1 /* RTL-level loop invariant motion.
2    Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This implements the loop invariant motion pass.  It is very simple
21    (no calls, no loads/stores, etc.).  This should be sufficient to cleanup
22    things like address arithmetics -- other more complicated invariants should
23    be eliminated on GIMPLE either in tree-ssa-loop-im.c or in tree-ssa-pre.c.
24 
25    We proceed loop by loop -- it is simpler than trying to handle things
26    globally and should not lose much.  First we inspect all sets inside loop
27    and create a dependency graph on insns (saying "to move this insn, you must
28    also move the following insns").
29 
30    We then need to determine what to move.  We estimate the number of registers
31    used and move as many invariants as possible while we still have enough free
32    registers.  We prefer the expensive invariants.
33 
34    Then we move the selected invariants out of the loop, creating a new
35    temporaries for them if necessary.  */
36 
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "backend.h"
41 #include "target.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "cfghooks.h"
45 #include "df.h"
46 #include "memmodel.h"
47 #include "tm_p.h"
48 #include "insn-config.h"
49 #include "regs.h"
50 #include "ira.h"
51 #include "recog.h"
52 #include "cfgrtl.h"
53 #include "cfgloop.h"
54 #include "expr.h"
55 #include "rtl-iter.h"
56 #include "dumpfile.h"
57 
58 /* The data stored for the loop.  */
59 
60 class loop_data
61 {
62 public:
63   class loop *outermost_exit;	/* The outermost exit of the loop.  */
64   bool has_call;		/* True if the loop contains a call.  */
65   /* Maximal register pressure inside loop for given register class
66      (defined only for the pressure classes).  */
67   int max_reg_pressure[N_REG_CLASSES];
68   /* Loop regs referenced and live pseudo-registers.  */
69   bitmap_head regs_ref;
70   bitmap_head regs_live;
71 };
72 
73 #define LOOP_DATA(LOOP) ((class loop_data *) (LOOP)->aux)
74 
75 /* The description of an use.  */
76 
77 struct use
78 {
79   rtx *pos;			/* Position of the use.  */
80   rtx_insn *insn;		/* The insn in that the use occurs.  */
81   unsigned addr_use_p;		/* Whether the use occurs in an address.  */
82   struct use *next;		/* Next use in the list.  */
83 };
84 
85 /* The description of a def.  */
86 
87 struct def
88 {
89   struct use *uses;		/* The list of uses that are uniquely reached
90 				   by it.  */
91   unsigned n_uses;		/* Number of such uses.  */
92   unsigned n_addr_uses;		/* Number of uses in addresses.  */
93   unsigned invno;		/* The corresponding invariant.  */
94   bool can_prop_to_addr_uses;	/* True if the corresponding inv can be
95 				   propagated into its address uses.  */
96 };
97 
98 /* The data stored for each invariant.  */
99 
100 struct invariant
101 {
102   /* The number of the invariant.  */
103   unsigned invno;
104 
105   /* The number of the invariant with the same value.  */
106   unsigned eqto;
107 
108   /* The number of invariants which eqto this.  */
109   unsigned eqno;
110 
111   /* If we moved the invariant out of the loop, the original regno
112      that contained its value.  */
113   int orig_regno;
114 
115   /* If we moved the invariant out of the loop, the register that contains its
116      value.  */
117   rtx reg;
118 
119   /* The definition of the invariant.  */
120   struct def *def;
121 
122   /* The insn in that it is defined.  */
123   rtx_insn *insn;
124 
125   /* Whether it is always executed.  */
126   bool always_executed;
127 
128   /* Whether to move the invariant.  */
129   bool move;
130 
131   /* Whether the invariant is cheap when used as an address.  */
132   bool cheap_address;
133 
134   /* Cost of the invariant.  */
135   unsigned cost;
136 
137   /* Used for detecting already visited invariants during determining
138      costs of movements.  */
139   unsigned stamp;
140 
141   /* The invariants it depends on.  */
142   bitmap depends_on;
143 };
144 
145 /* Currently processed loop.  */
146 static class loop *curr_loop;
147 
148 /* Table of invariants indexed by the df_ref uid field.  */
149 
150 static unsigned int invariant_table_size = 0;
151 static struct invariant ** invariant_table;
152 
153 /* Entry for hash table of invariant expressions.  */
154 
155 struct invariant_expr_entry
156 {
157   /* The invariant.  */
158   struct invariant *inv;
159 
160   /* Its value.  */
161   rtx expr;
162 
163   /* Its mode.  */
164   machine_mode mode;
165 
166   /* Its hash.  */
167   hashval_t hash;
168 };
169 
170 /* The actual stamp for marking already visited invariants during determining
171    costs of movements.  */
172 
173 static unsigned actual_stamp;
174 
175 typedef struct invariant *invariant_p;
176 
177 
178 /* The invariants.  */
179 
180 static vec<invariant_p> invariants;
181 
182 /* Check the size of the invariant table and realloc if necessary.  */
183 
184 static void
check_invariant_table_size(void)185 check_invariant_table_size (void)
186 {
187   if (invariant_table_size < DF_DEFS_TABLE_SIZE ())
188     {
189       unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
190       invariant_table = XRESIZEVEC (struct invariant *, invariant_table, new_size);
191       memset (&invariant_table[invariant_table_size], 0,
192 	      (new_size - invariant_table_size) * sizeof (struct invariant *));
193       invariant_table_size = new_size;
194     }
195 }
196 
197 /* Test for possibility of invariantness of X.  */
198 
199 static bool
check_maybe_invariant(rtx x)200 check_maybe_invariant (rtx x)
201 {
202   enum rtx_code code = GET_CODE (x);
203   int i, j;
204   const char *fmt;
205 
206   switch (code)
207     {
208     CASE_CONST_ANY:
209     case SYMBOL_REF:
210     case CONST:
211     case LABEL_REF:
212       return true;
213 
214     case PC:
215     case CC0:
216     case UNSPEC_VOLATILE:
217     case CALL:
218       return false;
219 
220     case REG:
221       return true;
222 
223     case MEM:
224       /* Load/store motion is done elsewhere.  ??? Perhaps also add it here?
225 	 It should not be hard, and might be faster than "elsewhere".  */
226 
227       /* Just handle the most trivial case where we load from an unchanging
228 	 location (most importantly, pic tables).  */
229       if (MEM_READONLY_P (x) && !MEM_VOLATILE_P (x))
230 	break;
231 
232       return false;
233 
234     case ASM_OPERANDS:
235       /* Don't mess with insns declared volatile.  */
236       if (MEM_VOLATILE_P (x))
237 	return false;
238       break;
239 
240     default:
241       break;
242     }
243 
244   fmt = GET_RTX_FORMAT (code);
245   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
246     {
247       if (fmt[i] == 'e')
248 	{
249 	  if (!check_maybe_invariant (XEXP (x, i)))
250 	    return false;
251 	}
252       else if (fmt[i] == 'E')
253 	{
254 	  for (j = 0; j < XVECLEN (x, i); j++)
255 	    if (!check_maybe_invariant (XVECEXP (x, i, j)))
256 	      return false;
257 	}
258     }
259 
260   return true;
261 }
262 
263 /* Returns the invariant definition for USE, or NULL if USE is not
264    invariant.  */
265 
266 static struct invariant *
invariant_for_use(df_ref use)267 invariant_for_use (df_ref use)
268 {
269   struct df_link *defs;
270   df_ref def;
271   basic_block bb = DF_REF_BB (use), def_bb;
272 
273   if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
274     return NULL;
275 
276   defs = DF_REF_CHAIN (use);
277   if (!defs || defs->next)
278     return NULL;
279   def = defs->ref;
280   check_invariant_table_size ();
281   if (!invariant_table[DF_REF_ID (def)])
282     return NULL;
283 
284   def_bb = DF_REF_BB (def);
285   if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
286     return NULL;
287   return invariant_table[DF_REF_ID (def)];
288 }
289 
290 /* Computes hash value for invariant expression X in INSN.  */
291 
292 static hashval_t
hash_invariant_expr_1(rtx_insn * insn,rtx x)293 hash_invariant_expr_1 (rtx_insn *insn, rtx x)
294 {
295   enum rtx_code code = GET_CODE (x);
296   int i, j;
297   const char *fmt;
298   hashval_t val = code;
299   int do_not_record_p;
300   df_ref use;
301   struct invariant *inv;
302 
303   switch (code)
304     {
305     CASE_CONST_ANY:
306     case SYMBOL_REF:
307     case CONST:
308     case LABEL_REF:
309       return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
310 
311     case REG:
312       use = df_find_use (insn, x);
313       if (!use)
314 	return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
315       inv = invariant_for_use (use);
316       if (!inv)
317 	return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
318 
319       gcc_assert (inv->eqto != ~0u);
320       return inv->eqto;
321 
322     default:
323       break;
324     }
325 
326   fmt = GET_RTX_FORMAT (code);
327   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
328     {
329       if (fmt[i] == 'e')
330 	val ^= hash_invariant_expr_1 (insn, XEXP (x, i));
331       else if (fmt[i] == 'E')
332 	{
333 	  for (j = 0; j < XVECLEN (x, i); j++)
334 	    val ^= hash_invariant_expr_1 (insn, XVECEXP (x, i, j));
335 	}
336       else if (fmt[i] == 'i' || fmt[i] == 'n')
337 	val ^= XINT (x, i);
338       else if (fmt[i] == 'p')
339 	val ^= constant_lower_bound (SUBREG_BYTE (x));
340     }
341 
342   return val;
343 }
344 
345 /* Returns true if the invariant expressions E1 and E2 used in insns INSN1
346    and INSN2 have always the same value.  */
347 
348 static bool
invariant_expr_equal_p(rtx_insn * insn1,rtx e1,rtx_insn * insn2,rtx e2)349 invariant_expr_equal_p (rtx_insn *insn1, rtx e1, rtx_insn *insn2, rtx e2)
350 {
351   enum rtx_code code = GET_CODE (e1);
352   int i, j;
353   const char *fmt;
354   df_ref use1, use2;
355   struct invariant *inv1 = NULL, *inv2 = NULL;
356   rtx sub1, sub2;
357 
358   /* If mode of only one of the operands is VOIDmode, it is not equivalent to
359      the other one.  If both are VOIDmode, we rely on the caller of this
360      function to verify that their modes are the same.  */
361   if (code != GET_CODE (e2) || GET_MODE (e1) != GET_MODE (e2))
362     return false;
363 
364   switch (code)
365     {
366     CASE_CONST_ANY:
367     case SYMBOL_REF:
368     case CONST:
369     case LABEL_REF:
370       return rtx_equal_p (e1, e2);
371 
372     case REG:
373       use1 = df_find_use (insn1, e1);
374       use2 = df_find_use (insn2, e2);
375       if (use1)
376 	inv1 = invariant_for_use (use1);
377       if (use2)
378 	inv2 = invariant_for_use (use2);
379 
380       if (!inv1 && !inv2)
381 	return rtx_equal_p (e1, e2);
382 
383       if (!inv1 || !inv2)
384 	return false;
385 
386       gcc_assert (inv1->eqto != ~0u);
387       gcc_assert (inv2->eqto != ~0u);
388       return inv1->eqto == inv2->eqto;
389 
390     default:
391       break;
392     }
393 
394   fmt = GET_RTX_FORMAT (code);
395   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
396     {
397       if (fmt[i] == 'e')
398 	{
399 	  sub1 = XEXP (e1, i);
400 	  sub2 = XEXP (e2, i);
401 
402 	  if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
403 	    return false;
404 	}
405 
406       else if (fmt[i] == 'E')
407 	{
408 	  if (XVECLEN (e1, i) != XVECLEN (e2, i))
409 	    return false;
410 
411 	  for (j = 0; j < XVECLEN (e1, i); j++)
412 	    {
413 	      sub1 = XVECEXP (e1, i, j);
414 	      sub2 = XVECEXP (e2, i, j);
415 
416 	      if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
417 		return false;
418 	    }
419 	}
420       else if (fmt[i] == 'i' || fmt[i] == 'n')
421 	{
422 	  if (XINT (e1, i) != XINT (e2, i))
423 	    return false;
424 	}
425       else if (fmt[i] == 'p')
426 	{
427 	  if (maybe_ne (SUBREG_BYTE (e1), SUBREG_BYTE (e2)))
428 	    return false;
429 	}
430       /* Unhandled type of subexpression, we fail conservatively.  */
431       else
432 	return false;
433     }
434 
435   return true;
436 }
437 
438 struct invariant_expr_hasher : free_ptr_hash <invariant_expr_entry>
439 {
440   static inline hashval_t hash (const invariant_expr_entry *);
441   static inline bool equal (const invariant_expr_entry *,
442 			    const invariant_expr_entry *);
443 };
444 
445 /* Returns hash value for invariant expression entry ENTRY.  */
446 
447 inline hashval_t
hash(const invariant_expr_entry * entry)448 invariant_expr_hasher::hash (const invariant_expr_entry *entry)
449 {
450   return entry->hash;
451 }
452 
453 /* Compares invariant expression entries ENTRY1 and ENTRY2.  */
454 
455 inline bool
equal(const invariant_expr_entry * entry1,const invariant_expr_entry * entry2)456 invariant_expr_hasher::equal (const invariant_expr_entry *entry1,
457 			      const invariant_expr_entry *entry2)
458 {
459   if (entry1->mode != entry2->mode)
460     return 0;
461 
462   return invariant_expr_equal_p (entry1->inv->insn, entry1->expr,
463 				 entry2->inv->insn, entry2->expr);
464 }
465 
466 typedef hash_table<invariant_expr_hasher> invariant_htab_type;
467 
468 /* Checks whether invariant with value EXPR in machine mode MODE is
469    recorded in EQ.  If this is the case, return the invariant.  Otherwise
470    insert INV to the table for this expression and return INV.  */
471 
472 static struct invariant *
find_or_insert_inv(invariant_htab_type * eq,rtx expr,machine_mode mode,struct invariant * inv)473 find_or_insert_inv (invariant_htab_type *eq, rtx expr, machine_mode mode,
474 		    struct invariant *inv)
475 {
476   hashval_t hash = hash_invariant_expr_1 (inv->insn, expr);
477   struct invariant_expr_entry *entry;
478   struct invariant_expr_entry pentry;
479   invariant_expr_entry **slot;
480 
481   pentry.expr = expr;
482   pentry.inv = inv;
483   pentry.mode = mode;
484   slot = eq->find_slot_with_hash (&pentry, hash, INSERT);
485   entry = *slot;
486 
487   if (entry)
488     return entry->inv;
489 
490   entry = XNEW (struct invariant_expr_entry);
491   entry->inv = inv;
492   entry->expr = expr;
493   entry->mode = mode;
494   entry->hash = hash;
495   *slot = entry;
496 
497   return inv;
498 }
499 
500 /* Finds invariants identical to INV and records the equivalence.  EQ is the
501    hash table of the invariants.  */
502 
503 static void
find_identical_invariants(invariant_htab_type * eq,struct invariant * inv)504 find_identical_invariants (invariant_htab_type *eq, struct invariant *inv)
505 {
506   unsigned depno;
507   bitmap_iterator bi;
508   struct invariant *dep;
509   rtx expr, set;
510   machine_mode mode;
511   struct invariant *tmp;
512 
513   if (inv->eqto != ~0u)
514     return;
515 
516   EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
517     {
518       dep = invariants[depno];
519       find_identical_invariants (eq, dep);
520     }
521 
522   set = single_set (inv->insn);
523   expr = SET_SRC (set);
524   mode = GET_MODE (expr);
525   if (mode == VOIDmode)
526     mode = GET_MODE (SET_DEST (set));
527 
528   tmp = find_or_insert_inv (eq, expr, mode, inv);
529   inv->eqto = tmp->invno;
530 
531   if (tmp->invno != inv->invno && inv->always_executed)
532     tmp->eqno++;
533 
534   if (dump_file && inv->eqto != inv->invno)
535     fprintf (dump_file,
536 	     "Invariant %d is equivalent to invariant %d.\n",
537 	     inv->invno, inv->eqto);
538 }
539 
540 /* Find invariants with the same value and record the equivalences.  */
541 
542 static void
merge_identical_invariants(void)543 merge_identical_invariants (void)
544 {
545   unsigned i;
546   struct invariant *inv;
547   invariant_htab_type eq (invariants.length ());
548 
549   FOR_EACH_VEC_ELT (invariants, i, inv)
550     find_identical_invariants (&eq, inv);
551 }
552 
553 /* Determines the basic blocks inside LOOP that are always executed and
554    stores their bitmap to ALWAYS_REACHED.  MAY_EXIT is a bitmap of
555    basic blocks that may either exit the loop, or contain the call that
556    does not have to return.  BODY is body of the loop obtained by
557    get_loop_body_in_dom_order.  */
558 
559 static void
compute_always_reached(class loop * loop,basic_block * body,bitmap may_exit,bitmap always_reached)560 compute_always_reached (class loop *loop, basic_block *body,
561 			bitmap may_exit, bitmap always_reached)
562 {
563   unsigned i;
564 
565   for (i = 0; i < loop->num_nodes; i++)
566     {
567       if (dominated_by_p (CDI_DOMINATORS, loop->latch, body[i]))
568 	bitmap_set_bit (always_reached, i);
569 
570       if (bitmap_bit_p (may_exit, i))
571 	return;
572     }
573 }
574 
575 /* Finds exits out of the LOOP with body BODY.  Marks blocks in that we may
576    exit the loop by cfg edge to HAS_EXIT and MAY_EXIT.  In MAY_EXIT
577    additionally mark blocks that may exit due to a call.  */
578 
579 static void
find_exits(class loop * loop,basic_block * body,bitmap may_exit,bitmap has_exit)580 find_exits (class loop *loop, basic_block *body,
581 	    bitmap may_exit, bitmap has_exit)
582 {
583   unsigned i;
584   edge_iterator ei;
585   edge e;
586   class loop *outermost_exit = loop, *aexit;
587   bool has_call = false;
588   rtx_insn *insn;
589 
590   for (i = 0; i < loop->num_nodes; i++)
591     {
592       if (body[i]->loop_father == loop)
593 	{
594 	  FOR_BB_INSNS (body[i], insn)
595 	    {
596 	      if (CALL_P (insn)
597 		  && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
598 		      || !RTL_CONST_OR_PURE_CALL_P (insn)))
599 		{
600 		  has_call = true;
601 		  bitmap_set_bit (may_exit, i);
602 		  break;
603 		}
604 	    }
605 
606 	  FOR_EACH_EDGE (e, ei, body[i]->succs)
607 	    {
608 	      if (! flow_bb_inside_loop_p (loop, e->dest))
609 		{
610 		  bitmap_set_bit (may_exit, i);
611 		  bitmap_set_bit (has_exit, i);
612 		  outermost_exit = find_common_loop (outermost_exit,
613 						     e->dest->loop_father);
614 		}
615 	      /* If we enter a subloop that might never terminate treat
616 	         it like a possible exit.  */
617 	      if (flow_loop_nested_p (loop, e->dest->loop_father))
618 		bitmap_set_bit (may_exit, i);
619 	    }
620 	  continue;
621 	}
622 
623       /* Use the data stored for the subloop to decide whether we may exit
624 	 through it.  It is sufficient to do this for header of the loop,
625 	 as other basic blocks inside it must be dominated by it.  */
626       if (body[i]->loop_father->header != body[i])
627 	continue;
628 
629       if (LOOP_DATA (body[i]->loop_father)->has_call)
630 	{
631 	  has_call = true;
632 	  bitmap_set_bit (may_exit, i);
633 	}
634       aexit = LOOP_DATA (body[i]->loop_father)->outermost_exit;
635       if (aexit != loop)
636 	{
637 	  bitmap_set_bit (may_exit, i);
638 	  bitmap_set_bit (has_exit, i);
639 
640 	  if (flow_loop_nested_p (aexit, outermost_exit))
641 	    outermost_exit = aexit;
642 	}
643     }
644 
645   if (loop->aux == NULL)
646     {
647       loop->aux = xcalloc (1, sizeof (class loop_data));
648       bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
649       bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
650     }
651   LOOP_DATA (loop)->outermost_exit = outermost_exit;
652   LOOP_DATA (loop)->has_call = has_call;
653 }
654 
655 /* Check whether we may assign a value to X from a register.  */
656 
657 static bool
may_assign_reg_p(rtx x)658 may_assign_reg_p (rtx x)
659 {
660   return (GET_MODE (x) != VOIDmode
661 	  && GET_MODE (x) != BLKmode
662 	  && can_copy_p (GET_MODE (x))
663 	  /* Do not mess with the frame pointer adjustments that can
664 	     be generated e.g. by expand_builtin_setjmp_receiver.  */
665 	  && x != frame_pointer_rtx
666 	  && (!REG_P (x)
667 	      || !HARD_REGISTER_P (x)
668 	      || REGNO_REG_CLASS (REGNO (x)) != NO_REGS));
669 }
670 
671 /* Finds definitions that may correspond to invariants in LOOP with body
672    BODY.  */
673 
674 static void
find_defs(class loop * loop)675 find_defs (class loop *loop)
676 {
677   if (dump_file)
678     {
679       fprintf (dump_file,
680 	       "*****starting processing of loop %d ******\n",
681 	       loop->num);
682     }
683 
684   df_chain_add_problem (DF_UD_CHAIN);
685   df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
686   df_analyze_loop (loop);
687   check_invariant_table_size ();
688 
689   if (dump_file)
690     {
691       df_dump_region (dump_file);
692       fprintf (dump_file,
693 	       "*****ending processing of loop %d ******\n",
694 	       loop->num);
695     }
696 }
697 
698 /* Creates a new invariant for definition DEF in INSN, depending on invariants
699    in DEPENDS_ON.  ALWAYS_EXECUTED is true if the insn is always executed,
700    unless the program ends due to a function call.  The newly created invariant
701    is returned.  */
702 
703 static struct invariant *
create_new_invariant(struct def * def,rtx_insn * insn,bitmap depends_on,bool always_executed)704 create_new_invariant (struct def *def, rtx_insn *insn, bitmap depends_on,
705 		      bool always_executed)
706 {
707   struct invariant *inv = XNEW (struct invariant);
708   rtx set = single_set (insn);
709   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
710 
711   inv->def = def;
712   inv->always_executed = always_executed;
713   inv->depends_on = depends_on;
714 
715   /* If the set is simple, usually by moving it we move the whole store out of
716      the loop.  Otherwise we save only cost of the computation.  */
717   if (def)
718     {
719       inv->cost = set_rtx_cost (set, speed);
720       /* ??? Try to determine cheapness of address computation.  Unfortunately
721          the address cost is only a relative measure, we can't really compare
722 	 it with any absolute number, but only with other address costs.
723 	 But here we don't have any other addresses, so compare with a magic
724 	 number anyway.  It has to be large enough to not regress PR33928
725 	 (by avoiding to move reg+8,reg+16,reg+24 invariants), but small
726 	 enough to not regress 410.bwaves either (by still moving reg+reg
727 	 invariants).
728 	 See http://gcc.gnu.org/ml/gcc-patches/2009-10/msg01210.html .  */
729       if (SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set))))
730 	inv->cheap_address = address_cost (SET_SRC (set), word_mode,
731 					   ADDR_SPACE_GENERIC, speed) < 3;
732       else
733 	inv->cheap_address = false;
734     }
735   else
736     {
737       inv->cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)),
738 				speed);
739       inv->cheap_address = false;
740     }
741 
742   inv->move = false;
743   inv->reg = NULL_RTX;
744   inv->orig_regno = -1;
745   inv->stamp = 0;
746   inv->insn = insn;
747 
748   inv->invno = invariants.length ();
749   inv->eqto = ~0u;
750 
751   /* Itself.  */
752   inv->eqno = 1;
753 
754   if (def)
755     def->invno = inv->invno;
756   invariants.safe_push (inv);
757 
758   if (dump_file)
759     {
760       fprintf (dump_file,
761 	       "Set in insn %d is invariant (%d), cost %d, depends on ",
762 	       INSN_UID (insn), inv->invno, inv->cost);
763       dump_bitmap (dump_file, inv->depends_on);
764     }
765 
766   return inv;
767 }
768 
769 /* Return a canonical version of X for the address, from the point of view,
770    that all multiplications are represented as MULT instead of the multiply
771    by a power of 2 being represented as ASHIFT.
772 
773    Callers should prepare a copy of X because this function may modify it
774    in place.  */
775 
776 static void
canonicalize_address_mult(rtx x)777 canonicalize_address_mult (rtx x)
778 {
779   subrtx_var_iterator::array_type array;
780   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
781     {
782       rtx sub = *iter;
783       scalar_int_mode sub_mode;
784       if (is_a <scalar_int_mode> (GET_MODE (sub), &sub_mode)
785 	  && GET_CODE (sub) == ASHIFT
786 	  && CONST_INT_P (XEXP (sub, 1))
787 	  && INTVAL (XEXP (sub, 1)) < GET_MODE_BITSIZE (sub_mode)
788 	  && INTVAL (XEXP (sub, 1)) >= 0)
789 	{
790 	  HOST_WIDE_INT shift = INTVAL (XEXP (sub, 1));
791 	  PUT_CODE (sub, MULT);
792 	  XEXP (sub, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift, sub_mode);
793 	  iter.skip_subrtxes ();
794 	}
795     }
796 }
797 
798 /* Maximum number of sub expressions in address.  We set it to
799    a small integer since it's unlikely to have a complicated
800    address expression.  */
801 
802 #define MAX_CANON_ADDR_PARTS (5)
803 
804 /* Collect sub expressions in address X with PLUS as the seperator.
805    Sub expressions are stored in vector ADDR_PARTS.  */
806 
807 static void
collect_address_parts(rtx x,vec<rtx> * addr_parts)808 collect_address_parts (rtx x, vec<rtx> *addr_parts)
809 {
810   subrtx_var_iterator::array_type array;
811   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
812     {
813       rtx sub = *iter;
814 
815       if (GET_CODE (sub) != PLUS)
816 	{
817 	  addr_parts->safe_push (sub);
818 	  iter.skip_subrtxes ();
819 	}
820     }
821 }
822 
823 /* Compare function for sorting sub expressions X and Y based on
824    precedence defined for communitive operations.  */
825 
826 static int
compare_address_parts(const void * x,const void * y)827 compare_address_parts (const void *x, const void *y)
828 {
829   const rtx *rx = (const rtx *)x;
830   const rtx *ry = (const rtx *)y;
831   int px = commutative_operand_precedence (*rx);
832   int py = commutative_operand_precedence (*ry);
833 
834   return (py - px);
835 }
836 
837 /* Return a canonical version address for X by following steps:
838      1) Rewrite ASHIFT into MULT recursively.
839      2) Divide address into sub expressions with PLUS as the
840 	separator.
841      3) Sort sub expressions according to precedence defined
842 	for communative operations.
843      4) Simplify CONST_INT_P sub expressions.
844      5) Create new canonicalized address and return.
845    Callers should prepare a copy of X because this function may
846    modify it in place.  */
847 
848 static rtx
canonicalize_address(rtx x)849 canonicalize_address (rtx x)
850 {
851   rtx res;
852   unsigned int i, j;
853   machine_mode mode = GET_MODE (x);
854   auto_vec<rtx, MAX_CANON_ADDR_PARTS> addr_parts;
855 
856   /* Rewrite ASHIFT into MULT.  */
857   canonicalize_address_mult (x);
858   /* Divide address into sub expressions.  */
859   collect_address_parts (x, &addr_parts);
860   /* Unlikely to have very complicated address.  */
861   if (addr_parts.length () < 2
862       || addr_parts.length () > MAX_CANON_ADDR_PARTS)
863     return x;
864 
865   /* Sort sub expressions according to canonicalization precedence.  */
866   addr_parts.qsort (compare_address_parts);
867 
868   /* Simplify all constant int summary if possible.  */
869   for (i = 0; i < addr_parts.length (); i++)
870     if (CONST_INT_P (addr_parts[i]))
871       break;
872 
873   for (j = i + 1; j < addr_parts.length (); j++)
874     {
875       gcc_assert (CONST_INT_P (addr_parts[j]));
876       addr_parts[i] = simplify_gen_binary (PLUS, mode,
877 					   addr_parts[i],
878 					   addr_parts[j]);
879     }
880 
881   /* Chain PLUS operators to the left for !CONST_INT_P sub expressions.  */
882   res = addr_parts[0];
883   for (j = 1; j < i; j++)
884     res = simplify_gen_binary (PLUS, mode, res, addr_parts[j]);
885 
886   /* Pickup the last CONST_INT_P sub expression.  */
887   if (i < addr_parts.length ())
888     res = simplify_gen_binary (PLUS, mode, res, addr_parts[i]);
889 
890   return res;
891 }
892 
893 /* Given invariant DEF and its address USE, check if the corresponding
894    invariant expr can be propagated into the use or not.  */
895 
896 static bool
inv_can_prop_to_addr_use(struct def * def,df_ref use)897 inv_can_prop_to_addr_use (struct def *def, df_ref use)
898 {
899   struct invariant *inv;
900   rtx *pos = DF_REF_REAL_LOC (use), def_set, use_set;
901   rtx_insn *use_insn = DF_REF_INSN (use);
902   rtx_insn *def_insn;
903   bool ok;
904 
905   inv = invariants[def->invno];
906   /* No need to check if address expression is expensive.  */
907   if (!inv->cheap_address)
908     return false;
909 
910   def_insn = inv->insn;
911   def_set = single_set (def_insn);
912   if (!def_set)
913     return false;
914 
915   validate_unshare_change (use_insn, pos, SET_SRC (def_set), true);
916   ok = verify_changes (0);
917   /* Try harder with canonicalization in address expression.  */
918   if (!ok && (use_set = single_set (use_insn)) != NULL_RTX)
919     {
920       rtx src, dest, mem = NULL_RTX;
921 
922       src = SET_SRC (use_set);
923       dest = SET_DEST (use_set);
924       if (MEM_P (src))
925 	mem = src;
926       else if (MEM_P (dest))
927 	mem = dest;
928 
929       if (mem != NULL_RTX
930 	  && !memory_address_addr_space_p (GET_MODE (mem),
931 					   XEXP (mem, 0),
932 					   MEM_ADDR_SPACE (mem)))
933 	{
934 	  rtx addr = canonicalize_address (copy_rtx (XEXP (mem, 0)));
935 	  if (memory_address_addr_space_p (GET_MODE (mem),
936 					   addr, MEM_ADDR_SPACE (mem)))
937 	    ok = true;
938 	}
939     }
940   cancel_changes (0);
941   return ok;
942 }
943 
944 /* Record USE at DEF.  */
945 
946 static void
record_use(struct def * def,df_ref use)947 record_use (struct def *def, df_ref use)
948 {
949   struct use *u = XNEW (struct use);
950 
951   u->pos = DF_REF_REAL_LOC (use);
952   u->insn = DF_REF_INSN (use);
953   u->addr_use_p = (DF_REF_TYPE (use) == DF_REF_REG_MEM_LOAD
954 		   || DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE);
955   u->next = def->uses;
956   def->uses = u;
957   def->n_uses++;
958   if (u->addr_use_p)
959     {
960       /* Initialize propagation information if this is the first addr
961 	 use of the inv def.  */
962       if (def->n_addr_uses == 0)
963 	def->can_prop_to_addr_uses = true;
964 
965       def->n_addr_uses++;
966       if (def->can_prop_to_addr_uses && !inv_can_prop_to_addr_use (def, use))
967 	def->can_prop_to_addr_uses = false;
968     }
969 }
970 
971 /* Finds the invariants USE depends on and store them to the DEPENDS_ON
972    bitmap.  Returns true if all dependencies of USE are known to be
973    loop invariants, false otherwise.  */
974 
975 static bool
check_dependency(basic_block bb,df_ref use,bitmap depends_on)976 check_dependency (basic_block bb, df_ref use, bitmap depends_on)
977 {
978   df_ref def;
979   basic_block def_bb;
980   struct df_link *defs;
981   struct def *def_data;
982   struct invariant *inv;
983 
984   if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
985     return false;
986 
987   defs = DF_REF_CHAIN (use);
988   if (!defs)
989     {
990       unsigned int regno = DF_REF_REGNO (use);
991 
992       /* If this is the use of an uninitialized argument register that is
993 	 likely to be spilled, do not move it lest this might extend its
994 	 lifetime and cause reload to die.  This can occur for a call to
995 	 a function taking complex number arguments and moving the insns
996 	 preparing the arguments without moving the call itself wouldn't
997 	 gain much in practice.  */
998       if ((DF_REF_FLAGS (use) & DF_HARD_REG_LIVE)
999 	  && FUNCTION_ARG_REGNO_P (regno)
1000 	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
1001 	return false;
1002 
1003       return true;
1004     }
1005 
1006   if (defs->next)
1007     return false;
1008 
1009   def = defs->ref;
1010   check_invariant_table_size ();
1011   inv = invariant_table[DF_REF_ID (def)];
1012   if (!inv)
1013     return false;
1014 
1015   def_data = inv->def;
1016   gcc_assert (def_data != NULL);
1017 
1018   def_bb = DF_REF_BB (def);
1019   /* Note that in case bb == def_bb, we know that the definition
1020      dominates insn, because def has invariant_table[DF_REF_ID(def)]
1021      defined and we process the insns in the basic block bb
1022      sequentially.  */
1023   if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1024     return false;
1025 
1026   bitmap_set_bit (depends_on, def_data->invno);
1027   return true;
1028 }
1029 
1030 
1031 /* Finds the invariants INSN depends on and store them to the DEPENDS_ON
1032    bitmap.  Returns true if all dependencies of INSN are known to be
1033    loop invariants, false otherwise.  */
1034 
1035 static bool
check_dependencies(rtx_insn * insn,bitmap depends_on)1036 check_dependencies (rtx_insn *insn, bitmap depends_on)
1037 {
1038   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1039   df_ref use;
1040   basic_block bb = BLOCK_FOR_INSN (insn);
1041 
1042   FOR_EACH_INSN_INFO_USE (use, insn_info)
1043     if (!check_dependency (bb, use, depends_on))
1044       return false;
1045   FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1046     if (!check_dependency (bb, use, depends_on))
1047       return false;
1048 
1049   return true;
1050 }
1051 
1052 /* Pre-check candidate DEST to skip the one which cannot make a valid insn
1053    during move_invariant_reg.  SIMPLE is to skip HARD_REGISTER.  */
1054 static bool
pre_check_invariant_p(bool simple,rtx dest)1055 pre_check_invariant_p (bool simple, rtx dest)
1056 {
1057   if (simple && REG_P (dest) && DF_REG_DEF_COUNT (REGNO (dest)) > 1)
1058     {
1059       df_ref use;
1060       unsigned int i = REGNO (dest);
1061       struct df_insn_info *insn_info;
1062       df_ref def_rec;
1063 
1064       for (use = DF_REG_USE_CHAIN (i); use; use = DF_REF_NEXT_REG (use))
1065 	{
1066 	  rtx_insn *ref = DF_REF_INSN (use);
1067 	  insn_info = DF_INSN_INFO_GET (ref);
1068 
1069 	  FOR_EACH_INSN_INFO_DEF (def_rec, insn_info)
1070 	    if (DF_REF_REGNO (def_rec) == i)
1071 	      {
1072 		/* Multi definitions at this stage, most likely are due to
1073 		   instruction constraints, which requires both read and write
1074 		   on the same register.  Since move_invariant_reg is not
1075 		   powerful enough to handle such cases, just ignore the INV
1076 		   and leave the chance to others.  */
1077 		return false;
1078 	      }
1079 	}
1080     }
1081   return true;
1082 }
1083 
1084 /* Finds invariant in INSN.  ALWAYS_REACHED is true if the insn is always
1085    executed.  ALWAYS_EXECUTED is true if the insn is always executed,
1086    unless the program ends due to a function call.  */
1087 
1088 static void
find_invariant_insn(rtx_insn * insn,bool always_reached,bool always_executed)1089 find_invariant_insn (rtx_insn *insn, bool always_reached, bool always_executed)
1090 {
1091   df_ref ref;
1092   struct def *def;
1093   bitmap depends_on;
1094   rtx set, dest;
1095   bool simple = true;
1096   struct invariant *inv;
1097 
1098   /* We can't move a CC0 setter without the user.  */
1099   if (HAVE_cc0 && sets_cc0_p (insn))
1100     return;
1101 
1102   set = single_set (insn);
1103   if (!set)
1104     return;
1105   dest = SET_DEST (set);
1106 
1107   if (!REG_P (dest)
1108       || HARD_REGISTER_P (dest))
1109     simple = false;
1110 
1111   if (!may_assign_reg_p (dest)
1112       || !pre_check_invariant_p (simple, dest)
1113       || !check_maybe_invariant (SET_SRC (set)))
1114     return;
1115 
1116   /* If the insn can throw exception, we cannot move it at all without changing
1117      cfg.  */
1118   if (can_throw_internal (insn))
1119     return;
1120 
1121   /* We cannot make trapping insn executed, unless it was executed before.  */
1122   if (may_trap_or_fault_p (PATTERN (insn)) && !always_reached)
1123     return;
1124 
1125   depends_on = BITMAP_ALLOC (NULL);
1126   if (!check_dependencies (insn, depends_on))
1127     {
1128       BITMAP_FREE (depends_on);
1129       return;
1130     }
1131 
1132   if (simple)
1133     def = XCNEW (struct def);
1134   else
1135     def = NULL;
1136 
1137   inv = create_new_invariant (def, insn, depends_on, always_executed);
1138 
1139   if (simple)
1140     {
1141       ref = df_find_def (insn, dest);
1142       check_invariant_table_size ();
1143       invariant_table[DF_REF_ID (ref)] = inv;
1144     }
1145 }
1146 
1147 /* Record registers used in INSN that have a unique invariant definition.  */
1148 
1149 static void
record_uses(rtx_insn * insn)1150 record_uses (rtx_insn *insn)
1151 {
1152   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1153   df_ref use;
1154   struct invariant *inv;
1155 
1156   FOR_EACH_INSN_INFO_USE (use, insn_info)
1157     {
1158       inv = invariant_for_use (use);
1159       if (inv)
1160 	record_use (inv->def, use);
1161     }
1162   FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1163     {
1164       inv = invariant_for_use (use);
1165       if (inv)
1166 	record_use (inv->def, use);
1167     }
1168 }
1169 
1170 /* Finds invariants in INSN.  ALWAYS_REACHED is true if the insn is always
1171    executed.  ALWAYS_EXECUTED is true if the insn is always executed,
1172    unless the program ends due to a function call.  */
1173 
1174 static void
find_invariants_insn(rtx_insn * insn,bool always_reached,bool always_executed)1175 find_invariants_insn (rtx_insn *insn, bool always_reached, bool always_executed)
1176 {
1177   find_invariant_insn (insn, always_reached, always_executed);
1178   record_uses (insn);
1179 }
1180 
1181 /* Finds invariants in basic block BB.  ALWAYS_REACHED is true if the
1182    basic block is always executed.  ALWAYS_EXECUTED is true if the basic
1183    block is always executed, unless the program ends due to a function
1184    call.  */
1185 
1186 static void
find_invariants_bb(basic_block bb,bool always_reached,bool always_executed)1187 find_invariants_bb (basic_block bb, bool always_reached, bool always_executed)
1188 {
1189   rtx_insn *insn;
1190 
1191   FOR_BB_INSNS (bb, insn)
1192     {
1193       if (!NONDEBUG_INSN_P (insn))
1194 	continue;
1195 
1196       find_invariants_insn (insn, always_reached, always_executed);
1197 
1198       if (always_reached
1199 	  && CALL_P (insn)
1200 	  && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
1201 	      || ! RTL_CONST_OR_PURE_CALL_P (insn)))
1202 	always_reached = false;
1203     }
1204 }
1205 
1206 /* Finds invariants in LOOP with body BODY.  ALWAYS_REACHED is the bitmap of
1207    basic blocks in BODY that are always executed.  ALWAYS_EXECUTED is the
1208    bitmap of basic blocks in BODY that are always executed unless the program
1209    ends due to a function call.  */
1210 
1211 static void
find_invariants_body(class loop * loop,basic_block * body,bitmap always_reached,bitmap always_executed)1212 find_invariants_body (class loop *loop, basic_block *body,
1213 		      bitmap always_reached, bitmap always_executed)
1214 {
1215   unsigned i;
1216 
1217   for (i = 0; i < loop->num_nodes; i++)
1218     find_invariants_bb (body[i],
1219 			bitmap_bit_p (always_reached, i),
1220 			bitmap_bit_p (always_executed, i));
1221 }
1222 
1223 /* Finds invariants in LOOP.  */
1224 
1225 static void
find_invariants(class loop * loop)1226 find_invariants (class loop *loop)
1227 {
1228   auto_bitmap may_exit;
1229   auto_bitmap always_reached;
1230   auto_bitmap has_exit;
1231   auto_bitmap always_executed;
1232   basic_block *body = get_loop_body_in_dom_order (loop);
1233 
1234   find_exits (loop, body, may_exit, has_exit);
1235   compute_always_reached (loop, body, may_exit, always_reached);
1236   compute_always_reached (loop, body, has_exit, always_executed);
1237 
1238   find_defs (loop);
1239   find_invariants_body (loop, body, always_reached, always_executed);
1240   merge_identical_invariants ();
1241 
1242   free (body);
1243 }
1244 
1245 /* Frees a list of uses USE.  */
1246 
1247 static void
free_use_list(struct use * use)1248 free_use_list (struct use *use)
1249 {
1250   struct use *next;
1251 
1252   for (; use; use = next)
1253     {
1254       next = use->next;
1255       free (use);
1256     }
1257 }
1258 
1259 /* Return pressure class and number of hard registers (through *NREGS)
1260    for destination of INSN. */
1261 static enum reg_class
get_pressure_class_and_nregs(rtx_insn * insn,int * nregs)1262 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
1263 {
1264   rtx reg;
1265   enum reg_class pressure_class;
1266   rtx set = single_set (insn);
1267 
1268   /* Considered invariant insns have only one set.  */
1269   gcc_assert (set != NULL_RTX);
1270   reg = SET_DEST (set);
1271   if (GET_CODE (reg) == SUBREG)
1272     reg = SUBREG_REG (reg);
1273   if (MEM_P (reg))
1274     {
1275       *nregs = 0;
1276       pressure_class = NO_REGS;
1277     }
1278   else
1279     {
1280       if (! REG_P (reg))
1281 	reg = NULL_RTX;
1282       if (reg == NULL_RTX)
1283 	pressure_class = GENERAL_REGS;
1284       else
1285 	{
1286 	  pressure_class = reg_allocno_class (REGNO (reg));
1287 	  pressure_class = ira_pressure_class_translate[pressure_class];
1288 	}
1289       *nregs
1290 	= ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
1291     }
1292   return pressure_class;
1293 }
1294 
1295 /* Calculates cost and number of registers needed for moving invariant INV
1296    out of the loop and stores them to *COST and *REGS_NEEDED.  *CL will be
1297    the REG_CLASS of INV.  Return
1298      -1: if INV is invalid.
1299       0: if INV and its depends_on have same reg_class
1300       1: if INV and its depends_on have different reg_classes.  */
1301 
1302 static int
get_inv_cost(struct invariant * inv,int * comp_cost,unsigned * regs_needed,enum reg_class * cl)1303 get_inv_cost (struct invariant *inv, int *comp_cost, unsigned *regs_needed,
1304 	      enum reg_class *cl)
1305 {
1306   int i, acomp_cost;
1307   unsigned aregs_needed[N_REG_CLASSES];
1308   unsigned depno;
1309   struct invariant *dep;
1310   bitmap_iterator bi;
1311   int ret = 1;
1312 
1313   /* Find the representative of the class of the equivalent invariants.  */
1314   inv = invariants[inv->eqto];
1315 
1316   *comp_cost = 0;
1317   if (! flag_ira_loop_pressure)
1318     regs_needed[0] = 0;
1319   else
1320     {
1321       for (i = 0; i < ira_pressure_classes_num; i++)
1322 	regs_needed[ira_pressure_classes[i]] = 0;
1323     }
1324 
1325   if (inv->move
1326       || inv->stamp == actual_stamp)
1327     return -1;
1328   inv->stamp = actual_stamp;
1329 
1330   if (! flag_ira_loop_pressure)
1331     regs_needed[0]++;
1332   else
1333     {
1334       int nregs;
1335       enum reg_class pressure_class;
1336 
1337       pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1338       regs_needed[pressure_class] += nregs;
1339       *cl = pressure_class;
1340       ret = 0;
1341     }
1342 
1343   if (!inv->cheap_address
1344       || inv->def->n_uses == 0
1345       || inv->def->n_addr_uses < inv->def->n_uses
1346       /* Count cost if the inv can't be propagated into address uses.  */
1347       || !inv->def->can_prop_to_addr_uses)
1348     (*comp_cost) += inv->cost * inv->eqno;
1349 
1350 #ifdef STACK_REGS
1351   {
1352     /* Hoisting constant pool constants into stack regs may cost more than
1353        just single register.  On x87, the balance is affected both by the
1354        small number of FP registers, and by its register stack organization,
1355        that forces us to add compensation code in and around the loop to
1356        shuffle the operands to the top of stack before use, and pop them
1357        from the stack after the loop finishes.
1358 
1359        To model this effect, we increase the number of registers needed for
1360        stack registers by two: one register push, and one register pop.
1361        This usually has the effect that FP constant loads from the constant
1362        pool are not moved out of the loop.
1363 
1364        Note that this also means that dependent invariants cannot be moved.
1365        However, the primary purpose of this pass is to move loop invariant
1366        address arithmetic out of loops, and address arithmetic that depends
1367        on floating point constants is unlikely to ever occur.  */
1368     rtx set = single_set (inv->insn);
1369     if (set
1370 	&& IS_STACK_MODE (GET_MODE (SET_SRC (set)))
1371 	&& constant_pool_constant_p (SET_SRC (set)))
1372       {
1373 	if (flag_ira_loop_pressure)
1374 	  regs_needed[ira_stack_reg_pressure_class] += 2;
1375 	else
1376 	  regs_needed[0] += 2;
1377       }
1378   }
1379 #endif
1380 
1381   EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
1382     {
1383       bool check_p;
1384       enum reg_class dep_cl = ALL_REGS;
1385       int dep_ret;
1386 
1387       dep = invariants[depno];
1388 
1389       /* If DEP is moved out of the loop, it is not a depends_on any more.  */
1390       if (dep->move)
1391 	continue;
1392 
1393       dep_ret = get_inv_cost (dep, &acomp_cost, aregs_needed, &dep_cl);
1394 
1395       if (! flag_ira_loop_pressure)
1396 	check_p = aregs_needed[0] != 0;
1397       else
1398 	{
1399 	  for (i = 0; i < ira_pressure_classes_num; i++)
1400 	    if (aregs_needed[ira_pressure_classes[i]] != 0)
1401 	      break;
1402 	  check_p = i < ira_pressure_classes_num;
1403 
1404 	  if ((dep_ret == 1) || ((dep_ret == 0) && (*cl != dep_cl)))
1405 	    {
1406 	      *cl = ALL_REGS;
1407 	      ret = 1;
1408 	    }
1409 	}
1410       if (check_p
1411 	  /* We need to check always_executed, since if the original value of
1412 	     the invariant may be preserved, we may need to keep it in a
1413 	     separate register.  TODO check whether the register has an
1414 	     use outside of the loop.  */
1415 	  && dep->always_executed
1416 	  && !dep->def->uses->next)
1417 	{
1418 	  /* If this is a single use, after moving the dependency we will not
1419 	     need a new register.  */
1420 	  if (! flag_ira_loop_pressure)
1421 	    aregs_needed[0]--;
1422 	  else
1423 	    {
1424 	      int nregs;
1425 	      enum reg_class pressure_class;
1426 
1427 	      pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1428 	      aregs_needed[pressure_class] -= nregs;
1429 	    }
1430 	}
1431 
1432       if (! flag_ira_loop_pressure)
1433 	regs_needed[0] += aregs_needed[0];
1434       else
1435 	{
1436 	  for (i = 0; i < ira_pressure_classes_num; i++)
1437 	    regs_needed[ira_pressure_classes[i]]
1438 	      += aregs_needed[ira_pressure_classes[i]];
1439 	}
1440       (*comp_cost) += acomp_cost;
1441     }
1442   return ret;
1443 }
1444 
1445 /* Calculates gain for eliminating invariant INV.  REGS_USED is the number
1446    of registers used in the loop, NEW_REGS is the number of new variables
1447    already added due to the invariant motion.  The number of registers needed
1448    for it is stored in *REGS_NEEDED.  SPEED and CALL_P are flags passed
1449    through to estimate_reg_pressure_cost. */
1450 
1451 static int
gain_for_invariant(struct invariant * inv,unsigned * regs_needed,unsigned * new_regs,unsigned regs_used,bool speed,bool call_p)1452 gain_for_invariant (struct invariant *inv, unsigned *regs_needed,
1453 		    unsigned *new_regs, unsigned regs_used,
1454 		    bool speed, bool call_p)
1455 {
1456   int comp_cost, size_cost;
1457   /* Workaround -Wmaybe-uninitialized false positive during
1458      profiledbootstrap by initializing it.  */
1459   enum reg_class cl = NO_REGS;
1460   int ret;
1461 
1462   actual_stamp++;
1463 
1464   ret = get_inv_cost (inv, &comp_cost, regs_needed, &cl);
1465 
1466   if (! flag_ira_loop_pressure)
1467     {
1468       size_cost = (estimate_reg_pressure_cost (new_regs[0] + regs_needed[0],
1469 					       regs_used, speed, call_p)
1470 		   - estimate_reg_pressure_cost (new_regs[0],
1471 						 regs_used, speed, call_p));
1472     }
1473   else if (ret < 0)
1474     return -1;
1475   else if ((ret == 0) && (cl == NO_REGS))
1476     /* Hoist it anyway since it does not impact register pressure.  */
1477     return 1;
1478   else
1479     {
1480       int i;
1481       enum reg_class pressure_class;
1482 
1483       for (i = 0; i < ira_pressure_classes_num; i++)
1484 	{
1485 	  pressure_class = ira_pressure_classes[i];
1486 
1487 	  if (!reg_classes_intersect_p (pressure_class, cl))
1488 	    continue;
1489 
1490 	  if ((int) new_regs[pressure_class]
1491 	      + (int) regs_needed[pressure_class]
1492 	      + LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
1493 	      + param_ira_loop_reserved_regs
1494 	      > ira_class_hard_regs_num[pressure_class])
1495 	    break;
1496 	}
1497       if (i < ira_pressure_classes_num)
1498 	/* There will be register pressure excess and we want not to
1499 	   make this loop invariant motion.  All loop invariants with
1500 	   non-positive gains will be rejected in function
1501 	   find_invariants_to_move.  Therefore we return the negative
1502 	   number here.
1503 
1504 	   One could think that this rejects also expensive loop
1505 	   invariant motions and this will hurt code performance.
1506 	   However numerous experiments with different heuristics
1507 	   taking invariant cost into account did not confirm this
1508 	   assumption.  There are possible explanations for this
1509 	   result:
1510            o probably all expensive invariants were already moved out
1511              of the loop by PRE and gimple invariant motion pass.
1512            o expensive invariant execution will be hidden by insn
1513              scheduling or OOO processor hardware because usually such
1514              invariants have a lot of freedom to be executed
1515              out-of-order.
1516 	   Another reason for ignoring invariant cost vs spilling cost
1517 	   heuristics is also in difficulties to evaluate accurately
1518 	   spill cost at this stage.  */
1519 	return -1;
1520       else
1521 	size_cost = 0;
1522     }
1523 
1524   return comp_cost - size_cost;
1525 }
1526 
1527 /* Finds invariant with best gain for moving.  Returns the gain, stores
1528    the invariant in *BEST and number of registers needed for it to
1529    *REGS_NEEDED.  REGS_USED is the number of registers used in the loop.
1530    NEW_REGS is the number of new variables already added due to invariant
1531    motion.  */
1532 
1533 static int
best_gain_for_invariant(struct invariant ** best,unsigned * regs_needed,unsigned * new_regs,unsigned regs_used,bool speed,bool call_p)1534 best_gain_for_invariant (struct invariant **best, unsigned *regs_needed,
1535 			 unsigned *new_regs, unsigned regs_used,
1536 			 bool speed, bool call_p)
1537 {
1538   struct invariant *inv;
1539   int i, gain = 0, again;
1540   unsigned aregs_needed[N_REG_CLASSES], invno;
1541 
1542   FOR_EACH_VEC_ELT (invariants, invno, inv)
1543     {
1544       if (inv->move)
1545 	continue;
1546 
1547       /* Only consider the "representatives" of equivalent invariants.  */
1548       if (inv->eqto != inv->invno)
1549 	continue;
1550 
1551       again = gain_for_invariant (inv, aregs_needed, new_regs, regs_used,
1552       				  speed, call_p);
1553       if (again > gain)
1554 	{
1555 	  gain = again;
1556 	  *best = inv;
1557 	  if (! flag_ira_loop_pressure)
1558 	    regs_needed[0] = aregs_needed[0];
1559 	  else
1560 	    {
1561 	      for (i = 0; i < ira_pressure_classes_num; i++)
1562 		regs_needed[ira_pressure_classes[i]]
1563 		  = aregs_needed[ira_pressure_classes[i]];
1564 	    }
1565 	}
1566     }
1567 
1568   return gain;
1569 }
1570 
1571 /* Marks invariant INVNO and all its dependencies for moving.  */
1572 
1573 static void
set_move_mark(unsigned invno,int gain)1574 set_move_mark (unsigned invno, int gain)
1575 {
1576   struct invariant *inv = invariants[invno];
1577   bitmap_iterator bi;
1578 
1579   /* Find the representative of the class of the equivalent invariants.  */
1580   inv = invariants[inv->eqto];
1581 
1582   if (inv->move)
1583     return;
1584   inv->move = true;
1585 
1586   if (dump_file)
1587     {
1588       if (gain >= 0)
1589 	fprintf (dump_file, "Decided to move invariant %d -- gain %d\n",
1590 		 invno, gain);
1591       else
1592 	fprintf (dump_file, "Decided to move dependent invariant %d\n",
1593 		 invno);
1594     };
1595 
1596   EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, invno, bi)
1597     {
1598       set_move_mark (invno, -1);
1599     }
1600 }
1601 
1602 /* Determines which invariants to move.  */
1603 
1604 static void
find_invariants_to_move(bool speed,bool call_p)1605 find_invariants_to_move (bool speed, bool call_p)
1606 {
1607   int gain;
1608   unsigned i, regs_used, regs_needed[N_REG_CLASSES], new_regs[N_REG_CLASSES];
1609   struct invariant *inv = NULL;
1610 
1611   if (!invariants.length ())
1612     return;
1613 
1614   if (flag_ira_loop_pressure)
1615     /* REGS_USED is actually never used when the flag is on.  */
1616     regs_used = 0;
1617   else
1618     /* We do not really do a good job in estimating number of
1619        registers used; we put some initial bound here to stand for
1620        induction variables etc.  that we do not detect.  */
1621     {
1622       unsigned int n_regs = DF_REG_SIZE (df);
1623 
1624       regs_used = 2;
1625 
1626       for (i = 0; i < n_regs; i++)
1627 	{
1628 	  if (!DF_REGNO_FIRST_DEF (i) && DF_REGNO_LAST_USE (i))
1629 	    {
1630 	      /* This is a value that is used but not changed inside loop.  */
1631 	      regs_used++;
1632 	    }
1633 	}
1634     }
1635 
1636   if (! flag_ira_loop_pressure)
1637     new_regs[0] = regs_needed[0] = 0;
1638   else
1639     {
1640       for (i = 0; (int) i < ira_pressure_classes_num; i++)
1641 	new_regs[ira_pressure_classes[i]] = 0;
1642     }
1643   while ((gain = best_gain_for_invariant (&inv, regs_needed,
1644 					  new_regs, regs_used,
1645 					  speed, call_p)) > 0)
1646     {
1647       set_move_mark (inv->invno, gain);
1648       if (! flag_ira_loop_pressure)
1649 	new_regs[0] += regs_needed[0];
1650       else
1651 	{
1652 	  for (i = 0; (int) i < ira_pressure_classes_num; i++)
1653 	    new_regs[ira_pressure_classes[i]]
1654 	      += regs_needed[ira_pressure_classes[i]];
1655 	}
1656     }
1657 }
1658 
1659 /* Replace the uses, reached by the definition of invariant INV, by REG.
1660 
1661    IN_GROUP is nonzero if this is part of a group of changes that must be
1662    performed as a group.  In that case, the changes will be stored.  The
1663    function `apply_change_group' will validate and apply the changes.  */
1664 
1665 static int
replace_uses(struct invariant * inv,rtx reg,bool in_group)1666 replace_uses (struct invariant *inv, rtx reg, bool in_group)
1667 {
1668   /* Replace the uses we know to be dominated.  It saves work for copy
1669      propagation, and also it is necessary so that dependent invariants
1670      are computed right.  */
1671   if (inv->def)
1672     {
1673       struct use *use;
1674       for (use = inv->def->uses; use; use = use->next)
1675 	validate_change (use->insn, use->pos, reg, true);
1676 
1677       /* If we aren't part of a larger group, apply the changes now.  */
1678       if (!in_group)
1679 	return apply_change_group ();
1680     }
1681 
1682   return 1;
1683 }
1684 
1685 /* Whether invariant INV setting REG can be moved out of LOOP, at the end of
1686    the block preceding its header.  */
1687 
1688 static bool
can_move_invariant_reg(class loop * loop,struct invariant * inv,rtx reg)1689 can_move_invariant_reg (class loop *loop, struct invariant *inv, rtx reg)
1690 {
1691   df_ref def, use;
1692   unsigned int dest_regno, defs_in_loop_count = 0;
1693   rtx_insn *insn = inv->insn;
1694   basic_block bb = BLOCK_FOR_INSN (inv->insn);
1695 
1696   /* We ignore hard register and memory access for cost and complexity reasons.
1697      Hard register are few at this stage and expensive to consider as they
1698      require building a separate data flow.  Memory access would require using
1699      df_simulate_* and can_move_insns_across functions and is more complex.  */
1700   if (!REG_P (reg) || HARD_REGISTER_P (reg))
1701     return false;
1702 
1703   /* Check whether the set is always executed.  We could omit this condition if
1704      we know that the register is unused outside of the loop, but it does not
1705      seem worth finding out.  */
1706   if (!inv->always_executed)
1707     return false;
1708 
1709   /* Check that all uses that would be dominated by def are already dominated
1710      by it.  */
1711   dest_regno = REGNO (reg);
1712   for (use = DF_REG_USE_CHAIN (dest_regno); use; use = DF_REF_NEXT_REG (use))
1713     {
1714       rtx_insn *use_insn;
1715       basic_block use_bb;
1716 
1717       use_insn = DF_REF_INSN (use);
1718       use_bb = BLOCK_FOR_INSN (use_insn);
1719 
1720       /* Ignore instruction considered for moving.  */
1721       if (use_insn == insn)
1722 	continue;
1723 
1724       /* Don't consider uses outside loop.  */
1725       if (!flow_bb_inside_loop_p (loop, use_bb))
1726 	continue;
1727 
1728       /* Don't move if a use is not dominated by def in insn.  */
1729       if (use_bb == bb && DF_INSN_LUID (insn) >= DF_INSN_LUID (use_insn))
1730 	return false;
1731       if (!dominated_by_p (CDI_DOMINATORS, use_bb, bb))
1732 	return false;
1733     }
1734 
1735   /* Check for other defs.  Any other def in the loop might reach a use
1736      currently reached by the def in insn.  */
1737   for (def = DF_REG_DEF_CHAIN (dest_regno); def; def = DF_REF_NEXT_REG (def))
1738     {
1739       basic_block def_bb = DF_REF_BB (def);
1740 
1741       /* Defs in exit block cannot reach a use they weren't already.  */
1742       if (single_succ_p (def_bb))
1743 	{
1744 	  basic_block def_bb_succ;
1745 
1746 	  def_bb_succ = single_succ (def_bb);
1747 	  if (!flow_bb_inside_loop_p (loop, def_bb_succ))
1748 	    continue;
1749 	}
1750 
1751       if (++defs_in_loop_count > 1)
1752 	return false;
1753     }
1754 
1755   return true;
1756 }
1757 
1758 /* Move invariant INVNO out of the LOOP.  Returns true if this succeeds, false
1759    otherwise.  */
1760 
1761 static bool
move_invariant_reg(class loop * loop,unsigned invno)1762 move_invariant_reg (class loop *loop, unsigned invno)
1763 {
1764   struct invariant *inv = invariants[invno];
1765   struct invariant *repr = invariants[inv->eqto];
1766   unsigned i;
1767   basic_block preheader = loop_preheader_edge (loop)->src;
1768   rtx reg, set, dest, note;
1769   bitmap_iterator bi;
1770   int regno = -1;
1771 
1772   if (inv->reg)
1773     return true;
1774   if (!repr->move)
1775     return false;
1776 
1777   /* If this is a representative of the class of equivalent invariants,
1778      really move the invariant.  Otherwise just replace its use with
1779      the register used for the representative.  */
1780   if (inv == repr)
1781     {
1782       if (inv->depends_on)
1783 	{
1784 	  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, i, bi)
1785 	    {
1786 	      if (!move_invariant_reg (loop, i))
1787 		goto fail;
1788 	    }
1789 	}
1790 
1791       /* If possible, just move the set out of the loop.  Otherwise, we
1792 	 need to create a temporary register.  */
1793       set = single_set (inv->insn);
1794       reg = dest = SET_DEST (set);
1795       if (GET_CODE (reg) == SUBREG)
1796 	reg = SUBREG_REG (reg);
1797       if (REG_P (reg))
1798 	regno = REGNO (reg);
1799 
1800       if (!can_move_invariant_reg (loop, inv, dest))
1801 	{
1802 	  reg = gen_reg_rtx_and_attrs (dest);
1803 
1804 	  /* Try replacing the destination by a new pseudoregister.  */
1805 	  validate_change (inv->insn, &SET_DEST (set), reg, true);
1806 
1807 	  /* As well as all the dominated uses.  */
1808 	  replace_uses (inv, reg, true);
1809 
1810 	  /* And validate all the changes.  */
1811 	  if (!apply_change_group ())
1812 	    goto fail;
1813 
1814 	  emit_insn_after (gen_move_insn (dest, reg), inv->insn);
1815 	}
1816       else if (dump_file)
1817 	fprintf (dump_file, "Invariant %d moved without introducing a new "
1818 			    "temporary register\n", invno);
1819       reorder_insns (inv->insn, inv->insn, BB_END (preheader));
1820       df_recompute_luids (preheader);
1821 
1822       /* If there is a REG_EQUAL note on the insn we just moved, and the
1823 	 insn is in a basic block that is not always executed or the note
1824 	 contains something for which we don't know the invariant status,
1825 	 the note may no longer be valid after we move the insn.  Note that
1826 	 uses in REG_EQUAL notes are taken into account in the computation
1827 	 of invariants, so it is safe to retain the note even if it contains
1828 	 register references for which we know the invariant status.  */
1829       if ((note = find_reg_note (inv->insn, REG_EQUAL, NULL_RTX))
1830 	  && (!inv->always_executed
1831 	      || !check_maybe_invariant (XEXP (note, 0))))
1832 	remove_note (inv->insn, note);
1833     }
1834   else
1835     {
1836       if (!move_invariant_reg (loop, repr->invno))
1837 	goto fail;
1838       reg = repr->reg;
1839       regno = repr->orig_regno;
1840       if (!replace_uses (inv, reg, false))
1841 	goto fail;
1842       set = single_set (inv->insn);
1843       emit_insn_after (gen_move_insn (SET_DEST (set), reg), inv->insn);
1844       delete_insn (inv->insn);
1845     }
1846 
1847   inv->reg = reg;
1848   inv->orig_regno = regno;
1849 
1850   return true;
1851 
1852 fail:
1853   /* If we failed, clear move flag, so that we do not try to move inv
1854      again.  */
1855   if (dump_file)
1856     fprintf (dump_file, "Failed to move invariant %d\n", invno);
1857   inv->move = false;
1858   inv->reg = NULL_RTX;
1859   inv->orig_regno = -1;
1860 
1861   return false;
1862 }
1863 
1864 /* Move selected invariant out of the LOOP.  Newly created regs are marked
1865    in TEMPORARY_REGS.  */
1866 
1867 static void
move_invariants(class loop * loop)1868 move_invariants (class loop *loop)
1869 {
1870   struct invariant *inv;
1871   unsigned i;
1872 
1873   FOR_EACH_VEC_ELT (invariants, i, inv)
1874     move_invariant_reg (loop, i);
1875   if (flag_ira_loop_pressure && resize_reg_info ())
1876     {
1877       FOR_EACH_VEC_ELT (invariants, i, inv)
1878 	if (inv->reg != NULL_RTX)
1879 	  {
1880 	    if (inv->orig_regno >= 0)
1881 	      setup_reg_classes (REGNO (inv->reg),
1882 				 reg_preferred_class (inv->orig_regno),
1883 				 reg_alternate_class (inv->orig_regno),
1884 				 reg_allocno_class (inv->orig_regno));
1885 	    else
1886 	      setup_reg_classes (REGNO (inv->reg),
1887 				 GENERAL_REGS, NO_REGS, GENERAL_REGS);
1888 	  }
1889     }
1890   /* Remove the DF_UD_CHAIN problem added in find_defs before rescanning,
1891      to save a bit of compile time.  */
1892   df_remove_problem (df_chain);
1893   df_process_deferred_rescans ();
1894 }
1895 
1896 /* Initializes invariant motion data.  */
1897 
1898 static void
init_inv_motion_data(void)1899 init_inv_motion_data (void)
1900 {
1901   actual_stamp = 1;
1902 
1903   invariants.create (100);
1904 }
1905 
1906 /* Frees the data allocated by invariant motion.  */
1907 
1908 static void
free_inv_motion_data(void)1909 free_inv_motion_data (void)
1910 {
1911   unsigned i;
1912   struct def *def;
1913   struct invariant *inv;
1914 
1915   check_invariant_table_size ();
1916   for (i = 0; i < DF_DEFS_TABLE_SIZE (); i++)
1917     {
1918       inv = invariant_table[i];
1919       if (inv)
1920 	{
1921 	  def = inv->def;
1922 	  gcc_assert (def != NULL);
1923 
1924 	  free_use_list (def->uses);
1925 	  free (def);
1926 	  invariant_table[i] = NULL;
1927 	}
1928     }
1929 
1930   FOR_EACH_VEC_ELT (invariants, i, inv)
1931     {
1932       BITMAP_FREE (inv->depends_on);
1933       free (inv);
1934     }
1935   invariants.release ();
1936 }
1937 
1938 /* Move the invariants out of the LOOP.  */
1939 
1940 static void
move_single_loop_invariants(class loop * loop)1941 move_single_loop_invariants (class loop *loop)
1942 {
1943   init_inv_motion_data ();
1944 
1945   find_invariants (loop);
1946   find_invariants_to_move (optimize_loop_for_speed_p (loop),
1947 			   LOOP_DATA (loop)->has_call);
1948   move_invariants (loop);
1949 
1950   free_inv_motion_data ();
1951 }
1952 
1953 /* Releases the auxiliary data for LOOP.  */
1954 
1955 static void
free_loop_data(class loop * loop)1956 free_loop_data (class loop *loop)
1957 {
1958   class loop_data *data = LOOP_DATA (loop);
1959   if (!data)
1960     return;
1961 
1962   bitmap_clear (&LOOP_DATA (loop)->regs_ref);
1963   bitmap_clear (&LOOP_DATA (loop)->regs_live);
1964   free (data);
1965   loop->aux = NULL;
1966 }
1967 
1968 
1969 
1970 /* Registers currently living.  */
1971 static bitmap_head curr_regs_live;
1972 
1973 /* Current reg pressure for each pressure class.  */
1974 static int curr_reg_pressure[N_REG_CLASSES];
1975 
1976 /* Record all regs that are set in any one insn.  Communication from
1977    mark_reg_{store,clobber} and global_conflicts.  Asm can refer to
1978    all hard-registers.  */
1979 static rtx regs_set[(FIRST_PSEUDO_REGISTER > MAX_RECOG_OPERANDS
1980 		     ? FIRST_PSEUDO_REGISTER : MAX_RECOG_OPERANDS) * 2];
1981 /* Number of regs stored in the previous array.  */
1982 static int n_regs_set;
1983 
1984 /* Return pressure class and number of needed hard registers (through
1985    *NREGS) of register REGNO.  */
1986 static enum reg_class
get_regno_pressure_class(int regno,int * nregs)1987 get_regno_pressure_class (int regno, int *nregs)
1988 {
1989   if (regno >= FIRST_PSEUDO_REGISTER)
1990     {
1991       enum reg_class pressure_class;
1992 
1993       pressure_class = reg_allocno_class (regno);
1994       pressure_class = ira_pressure_class_translate[pressure_class];
1995       *nregs
1996 	= ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
1997       return pressure_class;
1998     }
1999   else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
2000 	   && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
2001     {
2002       *nregs = 1;
2003       return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
2004     }
2005   else
2006     {
2007       *nregs = 0;
2008       return NO_REGS;
2009     }
2010 }
2011 
2012 /* Increase (if INCR_P) or decrease current register pressure for
2013    register REGNO.  */
2014 static void
change_pressure(int regno,bool incr_p)2015 change_pressure (int regno, bool incr_p)
2016 {
2017   int nregs;
2018   enum reg_class pressure_class;
2019 
2020   pressure_class = get_regno_pressure_class (regno, &nregs);
2021   if (! incr_p)
2022     curr_reg_pressure[pressure_class] -= nregs;
2023   else
2024     {
2025       curr_reg_pressure[pressure_class] += nregs;
2026       if (LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
2027 	  < curr_reg_pressure[pressure_class])
2028 	LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
2029 	  = curr_reg_pressure[pressure_class];
2030     }
2031 }
2032 
2033 /* Mark REGNO birth.  */
2034 static void
mark_regno_live(int regno)2035 mark_regno_live (int regno)
2036 {
2037   class loop *loop;
2038 
2039   for (loop = curr_loop;
2040        loop != current_loops->tree_root;
2041        loop = loop_outer (loop))
2042     bitmap_set_bit (&LOOP_DATA (loop)->regs_live, regno);
2043   if (!bitmap_set_bit (&curr_regs_live, regno))
2044     return;
2045   change_pressure (regno, true);
2046 }
2047 
2048 /* Mark REGNO death.  */
2049 static void
mark_regno_death(int regno)2050 mark_regno_death (int regno)
2051 {
2052   if (! bitmap_clear_bit (&curr_regs_live, regno))
2053     return;
2054   change_pressure (regno, false);
2055 }
2056 
2057 /* Mark setting register REG.  */
2058 static void
mark_reg_store(rtx reg,const_rtx setter ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)2059 mark_reg_store (rtx reg, const_rtx setter ATTRIBUTE_UNUSED,
2060 		void *data ATTRIBUTE_UNUSED)
2061 {
2062   if (GET_CODE (reg) == SUBREG)
2063     reg = SUBREG_REG (reg);
2064 
2065   if (! REG_P (reg))
2066     return;
2067 
2068   regs_set[n_regs_set++] = reg;
2069 
2070   unsigned int end_regno = END_REGNO (reg);
2071   for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
2072     mark_regno_live (regno);
2073 }
2074 
2075 /* Mark clobbering register REG.  */
2076 static void
mark_reg_clobber(rtx reg,const_rtx setter,void * data)2077 mark_reg_clobber (rtx reg, const_rtx setter, void *data)
2078 {
2079   if (GET_CODE (setter) == CLOBBER)
2080     mark_reg_store (reg, setter, data);
2081 }
2082 
2083 /* Mark register REG death.  */
2084 static void
mark_reg_death(rtx reg)2085 mark_reg_death (rtx reg)
2086 {
2087   unsigned int end_regno = END_REGNO (reg);
2088   for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
2089     mark_regno_death (regno);
2090 }
2091 
2092 /* Mark occurrence of registers in X for the current loop.  */
2093 static void
mark_ref_regs(rtx x)2094 mark_ref_regs (rtx x)
2095 {
2096   RTX_CODE code;
2097   int i;
2098   const char *fmt;
2099 
2100   if (!x)
2101     return;
2102 
2103   code = GET_CODE (x);
2104   if (code == REG)
2105     {
2106       class loop *loop;
2107 
2108       for (loop = curr_loop;
2109 	   loop != current_loops->tree_root;
2110 	   loop = loop_outer (loop))
2111 	bitmap_set_bit (&LOOP_DATA (loop)->regs_ref, REGNO (x));
2112       return;
2113     }
2114 
2115   fmt = GET_RTX_FORMAT (code);
2116   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2117     if (fmt[i] == 'e')
2118       mark_ref_regs (XEXP (x, i));
2119     else if (fmt[i] == 'E')
2120       {
2121 	int j;
2122 
2123 	for (j = 0; j < XVECLEN (x, i); j++)
2124 	  mark_ref_regs (XVECEXP (x, i, j));
2125       }
2126 }
2127 
2128 /* Calculate register pressure in the loops.  */
2129 static void
calculate_loop_reg_pressure(void)2130 calculate_loop_reg_pressure (void)
2131 {
2132   int i;
2133   unsigned int j;
2134   bitmap_iterator bi;
2135   basic_block bb;
2136   rtx_insn *insn;
2137   rtx link;
2138   class loop *loop, *parent;
2139 
2140   FOR_EACH_LOOP (loop, 0)
2141     if (loop->aux == NULL)
2142       {
2143 	loop->aux = xcalloc (1, sizeof (class loop_data));
2144 	bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
2145 	bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
2146       }
2147   ira_setup_eliminable_regset ();
2148   bitmap_initialize (&curr_regs_live, &reg_obstack);
2149   FOR_EACH_BB_FN (bb, cfun)
2150     {
2151       curr_loop = bb->loop_father;
2152       if (curr_loop == current_loops->tree_root)
2153 	continue;
2154 
2155       for (loop = curr_loop;
2156 	   loop != current_loops->tree_root;
2157 	   loop = loop_outer (loop))
2158 	bitmap_ior_into (&LOOP_DATA (loop)->regs_live, DF_LR_IN (bb));
2159 
2160       bitmap_copy (&curr_regs_live, DF_LR_IN (bb));
2161       for (i = 0; i < ira_pressure_classes_num; i++)
2162 	curr_reg_pressure[ira_pressure_classes[i]] = 0;
2163       EXECUTE_IF_SET_IN_BITMAP (&curr_regs_live, 0, j, bi)
2164 	change_pressure (j, true);
2165 
2166       FOR_BB_INSNS (bb, insn)
2167 	{
2168 	  if (! NONDEBUG_INSN_P (insn))
2169 	    continue;
2170 
2171 	  mark_ref_regs (PATTERN (insn));
2172 	  n_regs_set = 0;
2173 	  note_stores (insn, mark_reg_clobber, NULL);
2174 
2175 	  /* Mark any registers dead after INSN as dead now.  */
2176 
2177 	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2178 	    if (REG_NOTE_KIND (link) == REG_DEAD)
2179 	      mark_reg_death (XEXP (link, 0));
2180 
2181 	  /* Mark any registers set in INSN as live,
2182 	     and mark them as conflicting with all other live regs.
2183 	     Clobbers are processed again, so they conflict with
2184 	     the registers that are set.  */
2185 
2186 	  note_stores (insn, mark_reg_store, NULL);
2187 
2188 	  if (AUTO_INC_DEC)
2189 	    for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2190 	      if (REG_NOTE_KIND (link) == REG_INC)
2191 		mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
2192 
2193 	  while (n_regs_set-- > 0)
2194 	    {
2195 	      rtx note = find_regno_note (insn, REG_UNUSED,
2196 					  REGNO (regs_set[n_regs_set]));
2197 	      if (! note)
2198 		continue;
2199 
2200 	      mark_reg_death (XEXP (note, 0));
2201 	    }
2202 	}
2203     }
2204   bitmap_release (&curr_regs_live);
2205   if (flag_ira_region == IRA_REGION_MIXED
2206       || flag_ira_region == IRA_REGION_ALL)
2207     FOR_EACH_LOOP (loop, 0)
2208       {
2209 	EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
2210 	  if (! bitmap_bit_p (&LOOP_DATA (loop)->regs_ref, j))
2211 	    {
2212 	      enum reg_class pressure_class;
2213 	      int nregs;
2214 
2215 	      pressure_class = get_regno_pressure_class (j, &nregs);
2216 	      LOOP_DATA (loop)->max_reg_pressure[pressure_class] -= nregs;
2217 	    }
2218       }
2219   if (dump_file == NULL)
2220     return;
2221   FOR_EACH_LOOP (loop, 0)
2222     {
2223       parent = loop_outer (loop);
2224       fprintf (dump_file, "\n  Loop %d (parent %d, header bb%d, depth %d)\n",
2225 	       loop->num, (parent == NULL ? -1 : parent->num),
2226 	       loop->header->index, loop_depth (loop));
2227       fprintf (dump_file, "\n    ref. regnos:");
2228       EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_ref, 0, j, bi)
2229 	fprintf (dump_file, " %d", j);
2230       fprintf (dump_file, "\n    live regnos:");
2231       EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
2232 	fprintf (dump_file, " %d", j);
2233       fprintf (dump_file, "\n    Pressure:");
2234       for (i = 0; (int) i < ira_pressure_classes_num; i++)
2235 	{
2236 	  enum reg_class pressure_class;
2237 
2238 	  pressure_class = ira_pressure_classes[i];
2239 	  if (LOOP_DATA (loop)->max_reg_pressure[pressure_class] == 0)
2240 	    continue;
2241 	  fprintf (dump_file, " %s=%d", reg_class_names[pressure_class],
2242 		   LOOP_DATA (loop)->max_reg_pressure[pressure_class]);
2243 	}
2244       fprintf (dump_file, "\n");
2245     }
2246 }
2247 
2248 
2249 
2250 /* Move the invariants out of the loops.  */
2251 
2252 void
move_loop_invariants(void)2253 move_loop_invariants (void)
2254 {
2255   class loop *loop;
2256 
2257   if (optimize == 1)
2258     df_live_add_problem ();
2259   /* ??? This is a hack.  We should only need to call df_live_set_all_dirty
2260      for optimize == 1, but can_move_invariant_reg relies on DF_INSN_LUID
2261      being up-to-date.  That isn't always true (even after df_analyze)
2262      because df_process_deferred_rescans doesn't necessarily cause
2263      blocks to be rescanned.  */
2264   df_live_set_all_dirty ();
2265   if (flag_ira_loop_pressure)
2266     {
2267       df_analyze ();
2268       regstat_init_n_sets_and_refs ();
2269       ira_set_pseudo_classes (true, dump_file);
2270       calculate_loop_reg_pressure ();
2271       regstat_free_n_sets_and_refs ();
2272     }
2273   df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
2274   /* Process the loops, innermost first.  */
2275   FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2276     {
2277       curr_loop = loop;
2278       /* move_single_loop_invariants for very large loops is time consuming
2279 	 and might need a lot of memory.  For -O1 only do loop invariant
2280 	 motion for very small loops.  */
2281       unsigned max_bbs = param_loop_invariant_max_bbs_in_loop;
2282       if (optimize < 2)
2283 	max_bbs /= 10;
2284       if (loop->num_nodes <= max_bbs)
2285 	move_single_loop_invariants (loop);
2286     }
2287 
2288   FOR_EACH_LOOP (loop, 0)
2289     {
2290       free_loop_data (loop);
2291     }
2292 
2293   if (flag_ira_loop_pressure)
2294     /* There is no sense to keep this info because it was most
2295        probably outdated by subsequent passes.  */
2296     free_reg_info ();
2297   free (invariant_table);
2298   invariant_table = NULL;
2299   invariant_table_size = 0;
2300 
2301   if (optimize == 1)
2302     df_remove_problem (df_live);
2303 
2304   checking_verify_flow_info ();
2305 }
2306