_cselib_1 (l->loc, x, memmode, 0))
146       {
147 	promote_debug_loc (l);
148 	return true;
149       }
150 
151   return false;
152 }
153 
154 /* A table that enables us to look up elts by their value.  */
155 static hash_table<cselib_hasher> *cselib_hash_table;
156 
157 /* A table to hold preserved values.  */
158 static hash_table<cselib_hasher> *cselib_preserved_hash_table;
159 
160 /* This is a global so we don't have to pass this through every function.
161    It is used in new_elt_loc_list to set SETTING_INSN.  */
162 static rtx_insn *cselib_current_insn;
163 
164 /* The unique id that the next create value will take.  */
165 static unsigned int next_uid;
166 
167 /* The number of registers we had when the varrays were last resized.  */
168 static unsigned int cselib_nregs;
169 
170 /* Count values without known locations, or with only locations that
171    wouldn't have been known except for debug insns.  Whenever this
172    grows too big, we remove these useless values from the table.
173 
174    Counting values with only debug values is a bit tricky.  We don't
175    want to increment n_useless_values when we create a value for a
176    debug insn, for this would get n_useless_values out of sync, but we
177    want increment it if all locs in the list that were ever referenced
178    in nondebug insns are removed from the list.
179 
180    In the general case, once we do that, we'd have to stop accepting
181    nondebug expressions in the loc list, to avoid having two values
182    equivalent that, without debug insns, would have been made into
183    separate values.  However, because debug insns never introduce
184    equivalences themselves (no assignments), the only means for
185    growing loc lists is through nondebug assignments.  If the locs
186    also happen to be referenced in debug insns, it will work just fine.
187 
188    A consequence of this is that there's at most one debug-only loc in
189    each loc list.  If we keep it in the first entry, testing whether
190    we have a debug-only loc list takes O(1).
191 
192    Furthermore, since any additional entry in a loc list containing a
193    debug loc would have to come from an assignment (nondebug) that
194    references both the initial debug loc and the newly-equivalent loc,
195    the initial debug loc would be promoted to a nondebug loc, and the
196    loc list would not contain debug locs any more.
197 
198    So the only case we have to be careful with in order to keep
199    n_useless_values in sync between debug and nondebug compilations is
200    to avoid incrementing n_useless_values when removing the single loc
201    from a value that turns out to not appear outside debug values.  We
202    increment n_useless_debug_values instead, and leave such values
203    alone until, for other reasons, we garbage-collect useless
204    values.  */
205 static int n_useless_values;
206 static int n_useless_debug_values;
207 
208 /* Count values whose locs have been taken exclusively from debug
209    insns for the entire life of the value.  */
210 static int n_debug_values;
211 
212 /* Number of useless values before we remove them from the hash table.  */
213 #define MAX_USELESS_VALUES 32
214 
215 /* This table maps from register number to values.  It does not
216    contain pointers to cselib_val structures, but rather elt_lists.
217    The purpose is to be able to refer to the same register in
218    different modes.  The first element of the list defines the mode in
219    which the register was set; if the mode is unknown or the value is
220    no longer valid in that mode, ELT will be NULL for the first
221    element.  */
222 static struct elt_list **reg_values;
223 static unsigned int reg_values_size;
224 #define REG_VALUES(i) reg_values[i]
225 
226 /* The largest number of hard regs used by any entry added to the
227    REG_VALUES table.  Cleared on each cselib_clear_table() invocation.  */
228 static unsigned int max_value_regs;
229 
230 /* Here the set of indices I with REG_VALUES(I) != 0 is saved.  This is used
231    in cselib_clear_table() for fast emptying.  */
232 static unsigned int *used_regs;
233 static unsigned int n_used_regs;
234 
235 /* We pass this to cselib_invalidate_mem to invalidate all of
236    memory for a non-const call instruction.  */
237 static GTY(()) rtx callmem;
238 
239 /* Set by discard_useless_locs if it deleted the last location of any
240    value.  */
241 static int values_became_useless;
242 
243 /* Used as stop element of the containing_mem list so we can check
244    presence in the list by checking the next pointer.  */
245 static cselib_val dummy_val;
246 
247 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
248    that is constant through the whole function and should never be
249    eliminated.  */
250 static cselib_val *cfa_base_preserved_val;
251 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
252 
253 /* Used to list all values that contain memory reference.
254    May or may not contain the useless values - the list is compacted
255    each time memory is invalidated.  */
256 static cselib_val *first_containing_mem = &dummy_val;
257 
258 static object_allocator<elt_list> elt_list_pool ("elt_list");
259 static object_allocator<elt_loc_list> elt_loc_list_pool ("elt_loc_list");
260 static object_allocator<cselib_val> cselib_val_pool ("cselib_val_list");
261 
262 static pool_allocator value_pool ("value", RTX_CODE_SIZE (VALUE));
263 
264 /* If nonnull, cselib will call this function before freeing useless
265    VALUEs.  A VALUE is deemed useless if its "locs" field is null.  */
266 void (*cselib_discard_hook) (cselib_val *);
267 
268 /* If nonnull, cselib will call this function before recording sets or
269    even clobbering outputs of INSN.  All the recorded sets will be
270    represented in the array sets[n_sets].  new_val_min can be used to
271    tell whether values present in sets are introduced by this
272    instruction.  */
273 void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets,
274 				 int n_sets);
275 
276 
277 
278 /* Allocate a struct elt_list and fill in its two elements with the
279    arguments.  */
280 
281 static inline struct elt_list *
new_elt_list(struct elt_list * next,cselib_val * elt)282 new_elt_list (struct elt_list *next, cselib_val *elt)
283 {
284   elt_list *el = elt_list_pool.allocate ();
285   el->next = next;
286   el->elt = elt;
287   return el;
288 }
289 
290 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
291    list.  */
292 
293 static inline void
new_elt_loc_list(cselib_val * val,rtx loc)294 new_elt_loc_list (cselib_val *val, rtx loc)
295 {
296   struct elt_loc_list *el, *next = val->locs;
297 
298   gcc_checking_assert (!next || !next->setting_insn
299 		       || !DEBUG_INSN_P (next->setting_insn)
300 		       || cselib_current_insn == next->setting_insn);
301 
302   /* If we're creating the first loc in a debug insn context, we've
303      just created a debug value.  Count it.  */
304   if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
305     n_debug_values++;
306 
307   val = canonical_cselib_val (val);
308   next = val->locs;
309 
310   if (GET_CODE (loc) == VALUE)
311     {
312       loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
313 
314       gcc_checking_assert (PRESERVED_VALUE_P (loc)
315 			   == PRESERVED_VALUE_P (val->val_rtx));
316 
317       if (val->val_rtx == loc)
318 	return;
319       else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
320 	{
321 	  /* Reverse the insertion.  */
322 	  new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
323 	  return;
324 	}
325 
326       gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
327 
328       if (CSELIB_VAL_PTR (loc)->locs)
329 	{
330 	  /* Bring all locs from LOC to VAL.  */
331 	  for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
332 	    {
333 	      /* Adjust values that have LOC as canonical so that VAL
334 		 becomes their canonical.  */
335 	      if (el->loc && GET_CODE (el->loc) == VALUE)
336 		{
337 		  gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
338 				       == loc);
339 		  CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
340 		}
341 	    }
342 	  el->next = val->locs;
343 	  next = val->locs = CSELIB_VAL_PTR (loc)->locs;
344 	}
345 
346       if (CSELIB_VAL_PTR (loc)->addr_list)
347 	{
348 	  /* Bring in addr_list into canonical node.  */
349 	  struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
350 	  while (last->next)
351 	    last = last->next;
352 	  last->next = val->addr_list;
353 	  val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
354 	  CSELIB_VAL_PTR (loc)->addr_list = NULL;
355 	}
356 
357       if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
358 	  && val->next_containing_mem == NULL)
359 	{
360 	  /* Add VAL to the containing_mem list after LOC.  LOC will
361 	     be removed when we notice it doesn't contain any
362 	     MEMs.  */
363 	  val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
364 	  CSELIB_VAL_PTR (loc)->next_containing_mem = val;
365 	}
366 
367       /* Chain LOC back to VAL.  */
368       el = elt_loc_list_pool.allocate ();
369       el->loc = val->val_rtx;
370       el->setting_insn = cselib_current_insn;
371       el->next = NULL;
372       CSELIB_VAL_PTR (loc)->locs = el;
373     }
374 
375   el = elt_loc_list_pool.allocate ();
376   el->loc = loc;
377   el->setting_insn = cselib_current_insn;
378   el->next = next;
379   val->locs = el;
380 }
381 
382 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
383    originating from a debug insn, maintaining the debug values
384    count.  */
385 
386 static inline void
promote_debug_loc(struct elt_loc_list * l)387 promote_debug_loc (struct elt_loc_list *l)
388 {
389   if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
390       && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
391     {
392       n_debug_values--;
393       l->setting_insn = cselib_current_insn;
394       if (cselib_preserve_constants && l->next)
395 	{
396 	  gcc_assert (l->next->setting_insn
397 		      && DEBUG_INSN_P (l->next->setting_insn)
398 		      && !l->next->next);
399 	  l->next->setting_insn = cselib_current_insn;
400 	}
401       else
402 	gcc_assert (!l->next);
403     }
404 }
405 
406 /* The elt_list at *PL is no longer needed.  Unchain it and free its
407    storage.  */
408 
409 static inline void
unchain_one_elt_list(struct elt_list ** pl)410 unchain_one_elt_list (struct elt_list **pl)
411 {
412   struct elt_list *l = *pl;
413 
414   *pl = l->next;
415   elt_list_pool.remove (l);
416 }
417 
418 /* Likewise for elt_loc_lists.  */
419 
420 static void
unchain_one_elt_loc_list(struct elt_loc_list ** pl)421 unchain_one_elt_loc_list (struct elt_loc_list **pl)
422 {
423   struct elt_loc_list *l = *pl;
424 
425   *pl = l->next;
426   elt_loc_list_pool.remove (l);
427 }
428 
429 /* Likewise for cselib_vals.  This also frees the addr_list associated with
430    V.  */
431 
432 static void
unchain_one_value(cselib_val * v)433 unchain_one_value (cselib_val *v)
434 {
435   while (v->addr_list)
436     unchain_one_elt_list (&v->addr_list);
437 
438   cselib_val_pool.remove (v);
439 }
440 
441 /* Remove all entries from the hash table.  Also used during
442    initialization.  */
443 
444 void
cselib_clear_table(void)445 cselib_clear_table (void)
446 {
447   cselib_reset_table (1);
448 }
449 
450 /* Return TRUE if V is a constant, a function invariant or a VALUE
451    equivalence; FALSE otherwise.  */
452 
453 static bool
invariant_or_equiv_p(cselib_val * v)454 invariant_or_equiv_p (cselib_val *v)
455 {
456   struct elt_loc_list *l;
457 
458   if (v == cfa_base_preserved_val)
459     return true;
460 
461   /* Keep VALUE equivalences around.  */
462   for (l = v->locs; l; l = l->next)
463     if (GET_CODE (l->loc) == VALUE)
464       return true;
465 
466   if (v->locs != NULL
467       && v->locs->next == NULL)
468     {
469       if (CONSTANT_P (v->locs->loc)
470 	  && (GET_CODE (v->locs->loc) != CONST
471 	      || !references_value_p (v->locs->loc, 0)))
472 	return true;
473       /* Although a debug expr may be bound to different expressions,
474 	 we can preserve it as if it was constant, to get unification
475 	 and proper merging within var-tracking.  */
476       if (GET_CODE (v->locs->loc) == DEBUG_EXPR
477 	  || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
478 	  || GET_CODE (v->locs->loc) == ENTRY_VALUE
479 	  || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
480 	return true;
481 
482       /* (plus (value V) (const_int C)) is invariant iff V is invariant.  */
483       if (GET_CODE (v->locs->loc) == PLUS
484 	  && CONST_INT_P (XEXP (v->locs->loc, 1))
485 	  && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
486 	  && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
487 	return true;
488     }
489 
490   return false;
491 }
492 
493 /* Remove from hash table all VALUEs except constants, function
494    invariants and VALUE equivalences.  */
495 
496 int
preserve_constants_and_equivs(cselib_val ** x,void * info ATTRIBUTE_UNUSED)497 preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
498 {
499   cselib_val *v = *x;
500 
501   if (invariant_or_equiv_p (v))
502     {
503       cselib_hasher::key lookup = {
504 	GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
505       };
506       cselib_val **slot
507 	= cselib_preserved_hash_table->find_slot_with_hash (&lookup,
508 							    v->hash, INSERT);
509       gcc_assert (!*slot);
510       *slot = v;
511     }
512 
513   cselib_hash_table->clear_slot (x);
514 
515   return 1;
516 }
517 
518 /* Remove all entries from the hash table, arranging for the next
519    value to be numbered NUM.  */
520 
521 void
cselib_reset_table(unsigned int num)522 cselib_reset_table (unsigned int num)
523 {
524   unsigned int i;
525 
526   max_value_regs = 0;
527 
528   if (cfa_base_preserved_val)
529     {
530       unsigned int regno = cfa_base_preserved_regno;
531       unsigned int new_used_regs = 0;
532       for (i = 0; i < n_used_regs; i++)
533 	if (used_regs[i] == regno)
534 	  {
535 	    new_used_regs = 1;
536 	    continue;
537 	  }
538 	else
539 	  REG_VALUES (used_regs[i]) = 0;
540       gcc_assert (new_used_regs == 1);
541       n_used_regs = new_used_regs;
542       used_regs[0] = regno;
543       max_value_regs
544 	= hard_regno_nregs (regno,
545 			    GET_MODE (cfa_base_preserved_val->locs->loc));
546 
547       /* If cfa_base is sp + const_int, need to preserve also the
548 	 SP_DERIVED_VALUE_P value.  */
549       for (struct elt_loc_list *l = cfa_base_preserved_val->locs;
550 	   l; l = l->next)
551 	if (GET_CODE (l->loc) == PLUS
552 	    && GET_CODE (XEXP (l->loc, 0)) == VALUE
553 	    && SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
554 	    && CONST_INT_P (XEXP (l->loc, 1)))
555 	  {
556 	    if (! invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (l->loc, 0))))
557 	      {
558 		rtx val = cfa_base_preserved_val->val_rtx;
559 		rtx_insn *save_cselib_current_insn = cselib_current_insn;
560 		cselib_current_insn = l->setting_insn;
561 		new_elt_loc_list (CSELIB_VAL_PTR (XEXP (l->loc, 0)),
562 				  plus_constant (Pmode, val,
563 						 -UINTVAL (XEXP (l->loc, 1))));
564 		cselib_current_insn = save_cselib_current_insn;
565 	      }
566 	    break;
567 	  }
568     }
569   else
570     {
571       for (i = 0; i < n_used_regs; i++)
572 	REG_VALUES (used_regs[i]) = 0;
573       n_used_regs = 0;
574     }
575 
576   if (cselib_preserve_constants)
577     cselib_hash_table->traverse <void *, preserve_constants_and_equivs> (NULL);
578   else
579     {
580       cselib_hash_table->empty ();
581       gcc_checking_assert (!cselib_any_perm_equivs);
582     }
583 
584   n_useless_values = 0;
585   n_useless_debug_values = 0;
586   n_debug_values = 0;
587 
588   next_uid = num;
589 
590   first_containing_mem = &dummy_val;
591 }
592 
593 /* Return the number of the next value that will be generated.  */
594 
595 unsigned int
cselib_get_next_uid(void)596 cselib_get_next_uid (void)
597 {
598   return next_uid;
599 }
600 
601 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
602    INSERTing if requested.  When X is part of the address of a MEM,
603    MEMMODE should specify the mode of the MEM.  */
604 
605 static cselib_val **
cselib_find_slot(machine_mode mode,rtx x,hashval_t hash,enum insert_option insert,machine_mode memmode)606 cselib_find_slot (machine_mode mode, rtx x, hashval_t hash,
607 		  enum insert_option insert, machine_mode memmode)
608 {
609   cselib_val **slot = NULL;
610   cselib_hasher::key lookup = { mode, x, memmode };
611   if (cselib_preserve_constants)
612     slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash,
613 							     NO_INSERT);
614   if (!slot)
615     slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert);
616   return slot;
617 }
618 
619 /* Return true if X contains a VALUE rtx.  If ONLY_USELESS is set, we
620    only return true for values which point to a cselib_val whose value
621    element has been set to zero, which implies the cselib_val will be
622    removed.  */
623 
624 int
references_value_p(const_rtx x,int only_useless)625 references_value_p (const_rtx x, int only_useless)
626 {
627   const enum rtx_code code = GET_CODE (x);
628   const char *fmt = GET_RTX_FORMAT (code);
629   int i, j;
630 
631   if (GET_CODE (x) == VALUE
632       && (! only_useless
633 	  || (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
634     return 1;
635 
636   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
637     {
638       if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
639 	return 1;
640       else if (fmt[i] == 'E')
641 	for (j = 0; j < XVECLEN (x, i); j++)
642 	  if (references_value_p (XVECEXP (x, i, j), only_useless))
643 	    return 1;
644     }
645 
646   return 0;
647 }
648 
649 /* Return true if V is a useless VALUE and can be discarded as such.  */
650 
651 static bool
cselib_useless_value_p(cselib_val * v)652 cselib_useless_value_p (cselib_val *v)
653 {
654   return (v->locs == 0
655 	  && !PRESERVED_VALUE_P (v->val_rtx)
656 	  && !SP_DERIVED_VALUE_P (v->val_rtx));
657 }
658 
659 /* For all locations found in X, delete locations that reference useless
660    values (i.e. values without any location).  Called through
661    htab_traverse.  */
662 
663 int
discard_useless_locs(cselib_val ** x,void * info ATTRIBUTE_UNUSED)664 discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
665 {
666   cselib_val *v = *x;
667   struct elt_loc_list **p = &v->locs;
668   bool had_locs = v->locs != NULL;
669   rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
670 
671   while (*p)
672     {
673       if (references_value_p ((*p)->loc, 1))
674 	unchain_one_elt_loc_list (p);
675       else
676 	p = &(*p)->next;
677     }
678 
679   if (had_locs && cselib_useless_value_p (v))
680     {
681       if (setting_insn && DEBUG_INSN_P (setting_insn))
682 	n_useless_debug_values++;
683       else
684 	n_useless_values++;
685       values_became_useless = 1;
686     }
687   return 1;
688 }
689 
690 /* If X is a value with no locations, remove it from the hashtable.  */
691 
692 int
discard_useless_values(cselib_val ** x,void * info ATTRIBUTE_UNUSED)693 discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
694 {
695   cselib_val *v = *x;
696 
697   if (v->locs == 0 && cselib_useless_value_p (v))
698     {
699       if (cselib_discard_hook)
700 	cselib_discard_hook (v);
701 
702       CSELIB_VAL_PTR (v->val_rtx) = NULL;
703       cselib_hash_table->clear_slot (x);
704       unchain_one_value (v);
705       n_useless_values--;
706     }
707 
708   return 1;
709 }
710 
711 /* Clean out useless values (i.e. those which no longer have locations
712    associated with them) from the hash table.  */
713 
714 static void
remove_useless_values(void)715 remove_useless_values (void)
716 {
717   cselib_val **p, *v;
718 
719   /* First pass: eliminate locations that reference the value.  That in
720      turn can make more values useless.  */
721   do
722     {
723       values_became_useless = 0;
724       cselib_hash_table->traverse <void *, discard_useless_locs> (NULL);
725     }
726   while (values_became_useless);
727 
728   /* Second pass: actually remove the values.  */
729 
730   p = &first_containing_mem;
731   for (v = *p; v != &dummy_val; v = v->next_containing_mem)
732     if (v->locs && v == canonical_cselib_val (v))
733       {
734 	*p = v;
735 	p = &(*p)->next_containing_mem;
736       }
737   *p = &dummy_val;
738 
739   n_useless_values += n_useless_debug_values;
740   n_debug_values -= n_useless_debug_values;
741   n_useless_debug_values = 0;
742 
743   cselib_hash_table->traverse <void *, discard_useless_values> (NULL);
744 
745   gcc_assert (!n_useless_values);
746 }
747 
748 /* Arrange for a value to not be removed from the hash table even if
749    it becomes useless.  */
750 
751 void
cselib_preserve_value(cselib_val * v)752 cselib_preserve_value (cselib_val *v)
753 {
754   PRESERVED_VALUE_P (v->val_rtx) = 1;
755 }
756 
757 /* Test whether a value is preserved.  */
758 
759 bool
cselib_preserved_value_p(cselib_val * v)760 cselib_preserved_value_p (cselib_val *v)
761 {
762   return PRESERVED_VALUE_P (v->val_rtx);
763 }
764 
765 /* Arrange for a REG value to be assumed constant through the whole function,
766    never invalidated and preserved across cselib_reset_table calls.  */
767 
768 void
cselib_preserve_cfa_base_value(cselib_val * v,unsigned int regno)769 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
770 {
771   if (cselib_preserve_constants
772       && v->locs
773       && REG_P (v->locs->loc))
774     {
775       cfa_base_preserved_val = v;
776       cfa_base_preserved_regno = regno;
777     }
778 }
779 
780 /* Clean all non-constant expressions in the hash table, but retain
781    their values.  */
782 
783 void
cselib_preserve_only_values(void)784 cselib_preserve_only_values (void)
785 {
786   int i;
787 
788   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
789     cselib_invalidate_regno (i, reg_raw_mode[i]);
790 
791   cselib_invalidate_mem (callmem);
792 
793   remove_useless_values ();
794 
795   gcc_assert (first_containing_mem == &dummy_val);
796 }
797 
798 /* Arrange for a value to be marked as based on stack pointer
799    for find_base_term purposes.  */
800 
801 void
cselib_set_value_sp_based(cselib_val * v)802 cselib_set_value_sp_based (cselib_val *v)
803 {
804   SP_BASED_VALUE_P (v->val_rtx) = 1;
805 }
806 
807 /* Test whether a value is based on stack pointer for
808    find_base_term purposes.  */
809 
810 bool
cselib_sp_based_value_p(cselib_val * v)811 cselib_sp_based_value_p (cselib_val *v)
812 {
813   return SP_BASED_VALUE_P (v->val_rtx);
814 }
815 
816 /* Return the mode in which a register was last set.  If X is not a
817    register, return its mode.  If the mode in which the register was
818    set is not known, or the value was already clobbered, return
819    VOIDmode.  */
820 
821 machine_mode
cselib_reg_set_mode(const_rtx x)822 cselib_reg_set_mode (const_rtx x)
823 {
824   if (!REG_P (x))
825     return GET_MODE (x);
826 
827   if (REG_VALUES (REGNO (x)) == NULL
828       || REG_VALUES (REGNO (x))->elt == NULL)
829     return VOIDmode;
830 
831   return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
832 }
833 
834 /* If x is a PLUS or an autoinc operation, expand the operation,
835    storing the offset, if any, in *OFF.  */
836 
837 static rtx
autoinc_split(rtx x,rtx * off,machine_mode memmode)838 autoinc_split (rtx x, rtx *off, machine_mode memmode)
839 {
840   switch (GET_CODE (x))
841     {
842     case PLUS:
843       *off = XEXP (x, 1);
844       x = XEXP (x, 0);
845       break;
846 
847     case PRE_DEC:
848       if (memmode == VOIDmode)
849 	return x;
850 
851       *off = gen_int_mode (-GET_MODE_SIZE (memmode), GET_MODE (x));
852       x = XEXP (x, 0);
853       break;
854 
855     case PRE_INC:
856       if (memmode == VOIDmode)
857 	return x;
858 
859       *off = gen_int_mode (GET_MODE_SIZE (memmode), GET_MODE (x));
860       x = XEXP (x, 0);
861       break;
862 
863     case PRE_MODIFY:
864       x = XEXP (x, 1);
865       break;
866 
867     case POST_DEC:
868     case POST_INC:
869     case POST_MODIFY:
870       x = XEXP (x, 0);
871       break;
872 
873     default:
874       break;
875     }
876 
877   if (GET_MODE (x) == Pmode
878       && (REG_P (x) || MEM_P (x) || GET_CODE (x) == VALUE)
879       && (*off == NULL_RTX || CONST_INT_P (*off)))
880     {
881       cselib_val *e;
882       if (GET_CODE (x) == VALUE)
883 	e = CSELIB_VAL_PTR (x);
884       else
885 	e = cselib_lookup (x, GET_MODE (x), 0, memmode);
886       if (e)
887 	{
888 	  if (SP_DERIVED_VALUE_P (e->val_rtx)
889 	      && (*off == NULL_RTX || *off == const0_rtx))
890 	    {
891 	      *off = NULL_RTX;
892 	      return e->val_rtx;
893 	    }
894 	  for (struct elt_loc_list *l = e->locs; l; l = l->next)
895 	    if (GET_CODE (l->loc) == PLUS
896 		&& GET_CODE (XEXP (l->loc, 0)) == VALUE
897 		&& SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
898 		&& CONST_INT_P (XEXP (l->loc, 1)))
899 	      {
900 		if (*off == NULL_RTX)
901 		  *off = XEXP (l->loc, 1);
902 		else
903 		  *off = plus_constant (Pmode, *off,
904 					INTVAL (XEXP (l->loc, 1)));
905 		if (*off == const0_rtx)
906 		  *off = NULL_RTX;
907 		return XEXP (l->loc, 0);
908 	      }
909 	}
910     }
911   return x;
912 }
913 
914 /* Return nonzero if we can prove that X and Y contain the same value,
915    taking our gathered information into account.  MEMMODE holds the
916    mode of the enclosing MEM, if any, as required to deal with autoinc
917    addressing modes.  If X and Y are not (known to be) part of
918    addresses, MEMMODE should be VOIDmode.  */
919 
920 int
rtx_equal_for_cselib_1(rtx x,rtx y,machine_mode memmode,int depth)921 rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode, int depth)
922 {
923   enum rtx_code code;
924   const char *fmt;
925   int i;
926 
927   if (REG_P (x) || MEM_P (x))
928     {
929       cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
930 
931       if (e)
932 	x = e->val_rtx;
933     }
934 
935   if (REG_P (y) || MEM_P (y))
936     {
937       cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
938 
939       if (e)
940 	y = e->val_rtx;
941     }
942 
943   if (x == y)
944     return 1;
945 
946   if (GET_CODE (x) == VALUE)
947     {
948       cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
949       struct elt_loc_list *l;
950 
951       if (GET_CODE (y) == VALUE)
952 	return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
953 
954       if ((SP_DERIVED_VALUE_P (x)
955 	   || SP_DERIVED_VALUE_P (e->val_rtx))
956 	  && GET_MODE (y) == Pmode)
957 	{
958 	  rtx yoff = NULL;
959 	  rtx yr = autoinc_split (y, &yoff, memmode);
960 	  if ((yr == x || yr == e->val_rtx) && yoff == NULL_RTX)
961 	    return 1;
962 	}
963 
964       if (depth == 128)
965 	return 0;
966 
967       for (l = e->locs; l; l = l->next)
968 	{
969 	  rtx t = l->loc;
970 
971 	  /* Avoid infinite recursion.  We know we have the canonical
972 	     value, so we can just skip any values in the equivalence
973 	     list.  */
974 	  if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
975 	    continue;
976 	  else if (rtx_equal_for_cselib_1 (t, y, memmode, depth + 1))
977 	    return 1;
978 	}
979 
980       return 0;
981     }
982   else if (GET_CODE (y) == VALUE)
983     {
984       cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
985       struct elt_loc_list *l;
986 
987       if ((SP_DERIVED_VALUE_P (y)
988 	   || SP_DERIVED_VALUE_P (e->val_rtx))
989 	  && GET_MODE (x) == Pmode)
990 	{
991 	  rtx xoff = NULL;
992 	  rtx xr = autoinc_split (x, &xoff, memmode);
993 	  if ((xr == y || xr == e->val_rtx) && xoff == NULL_RTX)
994 	    return 1;
995 	}
996 
997       if (depth == 128)
998 	return 0;
999 
1000       for (l = e->locs; l; l = l->next)
1001 	{
1002 	  rtx t = l->loc;
1003 
1004 	  if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
1005 	    continue;
1006 	  else if (rtx_equal_for_cselib_1 (x, t, memmode, depth + 1))
1007 	    return 1;
1008 	}
1009 
1010       return 0;
1011     }
1012 
1013   if (GET_MODE (x) != GET_MODE (y))
1014     return 0;
1015 
1016   if (GET_CODE (x) != GET_CODE (y)
1017       || (GET_CODE (x) == PLUS
1018 	  && GET_MODE (x) == Pmode
1019 	  && CONST_INT_P (XEXP (x, 1))
1020 	  && CONST_INT_P (XEXP (y, 1))))
1021     {
1022       rtx xorig = x, yorig = y;
1023       rtx xoff = NULL, yoff = NULL;
1024 
1025       x = autoinc_split (x, &xoff, memmode);
1026       y = autoinc_split (y, &yoff, memmode);
1027 
1028       /* Don't recurse if nothing changed.  */
1029       if (x != xorig || y != yorig)
1030 	{
1031 	  if (!xoff != !yoff)
1032 	    return 0;
1033 
1034 	  if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode, depth))
1035 	    return 0;
1036 
1037 	  return rtx_equal_for_cselib_1 (x, y, memmode, depth);
1038 	}
1039 
1040       if (GET_CODE (xorig) != GET_CODE (yorig))
1041 	return 0;
1042     }
1043 
1044   /* These won't be handled correctly by the code below.  */
1045   switch (GET_CODE (x))
1046     {
1047     CASE_CONST_UNIQUE:
1048     case DEBUG_EXPR:
1049       return 0;
1050 
1051     case DEBUG_IMPLICIT_PTR:
1052       return DEBUG_IMPLICIT_PTR_DECL (x)
1053 	     == DEBUG_IMPLICIT_PTR_DECL (y);
1054 
1055     case DEBUG_PARAMETER_REF:
1056       return DEBUG_PARAMETER_REF_DECL (x)
1057 	     == DEBUG_PARAMETER_REF_DECL (y);
1058 
1059     case ENTRY_VALUE:
1060       /* ENTRY_VALUEs are function invariant, it is thus undesirable to
1061 	 use rtx_equal_for_cselib_1 to compare the operands.  */
1062       return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1063 
1064     case LABEL_REF:
1065       return label_ref_label (x) == label_ref_label (y);
1066 
1067     case REG:
1068       return REGNO (x) == REGNO (y);
1069 
1070     case MEM:
1071       /* We have to compare any autoinc operations in the addresses
1072 	 using this MEM's mode.  */
1073       return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x),
1074 				     depth);
1075 
1076     default:
1077       break;
1078     }
1079 
1080   code = GET_CODE (x);
1081   fmt = GET_RTX_FORMAT (code);
1082 
1083   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1084     {
1085       int j;
1086 
1087       switch (fmt[i])
1088 	{
1089 	case 'w':
1090 	  if (XWINT (x, i) != XWINT (y, i))
1091 	    return 0;
1092 	  break;
1093 
1094 	case 'n':
1095 	case 'i':
1096 	  if (XINT (x, i) != XINT (y, i))
1097 	    return 0;
1098 	  break;
1099 
1100 	case 'p':
1101 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1102 	    return 0;
1103 	  break;
1104 
1105 	case 'V':
1106 	case 'E':
1107 	  /* Two vectors must have the same length.  */
1108 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1109 	    return 0;
1110 
1111 	  /* And the corresponding elements must match.  */
1112 	  for (j = 0; j < XVECLEN (x, i); j++)
1113 	    if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
1114 					  XVECEXP (y, i, j), memmode, depth))
1115 	      return 0;
1116 	  break;
1117 
1118 	case 'e':
1119 	  if (i == 1
1120 	      && targetm.commutative_p (x, UNKNOWN)
1121 	      && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode,
1122 					 depth)
1123 	      && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode,
1124 					 depth))
1125 	    return 1;
1126 	  if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode,
1127 					depth))
1128 	    return 0;
1129 	  break;
1130 
1131 	case 'S':
1132 	case 's':
1133 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1134 	    return 0;
1135 	  break;
1136 
1137 	case 'u':
1138 	  /* These are just backpointers, so they don't matter.  */
1139 	  break;
1140 
1141 	case '0':
1142 	case 't':
1143 	  break;
1144 
1145 	  /* It is believed that rtx's at this level will never
1146 	     contain anything but integers and other rtx's,
1147 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1148 	default:
1149 	  gcc_unreachable ();
1150 	}
1151     }
1152   return 1;
1153 }
1154 
1155 /* Helper function for cselib_hash_rtx.  Arguments like for cselib_hash_rtx,
1156    except that it hashes (plus:P x c).  */
1157 
1158 static unsigned int
cselib_hash_plus_const_int(rtx x,HOST_WIDE_INT c,int create,machine_mode memmode)1159 cselib_hash_plus_const_int (rtx x, HOST_WIDE_INT c, int create,
1160 			    machine_mode memmode)
1161 {
1162   cselib_val *e = cselib_lookup (x, GET_MODE (x), create, memmode);
1163   if (! e)
1164     return 0;
1165 
1166   if (! SP_DERIVED_VALUE_P (e->val_rtx))
1167     for (struct elt_loc_list *l = e->locs; l; l = l->next)
1168       if (GET_CODE (l->loc) == PLUS
1169 	  && GET_CODE (XEXP (l->loc, 0)) == VALUE
1170 	  && SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
1171 	  && CONST_INT_P (XEXP (l->loc, 1)))
1172 	{
1173 	  e = CSELIB_VAL_PTR (XEXP (l->loc, 0));
1174 	  c = trunc_int_for_mode (c + UINTVAL (XEXP (l->loc, 1)), Pmode);
1175 	  break;
1176 	}
1177   if (c == 0)
1178     return e->hash;
1179 
1180   unsigned hash = (unsigned) PLUS + (unsigned) GET_MODE (x);
1181   hash += e->hash;
1182   unsigned int tem_hash = (unsigned) CONST_INT + (unsigned) VOIDmode;
1183   tem_hash += ((unsigned) CONST_INT << 7) + (unsigned HOST_WIDE_INT) c;
1184   if (tem_hash == 0)
1185     tem_hash = (unsigned int) CONST_INT;
1186   hash += tem_hash;
1187   return hash ? hash : 1 + (unsigned int) PLUS;
1188 }
1189 
1190 /* Hash an rtx.  Return 0 if we couldn't hash the rtx.
1191    For registers and memory locations, we look up their cselib_val structure
1192    and return its VALUE element.
1193    Possible reasons for return 0 are: the object is volatile, or we couldn't
1194    find a register or memory location in the table and CREATE is zero.  If
1195    CREATE is nonzero, table elts are created for regs and mem.
1196    N.B. this hash function returns the same hash value for RTXes that
1197    differ only in the order of operands, thus it is suitable for comparisons
1198    that take commutativity into account.
1199    If we wanted to also support associative rules, we'd have to use a different
1200    strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1201    MEMMODE indicates the mode of an enclosing MEM, and it's only
1202    used to compute autoinc values.
1203    We used to have a MODE argument for hashing for CONST_INTs, but that
1204    didn't make sense, since it caused spurious hash differences between
1205     (set (reg:SI 1) (const_int))
1206     (plus:SI (reg:SI 2) (reg:SI 1))
1207    and
1208     (plus:SI (reg:SI 2) (const_int))
1209    If the mode is important in any context, it must be checked specifically
1210    in a comparison anyway, since relying on hash differences is unsafe.  */
1211 
1212 static unsigned int
cselib_hash_rtx(rtx x,int create,machine_mode memmode)1213 cselib_hash_rtx (rtx x, int create, machine_mode memmode)
1214 {
1215   cselib_val *e;
1216   poly_int64 offset;
1217   int i, j;
1218   enum rtx_code code;
1219   const char *fmt;
1220   unsigned int hash = 0;
1221 
1222   code = GET_CODE (x);
1223   hash += (unsigned) code + (unsigned) GET_MODE (x);
1224 
1225   switch (code)
1226     {
1227     case VALUE:
1228       e = CSELIB_VAL_PTR (x);
1229       return e->hash;
1230 
1231     case MEM:
1232     case REG:
1233       e = cselib_lookup (x, GET_MODE (x), create, memmode);
1234       if (! e)
1235 	return 0;
1236 
1237       return e->hash;
1238 
1239     case DEBUG_EXPR:
1240       hash += ((unsigned) DEBUG_EXPR << 7)
1241 	      + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
1242       return hash ? hash : (unsigned int) DEBUG_EXPR;
1243 
1244     case DEBUG_IMPLICIT_PTR:
1245       hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1246 	      + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1247       return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1248 
1249     case DEBUG_PARAMETER_REF:
1250       hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1251 	      + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1252       return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1253 
1254     case ENTRY_VALUE:
1255       /* ENTRY_VALUEs are function invariant, thus try to avoid
1256 	 recursing on argument if ENTRY_VALUE is one of the
1257 	 forms emitted by expand_debug_expr, otherwise
1258 	 ENTRY_VALUE hash would depend on the current value
1259 	 in some register or memory.  */
1260       if (REG_P (ENTRY_VALUE_EXP (x)))
1261 	hash += (unsigned int) REG
1262 		+ (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1263 		+ (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1264       else if (MEM_P (ENTRY_VALUE_EXP (x))
1265 	       && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1266 	hash += (unsigned int) MEM
1267 		+ (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1268 		+ (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1269       else
1270 	hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1271       return hash ? hash : (unsigned int) ENTRY_VALUE;
1272 
1273     case CONST_INT:
1274       hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
1275       return hash ? hash : (unsigned int) CONST_INT;
1276 
1277     case CONST_WIDE_INT:
1278       for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
1279 	hash += CONST_WIDE_INT_ELT (x, i);
1280       return hash;
1281 
1282     case CONST_POLY_INT:
1283       {
1284 	inchash::hash h;
1285 	h.add_int (hash);
1286 	for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1287 	  h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
1288 	return h.end ();
1289       }
1290 
1291     case CONST_DOUBLE:
1292       /* This is like the general case, except that it only counts
1293 	 the integers representing the constant.  */
1294       hash += (unsigned) code + (unsigned) GET_MODE (x);
1295       if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
1296 	hash += ((unsigned) CONST_DOUBLE_LOW (x)
1297 		 + (unsigned) CONST_DOUBLE_HIGH (x));
1298       else
1299 	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1300       return hash ? hash : (unsigned int) CONST_DOUBLE;
1301 
1302     case CONST_FIXED:
1303       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1304       hash += fixed_hash (CONST_FIXED_VALUE (x));
1305       return hash ? hash : (unsigned int) CONST_FIXED;
1306 
1307     case CONST_VECTOR:
1308       {
1309 	int units;
1310 	rtx elt;
1311 
1312 	units = const_vector_encoded_nelts (x);
1313 
1314 	for (i = 0; i < units; ++i)
1315 	  {
1316 	    elt = CONST_VECTOR_ENCODED_ELT (x, i);
1317 	    hash += cselib_hash_rtx (elt, 0, memmode);
1318 	  }
1319 
1320 	return hash;
1321       }
1322 
1323       /* Assume there is only one rtx object for any given label.  */
1324     case LABEL_REF:
1325       /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1326 	 differences and differences between each stage's debugging dumps.  */
1327       hash += (((unsigned int) LABEL_REF << 7)
1328 	       + CODE_LABEL_NUMBER (label_ref_label (x)));
1329       return hash ? hash : (unsigned int) LABEL_REF;
1330 
1331     case SYMBOL_REF:
1332       {
1333 	/* Don't hash on the symbol's address to avoid bootstrap differences.
1334 	   Different hash values may cause expressions to be recorded in
1335 	   different orders and thus different registers to be used in the
1336 	   final assembler.  This also avoids differences in the dump files
1337 	   between various stages.  */
1338 	unsigned int h = 0;
1339 	const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1340 
1341 	while (*p)
1342 	  h += (h << 7) + *p++; /* ??? revisit */
1343 
1344 	hash += ((unsigned int) SYMBOL_REF << 7) + h;
1345 	return hash ? hash : (unsigned int) SYMBOL_REF;
1346       }
1347 
1348     case PRE_DEC:
1349     case PRE_INC:
1350       /* We can't compute these without knowing the MEM mode.  */
1351       gcc_assert (memmode != VOIDmode);
1352       offset = GET_MODE_SIZE (memmode);
1353       if (code == PRE_DEC)
1354 	offset = -offset;
1355       /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1356 	 like (mem:MEMMODE (plus (reg) (const_int I))).  */
1357       if (GET_MODE (x) == Pmode
1358 	  && (REG_P (XEXP (x, 0))
1359 	      || MEM_P (XEXP (x, 0))
1360 	      || GET_CODE (XEXP (x, 0)) == VALUE))
1361 	{
1362 	  HOST_WIDE_INT c;
1363 	  if (offset.is_constant (&c))
1364 	    return cselib_hash_plus_const_int (XEXP (x, 0),
1365 					       trunc_int_for_mode (c, Pmode),
1366 					       create, memmode);
1367 	}
1368       hash = ((unsigned) PLUS + (unsigned) GET_MODE (x)
1369 	      + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1370 	      + cselib_hash_rtx (gen_int_mode (offset, GET_MODE (x)),
1371 				 create, memmode));
1372       return hash ? hash : 1 + (unsigned) PLUS;
1373 
1374     case PRE_MODIFY:
1375       gcc_assert (memmode != VOIDmode);
1376       return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1377 
1378     case POST_DEC:
1379     case POST_INC:
1380     case POST_MODIFY:
1381       gcc_assert (memmode != VOIDmode);
1382       return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1383 
1384     case PC:
1385     case CC0:
1386     case CALL:
1387     case UNSPEC_VOLATILE:
1388       return 0;
1389 
1390     case ASM_OPERANDS:
1391       if (MEM_VOLATILE_P (x))
1392 	return 0;
1393 
1394       break;
1395 
1396     case PLUS:
1397       if (GET_MODE (x) == Pmode
1398 	  && (REG_P (XEXP (x, 0))
1399 	      || MEM_P (XEXP (x, 0))
1400 	      || GET_CODE (XEXP (x, 0)) == VALUE)
1401 	  && CONST_INT_P (XEXP (x, 1)))
1402 	return cselib_hash_plus_const_int (XEXP (x, 0), INTVAL (XEXP (x, 1)),
1403 					   create, memmode);
1404       break;
1405 
1406     default:
1407       break;
1408     }
1409 
1410   i = GET_RTX_LENGTH (code) - 1;
1411   fmt = GET_RTX_FORMAT (code);
1412   for (; i >= 0; i--)
1413     {
1414       switch (fmt[i])
1415 	{
1416 	case 'e':
1417 	  {
1418 	    rtx tem = XEXP (x, i);
1419 	    unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1420 
1421 	    if (tem_hash == 0)
1422 	      return 0;
1423 
1424 	    hash += tem_hash;
1425 	  }
1426 	  break;
1427 	case 'E':
1428 	  for (j = 0; j < XVECLEN (x, i); j++)
1429 	    {
1430 	      unsigned int tem_hash
1431 		= cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1432 
1433 	      if (tem_hash == 0)
1434 		return 0;
1435 
1436 	      hash += tem_hash;
1437 	    }
1438 	  break;
1439 
1440 	case 's':
1441 	  {
1442 	    const unsigned char *p = (const unsigned char *) XSTR (x, i);
1443 
1444 	    if (p)
1445 	      while (*p)
1446 		hash += *p++;
1447 	    break;
1448 	  }
1449 
1450 	case 'i':
1451 	  hash += XINT (x, i);
1452 	  break;
1453 
1454 	case 'p':
1455 	  hash += constant_lower_bound (SUBREG_BYTE (x));
1456 	  break;
1457 
1458 	case '0':
1459 	case 't':
1460 	  /* unused */
1461 	  break;
1462 
1463 	default:
1464 	  gcc_unreachable ();
1465 	}
1466     }
1467 
1468   return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1469 }
1470 
1471 /* Create a new value structure for VALUE and initialize it.  The mode of the
1472    value is MODE.  */
1473 
1474 static inline cselib_val *
new_cselib_val(unsigned int hash,machine_mode mode,rtx x)1475 new_cselib_val (unsigned int hash, machine_mode mode, rtx x)
1476 {
1477   cselib_val *e = cselib_val_pool.allocate ();
1478 
1479   gcc_assert (hash);
1480   gcc_assert (next_uid);
1481 
1482   e->hash = hash;
1483   e->uid = next_uid++;
1484   /* We use an alloc pool to allocate this RTL construct because it
1485      accounts for about 8% of the overall memory usage.  We know
1486      precisely when we can have VALUE RTXen (when cselib is active)
1487      so we don't need to put them in garbage collected memory.
1488      ??? Why should a VALUE be an RTX in the first place?  */
1489   e->val_rtx = (rtx_def*) value_pool.allocate ();
1490   memset (e->val_rtx, 0, RTX_HDR_SIZE);
1491   PUT_CODE (e->val_rtx, VALUE);
1492   PUT_MODE (e->val_rtx, mode);
1493   CSELIB_VAL_PTR (e->val_rtx) = e;
1494   e->addr_list = 0;
1495   e->locs = 0;
1496   e->next_containing_mem = 0;
1497 
1498   if (dump_file && (dump_flags & TDF_CSELIB))
1499     {
1500       fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1501       if (flag_dump_noaddr || flag_dump_unnumbered)
1502 	fputs ("# ", dump_file);
1503       else
1504 	fprintf (dump_file, "%p ", (void*)e);
1505       print_rtl_single (dump_file, x);
1506       fputc ('\n', dump_file);
1507     }
1508 
1509   return e;
1510 }
1511 
1512 /* ADDR_ELT is a value that is used as address.  MEM_ELT is the value that
1513    contains the data at this address.  X is a MEM that represents the
1514    value.  Update the two value structures to represent this situation.  */
1515 
1516 static void
add_mem_for_addr(cselib_val * addr_elt,cselib_val * mem_elt,rtx x)1517 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1518 {
1519   addr_elt = canonical_cselib_val (addr_elt);
1520   mem_elt = canonical_cselib_val (mem_elt);
1521 
1522   /* Avoid duplicates.  */
1523   addr_space_t as = MEM_ADDR_SPACE (x);
1524   for (elt_loc_list *l = mem_elt->locs; l; l = l->next)
1525     if (MEM_P (l->loc)
1526 	&& CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt
1527         && MEM_ADDR_SPACE (l->loc) == as)
1528       {
1529 	promote_debug_loc (l);
1530 	return;
1531       }
1532 
1533   addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1534   new_elt_loc_list (mem_elt,
1535 		    replace_equiv_address_nv (x, addr_elt->val_rtx));
1536   if (mem_elt->next_containing_mem == NULL)
1537     {
1538       mem_elt->next_containing_mem = first_containing_mem;
1539       first_containing_mem = mem_elt;
1540     }
1541 }
1542 
1543 /* Subroutine of cselib_lookup.  Return a value for X, which is a MEM rtx.
1544    If CREATE, make a new one if we haven't seen it before.  */
1545 
1546 static cselib_val *
cselib_lookup_mem(rtx x,int create)1547 cselib_lookup_mem (rtx x, int create)
1548 {
1549   machine_mode mode = GET_MODE (x);
1550   machine_mode addr_mode;
1551   cselib_val **slot;
1552   cselib_val *addr;
1553   cselib_val *mem_elt;
1554 
1555   if (MEM_VOLATILE_P (x) || mode == BLKmode
1556       || !cselib_record_memory
1557       || (FLOAT_MODE_P (mode) && flag_float_store))
1558     return 0;
1559 
1560   addr_mode = GET_MODE (XEXP (x, 0));
1561   if (addr_mode == VOIDmode)
1562     addr_mode = Pmode;
1563 
1564   /* Look up the value for the address.  */
1565   addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1566   if (! addr)
1567     return 0;
1568   addr = canonical_cselib_val (addr);
1569 
1570   /* Find a value that describes a value of our mode at that address.  */
1571   addr_space_t as = MEM_ADDR_SPACE (x);
1572   for (elt_list *l = addr->addr_list; l; l = l->next)
1573     if (GET_MODE (l->elt->val_rtx) == mode)
1574       {
1575 	for (elt_loc_list *l2 = l->elt->locs; l2; l2 = l2->next)
1576 	  if (MEM_P (l2->loc) && MEM_ADDR_SPACE (l2->loc) == as)
1577 	    {
1578 	      promote_debug_loc (l->elt->locs);
1579 	      return l->elt;
1580 	    }
1581       }
1582 
1583   if (! create)
1584     return 0;
1585 
1586   mem_elt = new_cselib_val (next_uid, mode, x);
1587   add_mem_for_addr (addr, mem_elt, x);
1588   slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
1589   *slot = mem_elt;
1590   return mem_elt;
1591 }
1592 
1593 /* Search through the possible substitutions in P.  We prefer a non reg
1594    substitution because this allows us to expand the tree further.  If
1595    we find, just a reg, take the lowest regno.  There may be several
1596    non-reg results, we just take the first one because they will all
1597    expand to the same place.  */
1598 
1599 static rtx
expand_loc(struct elt_loc_list * p,struct expand_value_data * evd,int max_depth)1600 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1601 	    int max_depth)
1602 {
1603   rtx reg_result = NULL;
1604   unsigned int regno = UINT_MAX;
1605   struct elt_loc_list *p_in = p;
1606 
1607   for (; p; p = p->next)
1608     {
1609       /* Return these right away to avoid returning stack pointer based
1610 	 expressions for frame pointer and vice versa, which is something
1611 	 that would confuse DSE.  See the comment in cselib_expand_value_rtx_1
1612 	 for more details.  */
1613       if (REG_P (p->loc)
1614 	  && (REGNO (p->loc) == STACK_POINTER_REGNUM
1615 	      || REGNO (p->loc) == FRAME_POINTER_REGNUM
1616 	      || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1617 	      || REGNO (p->loc) == cfa_base_preserved_regno))
1618 	return p->loc;
1619       /* Avoid infinite recursion trying to expand a reg into a
1620 	 the same reg.  */
1621       if ((REG_P (p->loc))
1622 	  && (REGNO (p->loc) < regno)
1623 	  && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1624 	{
1625 	  reg_result = p->loc;
1626 	  regno = REGNO (p->loc);
1627 	}
1628       /* Avoid infinite recursion and do not try to expand the
1629 	 value.  */
1630       else if (GET_CODE (p->loc) == VALUE
1631 	       && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1632 	continue;
1633       else if (!REG_P (p->loc))
1634 	{
1635 	  rtx result, note;
1636 	  if (dump_file && (dump_flags & TDF_CSELIB))
1637 	    {
1638 	      print_inline_rtx (dump_file, p->loc, 0);
1639 	      fprintf (dump_file, "\n");
1640 	    }
1641 	  if (GET_CODE (p->loc) == LO_SUM
1642 	      && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1643 	      && p->setting_insn
1644 	      && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1645 	      && XEXP (note, 0) == XEXP (p->loc, 1))
1646 	    return XEXP (p->loc, 1);
1647 	  result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1648 	  if (result)
1649 	    return result;
1650 	}
1651 
1652     }
1653 
1654   if (regno != UINT_MAX)
1655     {
1656       rtx result;
1657       if (dump_file && (dump_flags & TDF_CSELIB))
1658 	fprintf (dump_file, "r%d\n", regno);
1659 
1660       result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1661       if (result)
1662 	return result;
1663     }
1664 
1665   if (dump_file && (dump_flags & TDF_CSELIB))
1666     {
1667       if (reg_result)
1668 	{
1669 	  print_inline_rtx (dump_file, reg_result, 0);
1670 	  fprintf (dump_file, "\n");
1671 	}
1672       else
1673 	fprintf (dump_file, "NULL\n");
1674     }
1675   return reg_result;
1676 }
1677 
1678 
1679 /* Forward substitute and expand an expression out to its roots.
1680    This is the opposite of common subexpression.  Because local value
1681    numbering is such a weak optimization, the expanded expression is
1682    pretty much unique (not from a pointer equals point of view but
1683    from a tree shape point of view.
1684 
1685    This function returns NULL if the expansion fails.  The expansion
1686    will fail if there is no value number for one of the operands or if
1687    one of the operands has been overwritten between the current insn
1688    and the beginning of the basic block.  For instance x has no
1689    expansion in:
1690 
1691    r1 <- r1 + 3
1692    x <- r1 + 8
1693 
1694    REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1695    It is clear on return.  */
1696 
1697 rtx
cselib_expand_value_rtx(rtx orig,bitmap regs_active,int max_depth)1698 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1699 {
1700   struct expand_value_data evd;
1701 
1702   evd.regs_active = regs_active;
1703   evd.callback = NULL;
1704   evd.callback_arg = NULL;
1705   evd.dummy = false;
1706 
1707   return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1708 }
1709 
1710 /* Same as cselib_expand_value_rtx, but using a callback to try to
1711    resolve some expressions.  The CB function should return ORIG if it
1712    can't or does not want to deal with a certain RTX.  Any other
1713    return value, including NULL, will be used as the expansion for
1714    VALUE, without any further changes.  */
1715 
1716 rtx
cselib_expand_value_rtx_cb(rtx orig,bitmap regs_active,int max_depth,cselib_expand_callback cb,void * data)1717 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1718 			    cselib_expand_callback cb, void *data)
1719 {
1720   struct expand_value_data evd;
1721 
1722   evd.regs_active = regs_active;
1723   evd.callback = cb;
1724   evd.callback_arg = data;
1725   evd.dummy = false;
1726 
1727   return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1728 }
1729 
1730 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1731    or simplified.  Useful to find out whether cselib_expand_value_rtx_cb
1732    would return NULL or non-NULL, without allocating new rtx.  */
1733 
1734 bool
cselib_dummy_expand_value_rtx_cb(rtx orig,bitmap regs_active,int max_depth,cselib_expand_callback cb,void * data)1735 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1736 				  cselib_expand_callback cb, void *data)
1737 {
1738   struct expand_value_data evd;
1739 
1740   evd.regs_active = regs_active;
1741   evd.callback = cb;
1742   evd.callback_arg = data;
1743   evd.dummy = true;
1744 
1745   return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1746 }
1747 
1748 /* Internal implementation of cselib_expand_value_rtx and
1749    cselib_expand_value_rtx_cb.  */
1750 
1751 static rtx
cselib_expand_value_rtx_1(rtx orig,struct expand_value_data * evd,int max_depth)1752 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1753 			   int max_depth)
1754 {
1755   rtx copy, scopy;
1756   int i, j;
1757   RTX_CODE code;
1758   const char *format_ptr;
1759   machine_mode mode;
1760 
1761   code = GET_CODE (orig);
1762 
1763   /* For the context of dse, if we end up expand into a huge tree, we
1764      will not have a useful address, so we might as well just give up
1765      quickly.  */
1766   if (max_depth <= 0)
1767     return NULL;
1768 
1769   switch (code)
1770     {
1771     case REG:
1772       {
1773 	struct elt_list *l = REG_VALUES (REGNO (orig));
1774 
1775 	if (l && l->elt == NULL)
1776 	  l = l->next;
1777 	for (; l; l = l->next)
1778 	  if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1779 	    {
1780 	      rtx result;
1781 	      unsigned regno = REGNO (orig);
1782 
1783 	      /* The only thing that we are not willing to do (this
1784 		 is requirement of dse and if others potential uses
1785 		 need this function we should add a parm to control
1786 		 it) is that we will not substitute the
1787 		 STACK_POINTER_REGNUM, FRAME_POINTER or the
1788 		 HARD_FRAME_POINTER.
1789 
1790 		 These expansions confuses the code that notices that
1791 		 stores into the frame go dead at the end of the
1792 		 function and that the frame is not effected by calls
1793 		 to subroutines.  If you allow the
1794 		 STACK_POINTER_REGNUM substitution, then dse will
1795 		 think that parameter pushing also goes dead which is
1796 		 wrong.  If you allow the FRAME_POINTER or the
1797 		 HARD_FRAME_POINTER then you lose the opportunity to
1798 		 make the frame assumptions.  */
1799 	      if (regno == STACK_POINTER_REGNUM
1800 		  || regno == FRAME_POINTER_REGNUM
1801 		  || regno == HARD_FRAME_POINTER_REGNUM
1802 		  || regno == cfa_base_preserved_regno)
1803 		return orig;
1804 
1805 	      bitmap_set_bit (evd->regs_active, regno);
1806 
1807 	      if (dump_file && (dump_flags & TDF_CSELIB))
1808 		fprintf (dump_file, "expanding: r%d into: ", regno);
1809 
1810 	      result = expand_loc (l->elt->locs, evd, max_depth);
1811 	      bitmap_clear_bit (evd->regs_active, regno);
1812 
1813 	      if (result)
1814 		return result;
1815 	      else
1816 		return orig;
1817 	    }
1818 	return orig;
1819       }
1820 
1821     CASE_CONST_ANY:
1822     case SYMBOL_REF:
1823     case CODE_LABEL:
1824     case PC:
1825     case CC0:
1826     case SCRATCH:
1827       /* SCRATCH must be shared because they represent distinct values.  */
1828       return orig;
1829     case CLOBBER:
1830       if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1831 	return orig;
1832       break;
1833 
1834     case CONST:
1835       if (shared_const_p (orig))
1836 	return orig;
1837       break;
1838 
1839     case SUBREG:
1840       {
1841 	rtx subreg;
1842 
1843 	if (evd->callback)
1844 	  {
1845 	    subreg = evd->callback (orig, evd->regs_active, max_depth,
1846 				    evd->callback_arg);
1847 	    if (subreg != orig)
1848 	      return subreg;
1849 	  }
1850 
1851 	subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1852 					    max_depth - 1);
1853 	if (!subreg)
1854 	  return NULL;
1855 	scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1856 				     GET_MODE (SUBREG_REG (orig)),
1857 				     SUBREG_BYTE (orig));
1858 	if (scopy == NULL
1859 	    || (GET_CODE (scopy) == SUBREG
1860 		&& !REG_P (SUBREG_REG (scopy))
1861 		&& !MEM_P (SUBREG_REG (scopy))))
1862 	  return NULL;
1863 
1864 	return scopy;
1865       }
1866 
1867     case VALUE:
1868       {
1869 	rtx result;
1870 
1871 	if (dump_file && (dump_flags & TDF_CSELIB))
1872 	  {
1873 	    fputs ("\nexpanding ", dump_file);
1874 	    print_rtl_single (dump_file, orig);
1875 	    fputs (" into...", dump_file);
1876 	  }
1877 
1878 	if (evd->callback)
1879 	  {
1880 	    result = evd->callback (orig, evd->regs_active, max_depth,
1881 				    evd->callback_arg);
1882 
1883 	    if (result != orig)
1884 	      return result;
1885 	  }
1886 
1887 	result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1888 	return result;
1889       }
1890 
1891     case DEBUG_EXPR:
1892       if (evd->callback)
1893 	return evd->callback (orig, evd->regs_active, max_depth,
1894 			      evd->callback_arg);
1895       return orig;
1896 
1897     default:
1898       break;
1899     }
1900 
1901   /* Copy the various flags, fields, and other information.  We assume
1902      that all fields need copying, and then clear the fields that should
1903      not be copied.  That is the sensible default behavior, and forces
1904      us to explicitly document why we are *not* copying a flag.  */
1905   if (evd->dummy)
1906     copy = NULL;
1907   else
1908     copy = shallow_copy_rtx (orig);
1909 
1910   format_ptr = GET_RTX_FORMAT (code);
1911 
1912   for (i = 0; i < GET_RTX_LENGTH (code); i++)
1913     switch (*format_ptr++)
1914       {
1915       case 'e':
1916 	if (XEXP (orig, i) != NULL)
1917 	  {
1918 	    rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1919 						    max_depth - 1);
1920 	    if (!result)
1921 	      return NULL;
1922 	    if (copy)
1923 	      XEXP (copy, i) = result;
1924 	  }
1925 	break;
1926 
1927       case 'E':
1928       case 'V':
1929 	if (XVEC (orig, i) != NULL)
1930 	  {
1931 	    if (copy)
1932 	      XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1933 	    for (j = 0; j < XVECLEN (orig, i); j++)
1934 	      {
1935 		rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1936 							evd, max_depth - 1);
1937 		if (!result)
1938 		  return NULL;
1939 		if (copy)
1940 		  XVECEXP (copy, i, j) = result;
1941 	      }
1942 	  }
1943 	break;
1944 
1945       case 't':
1946       case 'w':
1947       case 'i':
1948       case 's':
1949       case 'S':
1950       case 'T':
1951       case 'u':
1952       case 'B':
1953       case '0':
1954 	/* These are left unchanged.  */
1955 	break;
1956 
1957       default:
1958 	gcc_unreachable ();
1959       }
1960 
1961   if (evd->dummy)
1962     return orig;
1963 
1964   mode = GET_MODE (copy);
1965   /* If an operand has been simplified into CONST_INT, which doesn't
1966      have a mode and the mode isn't derivable from whole rtx's mode,
1967      try simplify_*_operation first with mode from original's operand
1968      and as a fallback wrap CONST_INT into gen_rtx_CONST.  */
1969   scopy = copy;
1970   switch (GET_RTX_CLASS (code))
1971     {
1972     case RTX_UNARY:
1973       if (CONST_INT_P (XEXP (copy, 0))
1974 	  && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1975 	{
1976 	  scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1977 					    GET_MODE (XEXP (orig, 0)));
1978 	  if (scopy)
1979 	    return scopy;
1980 	}
1981       break;
1982     case RTX_COMM_ARITH:
1983     case RTX_BIN_ARITH:
1984       /* These expressions can derive operand modes from the whole rtx's mode.  */
1985       break;
1986     case RTX_TERNARY:
1987     case RTX_BITFIELD_OPS:
1988       if (CONST_INT_P (XEXP (copy, 0))
1989 	  && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1990 	{
1991 	  scopy = simplify_ternary_operation (code, mode,
1992 					      GET_MODE (XEXP (orig, 0)),
1993 					      XEXP (copy, 0), XEXP (copy, 1),
1994 					      XEXP (copy, 2));
1995 	  if (scopy)
1996 	    return scopy;
1997 	}
1998       break;
1999     case RTX_COMPARE:
2000     case RTX_COMM_COMPARE:
2001       if (CONST_INT_P (XEXP (copy, 0))
2002 	  && GET_MODE (XEXP (copy, 1)) == VOIDmode
2003 	  && (GET_MODE (XEXP (orig, 0)) != VOIDmode
2004 	      || GET_MODE (XEXP (orig, 1)) != VOIDmode))
2005 	{
2006 	  scopy = simplify_relational_operation (code, mode,
2007 						 (GET_MODE (XEXP (orig, 0))
2008 						  != VOIDmode)
2009 						 ? GET_MODE (XEXP (orig, 0))
2010 						 : GET_MODE (XEXP (orig, 1)),
2011 						 XEXP (copy, 0),
2012 						 XEXP (copy, 1));
2013 	  if (scopy)
2014 	    return scopy;
2015 	}
2016       break;
2017     default:
2018       break;
2019     }
2020   scopy = simplify_rtx (copy);
2021   if (scopy)
2022     return scopy;
2023   return copy;
2024 }
2025 
2026 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
2027    with VALUE expressions.  This way, it becomes independent of changes
2028    to registers and memory.
2029    X isn't actually modified; if modifications are needed, new rtl is
2030    allocated.  However, the return value can share rtl with X.
2031    If X is within a MEM, MEMMODE must be the mode of the MEM.  */
2032 
2033 rtx
cselib_subst_to_values(rtx x,machine_mode memmode)2034 cselib_subst_to_values (rtx x, machine_mode memmode)
2035 {
2036   enum rtx_code code = GET_CODE (x);
2037   const char *fmt = GET_RTX_FORMAT (code);
2038   cselib_val *e;
2039   struct elt_list *l;
2040   rtx copy = x;
2041   int i;
2042   poly_int64 offset;
2043 
2044   switch (code)
2045     {
2046     case REG:
2047       l = REG_VALUES (REGNO (x));
2048       if (l && l->elt == NULL)
2049 	l = l->next;
2050       for (; l; l = l->next)
2051 	if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
2052 	  return l->elt->val_rtx;
2053 
2054       gcc_unreachable ();
2055 
2056     case MEM:
2057       e = cselib_lookup_mem (x, 0);
2058       /* This used to happen for autoincrements, but we deal with them
2059 	 properly now.  Remove the if stmt for the next release.  */
2060       if (! e)
2061 	{
2062 	  /* Assign a value that doesn't match any other.  */
2063 	  e = new_cselib_val (next_uid, GET_MODE (x), x);
2064 	}
2065       return e->val_rtx;
2066 
2067     case ENTRY_VALUE:
2068       e = cselib_lookup (x, GET_MODE (x), 0, memmode);
2069       if (! e)
2070 	break;
2071       return e->val_rtx;
2072 
2073     CASE_CONST_ANY:
2074       return x;
2075 
2076     case PRE_DEC:
2077     case PRE_INC:
2078       gcc_assert (memmode != VOIDmode);
2079       offset = GET_MODE_SIZE (memmode);
2080       if (code == PRE_DEC)
2081 	offset = -offset;
2082       return cselib_subst_to_values (plus_constant (GET_MODE (x),
2083 						    XEXP (x, 0), offset),
2084 				     memmode);
2085 
2086     case PRE_MODIFY:
2087       gcc_assert (memmode != VOIDmode);
2088       return cselib_subst_to_values (XEXP (x, 1), memmode);
2089 
2090     case POST_DEC:
2091     case POST_INC:
2092     case POST_MODIFY:
2093       gcc_assert (memmode != VOIDmode);
2094       return cselib_subst_to_values (XEXP (x, 0), memmode);
2095 
2096     case PLUS:
2097       if (GET_MODE (x) == Pmode && CONST_INT_P (XEXP (x, 1)))
2098 	{
2099 	  rtx t = cselib_subst_to_values (XEXP (x, 0), memmode);
2100 	  if (GET_CODE (t) == VALUE)
2101 	    {
2102 	      if (SP_DERIVED_VALUE_P (t) && XEXP (x, 1) == const0_rtx)
2103 		return t;
2104 	      for (struct elt_loc_list *l = CSELIB_VAL_PTR (t)->locs;
2105 		   l; l = l->next)
2106 		if (GET_CODE (l->loc) == PLUS
2107 		    && GET_CODE (XEXP (l->loc, 0)) == VALUE
2108 		    && SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
2109 		    && CONST_INT_P (XEXP (l->loc, 1)))
2110 		  return plus_constant (Pmode, l->loc, INTVAL (XEXP (x, 1)));
2111 	    }
2112 	  if (t != XEXP (x, 0))
2113 	    {
2114 	      copy = shallow_copy_rtx (x);
2115 	      XEXP (copy, 0) = t;
2116 	    }
2117 	  return copy;
2118 	}
2119 
2120     default:
2121       break;
2122     }
2123 
2124   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2125     {
2126       if (fmt[i] == 'e')
2127 	{
2128 	  rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
2129 
2130 	  if (t != XEXP (x, i))
2131 	    {
2132 	      if (x == copy)
2133 		copy = shallow_copy_rtx (x);
2134 	      XEXP (copy, i) = t;
2135 	    }
2136 	}
2137       else if (fmt[i] == 'E')
2138 	{
2139 	  int j;
2140 
2141 	  for (j = 0; j < XVECLEN (x, i); j++)
2142 	    {
2143 	      rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
2144 
2145 	      if (t != XVECEXP (x, i, j))
2146 		{
2147 		  if (XVEC (x, i) == XVEC (copy, i))
2148 		    {
2149 		      if (x == copy)
2150 			copy = shallow_copy_rtx (x);
2151 		      XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
2152 		    }
2153 		  XVECEXP (copy, i, j) = t;
2154 		}
2155 	    }
2156 	}
2157     }
2158 
2159   return copy;
2160 }
2161 
2162 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN.  */
2163 
2164 rtx
cselib_subst_to_values_from_insn(rtx x,machine_mode memmode,rtx_insn * insn)2165 cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn)
2166 {
2167   rtx ret;
2168   gcc_assert (!cselib_current_insn);
2169   cselib_current_insn = insn;
2170   ret = cselib_subst_to_values (x, memmode);
2171   cselib_current_insn = NULL;
2172   return ret;
2173 }
2174 
2175 /* Look up the rtl expression X in our tables and return the value it
2176    has.  If CREATE is zero, we return NULL if we don't know the value.
2177    Otherwise, we create a new one if possible, using mode MODE if X
2178    doesn't have a mode (i.e. because it's a constant).  When X is part
2179    of an address, MEMMODE should be the mode of the enclosing MEM if
2180    we're tracking autoinc expressions.  */
2181 
2182 static cselib_val *
cselib_lookup_1(rtx x,machine_mode mode,int create,machine_mode memmode)2183 cselib_lookup_1 (rtx x, machine_mode mode,
2184 		 int create, machine_mode memmode)
2185 {
2186   cselib_val **slot;
2187   cselib_val *e;
2188   unsigned int hashval;
2189 
2190   if (GET_MODE (x) != VOIDmode)
2191     mode = GET_MODE (x);
2192 
2193   if (GET_CODE (x) == VALUE)
2194     return CSELIB_VAL_PTR (x);
2195 
2196   if (REG_P (x))
2197     {
2198       struct elt_list *l;
2199       unsigned int i = REGNO (x);
2200 
2201       l = REG_VALUES (i);
2202       if (l && l->elt == NULL)
2203 	l = l->next;
2204       for (; l; l = l->next)
2205 	if (mode == GET_MODE (l->elt->val_rtx))
2206 	  {
2207 	    promote_debug_loc (l->elt->locs);
2208 	    return l->elt;
2209 	  }
2210 
2211       if (! create)
2212 	return 0;
2213 
2214       if (i < FIRST_PSEUDO_REGISTER)
2215 	{
2216 	  unsigned int n = hard_regno_nregs (i, mode);
2217 
2218 	  if (n > max_value_regs)
2219 	    max_value_regs = n;
2220 	}
2221 
2222       e = new_cselib_val (next_uid, GET_MODE (x), x);
2223       if (GET_MODE (x) == Pmode && x == stack_pointer_rtx)
2224 	SP_DERIVED_VALUE_P (e->val_rtx) = 1;
2225       new_elt_loc_list (e, x);
2226 
2227       scalar_int_mode int_mode;
2228       if (REG_VALUES (i) == 0)
2229 	{
2230 	  /* Maintain the invariant that the first entry of
2231 	     REG_VALUES, if present, must be the value used to set the
2232 	     register, or NULL.  */
2233 	  used_regs[n_used_regs++] = i;
2234 	  REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2235 	}
2236       else if (cselib_preserve_constants
2237 	       && is_int_mode (mode, &int_mode))
2238 	{
2239 	  /* During var-tracking, try harder to find equivalences
2240 	     for SUBREGs.  If a setter sets say a DImode register
2241 	     and user uses that register only in SImode, add a lowpart
2242 	     subreg location.  */
2243 	  struct elt_list *lwider = NULL;
2244 	  scalar_int_mode lmode;
2245 	  l = REG_VALUES (i);
2246 	  if (l && l->elt == NULL)
2247 	    l = l->next;
2248 	  for (; l; l = l->next)
2249 	    if (is_int_mode (GET_MODE (l->elt->val_rtx), &lmode)
2250 		&& GET_MODE_SIZE (lmode) > GET_MODE_SIZE (int_mode)
2251 		&& (lwider == NULL
2252 		    || partial_subreg_p (lmode,
2253 					 GET_MODE (lwider->elt->val_rtx))))
2254 	      {
2255 		struct elt_loc_list *el;
2256 		if (i < FIRST_PSEUDO_REGISTER
2257 		    && hard_regno_nregs (i, lmode) != 1)
2258 		  continue;
2259 		for (el = l->elt->locs; el; el = el->next)
2260 		  if (!REG_P (el->loc))
2261 		    break;
2262 		if (el)
2263 		  lwider = l;
2264 	      }
2265 	  if (lwider)
2266 	    {
2267 	      rtx sub = lowpart_subreg (int_mode, lwider->elt->val_rtx,
2268 					GET_MODE (lwider->elt->val_rtx));
2269 	      if (sub)
2270 		new_elt_loc_list (e, sub);
2271 	    }
2272 	}
2273       REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
2274       slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
2275       *slot = e;
2276       return e;
2277     }
2278 
2279   if (MEM_P (x))
2280     return cselib_lookup_mem (x, create);
2281 
2282   hashval = cselib_hash_rtx (x, create, memmode);
2283   /* Can't even create if hashing is not possible.  */
2284   if (! hashval)
2285     return 0;
2286 
2287   slot = cselib_find_slot (mode, x, hashval,
2288 			   create ? INSERT : NO_INSERT, memmode);
2289   if (slot == 0)
2290     return 0;
2291 
2292   e = (cselib_val *) *slot;
2293   if (e)
2294     return e;
2295 
2296   e = new_cselib_val (hashval, mode, x);
2297 
2298   /* We have to fill the slot before calling cselib_subst_to_values:
2299      the hash table is inconsistent until we do so, and
2300      cselib_subst_to_values will need to do lookups.  */
2301   *slot = e;
2302   rtx v = cselib_subst_to_values (x, memmode);
2303 
2304   /* If cselib_preserve_constants, we might get a SP_DERIVED_VALUE_P
2305      VALUE that isn't in the hash tables anymore.  */
2306   if (GET_CODE (v) == VALUE && SP_DERIVED_VALUE_P (v) && PRESERVED_VALUE_P (v))
2307     PRESERVED_VALUE_P (e->val_rtx) = 1;
2308 
2309   new_elt_loc_list (e, v);
2310   return e;
2311 }
2312 
2313 /* Wrapper for cselib_lookup, that indicates X is in INSN.  */
2314 
2315 cselib_val *
cselib_lookup_from_insn(rtx x,machine_mode mode,int create,machine_mode memmode,rtx_insn * insn)2316 cselib_lookup_from_insn (rtx x, machine_mode mode,
2317 			 int create, machine_mode memmode, rtx_insn *insn)
2318 {
2319   cselib_val *ret;
2320 
2321   gcc_assert (!cselib_current_insn);
2322   cselib_current_insn = insn;
2323 
2324   ret = cselib_lookup (x, mode, create, memmode);
2325 
2326   cselib_current_insn = NULL;
2327 
2328   return ret;
2329 }
2330 
2331 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2332    maintains invariants related with debug insns.  */
2333 
2334 cselib_val *
cselib_lookup(rtx x,machine_mode mode,int create,machine_mode memmode)2335 cselib_lookup (rtx x, machine_mode mode,
2336 	       int create, machine_mode memmode)
2337 {
2338   cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
2339 
2340   /* ??? Should we return NULL if we're not to create an entry, the
2341      found loc is a debug loc and cselib_current_insn is not DEBUG?
2342      If so, we should also avoid converting val to non-DEBUG; probably
2343      easiest setting cselib_current_insn to NULL before the call
2344      above.  */
2345 
2346   if (dump_file && (dump_flags & TDF_CSELIB))
2347     {
2348       fputs ("cselib lookup ", dump_file);
2349       print_inline_rtx (dump_file, x, 2);
2350       fprintf (dump_file, " => %u:%u\n",
2351 	       ret ? ret->uid : 0,
2352 	       ret ? ret->hash : 0);
2353     }
2354 
2355   return ret;
2356 }
2357 
2358 /* Invalidate the value at *L, which is part of REG_VALUES (REGNO).  */
2359 
2360 static void
cselib_invalidate_regno_val(unsigned int regno,struct elt_list ** l)2361 cselib_invalidate_regno_val (unsigned int regno, struct elt_list **l)
2362 {
2363   cselib_val *v = (*l)->elt;
2364   if (*l == REG_VALUES (regno))
2365     {
2366       /* Maintain the invariant that the first entry of
2367 	 REG_VALUES, if present, must be the value used to set
2368 	 the register, or NULL.  This is also nice because
2369 	 then we won't push the same regno onto user_regs
2370 	 multiple times.  */
2371       (*l)->elt = NULL;
2372       l = &(*l)->next;
2373     }
2374   else
2375     unchain_one_elt_list (l);
2376 
2377   v = canonical_cselib_val (v);
2378 
2379   bool had_locs = v->locs != NULL;
2380   rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
2381 
2382   /* Now, we clear the mapping from value to reg.  It must exist, so
2383      this code will crash intentionally if it doesn't.  */
2384   for (elt_loc_list **p = &v->locs; ; p = &(*p)->next)
2385     {
2386       rtx x = (*p)->loc;
2387 
2388       if (REG_P (x) && REGNO (x) == regno)
2389 	{
2390 	  unchain_one_elt_loc_list (p);
2391 	  break;
2392 	}
2393     }
2394 
2395   if (had_locs && cselib_useless_value_p (v))
2396     {
2397       if (setting_insn && DEBUG_INSN_P (setting_insn))
2398 	n_useless_debug_values++;
2399       else
2400 	n_useless_values++;
2401     }
2402 }
2403 
2404 /* Invalidate any entries in reg_values that overlap REGNO.  This is called
2405    if REGNO is changing.  MODE is the mode of the assignment to REGNO, which
2406    is used to determine how many hard registers are being changed.  If MODE
2407    is VOIDmode, then only REGNO is being changed; this is used when
2408    invalidating call clobbered registers across a call.  */
2409 
2410 static void
cselib_invalidate_regno(unsigned int regno,machine_mode mode)2411 cselib_invalidate_regno (unsigned int regno, machine_mode mode)
2412 {
2413   unsigned int endregno;
2414   unsigned int i;
2415 
2416   /* If we see pseudos after reload, something is _wrong_.  */
2417   gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2418 	      || reg_renumber[regno] < 0);
2419 
2420   /* Determine the range of registers that must be invalidated.  For
2421      pseudos, only REGNO is affected.  For hard regs, we must take MODE
2422      into account, and we must also invalidate lower register numbers
2423      if they contain values that overlap REGNO.  */
2424   if (regno < FIRST_PSEUDO_REGISTER)
2425     {
2426       gcc_assert (mode != VOIDmode);
2427 
2428       if (regno < max_value_regs)
2429 	i = 0;
2430       else
2431 	i = regno - max_value_regs;
2432 
2433       endregno = end_hard_regno (mode, regno);
2434     }
2435   else
2436     {
2437       i = regno;
2438       endregno = regno + 1;
2439     }
2440 
2441   for (; i < endregno; i++)
2442     {
2443       struct elt_list **l = &REG_VALUES (i);
2444 
2445       /* Go through all known values for this reg; if it overlaps the range
2446 	 we're invalidating, remove the value.  */
2447       while (*l)
2448 	{
2449 	  cselib_val *v = (*l)->elt;
2450 	  unsigned int this_last = i;
2451 
2452 	  if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2453 	    this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2454 
2455 	  if (this_last < regno || v == NULL
2456 	      || (v == cfa_base_preserved_val
2457 		  && i == cfa_base_preserved_regno))
2458 	    {
2459 	      l = &(*l)->next;
2460 	      continue;
2461 	    }
2462 
2463 	  /* We have an overlap.  */
2464 	  cselib_invalidate_regno_val (i, l);
2465 	}
2466     }
2467 }
2468 
2469 /* Invalidate any locations in the table which are changed because of a
2470    store to MEM_RTX.  If this is called because of a non-const call
2471    instruction, MEM_RTX is (mem:BLK const0_rtx).  */
2472 
2473 static void
cselib_invalidate_mem(rtx mem_rtx)2474 cselib_invalidate_mem (rtx mem_rtx)
2475 {
2476   cselib_val **vp, *v, *next;
2477   int num_mems = 0;
2478   rtx mem_addr;
2479 
2480   mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2481   mem_rtx = canon_rtx (mem_rtx);
2482 
2483   vp = &first_containing_mem;
2484   for (v = *vp; v != &dummy_val; v = next)
2485     {
2486       bool has_mem = false;
2487       struct elt_loc_list **p = &v->locs;
2488       bool had_locs = v->locs != NULL;
2489       rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
2490 
2491       while (*p)
2492 	{
2493 	  rtx x = (*p)->loc;
2494 	  cselib_val *addr;
2495 	  struct elt_list **mem_chain;
2496 
2497 	  /* MEMs may occur in locations only at the top level; below
2498 	     that every MEM or REG is substituted by its VALUE.  */
2499 	  if (!MEM_P (x))
2500 	    {
2501 	      p = &(*p)->next;
2502 	      continue;
2503 	    }
2504 	  if (num_mems < param_max_cselib_memory_locations
2505 	      && ! canon_anti_dependence (x, false, mem_rtx,
2506 					  GET_MODE (mem_rtx), mem_addr))
2507 	    {
2508 	      has_mem = true;
2509 	      num_mems++;
2510 	      p = &(*p)->next;
2511 	      continue;
2512 	    }
2513 
2514 	  /* This one overlaps.  */
2515 	  /* We must have a mapping from this MEM's address to the
2516 	     value (E).  Remove that, too.  */
2517 	  addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2518 	  addr = canonical_cselib_val (addr);
2519 	  gcc_checking_assert (v == canonical_cselib_val (v));
2520 	  mem_chain = &addr->addr_list;
2521 	  for (;;)
2522 	    {
2523 	      cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2524 
2525 	      if (canon == v)
2526 		{
2527 		  unchain_one_elt_list (mem_chain);
2528 		  break;
2529 		}
2530 
2531 	      /* Record canonicalized elt.  */
2532 	      (*mem_chain)->elt = canon;
2533 
2534 	      mem_chain = &(*mem_chain)->next;
2535 	    }
2536 
2537 	  unchain_one_elt_loc_list (p);
2538 	}
2539 
2540       if (had_locs && cselib_useless_value_p (v))
2541 	{
2542 	  if (setting_insn && DEBUG_INSN_P (setting_insn))
2543 	    n_useless_debug_values++;
2544 	  else
2545 	    n_useless_values++;
2546 	}
2547 
2548       next = v->next_containing_mem;
2549       if (has_mem)
2550 	{
2551 	  *vp = v;
2552 	  vp = &(*vp)->next_containing_mem;
2553 	}
2554       else
2555 	v->next_containing_mem = NULL;
2556     }
2557   *vp = &dummy_val;
2558 }
2559 
2560 /* Invalidate DEST.  */
2561 
2562 void
cselib_invalidate_rtx(rtx dest)2563 cselib_invalidate_rtx (rtx dest)
2564 {
2565   while (GET_CODE (dest) == SUBREG
2566 	 || GET_CODE (dest) == ZERO_EXTRACT
2567 	 || GET_CODE (dest) == STRICT_LOW_PART)
2568     dest = XEXP (dest, 0);
2569 
2570   if (REG_P (dest))
2571     cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2572   else if (MEM_P (dest))
2573     cselib_invalidate_mem (dest);
2574 }
2575 
2576 /* A wrapper for cselib_invalidate_rtx to be called via note_stores.  */
2577 
2578 static void
cselib_invalidate_rtx_note_stores(rtx dest,const_rtx,void * data ATTRIBUTE_UNUSED)2579 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx,
2580 				   void *data ATTRIBUTE_UNUSED)
2581 {
2582   cselib_invalidate_rtx (dest);
2583 }
2584 
2585 /* Record the result of a SET instruction.  DEST is being set; the source
2586    contains the value described by SRC_ELT.  If DEST is a MEM, DEST_ADDR_ELT
2587    describes its address.  */
2588 
2589 static void
cselib_record_set(rtx dest,cselib_val * src_elt,cselib_val * dest_addr_elt)2590 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2591 {
2592   if (src_elt == 0 || side_effects_p (dest))
2593     return;
2594 
2595   if (REG_P (dest))
2596     {
2597       unsigned int dreg = REGNO (dest);
2598       if (dreg < FIRST_PSEUDO_REGISTER)
2599 	{
2600 	  unsigned int n = REG_NREGS (dest);
2601 
2602 	  if (n > max_value_regs)
2603 	    max_value_regs = n;
2604 	}
2605 
2606       if (REG_VALUES (dreg) == 0)
2607 	{
2608 	  used_regs[n_used_regs++] = dreg;
2609 	  REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2610 	}
2611       else
2612 	{
2613 	  /* The register should have been invalidated.  */
2614 	  gcc_assert (REG_VALUES (dreg)->elt == 0);
2615 	  REG_VALUES (dreg)->elt = src_elt;
2616 	}
2617 
2618       if (cselib_useless_value_p (src_elt))
2619 	n_useless_values--;
2620       new_elt_loc_list (src_elt, dest);
2621     }
2622   else if (MEM_P (dest) && dest_addr_elt != 0
2623 	   && cselib_record_memory)
2624     {
2625       if (cselib_useless_value_p (src_elt))
2626 	n_useless_values--;
2627       add_mem_for_addr (dest_addr_elt, src_elt, dest);
2628     }
2629 }
2630 
2631 /* Make ELT and X's VALUE equivalent to each other at INSN.  */
2632 
2633 void
cselib_add_permanent_equiv(cselib_val * elt,rtx x,rtx_insn * insn)2634 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn)
2635 {
2636   cselib_val *nelt;
2637   rtx_insn *save_cselib_current_insn = cselib_current_insn;
2638 
2639   gcc_checking_assert (elt);
2640   gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2641   gcc_checking_assert (!side_effects_p (x));
2642 
2643   cselib_current_insn = insn;
2644 
2645   nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2646 
2647   if (nelt != elt)
2648     {
2649       cselib_any_perm_equivs = true;
2650 
2651       if (!PRESERVED_VALUE_P (nelt->val_rtx))
2652 	cselib_preserve_value (nelt);
2653 
2654       new_elt_loc_list (nelt, elt->val_rtx);
2655     }
2656 
2657   cselib_current_insn = save_cselib_current_insn;
2658 }
2659 
2660 /* Return TRUE if any permanent equivalences have been recorded since
2661    the table was last initialized.  */
2662 bool
cselib_have_permanent_equivalences(void)2663 cselib_have_permanent_equivalences (void)
2664 {
2665   return cselib_any_perm_equivs;
2666 }
2667 
2668 /* Record stack_pointer_rtx to be equal to
2669    (plus:P cfa_base_preserved_val offset).  Used by var-tracking
2670    at the start of basic blocks for !frame_pointer_needed functions.  */
2671 
2672 void
cselib_record_sp_cfa_base_equiv(HOST_WIDE_INT offset,rtx_insn * insn)2673 cselib_record_sp_cfa_base_equiv (HOST_WIDE_INT offset, rtx_insn *insn)
2674 {
2675   rtx sp_derived_value = NULL_RTX;
2676   for (struct elt_loc_list *l = cfa_base_preserved_val->locs; l; l = l->next)
2677     if (GET_CODE (l->loc) == VALUE
2678 	&& SP_DERIVED_VALUE_P (l->loc))
2679       {
2680 	sp_derived_value = l->loc;
2681 	break;
2682       }
2683     else if (GET_CODE (l->loc) == PLUS
2684 	     && GET_CODE (XEXP (l->loc, 0)) == VALUE
2685 	     && SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
2686 	     && CONST_INT_P (XEXP (l->loc, 1)))
2687       {
2688 	sp_derived_value = XEXP (l->loc, 0);
2689 	offset = offset + UINTVAL (XEXP (l->loc, 1));
2690 	break;
2691       }
2692   if (sp_derived_value == NULL_RTX)
2693     return;
2694   cselib_val *val
2695     = cselib_lookup_from_insn (plus_constant (Pmode, sp_derived_value, offset),
2696 			       Pmode, 1, VOIDmode, insn);
2697   if (val != NULL)
2698     {
2699       PRESERVED_VALUE_P (val->val_rtx) = 1;
2700       cselib_record_set (stack_pointer_rtx, val, NULL);
2701     }
2702 }
2703 
2704 /* Return true if V is SP_DERIVED_VALUE_P (or SP_DERIVED_VALUE_P + CONST_INT)
2705    that can be expressed using cfa_base_preserved_val + CONST_INT.  */
2706 
2707 bool
cselib_sp_derived_value_p(cselib_val * v)2708 cselib_sp_derived_value_p (cselib_val *v)
2709 {
2710   if (!SP_DERIVED_VALUE_P (v->val_rtx))
2711     for (struct elt_loc_list *l = v->locs; l; l = l->next)
2712       if (GET_CODE (l->loc) == PLUS
2713 	  && GET_CODE (XEXP (l->loc, 0)) == VALUE
2714 	  && SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
2715 	  && CONST_INT_P (XEXP (l->loc, 1)))
2716 	v = CSELIB_VAL_PTR (XEXP (l->loc, 0));
2717   if (!SP_DERIVED_VALUE_P (v->val_rtx))
2718     return false;
2719   for (struct elt_loc_list *l = v->locs; l; l = l->next)
2720     if (l->loc == cfa_base_preserved_val->val_rtx)
2721       return true;
2722     else if (GET_CODE (l->loc) == PLUS
2723 	     && XEXP (l->loc, 0) == cfa_base_preserved_val->val_rtx
2724 	     && CONST_INT_P (XEXP (l->loc, 1)))
2725       return true;
2726   return false;
2727 }
2728 
2729 /* There is no good way to determine how many elements there can be
2730    in a PARALLEL.  Since it's fairly cheap, use a really large number.  */
2731 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2732 
2733 struct cselib_record_autoinc_data
2734 {
2735   struct cselib_set *sets;
2736   int n_sets;
2737 };
2738 
2739 /* Callback for for_each_inc_dec.  Records in ARG the SETs implied by
2740    autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST.  */
2741 
2742 static int
cselib_record_autoinc_cb(rtx mem ATTRIBUTE_UNUSED,rtx op ATTRIBUTE_UNUSED,rtx dest,rtx src,rtx srcoff,void * arg)2743 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2744 			  rtx dest, rtx src, rtx srcoff, void *arg)
2745 {
2746   struct cselib_record_autoinc_data *data;
2747   data = (struct cselib_record_autoinc_data *)arg;
2748 
2749   data->sets[data->n_sets].dest = dest;
2750 
2751   if (srcoff)
2752     data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2753   else
2754     data->sets[data->n_sets].src = src;
2755 
2756   data->n_sets++;
2757 
2758   return 0;
2759 }
2760 
2761 /* Record the effects of any sets and autoincs in INSN.  */
2762 static void
cselib_record_sets(rtx_insn * insn)2763 cselib_record_sets (rtx_insn *insn)
2764 {
2765   int n_sets = 0;
2766   int i;
2767   struct cselib_set sets[MAX_SETS];
2768   rtx cond = 0;
2769   int n_sets_before_autoinc;
2770   int n_strict_low_parts = 0;
2771   struct cselib_record_autoinc_data data;
2772 
2773   rtx body = PATTERN (insn);
2774   if (GET_CODE (body) == COND_EXEC)
2775     {
2776       cond = COND_EXEC_TEST (body);
2777       body = COND_EXEC_CODE (body);
2778     }
2779 
2780   /* Find all sets.  */
2781   if (GET_CODE (body) == SET)
2782     {
2783       sets[0].src = SET_SRC (body);
2784       sets[0].dest = SET_DEST (body);
2785       n_sets = 1;
2786     }
2787   else if (GET_CODE (body) == PARALLEL)
2788     {
2789       /* Look through the PARALLEL and record the values being
2790 	 set, if possible.  Also handle any CLOBBERs.  */
2791       for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2792 	{
2793 	  rtx x = XVECEXP (body, 0, i);
2794 
2795 	  if (GET_CODE (x) == SET)
2796 	    {
2797 	      sets[n_sets].src = SET_SRC (x);
2798 	      sets[n_sets].dest = SET_DEST (x);
2799 	      n_sets++;
2800 	    }
2801 	}
2802     }
2803 
2804   if (n_sets == 1
2805       && MEM_P (sets[0].src)
2806       && !cselib_record_memory
2807       && MEM_READONLY_P (sets[0].src))
2808     {
2809       rtx note = find_reg_equal_equiv_note (insn);
2810 
2811       if (note && CONSTANT_P (XEXP (note, 0)))
2812 	sets[0].src = XEXP (note, 0);
2813     }
2814 
2815   data.sets = sets;
2816   data.n_sets = n_sets_before_autoinc = n_sets;
2817   for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data);
2818   n_sets = data.n_sets;
2819 
2820   /* Look up the values that are read.  Do this before invalidating the
2821      locations that are written.  */
2822   for (i = 0; i < n_sets; i++)
2823     {
2824       rtx dest = sets[i].dest;
2825       rtx orig = dest;
2826 
2827       /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2828          the low part after invalidating any knowledge about larger modes.  */
2829       if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2830 	sets[i].dest = dest = XEXP (dest, 0);
2831 
2832       /* We don't know how to record anything but REG or MEM.  */
2833       if (REG_P (dest)
2834 	  || (MEM_P (dest) && cselib_record_memory))
2835         {
2836 	  rtx src = sets[i].src;
2837 	  if (cond)
2838 	    src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2839 	  sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2840 	  if (MEM_P (dest))
2841 	    {
2842 	      machine_mode address_mode = get_address_mode (dest);
2843 
2844 	      sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2845 						     address_mode, 1,
2846 						     GET_MODE (dest));
2847 	    }
2848 	  else
2849 	    sets[i].dest_addr_elt = 0;
2850 	}
2851 
2852       /* Improve handling of STRICT_LOW_PART if the current value is known
2853 	 to be const0_rtx, then the low bits will be set to dest and higher
2854 	 bits will remain zero.  Used in code like:
2855 
2856 	 {di:SI=0;clobber flags:CC;}
2857 	 flags:CCNO=cmp(bx:SI,0)
2858 	 strict_low_part(di:QI)=flags:CCNO<=0
2859 
2860 	 where we can note both that di:QI=flags:CCNO<=0 and
2861 	 also that because di:SI is known to be 0 and strict_low_part(di:QI)
2862 	 preserves the upper bits that di:SI=zero_extend(flags:CCNO<=0).  */
2863       scalar_int_mode mode;
2864       if (dest != orig
2865 	  && cselib_record_sets_hook
2866 	  && REG_P (dest)
2867 	  && HARD_REGISTER_P (dest)
2868 	  && sets[i].src_elt
2869 	  && is_a <scalar_int_mode> (GET_MODE (dest), &mode)
2870 	  && n_sets + n_strict_low_parts < MAX_SETS)
2871 	{
2872 	  opt_scalar_int_mode wider_mode_iter;
2873 	  FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2874 	    {
2875 	      scalar_int_mode wider_mode = wider_mode_iter.require ();
2876 	      if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
2877 		break;
2878 
2879 	      rtx reg = gen_lowpart (wider_mode, dest);
2880 	      if (!REG_P (reg))
2881 		break;
2882 
2883 	      cselib_val *v = cselib_lookup (reg, wider_mode, 0, VOIDmode);
2884 	      if (!v)
2885 		continue;
2886 
2887 	      struct elt_loc_list *l;
2888 	      for (l = v->locs; l; l = l->next)
2889 		if (l->loc == const0_rtx)
2890 		  break;
2891 
2892 	      if (!l)
2893 		continue;
2894 
2895 	      sets[n_sets + n_strict_low_parts].dest = reg;
2896 	      sets[n_sets + n_strict_low_parts].src = dest;
2897 	      sets[n_sets + n_strict_low_parts++].src_elt = sets[i].src_elt;
2898 	      break;
2899 	    }
2900 	}
2901     }
2902 
2903   if (cselib_record_sets_hook)
2904     cselib_record_sets_hook (insn, sets, n_sets);
2905 
2906   /* Invalidate all locations written by this insn.  Note that the elts we
2907      looked up in the previous loop aren't affected, just some of their
2908      locations may go away.  */
2909   note_pattern_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2910 
2911   for (i = n_sets_before_autoinc; i < n_sets; i++)
2912     cselib_invalidate_rtx (sets[i].dest);
2913 
2914   /* If this is an asm, look for duplicate sets.  This can happen when the
2915      user uses the same value as an output multiple times.  This is valid
2916      if the outputs are not actually used thereafter.  Treat this case as
2917      if the value isn't actually set.  We do this by smashing the destination
2918      to pc_rtx, so that we won't record the value later.  */
2919   if (n_sets >= 2 && asm_noperands (body) >= 0)
2920     {
2921       for (i = 0; i < n_sets; i++)
2922 	{
2923 	  rtx dest = sets[i].dest;
2924 	  if (REG_P (dest) || MEM_P (dest))
2925 	    {
2926 	      int j;
2927 	      for (j = i + 1; j < n_sets; j++)
2928 		if (rtx_equal_p (dest, sets[j].dest))
2929 		  {
2930 		    sets[i].dest = pc_rtx;
2931 		    sets[j].dest = pc_rtx;
2932 		  }
2933 	    }
2934 	}
2935     }
2936 
2937   /* Now enter the equivalences in our tables.  */
2938   for (i = 0; i < n_sets; i++)
2939     {
2940       rtx dest = sets[i].dest;
2941       if (REG_P (dest)
2942 	  || (MEM_P (dest) && cselib_record_memory))
2943 	cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2944     }
2945 
2946   /* And deal with STRICT_LOW_PART.  */
2947   for (i = 0; i < n_strict_low_parts; i++)
2948     {
2949       if (! PRESERVED_VALUE_P (sets[n_sets + i].src_elt->val_rtx))
2950 	continue;
2951       machine_mode dest_mode = GET_MODE (sets[n_sets + i].dest);
2952       cselib_val *v
2953 	= cselib_lookup (sets[n_sets + i].dest, dest_mode, 1, VOIDmode);
2954       cselib_preserve_value (v);
2955       rtx r = gen_rtx_ZERO_EXTEND (dest_mode,
2956 				   sets[n_sets + i].src_elt->val_rtx);
2957       cselib_add_permanent_equiv (v, r, insn);
2958     }
2959 }
2960 
2961 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx.  */
2962 
2963 bool
fp_setter_insn(rtx_insn * insn)2964 fp_setter_insn (rtx_insn *insn)
2965 {
2966   rtx expr, pat = NULL_RTX;
2967 
2968   if (!RTX_FRAME_RELATED_P (insn))
2969     return false;
2970 
2971   expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2972   if (expr)
2973     pat = XEXP (expr, 0);
2974   if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2975     return false;
2976 
2977   /* Don't return true for frame pointer restores in the epilogue.  */
2978   if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2979     return false;
2980   return true;
2981 }
2982 
2983 /* V is one of the values in REG_VALUES (REGNO).  Return true if it
2984    would be invalidated by CALLEE_ABI.  */
2985 
2986 static bool
cselib_invalidated_by_call_p(const function_abi & callee_abi,unsigned int regno,cselib_val * v)2987 cselib_invalidated_by_call_p (const function_abi &callee_abi,
2988 			      unsigned int regno, cselib_val *v)
2989 {
2990   machine_mode mode = GET_MODE (v->val_rtx);
2991   if (mode == VOIDmode)
2992     {
2993       v = REG_VALUES (regno)->elt;
2994       if (!v)
2995 	/* If we don't know what the mode of the constant value is, and we
2996 	   don't know what mode the register was set in, conservatively
2997 	   assume that the register is clobbered.  The value's going to be
2998 	   essentially useless in this case anyway.  */
2999 	return true;
3000       mode = GET_MODE (v->val_rtx);
3001     }
3002   return callee_abi.clobbers_reg_p (mode, regno);
3003 }
3004 
3005 /* Record the effects of INSN.  */
3006 
3007 void
cselib_process_insn(rtx_insn * insn)3008 cselib_process_insn (rtx_insn *insn)
3009 {
3010   int i;
3011   rtx x;
3012 
3013   cselib_current_insn = insn;
3014 
3015   /* Forget everything at a CODE_LABEL or a setjmp.  */
3016   if ((LABEL_P (insn)
3017        || (CALL_P (insn)
3018 	   && find_reg_note (insn, REG_SETJMP, NULL)))
3019       && !cselib_preserve_constants)
3020     {
3021       cselib_reset_table (next_uid);
3022       cselib_current_insn = NULL;
3023       return;
3024     }
3025 
3026   if (! INSN_P (insn))
3027     {
3028       cselib_current_insn = NULL;
3029       return;
3030     }
3031 
3032   /* If this is a call instruction, forget anything stored in a
3033      call clobbered register, or, if this is not a const call, in
3034      memory.  */
3035   if (CALL_P (insn))
3036     {
3037       function_abi callee_abi = insn_callee_abi (insn);
3038       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3039 	{
3040 	  elt_list **l = &REG_VALUES (i);
3041 	  while (*l)
3042 	    {
3043 	      cselib_val *v = (*l)->elt;
3044 	      if (v && cselib_invalidated_by_call_p (callee_abi, i, v))
3045 		cselib_invalidate_regno_val (i, l);
3046 	      else
3047 		l = &(*l)->next;
3048 	    }
3049 	}
3050 
3051       /* Since it is not clear how cselib is going to be used, be
3052 	 conservative here and treat looping pure or const functions
3053 	 as if they were regular functions.  */
3054       if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
3055 	  || !(RTL_CONST_OR_PURE_CALL_P (insn)))
3056 	cselib_invalidate_mem (callmem);
3057       else
3058 	/* For const/pure calls, invalidate any argument slots because
3059 	   they are owned by the callee.  */
3060 	for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
3061 	  if (GET_CODE (XEXP (x, 0)) == USE
3062 	      && MEM_P (XEXP (XEXP (x, 0), 0)))
3063 	    cselib_invalidate_mem (XEXP (XEXP (x, 0), 0));
3064     }
3065 
3066   cselib_record_sets (insn);
3067 
3068   /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
3069      after we have processed the insn.  */
3070   if (CALL_P (insn))
3071     {
3072       for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
3073 	if (GET_CODE (XEXP (x, 0)) == CLOBBER)
3074 	  cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
3075 
3076       /* Flush everything on setjmp.  */
3077       if (cselib_preserve_constants
3078 	  && find_reg_note (insn, REG_SETJMP, NULL))
3079 	{
3080 	  cselib_preserve_only_values ();
3081 	  cselib_reset_table (next_uid);
3082 	}
3083     }
3084 
3085   /* On setter of the hard frame pointer if frame_pointer_needed,
3086      invalidate stack_pointer_rtx, so that sp and {,h}fp based
3087      VALUEs are distinct.  */
3088   if (reload_completed
3089       && frame_pointer_needed
3090       && fp_setter_insn (insn))
3091     cselib_invalidate_rtx (stack_pointer_rtx);
3092 
3093   cselib_current_insn = NULL;
3094 
3095   if (n_useless_values > MAX_USELESS_VALUES
3096       /* remove_useless_values is linear in the hash table size.  Avoid
3097          quadratic behavior for very large hashtables with very few
3098 	 useless elements.  */
3099       && ((unsigned int)n_useless_values
3100 	  > (cselib_hash_table->elements () - n_debug_values) / 4))
3101     remove_useless_values ();
3102 }
3103 
3104 /* Initialize cselib for one pass.  The caller must also call
3105    init_alias_analysis.  */
3106 
3107 void
cselib_init(int record_what)3108 cselib_init (int record_what)
3109 {
3110   cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
3111   cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
3112   cselib_any_perm_equivs = false;
3113 
3114   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
3115      see canon_true_dependence.  This is only created once.  */
3116   if (! callmem)
3117     callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
3118 
3119   cselib_nregs = max_reg_num ();
3120 
3121   /* We preserve reg_values to allow expensive clearing of the whole thing.
3122      Reallocate it however if it happens to be too large.  */
3123   if (!reg_values || reg_values_size < cselib_nregs
3124       || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
3125     {
3126       free (reg_values);
3127       /* Some space for newly emit instructions so we don't end up
3128 	 reallocating in between passes.  */
3129       reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
3130       reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
3131     }
3132   used_regs = XNEWVEC (unsigned int, cselib_nregs);
3133   n_used_regs = 0;
3134   /* FIXME: enable sanitization (PR87845) */
3135   cselib_hash_table
3136     = new hash_table<cselib_hasher> (31, /* ggc */ false,
3137 				     /* sanitize_eq_and_hash */ false);
3138   if (cselib_preserve_constants)
3139     cselib_preserved_hash_table
3140       = new hash_table<cselib_hasher> (31, /* ggc */ false,
3141 				       /* sanitize_eq_and_hash */ false);
3142   next_uid = 1;
3143 }
3144 
3145 /* Called when the current user is done with cselib.  */
3146 
3147 void
cselib_finish(void)3148 cselib_finish (void)
3149 {
3150   bool preserved = cselib_preserve_constants;
3151   cselib_discard_hook = NULL;
3152   cselib_preserve_constants = false;
3153   cselib_any_perm_equivs = false;
3154   cfa_base_preserved_val = NULL;
3155   cfa_base_preserved_regno = INVALID_REGNUM;
3156   elt_list_pool.release ();
3157   elt_loc_list_pool.release ();
3158   cselib_val_pool.release ();
3159   value_pool.release ();
3160   cselib_clear_table ();
3161   delete cselib_hash_table;
3162   cselib_hash_table = NULL;
3163   if (preserved)
3164     delete cselib_preserved_hash_table;
3165   cselib_preserved_hash_table = NULL;
3166   free (used_regs);
3167   used_regs = 0;
3168   n_useless_values = 0;
3169   n_useless_debug_values = 0;
3170   n_debug_values = 0;
3171   next_uid = 0;
3172 }
3173 
3174 /* Dump the cselib_val *X to FILE *OUT.  */
3175 
3176 int
dump_cselib_val(cselib_val ** x,FILE * out)3177 dump_cselib_val (cselib_val **x, FILE *out)
3178 {
3179   cselib_val *v = *x;
3180   bool need_lf = true;
3181 
3182   print_inline_rtx (out, v->val_rtx, 0);
3183 
3184   if (v->locs)
3185     {
3186       struct elt_loc_list *l = v->locs;
3187       if (need_lf)
3188 	{
3189 	  fputc ('\n', out);
3190 	  need_lf = false;
3191 	}
3192       fputs (" locs:", out);
3193       do
3194 	{
3195 	  if (l->setting_insn)
3196 	    fprintf (out, "\n  from insn %i ",
3197 		     INSN_UID (l->setting_insn));
3198 	  else
3199 	    fprintf (out, "\n   ");
3200 	  print_inline_rtx (out, l->loc, 4);
3201 	}
3202       while ((l = l->next));
3203       fputc ('\n', out);
3204     }
3205   else
3206     {
3207       fputs (" no locs", out);
3208       need_lf = true;
3209     }
3210 
3211   if (v->addr_list)
3212     {
3213       struct elt_list *e = v->addr_list;
3214       if (need_lf)
3215 	{
3216 	  fputc ('\n', out);
3217 	  need_lf = false;
3218 	}
3219       fputs (" addr list:", out);
3220       do
3221 	{
3222 	  fputs ("\n  ", out);
3223 	  print_inline_rtx (out, e->elt->val_rtx, 2);
3224 	}
3225       while ((e = e->next));
3226       fputc ('\n', out);
3227     }
3228   else
3229     {
3230       fputs (" no addrs", out);
3231       need_lf = true;
3232     }
3233 
3234   if (v->next_containing_mem == &dummy_val)
3235     fputs (" last mem\n", out);
3236   else if (v->next_containing_mem)
3237     {
3238       fputs (" next mem ", out);
3239       print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
3240       fputc ('\n', out);
3241     }
3242   else if (need_lf)
3243     fputc ('\n', out);
3244 
3245   return 1;
3246 }
3247 
3248 /* Dump to OUT everything in the CSELIB table.  */
3249 
3250 void
dump_cselib_table(FILE * out)3251 dump_cselib_table (FILE *out)
3252 {
3253   fprintf (out, "cselib hash table:\n");
3254   cselib_hash_table->traverse <FILE *, dump_cselib_val> (out);
3255   fprintf (out, "cselib preserved hash table:\n");
3256   cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out);
3257   if (first_containing_mem != &dummy_val)
3258     {
3259       fputs ("first mem ", out);
3260       print_inline_rtx (out, first_containing_mem->val_rtx, 2);
3261       fputc ('\n', out);
3262     }
3263   fprintf (out, "next uid %i\n", next_uid);
3264 }
3265 
3266 #include "gt-cselib.h"
3267