1 /* Routines to implement minimum-cost maximal flow algorithm used to smooth
2    basic block and edge frequency counts.
3    Copyright (C) 2008-2020 Free Software Foundation, Inc.
4    Contributed by Paul Yuan (yingbo.com@gmail.com) and
5                   Vinodha Ramasamy (vinodha@google.com).
6 
7 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* References:
23    [1] "Feedback-directed Optimizations in GCC with Estimated Edge Profiles
24         from Hardware Event Sampling", Vinodha Ramasamy, Paul Yuan, Dehao Chen,
25         and Robert Hundt; GCC Summit 2008.
26    [2] "Complementing Missing and Inaccurate Profiling Using a Minimum Cost
27         Circulation Algorithm", Roy Levin, Ilan Newman and Gadi Haber;
28         HiPEAC '08.
29 
30    Algorithm to smooth basic block and edge counts:
31    1. create_fixup_graph: Create fixup graph by translating function CFG into
32       a graph that satisfies MCF algorithm requirements.
33    2. find_max_flow: Find maximal flow.
34    3. compute_residual_flow: Form residual network.
35    4. Repeat:
36       cancel_negative_cycle: While G contains a negative cost cycle C, reverse
37       the flow on the found cycle by the minimum residual capacity in that
38       cycle.
39    5. Form the minimal cost flow
40       f(u,v) = rf(v, u).
41    6. adjust_cfg_counts: Update initial edge weights with corrected weights.
42       delta(u.v) = f(u,v) -f(v,u).
43       w*(u,v) = w(u,v) + delta(u,v).  */
44 
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "backend.h"
49 #include "profile.h"
50 #include "dumpfile.h"
51 
52 /* CAP_INFINITY: Constant to represent infinite capacity.  */
53 #define CAP_INFINITY INTTYPE_MAXIMUM (int64_t)
54 
55 /* COST FUNCTION.  */
56 #define K_POS(b)        ((b))
57 #define K_NEG(b)        (50 * (b))
58 #define COST(k, w)      ((k) / mcf_ln ((w) + 2))
59 /* Limit the number of iterations for cancel_negative_cycles() to ensure
60    reasonable compile time.  */
61 #define MAX_ITER(n, e)  10 + (1000000 / ((n) * (e)))
62 enum edge_type
63 {
64   INVALID_EDGE,
65   VERTEX_SPLIT_EDGE,	    /* Edge to represent vertex with w(e) = w(v).  */
66   REDIRECT_EDGE,	    /* Edge after vertex transformation.  */
67   REVERSE_EDGE,
68   SOURCE_CONNECT_EDGE,	    /* Single edge connecting to single source.  */
69   SINK_CONNECT_EDGE,	    /* Single edge connecting to single sink.  */
70   BALANCE_EDGE,		    /* Edge connecting with source/sink: cp(e) = 0.  */
71   REDIRECT_NORMALIZED_EDGE, /* Normalized edge for a redirect edge.  */
72   REVERSE_NORMALIZED_EDGE   /* Normalized edge for a reverse edge.  */
73 };
74 
75 /* Structure to represent an edge in the fixup graph.  */
76 struct fixup_edge_type
77 {
78   int src;
79   int dest;
80   /* Flag denoting type of edge and attributes for the flow field.  */
81   edge_type type;
82   bool is_rflow_valid;
83   /* Index to the normalization vertex added for this edge.  */
84   int norm_vertex_index;
85   /* Flow for this edge.  */
86   gcov_type flow;
87   /* Residual flow for this edge - used during negative cycle canceling.  */
88   gcov_type rflow;
89   gcov_type weight;
90   gcov_type cost;
91   gcov_type max_capacity;
92 };
93 
94 typedef fixup_edge_type *fixup_edge_p;
95 
96 
97 /* Structure to represent a vertex in the fixup graph.  */
98 struct fixup_vertex_type
99 {
100   vec<fixup_edge_p> succ_edges;
101 };
102 
103 typedef fixup_vertex_type *fixup_vertex_p;
104 
105 /* Fixup graph used in the MCF algorithm.  */
106 struct fixup_graph_type
107 {
108   /* Current number of vertices for the graph.  */
109   int num_vertices;
110   /* Current number of edges for the graph.  */
111   int num_edges;
112   /* Index of new entry vertex.  */
113   int new_entry_index;
114   /* Index of new exit vertex.  */
115   int new_exit_index;
116   /* Fixup vertex list. Adjacency list for fixup graph.  */
117   fixup_vertex_p vertex_list;
118   /* Fixup edge list.  */
119   fixup_edge_p edge_list;
120 };
121 
122 struct queue_type
123 {
124   int *queue;
125   int head;
126   int tail;
127   int size;
128 };
129 
130 /* Structure used in the maximal flow routines to find augmenting path.  */
131 struct augmenting_path_type
132 {
133   /* Queue used to hold vertex indices.  */
134   queue_type queue_list;
135   /* Vector to hold chain of pred vertex indices in augmenting path.  */
136   int *bb_pred;
137   /* Vector that indicates if basic block i has been visited.  */
138   int *is_visited;
139 };
140 
141 
142 /* Function definitions.  */
143 
144 /* Dump routines to aid debugging.  */
145 
146 /* Print basic block with index N for FIXUP_GRAPH in n' and n'' format.  */
147 
148 static void
print_basic_block(FILE * file,fixup_graph_type * fixup_graph,int n)149 print_basic_block (FILE *file, fixup_graph_type *fixup_graph, int n)
150 {
151   if (n == ENTRY_BLOCK)
152     fputs ("ENTRY", file);
153   else if (n == ENTRY_BLOCK + 1)
154     fputs ("ENTRY''", file);
155   else if (n == 2 * EXIT_BLOCK)
156     fputs ("EXIT", file);
157   else if (n == 2 * EXIT_BLOCK + 1)
158     fputs ("EXIT''", file);
159   else if (n == fixup_graph->new_exit_index)
160     fputs ("NEW_EXIT", file);
161   else if (n == fixup_graph->new_entry_index)
162     fputs ("NEW_ENTRY", file);
163   else
164     {
165       fprintf (file, "%d", n / 2);
166       if (n % 2)
167 	fputs ("''", file);
168       else
169 	fputs ("'", file);
170     }
171 }
172 
173 
174 /* Print edge S->D for given fixup_graph with n' and n'' format.
175    PARAMETERS:
176    S is the index of the source vertex of the edge (input) and
177    D is the index of the destination vertex of the edge (input) for the given
178    fixup_graph (input).  */
179 
180 static void
print_edge(FILE * file,fixup_graph_type * fixup_graph,int s,int d)181 print_edge (FILE *file, fixup_graph_type *fixup_graph, int s, int d)
182 {
183   print_basic_block (file, fixup_graph, s);
184   fputs ("->", file);
185   print_basic_block (file, fixup_graph, d);
186 }
187 
188 
189 /* Dump out the attributes of a given edge FEDGE in the fixup_graph to a
190    file.  */
191 static void
dump_fixup_edge(FILE * file,fixup_graph_type * fixup_graph,fixup_edge_p fedge)192 dump_fixup_edge (FILE *file, fixup_graph_type *fixup_graph, fixup_edge_p fedge)
193 {
194   if (!fedge)
195     {
196       fputs ("NULL fixup graph edge.\n", file);
197       return;
198     }
199 
200   print_edge (file, fixup_graph, fedge->src, fedge->dest);
201   fputs (": ", file);
202 
203   if (fedge->type)
204     {
205       fprintf (file, "flow/capacity=%" PRId64 "/",
206 	       fedge->flow);
207       if (fedge->max_capacity == CAP_INFINITY)
208 	fputs ("+oo,", file);
209       else
210 	fprintf (file, "%" PRId64 ",", fedge->max_capacity);
211     }
212 
213   if (fedge->is_rflow_valid)
214     {
215       if (fedge->rflow == CAP_INFINITY)
216 	fputs (" rflow=+oo.", file);
217       else
218 	fprintf (file, " rflow=%" PRId64 ",", fedge->rflow);
219     }
220 
221   fprintf (file, " cost=%" PRId64 ".", fedge->cost);
222 
223   fprintf (file, "\t(%d->%d)", fedge->src, fedge->dest);
224 
225   if (fedge->type)
226     {
227       switch (fedge->type)
228 	{
229 	case VERTEX_SPLIT_EDGE:
230 	  fputs (" @VERTEX_SPLIT_EDGE", file);
231 	  break;
232 
233 	case REDIRECT_EDGE:
234 	  fputs (" @REDIRECT_EDGE", file);
235 	  break;
236 
237 	case SOURCE_CONNECT_EDGE:
238 	  fputs (" @SOURCE_CONNECT_EDGE", file);
239 	  break;
240 
241 	case SINK_CONNECT_EDGE:
242 	  fputs (" @SINK_CONNECT_EDGE", file);
243 	  break;
244 
245 	case REVERSE_EDGE:
246 	  fputs (" @REVERSE_EDGE", file);
247 	  break;
248 
249 	case BALANCE_EDGE:
250 	  fputs (" @BALANCE_EDGE", file);
251 	  break;
252 
253 	case REDIRECT_NORMALIZED_EDGE:
254 	case REVERSE_NORMALIZED_EDGE:
255 	  fputs ("  @NORMALIZED_EDGE", file);
256 	  break;
257 
258 	default:
259 	  fputs (" @INVALID_EDGE", file);
260 	  break;
261 	}
262     }
263   fputs ("\n", file);
264 }
265 
266 
267 /* Print out the edges and vertices of the given FIXUP_GRAPH, into the dump
268    file. The input string MSG is printed out as a heading.  */
269 
270 static void
dump_fixup_graph(FILE * file,fixup_graph_type * fixup_graph,const char * msg)271 dump_fixup_graph (FILE *file, fixup_graph_type *fixup_graph, const char *msg)
272 {
273   int i, j;
274   int fnum_vertices, fnum_edges;
275 
276   fixup_vertex_p fvertex_list, pfvertex;
277   fixup_edge_p pfedge;
278 
279   gcc_assert (fixup_graph);
280   fvertex_list = fixup_graph->vertex_list;
281   fnum_vertices = fixup_graph->num_vertices;
282   fnum_edges = fixup_graph->num_edges;
283 
284   fprintf (file, "\nDump fixup graph for %s(): %s.\n",
285 	   current_function_name (), msg);
286   fprintf (file,
287 	   "There are %d vertices and %d edges. new_exit_index is %d.\n\n",
288 	   fnum_vertices, fnum_edges, fixup_graph->new_exit_index);
289 
290   for (i = 0; i < fnum_vertices; i++)
291     {
292       pfvertex = fvertex_list + i;
293       fprintf (file, "vertex_list[%d]: %d succ fixup edges.\n",
294 	       i, pfvertex->succ_edges.length ());
295 
296       for (j = 0; pfvertex->succ_edges.iterate (j, &pfedge);
297 	   j++)
298 	{
299 	  /* Distinguish forward edges and backward edges in the residual flow
300              network.  */
301 	  if (pfedge->type)
302 	    fputs ("(f) ", file);
303 	  else if (pfedge->is_rflow_valid)
304 	    fputs ("(b) ", file);
305 	  dump_fixup_edge (file, fixup_graph, pfedge);
306 	}
307     }
308 
309   fputs ("\n", file);
310 }
311 
312 
313 /* Utility routines.  */
314 /* ln() implementation: approximate calculation. Returns ln of X.  */
315 
316 static double
mcf_ln(double x)317 mcf_ln (double x)
318 {
319 #define E       2.71828
320   int l = 1;
321   double m = E;
322 
323   gcc_assert (x >= 0);
324 
325   while (m < x)
326     {
327       m *= E;
328       l++;
329     }
330 
331   return l;
332 }
333 
334 
335 /* sqrt() implementation: based on open source QUAKE3 code (magic sqrt
336    implementation) by John Carmack.  Returns sqrt of X.  */
337 
338 static double
mcf_sqrt(double x)339 mcf_sqrt (double x)
340 {
341 #define MAGIC_CONST1    0x1fbcf800
342 #define MAGIC_CONST2    0x5f3759df
343   union {
344     int intPart;
345     float floatPart;
346   } convertor, convertor2;
347 
348   gcc_assert (x >= 0);
349 
350   convertor.floatPart = x;
351   convertor2.floatPart = x;
352   convertor.intPart = MAGIC_CONST1 + (convertor.intPart >> 1);
353   convertor2.intPart = MAGIC_CONST2 - (convertor2.intPart >> 1);
354 
355   return 0.5f * (convertor.floatPart + (x * convertor2.floatPart));
356 }
357 
358 
359 /* Common code shared between add_fixup_edge and add_rfixup_edge. Adds an edge
360    (SRC->DEST) to the edge_list maintained in FIXUP_GRAPH with cost of the edge
361    added set to COST.  */
362 
363 static fixup_edge_p
add_edge(fixup_graph_type * fixup_graph,int src,int dest,gcov_type cost)364 add_edge (fixup_graph_type *fixup_graph, int src, int dest, gcov_type cost)
365 {
366   fixup_vertex_p curr_vertex = fixup_graph->vertex_list + src;
367   fixup_edge_p curr_edge = fixup_graph->edge_list + fixup_graph->num_edges;
368   curr_edge->src = src;
369   curr_edge->dest = dest;
370   curr_edge->cost = cost;
371   fixup_graph->num_edges++;
372   if (dump_file)
373     dump_fixup_edge (dump_file, fixup_graph, curr_edge);
374   curr_vertex->succ_edges.safe_push (curr_edge);
375   return curr_edge;
376 }
377 
378 
379 /* Add a fixup edge (src->dest) with attributes TYPE, WEIGHT, COST and
380    MAX_CAPACITY to the edge_list in the fixup graph.  */
381 
382 static void
add_fixup_edge(fixup_graph_type * fixup_graph,int src,int dest,edge_type type,gcov_type weight,gcov_type cost,gcov_type max_capacity)383 add_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
384 		edge_type type, gcov_type weight, gcov_type cost,
385 		gcov_type max_capacity)
386 {
387   fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
388   curr_edge->type = type;
389   curr_edge->weight = weight;
390   curr_edge->max_capacity = max_capacity;
391 }
392 
393 
394 /* Add a residual edge (SRC->DEST) with attributes RFLOW and COST
395    to the fixup graph.  */
396 
397 static void
add_rfixup_edge(fixup_graph_type * fixup_graph,int src,int dest,gcov_type rflow,gcov_type cost)398 add_rfixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
399 		 gcov_type rflow, gcov_type cost)
400 {
401   fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
402   curr_edge->rflow = rflow;
403   curr_edge->is_rflow_valid = true;
404   /* This edge is not a valid edge - merely used to hold residual flow.  */
405   curr_edge->type = INVALID_EDGE;
406 }
407 
408 
409 /* Return the pointer to fixup edge SRC->DEST or NULL if edge does not
410    exist in the FIXUP_GRAPH.  */
411 
412 static fixup_edge_p
find_fixup_edge(fixup_graph_type * fixup_graph,int src,int dest)413 find_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest)
414 {
415   int j;
416   fixup_edge_p pfedge;
417   fixup_vertex_p pfvertex;
418 
419   gcc_assert (src < fixup_graph->num_vertices);
420 
421   pfvertex = fixup_graph->vertex_list + src;
422 
423   for (j = 0; pfvertex->succ_edges.iterate (j, &pfedge);
424        j++)
425     if (pfedge->dest == dest)
426       return pfedge;
427 
428   return NULL;
429 }
430 
431 
432 /* Cleanup routine to free structures in FIXUP_GRAPH.  */
433 
434 static void
delete_fixup_graph(fixup_graph_type * fixup_graph)435 delete_fixup_graph (fixup_graph_type *fixup_graph)
436 {
437   int i;
438   int fnum_vertices = fixup_graph->num_vertices;
439   fixup_vertex_p pfvertex = fixup_graph->vertex_list;
440 
441   for (i = 0; i < fnum_vertices; i++, pfvertex++)
442     pfvertex->succ_edges.release ();
443 
444   free (fixup_graph->vertex_list);
445   free (fixup_graph->edge_list);
446 }
447 
448 
449 /* Creates a fixup graph FIXUP_GRAPH from the function CFG.  */
450 
451 static void
create_fixup_graph(fixup_graph_type * fixup_graph)452 create_fixup_graph (fixup_graph_type *fixup_graph)
453 {
454   double sqrt_avg_vertex_weight = 0;
455   double total_vertex_weight = 0;
456   double k_pos = 0;
457   double k_neg = 0;
458   /* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v).  */
459   gcov_type *diff_out_in = NULL;
460   gcov_type supply_value = 1, demand_value = 0;
461   gcov_type fcost = 0;
462   int new_entry_index = 0, new_exit_index = 0;
463   int i = 0, j = 0;
464   int new_index = 0;
465   basic_block bb;
466   edge e;
467   edge_iterator ei;
468   fixup_edge_p pfedge, r_pfedge;
469   fixup_edge_p fedge_list;
470   int fnum_edges;
471 
472   /* Each basic_block will be split into 2 during vertex transformation.  */
473   int fnum_vertices_after_transform =  2 * n_basic_blocks_for_fn (cfun);
474   int fnum_edges_after_transform =
475     n_edges_for_fn (cfun) + n_basic_blocks_for_fn (cfun);
476 
477   /* Count the new SOURCE and EXIT vertices to be added.  */
478   int fmax_num_vertices =
479     (fnum_vertices_after_transform + n_edges_for_fn (cfun)
480      + n_basic_blocks_for_fn (cfun) + 2);
481 
482   /* In create_fixup_graph: Each basic block and edge can be split into 3
483      edges. Number of balance edges = n_basic_blocks. So after
484      create_fixup_graph:
485      max_edges = 4 * n_basic_blocks + 3 * n_edges
486      Accounting for residual flow edges
487      max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges)
488      = 8 * n_basic_blocks + 6 * n_edges
489      < 8 * n_basic_blocks + 8 * n_edges.  */
490   int fmax_num_edges = 8 * (n_basic_blocks_for_fn (cfun) +
491 			    n_edges_for_fn (cfun));
492 
493   /* Initial num of vertices in the fixup graph.  */
494   fixup_graph->num_vertices = n_basic_blocks_for_fn (cfun);
495 
496   /* Fixup graph vertex list.  */
497   fixup_graph->vertex_list =
498     (fixup_vertex_p) xcalloc (fmax_num_vertices, sizeof (fixup_vertex_type));
499 
500   /* Fixup graph edge list.  */
501   fixup_graph->edge_list =
502     (fixup_edge_p) xcalloc (fmax_num_edges, sizeof (fixup_edge_type));
503 
504   diff_out_in =
505     (gcov_type *) xcalloc (1 + fnum_vertices_after_transform,
506 			   sizeof (gcov_type));
507 
508   /* Compute constants b, k_pos, k_neg used in the cost function calculation.
509      b = sqrt(avg_vertex_weight(cfg)); k_pos = b; k_neg = 50b.  */
510   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
511     total_vertex_weight += bb_gcov_count (bb);
512 
513   sqrt_avg_vertex_weight = mcf_sqrt (total_vertex_weight /
514 				     n_basic_blocks_for_fn (cfun));
515 
516   k_pos = K_POS (sqrt_avg_vertex_weight);
517   k_neg = K_NEG (sqrt_avg_vertex_weight);
518 
519   /* 1. Vertex Transformation: Split each vertex v into two vertices v' and v'',
520      connected by an edge e from v' to v''. w(e) = w(v).  */
521 
522   if (dump_file)
523     fprintf (dump_file, "\nVertex transformation:\n");
524 
525   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
526   {
527     /* v'->v'': index1->(index1+1).  */
528     i = 2 * bb->index;
529     fcost = (gcov_type) COST (k_pos, bb_gcov_count (bb));
530     add_fixup_edge (fixup_graph, i, i + 1, VERTEX_SPLIT_EDGE, bb_gcov_count (bb),
531                     fcost, CAP_INFINITY);
532     fixup_graph->num_vertices++;
533 
534     FOR_EACH_EDGE (e, ei, bb->succs)
535     {
536       /* Edges with ignore attribute set should be treated like they don't
537          exist.  */
538       if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
539         continue;
540       j = 2 * e->dest->index;
541       fcost = (gcov_type) COST (k_pos, edge_gcov_count (e));
542       add_fixup_edge (fixup_graph, i + 1, j, REDIRECT_EDGE, edge_gcov_count (e),
543 		      fcost, CAP_INFINITY);
544     }
545   }
546 
547   /* After vertex transformation.  */
548   gcc_assert (fixup_graph->num_vertices == fnum_vertices_after_transform);
549   /* Redirect edges are not added for edges with ignore attribute.  */
550   gcc_assert (fixup_graph->num_edges <= fnum_edges_after_transform);
551 
552   fnum_edges_after_transform = fixup_graph->num_edges;
553 
554   /* 2. Initialize D(v).  */
555   for (i = 0; i < fnum_edges_after_transform; i++)
556     {
557       pfedge = fixup_graph->edge_list + i;
558       diff_out_in[pfedge->src] += pfedge->weight;
559       diff_out_in[pfedge->dest] -= pfedge->weight;
560     }
561 
562   /* Entry block - vertex indices 0, 1; EXIT block - vertex indices 2, 3.  */
563   for (i = 0; i <= 3; i++)
564     diff_out_in[i] = 0;
565 
566   /* 3. Add reverse edges: needed to decrease counts during smoothing.  */
567   if (dump_file)
568     fprintf (dump_file, "\nReverse edges:\n");
569   for (i = 0; i < fnum_edges_after_transform; i++)
570     {
571       pfedge = fixup_graph->edge_list + i;
572       if ((pfedge->src == 0) || (pfedge->src == 2))
573         continue;
574       r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
575       if (!r_pfedge && pfedge->weight)
576 	{
577 	  /* Skip adding reverse edges for edges with w(e) = 0, as its maximum
578 	     capacity is 0.  */
579 	  fcost = (gcov_type) COST (k_neg, pfedge->weight);
580 	  add_fixup_edge (fixup_graph, pfedge->dest, pfedge->src,
581 			  REVERSE_EDGE, 0, fcost, pfedge->weight);
582 	}
583     }
584 
585   /* 4. Create single source and sink. Connect new source vertex s' to function
586      entry block. Connect sink vertex t' to function exit.  */
587   if (dump_file)
588     fprintf (dump_file, "\ns'->S, T->t':\n");
589 
590   new_entry_index = fixup_graph->new_entry_index = fixup_graph->num_vertices;
591   fixup_graph->num_vertices++;
592   /* Set supply_value to 1 to avoid zero count function ENTRY.  */
593   add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK, SOURCE_CONNECT_EDGE,
594 		  1 /* supply_value */, 0, 1 /* supply_value */);
595 
596   /* Create new exit with EXIT_BLOCK as single pred.  */
597   new_exit_index = fixup_graph->new_exit_index = fixup_graph->num_vertices;
598   fixup_graph->num_vertices++;
599   add_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index,
600                   SINK_CONNECT_EDGE,
601                   0 /* demand_value */, 0, 0 /* demand_value */);
602 
603   /* Connect vertices with unbalanced D(v) to source/sink.  */
604   if (dump_file)
605     fprintf (dump_file, "\nD(v) balance:\n");
606   /* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4.
607      diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2.  */
608   for (i = 4; i < new_entry_index; i += 2)
609     {
610       if (diff_out_in[i] > 0)
611 	{
612 	  add_fixup_edge (fixup_graph, i, new_exit_index, BALANCE_EDGE, 0, 0,
613 			  diff_out_in[i]);
614 	  demand_value += diff_out_in[i];
615 	}
616       else if (diff_out_in[i] < 0)
617 	{
618 	  add_fixup_edge (fixup_graph, new_entry_index, i, BALANCE_EDGE, 0, 0,
619 			  -diff_out_in[i]);
620 	  supply_value -= diff_out_in[i];
621 	}
622     }
623 
624   /* Set supply = demand.  */
625   if (dump_file)
626     {
627       fprintf (dump_file, "\nAdjust supply and demand:\n");
628       fprintf (dump_file, "supply_value=%" PRId64 "\n",
629 	       supply_value);
630       fprintf (dump_file, "demand_value=%" PRId64 "\n",
631 	       demand_value);
632     }
633 
634   if (demand_value > supply_value)
635     {
636       pfedge = find_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK);
637       pfedge->max_capacity += (demand_value - supply_value);
638     }
639   else
640     {
641       pfedge = find_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index);
642       pfedge->max_capacity += (supply_value - demand_value);
643     }
644 
645   /* 6. Normalize edges: remove anti-parallel edges. Anti-parallel edges are
646      created by the vertex transformation step from self-edges in the original
647      CFG and by the reverse edges added earlier.  */
648   if (dump_file)
649     fprintf (dump_file, "\nNormalize edges:\n");
650 
651   fnum_edges = fixup_graph->num_edges;
652   fedge_list = fixup_graph->edge_list;
653 
654   for (i = 0; i < fnum_edges; i++)
655     {
656       pfedge = fedge_list + i;
657       r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
658       if (((pfedge->type == VERTEX_SPLIT_EDGE)
659 	   || (pfedge->type == REDIRECT_EDGE)) && r_pfedge)
660 	{
661 	  new_index = fixup_graph->num_vertices;
662 	  fixup_graph->num_vertices++;
663 
664 	  if (dump_file)
665 	    {
666 	      fprintf (dump_file, "\nAnti-parallel edge:\n");
667 	      dump_fixup_edge (dump_file, fixup_graph, pfedge);
668 	      dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
669 	      fprintf (dump_file, "New vertex is %d.\n", new_index);
670 	      fprintf (dump_file, "------------------\n");
671 	    }
672 
673 	  pfedge->cost /= 2;
674 	  pfedge->norm_vertex_index = new_index;
675 	  if (dump_file)
676 	    {
677 	      fprintf (dump_file, "After normalization:\n");
678 	      dump_fixup_edge (dump_file, fixup_graph, pfedge);
679 	    }
680 
681 	  /* Add a new fixup edge: new_index->src.  */
682 	  add_fixup_edge (fixup_graph, new_index, pfedge->src,
683 			  REVERSE_NORMALIZED_EDGE, 0, r_pfedge->cost,
684 			  r_pfedge->max_capacity);
685 	  gcc_assert (fixup_graph->num_vertices <= fmax_num_vertices);
686 
687 	  /* Edge: r_pfedge->src -> r_pfedge->dest
688              ==> r_pfedge->src -> new_index.  */
689 	  r_pfedge->dest = new_index;
690 	  r_pfedge->type = REVERSE_NORMALIZED_EDGE;
691 	  r_pfedge->cost = pfedge->cost;
692 	  r_pfedge->max_capacity = pfedge->max_capacity;
693 	  if (dump_file)
694 	    dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
695 	}
696     }
697 
698   if (dump_file)
699     dump_fixup_graph (dump_file, fixup_graph, "After create_fixup_graph()");
700 
701   /* Cleanup.  */
702   free (diff_out_in);
703 }
704 
705 
706 /* Allocates space for the structures in AUGMENTING_PATH.  The space needed is
707    proportional to the number of nodes in the graph, which is given by
708    GRAPH_SIZE.  */
709 
710 static void
init_augmenting_path(augmenting_path_type * augmenting_path,int graph_size)711 init_augmenting_path (augmenting_path_type *augmenting_path, int graph_size)
712 {
713   augmenting_path->queue_list.queue = (int *)
714     xcalloc (graph_size + 2, sizeof (int));
715   augmenting_path->queue_list.size = graph_size + 2;
716   augmenting_path->bb_pred = (int *) xcalloc (graph_size, sizeof (int));
717   augmenting_path->is_visited = (int *) xcalloc (graph_size, sizeof (int));
718 }
719 
720 /* Free the structures in AUGMENTING_PATH.  */
721 static void
free_augmenting_path(augmenting_path_type * augmenting_path)722 free_augmenting_path (augmenting_path_type *augmenting_path)
723 {
724   free (augmenting_path->queue_list.queue);
725   free (augmenting_path->bb_pred);
726   free (augmenting_path->is_visited);
727 }
728 
729 
730 /* Queue routines. Assumes queue will never overflow.  */
731 
732 static void
init_queue(queue_type * queue_list)733 init_queue (queue_type *queue_list)
734 {
735   gcc_assert (queue_list);
736   queue_list->head = 0;
737   queue_list->tail = 0;
738 }
739 
740 /* Return true if QUEUE_LIST is empty.  */
741 static bool
is_empty(queue_type * queue_list)742 is_empty (queue_type *queue_list)
743 {
744   return (queue_list->head == queue_list->tail);
745 }
746 
747 /* Insert element X into QUEUE_LIST.  */
748 static void
enqueue(queue_type * queue_list,int x)749 enqueue (queue_type *queue_list, int x)
750 {
751   gcc_assert (queue_list->tail < queue_list->size);
752   queue_list->queue[queue_list->tail] = x;
753   (queue_list->tail)++;
754 }
755 
756 /* Return the first element in QUEUE_LIST.  */
757 static int
dequeue(queue_type * queue_list)758 dequeue (queue_type *queue_list)
759 {
760   int x;
761   gcc_assert (queue_list->head >= 0);
762   x = queue_list->queue[queue_list->head];
763   (queue_list->head)++;
764   return x;
765 }
766 
767 
768 /* Finds a negative cycle in the residual network using
769    the Bellman-Ford algorithm. The flow on the found cycle is reversed by the
770    minimum residual capacity of that cycle. ENTRY and EXIT vertices are not
771    considered.
772 
773 Parameters:
774    FIXUP_GRAPH - Residual graph  (input/output)
775    The following are allocated/freed by the caller:
776    PI - Vector to hold predecessors in path  (pi = pred index)
777    D - D[I] holds minimum cost of path from i to sink
778    CYCLE - Vector to hold the minimum cost cycle
779 
780 Return:
781    true if a negative cycle was found, false otherwise.  */
782 
783 static bool
cancel_negative_cycle(fixup_graph_type * fixup_graph,int * pi,gcov_type * d,int * cycle)784 cancel_negative_cycle (fixup_graph_type *fixup_graph,
785 		       int *pi, gcov_type *d, int *cycle)
786 {
787   int i, j, k;
788   int fnum_vertices, fnum_edges;
789   fixup_edge_p fedge_list, pfedge, r_pfedge;
790   bool found_cycle = false;
791   int cycle_start = 0, cycle_end = 0;
792   gcov_type sum_cost = 0, cycle_flow = 0;
793   int new_entry_index;
794   bool propagated = false;
795 
796   gcc_assert (fixup_graph);
797   fnum_vertices = fixup_graph->num_vertices;
798   fnum_edges = fixup_graph->num_edges;
799   fedge_list = fixup_graph->edge_list;
800   new_entry_index = fixup_graph->new_entry_index;
801 
802   /* Initialize.  */
803   /* Skip ENTRY.  */
804   for (i = 1; i < fnum_vertices; i++)
805     {
806       d[i] = CAP_INFINITY;
807       pi[i] = -1;
808       cycle[i] = -1;
809     }
810   d[ENTRY_BLOCK] = 0;
811 
812   /* Relax.  */
813   for (k = 1; k < fnum_vertices; k++)
814   {
815     propagated = false;
816     for (i = 0; i < fnum_edges; i++)
817       {
818 	pfedge = fedge_list + i;
819 	if (pfedge->src == new_entry_index)
820 	  continue;
821 	if (pfedge->is_rflow_valid && pfedge->rflow
822             && d[pfedge->src] != CAP_INFINITY
823 	    && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
824 	  {
825 	    d[pfedge->dest] = d[pfedge->src] + pfedge->cost;
826 	    pi[pfedge->dest] = pfedge->src;
827             propagated = true;
828 	  }
829       }
830     if (!propagated)
831       break;
832   }
833 
834   if (!propagated)
835   /* No negative cycles exist.  */
836     return 0;
837 
838   /* Detect.  */
839   for (i = 0; i < fnum_edges; i++)
840     {
841       pfedge = fedge_list + i;
842       if (pfedge->src == new_entry_index)
843 	continue;
844       if (pfedge->is_rflow_valid && pfedge->rflow
845           && d[pfedge->src] != CAP_INFINITY
846 	  && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
847 	{
848 	  found_cycle = true;
849 	  break;
850 	}
851     }
852 
853   if (!found_cycle)
854     return 0;
855 
856   /* Augment the cycle with the cycle's minimum residual capacity.  */
857   found_cycle = false;
858   cycle[0] = pfedge->dest;
859   j = pfedge->dest;
860 
861   for (i = 1; i < fnum_vertices; i++)
862     {
863       j = pi[j];
864       cycle[i] = j;
865       for (k = 0; k < i; k++)
866 	{
867 	  if (cycle[k] == j)
868 	    {
869 	      /* cycle[k] -> ... -> cycle[i].  */
870 	      cycle_start = k;
871 	      cycle_end = i;
872 	      found_cycle = true;
873 	      break;
874 	    }
875 	}
876       if (found_cycle)
877 	break;
878     }
879 
880   gcc_assert (cycle[cycle_start] == cycle[cycle_end]);
881   if (dump_file)
882     fprintf (dump_file, "\nNegative cycle length is %d:\n",
883 	     cycle_end - cycle_start);
884 
885   sum_cost = 0;
886   cycle_flow = CAP_INFINITY;
887   for (k = cycle_start; k < cycle_end; k++)
888     {
889       pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
890       cycle_flow = MIN (cycle_flow, pfedge->rflow);
891       sum_cost += pfedge->cost;
892       if (dump_file)
893 	fprintf (dump_file, "%d ", cycle[k]);
894     }
895 
896   if (dump_file)
897     {
898       fprintf (dump_file, "%d", cycle[k]);
899       fprintf (dump_file,
900 	       ": (%" PRId64 ", %" PRId64
901 	       ")\n", sum_cost, cycle_flow);
902       fprintf (dump_file,
903 	       "Augment cycle with %" PRId64 "\n",
904 	       cycle_flow);
905     }
906 
907   for (k = cycle_start; k < cycle_end; k++)
908     {
909       pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
910       r_pfedge = find_fixup_edge (fixup_graph, cycle[k], cycle[k + 1]);
911       pfedge->rflow -= cycle_flow;
912       if (pfedge->type)
913 	pfedge->flow += cycle_flow;
914       r_pfedge->rflow += cycle_flow;
915       if (r_pfedge->type)
916 	r_pfedge->flow -= cycle_flow;
917     }
918 
919   return true;
920 }
921 
922 
923 /* Computes the residual flow for FIXUP_GRAPH by setting the rflow field of
924    the edges. ENTRY and EXIT vertices should not be considered.  */
925 
926 static void
compute_residual_flow(fixup_graph_type * fixup_graph)927 compute_residual_flow (fixup_graph_type *fixup_graph)
928 {
929   int i;
930   int fnum_edges;
931   fixup_edge_p fedge_list, pfedge;
932 
933   gcc_assert (fixup_graph);
934 
935   if (dump_file)
936     fputs ("\ncompute_residual_flow():\n", dump_file);
937 
938   fnum_edges = fixup_graph->num_edges;
939   fedge_list = fixup_graph->edge_list;
940 
941   for (i = 0; i < fnum_edges; i++)
942     {
943       pfedge = fedge_list + i;
944       pfedge->rflow = pfedge->max_capacity - pfedge->flow;
945       pfedge->is_rflow_valid = true;
946       add_rfixup_edge (fixup_graph, pfedge->dest, pfedge->src, pfedge->flow,
947 		       -pfedge->cost);
948     }
949 }
950 
951 
952 /* Uses Edmonds-Karp algorithm - BFS to find augmenting path from SOURCE to
953    SINK. The fields in the edge vector in the FIXUP_GRAPH are not modified by
954    this routine. The vector bb_pred in the AUGMENTING_PATH structure is updated
955    to reflect the path found.
956    Returns: 0 if no augmenting path is found, 1 otherwise.  */
957 
958 static int
find_augmenting_path(fixup_graph_type * fixup_graph,augmenting_path_type * augmenting_path,int source,int sink)959 find_augmenting_path (fixup_graph_type *fixup_graph,
960 		      augmenting_path_type *augmenting_path, int source,
961 		      int sink)
962 {
963   int u = 0;
964   int i;
965   fixup_vertex_p fvertex_list, pfvertex;
966   fixup_edge_p pfedge;
967   int *bb_pred, *is_visited;
968   queue_type *queue_list;
969 
970   gcc_assert (augmenting_path);
971   bb_pred = augmenting_path->bb_pred;
972   gcc_assert (bb_pred);
973   is_visited = augmenting_path->is_visited;
974   gcc_assert (is_visited);
975   queue_list = &(augmenting_path->queue_list);
976 
977   gcc_assert (fixup_graph);
978 
979   fvertex_list = fixup_graph->vertex_list;
980 
981   for (u = 0; u < fixup_graph->num_vertices; u++)
982     is_visited[u] = 0;
983 
984   init_queue (queue_list);
985   enqueue (queue_list, source);
986   bb_pred[source] = -1;
987 
988   while (!is_empty (queue_list))
989     {
990       u = dequeue (queue_list);
991       is_visited[u] = 1;
992       pfvertex = fvertex_list + u;
993       for (i = 0; pfvertex->succ_edges.iterate (i, &pfedge);
994 	   i++)
995 	{
996 	  int dest = pfedge->dest;
997 	  if ((pfedge->rflow > 0) && (is_visited[dest] == 0))
998 	    {
999 	      enqueue (queue_list, dest);
1000 	      bb_pred[dest] = u;
1001 	      is_visited[dest] = 1;
1002 	      if (dest == sink)
1003 		return 1;
1004 	    }
1005 	}
1006     }
1007 
1008   return 0;
1009 }
1010 
1011 
1012 /* Routine to find the maximal flow:
1013    Algorithm:
1014    1. Initialize flow to 0
1015    2. Find an augmenting path form source to sink.
1016    3. Send flow equal to the path's residual capacity along the edges of this path.
1017    4. Repeat steps 2 and 3 until no new augmenting path is found.
1018 
1019 Parameters:
1020 SOURCE: index of source vertex (input)
1021 SINK: index of sink vertex    (input)
1022 FIXUP_GRAPH: adjacency matrix representing the graph. The flow of the edges will be
1023              set to have a valid maximal flow by this routine. (input)
1024 Return: Maximum flow possible.  */
1025 
1026 static gcov_type
find_max_flow(fixup_graph_type * fixup_graph,int source,int sink)1027 find_max_flow (fixup_graph_type *fixup_graph, int source, int sink)
1028 {
1029   int fnum_edges;
1030   augmenting_path_type augmenting_path;
1031   int *bb_pred;
1032   gcov_type max_flow = 0;
1033   int i, u;
1034   fixup_edge_p fedge_list, pfedge, r_pfedge;
1035 
1036   gcc_assert (fixup_graph);
1037 
1038   fnum_edges = fixup_graph->num_edges;
1039   fedge_list = fixup_graph->edge_list;
1040 
1041   /* Initialize flow to 0.  */
1042   for (i = 0; i < fnum_edges; i++)
1043     {
1044       pfedge = fedge_list + i;
1045       pfedge->flow = 0;
1046     }
1047 
1048   compute_residual_flow (fixup_graph);
1049 
1050   init_augmenting_path (&augmenting_path, fixup_graph->num_vertices);
1051 
1052   bb_pred = augmenting_path.bb_pred;
1053   while (find_augmenting_path (fixup_graph, &augmenting_path, source, sink))
1054     {
1055       /* Determine the amount by which we can increment the flow.  */
1056       gcov_type increment = CAP_INFINITY;
1057       for (u = sink; u != source; u = bb_pred[u])
1058 	{
1059 	  pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
1060 	  increment = MIN (increment, pfedge->rflow);
1061 	}
1062       max_flow += increment;
1063 
1064       /* Now increment the flow. EXIT vertex index is 1.  */
1065       for (u = sink; u != source; u = bb_pred[u])
1066 	{
1067 	  pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
1068 	  r_pfedge = find_fixup_edge (fixup_graph, u, bb_pred[u]);
1069 	  if (pfedge->type)
1070 	    {
1071 	      /* forward edge.  */
1072 	      pfedge->flow += increment;
1073 	      pfedge->rflow -= increment;
1074 	      r_pfedge->rflow += increment;
1075 	    }
1076 	  else
1077 	    {
1078 	      /* backward edge.  */
1079 	      gcc_assert (r_pfedge->type);
1080 	      r_pfedge->rflow += increment;
1081 	      r_pfedge->flow -= increment;
1082 	      pfedge->rflow -= increment;
1083 	    }
1084 	}
1085 
1086       if (dump_file)
1087 	{
1088 	  fprintf (dump_file, "\nDump augmenting path:\n");
1089 	  for (u = sink; u != source; u = bb_pred[u])
1090 	    {
1091 	      print_basic_block (dump_file, fixup_graph, u);
1092 	      fprintf (dump_file, "<-");
1093 	    }
1094 	  fprintf (dump_file,
1095 		   "ENTRY  (path_capacity=%" PRId64 ")\n",
1096 		   increment);
1097 	  fprintf (dump_file,
1098 		   "Network flow is %" PRId64 ".\n",
1099 		   max_flow);
1100 	}
1101     }
1102 
1103   free_augmenting_path (&augmenting_path);
1104   if (dump_file)
1105     dump_fixup_graph (dump_file, fixup_graph, "After find_max_flow()");
1106   return max_flow;
1107 }
1108 
1109 
1110 /* Computes the corrected edge and basic block weights using FIXUP_GRAPH
1111    after applying the find_minimum_cost_flow() routine.  */
1112 
1113 static void
adjust_cfg_counts(fixup_graph_type * fixup_graph)1114 adjust_cfg_counts (fixup_graph_type *fixup_graph)
1115 {
1116   basic_block bb;
1117   edge e;
1118   edge_iterator ei;
1119   int i, j;
1120   fixup_edge_p pfedge, pfedge_n;
1121 
1122   gcc_assert (fixup_graph);
1123 
1124   if (dump_file)
1125     fprintf (dump_file, "\nadjust_cfg_counts():\n");
1126 
1127   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
1128 		  EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1129     {
1130       i = 2 * bb->index;
1131 
1132       /* Fixup BB.  */
1133       if (dump_file)
1134         fprintf (dump_file,
1135                  "BB%d: %" PRId64 "", bb->index, bb_gcov_count (bb));
1136 
1137       pfedge = find_fixup_edge (fixup_graph, i, i + 1);
1138       if (pfedge->flow)
1139         {
1140           bb_gcov_count (bb) += pfedge->flow;
1141 	  if (dump_file)
1142 	    {
1143 	      fprintf (dump_file, " + %" PRId64 "(",
1144 	               pfedge->flow);
1145 	      print_edge (dump_file, fixup_graph, i, i + 1);
1146 	      fprintf (dump_file, ")");
1147 	    }
1148         }
1149 
1150       pfedge_n =
1151         find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
1152       /* Deduct flow from normalized reverse edge.  */
1153       if (pfedge->norm_vertex_index && pfedge_n->flow)
1154         {
1155           bb_gcov_count (bb) -= pfedge_n->flow;
1156 	  if (dump_file)
1157 	    {
1158 	      fprintf (dump_file, " - %" PRId64 "(",
1159 		       pfedge_n->flow);
1160 	      print_edge (dump_file, fixup_graph, i + 1,
1161 			  pfedge->norm_vertex_index);
1162 	      fprintf (dump_file, ")");
1163 	    }
1164         }
1165       if (dump_file)
1166         fprintf (dump_file, " = %" PRId64 "\n", bb_gcov_count (bb));
1167 
1168       /* Fixup edge.  */
1169       FOR_EACH_EDGE (e, ei, bb->succs)
1170         {
1171           /* Treat edges with ignore attribute set as if they don't exist.  */
1172           if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
1173 	    continue;
1174 
1175           j = 2 * e->dest->index;
1176           if (dump_file)
1177 	    fprintf (dump_file, "%d->%d: %" PRId64 "",
1178 		     bb->index, e->dest->index, edge_gcov_count (e));
1179 
1180           pfedge = find_fixup_edge (fixup_graph, i + 1, j);
1181 
1182           if (bb->index != e->dest->index)
1183 	    {
1184 	      /* Non-self edge.  */
1185 	      if (pfedge->flow)
1186 	        {
1187 	          edge_gcov_count (e) += pfedge->flow;
1188 	          if (dump_file)
1189 		    {
1190 		      fprintf (dump_file, " + %" PRId64 "(",
1191 			       pfedge->flow);
1192 		      print_edge (dump_file, fixup_graph, i + 1, j);
1193 		      fprintf (dump_file, ")");
1194 		    }
1195 	        }
1196 
1197 	      pfedge_n =
1198 	        find_fixup_edge (fixup_graph, j, pfedge->norm_vertex_index);
1199 	      /* Deduct flow from normalized reverse edge.  */
1200 	      if (pfedge->norm_vertex_index && pfedge_n->flow)
1201 	        {
1202 	          edge_gcov_count (e) -= pfedge_n->flow;
1203 	          if (dump_file)
1204 		    {
1205 		      fprintf (dump_file, " - %" PRId64 "(",
1206 			       pfedge_n->flow);
1207 		      print_edge (dump_file, fixup_graph, j,
1208 			          pfedge->norm_vertex_index);
1209 		      fprintf (dump_file, ")");
1210 		    }
1211 	        }
1212 	    }
1213           else
1214 	    {
1215 	      /* Handle self edges. Self edge is split with a normalization
1216                  vertex. Here i=j.  */
1217 	      pfedge = find_fixup_edge (fixup_graph, j, i + 1);
1218 	      pfedge_n =
1219 	        find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
1220 	      edge_gcov_count (e) += pfedge_n->flow;
1221 	      bb_gcov_count (bb) += pfedge_n->flow;
1222 	      if (dump_file)
1223 	        {
1224 	          fprintf (dump_file, "(self edge)");
1225 	          fprintf (dump_file, " + %" PRId64 "(",
1226 		           pfedge_n->flow);
1227 	          print_edge (dump_file, fixup_graph, i + 1,
1228 			      pfedge->norm_vertex_index);
1229 	          fprintf (dump_file, ")");
1230 	        }
1231 	    }
1232 
1233           if (bb_gcov_count (bb))
1234 	    e->probability = profile_probability::probability_in_gcov_type
1235 			 (edge_gcov_count (e), bb_gcov_count (bb));
1236           if (dump_file)
1237 	    {
1238 	      fprintf (dump_file, " = %" PRId64 "\t",
1239 		       edge_gcov_count (e));
1240 	      e->probability.dump (dump_file);
1241 	      fprintf (dump_file, "\n");
1242 	    }
1243         }
1244     }
1245 
1246   bb_gcov_count (ENTRY_BLOCK_PTR_FOR_FN (cfun)) =
1247 		     sum_edge_counts (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1248   bb_gcov_count (EXIT_BLOCK_PTR_FOR_FN (cfun)) =
1249 		     sum_edge_counts (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
1250 
1251   /* Compute edge probabilities.  */
1252   FOR_ALL_BB_FN (bb, cfun)
1253     {
1254       if (bb_gcov_count (bb))
1255         {
1256           FOR_EACH_EDGE (e, ei, bb->succs)
1257             e->probability = profile_probability::probability_in_gcov_type
1258 				(edge_gcov_count (e), bb_gcov_count (bb));
1259         }
1260     }
1261 
1262   if (dump_file)
1263     {
1264       fprintf (dump_file, "\nCheck %s() CFG flow conservation:\n",
1265 	       current_function_name ());
1266       FOR_EACH_BB_FN (bb, cfun)
1267         {
1268           if ((bb_gcov_count (bb) != sum_edge_counts (bb->preds))
1269                || (bb_gcov_count (bb) != sum_edge_counts (bb->succs)))
1270             {
1271               fprintf (dump_file,
1272                        "BB%d(%" PRId64 ")  **INVALID**: ",
1273                        bb->index, bb_gcov_count (bb));
1274               fprintf (stderr,
1275                        "******** BB%d(%" PRId64
1276                        ")  **INVALID**: \n", bb->index, bb_gcov_count (bb));
1277               fprintf (dump_file, "in_edges=%" PRId64 " ",
1278                        sum_edge_counts (bb->preds));
1279               fprintf (dump_file, "out_edges=%" PRId64 "\n",
1280                        sum_edge_counts (bb->succs));
1281             }
1282          }
1283     }
1284 }
1285 
1286 
1287 /* Implements the negative cycle canceling algorithm to compute a minimum cost
1288    flow.
1289 Algorithm:
1290 1. Find maximal flow.
1291 2. Form residual network
1292 3. Repeat:
1293   While G contains a negative cost cycle C, reverse the flow on the found cycle
1294   by the minimum residual capacity in that cycle.
1295 4. Form the minimal cost flow
1296   f(u,v) = rf(v, u)
1297 Input:
1298   FIXUP_GRAPH - Initial fixup graph.
1299   The flow field is modified to represent the minimum cost flow.  */
1300 
1301 static void
find_minimum_cost_flow(fixup_graph_type * fixup_graph)1302 find_minimum_cost_flow (fixup_graph_type *fixup_graph)
1303 {
1304   /* Holds the index of predecessor in path.  */
1305   int *pred;
1306   /* Used to hold the minimum cost cycle.  */
1307   int *cycle;
1308   /* Used to record the number of iterations of cancel_negative_cycle.  */
1309   int iteration;
1310   /* Vector d[i] holds the minimum cost of path from i to sink.  */
1311   gcov_type *d;
1312   int fnum_vertices;
1313   int new_exit_index;
1314   int new_entry_index;
1315 
1316   gcc_assert (fixup_graph);
1317   fnum_vertices = fixup_graph->num_vertices;
1318   new_exit_index = fixup_graph->new_exit_index;
1319   new_entry_index = fixup_graph->new_entry_index;
1320 
1321   find_max_flow (fixup_graph, new_entry_index, new_exit_index);
1322 
1323   /* Initialize the structures for find_negative_cycle().  */
1324   pred = (int *) xcalloc (fnum_vertices, sizeof (int));
1325   d = (gcov_type *) xcalloc (fnum_vertices, sizeof (gcov_type));
1326   cycle = (int *) xcalloc (fnum_vertices, sizeof (int));
1327 
1328   /* Repeatedly find and cancel negative cost cycles, until
1329      no more negative cycles exist. This also updates the flow field
1330      to represent the minimum cost flow so far.  */
1331   iteration = 0;
1332   while (cancel_negative_cycle (fixup_graph, pred, d, cycle))
1333     {
1334       iteration++;
1335       if (iteration > MAX_ITER (fixup_graph->num_vertices,
1336                                 fixup_graph->num_edges))
1337         break;
1338     }
1339 
1340   if (dump_file)
1341     dump_fixup_graph (dump_file, fixup_graph,
1342 		      "After find_minimum_cost_flow()");
1343 
1344   /* Cleanup structures.  */
1345   free (pred);
1346   free (d);
1347   free (cycle);
1348 }
1349 
1350 
1351 /* Compute the sum of the edge counts in TO_EDGES.  */
1352 
1353 gcov_type
sum_edge_counts(vec<edge,va_gc> * to_edges)1354 sum_edge_counts (vec<edge, va_gc> *to_edges)
1355 {
1356   gcov_type sum = 0;
1357   edge e;
1358   edge_iterator ei;
1359 
1360   FOR_EACH_EDGE (e, ei, to_edges)
1361     {
1362       if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
1363         continue;
1364       sum += edge_gcov_count (e);
1365     }
1366   return sum;
1367 }
1368 
1369 
1370 /* Main routine. Smoothes the initial assigned basic block and edge counts using
1371    a minimum cost flow algorithm, to ensure that the flow consistency rule is
1372    obeyed: sum of outgoing edges = sum of incoming edges for each basic
1373    block.  */
1374 
1375 void
mcf_smooth_cfg(void)1376 mcf_smooth_cfg (void)
1377 {
1378   fixup_graph_type fixup_graph;
1379   memset (&fixup_graph, 0, sizeof (fixup_graph));
1380   create_fixup_graph (&fixup_graph);
1381   find_minimum_cost_flow (&fixup_graph);
1382   adjust_cfg_counts (&fixup_graph);
1383   delete_fixup_graph (&fixup_graph);
1384 }
1385