1 /* Code for range operators.
2 Copyright (C) 2017-2020 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "gimple-pretty-print.h"
35 #include "diagnostic-core.h"
36 #include "flags.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "calls.h"
40 #include "cfganal.h"
41 #include "gimple-fold.h"
42 #include "tree-eh.h"
43 #include "gimple-iterator.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "wide-int.h"
47 #include "range-op.h"
48
49 // Return the upper limit for a type.
50
51 static inline wide_int
max_limit(const_tree type)52 max_limit (const_tree type)
53 {
54 return wi::max_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
55 }
56
57 // Return the lower limit for a type.
58
59 static inline wide_int
min_limit(const_tree type)60 min_limit (const_tree type)
61 {
62 return wi::min_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
63 }
64
65 // If the range of either op1 or op2 is undefined, set the result to
66 // undefined and return TRUE.
67
68 inline bool
empty_range_check(value_range & r,const value_range & op1,const value_range & op2)69 empty_range_check (value_range &r,
70 const value_range &op1, const value_range & op2)
71 {
72 if (op1.undefined_p () || op2.undefined_p ())
73 {
74 r.set_undefined ();
75 return true;
76 }
77 else
78 return false;
79 }
80
81 // Return TRUE if shifting by OP is undefined behavior, and set R to
82 // the appropriate range.
83
84 static inline bool
undefined_shift_range_check(value_range & r,tree type,const value_range op)85 undefined_shift_range_check (value_range &r, tree type, const value_range op)
86 {
87 if (op.undefined_p ())
88 {
89 r = value_range ();
90 return true;
91 }
92
93 // Shifting by any values outside [0..prec-1], gets undefined
94 // behavior from the shift operation. We cannot even trust
95 // SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
96 // shifts, and the operation at the tree level may be widened.
97 if (wi::lt_p (op.lower_bound (), 0, TYPE_SIGN (op.type ()))
98 || wi::ge_p (op.upper_bound (),
99 TYPE_PRECISION (type), TYPE_SIGN (op.type ())))
100 {
101 r = value_range (type);
102 return true;
103 }
104 return false;
105 }
106
107 // Return TRUE if 0 is within [WMIN, WMAX].
108
109 static inline bool
wi_includes_zero_p(tree type,const wide_int & wmin,const wide_int & wmax)110 wi_includes_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
111 {
112 signop sign = TYPE_SIGN (type);
113 return wi::le_p (wmin, 0, sign) && wi::ge_p (wmax, 0, sign);
114 }
115
116 // Return TRUE if [WMIN, WMAX] is the singleton 0.
117
118 static inline bool
wi_zero_p(tree type,const wide_int & wmin,const wide_int & wmax)119 wi_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
120 {
121 unsigned prec = TYPE_PRECISION (type);
122 return wmin == wmax && wi::eq_p (wmin, wi::zero (prec));
123 }
124
125 // Default wide_int fold operation returns [MIN, MAX].
126
127 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb ATTRIBUTE_UNUSED,const wide_int & lh_ub ATTRIBUTE_UNUSED,const wide_int & rh_lb ATTRIBUTE_UNUSED,const wide_int & rh_ub ATTRIBUTE_UNUSED) const128 range_operator::wi_fold (value_range &r, tree type,
129 const wide_int &lh_lb ATTRIBUTE_UNUSED,
130 const wide_int &lh_ub ATTRIBUTE_UNUSED,
131 const wide_int &rh_lb ATTRIBUTE_UNUSED,
132 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
133 {
134 gcc_checking_assert (value_range::supports_type_p (type));
135 r = value_range (type);
136 }
137
138 // The default for fold is to break all ranges into sub-ranges and
139 // invoke the wi_fold method on each sub-range pair.
140
141 bool
fold_range(value_range & r,tree type,const value_range & lh,const value_range & rh) const142 range_operator::fold_range (value_range &r, tree type,
143 const value_range &lh,
144 const value_range &rh) const
145 {
146 gcc_checking_assert (value_range::supports_type_p (type));
147 if (empty_range_check (r, lh, rh))
148 return true;
149
150 value_range tmp;
151 r.set_undefined ();
152 for (unsigned x = 0; x < lh.num_pairs (); ++x)
153 for (unsigned y = 0; y < rh.num_pairs (); ++y)
154 {
155 wide_int lh_lb = lh.lower_bound (x);
156 wide_int lh_ub = lh.upper_bound (x);
157 wide_int rh_lb = rh.lower_bound (y);
158 wide_int rh_ub = rh.upper_bound (y);
159 wi_fold (tmp, type, lh_lb, lh_ub, rh_lb, rh_ub);
160 r.union_ (tmp);
161 if (r.varying_p ())
162 return true;
163 }
164 return true;
165 }
166
167 // The default for op1_range is to return false.
168
169 bool
op1_range(value_range & r ATTRIBUTE_UNUSED,tree type ATTRIBUTE_UNUSED,const value_range & lhs ATTRIBUTE_UNUSED,const value_range & op2 ATTRIBUTE_UNUSED) const170 range_operator::op1_range (value_range &r ATTRIBUTE_UNUSED,
171 tree type ATTRIBUTE_UNUSED,
172 const value_range &lhs ATTRIBUTE_UNUSED,
173 const value_range &op2 ATTRIBUTE_UNUSED) const
174 {
175 return false;
176 }
177
178 // The default for op2_range is to return false.
179
180 bool
op2_range(value_range & r ATTRIBUTE_UNUSED,tree type ATTRIBUTE_UNUSED,const value_range & lhs ATTRIBUTE_UNUSED,const value_range & op1 ATTRIBUTE_UNUSED) const181 range_operator::op2_range (value_range &r ATTRIBUTE_UNUSED,
182 tree type ATTRIBUTE_UNUSED,
183 const value_range &lhs ATTRIBUTE_UNUSED,
184 const value_range &op1 ATTRIBUTE_UNUSED) const
185 {
186 return false;
187 }
188
189
190 // Create and return a range from a pair of wide-ints that are known
191 // to have overflowed (or underflowed).
192
193 static void
value_range_from_overflowed_bounds(value_range & r,tree type,const wide_int & wmin,const wide_int & wmax)194 value_range_from_overflowed_bounds (value_range &r, tree type,
195 const wide_int &wmin,
196 const wide_int &wmax)
197 {
198 const signop sgn = TYPE_SIGN (type);
199 const unsigned int prec = TYPE_PRECISION (type);
200
201 wide_int tmin = wide_int::from (wmin, prec, sgn);
202 wide_int tmax = wide_int::from (wmax, prec, sgn);
203
204 bool covers = false;
205 wide_int tem = tmin;
206 tmin = tmax + 1;
207 if (wi::cmp (tmin, tmax, sgn) < 0)
208 covers = true;
209 tmax = tem - 1;
210 if (wi::cmp (tmax, tem, sgn) > 0)
211 covers = true;
212
213 // If the anti-range would cover nothing, drop to varying.
214 // Likewise if the anti-range bounds are outside of the types
215 // values.
216 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
217 r = value_range (type);
218 else
219 r = value_range (type, tmin, tmax, VR_ANTI_RANGE);
220 }
221
222 // Create and return a range from a pair of wide-ints. MIN_OVF and
223 // MAX_OVF describe any overflow that might have occurred while
224 // calculating WMIN and WMAX respectively.
225
226 static void
value_range_with_overflow(value_range & r,tree type,const wide_int & wmin,const wide_int & wmax,wi::overflow_type min_ovf=wi::OVF_NONE,wi::overflow_type max_ovf=wi::OVF_NONE)227 value_range_with_overflow (value_range &r, tree type,
228 const wide_int &wmin, const wide_int &wmax,
229 wi::overflow_type min_ovf = wi::OVF_NONE,
230 wi::overflow_type max_ovf = wi::OVF_NONE)
231 {
232 const signop sgn = TYPE_SIGN (type);
233 const unsigned int prec = TYPE_PRECISION (type);
234 const bool overflow_wraps = TYPE_OVERFLOW_WRAPS (type);
235
236 // For one bit precision if max != min, then the range covers all
237 // values.
238 if (prec == 1 && wi::ne_p (wmax, wmin))
239 {
240 r = value_range (type);
241 return;
242 }
243
244 if (overflow_wraps)
245 {
246 // If overflow wraps, truncate the values and adjust the range,
247 // kind, and bounds appropriately.
248 if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
249 {
250 wide_int tmin = wide_int::from (wmin, prec, sgn);
251 wide_int tmax = wide_int::from (wmax, prec, sgn);
252 // If the limits are swapped, we wrapped around and cover
253 // the entire range.
254 if (wi::gt_p (tmin, tmax, sgn))
255 r = value_range (type);
256 else
257 // No overflow or both overflow or underflow. The range
258 // kind stays normal.
259 r = value_range (type, tmin, tmax);
260 return;
261 }
262
263 if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
264 || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
265 value_range_from_overflowed_bounds (r, type, wmin, wmax);
266 else
267 // Other underflow and/or overflow, drop to VR_VARYING.
268 r = value_range (type);
269 }
270 else
271 {
272 // If overflow does not wrap, saturate to [MIN, MAX].
273 wide_int new_lb, new_ub;
274 if (min_ovf == wi::OVF_UNDERFLOW)
275 new_lb = wi::min_value (prec, sgn);
276 else if (min_ovf == wi::OVF_OVERFLOW)
277 new_lb = wi::max_value (prec, sgn);
278 else
279 new_lb = wmin;
280
281 if (max_ovf == wi::OVF_UNDERFLOW)
282 new_ub = wi::min_value (prec, sgn);
283 else if (max_ovf == wi::OVF_OVERFLOW)
284 new_ub = wi::max_value (prec, sgn);
285 else
286 new_ub = wmax;
287
288 r = value_range (type, new_lb, new_ub);
289 }
290 }
291
292 // Create and return a range from a pair of wide-ints. Canonicalize
293 // the case where the bounds are swapped. In which case, we transform
294 // [10,5] into [MIN,5][10,MAX].
295
296 static inline void
create_possibly_reversed_range(value_range & r,tree type,const wide_int & new_lb,const wide_int & new_ub)297 create_possibly_reversed_range (value_range &r, tree type,
298 const wide_int &new_lb, const wide_int &new_ub)
299 {
300 signop s = TYPE_SIGN (type);
301 // If the bounds are swapped, treat the result as if an overflow occured.
302 if (wi::gt_p (new_lb, new_ub, s))
303 value_range_from_overflowed_bounds (r, type, new_lb, new_ub);
304 else
305 // Otherwise its just a normal range.
306 r = value_range (type, new_lb, new_ub);
307 }
308
309 // Return a value_range instance that is a boolean TRUE.
310
311 static inline value_range
range_true(tree type)312 range_true (tree type)
313 {
314 unsigned prec = TYPE_PRECISION (type);
315 return value_range (type, wi::one (prec), wi::one (prec));
316 }
317
318 // Return a value_range instance that is a boolean FALSE.
319
320 static inline value_range
range_false(tree type)321 range_false (tree type)
322 {
323 unsigned prec = TYPE_PRECISION (type);
324 return value_range (type, wi::zero (prec), wi::zero (prec));
325 }
326
327 // Return a value_range that covers both true and false.
328
329 static inline value_range
range_true_and_false(tree type)330 range_true_and_false (tree type)
331 {
332 unsigned prec = TYPE_PRECISION (type);
333 return value_range (type, wi::zero (prec), wi::one (prec));
334 }
335
336 enum bool_range_state { BRS_FALSE, BRS_TRUE, BRS_EMPTY, BRS_FULL };
337
338 // Return the summary information about boolean range LHS. Return an
339 // "interesting" range in R. For EMPTY or FULL, return the equivalent
340 // range for TYPE, for BRS_TRUE and BRS false, return the negation of
341 // the bool range.
342
343 static bool_range_state
get_bool_state(value_range & r,const value_range & lhs,tree val_type)344 get_bool_state (value_range &r, const value_range &lhs, tree val_type)
345 {
346 // If there is no result, then this is unexecutable.
347 if (lhs.undefined_p ())
348 {
349 r.set_undefined ();
350 return BRS_EMPTY;
351 }
352
353 // If the bounds aren't the same, then it's not a constant.
354 if (!wi::eq_p (lhs.upper_bound (), lhs.lower_bound ()))
355 {
356 r.set_varying (val_type);
357 return BRS_FULL;
358 }
359
360 if (lhs.zero_p ())
361 return BRS_FALSE;
362
363 return BRS_TRUE;
364 }
365
366
367 class operator_equal : public range_operator
368 {
369 public:
370 virtual bool fold_range (value_range &r, tree type,
371 const value_range &op1,
372 const value_range &op2) const;
373 virtual bool op1_range (value_range &r, tree type,
374 const value_range &lhs,
375 const value_range &val) const;
376 virtual bool op2_range (value_range &r, tree type,
377 const value_range &lhs,
378 const value_range &val) const;
379 } op_equal;
380
381 bool
fold_range(value_range & r,tree type,const value_range & op1,const value_range & op2) const382 operator_equal::fold_range (value_range &r, tree type,
383 const value_range &op1,
384 const value_range &op2) const
385 {
386 if (empty_range_check (r, op1, op2))
387 return true;
388
389 // We can be sure the values are always equal or not if both ranges
390 // consist of a single value, and then compare them.
391 if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
392 && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
393 {
394 if (wi::eq_p (op1.lower_bound (), op2.upper_bound()))
395 r = range_true (type);
396 else
397 r = range_false (type);
398 }
399 else
400 {
401 // If ranges do not intersect, we know the range is not equal,
402 // otherwise we don't know anything for sure.
403 r = op1;
404 r.intersect (op2);
405 if (r.undefined_p ())
406 r = range_false (type);
407 else
408 r = range_true_and_false (type);
409 }
410 return true;
411 }
412
413 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const414 operator_equal::op1_range (value_range &r, tree type,
415 const value_range &lhs,
416 const value_range &op2) const
417 {
418 switch (get_bool_state (r, lhs, type))
419 {
420 case BRS_FALSE:
421 // If the result is false, the only time we know anything is
422 // if OP2 is a constant.
423 if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
424 {
425 r = op2;
426 r.invert ();
427 }
428 else
429 r.set_varying (type);
430 break;
431
432 case BRS_TRUE:
433 // If it's true, the result is the same as OP2.
434 r = op2;
435 break;
436
437 default:
438 break;
439 }
440 return true;
441 }
442
443 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const444 operator_equal::op2_range (value_range &r, tree type,
445 const value_range &lhs,
446 const value_range &op1) const
447 {
448 return operator_equal::op1_range (r, type, lhs, op1);
449 }
450
451
452 class operator_not_equal : public range_operator
453 {
454 public:
455 virtual bool fold_range (value_range &r, tree type,
456 const value_range &op1,
457 const value_range &op2) const;
458 virtual bool op1_range (value_range &r, tree type,
459 const value_range &lhs,
460 const value_range &op2) const;
461 virtual bool op2_range (value_range &r, tree type,
462 const value_range &lhs,
463 const value_range &op1) const;
464 } op_not_equal;
465
466 bool
fold_range(value_range & r,tree type,const value_range & op1,const value_range & op2) const467 operator_not_equal::fold_range (value_range &r, tree type,
468 const value_range &op1,
469 const value_range &op2) const
470 {
471 if (empty_range_check (r, op1, op2))
472 return true;
473
474 // We can be sure the values are always equal or not if both ranges
475 // consist of a single value, and then compare them.
476 if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
477 && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
478 {
479 if (wi::ne_p (op1.lower_bound (), op2.upper_bound()))
480 r = range_true (type);
481 else
482 r = range_false (type);
483 }
484 else
485 {
486 // If ranges do not intersect, we know the range is not equal,
487 // otherwise we don't know anything for sure.
488 r = op1;
489 r.intersect (op2);
490 if (r.undefined_p ())
491 r = range_true (type);
492 else
493 r = range_true_and_false (type);
494 }
495 return true;
496 }
497
498 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const499 operator_not_equal::op1_range (value_range &r, tree type,
500 const value_range &lhs,
501 const value_range &op2) const
502 {
503 switch (get_bool_state (r, lhs, type))
504 {
505 case BRS_TRUE:
506 // If the result is true, the only time we know anything is if
507 // OP2 is a constant.
508 if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
509 {
510 r = op2;
511 r.invert ();
512 }
513 else
514 r.set_varying (type);
515 break;
516
517 case BRS_FALSE:
518 // If its true, the result is the same as OP2.
519 r = op2;
520 break;
521
522 default:
523 break;
524 }
525 return true;
526 }
527
528
529 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const530 operator_not_equal::op2_range (value_range &r, tree type,
531 const value_range &lhs,
532 const value_range &op1) const
533 {
534 return operator_not_equal::op1_range (r, type, lhs, op1);
535 }
536
537 // (X < VAL) produces the range of [MIN, VAL - 1].
538
539 static void
build_lt(value_range & r,tree type,const wide_int & val)540 build_lt (value_range &r, tree type, const wide_int &val)
541 {
542 wi::overflow_type ov;
543 wide_int lim = wi::sub (val, 1, TYPE_SIGN (type), &ov);
544
545 // If val - 1 underflows, check if X < MIN, which is an empty range.
546 if (ov)
547 r.set_undefined ();
548 else
549 r = value_range (type, min_limit (type), lim);
550 }
551
552 // (X <= VAL) produces the range of [MIN, VAL].
553
554 static void
build_le(value_range & r,tree type,const wide_int & val)555 build_le (value_range &r, tree type, const wide_int &val)
556 {
557 r = value_range (type, min_limit (type), val);
558 }
559
560 // (X > VAL) produces the range of [VAL + 1, MAX].
561
562 static void
build_gt(value_range & r,tree type,const wide_int & val)563 build_gt (value_range &r, tree type, const wide_int &val)
564 {
565 wi::overflow_type ov;
566 wide_int lim = wi::add (val, 1, TYPE_SIGN (type), &ov);
567 // If val + 1 overflows, check is for X > MAX, which is an empty range.
568 if (ov)
569 r.set_undefined ();
570 else
571 r = value_range (type, lim, max_limit (type));
572 }
573
574 // (X >= val) produces the range of [VAL, MAX].
575
576 static void
build_ge(value_range & r,tree type,const wide_int & val)577 build_ge (value_range &r, tree type, const wide_int &val)
578 {
579 r = value_range (type, val, max_limit (type));
580 }
581
582
583 class operator_lt : public range_operator
584 {
585 public:
586 virtual bool fold_range (value_range &r, tree type,
587 const value_range &op1,
588 const value_range &op2) const;
589 virtual bool op1_range (value_range &r, tree type,
590 const value_range &lhs,
591 const value_range &op2) const;
592 virtual bool op2_range (value_range &r, tree type,
593 const value_range &lhs,
594 const value_range &op1) const;
595 } op_lt;
596
597 bool
fold_range(value_range & r,tree type,const value_range & op1,const value_range & op2) const598 operator_lt::fold_range (value_range &r, tree type,
599 const value_range &op1,
600 const value_range &op2) const
601 {
602 if (empty_range_check (r, op1, op2))
603 return true;
604
605 signop sign = TYPE_SIGN (op1.type ());
606 gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
607
608 if (wi::lt_p (op1.upper_bound (), op2.lower_bound (), sign))
609 r = range_true (type);
610 else if (!wi::lt_p (op1.lower_bound (), op2.upper_bound (), sign))
611 r = range_false (type);
612 else
613 r = range_true_and_false (type);
614 return true;
615 }
616
617 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const618 operator_lt::op1_range (value_range &r, tree type,
619 const value_range &lhs,
620 const value_range &op2) const
621 {
622 switch (get_bool_state (r, lhs, type))
623 {
624 case BRS_TRUE:
625 build_lt (r, type, op2.upper_bound ());
626 break;
627
628 case BRS_FALSE:
629 build_ge (r, type, op2.lower_bound ());
630 break;
631
632 default:
633 break;
634 }
635 return true;
636 }
637
638 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const639 operator_lt::op2_range (value_range &r, tree type,
640 const value_range &lhs,
641 const value_range &op1) const
642 {
643 switch (get_bool_state (r, lhs, type))
644 {
645 case BRS_FALSE:
646 build_le (r, type, op1.upper_bound ());
647 break;
648
649 case BRS_TRUE:
650 build_gt (r, type, op1.lower_bound ());
651 break;
652
653 default:
654 break;
655 }
656 return true;
657 }
658
659
660 class operator_le : public range_operator
661 {
662 public:
663 virtual bool fold_range (value_range &r, tree type,
664 const value_range &op1,
665 const value_range &op2) const;
666 virtual bool op1_range (value_range &r, tree type,
667 const value_range &lhs,
668 const value_range &op2) const;
669 virtual bool op2_range (value_range &r, tree type,
670 const value_range &lhs,
671 const value_range &op1) const;
672 } op_le;
673
674 bool
fold_range(value_range & r,tree type,const value_range & op1,const value_range & op2) const675 operator_le::fold_range (value_range &r, tree type,
676 const value_range &op1,
677 const value_range &op2) const
678 {
679 if (empty_range_check (r, op1, op2))
680 return true;
681
682 signop sign = TYPE_SIGN (op1.type ());
683 gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
684
685 if (wi::le_p (op1.upper_bound (), op2.lower_bound (), sign))
686 r = range_true (type);
687 else if (!wi::le_p (op1.lower_bound (), op2.upper_bound (), sign))
688 r = range_false (type);
689 else
690 r = range_true_and_false (type);
691 return true;
692 }
693
694 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const695 operator_le::op1_range (value_range &r, tree type,
696 const value_range &lhs,
697 const value_range &op2) const
698 {
699 switch (get_bool_state (r, lhs, type))
700 {
701 case BRS_TRUE:
702 build_le (r, type, op2.upper_bound ());
703 break;
704
705 case BRS_FALSE:
706 build_gt (r, type, op2.lower_bound ());
707 break;
708
709 default:
710 break;
711 }
712 return true;
713 }
714
715 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const716 operator_le::op2_range (value_range &r, tree type,
717 const value_range &lhs,
718 const value_range &op1) const
719 {
720 switch (get_bool_state (r, lhs, type))
721 {
722 case BRS_FALSE:
723 build_lt (r, type, op1.upper_bound ());
724 break;
725
726 case BRS_TRUE:
727 build_ge (r, type, op1.lower_bound ());
728 break;
729
730 default:
731 break;
732 }
733 return true;
734 }
735
736
737 class operator_gt : public range_operator
738 {
739 public:
740 virtual bool fold_range (value_range &r, tree type,
741 const value_range &op1,
742 const value_range &op2) const;
743 virtual bool op1_range (value_range &r, tree type,
744 const value_range &lhs,
745 const value_range &op2) const;
746 virtual bool op2_range (value_range &r, tree type,
747 const value_range &lhs,
748 const value_range &op1) const;
749 } op_gt;
750
751 bool
fold_range(value_range & r,tree type,const value_range & op1,const value_range & op2) const752 operator_gt::fold_range (value_range &r, tree type,
753 const value_range &op1, const value_range &op2) const
754 {
755 if (empty_range_check (r, op1, op2))
756 return true;
757
758 signop sign = TYPE_SIGN (op1.type ());
759 gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
760
761 if (wi::gt_p (op1.lower_bound (), op2.upper_bound (), sign))
762 r = range_true (type);
763 else if (!wi::gt_p (op1.upper_bound (), op2.lower_bound (), sign))
764 r = range_false (type);
765 else
766 r = range_true_and_false (type);
767 return true;
768 }
769
770 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const771 operator_gt::op1_range (value_range &r, tree type,
772 const value_range &lhs, const value_range &op2) const
773 {
774 switch (get_bool_state (r, lhs, type))
775 {
776 case BRS_TRUE:
777 build_gt (r, type, op2.lower_bound ());
778 break;
779
780 case BRS_FALSE:
781 build_le (r, type, op2.upper_bound ());
782 break;
783
784 default:
785 break;
786 }
787 return true;
788 }
789
790 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const791 operator_gt::op2_range (value_range &r, tree type,
792 const value_range &lhs,
793 const value_range &op1) const
794 {
795 switch (get_bool_state (r, lhs, type))
796 {
797 case BRS_FALSE:
798 build_ge (r, type, op1.lower_bound ());
799 break;
800
801 case BRS_TRUE:
802 build_lt (r, type, op1.upper_bound ());
803 break;
804
805 default:
806 break;
807 }
808 return true;
809 }
810
811
812 class operator_ge : public range_operator
813 {
814 public:
815 virtual bool fold_range (value_range &r, tree type,
816 const value_range &op1,
817 const value_range &op2) const;
818 virtual bool op1_range (value_range &r, tree type,
819 const value_range &lhs,
820 const value_range &op2) const;
821 virtual bool op2_range (value_range &r, tree type,
822 const value_range &lhs,
823 const value_range &op1) const;
824 } op_ge;
825
826 bool
fold_range(value_range & r,tree type,const value_range & op1,const value_range & op2) const827 operator_ge::fold_range (value_range &r, tree type,
828 const value_range &op1,
829 const value_range &op2) const
830 {
831 if (empty_range_check (r, op1, op2))
832 return true;
833
834 signop sign = TYPE_SIGN (op1.type ());
835 gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
836
837 if (wi::ge_p (op1.lower_bound (), op2.upper_bound (), sign))
838 r = range_true (type);
839 else if (!wi::ge_p (op1.upper_bound (), op2.lower_bound (), sign))
840 r = range_false (type);
841 else
842 r = range_true_and_false (type);
843 return true;
844 }
845
846 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const847 operator_ge::op1_range (value_range &r, tree type,
848 const value_range &lhs,
849 const value_range &op2) const
850 {
851 switch (get_bool_state (r, lhs, type))
852 {
853 case BRS_TRUE:
854 build_ge (r, type, op2.lower_bound ());
855 break;
856
857 case BRS_FALSE:
858 build_lt (r, type, op2.upper_bound ());
859 break;
860
861 default:
862 break;
863 }
864 return true;
865 }
866
867 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const868 operator_ge::op2_range (value_range &r, tree type,
869 const value_range &lhs,
870 const value_range &op1) const
871 {
872 switch (get_bool_state (r, lhs, type))
873 {
874 case BRS_FALSE:
875 build_gt (r, type, op1.lower_bound ());
876 break;
877
878 case BRS_TRUE:
879 build_le (r, type, op1.upper_bound ());
880 break;
881
882 default:
883 break;
884 }
885 return true;
886 }
887
888
889 class operator_plus : public range_operator
890 {
891 public:
892 virtual bool op1_range (value_range &r, tree type,
893 const value_range &lhs,
894 const value_range &op2) const;
895 virtual bool op2_range (value_range &r, tree type,
896 const value_range &lhs,
897 const value_range &op1) const;
898 virtual void wi_fold (value_range &r, tree type,
899 const wide_int &lh_lb,
900 const wide_int &lh_ub,
901 const wide_int &rh_lb,
902 const wide_int &rh_ub) const;
903 } op_plus;
904
905 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const906 operator_plus::wi_fold (value_range &r, tree type,
907 const wide_int &lh_lb, const wide_int &lh_ub,
908 const wide_int &rh_lb, const wide_int &rh_ub) const
909 {
910 wi::overflow_type ov_lb, ov_ub;
911 signop s = TYPE_SIGN (type);
912 wide_int new_lb = wi::add (lh_lb, rh_lb, s, &ov_lb);
913 wide_int new_ub = wi::add (lh_ub, rh_ub, s, &ov_ub);
914 value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
915 }
916
917 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const918 operator_plus::op1_range (value_range &r, tree type,
919 const value_range &lhs,
920 const value_range &op2) const
921 {
922 return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, lhs, op2);
923 }
924
925 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const926 operator_plus::op2_range (value_range &r, tree type,
927 const value_range &lhs,
928 const value_range &op1) const
929 {
930 return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, lhs, op1);
931 }
932
933
934 class operator_minus : public range_operator
935 {
936 public:
937 virtual bool op1_range (value_range &r, tree type,
938 const value_range &lhs,
939 const value_range &op2) const;
940 virtual bool op2_range (value_range &r, tree type,
941 const value_range &lhs,
942 const value_range &op1) const;
943 virtual void wi_fold (value_range &r, tree type,
944 const wide_int &lh_lb,
945 const wide_int &lh_ub,
946 const wide_int &rh_lb,
947 const wide_int &rh_ub) const;
948 } op_minus;
949
950 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const951 operator_minus::wi_fold (value_range &r, tree type,
952 const wide_int &lh_lb, const wide_int &lh_ub,
953 const wide_int &rh_lb, const wide_int &rh_ub) const
954 {
955 wi::overflow_type ov_lb, ov_ub;
956 signop s = TYPE_SIGN (type);
957 wide_int new_lb = wi::sub (lh_lb, rh_ub, s, &ov_lb);
958 wide_int new_ub = wi::sub (lh_ub, rh_lb, s, &ov_ub);
959 value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
960 }
961
962 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const963 operator_minus::op1_range (value_range &r, tree type,
964 const value_range &lhs,
965 const value_range &op2) const
966 {
967 return range_op_handler (PLUS_EXPR, type)->fold_range (r, type, lhs, op2);
968 }
969
970 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const971 operator_minus::op2_range (value_range &r, tree type,
972 const value_range &lhs,
973 const value_range &op1) const
974 {
975 return fold_range (r, type, op1, lhs);
976 }
977
978
979 class operator_min : public range_operator
980 {
981 public:
982 virtual void wi_fold (value_range &r, tree type,
983 const wide_int &lh_lb,
984 const wide_int &lh_ub,
985 const wide_int &rh_lb,
986 const wide_int &rh_ub) const;
987 } op_min;
988
989 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const990 operator_min::wi_fold (value_range &r, tree type,
991 const wide_int &lh_lb, const wide_int &lh_ub,
992 const wide_int &rh_lb, const wide_int &rh_ub) const
993 {
994 signop s = TYPE_SIGN (type);
995 wide_int new_lb = wi::min (lh_lb, rh_lb, s);
996 wide_int new_ub = wi::min (lh_ub, rh_ub, s);
997 value_range_with_overflow (r, type, new_lb, new_ub);
998 }
999
1000
1001 class operator_max : public range_operator
1002 {
1003 public:
1004 virtual void wi_fold (value_range &r, tree type,
1005 const wide_int &lh_lb,
1006 const wide_int &lh_ub,
1007 const wide_int &rh_lb,
1008 const wide_int &rh_ub) const;
1009 } op_max;
1010
1011 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const1012 operator_max::wi_fold (value_range &r, tree type,
1013 const wide_int &lh_lb, const wide_int &lh_ub,
1014 const wide_int &rh_lb, const wide_int &rh_ub) const
1015 {
1016 signop s = TYPE_SIGN (type);
1017 wide_int new_lb = wi::max (lh_lb, rh_lb, s);
1018 wide_int new_ub = wi::max (lh_ub, rh_ub, s);
1019 value_range_with_overflow (r, type, new_lb, new_ub);
1020 }
1021
1022
1023 class cross_product_operator : public range_operator
1024 {
1025 public:
1026 // Perform an operation between two wide-ints and place the result
1027 // in R. Return true if the operation overflowed.
1028 virtual bool wi_op_overflows (wide_int &r,
1029 tree type,
1030 const wide_int &,
1031 const wide_int &) const = 0;
1032
1033 // Calculate the cross product of two sets of sub-ranges and return it.
1034 void wi_cross_product (value_range &r, tree type,
1035 const wide_int &lh_lb,
1036 const wide_int &lh_ub,
1037 const wide_int &rh_lb,
1038 const wide_int &rh_ub) const;
1039 };
1040
1041 // Calculate the cross product of two sets of ranges and return it.
1042 //
1043 // Multiplications, divisions and shifts are a bit tricky to handle,
1044 // depending on the mix of signs we have in the two ranges, we need to
1045 // operate on different values to get the minimum and maximum values
1046 // for the new range. One approach is to figure out all the
1047 // variations of range combinations and do the operations.
1048 //
1049 // However, this involves several calls to compare_values and it is
1050 // pretty convoluted. It's simpler to do the 4 operations (MIN0 OP
1051 // MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP MAX1) and then
1052 // figure the smallest and largest values to form the new range.
1053
1054 void
wi_cross_product(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const1055 cross_product_operator::wi_cross_product (value_range &r, tree type,
1056 const wide_int &lh_lb,
1057 const wide_int &lh_ub,
1058 const wide_int &rh_lb,
1059 const wide_int &rh_ub) const
1060 {
1061 wide_int cp1, cp2, cp3, cp4;
1062 // Default to varying.
1063 r = value_range (type);
1064
1065 // Compute the 4 cross operations, bailing if we get an overflow we
1066 // can't handle.
1067 if (wi_op_overflows (cp1, type, lh_lb, rh_lb))
1068 return;
1069 if (wi::eq_p (lh_lb, lh_ub))
1070 cp3 = cp1;
1071 else if (wi_op_overflows (cp3, type, lh_ub, rh_lb))
1072 return;
1073 if (wi::eq_p (rh_lb, rh_ub))
1074 cp2 = cp1;
1075 else if (wi_op_overflows (cp2, type, lh_lb, rh_ub))
1076 return;
1077 if (wi::eq_p (lh_lb, lh_ub))
1078 cp4 = cp2;
1079 else if (wi_op_overflows (cp4, type, lh_ub, rh_ub))
1080 return;
1081
1082 // Order pairs.
1083 signop sign = TYPE_SIGN (type);
1084 if (wi::gt_p (cp1, cp2, sign))
1085 std::swap (cp1, cp2);
1086 if (wi::gt_p (cp3, cp4, sign))
1087 std::swap (cp3, cp4);
1088
1089 // Choose min and max from the ordered pairs.
1090 wide_int res_lb = wi::min (cp1, cp3, sign);
1091 wide_int res_ub = wi::max (cp2, cp4, sign);
1092 value_range_with_overflow (r, type, res_lb, res_ub);
1093 }
1094
1095
1096 class operator_mult : public cross_product_operator
1097 {
1098 public:
1099 virtual void wi_fold (value_range &r, tree type,
1100 const wide_int &lh_lb,
1101 const wide_int &lh_ub,
1102 const wide_int &rh_lb,
1103 const wide_int &rh_ub) const;
1104 virtual bool wi_op_overflows (wide_int &res, tree type,
1105 const wide_int &w0, const wide_int &w1) const;
1106 } op_mult;
1107
1108 bool
wi_op_overflows(wide_int & res,tree type,const wide_int & w0,const wide_int & w1) const1109 operator_mult::wi_op_overflows (wide_int &res, tree type,
1110 const wide_int &w0, const wide_int &w1) const
1111 {
1112 wi::overflow_type overflow = wi::OVF_NONE;
1113 signop sign = TYPE_SIGN (type);
1114 res = wi::mul (w0, w1, sign, &overflow);
1115 if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
1116 {
1117 // For multiplication, the sign of the overflow is given
1118 // by the comparison of the signs of the operands.
1119 if (sign == UNSIGNED || w0.sign_mask () == w1.sign_mask ())
1120 res = wi::max_value (w0.get_precision (), sign);
1121 else
1122 res = wi::min_value (w0.get_precision (), sign);
1123 return false;
1124 }
1125 return overflow;
1126 }
1127
1128 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const1129 operator_mult::wi_fold (value_range &r, tree type,
1130 const wide_int &lh_lb, const wide_int &lh_ub,
1131 const wide_int &rh_lb, const wide_int &rh_ub) const
1132 {
1133 if (TYPE_OVERFLOW_UNDEFINED (type))
1134 {
1135 wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
1136 return;
1137 }
1138
1139 // Multiply the ranges when overflow wraps. This is basically fancy
1140 // code so we don't drop to varying with an unsigned
1141 // [-3,-1]*[-3,-1].
1142 //
1143 // This test requires 2*prec bits if both operands are signed and
1144 // 2*prec + 2 bits if either is not. Therefore, extend the values
1145 // using the sign of the result to PREC2. From here on out,
1146 // everthing is just signed math no matter what the input types
1147 // were.
1148
1149 signop sign = TYPE_SIGN (type);
1150 unsigned prec = TYPE_PRECISION (type);
1151 widest2_int min0 = widest2_int::from (lh_lb, sign);
1152 widest2_int max0 = widest2_int::from (lh_ub, sign);
1153 widest2_int min1 = widest2_int::from (rh_lb, sign);
1154 widest2_int max1 = widest2_int::from (rh_ub, sign);
1155 widest2_int sizem1 = wi::mask <widest2_int> (prec, false);
1156 widest2_int size = sizem1 + 1;
1157
1158 // Canonicalize the intervals.
1159 if (sign == UNSIGNED)
1160 {
1161 if (wi::ltu_p (size, min0 + max0))
1162 {
1163 min0 -= size;
1164 max0 -= size;
1165 }
1166 if (wi::ltu_p (size, min1 + max1))
1167 {
1168 min1 -= size;
1169 max1 -= size;
1170 }
1171 }
1172
1173 // Sort the 4 products so that min is in prod0 and max is in
1174 // prod3.
1175 widest2_int prod0 = min0 * min1;
1176 widest2_int prod1 = min0 * max1;
1177 widest2_int prod2 = max0 * min1;
1178 widest2_int prod3 = max0 * max1;
1179
1180 // min0min1 > max0max1
1181 if (prod0 > prod3)
1182 std::swap (prod0, prod3);
1183
1184 // min0max1 > max0min1
1185 if (prod1 > prod2)
1186 std::swap (prod1, prod2);
1187
1188 if (prod0 > prod1)
1189 std::swap (prod0, prod1);
1190
1191 if (prod2 > prod3)
1192 std::swap (prod2, prod3);
1193
1194 // diff = max - min
1195 prod2 = prod3 - prod0;
1196 if (wi::geu_p (prod2, sizem1))
1197 // The range covers all values.
1198 r = value_range (type);
1199 else
1200 {
1201 wide_int new_lb = wide_int::from (prod0, prec, sign);
1202 wide_int new_ub = wide_int::from (prod3, prec, sign);
1203 create_possibly_reversed_range (r, type, new_lb, new_ub);
1204 }
1205 }
1206
1207
1208 class operator_div : public cross_product_operator
1209 {
1210 public:
operator_div(enum tree_code c)1211 operator_div (enum tree_code c) { code = c; }
1212 virtual void wi_fold (value_range &r, tree type,
1213 const wide_int &lh_lb,
1214 const wide_int &lh_ub,
1215 const wide_int &rh_lb,
1216 const wide_int &rh_ub) const;
1217 virtual bool wi_op_overflows (wide_int &res, tree type,
1218 const wide_int &, const wide_int &) const;
1219 private:
1220 enum tree_code code;
1221 };
1222
1223 bool
wi_op_overflows(wide_int & res,tree type,const wide_int & w0,const wide_int & w1) const1224 operator_div::wi_op_overflows (wide_int &res, tree type,
1225 const wide_int &w0, const wide_int &w1) const
1226 {
1227 if (w1 == 0)
1228 return true;
1229
1230 wi::overflow_type overflow = wi::OVF_NONE;
1231 signop sign = TYPE_SIGN (type);
1232
1233 switch (code)
1234 {
1235 case EXACT_DIV_EXPR:
1236 // EXACT_DIV_EXPR is implemented as TRUNC_DIV_EXPR in
1237 // operator_exact_divide. No need to handle it here.
1238 gcc_unreachable ();
1239 break;
1240 case TRUNC_DIV_EXPR:
1241 res = wi::div_trunc (w0, w1, sign, &overflow);
1242 break;
1243 case FLOOR_DIV_EXPR:
1244 res = wi::div_floor (w0, w1, sign, &overflow);
1245 break;
1246 case ROUND_DIV_EXPR:
1247 res = wi::div_round (w0, w1, sign, &overflow);
1248 break;
1249 case CEIL_DIV_EXPR:
1250 res = wi::div_ceil (w0, w1, sign, &overflow);
1251 break;
1252 default:
1253 gcc_unreachable ();
1254 }
1255
1256 if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
1257 {
1258 // For division, the only case is -INF / -1 = +INF.
1259 res = wi::max_value (w0.get_precision (), sign);
1260 return false;
1261 }
1262 return overflow;
1263 }
1264
1265 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const1266 operator_div::wi_fold (value_range &r, tree type,
1267 const wide_int &lh_lb, const wide_int &lh_ub,
1268 const wide_int &rh_lb, const wide_int &rh_ub) const
1269 {
1270 // If we know we will divide by zero, return undefined.
1271 if (rh_lb == 0 && rh_ub == 0)
1272 {
1273 r = value_range ();
1274 return;
1275 }
1276
1277 const wide_int dividend_min = lh_lb;
1278 const wide_int dividend_max = lh_ub;
1279 const wide_int divisor_min = rh_lb;
1280 const wide_int divisor_max = rh_ub;
1281 signop sign = TYPE_SIGN (type);
1282 unsigned prec = TYPE_PRECISION (type);
1283 wide_int extra_min, extra_max;
1284
1285 // If we know we won't divide by zero, just do the division.
1286 if (!wi_includes_zero_p (type, divisor_min, divisor_max))
1287 {
1288 wi_cross_product (r, type, dividend_min, dividend_max,
1289 divisor_min, divisor_max);
1290 return;
1291 }
1292
1293 // If flag_non_call_exceptions, we must not eliminate a division by zero.
1294 if (cfun->can_throw_non_call_exceptions)
1295 {
1296 r = value_range (type);
1297 return;
1298 }
1299
1300 // If we're definitely dividing by zero, there's nothing to do.
1301 if (wi_zero_p (type, divisor_min, divisor_max))
1302 {
1303 r = value_range ();
1304 return;
1305 }
1306
1307 // Perform the division in 2 parts, [LB, -1] and [1, UB], which will
1308 // skip any division by zero.
1309
1310 // First divide by the negative numbers, if any.
1311 if (wi::neg_p (divisor_min, sign))
1312 wi_cross_product (r, type, dividend_min, dividend_max,
1313 divisor_min, wi::minus_one (prec));
1314 else
1315 r = value_range ();
1316
1317 // Then divide by the non-zero positive numbers, if any.
1318 if (wi::gt_p (divisor_max, wi::zero (prec), sign))
1319 {
1320 value_range tmp;
1321 wi_cross_product (tmp, type, dividend_min, dividend_max,
1322 wi::one (prec), divisor_max);
1323 r.union_ (tmp);
1324 }
1325 // We shouldn't still have undefined here.
1326 gcc_checking_assert (!r.undefined_p ());
1327 }
1328
1329 operator_div op_trunc_div (TRUNC_DIV_EXPR);
1330 operator_div op_floor_div (FLOOR_DIV_EXPR);
1331 operator_div op_round_div (ROUND_DIV_EXPR);
1332 operator_div op_ceil_div (CEIL_DIV_EXPR);
1333
1334
1335 class operator_exact_divide : public operator_div
1336 {
1337 public:
operator_exact_divide()1338 operator_exact_divide () : operator_div (TRUNC_DIV_EXPR) { }
1339 virtual bool op1_range (value_range &r, tree type,
1340 const value_range &lhs,
1341 const value_range &op2) const;
1342
1343 } op_exact_div;
1344
1345 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const1346 operator_exact_divide::op1_range (value_range &r, tree type,
1347 const value_range &lhs,
1348 const value_range &op2) const
1349 {
1350 tree offset;
1351 // [2, 4] = op1 / [3,3] since its exact divide, no need to worry about
1352 // remainders in the endpoints, so op1 = [2,4] * [3,3] = [6,12].
1353 // We wont bother trying to enumerate all the in between stuff :-P
1354 // TRUE accuraacy is [6,6][9,9][12,12]. This is unlikely to matter most of
1355 // the time however.
1356 // If op2 is a multiple of 2, we would be able to set some non-zero bits.
1357 if (op2.singleton_p (&offset)
1358 && !integer_zerop (offset))
1359 return range_op_handler (MULT_EXPR, type)->fold_range (r, type, lhs, op2);
1360 return false;
1361 }
1362
1363
1364 class operator_lshift : public cross_product_operator
1365 {
1366 public:
1367 virtual bool fold_range (value_range &r, tree type,
1368 const value_range &op1,
1369 const value_range &op2) const;
1370
1371 virtual void wi_fold (value_range &r, tree type,
1372 const wide_int &lh_lb, const wide_int &lh_ub,
1373 const wide_int &rh_lb, const wide_int &rh_ub) const;
1374 virtual bool wi_op_overflows (wide_int &res,
1375 tree type,
1376 const wide_int &,
1377 const wide_int &) const;
1378 } op_lshift;
1379
1380 bool
fold_range(value_range & r,tree type,const value_range & op1,const value_range & op2) const1381 operator_lshift::fold_range (value_range &r, tree type,
1382 const value_range &op1,
1383 const value_range &op2) const
1384 {
1385 if (undefined_shift_range_check (r, type, op2))
1386 return true;
1387
1388 // Transform left shifts by constants into multiplies.
1389 if (op2.singleton_p ())
1390 {
1391 unsigned shift = op2.lower_bound ().to_uhwi ();
1392 wide_int tmp = wi::set_bit_in_zero (shift, TYPE_PRECISION (type));
1393 value_range mult (type, tmp, tmp);
1394
1395 // Force wrapping multiplication.
1396 bool saved_flag_wrapv = flag_wrapv;
1397 bool saved_flag_wrapv_pointer = flag_wrapv_pointer;
1398 flag_wrapv = 1;
1399 flag_wrapv_pointer = 1;
1400 bool b = range_op_handler (MULT_EXPR, type)->fold_range (r, type, op1,
1401 mult);
1402 flag_wrapv = saved_flag_wrapv;
1403 flag_wrapv_pointer = saved_flag_wrapv_pointer;
1404 return b;
1405 }
1406 else
1407 // Otherwise, invoke the generic fold routine.
1408 return range_operator::fold_range (r, type, op1, op2);
1409 }
1410
1411 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const1412 operator_lshift::wi_fold (value_range &r, tree type,
1413 const wide_int &lh_lb, const wide_int &lh_ub,
1414 const wide_int &rh_lb, const wide_int &rh_ub) const
1415 {
1416 signop sign = TYPE_SIGN (type);
1417 unsigned prec = TYPE_PRECISION (type);
1418 int overflow_pos = sign == SIGNED ? prec - 1 : prec;
1419 int bound_shift = overflow_pos - rh_ub.to_shwi ();
1420 // If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
1421 // overflow. However, for that to happen, rh.max needs to be zero,
1422 // which means rh is a singleton range of zero, which means it
1423 // should be handled by the lshift fold_range above.
1424 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
1425 wide_int complement = ~(bound - 1);
1426 wide_int low_bound, high_bound;
1427 bool in_bounds = false;
1428
1429 if (sign == UNSIGNED)
1430 {
1431 low_bound = bound;
1432 high_bound = complement;
1433 if (wi::ltu_p (lh_ub, low_bound))
1434 {
1435 // [5, 6] << [1, 2] == [10, 24].
1436 // We're shifting out only zeroes, the value increases
1437 // monotonically.
1438 in_bounds = true;
1439 }
1440 else if (wi::ltu_p (high_bound, lh_lb))
1441 {
1442 // [0xffffff00, 0xffffffff] << [1, 2]
1443 // == [0xfffffc00, 0xfffffffe].
1444 // We're shifting out only ones, the value decreases
1445 // monotonically.
1446 in_bounds = true;
1447 }
1448 }
1449 else
1450 {
1451 // [-1, 1] << [1, 2] == [-4, 4]
1452 low_bound = complement;
1453 high_bound = bound;
1454 if (wi::lts_p (lh_ub, high_bound)
1455 && wi::lts_p (low_bound, lh_lb))
1456 {
1457 // For non-negative numbers, we're shifting out only zeroes,
1458 // the value increases monotonically. For negative numbers,
1459 // we're shifting out only ones, the value decreases
1460 // monotonically.
1461 in_bounds = true;
1462 }
1463 }
1464
1465 if (in_bounds)
1466 wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
1467 else
1468 r = value_range (type);
1469 }
1470
1471 bool
wi_op_overflows(wide_int & res,tree type,const wide_int & w0,const wide_int & w1) const1472 operator_lshift::wi_op_overflows (wide_int &res, tree type,
1473 const wide_int &w0, const wide_int &w1) const
1474 {
1475 signop sign = TYPE_SIGN (type);
1476 if (wi::neg_p (w1))
1477 {
1478 // It's unclear from the C standard whether shifts can overflow.
1479 // The following code ignores overflow; perhaps a C standard
1480 // interpretation ruling is needed.
1481 res = wi::rshift (w0, -w1, sign);
1482 }
1483 else
1484 res = wi::lshift (w0, w1);
1485 return false;
1486 }
1487
1488
1489 class operator_rshift : public cross_product_operator
1490 {
1491 public:
1492 virtual bool fold_range (value_range &r, tree type,
1493 const value_range &op1,
1494 const value_range &op2) const;
1495 virtual void wi_fold (value_range &r, tree type,
1496 const wide_int &lh_lb,
1497 const wide_int &lh_ub,
1498 const wide_int &rh_lb,
1499 const wide_int &rh_ub) const;
1500 virtual bool wi_op_overflows (wide_int &res,
1501 tree type,
1502 const wide_int &w0,
1503 const wide_int &w1) const;
1504 } op_rshift;
1505
1506 bool
wi_op_overflows(wide_int & res,tree type,const wide_int & w0,const wide_int & w1) const1507 operator_rshift::wi_op_overflows (wide_int &res,
1508 tree type,
1509 const wide_int &w0,
1510 const wide_int &w1) const
1511 {
1512 signop sign = TYPE_SIGN (type);
1513 if (wi::neg_p (w1))
1514 res = wi::lshift (w0, -w1);
1515 else
1516 {
1517 // It's unclear from the C standard whether shifts can overflow.
1518 // The following code ignores overflow; perhaps a C standard
1519 // interpretation ruling is needed.
1520 res = wi::rshift (w0, w1, sign);
1521 }
1522 return false;
1523 }
1524
1525 bool
fold_range(value_range & r,tree type,const value_range & op1,const value_range & op2) const1526 operator_rshift::fold_range (value_range &r, tree type,
1527 const value_range &op1,
1528 const value_range &op2) const
1529 {
1530 // Invoke the generic fold routine if not undefined..
1531 if (undefined_shift_range_check (r, type, op2))
1532 return true;
1533
1534 return range_operator::fold_range (r, type, op1, op2);
1535 }
1536
1537 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const1538 operator_rshift::wi_fold (value_range &r, tree type,
1539 const wide_int &lh_lb, const wide_int &lh_ub,
1540 const wide_int &rh_lb, const wide_int &rh_ub) const
1541 {
1542 wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
1543 }
1544
1545
1546 class operator_cast: public range_operator
1547 {
1548 public:
1549 virtual bool fold_range (value_range &r, tree type,
1550 const value_range &op1,
1551 const value_range &op2) const;
1552 virtual bool op1_range (value_range &r, tree type,
1553 const value_range &lhs,
1554 const value_range &op2) const;
1555
1556 } op_convert;
1557
1558 bool
fold_range(value_range & r,tree type ATTRIBUTE_UNUSED,const value_range & lh,const value_range & rh) const1559 operator_cast::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
1560 const value_range &lh,
1561 const value_range &rh) const
1562 {
1563 if (empty_range_check (r, lh, rh))
1564 return true;
1565
1566 tree inner = lh.type ();
1567 tree outer = rh.type ();
1568 gcc_checking_assert (rh.varying_p ());
1569 gcc_checking_assert (types_compatible_p (outer, type));
1570 signop inner_sign = TYPE_SIGN (inner);
1571 signop outer_sign = TYPE_SIGN (outer);
1572 unsigned inner_prec = TYPE_PRECISION (inner);
1573 unsigned outer_prec = TYPE_PRECISION (outer);
1574
1575 // Start with an empty range and add subranges.
1576 r = value_range ();
1577 for (unsigned x = 0; x < lh.num_pairs (); ++x)
1578 {
1579 wide_int lh_lb = lh.lower_bound (x);
1580 wide_int lh_ub = lh.upper_bound (x);
1581
1582 // If the conversion is not truncating we can convert the min
1583 // and max values and canonicalize the resulting range.
1584 // Otherwise, we can do the conversion if the size of the range
1585 // is less than what the precision of the target type can
1586 // represent.
1587 if (outer_prec >= inner_prec
1588 || wi::rshift (wi::sub (lh_ub, lh_lb),
1589 wi::uhwi (outer_prec, inner_prec),
1590 inner_sign) == 0)
1591 {
1592 wide_int min = wide_int::from (lh_lb, outer_prec, inner_sign);
1593 wide_int max = wide_int::from (lh_ub, outer_prec, inner_sign);
1594 if (!wi::eq_p (min, wi::min_value (outer_prec, outer_sign))
1595 || !wi::eq_p (max, wi::max_value (outer_prec, outer_sign)))
1596 {
1597 value_range tmp;
1598 create_possibly_reversed_range (tmp, type, min, max);
1599 r.union_ (tmp);
1600 continue;
1601 }
1602 }
1603 r = value_range (type);
1604 break;
1605 }
1606 return true;
1607 }
1608
1609 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const1610 operator_cast::op1_range (value_range &r, tree type,
1611 const value_range &lhs,
1612 const value_range &op2) const
1613 {
1614 tree lhs_type = lhs.type ();
1615 value_range tmp;
1616 gcc_checking_assert (types_compatible_p (op2.type(), type));
1617
1618 // If the precision of the LHS is smaller than the precision of the
1619 // RHS, then there would be truncation of the value on the RHS, and
1620 // so we can tell nothing about it.
1621 if (TYPE_PRECISION (lhs_type) < TYPE_PRECISION (type))
1622 {
1623 // If we've been passed an actual value for the RHS rather than
1624 // the type, see if it fits the LHS, and if so, then we can allow
1625 // it.
1626 fold_range (r, lhs_type, op2, value_range (lhs_type));
1627 fold_range (tmp, type, r, value_range (type));
1628 if (tmp == op2)
1629 {
1630 // We know the value of the RHS fits in the LHS type, so
1631 // convert the LHS and remove any values that arent in OP2.
1632 fold_range (r, type, lhs, value_range (type));
1633 r.intersect (op2);
1634 return true;
1635 }
1636 // Special case if the LHS is a boolean. A 0 means the RHS is
1637 // zero, and a 1 means the RHS is non-zero.
1638 if (TREE_CODE (lhs_type) == BOOLEAN_TYPE)
1639 {
1640 // If the LHS is unknown, the result is whatever op2 already is.
1641 if (!lhs.singleton_p ())
1642 {
1643 r = op2;
1644 return true;
1645 }
1646 // Boolean casts are weird in GCC. It's actually an implied
1647 // mask with 0x01, so all that is known is whether the
1648 // rightmost bit is 0 or 1, which implies the only value
1649 // *not* in the RHS is 0 or -1.
1650 unsigned prec = TYPE_PRECISION (type);
1651 if (lhs.zero_p ())
1652 r = value_range (type, wi::minus_one (prec), wi::minus_one (prec),
1653 VR_ANTI_RANGE);
1654 else
1655 r = value_range (type, wi::zero (prec), wi::zero (prec),
1656 VR_ANTI_RANGE);
1657 // And intersect it with what we know about op2.
1658 r.intersect (op2);
1659 }
1660 else
1661 // Otherwise we'll have to assume it's whatever we know about op2.
1662 r = op2;
1663 return true;
1664 }
1665
1666 // If the LHS precision is greater than the rhs precision, the LHS
1667 // range is restricted to the range of the RHS by this
1668 // assignment.
1669 if (TYPE_PRECISION (lhs_type) > TYPE_PRECISION (type))
1670 {
1671 // Cast the range of the RHS to the type of the LHS.
1672 fold_range (tmp, lhs_type, value_range (type), value_range (lhs_type));
1673 // Intersect this with the LHS range will produce the range, which
1674 // will be cast to the RHS type before returning.
1675 tmp.intersect (lhs);
1676 }
1677 else
1678 tmp = lhs;
1679
1680 // Cast the calculated range to the type of the RHS.
1681 fold_range (r, type, tmp, value_range (type));
1682 return true;
1683 }
1684
1685
1686 class operator_logical_and : public range_operator
1687 {
1688 public:
1689 virtual bool fold_range (value_range &r, tree type,
1690 const value_range &lh,
1691 const value_range &rh) const;
1692 virtual bool op1_range (value_range &r, tree type,
1693 const value_range &lhs,
1694 const value_range &op2) const;
1695 virtual bool op2_range (value_range &r, tree type,
1696 const value_range &lhs,
1697 const value_range &op1) const;
1698 } op_logical_and;
1699
1700
1701 bool
fold_range(value_range & r,tree type,const value_range & lh,const value_range & rh) const1702 operator_logical_and::fold_range (value_range &r, tree type,
1703 const value_range &lh,
1704 const value_range &rh) const
1705 {
1706 if (empty_range_check (r, lh, rh))
1707 return true;
1708
1709 // 0 && anything is 0.
1710 if ((wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (lh.upper_bound (), 0))
1711 || (wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (rh.upper_bound (), 0)))
1712 r = range_false (type);
1713 else if (lh.contains_p (build_zero_cst (lh.type ()))
1714 || rh.contains_p (build_zero_cst (rh.type ())))
1715 // To reach this point, there must be a logical 1 on each side, and
1716 // the only remaining question is whether there is a zero or not.
1717 r = range_true_and_false (type);
1718 else
1719 r = range_true (type);
1720 return true;
1721 }
1722
1723 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2 ATTRIBUTE_UNUSED) const1724 operator_logical_and::op1_range (value_range &r, tree type,
1725 const value_range &lhs,
1726 const value_range &op2 ATTRIBUTE_UNUSED) const
1727 {
1728 switch (get_bool_state (r, lhs, type))
1729 {
1730 case BRS_TRUE:
1731 // A true result means both sides of the AND must be true.
1732 r = range_true (type);
1733 break;
1734 default:
1735 // Any other result means only one side has to be false, the
1736 // other side can be anything. So we cannott be sure of any
1737 // result here.
1738 r = range_true_and_false (type);
1739 break;
1740 }
1741 return true;
1742 }
1743
1744 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const1745 operator_logical_and::op2_range (value_range &r, tree type,
1746 const value_range &lhs,
1747 const value_range &op1) const
1748 {
1749 return operator_logical_and::op1_range (r, type, lhs, op1);
1750 }
1751
1752
1753 class operator_bitwise_and : public range_operator
1754 {
1755 public:
1756 virtual bool op1_range (value_range &r, tree type,
1757 const value_range &lhs,
1758 const value_range &op2) const;
1759 virtual bool op2_range (value_range &r, tree type,
1760 const value_range &lhs,
1761 const value_range &op1) const;
1762 virtual void wi_fold (value_range &r, tree type,
1763 const wide_int &lh_lb,
1764 const wide_int &lh_ub,
1765 const wide_int &rh_lb,
1766 const wide_int &rh_ub) const;
1767 } op_bitwise_and;
1768
1769 // Optimize BIT_AND_EXPR and BIT_IOR_EXPR in terms of a mask if
1770 // possible. Basically, see if we can optimize:
1771 //
1772 // [LB, UB] op Z
1773 // into:
1774 // [LB op Z, UB op Z]
1775 //
1776 // If the optimization was successful, accumulate the range in R and
1777 // return TRUE.
1778
1779 static bool
wi_optimize_and_or(value_range & r,enum tree_code code,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub)1780 wi_optimize_and_or (value_range &r,
1781 enum tree_code code,
1782 tree type,
1783 const wide_int &lh_lb, const wide_int &lh_ub,
1784 const wide_int &rh_lb, const wide_int &rh_ub)
1785 {
1786 // Calculate the singleton mask among the ranges, if any.
1787 wide_int lower_bound, upper_bound, mask;
1788 if (wi::eq_p (rh_lb, rh_ub))
1789 {
1790 mask = rh_lb;
1791 lower_bound = lh_lb;
1792 upper_bound = lh_ub;
1793 }
1794 else if (wi::eq_p (lh_lb, lh_ub))
1795 {
1796 mask = lh_lb;
1797 lower_bound = rh_lb;
1798 upper_bound = rh_ub;
1799 }
1800 else
1801 return false;
1802
1803 // If Z is a constant which (for op | its bitwise not) has n
1804 // consecutive least significant bits cleared followed by m 1
1805 // consecutive bits set immediately above it and either
1806 // m + n == precision, or (x >> (m + n)) == (y >> (m + n)).
1807 //
1808 // The least significant n bits of all the values in the range are
1809 // cleared or set, the m bits above it are preserved and any bits
1810 // above these are required to be the same for all values in the
1811 // range.
1812 wide_int w = mask;
1813 int m = 0, n = 0;
1814 if (code == BIT_IOR_EXPR)
1815 w = ~w;
1816 if (wi::eq_p (w, 0))
1817 n = w.get_precision ();
1818 else
1819 {
1820 n = wi::ctz (w);
1821 w = ~(w | wi::mask (n, false, w.get_precision ()));
1822 if (wi::eq_p (w, 0))
1823 m = w.get_precision () - n;
1824 else
1825 m = wi::ctz (w) - n;
1826 }
1827 wide_int new_mask = wi::mask (m + n, true, w.get_precision ());
1828 if ((new_mask & lower_bound) != (new_mask & upper_bound))
1829 return false;
1830
1831 wide_int res_lb, res_ub;
1832 if (code == BIT_AND_EXPR)
1833 {
1834 res_lb = wi::bit_and (lower_bound, mask);
1835 res_ub = wi::bit_and (upper_bound, mask);
1836 }
1837 else if (code == BIT_IOR_EXPR)
1838 {
1839 res_lb = wi::bit_or (lower_bound, mask);
1840 res_ub = wi::bit_or (upper_bound, mask);
1841 }
1842 else
1843 gcc_unreachable ();
1844 value_range_with_overflow (r, type, res_lb, res_ub);
1845 return true;
1846 }
1847
1848 // For range [LB, UB] compute two wide_int bit masks.
1849 //
1850 // In the MAYBE_NONZERO bit mask, if some bit is unset, it means that
1851 // for all numbers in the range the bit is 0, otherwise it might be 0
1852 // or 1.
1853 //
1854 // In the MUSTBE_NONZERO bit mask, if some bit is set, it means that
1855 // for all numbers in the range the bit is 1, otherwise it might be 0
1856 // or 1.
1857
1858 void
wi_set_zero_nonzero_bits(tree type,const wide_int & lb,const wide_int & ub,wide_int & maybe_nonzero,wide_int & mustbe_nonzero)1859 wi_set_zero_nonzero_bits (tree type,
1860 const wide_int &lb, const wide_int &ub,
1861 wide_int &maybe_nonzero,
1862 wide_int &mustbe_nonzero)
1863 {
1864 signop sign = TYPE_SIGN (type);
1865
1866 if (wi::eq_p (lb, ub))
1867 maybe_nonzero = mustbe_nonzero = lb;
1868 else if (wi::ge_p (lb, 0, sign) || wi::lt_p (ub, 0, sign))
1869 {
1870 wide_int xor_mask = lb ^ ub;
1871 maybe_nonzero = lb | ub;
1872 mustbe_nonzero = lb & ub;
1873 if (xor_mask != 0)
1874 {
1875 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1876 maybe_nonzero.get_precision ());
1877 maybe_nonzero = maybe_nonzero | mask;
1878 mustbe_nonzero = wi::bit_and_not (mustbe_nonzero, mask);
1879 }
1880 }
1881 else
1882 {
1883 maybe_nonzero = wi::minus_one (lb.get_precision ());
1884 mustbe_nonzero = wi::zero (lb.get_precision ());
1885 }
1886 }
1887
1888 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const1889 operator_bitwise_and::wi_fold (value_range &r, tree type,
1890 const wide_int &lh_lb,
1891 const wide_int &lh_ub,
1892 const wide_int &rh_lb,
1893 const wide_int &rh_ub) const
1894 {
1895 if (wi_optimize_and_or (r, BIT_AND_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
1896 return;
1897
1898 wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
1899 wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
1900 wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
1901 maybe_nonzero_lh, mustbe_nonzero_lh);
1902 wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
1903 maybe_nonzero_rh, mustbe_nonzero_rh);
1904
1905 wide_int new_lb = mustbe_nonzero_lh & mustbe_nonzero_rh;
1906 wide_int new_ub = maybe_nonzero_lh & maybe_nonzero_rh;
1907 signop sign = TYPE_SIGN (type);
1908 unsigned prec = TYPE_PRECISION (type);
1909 // If both input ranges contain only negative values, we can
1910 // truncate the result range maximum to the minimum of the
1911 // input range maxima.
1912 if (wi::lt_p (lh_ub, 0, sign) && wi::lt_p (rh_ub, 0, sign))
1913 {
1914 new_ub = wi::min (new_ub, lh_ub, sign);
1915 new_ub = wi::min (new_ub, rh_ub, sign);
1916 }
1917 // If either input range contains only non-negative values
1918 // we can truncate the result range maximum to the respective
1919 // maximum of the input range.
1920 if (wi::ge_p (lh_lb, 0, sign))
1921 new_ub = wi::min (new_ub, lh_ub, sign);
1922 if (wi::ge_p (rh_lb, 0, sign))
1923 new_ub = wi::min (new_ub, rh_ub, sign);
1924 // PR68217: In case of signed & sign-bit-CST should
1925 // result in [-INF, 0] instead of [-INF, INF].
1926 if (wi::gt_p (new_lb, new_ub, sign))
1927 {
1928 wide_int sign_bit = wi::set_bit_in_zero (prec - 1, prec);
1929 if (sign == SIGNED
1930 && ((wi::eq_p (lh_lb, lh_ub)
1931 && !wi::cmps (lh_lb, sign_bit))
1932 || (wi::eq_p (rh_lb, rh_ub)
1933 && !wi::cmps (rh_lb, sign_bit))))
1934 {
1935 new_lb = wi::min_value (prec, sign);
1936 new_ub = wi::zero (prec);
1937 }
1938 }
1939 // If the limits got swapped around, return varying.
1940 if (wi::gt_p (new_lb, new_ub,sign))
1941 r = value_range (type);
1942 else
1943 value_range_with_overflow (r, type, new_lb, new_ub);
1944 }
1945
1946 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const1947 operator_bitwise_and::op1_range (value_range &r, tree type,
1948 const value_range &lhs,
1949 const value_range &op2) const
1950 {
1951 // If this is really a logical wi_fold, call that.
1952 if (types_compatible_p (type, boolean_type_node))
1953 return op_logical_and.op1_range (r, type, lhs, op2);
1954
1955 // For now do nothing with bitwise AND of value_range's.
1956 r.set_varying (type);
1957 return true;
1958 }
1959
1960 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const1961 operator_bitwise_and::op2_range (value_range &r, tree type,
1962 const value_range &lhs,
1963 const value_range &op1) const
1964 {
1965 return operator_bitwise_and::op1_range (r, type, lhs, op1);
1966 }
1967
1968
1969 class operator_logical_or : public range_operator
1970 {
1971 public:
1972 virtual bool fold_range (value_range &r, tree type,
1973 const value_range &lh,
1974 const value_range &rh) const;
1975 virtual bool op1_range (value_range &r, tree type,
1976 const value_range &lhs,
1977 const value_range &op2) const;
1978 virtual bool op2_range (value_range &r, tree type,
1979 const value_range &lhs,
1980 const value_range &op1) const;
1981 } op_logical_or;
1982
1983 bool
fold_range(value_range & r,tree type ATTRIBUTE_UNUSED,const value_range & lh,const value_range & rh) const1984 operator_logical_or::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
1985 const value_range &lh,
1986 const value_range &rh) const
1987 {
1988 if (empty_range_check (r, lh, rh))
1989 return true;
1990
1991 r = lh;
1992 r.union_ (rh);
1993 return true;
1994 }
1995
1996 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2 ATTRIBUTE_UNUSED) const1997 operator_logical_or::op1_range (value_range &r, tree type,
1998 const value_range &lhs,
1999 const value_range &op2 ATTRIBUTE_UNUSED) const
2000 {
2001 switch (get_bool_state (r, lhs, type))
2002 {
2003 case BRS_FALSE:
2004 // A false result means both sides of the OR must be false.
2005 r = range_false (type);
2006 break;
2007 default:
2008 // Any other result means only one side has to be true, the
2009 // other side can be anything. so we can't be sure of any result
2010 // here.
2011 r = range_true_and_false (type);
2012 break;
2013 }
2014 return true;
2015 }
2016
2017 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const2018 operator_logical_or::op2_range (value_range &r, tree type,
2019 const value_range &lhs,
2020 const value_range &op1) const
2021 {
2022 return operator_logical_or::op1_range (r, type, lhs, op1);
2023 }
2024
2025
2026 class operator_bitwise_or : public range_operator
2027 {
2028 public:
2029 virtual bool op1_range (value_range &r, tree type,
2030 const value_range &lhs,
2031 const value_range &op2) const;
2032 virtual bool op2_range (value_range &r, tree type,
2033 const value_range &lhs,
2034 const value_range &op1) const;
2035 virtual void wi_fold (value_range &r, tree type,
2036 const wide_int &lh_lb,
2037 const wide_int &lh_ub,
2038 const wide_int &rh_lb,
2039 const wide_int &rh_ub) const;
2040 } op_bitwise_or;
2041
2042 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const2043 operator_bitwise_or::wi_fold (value_range &r, tree type,
2044 const wide_int &lh_lb,
2045 const wide_int &lh_ub,
2046 const wide_int &rh_lb,
2047 const wide_int &rh_ub) const
2048 {
2049 if (wi_optimize_and_or (r, BIT_IOR_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
2050 return;
2051
2052 wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
2053 wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
2054 wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
2055 maybe_nonzero_lh, mustbe_nonzero_lh);
2056 wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
2057 maybe_nonzero_rh, mustbe_nonzero_rh);
2058 wide_int new_lb = mustbe_nonzero_lh | mustbe_nonzero_rh;
2059 wide_int new_ub = maybe_nonzero_lh | maybe_nonzero_rh;
2060 signop sign = TYPE_SIGN (type);
2061 // If the input ranges contain only positive values we can
2062 // truncate the minimum of the result range to the maximum
2063 // of the input range minima.
2064 if (wi::ge_p (lh_lb, 0, sign)
2065 && wi::ge_p (rh_lb, 0, sign))
2066 {
2067 new_lb = wi::max (new_lb, lh_lb, sign);
2068 new_lb = wi::max (new_lb, rh_lb, sign);
2069 }
2070 // If either input range contains only negative values
2071 // we can truncate the minimum of the result range to the
2072 // respective minimum range.
2073 if (wi::lt_p (lh_ub, 0, sign))
2074 new_lb = wi::max (new_lb, lh_lb, sign);
2075 if (wi::lt_p (rh_ub, 0, sign))
2076 new_lb = wi::max (new_lb, rh_lb, sign);
2077 // If the limits got swapped around, return varying.
2078 if (wi::gt_p (new_lb, new_ub,sign))
2079 r = value_range (type);
2080 else
2081 value_range_with_overflow (r, type, new_lb, new_ub);
2082 }
2083
2084 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const2085 operator_bitwise_or::op1_range (value_range &r, tree type,
2086 const value_range &lhs,
2087 const value_range &op2) const
2088 {
2089 // If this is really a logical wi_fold, call that.
2090 if (types_compatible_p (type, boolean_type_node))
2091 return op_logical_or.op1_range (r, type, lhs, op2);
2092
2093 // For now do nothing with bitwise OR of value_range's.
2094 r.set_varying (type);
2095 return true;
2096 }
2097
2098 bool
op2_range(value_range & r,tree type,const value_range & lhs,const value_range & op1) const2099 operator_bitwise_or::op2_range (value_range &r, tree type,
2100 const value_range &lhs,
2101 const value_range &op1) const
2102 {
2103 return operator_bitwise_or::op1_range (r, type, lhs, op1);
2104 }
2105
2106
2107 class operator_bitwise_xor : public range_operator
2108 {
2109 public:
2110 virtual void wi_fold (value_range &r, tree type,
2111 const wide_int &lh_lb,
2112 const wide_int &lh_ub,
2113 const wide_int &rh_lb,
2114 const wide_int &rh_ub) const;
2115 } op_bitwise_xor;
2116
2117 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const2118 operator_bitwise_xor::wi_fold (value_range &r, tree type,
2119 const wide_int &lh_lb,
2120 const wide_int &lh_ub,
2121 const wide_int &rh_lb,
2122 const wide_int &rh_ub) const
2123 {
2124 signop sign = TYPE_SIGN (type);
2125 wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
2126 wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
2127 wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
2128 maybe_nonzero_lh, mustbe_nonzero_lh);
2129 wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
2130 maybe_nonzero_rh, mustbe_nonzero_rh);
2131
2132 wide_int result_zero_bits = ((mustbe_nonzero_lh & mustbe_nonzero_rh)
2133 | ~(maybe_nonzero_lh | maybe_nonzero_rh));
2134 wide_int result_one_bits
2135 = (wi::bit_and_not (mustbe_nonzero_lh, maybe_nonzero_rh)
2136 | wi::bit_and_not (mustbe_nonzero_rh, maybe_nonzero_lh));
2137 wide_int new_ub = ~result_zero_bits;
2138 wide_int new_lb = result_one_bits;
2139
2140 // If the range has all positive or all negative values, the result
2141 // is better than VARYING.
2142 if (wi::lt_p (new_lb, 0, sign) || wi::ge_p (new_ub, 0, sign))
2143 value_range_with_overflow (r, type, new_lb, new_ub);
2144 else
2145 r = value_range (type);
2146 }
2147
2148
2149 class operator_trunc_mod : public range_operator
2150 {
2151 public:
2152 virtual void wi_fold (value_range &r, tree type,
2153 const wide_int &lh_lb,
2154 const wide_int &lh_ub,
2155 const wide_int &rh_lb,
2156 const wide_int &rh_ub) const;
2157 } op_trunc_mod;
2158
2159 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const2160 operator_trunc_mod::wi_fold (value_range &r, tree type,
2161 const wide_int &lh_lb,
2162 const wide_int &lh_ub,
2163 const wide_int &rh_lb,
2164 const wide_int &rh_ub) const
2165 {
2166 wide_int new_lb, new_ub, tmp;
2167 signop sign = TYPE_SIGN (type);
2168 unsigned prec = TYPE_PRECISION (type);
2169
2170 // Mod 0 is undefined. Return undefined.
2171 if (wi_zero_p (type, rh_lb, rh_ub))
2172 {
2173 r = value_range ();
2174 return;
2175 }
2176
2177 // ABS (A % B) < ABS (B) and either 0 <= A % B <= A or A <= A % B <= 0.
2178 new_ub = rh_ub - 1;
2179 if (sign == SIGNED)
2180 {
2181 tmp = -1 - rh_lb;
2182 new_ub = wi::smax (new_ub, tmp);
2183 }
2184
2185 if (sign == UNSIGNED)
2186 new_lb = wi::zero (prec);
2187 else
2188 {
2189 new_lb = -new_ub;
2190 tmp = lh_lb;
2191 if (wi::gts_p (tmp, 0))
2192 tmp = wi::zero (prec);
2193 new_lb = wi::smax (new_lb, tmp);
2194 }
2195 tmp = lh_ub;
2196 if (sign == SIGNED && wi::neg_p (tmp))
2197 tmp = wi::zero (prec);
2198 new_ub = wi::min (new_ub, tmp, sign);
2199
2200 value_range_with_overflow (r, type, new_lb, new_ub);
2201 }
2202
2203
2204 class operator_logical_not : public range_operator
2205 {
2206 public:
2207 virtual bool fold_range (value_range &r, tree type,
2208 const value_range &lh,
2209 const value_range &rh) const;
2210 virtual bool op1_range (value_range &r, tree type,
2211 const value_range &lhs,
2212 const value_range &op2) const;
2213 } op_logical_not;
2214
2215 // Folding a logical NOT, oddly enough, involves doing nothing on the
2216 // forward pass through. During the initial walk backwards, the
2217 // logical NOT reversed the desired outcome on the way back, so on the
2218 // way forward all we do is pass the range forward.
2219 //
2220 // b_2 = x_1 < 20
2221 // b_3 = !b_2
2222 // if (b_3)
2223 // to determine the TRUE branch, walking backward
2224 // if (b_3) if ([1,1])
2225 // b_3 = !b_2 [1,1] = ![0,0]
2226 // b_2 = x_1 < 20 [0,0] = x_1 < 20, false, so x_1 == [20, 255]
2227 // which is the result we are looking for.. so.. pass it through.
2228
2229 bool
fold_range(value_range & r,tree type,const value_range & lh,const value_range & rh ATTRIBUTE_UNUSED) const2230 operator_logical_not::fold_range (value_range &r, tree type,
2231 const value_range &lh,
2232 const value_range &rh ATTRIBUTE_UNUSED) const
2233 {
2234 if (empty_range_check (r, lh, rh))
2235 return true;
2236
2237 if (lh.varying_p () || lh.undefined_p ())
2238 r = lh;
2239 else
2240 {
2241 r = lh;
2242 r.invert ();
2243 }
2244 gcc_checking_assert (lh.type() == type);
2245 return true;
2246 }
2247
2248 bool
op1_range(value_range & r,tree type ATTRIBUTE_UNUSED,const value_range & lhs,const value_range & op2 ATTRIBUTE_UNUSED) const2249 operator_logical_not::op1_range (value_range &r,
2250 tree type ATTRIBUTE_UNUSED,
2251 const value_range &lhs,
2252 const value_range &op2 ATTRIBUTE_UNUSED) const
2253 {
2254 r = lhs;
2255 if (!lhs.varying_p () && !lhs.undefined_p ())
2256 r.invert ();
2257 return true;
2258 }
2259
2260
2261 class operator_bitwise_not : public range_operator
2262 {
2263 public:
2264 virtual bool fold_range (value_range &r, tree type,
2265 const value_range &lh,
2266 const value_range &rh) const;
2267 virtual bool op1_range (value_range &r, tree type,
2268 const value_range &lhs,
2269 const value_range &op2) const;
2270 } op_bitwise_not;
2271
2272 bool
fold_range(value_range & r,tree type,const value_range & lh,const value_range & rh) const2273 operator_bitwise_not::fold_range (value_range &r, tree type,
2274 const value_range &lh,
2275 const value_range &rh) const
2276 {
2277 if (empty_range_check (r, lh, rh))
2278 return true;
2279
2280 // ~X is simply -1 - X.
2281 value_range minusone (type, wi::minus_one (TYPE_PRECISION (type)),
2282 wi::minus_one (TYPE_PRECISION (type)));
2283 return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, minusone,
2284 lh);
2285 }
2286
2287 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const2288 operator_bitwise_not::op1_range (value_range &r, tree type,
2289 const value_range &lhs,
2290 const value_range &op2) const
2291 {
2292 // ~X is -1 - X and since bitwise NOT is involutary...do it again.
2293 return fold_range (r, type, lhs, op2);
2294 }
2295
2296
2297 class operator_cst : public range_operator
2298 {
2299 public:
2300 virtual bool fold_range (value_range &r, tree type,
2301 const value_range &op1,
2302 const value_range &op2) const;
2303 } op_integer_cst;
2304
2305 bool
fold_range(value_range & r,tree type ATTRIBUTE_UNUSED,const value_range & lh,const value_range & rh ATTRIBUTE_UNUSED) const2306 operator_cst::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
2307 const value_range &lh,
2308 const value_range &rh ATTRIBUTE_UNUSED) const
2309 {
2310 r = lh;
2311 return true;
2312 }
2313
2314
2315 class operator_identity : public range_operator
2316 {
2317 public:
2318 virtual bool fold_range (value_range &r, tree type,
2319 const value_range &op1,
2320 const value_range &op2) const;
2321 virtual bool op1_range (value_range &r, tree type,
2322 const value_range &lhs,
2323 const value_range &op2) const;
2324 } op_identity;
2325
2326 bool
fold_range(value_range & r,tree type ATTRIBUTE_UNUSED,const value_range & lh,const value_range & rh ATTRIBUTE_UNUSED) const2327 operator_identity::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
2328 const value_range &lh,
2329 const value_range &rh ATTRIBUTE_UNUSED) const
2330 {
2331 r = lh;
2332 return true;
2333 }
2334
2335 bool
op1_range(value_range & r,tree type ATTRIBUTE_UNUSED,const value_range & lhs,const value_range & op2 ATTRIBUTE_UNUSED) const2336 operator_identity::op1_range (value_range &r, tree type ATTRIBUTE_UNUSED,
2337 const value_range &lhs,
2338 const value_range &op2 ATTRIBUTE_UNUSED) const
2339 {
2340 r = lhs;
2341 return true;
2342 }
2343
2344
2345 class operator_abs : public range_operator
2346 {
2347 public:
2348 virtual void wi_fold (value_range &r, tree type,
2349 const wide_int &lh_lb,
2350 const wide_int &lh_ub,
2351 const wide_int &rh_lb,
2352 const wide_int &rh_ub) const;
2353 virtual bool op1_range (value_range &r, tree type,
2354 const value_range &lhs,
2355 const value_range &op2) const;
2356 } op_abs;
2357
2358 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb ATTRIBUTE_UNUSED,const wide_int & rh_ub ATTRIBUTE_UNUSED) const2359 operator_abs::wi_fold (value_range &r, tree type,
2360 const wide_int &lh_lb, const wide_int &lh_ub,
2361 const wide_int &rh_lb ATTRIBUTE_UNUSED,
2362 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
2363 {
2364 wide_int min, max;
2365 signop sign = TYPE_SIGN (type);
2366 unsigned prec = TYPE_PRECISION (type);
2367
2368 // Pass through LH for the easy cases.
2369 if (sign == UNSIGNED || wi::ge_p (lh_lb, 0, sign))
2370 {
2371 r = value_range (type, lh_lb, lh_ub);
2372 return;
2373 }
2374
2375 // -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get
2376 // a useful range.
2377 wide_int min_value = wi::min_value (prec, sign);
2378 wide_int max_value = wi::max_value (prec, sign);
2379 if (!TYPE_OVERFLOW_UNDEFINED (type) && wi::eq_p (lh_lb, min_value))
2380 {
2381 r = value_range (type);
2382 return;
2383 }
2384
2385 // ABS_EXPR may flip the range around, if the original range
2386 // included negative values.
2387 if (wi::eq_p (lh_lb, min_value))
2388 min = max_value;
2389 else
2390 min = wi::abs (lh_lb);
2391 if (wi::eq_p (lh_ub, min_value))
2392 max = max_value;
2393 else
2394 max = wi::abs (lh_ub);
2395
2396 // If the range contains zero then we know that the minimum value in the
2397 // range will be zero.
2398 if (wi::le_p (lh_lb, 0, sign) && wi::ge_p (lh_ub, 0, sign))
2399 {
2400 if (wi::gt_p (min, max, sign))
2401 max = min;
2402 min = wi::zero (prec);
2403 }
2404 else
2405 {
2406 // If the range was reversed, swap MIN and MAX.
2407 if (wi::gt_p (min, max, sign))
2408 std::swap (min, max);
2409 }
2410
2411 // If the new range has its limits swapped around (MIN > MAX), then
2412 // the operation caused one of them to wrap around. The only thing
2413 // we know is that the result is positive.
2414 if (wi::gt_p (min, max, sign))
2415 {
2416 min = wi::zero (prec);
2417 max = max_value;
2418 }
2419 r = value_range (type, min, max);
2420 }
2421
2422 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const2423 operator_abs::op1_range (value_range &r, tree type,
2424 const value_range &lhs,
2425 const value_range &op2) const
2426 {
2427 if (empty_range_check (r, lhs, op2))
2428 return true;
2429 if (TYPE_UNSIGNED (type))
2430 {
2431 r = lhs;
2432 return true;
2433 }
2434 // Start with the positives because negatives are an impossible result.
2435 value_range positives = range_positives (type);
2436 positives.intersect (lhs);
2437 r = positives;
2438 // Then add the negative of each pair:
2439 // ABS(op1) = [5,20] would yield op1 => [-20,-5][5,20].
2440 for (unsigned i = 0; i < positives.num_pairs (); ++i)
2441 r.union_ (value_range (type,
2442 -positives.upper_bound (i),
2443 -positives.lower_bound (i)));
2444 return true;
2445 }
2446
2447
2448 class operator_absu : public range_operator
2449 {
2450 public:
2451 virtual void wi_fold (value_range &r, tree type,
2452 const wide_int &lh_lb, const wide_int &lh_ub,
2453 const wide_int &rh_lb, const wide_int &rh_ub) const;
2454 } op_absu;
2455
2456 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb ATTRIBUTE_UNUSED,const wide_int & rh_ub ATTRIBUTE_UNUSED) const2457 operator_absu::wi_fold (value_range &r, tree type,
2458 const wide_int &lh_lb, const wide_int &lh_ub,
2459 const wide_int &rh_lb ATTRIBUTE_UNUSED,
2460 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
2461 {
2462 wide_int new_lb, new_ub;
2463
2464 // Pass through VR0 the easy cases.
2465 if (wi::ges_p (lh_lb, 0))
2466 {
2467 new_lb = lh_lb;
2468 new_ub = lh_ub;
2469 }
2470 else
2471 {
2472 new_lb = wi::abs (lh_lb);
2473 new_ub = wi::abs (lh_ub);
2474
2475 // If the range contains zero then we know that the minimum
2476 // value in the range will be zero.
2477 if (wi::ges_p (lh_ub, 0))
2478 {
2479 if (wi::gtu_p (new_lb, new_ub))
2480 new_ub = new_lb;
2481 new_lb = wi::zero (TYPE_PRECISION (type));
2482 }
2483 else
2484 std::swap (new_lb, new_ub);
2485 }
2486
2487 gcc_checking_assert (TYPE_UNSIGNED (type));
2488 r = value_range (type, new_lb, new_ub);
2489 }
2490
2491
2492 class operator_negate : public range_operator
2493 {
2494 public:
2495 virtual bool fold_range (value_range &r, tree type,
2496 const value_range &op1,
2497 const value_range &op2) const;
2498 virtual bool op1_range (value_range &r, tree type,
2499 const value_range &lhs,
2500 const value_range &op2) const;
2501 } op_negate;
2502
2503 bool
fold_range(value_range & r,tree type,const value_range & lh,const value_range & rh) const2504 operator_negate::fold_range (value_range &r, tree type,
2505 const value_range &lh,
2506 const value_range &rh) const
2507 {
2508 if (empty_range_check (r, lh, rh))
2509 return true;
2510 // -X is simply 0 - X.
2511 return range_op_handler (MINUS_EXPR, type)->fold_range (r, type,
2512 range_zero (type),
2513 lh);
2514 }
2515
2516 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const2517 operator_negate::op1_range (value_range &r, tree type,
2518 const value_range &lhs,
2519 const value_range &op2) const
2520 {
2521 // NEGATE is involutory.
2522 return fold_range (r, type, lhs, op2);
2523 }
2524
2525
2526 class operator_addr_expr : public range_operator
2527 {
2528 public:
2529 virtual bool fold_range (value_range &r, tree type,
2530 const value_range &op1,
2531 const value_range &op2) const;
2532 virtual bool op1_range (value_range &r, tree type,
2533 const value_range &lhs,
2534 const value_range &op2) const;
2535 } op_addr;
2536
2537 bool
fold_range(value_range & r,tree type,const value_range & lh,const value_range & rh) const2538 operator_addr_expr::fold_range (value_range &r, tree type,
2539 const value_range &lh,
2540 const value_range &rh) const
2541 {
2542 if (empty_range_check (r, lh, rh))
2543 return true;
2544
2545 // Return a non-null pointer of the LHS type (passed in op2).
2546 if (lh.zero_p ())
2547 r = range_zero (type);
2548 else if (!lh.contains_p (build_zero_cst (lh.type ())))
2549 r = range_nonzero (type);
2550 else
2551 r = value_range (type);
2552 return true;
2553 }
2554
2555 bool
op1_range(value_range & r,tree type,const value_range & lhs,const value_range & op2) const2556 operator_addr_expr::op1_range (value_range &r, tree type,
2557 const value_range &lhs,
2558 const value_range &op2) const
2559 {
2560 return operator_addr_expr::fold_range (r, type, lhs, op2);
2561 }
2562
2563
2564 class pointer_plus_operator : public range_operator
2565 {
2566 public:
2567 virtual void wi_fold (value_range &r, tree type,
2568 const wide_int &lh_lb,
2569 const wide_int &lh_ub,
2570 const wide_int &rh_lb,
2571 const wide_int &rh_ub) const;
2572 } op_pointer_plus;
2573
2574 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const2575 pointer_plus_operator::wi_fold (value_range &r, tree type,
2576 const wide_int &lh_lb,
2577 const wide_int &lh_ub,
2578 const wide_int &rh_lb,
2579 const wide_int &rh_ub) const
2580 {
2581 // For pointer types, we are really only interested in asserting
2582 // whether the expression evaluates to non-NULL.
2583 //
2584 // With -fno-delete-null-pointer-checks we need to be more
2585 // conservative. As some object might reside at address 0,
2586 // then some offset could be added to it and the same offset
2587 // subtracted again and the result would be NULL.
2588 // E.g.
2589 // static int a[12]; where &a[0] is NULL and
2590 // ptr = &a[6];
2591 // ptr -= 6;
2592 // ptr will be NULL here, even when there is POINTER_PLUS_EXPR
2593 // where the first range doesn't include zero and the second one
2594 // doesn't either. As the second operand is sizetype (unsigned),
2595 // consider all ranges where the MSB could be set as possible
2596 // subtractions where the result might be NULL.
2597 if ((!wi_includes_zero_p (type, lh_lb, lh_ub)
2598 || !wi_includes_zero_p (type, rh_lb, rh_ub))
2599 && !TYPE_OVERFLOW_WRAPS (type)
2600 && (flag_delete_null_pointer_checks
2601 || !wi::sign_mask (rh_ub)))
2602 r = range_nonzero (type);
2603 else if (lh_lb == lh_ub && lh_lb == 0
2604 && rh_lb == rh_ub && rh_lb == 0)
2605 r = range_zero (type);
2606 else
2607 r = value_range (type);
2608 }
2609
2610
2611 class pointer_min_max_operator : public range_operator
2612 {
2613 public:
2614 virtual void wi_fold (value_range & r, tree type,
2615 const wide_int &lh_lb, const wide_int &lh_ub,
2616 const wide_int &rh_lb, const wide_int &rh_ub) const;
2617 } op_ptr_min_max;
2618
2619 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const2620 pointer_min_max_operator::wi_fold (value_range &r, tree type,
2621 const wide_int &lh_lb,
2622 const wide_int &lh_ub,
2623 const wide_int &rh_lb,
2624 const wide_int &rh_ub) const
2625 {
2626 // For MIN/MAX expressions with pointers, we only care about
2627 // nullness. If both are non null, then the result is nonnull.
2628 // If both are null, then the result is null. Otherwise they
2629 // are varying.
2630 if (!wi_includes_zero_p (type, lh_lb, lh_ub)
2631 && !wi_includes_zero_p (type, rh_lb, rh_ub))
2632 r = range_nonzero (type);
2633 else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
2634 r = range_zero (type);
2635 else
2636 r = value_range (type);
2637 }
2638
2639
2640 class pointer_and_operator : public range_operator
2641 {
2642 public:
2643 virtual void wi_fold (value_range &r, tree type,
2644 const wide_int &lh_lb, const wide_int &lh_ub,
2645 const wide_int &rh_lb, const wide_int &rh_ub) const;
2646 } op_pointer_and;
2647
2648 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb ATTRIBUTE_UNUSED,const wide_int & rh_ub ATTRIBUTE_UNUSED) const2649 pointer_and_operator::wi_fold (value_range &r, tree type,
2650 const wide_int &lh_lb,
2651 const wide_int &lh_ub,
2652 const wide_int &rh_lb ATTRIBUTE_UNUSED,
2653 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
2654 {
2655 // For pointer types, we are really only interested in asserting
2656 // whether the expression evaluates to non-NULL.
2657 if (wi_zero_p (type, lh_lb, lh_ub) || wi_zero_p (type, lh_lb, lh_ub))
2658 r = range_zero (type);
2659 else
2660 r = value_range (type);
2661 }
2662
2663
2664 class pointer_or_operator : public range_operator
2665 {
2666 public:
2667 virtual void wi_fold (value_range &r, tree type,
2668 const wide_int &lh_lb, const wide_int &lh_ub,
2669 const wide_int &rh_lb, const wide_int &rh_ub) const;
2670 } op_pointer_or;
2671
2672 void
wi_fold(value_range & r,tree type,const wide_int & lh_lb,const wide_int & lh_ub,const wide_int & rh_lb,const wide_int & rh_ub) const2673 pointer_or_operator::wi_fold (value_range &r, tree type,
2674 const wide_int &lh_lb,
2675 const wide_int &lh_ub,
2676 const wide_int &rh_lb,
2677 const wide_int &rh_ub) const
2678 {
2679 // For pointer types, we are really only interested in asserting
2680 // whether the expression evaluates to non-NULL.
2681 if (!wi_includes_zero_p (type, lh_lb, lh_ub)
2682 && !wi_includes_zero_p (type, rh_lb, rh_ub))
2683 r = range_nonzero (type);
2684 else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
2685 r = range_zero (type);
2686 else
2687 r = value_range (type);
2688 }
2689
2690 // This implements the range operator tables as local objects in this file.
2691
2692 class range_op_table
2693 {
2694 public:
2695 inline range_operator *operator[] (enum tree_code code);
2696 protected:
2697 void set (enum tree_code code, range_operator &op);
2698 private:
2699 range_operator *m_range_tree[MAX_TREE_CODES];
2700 };
2701
2702 // Return a pointer to the range_operator instance, if there is one
2703 // associated with tree_code CODE.
2704
2705 range_operator *
operator [](enum tree_code code)2706 range_op_table::operator[] (enum tree_code code)
2707 {
2708 gcc_checking_assert (code > 0 && code < MAX_TREE_CODES);
2709 return m_range_tree[code];
2710 }
2711
2712 // Add OP to the handler table for CODE.
2713
2714 void
set(enum tree_code code,range_operator & op)2715 range_op_table::set (enum tree_code code, range_operator &op)
2716 {
2717 gcc_checking_assert (m_range_tree[code] == NULL);
2718 m_range_tree[code] = &op;
2719 }
2720
2721 // Instantiate a range op table for integral operations.
2722
2723 class integral_table : public range_op_table
2724 {
2725 public:
2726 integral_table ();
2727 } integral_tree_table;
2728
integral_table()2729 integral_table::integral_table ()
2730 {
2731 set (EQ_EXPR, op_equal);
2732 set (NE_EXPR, op_not_equal);
2733 set (LT_EXPR, op_lt);
2734 set (LE_EXPR, op_le);
2735 set (GT_EXPR, op_gt);
2736 set (GE_EXPR, op_ge);
2737 set (PLUS_EXPR, op_plus);
2738 set (MINUS_EXPR, op_minus);
2739 set (MIN_EXPR, op_min);
2740 set (MAX_EXPR, op_max);
2741 set (MULT_EXPR, op_mult);
2742 set (TRUNC_DIV_EXPR, op_trunc_div);
2743 set (FLOOR_DIV_EXPR, op_floor_div);
2744 set (ROUND_DIV_EXPR, op_round_div);
2745 set (CEIL_DIV_EXPR, op_ceil_div);
2746 set (EXACT_DIV_EXPR, op_exact_div);
2747 set (LSHIFT_EXPR, op_lshift);
2748 set (RSHIFT_EXPR, op_rshift);
2749 set (NOP_EXPR, op_convert);
2750 set (CONVERT_EXPR, op_convert);
2751 set (TRUTH_AND_EXPR, op_logical_and);
2752 set (BIT_AND_EXPR, op_bitwise_and);
2753 set (TRUTH_OR_EXPR, op_logical_or);
2754 set (BIT_IOR_EXPR, op_bitwise_or);
2755 set (BIT_XOR_EXPR, op_bitwise_xor);
2756 set (TRUNC_MOD_EXPR, op_trunc_mod);
2757 set (TRUTH_NOT_EXPR, op_logical_not);
2758 set (BIT_NOT_EXPR, op_bitwise_not);
2759 set (INTEGER_CST, op_integer_cst);
2760 set (SSA_NAME, op_identity);
2761 set (PAREN_EXPR, op_identity);
2762 set (OBJ_TYPE_REF, op_identity);
2763 set (ABS_EXPR, op_abs);
2764 set (ABSU_EXPR, op_absu);
2765 set (NEGATE_EXPR, op_negate);
2766 set (ADDR_EXPR, op_addr);
2767 }
2768
2769 // Instantiate a range op table for pointer operations.
2770
2771 class pointer_table : public range_op_table
2772 {
2773 public:
2774 pointer_table ();
2775 } pointer_tree_table;
2776
pointer_table()2777 pointer_table::pointer_table ()
2778 {
2779 set (BIT_AND_EXPR, op_pointer_and);
2780 set (BIT_IOR_EXPR, op_pointer_or);
2781 set (MIN_EXPR, op_ptr_min_max);
2782 set (MAX_EXPR, op_ptr_min_max);
2783 set (POINTER_PLUS_EXPR, op_pointer_plus);
2784
2785 set (EQ_EXPR, op_equal);
2786 set (NE_EXPR, op_not_equal);
2787 set (LT_EXPR, op_lt);
2788 set (LE_EXPR, op_le);
2789 set (GT_EXPR, op_gt);
2790 set (GE_EXPR, op_ge);
2791 set (SSA_NAME, op_identity);
2792 set (ADDR_EXPR, op_addr);
2793 set (NOP_EXPR, op_convert);
2794 set (CONVERT_EXPR, op_convert);
2795
2796 set (BIT_NOT_EXPR, op_bitwise_not);
2797 set (BIT_XOR_EXPR, op_bitwise_xor);
2798 }
2799
2800 // The tables are hidden and accessed via a simple extern function.
2801
2802 range_operator *
range_op_handler(enum tree_code code,tree type)2803 range_op_handler (enum tree_code code, tree type)
2804 {
2805 // First check if there is apointer specialization.
2806 if (POINTER_TYPE_P (type))
2807 return pointer_tree_table[code];
2808 return integral_tree_table[code];
2809 }
2810
2811 // Cast the range in R to TYPE.
2812
2813 void
range_cast(value_range & r,tree type)2814 range_cast (value_range &r, tree type)
2815 {
2816 value_range tmp = r;
2817 range_operator *op = range_op_handler (CONVERT_EXPR, type);
2818 // Call op_convert, if it fails, the result is varying.
2819 if (!op->fold_range (r, type, tmp, value_range (type)))
2820 r = value_range (type);
2821 }
2822
2823 #if CHECKING_P
2824 #include "selftest.h"
2825 #include "stor-layout.h"
2826
2827 namespace selftest
2828 {
2829 #define INT(N) build_int_cst (integer_type_node, (N))
2830 #define UINT(N) build_int_cstu (unsigned_type_node, (N))
2831 #define INT16(N) build_int_cst (short_integer_type_node, (N))
2832 #define UINT16(N) build_int_cstu (short_unsigned_type_node, (N))
2833 #define INT64(N) build_int_cstu (long_long_integer_type_node, (N))
2834 #define UINT64(N) build_int_cstu (long_long_unsigned_type_node, (N))
2835 #define UINT128(N) build_int_cstu (u128_type, (N))
2836 #define UCHAR(N) build_int_cstu (unsigned_char_type_node, (N))
2837 #define SCHAR(N) build_int_cst (signed_char_type_node, (N))
2838
2839 // Run all of the selftests within this file.
2840
2841 void
range_tests()2842 range_tests ()
2843 {
2844 tree u128_type = build_nonstandard_integer_type (128, /*unsigned=*/1);
2845 value_range i1, i2, i3;
2846 value_range r0, r1, rold;
2847
2848 // Test that NOT(255) is [0..254] in 8-bit land.
2849 value_range not_255 (UCHAR (255), UCHAR (255), VR_ANTI_RANGE);
2850 ASSERT_TRUE (not_255 == value_range (UCHAR (0), UCHAR (254)));
2851
2852 // Test that NOT(0) is [1..255] in 8-bit land.
2853 value_range not_zero = range_nonzero (unsigned_char_type_node);
2854 ASSERT_TRUE (not_zero == value_range (UCHAR (1), UCHAR (255)));
2855
2856 // Check that [0,127][0x..ffffff80,0x..ffffff]
2857 // => ~[128, 0x..ffffff7f].
2858 r0 = value_range (UINT128 (0), UINT128 (127));
2859 tree high = build_minus_one_cst (u128_type);
2860 // low = -1 - 127 => 0x..ffffff80.
2861 tree low = fold_build2 (MINUS_EXPR, u128_type, high, UINT128(127));
2862 r1 = value_range (low, high); // [0x..ffffff80, 0x..ffffffff]
2863 // r0 = [0,127][0x..ffffff80,0x..fffffff].
2864 r0.union_ (r1);
2865 // r1 = [128, 0x..ffffff7f].
2866 r1 = value_range (UINT128(128),
2867 fold_build2 (MINUS_EXPR, u128_type,
2868 build_minus_one_cst (u128_type),
2869 UINT128(128)));
2870 r0.invert ();
2871 ASSERT_TRUE (r0 == r1);
2872
2873 r0.set_varying (integer_type_node);
2874 tree minint = wide_int_to_tree (integer_type_node, r0.lower_bound ());
2875 tree maxint = wide_int_to_tree (integer_type_node, r0.upper_bound ());
2876
2877 r0.set_varying (short_integer_type_node);
2878 tree minshort = wide_int_to_tree (short_integer_type_node, r0.lower_bound ());
2879 tree maxshort = wide_int_to_tree (short_integer_type_node, r0.upper_bound ());
2880
2881 r0.set_varying (unsigned_type_node);
2882 tree maxuint = wide_int_to_tree (unsigned_type_node, r0.upper_bound ());
2883
2884 // Check that ~[0,5] => [6,MAX] for unsigned int.
2885 r0 = value_range (UINT (0), UINT (5));
2886 r0.invert ();
2887 ASSERT_TRUE (r0 == value_range (UINT(6), maxuint));
2888
2889 // Check that ~[10,MAX] => [0,9] for unsigned int.
2890 r0 = value_range (UINT(10), maxuint);
2891 r0.invert ();
2892 ASSERT_TRUE (r0 == value_range (UINT (0), UINT (9)));
2893
2894 // Check that ~[0,5] => [6,MAX] for unsigned 128-bit numbers.
2895 r0 = value_range (UINT128 (0), UINT128 (5), VR_ANTI_RANGE);
2896 r1 = value_range (UINT128(6), build_minus_one_cst (u128_type));
2897 ASSERT_TRUE (r0 == r1);
2898
2899 // Check that [~5] is really [-MIN,4][6,MAX].
2900 r0 = value_range (INT (5), INT (5), VR_ANTI_RANGE);
2901 r1 = value_range (minint, INT (4));
2902 r1.union_ (value_range (INT (6), maxint));
2903 ASSERT_FALSE (r1.undefined_p ());
2904 ASSERT_TRUE (r0 == r1);
2905
2906 r1 = value_range (INT (5), INT (5));
2907 value_range r2 (r1);
2908 ASSERT_TRUE (r1 == r2);
2909
2910 r1 = value_range (INT (5), INT (10));
2911
2912 r1 = value_range (integer_type_node,
2913 wi::to_wide (INT (5)), wi::to_wide (INT (10)));
2914 ASSERT_TRUE (r1.contains_p (INT (7)));
2915
2916 r1 = value_range (SCHAR (0), SCHAR (20));
2917 ASSERT_TRUE (r1.contains_p (SCHAR(15)));
2918 ASSERT_FALSE (r1.contains_p (SCHAR(300)));
2919
2920 // If a range is in any way outside of the range for the converted
2921 // to range, default to the range for the new type.
2922 if (TYPE_PRECISION (TREE_TYPE (maxint))
2923 > TYPE_PRECISION (short_integer_type_node))
2924 {
2925 r1 = value_range (integer_zero_node, maxint);
2926 range_cast (r1, short_integer_type_node);
2927 ASSERT_TRUE (r1.lower_bound () == wi::to_wide (minshort)
2928 && r1.upper_bound() == wi::to_wide (maxshort));
2929 }
2930
2931 // (unsigned char)[-5,-1] => [251,255].
2932 r0 = rold = value_range (SCHAR (-5), SCHAR (-1));
2933 range_cast (r0, unsigned_char_type_node);
2934 ASSERT_TRUE (r0 == value_range (UCHAR (251), UCHAR (255)));
2935 range_cast (r0, signed_char_type_node);
2936 ASSERT_TRUE (r0 == rold);
2937
2938 // (signed char)[15, 150] => [-128,-106][15,127].
2939 r0 = rold = value_range (UCHAR (15), UCHAR (150));
2940 range_cast (r0, signed_char_type_node);
2941 r1 = value_range (SCHAR (15), SCHAR (127));
2942 r2 = value_range (SCHAR (-128), SCHAR (-106));
2943 r1.union_ (r2);
2944 ASSERT_TRUE (r1 == r0);
2945 range_cast (r0, unsigned_char_type_node);
2946 ASSERT_TRUE (r0 == rold);
2947
2948 // (unsigned char)[-5, 5] => [0,5][251,255].
2949 r0 = rold = value_range (SCHAR (-5), SCHAR (5));
2950 range_cast (r0, unsigned_char_type_node);
2951 r1 = value_range (UCHAR (251), UCHAR (255));
2952 r2 = value_range (UCHAR (0), UCHAR (5));
2953 r1.union_ (r2);
2954 ASSERT_TRUE (r0 == r1);
2955 range_cast (r0, signed_char_type_node);
2956 ASSERT_TRUE (r0 == rold);
2957
2958 // (unsigned char)[-5,5] => [0,5][251,255].
2959 r0 = value_range (INT (-5), INT (5));
2960 range_cast (r0, unsigned_char_type_node);
2961 r1 = value_range (UCHAR (0), UCHAR (5));
2962 r1.union_ (value_range (UCHAR (251), UCHAR (255)));
2963 ASSERT_TRUE (r0 == r1);
2964
2965 // (unsigned char)[5U,1974U] => [0,255].
2966 r0 = value_range (UINT (5), UINT (1974));
2967 range_cast (r0, unsigned_char_type_node);
2968 ASSERT_TRUE (r0 == value_range (UCHAR (0), UCHAR (255)));
2969 range_cast (r0, integer_type_node);
2970 // Going to a wider range should not sign extend.
2971 ASSERT_TRUE (r0 == value_range (INT (0), INT (255)));
2972
2973 // (unsigned char)[-350,15] => [0,255].
2974 r0 = value_range (INT (-350), INT (15));
2975 range_cast (r0, unsigned_char_type_node);
2976 ASSERT_TRUE (r0 == (value_range
2977 (TYPE_MIN_VALUE (unsigned_char_type_node),
2978 TYPE_MAX_VALUE (unsigned_char_type_node))));
2979
2980 // Casting [-120,20] from signed char to unsigned short.
2981 // => [0, 20][0xff88, 0xffff].
2982 r0 = value_range (SCHAR (-120), SCHAR (20));
2983 range_cast (r0, short_unsigned_type_node);
2984 r1 = value_range (UINT16 (0), UINT16 (20));
2985 r2 = value_range (UINT16 (0xff88), UINT16 (0xffff));
2986 r1.union_ (r2);
2987 ASSERT_TRUE (r0 == r1);
2988 // A truncating cast back to signed char will work because [-120, 20]
2989 // is representable in signed char.
2990 range_cast (r0, signed_char_type_node);
2991 ASSERT_TRUE (r0 == value_range (SCHAR (-120), SCHAR (20)));
2992
2993 // unsigned char -> signed short
2994 // (signed short)[(unsigned char)25, (unsigned char)250]
2995 // => [(signed short)25, (signed short)250]
2996 r0 = rold = value_range (UCHAR (25), UCHAR (250));
2997 range_cast (r0, short_integer_type_node);
2998 r1 = value_range (INT16 (25), INT16 (250));
2999 ASSERT_TRUE (r0 == r1);
3000 range_cast (r0, unsigned_char_type_node);
3001 ASSERT_TRUE (r0 == rold);
3002
3003 // Test casting a wider signed [-MIN,MAX] to a nar`rower unsigned.
3004 r0 = value_range (TYPE_MIN_VALUE (long_long_integer_type_node),
3005 TYPE_MAX_VALUE (long_long_integer_type_node));
3006 range_cast (r0, short_unsigned_type_node);
3007 r1 = value_range (TYPE_MIN_VALUE (short_unsigned_type_node),
3008 TYPE_MAX_VALUE (short_unsigned_type_node));
3009 ASSERT_TRUE (r0 == r1);
3010
3011 // NOT([10,20]) ==> [-MIN,9][21,MAX].
3012 r0 = r1 = value_range (INT (10), INT (20));
3013 r2 = value_range (minint, INT(9));
3014 r2.union_ (value_range (INT(21), maxint));
3015 ASSERT_FALSE (r2.undefined_p ());
3016 r1.invert ();
3017 ASSERT_TRUE (r1 == r2);
3018 // Test that NOT(NOT(x)) == x.
3019 r2.invert ();
3020 ASSERT_TRUE (r0 == r2);
3021
3022 // Test that booleans and their inverse work as expected.
3023 r0 = range_zero (boolean_type_node);
3024 ASSERT_TRUE (r0 == value_range (build_zero_cst (boolean_type_node),
3025 build_zero_cst (boolean_type_node)));
3026 r0.invert ();
3027 ASSERT_TRUE (r0 == value_range (build_one_cst (boolean_type_node),
3028 build_one_cst (boolean_type_node)));
3029
3030 // Casting NONZERO to a narrower type will wrap/overflow so
3031 // it's just the entire range for the narrower type.
3032 //
3033 // "NOT 0 at signed 32-bits" ==> [-MIN_32,-1][1, +MAX_32]. This is
3034 // is outside of the range of a smaller range, return the full
3035 // smaller range.
3036 if (TYPE_PRECISION (integer_type_node)
3037 > TYPE_PRECISION (short_integer_type_node))
3038 {
3039 r0 = range_nonzero (integer_type_node);
3040 range_cast (r0, short_integer_type_node);
3041 r1 = value_range (TYPE_MIN_VALUE (short_integer_type_node),
3042 TYPE_MAX_VALUE (short_integer_type_node));
3043 ASSERT_TRUE (r0 == r1);
3044 }
3045
3046 // Casting NONZERO from a narrower signed to a wider signed.
3047 //
3048 // NONZERO signed 16-bits is [-MIN_16,-1][1, +MAX_16].
3049 // Converting this to 32-bits signed is [-MIN_16,-1][1, +MAX_16].
3050 r0 = range_nonzero (short_integer_type_node);
3051 range_cast (r0, integer_type_node);
3052 r1 = value_range (INT (-32768), INT (-1));
3053 r2 = value_range (INT (1), INT (32767));
3054 r1.union_ (r2);
3055 ASSERT_TRUE (r0 == r1);
3056
3057 // Make sure NULL and non-NULL of pointer types work, and that
3058 // inverses of them are consistent.
3059 tree voidp = build_pointer_type (void_type_node);
3060 r0 = range_zero (voidp);
3061 r1 = r0;
3062 r0.invert ();
3063 r0.invert ();
3064 ASSERT_TRUE (r0 == r1);
3065
3066 // [10,20] U [15, 30] => [10, 30].
3067 r0 = value_range (INT (10), INT (20));
3068 r1 = value_range (INT (15), INT (30));
3069 r0.union_ (r1);
3070 ASSERT_TRUE (r0 == value_range (INT (10), INT (30)));
3071
3072 // [15,40] U [] => [15,40].
3073 r0 = value_range (INT (15), INT (40));
3074 r1.set_undefined ();
3075 r0.union_ (r1);
3076 ASSERT_TRUE (r0 == value_range (INT (15), INT (40)));
3077
3078 // [10,20] U [10,10] => [10,20].
3079 r0 = value_range (INT (10), INT (20));
3080 r1 = value_range (INT (10), INT (10));
3081 r0.union_ (r1);
3082 ASSERT_TRUE (r0 == value_range (INT (10), INT (20)));
3083
3084 // [10,20] U [9,9] => [9,20].
3085 r0 = value_range (INT (10), INT (20));
3086 r1 = value_range (INT (9), INT (9));
3087 r0.union_ (r1);
3088 ASSERT_TRUE (r0 == value_range (INT (9), INT (20)));
3089
3090 // [10,20] ^ [15,30] => [15,20].
3091 r0 = value_range (INT (10), INT (20));
3092 r1 = value_range (INT (15), INT (30));
3093 r0.intersect (r1);
3094 ASSERT_TRUE (r0 == value_range (INT (15), INT (20)));
3095
3096 // Test the internal sanity of wide_int's wrt HWIs.
3097 ASSERT_TRUE (wi::max_value (TYPE_PRECISION (boolean_type_node),
3098 TYPE_SIGN (boolean_type_node))
3099 == wi::uhwi (1, TYPE_PRECISION (boolean_type_node)));
3100
3101 // Test zero_p().
3102 r0 = value_range (INT (0), INT (0));
3103 ASSERT_TRUE (r0.zero_p ());
3104
3105 // Test nonzero_p().
3106 r0 = value_range (INT (0), INT (0));
3107 r0.invert ();
3108 ASSERT_TRUE (r0.nonzero_p ());
3109 }
3110
3111 } // namespace selftest
3112
3113 #endif // CHECKING_P
3114