1 /* Perform simple optimizations to clean up the result of reload.
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 #include "function-abi.h"
44 #include "rtl-iter.h"
45 
46 static int reload_cse_noop_set_p (rtx);
47 static bool reload_cse_simplify (rtx_insn *, rtx);
48 static void reload_cse_regs_1 (void);
49 static int reload_cse_simplify_set (rtx, rtx_insn *);
50 static int reload_cse_simplify_operands (rtx_insn *, rtx);
51 
52 static void reload_combine (void);
53 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
54 static void reload_combine_note_store (rtx, const_rtx, void *);
55 
56 static bool reload_cse_move2add (rtx_insn *);
57 static void move2add_note_store (rtx, const_rtx, void *);
58 
59 /* Call cse / combine like post-reload optimization phases.
60    FIRST is the first instruction.  */
61 
62 static void
reload_cse_regs(rtx_insn * first ATTRIBUTE_UNUSED)63 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
64 {
65   bool moves_converted;
66   reload_cse_regs_1 ();
67   reload_combine ();
68   moves_converted = reload_cse_move2add (first);
69   if (flag_expensive_optimizations)
70     {
71       if (moves_converted)
72 	reload_combine ();
73       reload_cse_regs_1 ();
74     }
75 }
76 
77 /* See whether a single set SET is a noop.  */
78 static int
reload_cse_noop_set_p(rtx set)79 reload_cse_noop_set_p (rtx set)
80 {
81   if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
82     return 0;
83 
84   return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
85 }
86 
87 /* Try to simplify INSN.  Return true if the CFG may have changed.  */
88 static bool
reload_cse_simplify(rtx_insn * insn,rtx testreg)89 reload_cse_simplify (rtx_insn *insn, rtx testreg)
90 {
91   rtx body = PATTERN (insn);
92   basic_block insn_bb = BLOCK_FOR_INSN (insn);
93   unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
94 
95   /* If NO_FUNCTION_CSE has been set by the target, then we should not try
96      to cse function calls.  */
97   if (NO_FUNCTION_CSE && CALL_P (insn))
98     return false;
99 
100   if (GET_CODE (body) == SET)
101     {
102       int count = 0;
103 
104       /* Simplify even if we may think it is a no-op.
105          We may think a memory load of a value smaller than WORD_SIZE
106          is redundant because we haven't taken into account possible
107          implicit extension.  reload_cse_simplify_set() will bring
108          this out, so it's safer to simplify before we delete.  */
109       count += reload_cse_simplify_set (body, insn);
110 
111       if (!count && reload_cse_noop_set_p (body))
112 	{
113 	  if (check_for_inc_dec (insn))
114 	    delete_insn_and_edges (insn);
115 	  /* We're done with this insn.  */
116 	  goto done;
117 	}
118 
119       if (count > 0)
120 	apply_change_group ();
121       else
122 	reload_cse_simplify_operands (insn, testreg);
123     }
124   else if (GET_CODE (body) == PARALLEL)
125     {
126       int i;
127       int count = 0;
128       rtx value = NULL_RTX;
129 
130       /* Registers mentioned in the clobber list for an asm cannot be reused
131 	 within the body of the asm.  Invalidate those registers now so that
132 	 we don't try to substitute values for them.  */
133       if (asm_noperands (body) >= 0)
134 	{
135 	  for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
136 	    {
137 	      rtx part = XVECEXP (body, 0, i);
138 	      if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
139 		cselib_invalidate_rtx (XEXP (part, 0));
140 	    }
141 	}
142 
143       /* If every action in a PARALLEL is a noop, we can delete
144 	 the entire PARALLEL.  */
145       for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
146 	{
147 	  rtx part = XVECEXP (body, 0, i);
148 	  if (GET_CODE (part) == SET)
149 	    {
150 	      if (! reload_cse_noop_set_p (part))
151 		break;
152 	      if (REG_P (SET_DEST (part))
153 		  && REG_FUNCTION_VALUE_P (SET_DEST (part)))
154 		{
155 		  if (value)
156 		    break;
157 		  value = SET_DEST (part);
158 		}
159 	    }
160 	  else if (GET_CODE (part) != CLOBBER && GET_CODE (part) != USE)
161 	    break;
162 	}
163 
164       if (i < 0)
165 	{
166 	  if (check_for_inc_dec (insn))
167 	    delete_insn_and_edges (insn);
168 	  /* We're done with this insn.  */
169 	  goto done;
170 	}
171 
172       /* It's not a no-op, but we can try to simplify it.  */
173       for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
174 	if (GET_CODE (XVECEXP (body, 0, i)) == SET)
175 	  count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
176 
177       if (count > 0)
178 	apply_change_group ();
179       else
180 	reload_cse_simplify_operands (insn, testreg);
181     }
182 
183 done:
184   return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
185 }
186 
187 /* Do a very simple CSE pass over the hard registers.
188 
189    This function detects no-op moves where we happened to assign two
190    different pseudo-registers to the same hard register, and then
191    copied one to the other.  Reload will generate a useless
192    instruction copying a register to itself.
193 
194    This function also detects cases where we load a value from memory
195    into two different registers, and (if memory is more expensive than
196    registers) changes it to simply copy the first register into the
197    second register.
198 
199    Another optimization is performed that scans the operands of each
200    instruction to see whether the value is already available in a
201    hard register.  It then replaces the operand with the hard register
202    if possible, much like an optional reload would.  */
203 
204 static void
reload_cse_regs_1(void)205 reload_cse_regs_1 (void)
206 {
207   bool cfg_changed = false;
208   basic_block bb;
209   rtx_insn *insn;
210   rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
211 
212   cselib_init (CSELIB_RECORD_MEMORY);
213   init_alias_analysis ();
214 
215   FOR_EACH_BB_FN (bb, cfun)
216     FOR_BB_INSNS (bb, insn)
217       {
218 	if (INSN_P (insn))
219 	  cfg_changed |= reload_cse_simplify (insn, testreg);
220 
221 	cselib_process_insn (insn);
222       }
223 
224   /* Clean up.  */
225   end_alias_analysis ();
226   cselib_finish ();
227   if (cfg_changed)
228     cleanup_cfg (0);
229 }
230 
231 /* Try to simplify a single SET instruction.  SET is the set pattern.
232    INSN is the instruction it came from.
233    This function only handles one case: if we set a register to a value
234    which is not a register, we try to find that value in some other register
235    and change the set into a register copy.  */
236 
237 static int
reload_cse_simplify_set(rtx set,rtx_insn * insn)238 reload_cse_simplify_set (rtx set, rtx_insn *insn)
239 {
240   int did_change = 0;
241   int dreg;
242   rtx src;
243   reg_class_t dclass;
244   int old_cost;
245   cselib_val *val;
246   struct elt_loc_list *l;
247   enum rtx_code extend_op = UNKNOWN;
248   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
249 
250   dreg = true_regnum (SET_DEST (set));
251   if (dreg < 0)
252     return 0;
253 
254   src = SET_SRC (set);
255   if (side_effects_p (src) || true_regnum (src) >= 0)
256     return 0;
257 
258   dclass = REGNO_REG_CLASS (dreg);
259 
260   /* When replacing a memory with a register, we need to honor assumptions
261      that combine made wrt the contents of sign bits.  We'll do this by
262      generating an extend instruction instead of a reg->reg copy.  Thus
263      the destination must be a register that we can widen.  */
264   if (MEM_P (src)
265       && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
266       && !REG_P (SET_DEST (set)))
267     return 0;
268 
269   val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
270   if (! val)
271     return 0;
272 
273   /* If memory loads are cheaper than register copies, don't change them.  */
274   if (MEM_P (src))
275     old_cost = memory_move_cost (GET_MODE (src), dclass, true);
276   else if (REG_P (src))
277     old_cost = register_move_cost (GET_MODE (src),
278 				   REGNO_REG_CLASS (REGNO (src)), dclass);
279   else
280     old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
281 
282   for (l = val->locs; l; l = l->next)
283     {
284       rtx this_rtx = l->loc;
285       int this_cost;
286 
287       if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
288 	{
289 	  if (extend_op != UNKNOWN)
290 	    {
291 	      wide_int result;
292 
293 	      if (!CONST_SCALAR_INT_P (this_rtx))
294 		continue;
295 
296 	      switch (extend_op)
297 		{
298 		case ZERO_EXTEND:
299 		  result = wide_int::from (rtx_mode_t (this_rtx,
300 						       GET_MODE (src)),
301 					   BITS_PER_WORD, UNSIGNED);
302 		  break;
303 		case SIGN_EXTEND:
304 		  result = wide_int::from (rtx_mode_t (this_rtx,
305 						       GET_MODE (src)),
306 					   BITS_PER_WORD, SIGNED);
307 		  break;
308 		default:
309 		  gcc_unreachable ();
310 		}
311 	      this_rtx = immed_wide_int_const (result, word_mode);
312 	    }
313 
314 	  this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
315 	}
316       else if (REG_P (this_rtx))
317 	{
318 	  if (extend_op != UNKNOWN)
319 	    {
320 	      this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
321 	      this_cost = set_src_cost (this_rtx, word_mode, speed);
322 	    }
323 	  else
324 	    this_cost = register_move_cost (GET_MODE (this_rtx),
325 					    REGNO_REG_CLASS (REGNO (this_rtx)),
326 					    dclass);
327 	}
328       else
329 	continue;
330 
331       /* If equal costs, prefer registers over anything else.  That
332 	 tends to lead to smaller instructions on some machines.  */
333       if (this_cost < old_cost
334 	  || (this_cost == old_cost
335 	      && REG_P (this_rtx)
336 	      && !REG_P (SET_SRC (set))))
337 	{
338 	  if (extend_op != UNKNOWN
339 	      && REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
340 					GET_MODE (SET_DEST (set)), word_mode))
341 	    {
342 	      rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
343 	      ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
344 	      validate_change (insn, &SET_DEST (set), wide_dest, 1);
345 	    }
346 
347 	  validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
348 	  old_cost = this_cost, did_change = 1;
349 	}
350     }
351 
352   return did_change;
353 }
354 
355 /* Try to replace operands in INSN with equivalent values that are already
356    in registers.  This can be viewed as optional reloading.
357 
358    For each non-register operand in the insn, see if any hard regs are
359    known to be equivalent to that operand.  Record the alternatives which
360    can accept these hard registers.  Among all alternatives, select the
361    ones which are better or equal to the one currently matching, where
362    "better" is in terms of '?' and '!' constraints.  Among the remaining
363    alternatives, select the one which replaces most operands with
364    hard registers.  */
365 
366 static int
reload_cse_simplify_operands(rtx_insn * insn,rtx testreg)367 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
368 {
369   int i, j;
370 
371   /* For each operand, all registers that are equivalent to it.  */
372   HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
373 
374   const char *constraints[MAX_RECOG_OPERANDS];
375 
376   /* Vector recording how bad an alternative is.  */
377   int *alternative_reject;
378   /* Vector recording how many registers can be introduced by choosing
379      this alternative.  */
380   int *alternative_nregs;
381   /* Array of vectors recording, for each operand and each alternative,
382      which hard register to substitute, or -1 if the operand should be
383      left as it is.  */
384   int *op_alt_regno[MAX_RECOG_OPERANDS];
385   /* Array of alternatives, sorted in order of decreasing desirability.  */
386   int *alternative_order;
387 
388   extract_constrain_insn (insn);
389 
390   if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
391     return 0;
392 
393   alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
394   alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
395   alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
396   memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
397   memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
398 
399   /* For each operand, find out which regs are equivalent.  */
400   for (i = 0; i < recog_data.n_operands; i++)
401     {
402       cselib_val *v;
403       struct elt_loc_list *l;
404       rtx op;
405 
406       CLEAR_HARD_REG_SET (equiv_regs[i]);
407 
408       /* cselib blows up on CODE_LABELs.  Trying to fix that doesn't seem
409 	 right, so avoid the problem here.  Similarly NOTE_INSN_DELETED_LABEL.
410 	 Likewise if we have a constant and the insn pattern doesn't tell us
411 	 the mode we need.  */
412       if (LABEL_P (recog_data.operand[i])
413 	  || (NOTE_P (recog_data.operand[i])
414 	      && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
415 	  || (CONSTANT_P (recog_data.operand[i])
416 	      && recog_data.operand_mode[i] == VOIDmode))
417 	continue;
418 
419       op = recog_data.operand[i];
420       if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
421 	{
422 	  rtx set = single_set (insn);
423 
424 	  /* We might have multiple sets, some of which do implicit
425 	     extension.  Punt on this for now.  */
426 	  if (! set)
427 	    continue;
428 	  /* If the destination is also a MEM or a STRICT_LOW_PART, no
429 	     extension applies.
430 	     Also, if there is an explicit extension, we don't have to
431 	     worry about an implicit one.  */
432 	  else if (MEM_P (SET_DEST (set))
433 		   || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
434 		   || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
435 		   || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
436 	    ; /* Continue ordinary processing.  */
437 	  /* If the register cannot change mode to word_mode, it follows that
438 	     it cannot have been used in word_mode.  */
439 	  else if (REG_P (SET_DEST (set))
440 		   && !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
441 					      GET_MODE (SET_DEST (set)),
442 					      word_mode))
443 	    ; /* Continue ordinary processing.  */
444 	  /* If this is a straight load, make the extension explicit.  */
445 	  else if (REG_P (SET_DEST (set))
446 		   && recog_data.n_operands == 2
447 		   && SET_SRC (set) == op
448 		   && SET_DEST (set) == recog_data.operand[1-i])
449 	    {
450 	      validate_change (insn, recog_data.operand_loc[i],
451 			       gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
452 					      word_mode, op),
453 			       1);
454 	      validate_change (insn, recog_data.operand_loc[1-i],
455 			       gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
456 			       1);
457 	      if (! apply_change_group ())
458 		return 0;
459 	      return reload_cse_simplify_operands (insn, testreg);
460 	    }
461 	  else
462 	    /* ??? There might be arithmetic operations with memory that are
463 	       safe to optimize, but is it worth the trouble?  */
464 	    continue;
465 	}
466 
467       if (side_effects_p (op))
468 	continue;
469       v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
470       if (! v)
471 	continue;
472 
473       for (l = v->locs; l; l = l->next)
474 	if (REG_P (l->loc))
475 	  SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
476     }
477 
478   alternative_mask preferred = get_preferred_alternatives (insn);
479   for (i = 0; i < recog_data.n_operands; i++)
480     {
481       machine_mode mode;
482       int regno;
483       const char *p;
484 
485       op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
486       for (j = 0; j < recog_data.n_alternatives; j++)
487 	op_alt_regno[i][j] = -1;
488 
489       p = constraints[i] = recog_data.constraints[i];
490       mode = recog_data.operand_mode[i];
491 
492       /* Add the reject values for each alternative given by the constraints
493 	 for this operand.  */
494       j = 0;
495       while (*p != '\0')
496 	{
497 	  char c = *p++;
498 	  if (c == ',')
499 	    j++;
500 	  else if (c == '?')
501 	    alternative_reject[j] += 3;
502 	  else if (c == '!')
503 	    alternative_reject[j] += 300;
504 	}
505 
506       /* We won't change operands which are already registers.  We
507 	 also don't want to modify output operands.  */
508       regno = true_regnum (recog_data.operand[i]);
509       if (regno >= 0
510 	  || constraints[i][0] == '='
511 	  || constraints[i][0] == '+')
512 	continue;
513 
514       for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
515 	{
516 	  enum reg_class rclass = NO_REGS;
517 
518 	  if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
519 	    continue;
520 
521 	  set_mode_and_regno (testreg, mode, regno);
522 
523 	  /* We found a register equal to this operand.  Now look for all
524 	     alternatives that can accept this register and have not been
525 	     assigned a register they can use yet.  */
526 	  j = 0;
527 	  p = constraints[i];
528 	  for (;;)
529 	    {
530 	      char c = *p;
531 
532 	      switch (c)
533 		{
534 		case 'g':
535 		  rclass = reg_class_subunion[rclass][GENERAL_REGS];
536 		  break;
537 
538 		default:
539 		  rclass
540 		    = (reg_class_subunion
541 		       [rclass]
542 		       [reg_class_for_constraint (lookup_constraint (p))]);
543 		  break;
544 
545 		case ',': case '\0':
546 		  /* See if REGNO fits this alternative, and set it up as the
547 		     replacement register if we don't have one for this
548 		     alternative yet and the operand being replaced is not
549 		     a cheap CONST_INT.  */
550 		  if (op_alt_regno[i][j] == -1
551 		      && TEST_BIT (preferred, j)
552 		      && reg_fits_class_p (testreg, rclass, 0, mode)
553 		      && (!CONST_INT_P (recog_data.operand[i])
554 			  || (set_src_cost (recog_data.operand[i], mode,
555 					    optimize_bb_for_speed_p
556 					     (BLOCK_FOR_INSN (insn)))
557 			      > set_src_cost (testreg, mode,
558 					      optimize_bb_for_speed_p
559 					       (BLOCK_FOR_INSN (insn))))))
560 		    {
561 		      alternative_nregs[j]++;
562 		      op_alt_regno[i][j] = regno;
563 		    }
564 		  j++;
565 		  rclass = NO_REGS;
566 		  break;
567 		}
568 	      p += CONSTRAINT_LEN (c, p);
569 
570 	      if (c == '\0')
571 		break;
572 	    }
573 	}
574     }
575 
576   /* Record all alternatives which are better or equal to the currently
577      matching one in the alternative_order array.  */
578   for (i = j = 0; i < recog_data.n_alternatives; i++)
579     if (alternative_reject[i] <= alternative_reject[which_alternative])
580       alternative_order[j++] = i;
581   recog_data.n_alternatives = j;
582 
583   /* Sort it.  Given a small number of alternatives, a dumb algorithm
584      won't hurt too much.  */
585   for (i = 0; i < recog_data.n_alternatives - 1; i++)
586     {
587       int best = i;
588       int best_reject = alternative_reject[alternative_order[i]];
589       int best_nregs = alternative_nregs[alternative_order[i]];
590 
591       for (j = i + 1; j < recog_data.n_alternatives; j++)
592 	{
593 	  int this_reject = alternative_reject[alternative_order[j]];
594 	  int this_nregs = alternative_nregs[alternative_order[j]];
595 
596 	  if (this_reject < best_reject
597 	      || (this_reject == best_reject && this_nregs > best_nregs))
598 	    {
599 	      best = j;
600 	      best_reject = this_reject;
601 	      best_nregs = this_nregs;
602 	    }
603 	}
604 
605       std::swap (alternative_order[best], alternative_order[i]);
606     }
607 
608   /* Substitute the operands as determined by op_alt_regno for the best
609      alternative.  */
610   j = alternative_order[0];
611 
612   for (i = 0; i < recog_data.n_operands; i++)
613     {
614       machine_mode mode = recog_data.operand_mode[i];
615       if (op_alt_regno[i][j] == -1)
616 	continue;
617 
618       validate_change (insn, recog_data.operand_loc[i],
619 		       gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
620     }
621 
622   for (i = recog_data.n_dups - 1; i >= 0; i--)
623     {
624       int op = recog_data.dup_num[i];
625       machine_mode mode = recog_data.operand_mode[op];
626 
627       if (op_alt_regno[op][j] == -1)
628 	continue;
629 
630       validate_change (insn, recog_data.dup_loc[i],
631 		       gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
632     }
633 
634   return apply_change_group ();
635 }
636 
637 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
638    addressing now.
639    This code might also be useful when reload gave up on reg+reg addressing
640    because of clashes between the return register and INDEX_REG_CLASS.  */
641 
642 /* The maximum number of uses of a register we can keep track of to
643    replace them with reg+reg addressing.  */
644 #define RELOAD_COMBINE_MAX_USES 16
645 
646 /* Describes a recorded use of a register.  */
647 struct reg_use
648 {
649   /* The insn where a register has been used.  */
650   rtx_insn *insn;
651   /* Points to the memory reference enclosing the use, if any, NULL_RTX
652      otherwise.  */
653   rtx containing_mem;
654   /* Location of the register within INSN.  */
655   rtx *usep;
656   /* The reverse uid of the insn.  */
657   int ruid;
658 };
659 
660 /* If the register is used in some unknown fashion, USE_INDEX is negative.
661    If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
662    indicates where it is first set or clobbered.
663    Otherwise, USE_INDEX is the index of the last encountered use of the
664    register (which is first among these we have seen since we scan backwards).
665    USE_RUID indicates the first encountered, i.e. last, of these uses.
666    If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
667    with a constant offset; OFFSET contains this constant in that case.
668    STORE_RUID is always meaningful if we only want to use a value in a
669    register in a different place: it denotes the next insn in the insn
670    stream (i.e. the last encountered) that sets or clobbers the register.
671    REAL_STORE_RUID is similar, but clobbers are ignored when updating it.
672    EXPR is the expression used when storing the register.  */
673 static struct
674   {
675     struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
676     rtx offset;
677     int use_index;
678     int store_ruid;
679     int real_store_ruid;
680     int use_ruid;
681     bool all_offsets_match;
682     rtx expr;
683   } reg_state[FIRST_PSEUDO_REGISTER];
684 
685 /* Reverse linear uid.  This is increased in reload_combine while scanning
686    the instructions from last to first.  It is used to set last_label_ruid
687    and the store_ruid / use_ruid fields in reg_state.  */
688 static int reload_combine_ruid;
689 
690 /* The RUID of the last label we encountered in reload_combine.  */
691 static int last_label_ruid;
692 
693 /* The RUID of the last jump we encountered in reload_combine.  */
694 static int last_jump_ruid;
695 
696 /* The register numbers of the first and last index register.  A value of
697    -1 in LAST_INDEX_REG indicates that we've previously computed these
698    values and found no suitable index registers.  */
699 static int first_index_reg = -1;
700 static int last_index_reg;
701 
702 #define LABEL_LIVE(LABEL) \
703   (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
704 
705 /* Subroutine of reload_combine_split_ruids, called to fix up a single
706    ruid pointed to by *PRUID if it is higher than SPLIT_RUID.  */
707 
708 static inline void
reload_combine_split_one_ruid(int * pruid,int split_ruid)709 reload_combine_split_one_ruid (int *pruid, int split_ruid)
710 {
711   if (*pruid > split_ruid)
712     (*pruid)++;
713 }
714 
715 /* Called when we insert a new insn in a position we've already passed in
716    the scan.  Examine all our state, increasing all ruids that are higher
717    than SPLIT_RUID by one in order to make room for a new insn.  */
718 
719 static void
reload_combine_split_ruids(int split_ruid)720 reload_combine_split_ruids (int split_ruid)
721 {
722   unsigned i;
723 
724   reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
725   reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
726   reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
727 
728   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
729     {
730       int j, idx = reg_state[i].use_index;
731       reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
732       reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
733       reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
734 				     split_ruid);
735       if (idx < 0)
736 	continue;
737       for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
738 	{
739 	  reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
740 					 split_ruid);
741 	}
742     }
743 }
744 
745 /* Called when we are about to rescan a previously encountered insn with
746    reload_combine_note_use after modifying some part of it.  This clears all
747    information about uses in that particular insn.  */
748 
749 static void
reload_combine_purge_insn_uses(rtx_insn * insn)750 reload_combine_purge_insn_uses (rtx_insn *insn)
751 {
752   unsigned i;
753 
754   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
755     {
756       int j, k, idx = reg_state[i].use_index;
757       if (idx < 0)
758 	continue;
759       j = k = RELOAD_COMBINE_MAX_USES;
760       while (j-- > idx)
761 	{
762 	  if (reg_state[i].reg_use[j].insn != insn)
763 	    {
764 	      k--;
765 	      if (k != j)
766 		reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
767 	    }
768 	}
769       reg_state[i].use_index = k;
770     }
771 }
772 
773 /* Called when we need to forget about all uses of REGNO after an insn
774    which is identified by RUID.  */
775 
776 static void
reload_combine_purge_reg_uses_after_ruid(unsigned regno,int ruid)777 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
778 {
779   int j, k, idx = reg_state[regno].use_index;
780   if (idx < 0)
781     return;
782   j = k = RELOAD_COMBINE_MAX_USES;
783   while (j-- > idx)
784     {
785       if (reg_state[regno].reg_use[j].ruid >= ruid)
786 	{
787 	  k--;
788 	  if (k != j)
789 	    reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
790 	}
791     }
792   reg_state[regno].use_index = k;
793 }
794 
795 /* Find the use of REGNO with the ruid that is highest among those
796    lower than RUID_LIMIT, and return it if it is the only use of this
797    reg in the insn.  Return NULL otherwise.  */
798 
799 static struct reg_use *
reload_combine_closest_single_use(unsigned regno,int ruid_limit)800 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
801 {
802   int i, best_ruid = 0;
803   int use_idx = reg_state[regno].use_index;
804   struct reg_use *retval;
805 
806   if (use_idx < 0)
807     return NULL;
808   retval = NULL;
809   for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
810     {
811       struct reg_use *use = reg_state[regno].reg_use + i;
812       int this_ruid = use->ruid;
813       if (this_ruid >= ruid_limit)
814 	continue;
815       if (this_ruid > best_ruid)
816 	{
817 	  best_ruid = this_ruid;
818 	  retval = use;
819 	}
820       else if (this_ruid == best_ruid)
821 	retval = NULL;
822     }
823   if (last_label_ruid >= best_ruid)
824     return NULL;
825   return retval;
826 }
827 
828 /* After we've moved an add insn, fix up any debug insns that occur
829    between the old location of the add and the new location.  REG is
830    the destination register of the add insn; REPLACEMENT is the
831    SET_SRC of the add.  FROM and TO specify the range in which we
832    should make this change on debug insns.  */
833 
834 static void
fixup_debug_insns(rtx reg,rtx replacement,rtx_insn * from,rtx_insn * to)835 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
836 {
837   rtx_insn *insn;
838   for (insn = from; insn != to; insn = NEXT_INSN (insn))
839     {
840       rtx t;
841 
842       if (!DEBUG_BIND_INSN_P (insn))
843 	continue;
844 
845       t = INSN_VAR_LOCATION_LOC (insn);
846       t = simplify_replace_rtx (t, reg, replacement);
847       validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
848     }
849 }
850 
851 /* Subroutine of reload_combine_recognize_const_pattern.  Try to replace REG
852    with SRC in the insn described by USE, taking costs into account.  Return
853    true if we made the replacement.  */
854 
855 static bool
try_replace_in_use(struct reg_use * use,rtx reg,rtx src)856 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
857 {
858   rtx_insn *use_insn = use->insn;
859   rtx mem = use->containing_mem;
860   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
861 
862   if (mem != NULL_RTX)
863     {
864       addr_space_t as = MEM_ADDR_SPACE (mem);
865       rtx oldaddr = XEXP (mem, 0);
866       rtx newaddr = NULL_RTX;
867       int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
868       int new_cost;
869 
870       newaddr = simplify_replace_rtx (oldaddr, reg, src);
871       if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
872 	{
873 	  XEXP (mem, 0) = newaddr;
874 	  new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
875 	  XEXP (mem, 0) = oldaddr;
876 	  if (new_cost <= old_cost
877 	      && validate_change (use_insn,
878 				  &XEXP (mem, 0), newaddr, 0))
879 	    return true;
880 	}
881     }
882   else
883     {
884       rtx new_set = single_set (use_insn);
885       if (new_set
886 	  && REG_P (SET_DEST (new_set))
887 	  && GET_CODE (SET_SRC (new_set)) == PLUS
888 	  && REG_P (XEXP (SET_SRC (new_set), 0))
889 	  && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
890 	{
891 	  rtx new_src;
892 	  machine_mode mode = GET_MODE (SET_DEST (new_set));
893 	  int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
894 
895 	  gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
896 	  new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
897 
898 	  if (set_src_cost (new_src, mode, speed) <= old_cost
899 	      && validate_change (use_insn, &SET_SRC (new_set),
900 				  new_src, 0))
901 	    return true;
902 	}
903     }
904   return false;
905 }
906 
907 /* Called by reload_combine when scanning INSN.  This function tries to detect
908    patterns where a constant is added to a register, and the result is used
909    in an address.
910    Return true if no further processing is needed on INSN; false if it wasn't
911    recognized and should be handled normally.  */
912 
913 static bool
reload_combine_recognize_const_pattern(rtx_insn * insn)914 reload_combine_recognize_const_pattern (rtx_insn *insn)
915 {
916   int from_ruid = reload_combine_ruid;
917   rtx set, pat, reg, src, addreg;
918   unsigned int regno;
919   struct reg_use *use;
920   bool must_move_add;
921   rtx_insn *add_moved_after_insn = NULL;
922   int add_moved_after_ruid = 0;
923   int clobbered_regno = -1;
924 
925   set = single_set (insn);
926   if (set == NULL_RTX)
927     return false;
928 
929   reg = SET_DEST (set);
930   src = SET_SRC (set);
931   if (!REG_P (reg)
932       || REG_NREGS (reg) != 1
933       || GET_MODE (reg) != Pmode
934       || reg == stack_pointer_rtx)
935     return false;
936 
937   regno = REGNO (reg);
938 
939   /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
940      uses of REG1 inside an address, or inside another add insn.  If
941      possible and profitable, merge the addition into subsequent
942      uses.  */
943   if (GET_CODE (src) != PLUS
944       || !REG_P (XEXP (src, 0))
945       || !CONSTANT_P (XEXP (src, 1)))
946     return false;
947 
948   addreg = XEXP (src, 0);
949   must_move_add = rtx_equal_p (reg, addreg);
950 
951   pat = PATTERN (insn);
952   if (must_move_add && set != pat)
953     {
954       /* We have to be careful when moving the add; apart from the
955 	 single_set there may also be clobbers.  Recognize one special
956 	 case, that of one clobber alongside the set (likely a clobber
957 	 of the CC register).  */
958       gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
959       if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
960 	  || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
961 	  || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
962 	return false;
963       clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
964     }
965 
966   do
967     {
968       use = reload_combine_closest_single_use (regno, from_ruid);
969 
970       if (use)
971 	/* Start the search for the next use from here.  */
972 	from_ruid = use->ruid;
973 
974       if (use && GET_MODE (*use->usep) == Pmode)
975 	{
976 	  bool delete_add = false;
977 	  rtx_insn *use_insn = use->insn;
978 	  int use_ruid = use->ruid;
979 
980 	  /* Avoid moving the add insn past a jump.  */
981 	  if (must_move_add && use_ruid <= last_jump_ruid)
982 	    break;
983 
984 	  /* If the add clobbers another hard reg in parallel, don't move
985 	     it past a real set of this hard reg.  */
986 	  if (must_move_add && clobbered_regno >= 0
987 	      && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
988 	    break;
989 
990 	  /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets.  */
991 	  if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
992 	    break;
993 
994 	  gcc_assert (reg_state[regno].store_ruid <= use_ruid);
995 	  /* Avoid moving a use of ADDREG past a point where it is stored.  */
996 	  if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
997 	    break;
998 
999 	  /* We also must not move the addition past an insn that sets
1000 	     the same register, unless we can combine two add insns.  */
1001 	  if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1002 	    {
1003 	      if (use->containing_mem == NULL_RTX)
1004 		delete_add = true;
1005 	      else
1006 		break;
1007 	    }
1008 
1009 	  if (try_replace_in_use (use, reg, src))
1010 	    {
1011 	      reload_combine_purge_insn_uses (use_insn);
1012 	      reload_combine_note_use (&PATTERN (use_insn), use_insn,
1013 				       use_ruid, NULL_RTX);
1014 
1015 	      if (delete_add)
1016 		{
1017 		  fixup_debug_insns (reg, src, insn, use_insn);
1018 		  delete_insn (insn);
1019 		  return true;
1020 		}
1021 	      if (must_move_add)
1022 		{
1023 		  add_moved_after_insn = use_insn;
1024 		  add_moved_after_ruid = use_ruid;
1025 		}
1026 	      continue;
1027 	    }
1028 	}
1029       /* If we get here, we couldn't handle this use.  */
1030       if (must_move_add)
1031 	break;
1032     }
1033   while (use);
1034 
1035   if (!must_move_add || add_moved_after_insn == NULL_RTX)
1036     /* Process the add normally.  */
1037     return false;
1038 
1039   fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1040 
1041   reorder_insns (insn, insn, add_moved_after_insn);
1042   reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1043   reload_combine_split_ruids (add_moved_after_ruid - 1);
1044   reload_combine_note_use (&PATTERN (insn), insn,
1045 			   add_moved_after_ruid, NULL_RTX);
1046   reg_state[regno].store_ruid = add_moved_after_ruid;
1047 
1048   return true;
1049 }
1050 
1051 /* Called by reload_combine when scanning INSN.  Try to detect a pattern we
1052    can handle and improve.  Return true if no further processing is needed on
1053    INSN; false if it wasn't recognized and should be handled normally.  */
1054 
1055 static bool
reload_combine_recognize_pattern(rtx_insn * insn)1056 reload_combine_recognize_pattern (rtx_insn *insn)
1057 {
1058   rtx set, reg, src;
1059 
1060   set = single_set (insn);
1061   if (set == NULL_RTX)
1062     return false;
1063 
1064   reg = SET_DEST (set);
1065   src = SET_SRC (set);
1066   if (!REG_P (reg) || REG_NREGS (reg) != 1)
1067     return false;
1068 
1069   unsigned int regno = REGNO (reg);
1070   machine_mode mode = GET_MODE (reg);
1071 
1072   if (reg_state[regno].use_index < 0
1073       || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1074     return false;
1075 
1076   for (int i = reg_state[regno].use_index;
1077        i < RELOAD_COMBINE_MAX_USES; i++)
1078     {
1079       struct reg_use *use = reg_state[regno].reg_use + i;
1080       if (GET_MODE (*use->usep) != mode)
1081 	return false;
1082       /* Don't try to adjust (use (REGX)).  */
1083       if (GET_CODE (PATTERN (use->insn)) == USE
1084 	  && &XEXP (PATTERN (use->insn), 0) == use->usep)
1085 	return false;
1086     }
1087 
1088   /* Look for (set (REGX) (CONST_INT))
1089      (set (REGX) (PLUS (REGX) (REGY)))
1090      ...
1091      ... (MEM (REGX)) ...
1092      and convert it to
1093      (set (REGZ) (CONST_INT))
1094      ...
1095      ... (MEM (PLUS (REGZ) (REGY)))... .
1096 
1097      First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1098      and that we know all uses of REGX before it dies.
1099      Also, explicitly check that REGX != REGY; our life information
1100      does not yet show whether REGY changes in this insn.  */
1101 
1102   if (GET_CODE (src) == PLUS
1103       && reg_state[regno].all_offsets_match
1104       && last_index_reg != -1
1105       && REG_P (XEXP (src, 1))
1106       && rtx_equal_p (XEXP (src, 0), reg)
1107       && !rtx_equal_p (XEXP (src, 1), reg)
1108       && last_label_ruid < reg_state[regno].use_ruid)
1109     {
1110       rtx base = XEXP (src, 1);
1111       rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1112       rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1113       rtx index_reg = NULL_RTX;
1114       rtx reg_sum = NULL_RTX;
1115       int i;
1116 
1117       /* Now we need to set INDEX_REG to an index register (denoted as
1118 	 REGZ in the illustration above) and REG_SUM to the expression
1119 	 register+register that we want to use to substitute uses of REG
1120 	 (typically in MEMs) with.  First check REG and BASE for being
1121 	 index registers; we can use them even if they are not dead.  */
1122       if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1123 	  || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1124 				REGNO (base)))
1125 	{
1126 	  index_reg = reg;
1127 	  reg_sum = src;
1128 	}
1129       else
1130 	{
1131 	  /* Otherwise, look for a free index register.  Since we have
1132 	     checked above that neither REG nor BASE are index registers,
1133 	     if we find anything at all, it will be different from these
1134 	     two registers.  */
1135 	  for (i = first_index_reg; i <= last_index_reg; i++)
1136 	    {
1137 	      if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1138 		  && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1139 		  && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1140 		  && (crtl->abi->clobbers_full_reg_p (i)
1141 		      || df_regs_ever_live_p (i))
1142 		  && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1143 		  && !fixed_regs[i] && !global_regs[i]
1144 		  && hard_regno_nregs (i, GET_MODE (reg)) == 1
1145 		  && targetm.hard_regno_scratch_ok (i))
1146 		{
1147 		  index_reg = gen_rtx_REG (GET_MODE (reg), i);
1148 		  reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1149 		  break;
1150 		}
1151 	    }
1152 	}
1153 
1154       /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1155 	 (REGY), i.e. BASE, is not clobbered before the last use we'll
1156 	 create.  */
1157       if (reg_sum
1158 	  && prev_set
1159 	  && CONST_INT_P (SET_SRC (prev_set))
1160 	  && rtx_equal_p (SET_DEST (prev_set), reg)
1161 	  && (reg_state[REGNO (base)].store_ruid
1162 	      <= reg_state[regno].use_ruid))
1163 	{
1164 	  /* Change destination register and, if necessary, the constant
1165 	     value in PREV, the constant loading instruction.  */
1166 	  validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1167 	  if (reg_state[regno].offset != const0_rtx)
1168 	    {
1169 	      HOST_WIDE_INT c
1170 		= trunc_int_for_mode (UINTVAL (SET_SRC (prev_set))
1171 				      + UINTVAL (reg_state[regno].offset),
1172 				      GET_MODE (index_reg));
1173 	      validate_change (prev, &SET_SRC (prev_set), GEN_INT (c), 1);
1174 	    }
1175 
1176 	  /* Now for every use of REG that we have recorded, replace REG
1177 	     with REG_SUM.  */
1178 	  for (i = reg_state[regno].use_index;
1179 	       i < RELOAD_COMBINE_MAX_USES; i++)
1180 	    validate_unshare_change (reg_state[regno].reg_use[i].insn,
1181 				     reg_state[regno].reg_use[i].usep,
1182 				     /* Each change must have its own
1183 					replacement.  */
1184 				     reg_sum, 1);
1185 
1186 	  if (apply_change_group ())
1187 	    {
1188 	      struct reg_use *lowest_ruid = NULL;
1189 
1190 	      /* For every new use of REG_SUM, we have to record the use
1191 		 of BASE therein, i.e. operand 1.  */
1192 	      for (i = reg_state[regno].use_index;
1193 		   i < RELOAD_COMBINE_MAX_USES; i++)
1194 		{
1195 		  struct reg_use *use = reg_state[regno].reg_use + i;
1196 		  reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1197 					   use->ruid, use->containing_mem);
1198 		  if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1199 		    lowest_ruid = use;
1200 		}
1201 
1202 	      fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1203 
1204 	      /* Delete the reg-reg addition.  */
1205 	      delete_insn (insn);
1206 
1207 	      if (reg_state[regno].offset != const0_rtx
1208 		  /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1209 		     are now invalid.  */
1210 		  && remove_reg_equal_equiv_notes (prev))
1211 		df_notes_rescan (prev);
1212 
1213 	      reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1214 	      return true;
1215 	    }
1216 	}
1217     }
1218   return false;
1219 }
1220 
1221 static void
reload_combine(void)1222 reload_combine (void)
1223 {
1224   rtx_insn *insn, *prev;
1225   basic_block bb;
1226   unsigned int r;
1227   int min_labelno, n_labels;
1228   HARD_REG_SET ever_live_at_start, *label_live;
1229 
1230   /* To avoid wasting too much time later searching for an index register,
1231      determine the minimum and maximum index register numbers.  */
1232   if (INDEX_REG_CLASS == NO_REGS)
1233     last_index_reg = -1;
1234   else if (first_index_reg == -1 && last_index_reg == 0)
1235     {
1236       for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1237 	if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1238 	  {
1239 	    if (first_index_reg == -1)
1240 	      first_index_reg = r;
1241 
1242 	    last_index_reg = r;
1243 	  }
1244 
1245       /* If no index register is available, we can quit now.  Set LAST_INDEX_REG
1246 	 to -1 so we'll know to quit early the next time we get here.  */
1247       if (first_index_reg == -1)
1248 	{
1249 	  last_index_reg = -1;
1250 	  return;
1251 	}
1252     }
1253 
1254   /* Set up LABEL_LIVE and EVER_LIVE_AT_START.  The register lifetime
1255      information is a bit fuzzy immediately after reload, but it's
1256      still good enough to determine which registers are live at a jump
1257      destination.  */
1258   min_labelno = get_first_label_num ();
1259   n_labels = max_label_num () - min_labelno;
1260   label_live = XNEWVEC (HARD_REG_SET, n_labels);
1261   CLEAR_HARD_REG_SET (ever_live_at_start);
1262 
1263   FOR_EACH_BB_REVERSE_FN (bb, cfun)
1264     {
1265       insn = BB_HEAD (bb);
1266       if (LABEL_P (insn))
1267 	{
1268 	  HARD_REG_SET live;
1269 	  bitmap live_in = df_get_live_in (bb);
1270 
1271 	  REG_SET_TO_HARD_REG_SET (live, live_in);
1272 	  compute_use_by_pseudos (&live, live_in);
1273 	  LABEL_LIVE (insn) = live;
1274 	  ever_live_at_start |= live;
1275 	}
1276     }
1277 
1278   /* Initialize last_label_ruid, reload_combine_ruid and reg_state.  */
1279   last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1280   for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1281     {
1282       reg_state[r].store_ruid = 0;
1283       reg_state[r].real_store_ruid = 0;
1284       if (fixed_regs[r])
1285 	reg_state[r].use_index = -1;
1286       else
1287 	reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1288     }
1289 
1290   for (insn = get_last_insn (); insn; insn = prev)
1291     {
1292       bool control_flow_insn;
1293       rtx note;
1294 
1295       prev = PREV_INSN (insn);
1296 
1297       /* We cannot do our optimization across labels.  Invalidating all the use
1298 	 information we have would be costly, so we just note where the label
1299 	 is and then later disable any optimization that would cross it.  */
1300       if (LABEL_P (insn))
1301 	last_label_ruid = reload_combine_ruid;
1302       else if (BARRIER_P (insn))
1303 	{
1304 	  /* Crossing a barrier resets all the use information.  */
1305 	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1306 	    if (! fixed_regs[r])
1307 	      reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1308 	}
1309       else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1310 	/* Optimizations across insns being marked as volatile must be
1311 	   prevented.  All the usage information is invalidated
1312 	   here.  */
1313 	for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1314 	  if (! fixed_regs[r]
1315 	      && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1316 	    reg_state[r].use_index = -1;
1317 
1318       if (! NONDEBUG_INSN_P (insn))
1319 	continue;
1320 
1321       reload_combine_ruid++;
1322 
1323       control_flow_insn = control_flow_insn_p (insn);
1324       if (control_flow_insn)
1325 	last_jump_ruid = reload_combine_ruid;
1326 
1327       if (reload_combine_recognize_const_pattern (insn)
1328 	  || reload_combine_recognize_pattern (insn))
1329 	continue;
1330 
1331       note_stores (insn, reload_combine_note_store, NULL);
1332 
1333       if (CALL_P (insn))
1334 	{
1335 	  rtx link;
1336 	  HARD_REG_SET used_regs = insn_callee_abi (insn).full_reg_clobbers ();
1337 
1338 	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1339 	    if (TEST_HARD_REG_BIT (used_regs, r))
1340 	      {
1341 		reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1342 		reg_state[r].store_ruid = reload_combine_ruid;
1343 	      }
1344 
1345 	  for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1346 	       link = XEXP (link, 1))
1347 	    {
1348 	      rtx setuse = XEXP (link, 0);
1349 	      rtx usage_rtx = XEXP (setuse, 0);
1350 
1351 	      if (GET_CODE (setuse) == USE && REG_P (usage_rtx))
1352 	        {
1353 		  unsigned int end_regno = END_REGNO (usage_rtx);
1354 		  for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1355 		    reg_state[i].use_index = -1;
1356 	         }
1357 	     }
1358 	}
1359 
1360       if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1361 	{
1362 	  /* Non-spill registers might be used at the call destination in
1363 	     some unknown fashion, so we have to mark the unknown use.  */
1364 	  HARD_REG_SET *live;
1365 
1366 	  if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1367 	      && JUMP_LABEL (insn))
1368 	    {
1369 	      if (ANY_RETURN_P (JUMP_LABEL (insn)))
1370 		live = NULL;
1371 	      else
1372 		live = &LABEL_LIVE (JUMP_LABEL (insn));
1373 	    }
1374 	  else
1375 	    live = &ever_live_at_start;
1376 
1377 	  if (live)
1378 	    for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1379 	      if (TEST_HARD_REG_BIT (*live, r))
1380 		reg_state[r].use_index = -1;
1381 	}
1382 
1383       reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1384 			       NULL_RTX);
1385 
1386       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1387 	{
1388 	  if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1389 	    {
1390 	      int regno = REGNO (XEXP (note, 0));
1391 	      reg_state[regno].store_ruid = reload_combine_ruid;
1392 	      reg_state[regno].real_store_ruid = reload_combine_ruid;
1393 	      reg_state[regno].use_index = -1;
1394 	    }
1395 	}
1396     }
1397 
1398   free (label_live);
1399 }
1400 
1401 /* Check if DST is a register or a subreg of a register; if it is,
1402    update store_ruid, real_store_ruid and use_index in the reg_state
1403    structure accordingly.  Called via note_stores from reload_combine.  */
1404 
1405 static void
reload_combine_note_store(rtx dst,const_rtx set,void * data ATTRIBUTE_UNUSED)1406 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1407 {
1408   int regno = 0;
1409   int i;
1410   machine_mode mode = GET_MODE (dst);
1411 
1412   if (GET_CODE (dst) == SUBREG)
1413     {
1414       regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1415 				   GET_MODE (SUBREG_REG (dst)),
1416 				   SUBREG_BYTE (dst),
1417 				   GET_MODE (dst));
1418       dst = SUBREG_REG (dst);
1419     }
1420 
1421   /* Some targets do argument pushes without adding REG_INC notes.  */
1422 
1423   if (MEM_P (dst))
1424     {
1425       dst = XEXP (dst, 0);
1426       if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1427 	  || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1428 	  || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1429 	{
1430 	  unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1431 	  for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1432 	    {
1433 	      /* We could probably do better, but for now mark the register
1434 		 as used in an unknown fashion and set/clobbered at this
1435 		 insn.  */
1436 	      reg_state[i].use_index = -1;
1437 	      reg_state[i].store_ruid = reload_combine_ruid;
1438 	      reg_state[i].real_store_ruid = reload_combine_ruid;
1439 	    }
1440 	}
1441       else
1442         return;
1443     }
1444 
1445   if (!REG_P (dst))
1446     return;
1447   regno += REGNO (dst);
1448 
1449   /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1450      careful with registers / register parts that are not full words.
1451      Similarly for ZERO_EXTRACT.  */
1452   if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1453       || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1454     {
1455       for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1456 	{
1457 	  reg_state[i].use_index = -1;
1458 	  reg_state[i].store_ruid = reload_combine_ruid;
1459 	  reg_state[i].real_store_ruid = reload_combine_ruid;
1460 	}
1461     }
1462   else
1463     {
1464       for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1465 	{
1466 	  reg_state[i].store_ruid = reload_combine_ruid;
1467 	  if (GET_CODE (set) == SET)
1468 	    reg_state[i].real_store_ruid = reload_combine_ruid;
1469 	  reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1470 	}
1471     }
1472 }
1473 
1474 /* XP points to a piece of rtl that has to be checked for any uses of
1475    registers.
1476    *XP is the pattern of INSN, or a part of it.
1477    Called from reload_combine, and recursively by itself.  */
1478 static void
reload_combine_note_use(rtx * xp,rtx_insn * insn,int ruid,rtx containing_mem)1479 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1480 {
1481   rtx x = *xp;
1482   enum rtx_code code = x->code;
1483   const char *fmt;
1484   int i, j;
1485   rtx offset = const0_rtx; /* For the REG case below.  */
1486 
1487   switch (code)
1488     {
1489     case SET:
1490       if (REG_P (SET_DEST (x)))
1491 	{
1492 	  reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1493 	  return;
1494 	}
1495       break;
1496 
1497     case USE:
1498       /* If this is the USE of a return value, we can't change it.  */
1499       if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1500 	{
1501 	  /* Mark the return register as used in an unknown fashion.  */
1502 	  rtx reg = XEXP (x, 0);
1503 	  unsigned int end_regno = END_REGNO (reg);
1504 	  for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1505 	    reg_state[regno].use_index = -1;
1506 	  return;
1507 	}
1508       break;
1509 
1510     case CLOBBER:
1511       if (REG_P (SET_DEST (x)))
1512 	{
1513 	  /* No spurious CLOBBERs of pseudo registers may remain.  */
1514 	  gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1515 	  return;
1516 	}
1517       break;
1518 
1519     case PLUS:
1520       /* We are interested in (plus (reg) (const_int)) .  */
1521       if (!REG_P (XEXP (x, 0))
1522 	  || !CONST_INT_P (XEXP (x, 1)))
1523 	break;
1524       offset = XEXP (x, 1);
1525       x = XEXP (x, 0);
1526       /* Fall through.  */
1527     case REG:
1528       {
1529 	int regno = REGNO (x);
1530 	int use_index;
1531 	int nregs;
1532 
1533 	/* No spurious USEs of pseudo registers may remain.  */
1534 	gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1535 
1536 	nregs = REG_NREGS (x);
1537 
1538 	/* We can't substitute into multi-hard-reg uses.  */
1539 	if (nregs > 1)
1540 	  {
1541 	    while (--nregs >= 0)
1542 	      reg_state[regno + nregs].use_index = -1;
1543 	    return;
1544 	  }
1545 
1546 	/* We may be called to update uses in previously seen insns.
1547 	   Don't add uses beyond the last store we saw.  */
1548 	if (ruid < reg_state[regno].store_ruid)
1549 	  return;
1550 
1551 	/* If this register is already used in some unknown fashion, we
1552 	   can't do anything.
1553 	   If we decrement the index from zero to -1, we can't store more
1554 	   uses, so this register becomes used in an unknown fashion.  */
1555 	use_index = --reg_state[regno].use_index;
1556 	if (use_index < 0)
1557 	  return;
1558 
1559 	if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1560 	  {
1561 	    /* This is the first use of this register we have seen since we
1562 	       marked it as dead.  */
1563 	    reg_state[regno].offset = offset;
1564 	    reg_state[regno].all_offsets_match = true;
1565 	    reg_state[regno].use_ruid = ruid;
1566 	  }
1567 	else
1568 	  {
1569 	    if (reg_state[regno].use_ruid > ruid)
1570 	      reg_state[regno].use_ruid = ruid;
1571 
1572 	    if (! rtx_equal_p (offset, reg_state[regno].offset))
1573 	      reg_state[regno].all_offsets_match = false;
1574 	  }
1575 
1576 	reg_state[regno].reg_use[use_index].insn = insn;
1577 	reg_state[regno].reg_use[use_index].ruid = ruid;
1578 	reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1579 	reg_state[regno].reg_use[use_index].usep = xp;
1580 	return;
1581       }
1582 
1583     case MEM:
1584       containing_mem = x;
1585       break;
1586 
1587     default:
1588       break;
1589     }
1590 
1591   /* Recursively process the components of X.  */
1592   fmt = GET_RTX_FORMAT (code);
1593   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1594     {
1595       if (fmt[i] == 'e')
1596 	reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1597       else if (fmt[i] == 'E')
1598 	{
1599 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1600 	    reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1601 				     containing_mem);
1602 	}
1603     }
1604 }
1605 
1606 /* See if we can reduce the cost of a constant by replacing a move
1607    with an add.  We track situations in which a register is set to a
1608    constant or to a register plus a constant.  */
1609 /* We cannot do our optimization across labels.  Invalidating all the
1610    information about register contents we have would be costly, so we
1611    use move2add_last_label_luid to note where the label is and then
1612    later disable any optimization that would cross it.
1613    reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1614    are only valid if reg_set_luid[n] is greater than
1615    move2add_last_label_luid.
1616    For a set that established a new (potential) base register with
1617    non-constant value, we use move2add_luid from the place where the
1618    setting insn is encountered; registers based off that base then
1619    get the same reg_set_luid.  Constants all get
1620    move2add_last_label_luid + 1 as their reg_set_luid.  */
1621 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1622 
1623 /* If reg_base_reg[n] is negative, register n has been set to
1624    reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1625    If reg_base_reg[n] is non-negative, register n has been set to the
1626    sum of reg_offset[n] and the value of register reg_base_reg[n]
1627    before reg_set_luid[n], calculated in mode reg_mode[n] .
1628    For multi-hard-register registers, all but the first one are
1629    recorded as BLKmode in reg_mode.  Setting reg_mode to VOIDmode
1630    marks it as invalid.  */
1631 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1632 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1633 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1634 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1635 
1636 /* move2add_luid is linearly increased while scanning the instructions
1637    from first to last.  It is used to set reg_set_luid in
1638    reload_cse_move2add and move2add_note_store.  */
1639 static int move2add_luid;
1640 
1641 /* move2add_last_label_luid is set whenever a label is found.  Labels
1642    invalidate all previously collected reg_offset data.  */
1643 static int move2add_last_label_luid;
1644 
1645 /* ??? We don't know how zero / sign extension is handled, hence we
1646    can't go from a narrower to a wider mode.  */
1647 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1648   (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1649    || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1650        && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1651 
1652 /* Record that REG is being set to a value with the mode of REG.  */
1653 
1654 static void
move2add_record_mode(rtx reg)1655 move2add_record_mode (rtx reg)
1656 {
1657   int regno, nregs;
1658   machine_mode mode = GET_MODE (reg);
1659 
1660   if (GET_CODE (reg) == SUBREG)
1661     {
1662       regno = subreg_regno (reg);
1663       nregs = subreg_nregs (reg);
1664     }
1665   else if (REG_P (reg))
1666     {
1667       regno = REGNO (reg);
1668       nregs = REG_NREGS (reg);
1669     }
1670   else
1671     gcc_unreachable ();
1672   for (int i = nregs - 1; i > 0; i--)
1673     reg_mode[regno + i] = BLKmode;
1674   reg_mode[regno] = mode;
1675 }
1676 
1677 /* Record that REG is being set to the sum of SYM and OFF.  */
1678 
1679 static void
move2add_record_sym_value(rtx reg,rtx sym,rtx off)1680 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1681 {
1682   int regno = REGNO (reg);
1683 
1684   move2add_record_mode (reg);
1685   reg_set_luid[regno] = move2add_luid;
1686   reg_base_reg[regno] = -1;
1687   reg_symbol_ref[regno] = sym;
1688   reg_offset[regno] = INTVAL (off);
1689 }
1690 
1691 /* Check if REGNO contains a valid value in MODE.  */
1692 
1693 static bool
move2add_valid_value_p(int regno,scalar_int_mode mode)1694 move2add_valid_value_p (int regno, scalar_int_mode mode)
1695 {
1696   if (reg_set_luid[regno] <= move2add_last_label_luid)
1697     return false;
1698 
1699   if (mode != reg_mode[regno])
1700     {
1701       scalar_int_mode old_mode;
1702       if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1703 	  || !MODES_OK_FOR_MOVE2ADD (mode, old_mode))
1704 	return false;
1705       /* The value loaded into regno in reg_mode[regno] is also valid in
1706 	 mode after truncation only if (REG:mode regno) is the lowpart of
1707 	 (REG:reg_mode[regno] regno).  Now, for big endian, the starting
1708 	 regno of the lowpart might be different.  */
1709       poly_int64 s_off = subreg_lowpart_offset (mode, old_mode);
1710       s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
1711       if (maybe_ne (s_off, 0))
1712 	/* We could in principle adjust regno, check reg_mode[regno] to be
1713 	   BLKmode, and return s_off to the caller (vs. -1 for failure),
1714 	   but we currently have no callers that could make use of this
1715 	   information.  */
1716 	return false;
1717     }
1718 
1719   for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1720     if (reg_mode[i] != BLKmode)
1721       return false;
1722   return true;
1723 }
1724 
1725 /* This function is called with INSN that sets REG (of mode MODE)
1726    to (SYM + OFF), while REG is known to already have value (SYM + offset).
1727    This function tries to change INSN into an add instruction
1728    (set (REG) (plus (REG) (OFF - offset))) using the known value.
1729    It also updates the information about REG's known value.
1730    Return true if we made a change.  */
1731 
1732 static bool
move2add_use_add2_insn(scalar_int_mode mode,rtx reg,rtx sym,rtx off,rtx_insn * insn)1733 move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1734 			rtx_insn *insn)
1735 {
1736   rtx pat = PATTERN (insn);
1737   rtx src = SET_SRC (pat);
1738   int regno = REGNO (reg);
1739   rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
1740   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1741   bool changed = false;
1742 
1743   /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1744      use (set (reg) (reg)) instead.
1745      We don't delete this insn, nor do we convert it into a
1746      note, to avoid losing register notes or the return
1747      value flag.  jump2 already knows how to get rid of
1748      no-op moves.  */
1749   if (new_src == const0_rtx)
1750     {
1751       /* If the constants are different, this is a
1752 	 truncation, that, if turned into (set (reg)
1753 	 (reg)), would be discarded.  Maybe we should
1754 	 try a truncMN pattern?  */
1755       if (INTVAL (off) == reg_offset [regno])
1756 	changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1757     }
1758   else
1759     {
1760       struct full_rtx_costs oldcst, newcst;
1761       rtx tem = gen_rtx_PLUS (mode, reg, new_src);
1762 
1763       get_full_set_rtx_cost (pat, &oldcst);
1764       SET_SRC (pat) = tem;
1765       get_full_set_rtx_cost (pat, &newcst);
1766       SET_SRC (pat) = src;
1767 
1768       if (costs_lt_p (&newcst, &oldcst, speed)
1769 	  && have_add2_insn (reg, new_src))
1770 	changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1771       else if (sym == NULL_RTX && mode != BImode)
1772 	{
1773 	  scalar_int_mode narrow_mode;
1774 	  FOR_EACH_MODE_UNTIL (narrow_mode, mode)
1775 	    {
1776 	      if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1777 		  && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1778 		      == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1779 		{
1780 		  rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1781 		  rtx narrow_src = gen_int_mode (INTVAL (off),
1782 						 narrow_mode);
1783 		  rtx new_set
1784 		    = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1785 							    narrow_reg),
1786 				   narrow_src);
1787 		  get_full_set_rtx_cost (new_set, &newcst);
1788 		  if (costs_lt_p (&newcst, &oldcst, speed))
1789 		    {
1790 		      changed = validate_change (insn, &PATTERN (insn),
1791 						 new_set, 0);
1792 		      if (changed)
1793 			break;
1794 		    }
1795 		}
1796 	    }
1797 	}
1798     }
1799   move2add_record_sym_value (reg, sym, off);
1800   return changed;
1801 }
1802 
1803 
1804 /* This function is called with INSN that sets REG (of mode MODE) to
1805    (SYM + OFF), but REG doesn't have known value (SYM + offset).  This
1806    function tries to find another register which is known to already have
1807    value (SYM + offset) and change INSN into an add instruction
1808    (set (REG) (plus (the found register) (OFF - offset))) if such
1809    a register is found.  It also updates the information about
1810    REG's known value.
1811    Return true iff we made a change.  */
1812 
1813 static bool
move2add_use_add3_insn(scalar_int_mode mode,rtx reg,rtx sym,rtx off,rtx_insn * insn)1814 move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1815 			rtx_insn *insn)
1816 {
1817   rtx pat = PATTERN (insn);
1818   rtx src = SET_SRC (pat);
1819   int regno = REGNO (reg);
1820   int min_regno = 0;
1821   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1822   int i;
1823   bool changed = false;
1824   struct full_rtx_costs oldcst, newcst, mincst;
1825   rtx plus_expr;
1826 
1827   init_costs_to_max (&mincst);
1828   get_full_set_rtx_cost (pat, &oldcst);
1829 
1830   plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1831   SET_SRC (pat) = plus_expr;
1832 
1833   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1834     if (move2add_valid_value_p (i, mode)
1835 	&& reg_base_reg[i] < 0
1836 	&& reg_symbol_ref[i] != NULL_RTX
1837 	&& rtx_equal_p (sym, reg_symbol_ref[i]))
1838       {
1839 	rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1840 				    GET_MODE (reg));
1841 	/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1842 	   use (set (reg) (reg)) instead.
1843 	   We don't delete this insn, nor do we convert it into a
1844 	   note, to avoid losing register notes or the return
1845 	   value flag.  jump2 already knows how to get rid of
1846 	   no-op moves.  */
1847 	if (new_src == const0_rtx)
1848 	  {
1849 	    init_costs_to_zero (&mincst);
1850 	    min_regno = i;
1851 	    break;
1852 	  }
1853 	else
1854 	  {
1855 	    XEXP (plus_expr, 1) = new_src;
1856 	    get_full_set_rtx_cost (pat, &newcst);
1857 
1858 	    if (costs_lt_p (&newcst, &mincst, speed))
1859 	      {
1860 		mincst = newcst;
1861 		min_regno = i;
1862 	      }
1863 	  }
1864       }
1865   SET_SRC (pat) = src;
1866 
1867   if (costs_lt_p (&mincst, &oldcst, speed))
1868     {
1869       rtx tem;
1870 
1871       tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1872       if (i != min_regno)
1873 	{
1874 	  rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1875 				      GET_MODE (reg));
1876 	  tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1877 	}
1878       if (validate_change (insn, &SET_SRC (pat), tem, 0))
1879 	changed = true;
1880     }
1881   reg_set_luid[regno] = move2add_luid;
1882   move2add_record_sym_value (reg, sym, off);
1883   return changed;
1884 }
1885 
1886 /* Convert move insns with constant inputs to additions if they are cheaper.
1887    Return true if any changes were made.  */
1888 static bool
reload_cse_move2add(rtx_insn * first)1889 reload_cse_move2add (rtx_insn *first)
1890 {
1891   int i;
1892   rtx_insn *insn;
1893   bool changed = false;
1894 
1895   for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1896     {
1897       reg_set_luid[i] = 0;
1898       reg_offset[i] = 0;
1899       reg_base_reg[i] = 0;
1900       reg_symbol_ref[i] = NULL_RTX;
1901       reg_mode[i] = VOIDmode;
1902     }
1903 
1904   move2add_last_label_luid = 0;
1905   move2add_luid = 2;
1906   for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1907     {
1908       rtx pat, note;
1909 
1910       if (LABEL_P (insn))
1911 	{
1912 	  move2add_last_label_luid = move2add_luid;
1913 	  /* We're going to increment move2add_luid twice after a
1914 	     label, so that we can use move2add_last_label_luid + 1 as
1915 	     the luid for constants.  */
1916 	  move2add_luid++;
1917 	  continue;
1918 	}
1919       if (! INSN_P (insn))
1920 	continue;
1921       pat = PATTERN (insn);
1922       /* For simplicity, we only perform this optimization on
1923 	 straightforward SETs.  */
1924       scalar_int_mode mode;
1925       if (GET_CODE (pat) == SET
1926 	  && REG_P (SET_DEST (pat))
1927 	  && is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
1928 	{
1929 	  rtx reg = SET_DEST (pat);
1930 	  int regno = REGNO (reg);
1931 	  rtx src = SET_SRC (pat);
1932 
1933 	  /* Check if we have valid information on the contents of this
1934 	     register in the mode of REG.  */
1935 	  if (move2add_valid_value_p (regno, mode)
1936               && dbg_cnt (cse2_move2add))
1937 	    {
1938 	      /* Try to transform (set (REGX) (CONST_INT A))
1939 				  ...
1940 				  (set (REGX) (CONST_INT B))
1941 		 to
1942 				  (set (REGX) (CONST_INT A))
1943 				  ...
1944 				  (set (REGX) (plus (REGX) (CONST_INT B-A)))
1945 		 or
1946 				  (set (REGX) (CONST_INT A))
1947 				  ...
1948 				  (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1949 	      */
1950 
1951 	      if (CONST_INT_P (src)
1952 		  && reg_base_reg[regno] < 0
1953 		  && reg_symbol_ref[regno] == NULL_RTX)
1954 		{
1955 		  changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
1956 						     src, insn);
1957 		  continue;
1958 		}
1959 
1960 	      /* Try to transform (set (REGX) (REGY))
1961 				  (set (REGX) (PLUS (REGX) (CONST_INT A)))
1962 				  ...
1963 				  (set (REGX) (REGY))
1964 				  (set (REGX) (PLUS (REGX) (CONST_INT B)))
1965 		 to
1966 				  (set (REGX) (REGY))
1967 				  (set (REGX) (PLUS (REGX) (CONST_INT A)))
1968 				  ...
1969 				  (set (REGX) (plus (REGX) (CONST_INT B-A)))  */
1970 	      else if (REG_P (src)
1971 		       && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1972 		       && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1973 		       && move2add_valid_value_p (REGNO (src), mode))
1974 		{
1975 		  rtx_insn *next = next_nonnote_nondebug_insn (insn);
1976 		  rtx set = NULL_RTX;
1977 		  if (next)
1978 		    set = single_set (next);
1979 		  if (set
1980 		      && SET_DEST (set) == reg
1981 		      && GET_CODE (SET_SRC (set)) == PLUS
1982 		      && XEXP (SET_SRC (set), 0) == reg
1983 		      && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1984 		    {
1985 		      rtx src3 = XEXP (SET_SRC (set), 1);
1986 		      unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1987 		      HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1988 		      HOST_WIDE_INT regno_offset = reg_offset[regno];
1989 		      rtx new_src =
1990 			gen_int_mode (added_offset
1991 				      + base_offset
1992 				      - regno_offset,
1993 				      mode);
1994 		      bool success = false;
1995 		      bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1996 
1997 		      if (new_src == const0_rtx)
1998 			/* See above why we create (set (reg) (reg)) here.  */
1999 			success
2000 			  = validate_change (next, &SET_SRC (set), reg, 0);
2001 		      else
2002 			{
2003 			  rtx old_src = SET_SRC (set);
2004 			  struct full_rtx_costs oldcst, newcst;
2005 			  rtx tem = gen_rtx_PLUS (mode, reg, new_src);
2006 
2007 			  get_full_set_rtx_cost (set, &oldcst);
2008 			  SET_SRC (set) = tem;
2009 			  get_full_set_src_cost (tem, mode, &newcst);
2010 			  SET_SRC (set) = old_src;
2011 			  costs_add_n_insns (&oldcst, 1);
2012 
2013 			  if (costs_lt_p (&newcst, &oldcst, speed)
2014 			      && have_add2_insn (reg, new_src))
2015 			    {
2016 			      rtx newpat = gen_rtx_SET (reg, tem);
2017 			      success
2018 				= validate_change (next, &PATTERN (next),
2019 						   newpat, 0);
2020 			    }
2021 			}
2022 		      if (success)
2023 			delete_insn (insn);
2024 		      changed |= success;
2025 		      insn = next;
2026 		      move2add_record_mode (reg);
2027 		      reg_offset[regno]
2028 			= trunc_int_for_mode (added_offset + base_offset,
2029 					      mode);
2030 		      continue;
2031 		    }
2032 		}
2033 	    }
2034 
2035 	  /* Try to transform
2036 	     (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2037 	     ...
2038 	     (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2039 	     to
2040 	     (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2041 	     ...
2042 	     (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A))))  */
2043 	  if ((GET_CODE (src) == SYMBOL_REF
2044 	       || (GET_CODE (src) == CONST
2045 		   && GET_CODE (XEXP (src, 0)) == PLUS
2046 		   && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2047 		   && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2048 	      && dbg_cnt (cse2_move2add))
2049 	    {
2050 	      rtx sym, off;
2051 
2052 	      if (GET_CODE (src) == SYMBOL_REF)
2053 		{
2054 		  sym = src;
2055 		  off = const0_rtx;
2056 		}
2057 	      else
2058 		{
2059 		  sym = XEXP (XEXP (src, 0), 0);
2060 		  off = XEXP (XEXP (src, 0), 1);
2061 		}
2062 
2063 	      /* If the reg already contains the value which is sum of
2064 		 sym and some constant value, we can use an add2 insn.  */
2065 	      if (move2add_valid_value_p (regno, mode)
2066 		  && reg_base_reg[regno] < 0
2067 		  && reg_symbol_ref[regno] != NULL_RTX
2068 		  && rtx_equal_p (sym, reg_symbol_ref[regno]))
2069 		changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
2070 
2071 	      /* Otherwise, we have to find a register whose value is sum
2072 		 of sym and some constant value.  */
2073 	      else
2074 		changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
2075 
2076 	      continue;
2077 	    }
2078 	}
2079 
2080       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2081 	{
2082 	  if (REG_NOTE_KIND (note) == REG_INC
2083 	      && REG_P (XEXP (note, 0)))
2084 	    {
2085 	      /* Reset the information about this register.  */
2086 	      int regno = REGNO (XEXP (note, 0));
2087 	      if (regno < FIRST_PSEUDO_REGISTER)
2088 		{
2089 		  move2add_record_mode (XEXP (note, 0));
2090 		  reg_mode[regno] = VOIDmode;
2091 		}
2092 	    }
2093 	}
2094 
2095       /* There are no REG_INC notes for SP autoinc.  */
2096       subrtx_var_iterator::array_type array;
2097       FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
2098 	{
2099 	  rtx mem = *iter;
2100 	  if (mem
2101 	      && MEM_P (mem)
2102 	      && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
2103 	    {
2104 	      if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
2105 		reg_mode[STACK_POINTER_REGNUM] = VOIDmode;
2106 	    }
2107 	}
2108 
2109       note_stores (insn, move2add_note_store, insn);
2110 
2111       /* If INSN is a conditional branch, we try to extract an
2112 	 implicit set out of it.  */
2113       if (any_condjump_p (insn))
2114 	{
2115 	  rtx cnd = fis_get_condition (insn);
2116 
2117 	  if (cnd != NULL_RTX
2118 	      && GET_CODE (cnd) == NE
2119 	      && REG_P (XEXP (cnd, 0))
2120 	      && !reg_set_p (XEXP (cnd, 0), insn)
2121 	      /* The following two checks, which are also in
2122 		 move2add_note_store, are intended to reduce the
2123 		 number of calls to gen_rtx_SET to avoid memory
2124 		 allocation if possible.  */
2125 	      && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2126 	      && REG_NREGS (XEXP (cnd, 0)) == 1
2127 	      && CONST_INT_P (XEXP (cnd, 1)))
2128 	    {
2129 	      rtx implicit_set =
2130 		gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2131 	      move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2132 	    }
2133 	}
2134 
2135       /* If this is a CALL_INSN, all call used registers are stored with
2136 	 unknown values.  */
2137       if (CALL_P (insn))
2138 	{
2139 	  function_abi callee_abi = insn_callee_abi (insn);
2140 	  for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2141 	    if (reg_mode[i] != VOIDmode
2142 		&& reg_mode[i] != BLKmode
2143 		&& callee_abi.clobbers_reg_p (reg_mode[i], i))
2144 	      /* Reset the information about this register.  */
2145 	      reg_mode[i] = VOIDmode;
2146 	}
2147     }
2148   return changed;
2149 }
2150 
2151 /* SET is a SET or CLOBBER that sets DST.  DATA is the insn which
2152    contains SET.
2153    Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2154    Called from reload_cse_move2add via note_stores.  */
2155 
2156 static void
move2add_note_store(rtx dst,const_rtx set,void * data)2157 move2add_note_store (rtx dst, const_rtx set, void *data)
2158 {
2159   rtx_insn *insn = (rtx_insn *) data;
2160   unsigned int regno = 0;
2161   scalar_int_mode mode;
2162 
2163   if (GET_CODE (dst) == SUBREG)
2164     regno = subreg_regno (dst);
2165   else if (REG_P (dst))
2166     regno = REGNO (dst);
2167   else
2168     return;
2169 
2170   if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2171     goto invalidate;
2172 
2173   if (GET_CODE (set) == SET)
2174     {
2175       rtx note, sym = NULL_RTX;
2176       rtx off;
2177 
2178       note = find_reg_equal_equiv_note (insn);
2179       if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2180 	{
2181 	  sym = XEXP (note, 0);
2182 	  off = const0_rtx;
2183 	}
2184       else if (note && GET_CODE (XEXP (note, 0)) == CONST
2185 	       && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2186 	       && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2187 	       && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2188 	{
2189 	  sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2190 	  off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2191 	}
2192 
2193       if (sym != NULL_RTX)
2194 	{
2195 	  move2add_record_sym_value (dst, sym, off);
2196 	  return;
2197 	}
2198     }
2199 
2200   if (GET_CODE (set) == SET
2201       && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2202       && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2203     {
2204       rtx src = SET_SRC (set);
2205       rtx base_reg;
2206       unsigned HOST_WIDE_INT offset;
2207       int base_regno;
2208 
2209       switch (GET_CODE (src))
2210 	{
2211 	case PLUS:
2212 	  if (REG_P (XEXP (src, 0)))
2213 	    {
2214 	      base_reg = XEXP (src, 0);
2215 
2216 	      if (CONST_INT_P (XEXP (src, 1)))
2217 		offset = UINTVAL (XEXP (src, 1));
2218 	      else if (REG_P (XEXP (src, 1))
2219 		       && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2220 		{
2221 		  if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2222 		      && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2223 		    offset = reg_offset[REGNO (XEXP (src, 1))];
2224 		  /* Maybe the first register is known to be a
2225 		     constant.  */
2226 		  else if (move2add_valid_value_p (REGNO (base_reg), mode)
2227 			   && reg_base_reg[REGNO (base_reg)] < 0
2228 			   && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2229 		    {
2230 		      offset = reg_offset[REGNO (base_reg)];
2231 		      base_reg = XEXP (src, 1);
2232 		    }
2233 		  else
2234 		    goto invalidate;
2235 		}
2236 	      else
2237 		goto invalidate;
2238 
2239 	      break;
2240 	    }
2241 
2242 	  goto invalidate;
2243 
2244 	case REG:
2245 	  base_reg = src;
2246 	  offset = 0;
2247 	  break;
2248 
2249 	case CONST_INT:
2250 	  /* Start tracking the register as a constant.  */
2251 	  reg_base_reg[regno] = -1;
2252 	  reg_symbol_ref[regno] = NULL_RTX;
2253 	  reg_offset[regno] = INTVAL (SET_SRC (set));
2254 	  /* We assign the same luid to all registers set to constants.  */
2255 	  reg_set_luid[regno] = move2add_last_label_luid + 1;
2256 	  move2add_record_mode (dst);
2257 	  return;
2258 
2259 	default:
2260 	  goto invalidate;
2261 	}
2262 
2263       base_regno = REGNO (base_reg);
2264       /* If information about the base register is not valid, set it
2265 	 up as a new base register, pretending its value is known
2266 	 starting from the current insn.  */
2267       if (!move2add_valid_value_p (base_regno, mode))
2268 	{
2269 	  reg_base_reg[base_regno] = base_regno;
2270 	  reg_symbol_ref[base_regno] = NULL_RTX;
2271 	  reg_offset[base_regno] = 0;
2272 	  reg_set_luid[base_regno] = move2add_luid;
2273 	  gcc_assert (GET_MODE (base_reg) == mode);
2274 	  move2add_record_mode (base_reg);
2275 	}
2276 
2277       /* Copy base information from our base register.  */
2278       reg_set_luid[regno] = reg_set_luid[base_regno];
2279       reg_base_reg[regno] = reg_base_reg[base_regno];
2280       reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2281 
2282       /* Compute the sum of the offsets or constants.  */
2283       reg_offset[regno]
2284 	= trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2285 
2286       move2add_record_mode (dst);
2287     }
2288   else
2289     {
2290     invalidate:
2291       /* Invalidate the contents of the register.  */
2292       move2add_record_mode (dst);
2293       reg_mode[regno] = VOIDmode;
2294     }
2295 }
2296 
2297 namespace {
2298 
2299 const pass_data pass_data_postreload_cse =
2300 {
2301   RTL_PASS, /* type */
2302   "postreload", /* name */
2303   OPTGROUP_NONE, /* optinfo_flags */
2304   TV_RELOAD_CSE_REGS, /* tv_id */
2305   0, /* properties_required */
2306   0, /* properties_provided */
2307   0, /* properties_destroyed */
2308   0, /* todo_flags_start */
2309   TODO_df_finish, /* todo_flags_finish */
2310 };
2311 
2312 class pass_postreload_cse : public rtl_opt_pass
2313 {
2314 public:
pass_postreload_cse(gcc::context * ctxt)2315   pass_postreload_cse (gcc::context *ctxt)
2316     : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2317   {}
2318 
2319   /* opt_pass methods: */
gate(function *)2320   virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2321 
2322   virtual unsigned int execute (function *);
2323 
2324 }; // class pass_postreload_cse
2325 
2326 unsigned int
execute(function * fun)2327 pass_postreload_cse::execute (function *fun)
2328 {
2329   if (!dbg_cnt (postreload_cse))
2330     return 0;
2331 
2332   /* Do a very simple CSE pass over just the hard registers.  */
2333   reload_cse_regs (get_insns ());
2334   /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2335      Remove any EH edges associated with them.  */
2336   if (fun->can_throw_non_call_exceptions
2337       && purge_all_dead_edges ())
2338     cleanup_cfg (0);
2339 
2340   return 0;
2341 }
2342 
2343 } // anon namespace
2344 
2345 rtl_opt_pass *
make_pass_postreload_cse(gcc::context * ctxt)2346 make_pass_postreload_cse (gcc::context *ctxt)
2347 {
2348   return new pass_postreload_cse (ctxt);
2349 }
2350