1 /* Register to Stack convert for GNU compiler.
2    Copyright (C) 1992-2020 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This pass converts stack-like registers from the "flat register
21    file" model that gcc uses, to a stack convention that the 387 uses.
22 
23    * The form of the input:
24 
25    On input, the function consists of insn that have had their
26    registers fully allocated to a set of "virtual" registers.  Note that
27    the word "virtual" is used differently here than elsewhere in gcc: for
28    each virtual stack reg, there is a hard reg, but the mapping between
29    them is not known until this pass is run.  On output, hard register
30    numbers have been substituted, and various pop and exchange insns have
31    been emitted.  The hard register numbers and the virtual register
32    numbers completely overlap - before this pass, all stack register
33    numbers are virtual, and afterward they are all hard.
34 
35    The virtual registers can be manipulated normally by gcc, and their
36    semantics are the same as for normal registers.  After the hard
37    register numbers are substituted, the semantics of an insn containing
38    stack-like regs are not the same as for an insn with normal regs: for
39    instance, it is not safe to delete an insn that appears to be a no-op
40    move.  In general, no insn containing hard regs should be changed
41    after this pass is done.
42 
43    * The form of the output:
44 
45    After this pass, hard register numbers represent the distance from
46    the current top of stack to the desired register.  A reference to
47    FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48    represents the register just below that, and so forth.  Also, REG_DEAD
49    notes indicate whether or not a stack register should be popped.
50 
51    A "swap" insn looks like a parallel of two patterns, where each
52    pattern is a SET: one sets A to B, the other B to A.
53 
54    A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55    and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
56    will replace the existing stack top, not push a new value.
57 
58    A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59    SET_SRC is REG or MEM.
60 
61    The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62    appears ambiguous.  As a special case, the presence of a REG_DEAD note
63    for FIRST_STACK_REG differentiates between a load insn and a pop.
64 
65    If a REG_DEAD is present, the insn represents a "pop" that discards
66    the top of the register stack.  If there is no REG_DEAD note, then the
67    insn represents a "dup" or a push of the current top of stack onto the
68    stack.
69 
70    * Methodology:
71 
72    Existing REG_DEAD and REG_UNUSED notes for stack registers are
73    deleted and recreated from scratch.  REG_DEAD is never created for a
74    SET_DEST, only REG_UNUSED.
75 
76    * asm_operands:
77 
78    There are several rules on the usage of stack-like regs in
79    asm_operands insns.  These rules apply only to the operands that are
80    stack-like regs:
81 
82    1. Given a set of input regs that die in an asm_operands, it is
83       necessary to know which are implicitly popped by the asm, and
84       which must be explicitly popped by gcc.
85 
86 	An input reg that is implicitly popped by the asm must be
87 	explicitly clobbered, unless it is constrained to match an
88 	output operand.
89 
90    2. For any input reg that is implicitly popped by an asm, it is
91       necessary to know how to adjust the stack to compensate for the pop.
92       If any non-popped input is closer to the top of the reg-stack than
93       the implicitly popped reg, it would not be possible to know what the
94       stack looked like - it's not clear how the rest of the stack "slides
95       up".
96 
97 	All implicitly popped input regs must be closer to the top of
98 	the reg-stack than any input that is not implicitly popped.
99 
100 	All explicitly referenced input operands may not "skip" a reg.
101 	Otherwise we can have holes in the stack.
102 
103    3. It is possible that if an input dies in an insn, reload might
104       use the input reg for an output reload.  Consider this example:
105 
106 		asm ("foo" : "=t" (a) : "f" (b));
107 
108       This asm says that input B is not popped by the asm, and that
109       the asm pushes a result onto the reg-stack, i.e., the stack is one
110       deeper after the asm than it was before.  But, it is possible that
111       reload will think that it can use the same reg for both the input and
112       the output, if input B dies in this insn.
113 
114 	If any input operand uses the "f" constraint, all output reg
115 	constraints must use the "&" earlyclobber.
116 
117       The asm above would be written as
118 
119 		asm ("foo" : "=&t" (a) : "f" (b));
120 
121    4. Some operands need to be in particular places on the stack.  All
122       output operands fall in this category - there is no other way to
123       know which regs the outputs appear in unless the user indicates
124       this in the constraints.
125 
126 	Output operands must specifically indicate which reg an output
127 	appears in after an asm.  "=f" is not allowed: the operand
128 	constraints must select a class with a single reg.
129 
130    5. Output operands may not be "inserted" between existing stack regs.
131       Since no 387 opcode uses a read/write operand, all output operands
132       are dead before the asm_operands, and are pushed by the asm_operands.
133       It makes no sense to push anywhere but the top of the reg-stack.
134 
135 	Output operands must start at the top of the reg-stack: output
136 	operands may not "skip" a reg.
137 
138    6. Some asm statements may need extra stack space for internal
139       calculations.  This can be guaranteed by clobbering stack registers
140       unrelated to the inputs and outputs.
141 
142    Here are a couple of reasonable asms to want to write.  This asm
143    takes one input, which is internally popped, and produces two outputs.
144 
145 	asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 
147    This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148    and replaces them with one output.  The user must code the "st(1)"
149    clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 
151 	asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152 
153 */
154 
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "memmodel.h"
165 #include "regs.h"
166 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
167 #include "recog.h"
168 #include "varasm.h"
169 #include "rtl-error.h"
170 #include "cfgrtl.h"
171 #include "cfganal.h"
172 #include "cfgbuild.h"
173 #include "cfgcleanup.h"
174 #include "reload.h"
175 #include "tree-pass.h"
176 #include "rtl-iter.h"
177 
178 #ifdef STACK_REGS
179 
180 /* We use this array to cache info about insns, because otherwise we
181    spend too much time in stack_regs_mentioned_p.
182 
183    Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
184    the insn uses stack registers, two indicates the insn does not use
185    stack registers.  */
186 static vec<char> stack_regs_mentioned_data;
187 
188 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
189 
190 int regstack_completed = 0;
191 
192 /* This is the basic stack record.  TOP is an index into REG[] such
193    that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
194 
195    If TOP is -2, REG[] is not yet initialized.  Stack initialization
196    consists of placing each live reg in array `reg' and setting `top'
197    appropriately.
198 
199    REG_SET indicates which registers are live.  */
200 
201 typedef struct stack_def
202 {
203   int top;			/* index to top stack element */
204   HARD_REG_SET reg_set;		/* set of live registers */
205   unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
206 } *stack_ptr;
207 
208 /* This is used to carry information about basic blocks.  It is
209    attached to the AUX field of the standard CFG block.  */
210 
211 typedef struct block_info_def
212 {
213   struct stack_def stack_in;	/* Input stack configuration.  */
214   struct stack_def stack_out;	/* Output stack configuration.  */
215   HARD_REG_SET out_reg_set;	/* Stack regs live on output.  */
216   int done;			/* True if block already converted.  */
217   int predecessors;		/* Number of predecessors that need
218 				   to be visited.  */
219 } *block_info;
220 
221 #define BLOCK_INFO(B)	((block_info) (B)->aux)
222 
223 /* Passed to change_stack to indicate where to emit insns.  */
224 enum emit_where
225 {
226   EMIT_AFTER,
227   EMIT_BEFORE
228 };
229 
230 /* The block we're currently working on.  */
231 static basic_block current_block;
232 
233 /* In the current_block, whether we're processing the first register
234    stack or call instruction, i.e. the regstack is currently the
235    same as BLOCK_INFO(current_block)->stack_in.  */
236 static bool starting_stack_p;
237 
238 /* This is the register file for all register after conversion.  */
239 static rtx
240   FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
241 
242 #define FP_MODE_REG(regno,mode)	\
243   (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
244 
245 /* Used to initialize uninitialized registers.  */
246 static rtx not_a_num;
247 
248 /* Forward declarations */
249 
250 static int stack_regs_mentioned_p (const_rtx pat);
251 static void pop_stack (stack_ptr, int);
252 static rtx *get_true_reg (rtx *);
253 
254 static int check_asm_stack_operands (rtx_insn *);
255 static void get_asm_operands_in_out (rtx, int *, int *);
256 static rtx stack_result (tree);
257 static void replace_reg (rtx *, int);
258 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
259 static int get_hard_regnum (stack_ptr, rtx);
260 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
261 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
262 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
263 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
264 static int swap_rtx_condition_1 (rtx);
265 static int swap_rtx_condition (rtx_insn *);
266 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx, bool);
267 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
268 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
269 static bool subst_stack_regs (rtx_insn *, stack_ptr);
270 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
271 static void print_stack (FILE *, stack_ptr);
272 static rtx_insn *next_flags_user (rtx_insn *);
273 
274 /* Return nonzero if any stack register is mentioned somewhere within PAT.  */
275 
276 static int
stack_regs_mentioned_p(const_rtx pat)277 stack_regs_mentioned_p (const_rtx pat)
278 {
279   const char *fmt;
280   int i;
281 
282   if (STACK_REG_P (pat))
283     return 1;
284 
285   fmt = GET_RTX_FORMAT (GET_CODE (pat));
286   for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
287     {
288       if (fmt[i] == 'E')
289 	{
290 	  int j;
291 
292 	  for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
293 	    if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
294 	      return 1;
295 	}
296       else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
297 	return 1;
298     }
299 
300   return 0;
301 }
302 
303 /* Return nonzero if INSN mentions stacked registers, else return zero.  */
304 
305 int
stack_regs_mentioned(const_rtx insn)306 stack_regs_mentioned (const_rtx insn)
307 {
308   unsigned int uid, max;
309   int test;
310 
311   if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
312     return 0;
313 
314   uid = INSN_UID (insn);
315   max = stack_regs_mentioned_data.length ();
316   if (uid >= max)
317     {
318       /* Allocate some extra size to avoid too many reallocs, but
319 	 do not grow too quickly.  */
320       max = uid + uid / 20 + 1;
321       stack_regs_mentioned_data.safe_grow_cleared (max);
322     }
323 
324   test = stack_regs_mentioned_data[uid];
325   if (test == 0)
326     {
327       /* This insn has yet to be examined.  Do so now.  */
328       test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
329       stack_regs_mentioned_data[uid] = test;
330     }
331 
332   return test == 1;
333 }
334 
335 static rtx ix86_flags_rtx;
336 
337 static rtx_insn *
next_flags_user(rtx_insn * insn)338 next_flags_user (rtx_insn *insn)
339 {
340   /* Search forward looking for the first use of this value.
341      Stop at block boundaries.  */
342 
343   while (insn != BB_END (current_block))
344     {
345       insn = NEXT_INSN (insn);
346 
347       if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
348 	return insn;
349 
350       if (CALL_P (insn))
351 	return NULL;
352     }
353   return NULL;
354 }
355 
356 /* Reorganize the stack into ascending numbers, before this insn.  */
357 
358 static void
straighten_stack(rtx_insn * insn,stack_ptr regstack)359 straighten_stack (rtx_insn *insn, stack_ptr regstack)
360 {
361   struct stack_def temp_stack;
362   int top;
363 
364   /* If there is only a single register on the stack, then the stack is
365      already in increasing order and no reorganization is needed.
366 
367      Similarly if the stack is empty.  */
368   if (regstack->top <= 0)
369     return;
370 
371   temp_stack.reg_set = regstack->reg_set;
372 
373   for (top = temp_stack.top = regstack->top; top >= 0; top--)
374     temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
375 
376   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
377 }
378 
379 /* Pop a register from the stack.  */
380 
381 static void
pop_stack(stack_ptr regstack,int regno)382 pop_stack (stack_ptr regstack, int regno)
383 {
384   int top = regstack->top;
385 
386   CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
387   regstack->top--;
388   /* If regno was not at the top of stack then adjust stack.  */
389   if (regstack->reg [top] != regno)
390     {
391       int i;
392       for (i = regstack->top; i >= 0; i--)
393 	if (regstack->reg [i] == regno)
394 	  {
395 	    int j;
396 	    for (j = i; j < top; j++)
397 	      regstack->reg [j] = regstack->reg [j + 1];
398 	    break;
399 	  }
400     }
401 }
402 
403 /* Return a pointer to the REG expression within PAT.  If PAT is not a
404    REG, possible enclosed by a conversion rtx, return the inner part of
405    PAT that stopped the search.  */
406 
407 static rtx *
get_true_reg(rtx * pat)408 get_true_reg (rtx *pat)
409 {
410   for (;;)
411     switch (GET_CODE (*pat))
412       {
413       case SUBREG:
414 	/* Eliminate FP subregister accesses in favor of the
415 	   actual FP register in use.  */
416 	{
417 	  rtx subreg = SUBREG_REG (*pat);
418 
419 	  if (STACK_REG_P (subreg))
420 	    {
421 	      int regno_off = subreg_regno_offset (REGNO (subreg),
422 						   GET_MODE (subreg),
423 						   SUBREG_BYTE (*pat),
424 						   GET_MODE (*pat));
425 	      *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
426 				  GET_MODE (subreg));
427 	      return pat;
428 	    }
429 	  pat = &XEXP (*pat, 0);
430 	  break;
431 	}
432 
433       case FLOAT_TRUNCATE:
434 	if (!flag_unsafe_math_optimizations)
435 	  return pat;
436 	/* FALLTHRU */
437 
438       case FLOAT:
439       case FIX:
440       case FLOAT_EXTEND:
441 	pat = &XEXP (*pat, 0);
442 	break;
443 
444       case UNSPEC:
445 	if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
446 	    || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
447 	  pat = &XVECEXP (*pat, 0, 0);
448 	return pat;
449 
450       default:
451 	return pat;
452       }
453 }
454 
455 /* Set if we find any malformed asms in a block.  */
456 static bool any_malformed_asm;
457 
458 /* There are many rules that an asm statement for stack-like regs must
459    follow.  Those rules are explained at the top of this file: the rule
460    numbers below refer to that explanation.  */
461 
462 static int
check_asm_stack_operands(rtx_insn * insn)463 check_asm_stack_operands (rtx_insn *insn)
464 {
465   int i;
466   int n_clobbers;
467   int malformed_asm = 0;
468   rtx body = PATTERN (insn);
469 
470   char reg_used_as_output[FIRST_PSEUDO_REGISTER];
471   char implicitly_dies[FIRST_PSEUDO_REGISTER];
472   char explicitly_used[FIRST_PSEUDO_REGISTER];
473 
474   rtx *clobber_reg = 0;
475   int n_inputs, n_outputs;
476 
477   /* Find out what the constraints require.  If no constraint
478      alternative matches, this asm is malformed.  */
479   extract_constrain_insn (insn);
480 
481   preprocess_constraints (insn);
482 
483   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
484 
485   if (which_alternative < 0)
486     {
487       /* Avoid further trouble with this insn.  */
488       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
489       return 0;
490     }
491   const operand_alternative *op_alt = which_op_alt ();
492 
493   /* Strip SUBREGs here to make the following code simpler.  */
494   for (i = 0; i < recog_data.n_operands; i++)
495     if (GET_CODE (recog_data.operand[i]) == SUBREG
496 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
497       recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498 
499   /* Set up CLOBBER_REG.  */
500 
501   n_clobbers = 0;
502 
503   if (GET_CODE (body) == PARALLEL)
504     {
505       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
506 
507       for (i = 0; i < XVECLEN (body, 0); i++)
508 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509 	  {
510 	    rtx clobber = XVECEXP (body, 0, i);
511 	    rtx reg = XEXP (clobber, 0);
512 
513 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
514 	      reg = SUBREG_REG (reg);
515 
516 	    if (STACK_REG_P (reg))
517 	      {
518 		clobber_reg[n_clobbers] = reg;
519 		n_clobbers++;
520 	      }
521 	  }
522     }
523 
524   /* Enforce rule #4: Output operands must specifically indicate which
525      reg an output appears in after an asm.  "=f" is not allowed: the
526      operand constraints must select a class with a single reg.
527 
528      Also enforce rule #5: Output operands must start at the top of
529      the reg-stack: output operands may not "skip" a reg.  */
530 
531   memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
532   for (i = 0; i < n_outputs; i++)
533     if (STACK_REG_P (recog_data.operand[i]))
534       {
535 	if (reg_class_size[(int) op_alt[i].cl] != 1)
536 	  {
537 	    error_for_asm (insn, "output constraint %d must specify a single register", i);
538 	    malformed_asm = 1;
539 	  }
540 	else
541 	  {
542 	    int j;
543 
544 	    for (j = 0; j < n_clobbers; j++)
545 	      if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546 		{
547 		  error_for_asm (insn, "output constraint %d cannot be "
548 				 "specified together with %qs clobber",
549 				 i, reg_names [REGNO (clobber_reg[j])]);
550 		  malformed_asm = 1;
551 		  break;
552 		}
553 	    if (j == n_clobbers)
554 	      reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
555 	  }
556       }
557 
558 
559   /* Search for first non-popped reg.  */
560   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
561     if (! reg_used_as_output[i])
562       break;
563 
564   /* If there are any other popped regs, that's an error.  */
565   for (; i < LAST_STACK_REG + 1; i++)
566     if (reg_used_as_output[i])
567       break;
568 
569   if (i != LAST_STACK_REG + 1)
570     {
571       error_for_asm (insn, "output registers must be grouped at top of stack");
572       malformed_asm = 1;
573     }
574 
575   /* Enforce rule #2: All implicitly popped input regs must be closer
576      to the top of the reg-stack than any input that is not implicitly
577      popped.  */
578 
579   memset (implicitly_dies, 0, sizeof (implicitly_dies));
580   memset (explicitly_used, 0, sizeof (explicitly_used));
581   for (i = n_outputs; i < n_outputs + n_inputs; i++)
582     if (STACK_REG_P (recog_data.operand[i]))
583       {
584 	/* An input reg is implicitly popped if it is tied to an
585 	   output, or if there is a CLOBBER for it.  */
586 	int j;
587 
588 	for (j = 0; j < n_clobbers; j++)
589 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
590 	    break;
591 
592 	if (j < n_clobbers || op_alt[i].matches >= 0)
593 	  implicitly_dies[REGNO (recog_data.operand[i])] = 1;
594 	else if (reg_class_size[(int) op_alt[i].cl] == 1)
595 	  explicitly_used[REGNO (recog_data.operand[i])] = 1;
596       }
597 
598   /* Search for first non-popped reg.  */
599   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
600     if (! implicitly_dies[i])
601       break;
602 
603   /* If there are any other popped regs, that's an error.  */
604   for (; i < LAST_STACK_REG + 1; i++)
605     if (implicitly_dies[i])
606       break;
607 
608   if (i != LAST_STACK_REG + 1)
609     {
610       error_for_asm (insn,
611 		     "implicitly popped registers must be grouped "
612 		     "at top of stack");
613       malformed_asm = 1;
614     }
615 
616   /* Search for first not-explicitly used reg.  */
617   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
618     if (! implicitly_dies[i] && ! explicitly_used[i])
619       break;
620 
621   /* If there are any other explicitly used regs, that's an error.  */
622   for (; i < LAST_STACK_REG + 1; i++)
623     if (explicitly_used[i])
624       break;
625 
626   if (i != LAST_STACK_REG + 1)
627     {
628       error_for_asm (insn,
629 		     "explicitly used registers must be grouped "
630 		     "at top of stack");
631       malformed_asm = 1;
632     }
633 
634   /* Enforce rule #3: If any input operand uses the "f" constraint, all
635      output constraints must use the "&" earlyclobber.
636 
637      ??? Detect this more deterministically by having constrain_asm_operands
638      record any earlyclobber.  */
639 
640   for (i = n_outputs; i < n_outputs + n_inputs; i++)
641     if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
642       {
643 	int j;
644 
645 	for (j = 0; j < n_outputs; j++)
646 	  if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
647 	    {
648 	      error_for_asm (insn,
649 			     "output operand %d must use %<&%> constraint", j);
650 	      malformed_asm = 1;
651 	    }
652       }
653 
654   if (malformed_asm)
655     {
656       /* Avoid further trouble with this insn.  */
657       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
658       any_malformed_asm = true;
659       return 0;
660     }
661 
662   return 1;
663 }
664 
665 /* Calculate the number of inputs and outputs in BODY, an
666    asm_operands.  N_OPERANDS is the total number of operands, and
667    N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
668    placed.  */
669 
670 static void
get_asm_operands_in_out(rtx body,int * pout,int * pin)671 get_asm_operands_in_out (rtx body, int *pout, int *pin)
672 {
673   rtx asmop = extract_asm_operands (body);
674 
675   *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
676   *pout = (recog_data.n_operands
677 	   - ASM_OPERANDS_INPUT_LENGTH (asmop)
678 	   - ASM_OPERANDS_LABEL_LENGTH (asmop));
679 }
680 
681 /* If current function returns its result in an fp stack register,
682    return the REG.  Otherwise, return 0.  */
683 
684 static rtx
stack_result(tree decl)685 stack_result (tree decl)
686 {
687   rtx result;
688 
689   /* If the value is supposed to be returned in memory, then clearly
690      it is not returned in a stack register.  */
691   if (aggregate_value_p (DECL_RESULT (decl), decl))
692     return 0;
693 
694   result = DECL_RTL_IF_SET (DECL_RESULT (decl));
695   if (result != 0)
696     result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
697 					   decl, true);
698 
699   return result != 0 && STACK_REG_P (result) ? result : 0;
700 }
701 
702 
703 /*
704  * This section deals with stack register substitution, and forms the second
705  * pass over the RTL.
706  */
707 
708 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
709    the desired hard REGNO.  */
710 
711 static void
replace_reg(rtx * reg,int regno)712 replace_reg (rtx *reg, int regno)
713 {
714   gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
715   gcc_assert (STACK_REG_P (*reg));
716 
717   gcc_assert (GET_MODE_CLASS (GET_MODE (*reg)) == MODE_FLOAT
718 	      || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
719 
720   *reg = FP_MODE_REG (regno, GET_MODE (*reg));
721 }
722 
723 /* Remove a note of type NOTE, which must be found, for register
724    number REGNO from INSN.  Remove only one such note.  */
725 
726 static void
remove_regno_note(rtx_insn * insn,enum reg_note note,unsigned int regno)727 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
728 {
729   rtx *note_link, this_rtx;
730 
731   note_link = &REG_NOTES (insn);
732   for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
733     if (REG_NOTE_KIND (this_rtx) == note
734 	&& REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
735       {
736 	*note_link = XEXP (this_rtx, 1);
737 	return;
738       }
739     else
740       note_link = &XEXP (this_rtx, 1);
741 
742   gcc_unreachable ();
743 }
744 
745 /* Find the hard register number of virtual register REG in REGSTACK.
746    The hard register number is relative to the top of the stack.  -1 is
747    returned if the register is not found.  */
748 
749 static int
get_hard_regnum(stack_ptr regstack,rtx reg)750 get_hard_regnum (stack_ptr regstack, rtx reg)
751 {
752   int i;
753 
754   gcc_assert (STACK_REG_P (reg));
755 
756   for (i = regstack->top; i >= 0; i--)
757     if (regstack->reg[i] == REGNO (reg))
758       break;
759 
760   return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
761 }
762 
763 /* Emit an insn to pop virtual register REG before or after INSN.
764    REGSTACK is the stack state after INSN and is updated to reflect this
765    pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
766    is represented as a SET whose destination is the register to be popped
767    and source is the top of stack.  A death note for the top of stack
768    cases the movdf pattern to pop.  */
769 
770 static rtx_insn *
emit_pop_insn(rtx_insn * insn,stack_ptr regstack,rtx reg,enum emit_where where)771 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg,
772 	       enum emit_where where)
773 {
774   machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
775   rtx_insn *pop_insn;
776   rtx pop_rtx;
777   int hard_regno;
778 
779   /* For complex types take care to pop both halves.  These may survive in
780      CLOBBER and USE expressions.  */
781   if (COMPLEX_MODE_P (GET_MODE (reg)))
782     {
783       rtx reg1 = FP_MODE_REG (REGNO (reg), raw_mode);
784       rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, raw_mode);
785 
786       pop_insn = NULL;
787       if (get_hard_regnum (regstack, reg1) >= 0)
788 	pop_insn = emit_pop_insn (insn, regstack, reg1, where);
789       if (get_hard_regnum (regstack, reg2) >= 0)
790 	pop_insn = emit_pop_insn (insn, regstack, reg2, where);
791       gcc_assert (pop_insn);
792       return pop_insn;
793     }
794 
795   hard_regno = get_hard_regnum (regstack, reg);
796 
797   gcc_assert (hard_regno >= FIRST_STACK_REG);
798 
799   pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, raw_mode),
800 			 FP_MODE_REG (FIRST_STACK_REG, raw_mode));
801 
802   if (where == EMIT_AFTER)
803     pop_insn = emit_insn_after (pop_rtx, insn);
804   else
805     pop_insn = emit_insn_before (pop_rtx, insn);
806 
807   add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, raw_mode));
808 
809   regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
810     = regstack->reg[regstack->top];
811   regstack->top -= 1;
812   CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
813 
814   return pop_insn;
815 }
816 
817 /* Emit an insn before or after INSN to swap virtual register REG with
818    the top of stack.  REGSTACK is the stack state before the swap, and
819    is updated to reflect the swap.  A swap insn is represented as a
820    PARALLEL of two patterns: each pattern moves one reg to the other.
821 
822    If REG is already at the top of the stack, no insn is emitted.  */
823 
824 static void
emit_swap_insn(rtx_insn * insn,stack_ptr regstack,rtx reg)825 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
826 {
827   int hard_regno;
828   int other_reg;		/* swap regno temps */
829   rtx_insn *i1;			/* the stack-reg insn prior to INSN */
830   rtx i1set = NULL_RTX;		/* the SET rtx within I1 */
831 
832   hard_regno = get_hard_regnum (regstack, reg);
833 
834   if (hard_regno == FIRST_STACK_REG)
835     return;
836   if (hard_regno == -1)
837     {
838       /* Something failed if the register wasn't on the stack.  If we had
839 	 malformed asms, we zapped the instruction itself, but that didn't
840 	 produce the same pattern of register sets as before.  To prevent
841 	 further failure, adjust REGSTACK to include REG at TOP.  */
842       gcc_assert (any_malformed_asm);
843       regstack->reg[++regstack->top] = REGNO (reg);
844       return;
845     }
846   gcc_assert (hard_regno >= FIRST_STACK_REG);
847 
848   other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
849   std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
850 
851   /* Find the previous insn involving stack regs, but don't pass a
852      block boundary.  */
853   i1 = NULL;
854   if (current_block && insn != BB_HEAD (current_block))
855     {
856       rtx_insn *tmp = PREV_INSN (insn);
857       rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
858       while (tmp != limit)
859 	{
860 	  if (LABEL_P (tmp)
861 	      || CALL_P (tmp)
862 	      || NOTE_INSN_BASIC_BLOCK_P (tmp)
863 	      || (NONJUMP_INSN_P (tmp)
864 		  && stack_regs_mentioned (tmp)))
865 	    {
866 	      i1 = tmp;
867 	      break;
868 	    }
869 	  tmp = PREV_INSN (tmp);
870 	}
871     }
872 
873   if (i1 != NULL_RTX
874       && (i1set = single_set (i1)) != NULL_RTX)
875     {
876       rtx i1src = *get_true_reg (&SET_SRC (i1set));
877       rtx i1dest = *get_true_reg (&SET_DEST (i1set));
878 
879       /* If the previous register stack push was from the reg we are to
880 	 swap with, omit the swap.  */
881 
882       if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
883 	  && REG_P (i1src)
884 	  && REGNO (i1src) == (unsigned) hard_regno - 1
885 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
886 	return;
887 
888       /* If the previous insn wrote to the reg we are to swap with,
889 	 omit the swap.  */
890 
891       if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
892 	  && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
893 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
894 	return;
895 
896       /* Instead of
897 	   fld a
898 	   fld b
899 	   fxch %st(1)
900 	 just use
901 	   fld b
902 	   fld a
903 	 if possible.  Similarly for fld1, fldz, fldpi etc. instead of any
904 	 of the loads or for float extension from memory.  */
905 
906       i1src = SET_SRC (i1set);
907       if (GET_CODE (i1src) == FLOAT_EXTEND)
908 	i1src = XEXP (i1src, 0);
909       if (REG_P (i1dest)
910 	  && REGNO (i1dest) == FIRST_STACK_REG
911 	  && (MEM_P (i1src) || GET_CODE (i1src) == CONST_DOUBLE)
912 	  && !side_effects_p (i1src)
913 	  && hard_regno == FIRST_STACK_REG + 1
914 	  && i1 != BB_HEAD (current_block))
915 	{
916 	  /* i1 is the last insn that involves stack regs before insn, and
917 	     is known to be a load without other side-effects, i.e. fld b
918 	     in the above comment.  */
919 	  rtx_insn *i2 = NULL;
920 	  rtx i2set;
921 	  rtx_insn *tmp = PREV_INSN (i1);
922 	  rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
923 	  /* Find the previous insn involving stack regs, but don't pass a
924 	     block boundary.  */
925 	  while (tmp != limit)
926 	    {
927 	      if (LABEL_P (tmp)
928 		  || CALL_P (tmp)
929 		  || NOTE_INSN_BASIC_BLOCK_P (tmp)
930 		  || (NONJUMP_INSN_P (tmp)
931 		      && stack_regs_mentioned (tmp)))
932 		{
933 		  i2 = tmp;
934 		  break;
935 		}
936 	      tmp = PREV_INSN (tmp);
937 	    }
938 	  if (i2 != NULL_RTX
939 	      && (i2set = single_set (i2)) != NULL_RTX)
940 	    {
941 	      rtx i2dest = *get_true_reg (&SET_DEST (i2set));
942 	      rtx i2src = SET_SRC (i2set);
943 	      if (GET_CODE (i2src) == FLOAT_EXTEND)
944 		i2src = XEXP (i2src, 0);
945 	      /* If the last two insns before insn that involve
946 		 stack regs are loads, where the latter (i1)
947 		 pushes onto the register stack and thus
948 		 moves the value from the first load (i2) from
949 		 %st to %st(1), consider swapping them.  */
950 	      if (REG_P (i2dest)
951 		  && REGNO (i2dest) == FIRST_STACK_REG
952 		  && (MEM_P (i2src) || GET_CODE (i2src) == CONST_DOUBLE)
953 		  /* Ensure i2 doesn't have other side-effects.  */
954 		  && !side_effects_p (i2src)
955 		  /* And that the two instructions can actually be
956 		     swapped, i.e. there shouldn't be any stores
957 		     in between i2 and i1 that might alias with
958 		     the i1 memory, and the memory address can't
959 		     use registers set in between i2 and i1.  */
960 		  && !modified_between_p (SET_SRC (i1set), i2, i1))
961 		{
962 		  /* Move i1 (fld b above) right before i2 (fld a
963 		     above.  */
964 		  remove_insn (i1);
965 		  SET_PREV_INSN (i1) = NULL_RTX;
966 		  SET_NEXT_INSN (i1) = NULL_RTX;
967 		  set_block_for_insn (i1, NULL);
968 		  emit_insn_before (i1, i2);
969 		  return;
970 		}
971 	    }
972 	}
973     }
974 
975   /* Avoid emitting the swap if this is the first register stack insn
976      of the current_block.  Instead update the current_block's stack_in
977      and let compensate edges take care of this for us.  */
978   if (current_block && starting_stack_p)
979     {
980       BLOCK_INFO (current_block)->stack_in = *regstack;
981       starting_stack_p = false;
982       return;
983     }
984 
985   machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
986   rtx op1 = FP_MODE_REG (hard_regno, raw_mode);
987   rtx op2 = FP_MODE_REG (FIRST_STACK_REG, raw_mode);
988   rtx swap_rtx
989     = gen_rtx_PARALLEL (VOIDmode,
990 			gen_rtvec (2, gen_rtx_SET (op1, op2),
991 				   gen_rtx_SET (op2, op1)));
992   if (i1)
993     emit_insn_after (swap_rtx, i1);
994   else if (current_block)
995     emit_insn_before (swap_rtx, BB_HEAD (current_block));
996   else
997     emit_insn_before (swap_rtx, insn);
998 }
999 
1000 /* Emit an insns before INSN to swap virtual register SRC1 with
1001    the top of stack and virtual register SRC2 with second stack
1002    slot. REGSTACK is the stack state before the swaps, and
1003    is updated to reflect the swaps.  A swap insn is represented as a
1004    PARALLEL of two patterns: each pattern moves one reg to the other.
1005 
1006    If SRC1 and/or SRC2 are already at the right place, no swap insn
1007    is emitted.  */
1008 
1009 static void
swap_to_top(rtx_insn * insn,stack_ptr regstack,rtx src1,rtx src2)1010 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
1011 {
1012   struct stack_def temp_stack;
1013   int regno, j, k;
1014 
1015   temp_stack = *regstack;
1016 
1017   /* Place operand 1 at the top of stack.  */
1018   regno = get_hard_regnum (&temp_stack, src1);
1019   gcc_assert (regno >= 0);
1020   if (regno != FIRST_STACK_REG)
1021     {
1022       k = temp_stack.top - (regno - FIRST_STACK_REG);
1023       j = temp_stack.top;
1024 
1025       std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1026     }
1027 
1028   /* Place operand 2 next on the stack.  */
1029   regno = get_hard_regnum (&temp_stack, src2);
1030   gcc_assert (regno >= 0);
1031   if (regno != FIRST_STACK_REG + 1)
1032     {
1033       k = temp_stack.top - (regno - FIRST_STACK_REG);
1034       j = temp_stack.top - 1;
1035 
1036       std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1037     }
1038 
1039   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1040 }
1041 
1042 /* Handle a move to or from a stack register in PAT, which is in INSN.
1043    REGSTACK is the current stack.  Return whether a control flow insn
1044    was deleted in the process.  */
1045 
1046 static bool
move_for_stack_reg(rtx_insn * insn,stack_ptr regstack,rtx pat)1047 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
1048 {
1049   rtx *psrc =  get_true_reg (&SET_SRC (pat));
1050   rtx *pdest = get_true_reg (&SET_DEST (pat));
1051   rtx src, dest;
1052   rtx note;
1053   bool control_flow_insn_deleted = false;
1054 
1055   src = *psrc; dest = *pdest;
1056 
1057   if (STACK_REG_P (src) && STACK_REG_P (dest))
1058     {
1059       /* Write from one stack reg to another.  If SRC dies here, then
1060 	 just change the register mapping and delete the insn.  */
1061 
1062       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1063       if (note)
1064 	{
1065 	  int i;
1066 
1067 	  /* If this is a no-op move, there must not be a REG_DEAD note.  */
1068 	  gcc_assert (REGNO (src) != REGNO (dest));
1069 
1070 	  for (i = regstack->top; i >= 0; i--)
1071 	    if (regstack->reg[i] == REGNO (src))
1072 	      break;
1073 
1074 	  /* The destination must be dead, or life analysis is borked.  */
1075 	  gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1076 
1077 	  /* If the source is not live, this is yet another case of
1078 	     uninitialized variables.  Load up a NaN instead.  */
1079 	  if (i < 0)
1080 	    return move_nan_for_stack_reg (insn, regstack, dest);
1081 
1082 	  /* It is possible that the dest is unused after this insn.
1083 	     If so, just pop the src.  */
1084 
1085 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1086 	    emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1087 	  else
1088 	    {
1089 	      regstack->reg[i] = REGNO (dest);
1090 	      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1091 	      CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1092 	    }
1093 
1094 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1095 	  delete_insn (insn);
1096 	  return control_flow_insn_deleted;
1097 	}
1098 
1099       /* The source reg does not die.  */
1100 
1101       /* If this appears to be a no-op move, delete it, or else it
1102 	 will confuse the machine description output patterns. But if
1103 	 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1104 	 for REG_UNUSED will not work for deleted insns.  */
1105 
1106       if (REGNO (src) == REGNO (dest))
1107 	{
1108 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1109 	    emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1110 
1111 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1112 	  delete_insn (insn);
1113 	  return control_flow_insn_deleted;
1114 	}
1115 
1116       /* The destination ought to be dead.  */
1117       if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1118 	gcc_assert (any_malformed_asm);
1119       else
1120 	{
1121 	  replace_reg (psrc, get_hard_regnum (regstack, src));
1122 
1123 	  regstack->reg[++regstack->top] = REGNO (dest);
1124 	  SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1125 	  replace_reg (pdest, FIRST_STACK_REG);
1126 	}
1127     }
1128   else if (STACK_REG_P (src))
1129     {
1130       /* Save from a stack reg to MEM, or possibly integer reg.  Since
1131 	 only top of stack may be saved, emit an exchange first if
1132 	 needs be.  */
1133 
1134       emit_swap_insn (insn, regstack, src);
1135 
1136       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1137       if (note)
1138 	{
1139 	  replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1140 	  regstack->top--;
1141 	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1142 	}
1143       else if ((GET_MODE (src) == XFmode)
1144 	       && regstack->top < REG_STACK_SIZE - 1)
1145 	{
1146 	  /* A 387 cannot write an XFmode value to a MEM without
1147 	     clobbering the source reg.  The output code can handle
1148 	     this by reading back the value from the MEM.
1149 	     But it is more efficient to use a temp register if one is
1150 	     available.  Push the source value here if the register
1151 	     stack is not full, and then write the value to memory via
1152 	     a pop.  */
1153 	  rtx push_rtx;
1154 	  rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1155 
1156 	  push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1157 	  emit_insn_before (push_rtx, insn);
1158 	  add_reg_note (insn, REG_DEAD, top_stack_reg);
1159 	}
1160 
1161       replace_reg (psrc, FIRST_STACK_REG);
1162     }
1163   else
1164     {
1165       rtx pat = PATTERN (insn);
1166 
1167       gcc_assert (STACK_REG_P (dest));
1168 
1169       /* Load from MEM, or possibly integer REG or constant, into the
1170 	 stack regs.  The actual target is always the top of the
1171 	 stack. The stack mapping is changed to reflect that DEST is
1172 	 now at top of stack.  */
1173 
1174       /* The destination ought to be dead.  However, there is a
1175 	 special case with i387 UNSPEC_TAN, where destination is live
1176 	 (an argument to fptan) but inherent load of 1.0 is modelled
1177 	 as a load from a constant.  */
1178       if (GET_CODE (pat) == PARALLEL
1179 	  && XVECLEN (pat, 0) == 2
1180 	  && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1181 	  && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1182 	  && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1183 	emit_swap_insn (insn, regstack, dest);
1184       else
1185 	gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG
1186 		    || any_malformed_asm);
1187 
1188       gcc_assert (regstack->top < REG_STACK_SIZE);
1189 
1190       regstack->reg[++regstack->top] = REGNO (dest);
1191       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1192       replace_reg (pdest, FIRST_STACK_REG);
1193     }
1194 
1195   return control_flow_insn_deleted;
1196 }
1197 
1198 /* A helper function which replaces INSN with a pattern that loads up
1199    a NaN into DEST, then invokes move_for_stack_reg.  */
1200 
1201 static bool
move_nan_for_stack_reg(rtx_insn * insn,stack_ptr regstack,rtx dest)1202 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1203 {
1204   rtx pat;
1205 
1206   dest = FP_MODE_REG (REGNO (dest), SFmode);
1207   pat = gen_rtx_SET (dest, not_a_num);
1208   PATTERN (insn) = pat;
1209   INSN_CODE (insn) = -1;
1210 
1211   return move_for_stack_reg (insn, regstack, pat);
1212 }
1213 
1214 /* Swap the condition on a branch, if there is one.  Return true if we
1215    found a condition to swap.  False if the condition was not used as
1216    such.  */
1217 
1218 static int
swap_rtx_condition_1(rtx pat)1219 swap_rtx_condition_1 (rtx pat)
1220 {
1221   const char *fmt;
1222   int i, r = 0;
1223 
1224   if (COMPARISON_P (pat))
1225     {
1226       PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1227       r = 1;
1228     }
1229   else
1230     {
1231       fmt = GET_RTX_FORMAT (GET_CODE (pat));
1232       for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1233 	{
1234 	  if (fmt[i] == 'E')
1235 	    {
1236 	      int j;
1237 
1238 	      for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1239 		r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1240 	    }
1241 	  else if (fmt[i] == 'e')
1242 	    r |= swap_rtx_condition_1 (XEXP (pat, i));
1243 	}
1244     }
1245 
1246   return r;
1247 }
1248 
1249 static int
swap_rtx_condition(rtx_insn * insn)1250 swap_rtx_condition (rtx_insn *insn)
1251 {
1252   rtx pat = PATTERN (insn);
1253 
1254   /* We're looking for a single set to cc0 or an HImode temporary.  */
1255 
1256   if (GET_CODE (pat) == SET
1257       && REG_P (SET_DEST (pat))
1258       && REGNO (SET_DEST (pat)) == FLAGS_REG)
1259     {
1260       insn = next_flags_user (insn);
1261       if (insn == NULL_RTX)
1262 	return 0;
1263       pat = PATTERN (insn);
1264     }
1265 
1266   /* See if this is, or ends in, a fnstsw.  If so, we're not doing anything
1267      with the cc value right now.  We may be able to search for one
1268      though.  */
1269 
1270   if (GET_CODE (pat) == SET
1271       && GET_CODE (SET_SRC (pat)) == UNSPEC
1272       && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1273     {
1274       rtx dest = SET_DEST (pat);
1275 
1276       /* Search forward looking for the first use of this value.
1277 	 Stop at block boundaries.  */
1278       while (insn != BB_END (current_block))
1279 	{
1280 	  insn = NEXT_INSN (insn);
1281 	  if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1282 	    break;
1283 	  if (CALL_P (insn))
1284 	    return 0;
1285 	}
1286 
1287       /* We haven't found it.  */
1288       if (insn == BB_END (current_block))
1289 	return 0;
1290 
1291       /* So we've found the insn using this value.  If it is anything
1292 	 other than sahf or the value does not die (meaning we'd have
1293 	 to search further), then we must give up.  */
1294       pat = PATTERN (insn);
1295       if (GET_CODE (pat) != SET
1296 	  || GET_CODE (SET_SRC (pat)) != UNSPEC
1297 	  || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1298 	  || ! dead_or_set_p (insn, dest))
1299 	return 0;
1300 
1301       /* Now we are prepared to handle this as a normal cc0 setter.  */
1302       insn = next_flags_user (insn);
1303       if (insn == NULL_RTX)
1304 	return 0;
1305       pat = PATTERN (insn);
1306     }
1307 
1308   if (swap_rtx_condition_1 (pat))
1309     {
1310       int fail = 0;
1311       INSN_CODE (insn) = -1;
1312       if (recog_memoized (insn) == -1)
1313 	fail = 1;
1314       /* In case the flags don't die here, recurse to try fix
1315          following user too.  */
1316       else if (! dead_or_set_p (insn, ix86_flags_rtx))
1317 	{
1318 	  insn = next_flags_user (insn);
1319 	  if (!insn || !swap_rtx_condition (insn))
1320 	    fail = 1;
1321 	}
1322       if (fail)
1323 	{
1324 	  swap_rtx_condition_1 (pat);
1325 	  return 0;
1326 	}
1327       return 1;
1328     }
1329   return 0;
1330 }
1331 
1332 /* Handle a comparison.  Special care needs to be taken to avoid
1333    causing comparisons that a 387 cannot do correctly, such as EQ.
1334 
1335    Also, a pop insn may need to be emitted.  The 387 does have an
1336    `fcompp' insn that can pop two regs, but it is sometimes too expensive
1337    to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1338    set up.  */
1339 
1340 static void
compare_for_stack_reg(rtx_insn * insn,stack_ptr regstack,rtx pat_src,bool can_pop_second_op)1341 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack,
1342 		       rtx pat_src, bool can_pop_second_op)
1343 {
1344   rtx *src1, *src2;
1345   rtx src1_note, src2_note;
1346 
1347   src1 = get_true_reg (&XEXP (pat_src, 0));
1348   src2 = get_true_reg (&XEXP (pat_src, 1));
1349 
1350   /* ??? If fxch turns out to be cheaper than fstp, give priority to
1351      registers that die in this insn - move those to stack top first.  */
1352   if ((! STACK_REG_P (*src1)
1353        || (STACK_REG_P (*src2)
1354 	   && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1355       && swap_rtx_condition (insn))
1356     {
1357       std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1358 
1359       src1 = get_true_reg (&XEXP (pat_src, 0));
1360       src2 = get_true_reg (&XEXP (pat_src, 1));
1361 
1362       INSN_CODE (insn) = -1;
1363     }
1364 
1365   /* We will fix any death note later.  */
1366 
1367   src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1368 
1369   if (STACK_REG_P (*src2))
1370     src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1371   else
1372     src2_note = NULL_RTX;
1373 
1374   emit_swap_insn (insn, regstack, *src1);
1375 
1376   replace_reg (src1, FIRST_STACK_REG);
1377 
1378   if (STACK_REG_P (*src2))
1379     replace_reg (src2, get_hard_regnum (regstack, *src2));
1380 
1381   if (src1_note)
1382     {
1383       if (*src2 == CONST0_RTX (GET_MODE (*src2)))
1384 	{
1385 	  /* This is `ftst' insn that can't pop register.  */
1386 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src1_note, 0)));
1387 	  emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1388 			 EMIT_AFTER);
1389 	}
1390       else
1391 	{
1392 	  pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1393 	  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1394 	}
1395     }
1396 
1397   /* If the second operand dies, handle that.  But if the operands are
1398      the same stack register, don't bother, because only one death is
1399      needed, and it was just handled.  */
1400 
1401   if (src2_note
1402       && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1403 	    && REGNO (*src1) == REGNO (*src2)))
1404     {
1405       /* As a special case, two regs may die in this insn if src2 is
1406 	 next to top of stack and the top of stack also dies.  Since
1407 	 we have already popped src1, "next to top of stack" is really
1408 	 at top (FIRST_STACK_REG) now.  */
1409 
1410       if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1411 	  && src1_note && can_pop_second_op)
1412 	{
1413 	  pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1414 	  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1415 	}
1416       else
1417 	{
1418 	  /* The 386 can only represent death of the first operand in
1419 	     the case handled above.  In all other cases, emit a separate
1420 	     pop and remove the death note from here.  */
1421 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1422 	  emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1423 			 EMIT_AFTER);
1424 	}
1425     }
1426 }
1427 
1428 /* Substitute hardware stack regs in debug insn INSN, using stack
1429    layout REGSTACK.  If we can't find a hardware stack reg for any of
1430    the REGs in it, reset the debug insn.  */
1431 
1432 static void
subst_all_stack_regs_in_debug_insn(rtx_insn * insn,struct stack_def * regstack)1433 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1434 {
1435   subrtx_ptr_iterator::array_type array;
1436   FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1437     {
1438       rtx *loc = *iter;
1439       rtx x = *loc;
1440       if (STACK_REG_P (x))
1441 	{
1442 	  int hard_regno = get_hard_regnum (regstack, x);
1443 
1444 	  /* If we can't find an active register, reset this debug insn.  */
1445 	  if (hard_regno == -1)
1446 	    {
1447 	      INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1448 	      return;
1449 	    }
1450 
1451 	  gcc_assert (hard_regno >= FIRST_STACK_REG);
1452 	  replace_reg (loc, hard_regno);
1453 	  iter.skip_subrtxes ();
1454 	}
1455     }
1456 }
1457 
1458 /* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1459    is the current register layout.  Return whether a control flow insn
1460    was deleted in the process.  */
1461 
1462 static bool
subst_stack_regs_pat(rtx_insn * insn,stack_ptr regstack,rtx pat)1463 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1464 {
1465   rtx *dest, *src;
1466   bool control_flow_insn_deleted = false;
1467 
1468   switch (GET_CODE (pat))
1469     {
1470     case USE:
1471       /* Deaths in USE insns can happen in non optimizing compilation.
1472 	 Handle them by popping the dying register.  */
1473       src = get_true_reg (&XEXP (pat, 0));
1474       if (STACK_REG_P (*src)
1475 	  && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1476 	{
1477 	  /* USEs are ignored for liveness information so USEs of dead
1478 	     register might happen.  */
1479           if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1480 	    emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1481 	  return control_flow_insn_deleted;
1482 	}
1483       /* Uninitialized USE might happen for functions returning uninitialized
1484          value.  We will properly initialize the USE on the edge to EXIT_BLOCK,
1485 	 so it is safe to ignore the use here. This is consistent with behavior
1486 	 of dataflow analyzer that ignores USE too.  (This also imply that
1487 	 forcibly initializing the register to NaN here would lead to ICE later,
1488 	 since the REG_DEAD notes are not issued.)  */
1489       break;
1490 
1491     case VAR_LOCATION:
1492       gcc_unreachable ();
1493 
1494     case CLOBBER:
1495       {
1496 	rtx note;
1497 
1498 	dest = get_true_reg (&XEXP (pat, 0));
1499 	if (STACK_REG_P (*dest))
1500 	  {
1501 	    note = find_reg_note (insn, REG_DEAD, *dest);
1502 
1503 	    if (pat != PATTERN (insn))
1504 	      {
1505 		/* The fix_truncdi_1 pattern wants to be able to
1506 		   allocate its own scratch register.  It does this by
1507 		   clobbering an fp reg so that it is assured of an
1508 		   empty reg-stack register.  If the register is live,
1509 		   kill it now.  Remove the DEAD/UNUSED note so we
1510 		   don't try to kill it later too.
1511 
1512 		   In reality the UNUSED note can be absent in some
1513 		   complicated cases when the register is reused for
1514 		   partially set variable.  */
1515 
1516 		if (note)
1517 		  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1518 		else
1519 		  note = find_reg_note (insn, REG_UNUSED, *dest);
1520 		if (note)
1521 		  remove_note (insn, note);
1522 		replace_reg (dest, FIRST_STACK_REG + 1);
1523 	      }
1524 	    else
1525 	      {
1526 		/* A top-level clobber with no REG_DEAD, and no hard-regnum
1527 		   indicates an uninitialized value.  Because reload removed
1528 		   all other clobbers, this must be due to a function
1529 		   returning without a value.  Load up a NaN.  */
1530 
1531 		if (!note)
1532 		  {
1533 		    rtx t = *dest;
1534 		    if (COMPLEX_MODE_P (GET_MODE (t)))
1535 		      {
1536 			rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1537 			if (get_hard_regnum (regstack, u) == -1)
1538 			  {
1539 			    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1540 			    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1541 			    control_flow_insn_deleted
1542 			      |= move_nan_for_stack_reg (insn2, regstack, u);
1543 			  }
1544 		      }
1545 		    if (get_hard_regnum (regstack, t) == -1)
1546 		      control_flow_insn_deleted
1547 			|= move_nan_for_stack_reg (insn, regstack, t);
1548 		  }
1549 	      }
1550 	  }
1551 	break;
1552       }
1553 
1554     case SET:
1555       {
1556 	rtx *src1 = (rtx *) 0, *src2;
1557 	rtx src1_note, src2_note;
1558 	rtx pat_src;
1559 
1560 	dest = get_true_reg (&SET_DEST (pat));
1561 	src  = get_true_reg (&SET_SRC (pat));
1562 	pat_src = SET_SRC (pat);
1563 
1564 	/* See if this is a `movM' pattern, and handle elsewhere if so.  */
1565 	if (STACK_REG_P (*src)
1566 	    || (STACK_REG_P (*dest)
1567 		&& (REG_P (*src) || MEM_P (*src)
1568 		    || CONST_DOUBLE_P (*src))))
1569 	  {
1570 	    control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1571 	    break;
1572 	  }
1573 
1574 	switch (GET_CODE (pat_src))
1575 	  {
1576 	  case CALL:
1577 	    {
1578 	      int count;
1579 	      for (count = REG_NREGS (*dest); --count >= 0;)
1580 		{
1581 		  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1582 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1583 		}
1584 	    }
1585 	    replace_reg (dest, FIRST_STACK_REG);
1586 	    break;
1587 
1588 	  case REG:
1589 	    /* This is a `tstM2' case.  */
1590 	    gcc_assert (*dest == cc0_rtx);
1591 	    src1 = src;
1592 
1593 	    /* Fall through.  */
1594 
1595 	  case FLOAT_TRUNCATE:
1596 	  case SQRT:
1597 	  case ABS:
1598 	  case NEG:
1599 	    /* These insns only operate on the top of the stack. DEST might
1600 	       be cc0_rtx if we're processing a tstM pattern. Also, it's
1601 	       possible that the tstM case results in a REG_DEAD note on the
1602 	       source.  */
1603 
1604 	    if (src1 == 0)
1605 	      src1 = get_true_reg (&XEXP (pat_src, 0));
1606 
1607 	    emit_swap_insn (insn, regstack, *src1);
1608 
1609 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1610 
1611 	    if (STACK_REG_P (*dest))
1612 	      replace_reg (dest, FIRST_STACK_REG);
1613 
1614 	    if (src1_note)
1615 	      {
1616 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1617 		regstack->top--;
1618 		CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1619 	      }
1620 
1621 	    replace_reg (src1, FIRST_STACK_REG);
1622 	    break;
1623 
1624 	  case MINUS:
1625 	  case DIV:
1626 	    /* On i386, reversed forms of subM3 and divM3 exist for
1627 	       MODE_FLOAT, so the same code that works for addM3 and mulM3
1628 	       can be used.  */
1629 	  case MULT:
1630 	  case PLUS:
1631 	    /* These insns can accept the top of stack as a destination
1632 	       from a stack reg or mem, or can use the top of stack as a
1633 	       source and some other stack register (possibly top of stack)
1634 	       as a destination.  */
1635 
1636 	    src1 = get_true_reg (&XEXP (pat_src, 0));
1637 	    src2 = get_true_reg (&XEXP (pat_src, 1));
1638 
1639 	    /* We will fix any death note later.  */
1640 
1641 	    if (STACK_REG_P (*src1))
1642 	      src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1643 	    else
1644 	      src1_note = NULL_RTX;
1645 	    if (STACK_REG_P (*src2))
1646 	      src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1647 	    else
1648 	      src2_note = NULL_RTX;
1649 
1650 	    /* If either operand is not a stack register, then the dest
1651 	       must be top of stack.  */
1652 
1653 	    if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1654 	      emit_swap_insn (insn, regstack, *dest);
1655 	    else
1656 	      {
1657 		/* Both operands are REG.  If neither operand is already
1658 		   at the top of stack, choose to make the one that is the
1659 		   dest the new top of stack.  */
1660 
1661 		int src1_hard_regnum, src2_hard_regnum;
1662 
1663 		src1_hard_regnum = get_hard_regnum (regstack, *src1);
1664 		src2_hard_regnum = get_hard_regnum (regstack, *src2);
1665 
1666 		/* If the source is not live, this is yet another case of
1667 		   uninitialized variables.  Load up a NaN instead.  */
1668 		if (src1_hard_regnum == -1)
1669 		  {
1670 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1671 		    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1672 		    control_flow_insn_deleted
1673 		      |= move_nan_for_stack_reg (insn2, regstack, *src1);
1674 		  }
1675 		if (src2_hard_regnum == -1)
1676 		  {
1677 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1678 		    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1679 		    control_flow_insn_deleted
1680 		      |= move_nan_for_stack_reg (insn2, regstack, *src2);
1681 		  }
1682 
1683 		if (src1_hard_regnum != FIRST_STACK_REG
1684 		    && src2_hard_regnum != FIRST_STACK_REG)
1685 		  emit_swap_insn (insn, regstack, *dest);
1686 	      }
1687 
1688 	    if (STACK_REG_P (*src1))
1689 	      replace_reg (src1, get_hard_regnum (regstack, *src1));
1690 	    if (STACK_REG_P (*src2))
1691 	      replace_reg (src2, get_hard_regnum (regstack, *src2));
1692 
1693 	    if (src1_note)
1694 	      {
1695 		rtx src1_reg = XEXP (src1_note, 0);
1696 
1697 		/* If the register that dies is at the top of stack, then
1698 		   the destination is somewhere else - merely substitute it.
1699 		   But if the reg that dies is not at top of stack, then
1700 		   move the top of stack to the dead reg, as though we had
1701 		   done the insn and then a store-with-pop.  */
1702 
1703 		if (REGNO (src1_reg) == regstack->reg[regstack->top])
1704 		  {
1705 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1706 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1707 		  }
1708 		else
1709 		  {
1710 		    int regno = get_hard_regnum (regstack, src1_reg);
1711 
1712 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1713 		    replace_reg (dest, regno);
1714 
1715 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1716 		      = regstack->reg[regstack->top];
1717 		  }
1718 
1719 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1720 				    REGNO (XEXP (src1_note, 0)));
1721 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1722 		regstack->top--;
1723 	      }
1724 	    else if (src2_note)
1725 	      {
1726 		rtx src2_reg = XEXP (src2_note, 0);
1727 		if (REGNO (src2_reg) == regstack->reg[regstack->top])
1728 		  {
1729 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1730 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1731 		  }
1732 		else
1733 		  {
1734 		    int regno = get_hard_regnum (regstack, src2_reg);
1735 
1736 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1737 		    replace_reg (dest, regno);
1738 
1739 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1740 		      = regstack->reg[regstack->top];
1741 		  }
1742 
1743 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1744 				    REGNO (XEXP (src2_note, 0)));
1745 		replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1746 		regstack->top--;
1747 	      }
1748 	    else
1749 	      {
1750 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1751 		replace_reg (dest, get_hard_regnum (regstack, *dest));
1752 	      }
1753 
1754 	    /* Keep operand 1 matching with destination.  */
1755 	    if (COMMUTATIVE_ARITH_P (pat_src)
1756 		&& REG_P (*src1) && REG_P (*src2)
1757 		&& REGNO (*src1) != REGNO (*dest))
1758 	     {
1759 		int tmp = REGNO (*src1);
1760 		replace_reg (src1, REGNO (*src2));
1761 		replace_reg (src2, tmp);
1762 	     }
1763 	    break;
1764 
1765 	  case UNSPEC:
1766 	    switch (XINT (pat_src, 1))
1767 	      {
1768 	      case UNSPEC_FIST:
1769 	      case UNSPEC_FIST_ATOMIC:
1770 
1771 	      case UNSPEC_FIST_FLOOR:
1772 	      case UNSPEC_FIST_CEIL:
1773 
1774 		/* These insns only operate on the top of the stack.  */
1775 
1776 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1777 		emit_swap_insn (insn, regstack, *src1);
1778 
1779 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1780 
1781 		if (STACK_REG_P (*dest))
1782 		  replace_reg (dest, FIRST_STACK_REG);
1783 
1784 		if (src1_note)
1785 		  {
1786 		    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1787 		    regstack->top--;
1788 		    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1789 		  }
1790 
1791 		replace_reg (src1, FIRST_STACK_REG);
1792 		break;
1793 
1794 	      case UNSPEC_FXAM:
1795 
1796 		/* This insn only operate on the top of the stack.  */
1797 
1798 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1799 		emit_swap_insn (insn, regstack, *src1);
1800 
1801 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1802 
1803 		replace_reg (src1, FIRST_STACK_REG);
1804 
1805 		if (src1_note)
1806 		  {
1807 		    remove_regno_note (insn, REG_DEAD,
1808 				       REGNO (XEXP (src1_note, 0)));
1809 		    emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1810 				   EMIT_AFTER);
1811 		  }
1812 
1813 		break;
1814 
1815 	      case UNSPEC_SIN:
1816 	      case UNSPEC_COS:
1817 	      case UNSPEC_FRNDINT:
1818 	      case UNSPEC_F2XM1:
1819 
1820 	      case UNSPEC_FRNDINT_ROUNDEVEN:
1821 	      case UNSPEC_FRNDINT_FLOOR:
1822 	      case UNSPEC_FRNDINT_CEIL:
1823 	      case UNSPEC_FRNDINT_TRUNC:
1824 
1825 		/* Above insns operate on the top of the stack.  */
1826 
1827 	      case UNSPEC_SINCOS_COS:
1828 	      case UNSPEC_XTRACT_FRACT:
1829 
1830 		/* Above insns operate on the top two stack slots,
1831 		   first part of one input, double output insn.  */
1832 
1833 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1834 
1835 		emit_swap_insn (insn, regstack, *src1);
1836 
1837 		/* Input should never die, it is replaced with output.  */
1838 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1839 		gcc_assert (!src1_note);
1840 
1841 		if (STACK_REG_P (*dest))
1842 		  replace_reg (dest, FIRST_STACK_REG);
1843 
1844 		replace_reg (src1, FIRST_STACK_REG);
1845 		break;
1846 
1847 	      case UNSPEC_SINCOS_SIN:
1848 	      case UNSPEC_XTRACT_EXP:
1849 
1850 		/* These insns operate on the top two stack slots,
1851 		   second part of one input, double output insn.  */
1852 
1853 		regstack->top++;
1854 		/* FALLTHRU */
1855 
1856 	      case UNSPEC_TAN:
1857 
1858 		/* For UNSPEC_TAN, regstack->top is already increased
1859 		   by inherent load of constant 1.0.  */
1860 
1861 		/* Output value is generated in the second stack slot.
1862 		   Move current value from second slot to the top.  */
1863 		regstack->reg[regstack->top]
1864 		  = regstack->reg[regstack->top - 1];
1865 
1866 		gcc_assert (STACK_REG_P (*dest));
1867 
1868 		regstack->reg[regstack->top - 1] = REGNO (*dest);
1869 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1870 		replace_reg (dest, FIRST_STACK_REG + 1);
1871 
1872 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1873 
1874 		replace_reg (src1, FIRST_STACK_REG);
1875 		break;
1876 
1877 	      case UNSPEC_FPATAN:
1878 	      case UNSPEC_FYL2X:
1879 	      case UNSPEC_FYL2XP1:
1880 		/* These insns operate on the top two stack slots.  */
1881 
1882 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1883 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1884 
1885 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1886 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1887 
1888 		swap_to_top (insn, regstack, *src1, *src2);
1889 
1890 		replace_reg (src1, FIRST_STACK_REG);
1891 		replace_reg (src2, FIRST_STACK_REG + 1);
1892 
1893 		if (src1_note)
1894 		  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1895 		if (src2_note)
1896 		  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1897 
1898 		/* Pop both input operands from the stack.  */
1899 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1900 				    regstack->reg[regstack->top]);
1901 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1902 				    regstack->reg[regstack->top - 1]);
1903 		regstack->top -= 2;
1904 
1905 		/* Push the result back onto the stack.  */
1906 		regstack->reg[++regstack->top] = REGNO (*dest);
1907 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1908 		replace_reg (dest, FIRST_STACK_REG);
1909 		break;
1910 
1911 	      case UNSPEC_FSCALE_FRACT:
1912 	      case UNSPEC_FPREM_F:
1913 	      case UNSPEC_FPREM1_F:
1914 		/* These insns operate on the top two stack slots,
1915 		   first part of double input, double output insn.  */
1916 
1917 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1918 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1919 
1920 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1921 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1922 
1923 		/* Inputs should never die, they are
1924 		   replaced with outputs.  */
1925 		gcc_assert (!src1_note);
1926 		gcc_assert (!src2_note);
1927 
1928 		swap_to_top (insn, regstack, *src1, *src2);
1929 
1930 		/* Push the result back onto stack. Empty stack slot
1931 		   will be filled in second part of insn.  */
1932 		if (STACK_REG_P (*dest))
1933 		  {
1934 		    regstack->reg[regstack->top] = REGNO (*dest);
1935 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1936 		    replace_reg (dest, FIRST_STACK_REG);
1937 		  }
1938 
1939 		replace_reg (src1, FIRST_STACK_REG);
1940 		replace_reg (src2, FIRST_STACK_REG + 1);
1941 		break;
1942 
1943 	      case UNSPEC_FSCALE_EXP:
1944 	      case UNSPEC_FPREM_U:
1945 	      case UNSPEC_FPREM1_U:
1946 		/* These insns operate on the top two stack slots,
1947 		   second part of double input, double output insn.  */
1948 
1949 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1950 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1951 
1952 		/* Push the result back onto stack. Fill empty slot from
1953 		   first part of insn and fix top of stack pointer.  */
1954 		if (STACK_REG_P (*dest))
1955 		  {
1956 		    regstack->reg[regstack->top - 1] = REGNO (*dest);
1957 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1958 		    replace_reg (dest, FIRST_STACK_REG + 1);
1959 		  }
1960 
1961 		replace_reg (src1, FIRST_STACK_REG);
1962 		replace_reg (src2, FIRST_STACK_REG + 1);
1963 		break;
1964 
1965 	      case UNSPEC_C2_FLAG:
1966 		/* This insn operates on the top two stack slots,
1967 		   third part of C2 setting double input insn.  */
1968 
1969 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1970 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1971 
1972 		replace_reg (src1, FIRST_STACK_REG);
1973 		replace_reg (src2, FIRST_STACK_REG + 1);
1974 		break;
1975 
1976 	      case UNSPEC_FNSTSW:
1977 		/* Combined fcomp+fnstsw generated for doing well with
1978 		   CSE.  When optimizing this would have been broken
1979 		   up before now.  */
1980 
1981 		pat_src = XVECEXP (pat_src, 0, 0);
1982 		if (GET_CODE (pat_src) == COMPARE)
1983 		  goto do_compare;
1984 
1985 		/* Fall through.  */
1986 
1987 	      case UNSPEC_NOTRAP:
1988 
1989 		pat_src = XVECEXP (pat_src, 0, 0);
1990 		gcc_assert (GET_CODE (pat_src) == COMPARE);
1991 		goto do_compare;
1992 
1993 	      default:
1994 		gcc_unreachable ();
1995 	      }
1996 	    break;
1997 
1998 	  case COMPARE:
1999 	  do_compare:
2000 	    /* `fcomi' insn can't pop two regs.  */
2001 	    compare_for_stack_reg (insn, regstack, pat_src,
2002 				   REGNO (*dest) != FLAGS_REG);
2003 	    break;
2004 
2005 	  case IF_THEN_ELSE:
2006 	    /* This insn requires the top of stack to be the destination.  */
2007 
2008 	    src1 = get_true_reg (&XEXP (pat_src, 1));
2009 	    src2 = get_true_reg (&XEXP (pat_src, 2));
2010 
2011 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2012 	    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
2013 
2014 	    /* If the comparison operator is an FP comparison operator,
2015 	       it is handled correctly by compare_for_stack_reg () who
2016 	       will move the destination to the top of stack. But if the
2017 	       comparison operator is not an FP comparison operator, we
2018 	       have to handle it here.  */
2019 	    if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
2020 		&& REGNO (*dest) != regstack->reg[regstack->top])
2021 	      {
2022 		/* In case one of operands is the top of stack and the operands
2023 		   dies, it is safe to make it the destination operand by
2024 		   reversing the direction of cmove and avoid fxch.  */
2025 		if ((REGNO (*src1) == regstack->reg[regstack->top]
2026 		     && src1_note)
2027 		    || (REGNO (*src2) == regstack->reg[regstack->top]
2028 			&& src2_note))
2029 		  {
2030 		    int idx1 = (get_hard_regnum (regstack, *src1)
2031 				- FIRST_STACK_REG);
2032 		    int idx2 = (get_hard_regnum (regstack, *src2)
2033 				- FIRST_STACK_REG);
2034 
2035 		    /* Make reg-stack believe that the operands are already
2036 		       swapped on the stack */
2037 		    regstack->reg[regstack->top - idx1] = REGNO (*src2);
2038 		    regstack->reg[regstack->top - idx2] = REGNO (*src1);
2039 
2040 		    /* Reverse condition to compensate the operand swap.
2041 		       i386 do have comparison always reversible.  */
2042 		    PUT_CODE (XEXP (pat_src, 0),
2043 			      reversed_comparison_code (XEXP (pat_src, 0), insn));
2044 		  }
2045 		else
2046 	          emit_swap_insn (insn, regstack, *dest);
2047 	      }
2048 
2049 	    {
2050 	      rtx src_note [3];
2051 	      int i;
2052 
2053 	      src_note[0] = 0;
2054 	      src_note[1] = src1_note;
2055 	      src_note[2] = src2_note;
2056 
2057 	      if (STACK_REG_P (*src1))
2058 		replace_reg (src1, get_hard_regnum (regstack, *src1));
2059 	      if (STACK_REG_P (*src2))
2060 		replace_reg (src2, get_hard_regnum (regstack, *src2));
2061 
2062 	      for (i = 1; i <= 2; i++)
2063 		if (src_note [i])
2064 		  {
2065 		    int regno = REGNO (XEXP (src_note[i], 0));
2066 
2067 		    /* If the register that dies is not at the top of
2068 		       stack, then move the top of stack to the dead reg.
2069 		       Top of stack should never die, as it is the
2070 		       destination.  */
2071 		    gcc_assert (regno != regstack->reg[regstack->top]);
2072 		    remove_regno_note (insn, REG_DEAD, regno);
2073 		    emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
2074 				    EMIT_AFTER);
2075 		  }
2076 	    }
2077 
2078 	    /* Make dest the top of stack.  Add dest to regstack if
2079 	       not present.  */
2080 	    if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2081 	      regstack->reg[++regstack->top] = REGNO (*dest);
2082 	    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2083 	    replace_reg (dest, FIRST_STACK_REG);
2084 	    break;
2085 
2086 	  default:
2087 	    gcc_unreachable ();
2088 	  }
2089 	break;
2090       }
2091 
2092     default:
2093       break;
2094     }
2095 
2096   return control_flow_insn_deleted;
2097 }
2098 
2099 /* Substitute hard regnums for any stack regs in INSN, which has
2100    N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
2101    before the insn, and is updated with changes made here.
2102 
2103    There are several requirements and assumptions about the use of
2104    stack-like regs in asm statements.  These rules are enforced by
2105    record_asm_stack_regs; see comments there for details.  Any
2106    asm_operands left in the RTL at this point may be assume to meet the
2107    requirements, since record_asm_stack_regs removes any problem asm.  */
2108 
2109 static void
subst_asm_stack_regs(rtx_insn * insn,stack_ptr regstack)2110 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2111 {
2112   rtx body = PATTERN (insn);
2113 
2114   rtx *note_reg;		/* Array of note contents */
2115   rtx **note_loc;		/* Address of REG field of each note */
2116   enum reg_note *note_kind;	/* The type of each note */
2117 
2118   rtx *clobber_reg = 0;
2119   rtx **clobber_loc = 0;
2120 
2121   struct stack_def temp_stack;
2122   int n_notes;
2123   int n_clobbers;
2124   rtx note;
2125   int i;
2126   int n_inputs, n_outputs;
2127 
2128   if (! check_asm_stack_operands (insn))
2129     return;
2130 
2131   /* Find out what the constraints required.  If no constraint
2132      alternative matches, that is a compiler bug: we should have caught
2133      such an insn in check_asm_stack_operands.  */
2134   extract_constrain_insn (insn);
2135 
2136   preprocess_constraints (insn);
2137   const operand_alternative *op_alt = which_op_alt ();
2138 
2139   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2140 
2141   /* Strip SUBREGs here to make the following code simpler.  */
2142   for (i = 0; i < recog_data.n_operands; i++)
2143     if (GET_CODE (recog_data.operand[i]) == SUBREG
2144 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
2145       {
2146 	recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2147 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2148       }
2149 
2150   /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
2151 
2152   for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2153     i++;
2154 
2155   note_reg = XALLOCAVEC (rtx, i);
2156   note_loc = XALLOCAVEC (rtx *, i);
2157   note_kind = XALLOCAVEC (enum reg_note, i);
2158 
2159   n_notes = 0;
2160   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2161     {
2162       if (GET_CODE (note) != EXPR_LIST)
2163 	continue;
2164       rtx reg = XEXP (note, 0);
2165       rtx *loc = & XEXP (note, 0);
2166 
2167       if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2168 	{
2169 	  loc = & SUBREG_REG (reg);
2170 	  reg = SUBREG_REG (reg);
2171 	}
2172 
2173       if (STACK_REG_P (reg)
2174 	  && (REG_NOTE_KIND (note) == REG_DEAD
2175 	      || REG_NOTE_KIND (note) == REG_UNUSED))
2176 	{
2177 	  note_reg[n_notes] = reg;
2178 	  note_loc[n_notes] = loc;
2179 	  note_kind[n_notes] = REG_NOTE_KIND (note);
2180 	  n_notes++;
2181 	}
2182     }
2183 
2184   /* Set up CLOBBER_REG and CLOBBER_LOC.  */
2185 
2186   n_clobbers = 0;
2187 
2188   if (GET_CODE (body) == PARALLEL)
2189     {
2190       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2191       clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2192 
2193       for (i = 0; i < XVECLEN (body, 0); i++)
2194 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2195 	  {
2196 	    rtx clobber = XVECEXP (body, 0, i);
2197 	    rtx reg = XEXP (clobber, 0);
2198 	    rtx *loc = & XEXP (clobber, 0);
2199 
2200 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2201 	      {
2202 		loc = & SUBREG_REG (reg);
2203 		reg = SUBREG_REG (reg);
2204 	      }
2205 
2206 	    if (STACK_REG_P (reg))
2207 	      {
2208 		clobber_reg[n_clobbers] = reg;
2209 		clobber_loc[n_clobbers] = loc;
2210 		n_clobbers++;
2211 	      }
2212 	  }
2213     }
2214 
2215   temp_stack = *regstack;
2216 
2217   /* Put the input regs into the desired place in TEMP_STACK.  */
2218 
2219   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2220     if (STACK_REG_P (recog_data.operand[i])
2221 	&& reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2222 	&& op_alt[i].cl != FLOAT_REGS)
2223       {
2224 	/* If an operand needs to be in a particular reg in
2225 	   FLOAT_REGS, the constraint was either 't' or 'u'.  Since
2226 	   these constraints are for single register classes, and
2227 	   reload guaranteed that operand[i] is already in that class,
2228 	   we can just use REGNO (recog_data.operand[i]) to know which
2229 	   actual reg this operand needs to be in.  */
2230 
2231 	int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2232 
2233 	gcc_assert (regno >= 0);
2234 
2235 	if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2236 	  {
2237 	    /* recog_data.operand[i] is not in the right place.  Find
2238 	       it and swap it with whatever is already in I's place.
2239 	       K is where recog_data.operand[i] is now.  J is where it
2240 	       should be.  */
2241 	    int j, k;
2242 
2243 	    k = temp_stack.top - (regno - FIRST_STACK_REG);
2244 	    j = (temp_stack.top
2245 		 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2246 
2247 	    std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2248 	  }
2249       }
2250 
2251   /* Emit insns before INSN to make sure the reg-stack is in the right
2252      order.  */
2253 
2254   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2255 
2256   /* Make the needed input register substitutions.  Do death notes and
2257      clobbers too, because these are for inputs, not outputs.  */
2258 
2259   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2260     if (STACK_REG_P (recog_data.operand[i]))
2261       {
2262 	int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2263 
2264 	gcc_assert (regnum >= 0);
2265 
2266 	replace_reg (recog_data.operand_loc[i], regnum);
2267       }
2268 
2269   for (i = 0; i < n_notes; i++)
2270     if (note_kind[i] == REG_DEAD)
2271       {
2272 	int regnum = get_hard_regnum (regstack, note_reg[i]);
2273 
2274 	gcc_assert (regnum >= 0);
2275 
2276 	replace_reg (note_loc[i], regnum);
2277       }
2278 
2279   for (i = 0; i < n_clobbers; i++)
2280     {
2281       /* It's OK for a CLOBBER to reference a reg that is not live.
2282          Don't try to replace it in that case.  */
2283       int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2284 
2285       if (regnum >= 0)
2286 	replace_reg (clobber_loc[i], regnum);
2287     }
2288 
2289   /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2290 
2291   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2292     if (STACK_REG_P (recog_data.operand[i]))
2293       {
2294 	/* An input reg is implicitly popped if it is tied to an
2295 	   output, or if there is a CLOBBER for it.  */
2296 	int j;
2297 
2298 	for (j = 0; j < n_clobbers; j++)
2299 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2300 	    break;
2301 
2302 	if (j < n_clobbers || op_alt[i].matches >= 0)
2303 	  {
2304 	    /* recog_data.operand[i] might not be at the top of stack.
2305 	       But that's OK, because all we need to do is pop the
2306 	       right number of regs off of the top of the reg-stack.
2307 	       record_asm_stack_regs guaranteed that all implicitly
2308 	       popped regs were grouped at the top of the reg-stack.  */
2309 
2310 	    CLEAR_HARD_REG_BIT (regstack->reg_set,
2311 				regstack->reg[regstack->top]);
2312 	    regstack->top--;
2313 	  }
2314       }
2315 
2316   /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2317      Note that there isn't any need to substitute register numbers.
2318      ???  Explain why this is true.  */
2319 
2320   for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2321     {
2322       /* See if there is an output for this hard reg.  */
2323       int j;
2324 
2325       for (j = 0; j < n_outputs; j++)
2326 	if (STACK_REG_P (recog_data.operand[j])
2327 	    && REGNO (recog_data.operand[j]) == (unsigned) i)
2328 	  {
2329 	    regstack->reg[++regstack->top] = i;
2330 	    SET_HARD_REG_BIT (regstack->reg_set, i);
2331 	    break;
2332 	  }
2333     }
2334 
2335   /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2336      input that the asm didn't implicitly pop.  If the asm didn't
2337      implicitly pop an input reg, that reg will still be live.
2338 
2339      Note that we can't use find_regno_note here: the register numbers
2340      in the death notes have already been substituted.  */
2341 
2342   for (i = 0; i < n_outputs; i++)
2343     if (STACK_REG_P (recog_data.operand[i]))
2344       {
2345 	int j;
2346 
2347 	for (j = 0; j < n_notes; j++)
2348 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2349 	      && note_kind[j] == REG_UNUSED)
2350 	    {
2351 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2352 				    EMIT_AFTER);
2353 	      break;
2354 	    }
2355       }
2356 
2357   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2358     if (STACK_REG_P (recog_data.operand[i]))
2359       {
2360 	int j;
2361 
2362 	for (j = 0; j < n_notes; j++)
2363 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2364 	      && note_kind[j] == REG_DEAD
2365 	      && TEST_HARD_REG_BIT (regstack->reg_set,
2366 				    REGNO (recog_data.operand[i])))
2367 	    {
2368 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2369 				    EMIT_AFTER);
2370 	      break;
2371 	    }
2372       }
2373 }
2374 
2375 /* Substitute stack hard reg numbers for stack virtual registers in
2376    INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2377    current stack content.  Insns may be emitted as needed to arrange the
2378    stack for the 387 based on the contents of the insn.  Return whether
2379    a control flow insn was deleted in the process.  */
2380 
2381 static bool
subst_stack_regs(rtx_insn * insn,stack_ptr regstack)2382 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2383 {
2384   rtx *note_link, note;
2385   bool control_flow_insn_deleted = false;
2386   int i;
2387 
2388   if (CALL_P (insn))
2389     {
2390       int top = regstack->top;
2391 
2392       /* If there are any floating point parameters to be passed in
2393 	 registers for this call, make sure they are in the right
2394 	 order.  */
2395 
2396       if (top >= 0)
2397 	{
2398 	  straighten_stack (insn, regstack);
2399 
2400 	  /* Now mark the arguments as dead after the call.  */
2401 
2402 	  while (regstack->top >= 0)
2403 	    {
2404 	      CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2405 	      regstack->top--;
2406 	    }
2407 	}
2408     }
2409 
2410   /* Do the actual substitution if any stack regs are mentioned.
2411      Since we only record whether entire insn mentions stack regs, and
2412      subst_stack_regs_pat only works for patterns that contain stack regs,
2413      we must check each pattern in a parallel here.  A call_value_pop could
2414      fail otherwise.  */
2415 
2416   if (stack_regs_mentioned (insn))
2417     {
2418       int n_operands = asm_noperands (PATTERN (insn));
2419       if (n_operands >= 0)
2420 	{
2421 	  /* This insn is an `asm' with operands.  Decode the operands,
2422 	     decide how many are inputs, and do register substitution.
2423 	     Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2424 
2425 	  subst_asm_stack_regs (insn, regstack);
2426 	  return control_flow_insn_deleted;
2427 	}
2428 
2429       if (GET_CODE (PATTERN (insn)) == PARALLEL)
2430 	for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2431 	  {
2432 	    if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2433 	      {
2434 	        if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2435 	           XVECEXP (PATTERN (insn), 0, i)
2436 		     = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2437 		control_flow_insn_deleted
2438 		  |= subst_stack_regs_pat (insn, regstack,
2439 					   XVECEXP (PATTERN (insn), 0, i));
2440 	      }
2441 	  }
2442       else
2443 	control_flow_insn_deleted
2444 	  |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2445     }
2446 
2447   /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2448      REG_UNUSED will already have been dealt with, so just return.  */
2449 
2450   if (NOTE_P (insn) || insn->deleted ())
2451     return control_flow_insn_deleted;
2452 
2453   /* If this a noreturn call, we can't insert pop insns after it.
2454      Instead, reset the stack state to empty.  */
2455   if (CALL_P (insn)
2456       && find_reg_note (insn, REG_NORETURN, NULL))
2457     {
2458       regstack->top = -1;
2459       CLEAR_HARD_REG_SET (regstack->reg_set);
2460       return control_flow_insn_deleted;
2461     }
2462 
2463   /* If there is a REG_UNUSED note on a stack register on this insn,
2464      the indicated reg must be popped.  The REG_UNUSED note is removed,
2465      since the form of the newly emitted pop insn references the reg,
2466      making it no longer `unset'.  */
2467 
2468   note_link = &REG_NOTES (insn);
2469   for (note = *note_link; note; note = XEXP (note, 1))
2470     if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2471       {
2472 	*note_link = XEXP (note, 1);
2473 	insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2474       }
2475     else
2476       note_link = &XEXP (note, 1);
2477 
2478   return control_flow_insn_deleted;
2479 }
2480 
2481 /* Change the organization of the stack so that it fits a new basic
2482    block.  Some registers might have to be popped, but there can never be
2483    a register live in the new block that is not now live.
2484 
2485    Insert any needed insns before or after INSN, as indicated by
2486    WHERE.  OLD is the original stack layout, and NEW is the desired
2487    form.  OLD is updated to reflect the code emitted, i.e., it will be
2488    the same as NEW upon return.
2489 
2490    This function will not preserve block_end[].  But that information
2491    is no longer needed once this has executed.  */
2492 
2493 static void
change_stack(rtx_insn * insn,stack_ptr old,stack_ptr new_stack,enum emit_where where)2494 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2495 	      enum emit_where where)
2496 {
2497   int reg;
2498   machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
2499   rtx_insn *update_end = NULL;
2500   int i;
2501 
2502   /* Stack adjustments for the first insn in a block update the
2503      current_block's stack_in instead of inserting insns directly.
2504      compensate_edges will add the necessary code later.  */
2505   if (current_block
2506       && starting_stack_p
2507       && where == EMIT_BEFORE)
2508     {
2509       BLOCK_INFO (current_block)->stack_in = *new_stack;
2510       starting_stack_p = false;
2511       *old = *new_stack;
2512       return;
2513     }
2514 
2515   /* We will be inserting new insns "backwards".  If we are to insert
2516      after INSN, find the next insn, and insert before it.  */
2517 
2518   if (where == EMIT_AFTER)
2519     {
2520       if (current_block && BB_END (current_block) == insn)
2521 	update_end = insn;
2522       insn = NEXT_INSN (insn);
2523     }
2524 
2525   /* Initialize partially dead variables.  */
2526   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2527     if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2528 	&& !TEST_HARD_REG_BIT (old->reg_set, i))
2529       {
2530 	old->reg[++old->top] = i;
2531         SET_HARD_REG_BIT (old->reg_set, i);
2532 	emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2533 			  insn);
2534       }
2535 
2536   /* Pop any registers that are not needed in the new block.  */
2537 
2538   /* If the destination block's stack already has a specified layout
2539      and contains two or more registers, use a more intelligent algorithm
2540      to pop registers that minimizes the number of fxchs below.  */
2541   if (new_stack->top > 0)
2542     {
2543       bool slots[REG_STACK_SIZE];
2544       int pops[REG_STACK_SIZE];
2545       int next, dest, topsrc;
2546 
2547       /* First pass to determine the free slots.  */
2548       for (reg = 0; reg <= new_stack->top; reg++)
2549 	slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2550 
2551       /* Second pass to allocate preferred slots.  */
2552       topsrc = -1;
2553       for (reg = old->top; reg > new_stack->top; reg--)
2554 	if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2555 	  {
2556 	    dest = -1;
2557 	    for (next = 0; next <= new_stack->top; next++)
2558 	      if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2559 		{
2560 		  /* If this is a preference for the new top of stack, record
2561 		     the fact by remembering it's old->reg in topsrc.  */
2562                   if (next == new_stack->top)
2563 		    topsrc = reg;
2564 		  slots[next] = true;
2565 		  dest = next;
2566 		  break;
2567 		}
2568 	    pops[reg] = dest;
2569 	  }
2570 	else
2571 	  pops[reg] = reg;
2572 
2573       /* Intentionally, avoid placing the top of stack in it's correct
2574 	 location, if we still need to permute the stack below and we
2575 	 can usefully place it somewhere else.  This is the case if any
2576 	 slot is still unallocated, in which case we should place the
2577 	 top of stack there.  */
2578       if (topsrc != -1)
2579 	for (reg = 0; reg < new_stack->top; reg++)
2580 	  if (!slots[reg])
2581 	    {
2582 	      pops[topsrc] = reg;
2583 	      slots[new_stack->top] = false;
2584 	      slots[reg] = true;
2585 	      break;
2586 	    }
2587 
2588       /* Third pass allocates remaining slots and emits pop insns.  */
2589       next = new_stack->top;
2590       for (reg = old->top; reg > new_stack->top; reg--)
2591 	{
2592 	  dest = pops[reg];
2593 	  if (dest == -1)
2594 	    {
2595 	      /* Find next free slot.  */
2596 	      while (slots[next])
2597 		next--;
2598 	      dest = next--;
2599 	    }
2600 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], raw_mode),
2601 			 EMIT_BEFORE);
2602 	}
2603     }
2604   else
2605     {
2606       /* The following loop attempts to maximize the number of times we
2607 	 pop the top of the stack, as this permits the use of the faster
2608 	 ffreep instruction on platforms that support it.  */
2609       int live, next;
2610 
2611       live = 0;
2612       for (reg = 0; reg <= old->top; reg++)
2613         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2614           live++;
2615 
2616       next = live;
2617       while (old->top >= live)
2618         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2619 	  {
2620 	    while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2621 	      next--;
2622 	    emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], raw_mode),
2623 			   EMIT_BEFORE);
2624 	  }
2625 	else
2626 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], raw_mode),
2627 			 EMIT_BEFORE);
2628     }
2629 
2630   if (new_stack->top == -2)
2631     {
2632       /* If the new block has never been processed, then it can inherit
2633 	 the old stack order.  */
2634 
2635       new_stack->top = old->top;
2636       memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2637     }
2638   else
2639     {
2640       /* This block has been entered before, and we must match the
2641 	 previously selected stack order.  */
2642 
2643       /* By now, the only difference should be the order of the stack,
2644 	 not their depth or liveliness.  */
2645 
2646       gcc_assert (old->reg_set == new_stack->reg_set);
2647       gcc_assert (old->top == new_stack->top);
2648 
2649       /* If the stack is not empty (new_stack->top != -1), loop here emitting
2650 	 swaps until the stack is correct.
2651 
2652 	 The worst case number of swaps emitted is N + 2, where N is the
2653 	 depth of the stack.  In some cases, the reg at the top of
2654 	 stack may be correct, but swapped anyway in order to fix
2655 	 other regs.  But since we never swap any other reg away from
2656 	 its correct slot, this algorithm will converge.  */
2657 
2658       if (new_stack->top != -1)
2659 	do
2660 	  {
2661 	    /* Swap the reg at top of stack into the position it is
2662 	       supposed to be in, until the correct top of stack appears.  */
2663 
2664 	    while (old->reg[old->top] != new_stack->reg[new_stack->top])
2665 	      {
2666 		for (reg = new_stack->top; reg >= 0; reg--)
2667 		  if (new_stack->reg[reg] == old->reg[old->top])
2668 		    break;
2669 
2670 		gcc_assert (reg != -1);
2671 
2672 		emit_swap_insn (insn, old,
2673 				FP_MODE_REG (old->reg[reg], raw_mode));
2674 	      }
2675 
2676 	    /* See if any regs remain incorrect.  If so, bring an
2677 	     incorrect reg to the top of stack, and let the while loop
2678 	     above fix it.  */
2679 
2680 	    for (reg = new_stack->top; reg >= 0; reg--)
2681 	      if (new_stack->reg[reg] != old->reg[reg])
2682 		{
2683 		  emit_swap_insn (insn, old,
2684 				  FP_MODE_REG (old->reg[reg], raw_mode));
2685 		  break;
2686 		}
2687 	  } while (reg >= 0);
2688 
2689       /* At this point there must be no differences.  */
2690 
2691       for (reg = old->top; reg >= 0; reg--)
2692 	gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2693     }
2694 
2695   if (update_end)
2696     {
2697       for (update_end = NEXT_INSN (update_end); update_end != insn;
2698 	   update_end = NEXT_INSN (update_end))
2699 	{
2700 	  set_block_for_insn (update_end, current_block);
2701 	  if (INSN_P (update_end))
2702 	    df_insn_rescan (update_end);
2703 	}
2704       BB_END (current_block) = PREV_INSN (insn);
2705     }
2706 }
2707 
2708 /* Print stack configuration.  */
2709 
2710 static void
print_stack(FILE * file,stack_ptr s)2711 print_stack (FILE *file, stack_ptr s)
2712 {
2713   if (! file)
2714     return;
2715 
2716   if (s->top == -2)
2717     fprintf (file, "uninitialized\n");
2718   else if (s->top == -1)
2719     fprintf (file, "empty\n");
2720   else
2721     {
2722       int i;
2723       fputs ("[ ", file);
2724       for (i = 0; i <= s->top; ++i)
2725 	fprintf (file, "%d ", s->reg[i]);
2726       fputs ("]\n", file);
2727     }
2728 }
2729 
2730 /* This function was doing life analysis.  We now let the regular live
2731    code do it's job, so we only need to check some extra invariants
2732    that reg-stack expects.  Primary among these being that all registers
2733    are initialized before use.
2734 
2735    The function returns true when code was emitted to CFG edges and
2736    commit_edge_insertions needs to be called.  */
2737 
2738 static int
convert_regs_entry(void)2739 convert_regs_entry (void)
2740 {
2741   int inserted = 0;
2742   edge e;
2743   edge_iterator ei;
2744 
2745   /* Load something into each stack register live at function entry.
2746      Such live registers can be caused by uninitialized variables or
2747      functions not returning values on all paths.  In order to keep
2748      the push/pop code happy, and to not scrog the register stack, we
2749      must put something in these registers.  Use a QNaN.
2750 
2751      Note that we are inserting converted code here.  This code is
2752      never seen by the convert_regs pass.  */
2753 
2754   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2755     {
2756       basic_block block = e->dest;
2757       block_info bi = BLOCK_INFO (block);
2758       int reg, top = -1;
2759 
2760       for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2761 	if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2762 	  {
2763 	    rtx init;
2764 
2765 	    bi->stack_in.reg[++top] = reg;
2766 
2767 	    init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2768 				not_a_num);
2769 	    insert_insn_on_edge (init, e);
2770 	    inserted = 1;
2771 	  }
2772 
2773       bi->stack_in.top = top;
2774     }
2775 
2776   return inserted;
2777 }
2778 
2779 /* Construct the desired stack for function exit.  This will either
2780    be `empty', or the function return value at top-of-stack.  */
2781 
2782 static void
convert_regs_exit(void)2783 convert_regs_exit (void)
2784 {
2785   int value_reg_low, value_reg_high;
2786   stack_ptr output_stack;
2787   rtx retvalue;
2788 
2789   retvalue = stack_result (current_function_decl);
2790   value_reg_low = value_reg_high = -1;
2791   if (retvalue)
2792     {
2793       value_reg_low = REGNO (retvalue);
2794       value_reg_high = END_REGNO (retvalue) - 1;
2795     }
2796 
2797   output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2798   if (value_reg_low == -1)
2799     output_stack->top = -1;
2800   else
2801     {
2802       int reg;
2803 
2804       output_stack->top = value_reg_high - value_reg_low;
2805       for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2806 	{
2807 	  output_stack->reg[value_reg_high - reg] = reg;
2808 	  SET_HARD_REG_BIT (output_stack->reg_set, reg);
2809 	}
2810     }
2811 }
2812 
2813 /* Copy the stack info from the end of edge E's source block to the
2814    start of E's destination block.  */
2815 
2816 static void
propagate_stack(edge e)2817 propagate_stack (edge e)
2818 {
2819   stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2820   stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2821   int reg;
2822 
2823   /* Preserve the order of the original stack, but check whether
2824      any pops are needed.  */
2825   dest_stack->top = -1;
2826   for (reg = 0; reg <= src_stack->top; ++reg)
2827     if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2828       dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2829 
2830   /* Push in any partially dead values.  */
2831   for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2832     if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2833         && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2834       dest_stack->reg[++dest_stack->top] = reg;
2835 }
2836 
2837 
2838 /* Adjust the stack of edge E's source block on exit to match the stack
2839    of it's target block upon input.  The stack layouts of both blocks
2840    should have been defined by now.  */
2841 
2842 static bool
compensate_edge(edge e)2843 compensate_edge (edge e)
2844 {
2845   basic_block source = e->src, target = e->dest;
2846   stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2847   stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2848   struct stack_def regstack;
2849   int reg;
2850 
2851   if (dump_file)
2852     fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2853 
2854   gcc_assert (target_stack->top != -2);
2855 
2856   /* Check whether stacks are identical.  */
2857   if (target_stack->top == source_stack->top)
2858     {
2859       for (reg = target_stack->top; reg >= 0; --reg)
2860 	if (target_stack->reg[reg] != source_stack->reg[reg])
2861 	  break;
2862 
2863       if (reg == -1)
2864 	{
2865 	  if (dump_file)
2866 	    fprintf (dump_file, "no changes needed\n");
2867 	  return false;
2868 	}
2869     }
2870 
2871   if (dump_file)
2872     {
2873       fprintf (dump_file, "correcting stack to ");
2874       print_stack (dump_file, target_stack);
2875     }
2876 
2877   /* Abnormal calls may appear to have values live in st(0), but the
2878      abnormal return path will not have actually loaded the values.  */
2879   if (e->flags & EDGE_ABNORMAL_CALL)
2880     {
2881       /* Assert that the lifetimes are as we expect -- one value
2882          live at st(0) on the end of the source block, and no
2883          values live at the beginning of the destination block.
2884 	 For complex return values, we may have st(1) live as well.  */
2885       gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2886       gcc_assert (target_stack->top == -1);
2887       return false;
2888     }
2889 
2890   /* Handle non-call EH edges specially.  The normal return path have
2891      values in registers.  These will be popped en masse by the unwind
2892      library.  */
2893   if (e->flags & EDGE_EH)
2894     {
2895       gcc_assert (target_stack->top == -1);
2896       return false;
2897     }
2898 
2899   /* We don't support abnormal edges.  Global takes care to
2900      avoid any live register across them, so we should never
2901      have to insert instructions on such edges.  */
2902   gcc_assert (! (e->flags & EDGE_ABNORMAL));
2903 
2904   /* Make a copy of source_stack as change_stack is destructive.  */
2905   regstack = *source_stack;
2906 
2907   /* It is better to output directly to the end of the block
2908      instead of to the edge, because emit_swap can do minimal
2909      insn scheduling.  We can do this when there is only one
2910      edge out, and it is not abnormal.  */
2911   if (EDGE_COUNT (source->succs) == 1)
2912     {
2913       current_block = source;
2914       change_stack (BB_END (source), &regstack, target_stack,
2915 		    (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2916     }
2917   else
2918     {
2919       rtx_insn *seq;
2920       rtx_note *after;
2921 
2922       current_block = NULL;
2923       start_sequence ();
2924 
2925       /* ??? change_stack needs some point to emit insns after.  */
2926       after = emit_note (NOTE_INSN_DELETED);
2927 
2928       change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2929 
2930       seq = get_insns ();
2931       end_sequence ();
2932 
2933       set_insn_locations (seq, e->goto_locus);
2934       insert_insn_on_edge (seq, e);
2935       return true;
2936     }
2937   return false;
2938 }
2939 
2940 /* Traverse all non-entry edges in the CFG, and emit the necessary
2941    edge compensation code to change the stack from stack_out of the
2942    source block to the stack_in of the destination block.  */
2943 
2944 static bool
compensate_edges(void)2945 compensate_edges (void)
2946 {
2947   bool inserted = false;
2948   basic_block bb;
2949 
2950   starting_stack_p = false;
2951 
2952   FOR_EACH_BB_FN (bb, cfun)
2953     if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2954       {
2955         edge e;
2956         edge_iterator ei;
2957 
2958         FOR_EACH_EDGE (e, ei, bb->succs)
2959 	  inserted |= compensate_edge (e);
2960       }
2961   return inserted;
2962 }
2963 
2964 /* Select the better of two edges E1 and E2 to use to determine the
2965    stack layout for their shared destination basic block.  This is
2966    typically the more frequently executed.  The edge E1 may be NULL
2967    (in which case E2 is returned), but E2 is always non-NULL.  */
2968 
2969 static edge
better_edge(edge e1,edge e2)2970 better_edge (edge e1, edge e2)
2971 {
2972   if (!e1)
2973     return e2;
2974 
2975   if (e1->count () > e2->count ())
2976     return e1;
2977   if (e1->count () < e2->count ())
2978     return e2;
2979 
2980   /* Prefer critical edges to minimize inserting compensation code on
2981      critical edges.  */
2982 
2983   if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2984     return EDGE_CRITICAL_P (e1) ? e1 : e2;
2985 
2986   /* Avoid non-deterministic behavior.  */
2987   return (e1->src->index < e2->src->index) ? e1 : e2;
2988 }
2989 
2990 /* Convert stack register references in one block.  Return true if the CFG
2991    has been modified in the process.  */
2992 
2993 static bool
convert_regs_1(basic_block block)2994 convert_regs_1 (basic_block block)
2995 {
2996   struct stack_def regstack;
2997   block_info bi = BLOCK_INFO (block);
2998   int reg;
2999   rtx_insn *insn, *next;
3000   bool control_flow_insn_deleted = false;
3001   bool cfg_altered = false;
3002   int debug_insns_with_starting_stack = 0;
3003 
3004   any_malformed_asm = false;
3005 
3006   /* Choose an initial stack layout, if one hasn't already been chosen.  */
3007   if (bi->stack_in.top == -2)
3008     {
3009       edge e, beste = NULL;
3010       edge_iterator ei;
3011 
3012       /* Select the best incoming edge (typically the most frequent) to
3013 	 use as a template for this basic block.  */
3014       FOR_EACH_EDGE (e, ei, block->preds)
3015 	if (BLOCK_INFO (e->src)->done)
3016 	  beste = better_edge (beste, e);
3017 
3018       if (beste)
3019 	propagate_stack (beste);
3020       else
3021 	{
3022 	  /* No predecessors.  Create an arbitrary input stack.  */
3023 	  bi->stack_in.top = -1;
3024 	  for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
3025 	    if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
3026 	      bi->stack_in.reg[++bi->stack_in.top] = reg;
3027 	}
3028     }
3029 
3030   if (dump_file)
3031     {
3032       fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
3033       print_stack (dump_file, &bi->stack_in);
3034     }
3035 
3036   /* Process all insns in this block.  Keep track of NEXT so that we
3037      don't process insns emitted while substituting in INSN.  */
3038   current_block = block;
3039   next = BB_HEAD (block);
3040   regstack = bi->stack_in;
3041   starting_stack_p = true;
3042 
3043   do
3044     {
3045       insn = next;
3046       next = NEXT_INSN (insn);
3047 
3048       /* Ensure we have not missed a block boundary.  */
3049       gcc_assert (next);
3050       if (insn == BB_END (block))
3051 	next = NULL;
3052 
3053       /* Don't bother processing unless there is a stack reg
3054 	 mentioned or if it's a CALL_INSN.  */
3055       if (DEBUG_BIND_INSN_P (insn))
3056 	{
3057 	  if (starting_stack_p)
3058 	    debug_insns_with_starting_stack++;
3059 	  else
3060 	    {
3061 	      subst_all_stack_regs_in_debug_insn (insn, &regstack);
3062 
3063 	      /* Nothing must ever die at a debug insn.  If something
3064 		 is referenced in it that becomes dead, it should have
3065 		 died before and the reference in the debug insn
3066 		 should have been removed so as to avoid changing code
3067 		 generation.  */
3068 	      gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
3069 	    }
3070 	}
3071       else if (stack_regs_mentioned (insn)
3072 	       || CALL_P (insn))
3073 	{
3074 	  if (dump_file)
3075 	    {
3076 	      fprintf (dump_file, "  insn %d input stack: ",
3077 		       INSN_UID (insn));
3078 	      print_stack (dump_file, &regstack);
3079 	    }
3080 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3081 	  starting_stack_p = false;
3082 	}
3083     }
3084   while (next);
3085 
3086   if (debug_insns_with_starting_stack)
3087     {
3088       /* Since it's the first non-debug instruction that determines
3089 	 the stack requirements of the current basic block, we refrain
3090 	 from updating debug insns before it in the loop above, and
3091 	 fix them up here.  */
3092       for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3093 	   insn = NEXT_INSN (insn))
3094 	{
3095 	  if (!DEBUG_BIND_INSN_P (insn))
3096 	    continue;
3097 
3098 	  debug_insns_with_starting_stack--;
3099 	  subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3100 	}
3101     }
3102 
3103   if (dump_file)
3104     {
3105       fprintf (dump_file, "Expected live registers [");
3106       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3107 	if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3108 	  fprintf (dump_file, " %d", reg);
3109       fprintf (dump_file, " ]\nOutput stack: ");
3110       print_stack (dump_file, &regstack);
3111     }
3112 
3113   insn = BB_END (block);
3114   if (JUMP_P (insn))
3115     insn = PREV_INSN (insn);
3116 
3117   /* If the function is declared to return a value, but it returns one
3118      in only some cases, some registers might come live here.  Emit
3119      necessary moves for them.  */
3120 
3121   for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3122     {
3123       if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3124 	  && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3125 	{
3126 	  rtx set;
3127 
3128 	  if (dump_file)
3129 	    fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3130 
3131 	  set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3132 	  insn = emit_insn_after (set, insn);
3133 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3134 	}
3135     }
3136 
3137   /* Amongst the insns possibly deleted during the substitution process above,
3138      might have been the only trapping insn in the block.  We purge the now
3139      possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3140      called at the end of convert_regs.  The order in which we process the
3141      blocks ensures that we never delete an already processed edge.
3142 
3143      Note that, at this point, the CFG may have been damaged by the emission
3144      of instructions after an abnormal call, which moves the basic block end
3145      (and is the reason why we call fixup_abnormal_edges later).  So we must
3146      be sure that the trapping insn has been deleted before trying to purge
3147      dead edges, otherwise we risk purging valid edges.
3148 
3149      ??? We are normally supposed not to delete trapping insns, so we pretend
3150      that the insns deleted above don't actually trap.  It would have been
3151      better to detect this earlier and avoid creating the EH edge in the first
3152      place, still, but we don't have enough information at that time.  */
3153 
3154   if (control_flow_insn_deleted)
3155     cfg_altered |= purge_dead_edges (block);
3156 
3157   /* Something failed if the stack lives don't match.  If we had malformed
3158      asms, we zapped the instruction itself, but that didn't produce the
3159      same pattern of register kills as before.  */
3160 
3161   gcc_assert (regstack.reg_set == bi->out_reg_set || any_malformed_asm);
3162   bi->stack_out = regstack;
3163   bi->done = true;
3164 
3165   return cfg_altered;
3166 }
3167 
3168 /* Convert registers in all blocks reachable from BLOCK.  Return true if the
3169    CFG has been modified in the process.  */
3170 
3171 static bool
convert_regs_2(basic_block block)3172 convert_regs_2 (basic_block block)
3173 {
3174   basic_block *stack, *sp;
3175   bool cfg_altered = false;
3176 
3177   /* We process the blocks in a top-down manner, in a way such that one block
3178      is only processed after all its predecessors.  The number of predecessors
3179      of every block has already been computed.  */
3180 
3181   stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3182   sp = stack;
3183 
3184   *sp++ = block;
3185 
3186   do
3187     {
3188       edge e;
3189       edge_iterator ei;
3190 
3191       block = *--sp;
3192 
3193       /* Processing BLOCK is achieved by convert_regs_1, which may purge
3194 	 some dead EH outgoing edge after the deletion of the trapping
3195 	 insn inside the block.  Since the number of predecessors of
3196 	 BLOCK's successors was computed based on the initial edge set,
3197 	 we check the necessity to process some of these successors
3198 	 before such an edge deletion may happen.  However, there is
3199 	 a pitfall: if BLOCK is the only predecessor of a successor and
3200 	 the edge between them happens to be deleted, the successor
3201 	 becomes unreachable and should not be processed.  The problem
3202 	 is that there is no way to preventively detect this case so we
3203 	 stack the successor in all cases and hand over the task of
3204 	 fixing up the discrepancy to convert_regs_1.  */
3205 
3206       FOR_EACH_EDGE (e, ei, block->succs)
3207 	if (! (e->flags & EDGE_DFS_BACK))
3208 	  {
3209 	    BLOCK_INFO (e->dest)->predecessors--;
3210 	    if (!BLOCK_INFO (e->dest)->predecessors)
3211 	      *sp++ = e->dest;
3212 	  }
3213 
3214       cfg_altered |= convert_regs_1 (block);
3215     }
3216   while (sp != stack);
3217 
3218   free (stack);
3219 
3220   return cfg_altered;
3221 }
3222 
3223 /* Traverse all basic blocks in a function, converting the register
3224    references in each insn from the "flat" register file that gcc uses,
3225    to the stack-like registers the 387 uses.  */
3226 
3227 static void
convert_regs(void)3228 convert_regs (void)
3229 {
3230   bool cfg_altered = false;
3231   int inserted;
3232   basic_block b;
3233   edge e;
3234   edge_iterator ei;
3235 
3236   /* Initialize uninitialized registers on function entry.  */
3237   inserted = convert_regs_entry ();
3238 
3239   /* Construct the desired stack for function exit.  */
3240   convert_regs_exit ();
3241   BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3242 
3243   /* ??? Future: process inner loops first, and give them arbitrary
3244      initial stacks which emit_swap_insn can modify.  This ought to
3245      prevent double fxch that often appears at the head of a loop.  */
3246 
3247   /* Process all blocks reachable from all entry points.  */
3248   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3249     cfg_altered |= convert_regs_2 (e->dest);
3250 
3251   /* ??? Process all unreachable blocks.  Though there's no excuse
3252      for keeping these even when not optimizing.  */
3253   FOR_EACH_BB_FN (b, cfun)
3254     {
3255       block_info bi = BLOCK_INFO (b);
3256 
3257       if (! bi->done)
3258 	cfg_altered |= convert_regs_2 (b);
3259     }
3260 
3261   /* We must fix up abnormal edges before inserting compensation code
3262      because both mechanisms insert insns on edges.  */
3263   inserted |= fixup_abnormal_edges ();
3264 
3265   inserted |= compensate_edges ();
3266 
3267   clear_aux_for_blocks ();
3268 
3269   if (inserted)
3270     commit_edge_insertions ();
3271 
3272   if (cfg_altered)
3273     cleanup_cfg (0);
3274 
3275   if (dump_file)
3276     fputc ('\n', dump_file);
3277 }
3278 
3279 /* Convert register usage from "flat" register file usage to a "stack
3280    register file.  FILE is the dump file, if used.
3281 
3282    Construct a CFG and run life analysis.  Then convert each insn one
3283    by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
3284    code duplication created when the converter inserts pop insns on
3285    the edges.  */
3286 
3287 static bool
reg_to_stack(void)3288 reg_to_stack (void)
3289 {
3290   basic_block bb;
3291   int i;
3292   int max_uid;
3293 
3294   /* Clean up previous run.  */
3295   stack_regs_mentioned_data.release ();
3296 
3297   /* See if there is something to do.  Flow analysis is quite
3298      expensive so we might save some compilation time.  */
3299   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3300     if (df_regs_ever_live_p (i))
3301       break;
3302   if (i > LAST_STACK_REG)
3303     return false;
3304 
3305   df_note_add_problem ();
3306   df_analyze ();
3307 
3308   mark_dfs_back_edges ();
3309 
3310   /* Set up block info for each basic block.  */
3311   alloc_aux_for_blocks (sizeof (struct block_info_def));
3312   FOR_EACH_BB_FN (bb, cfun)
3313     {
3314       block_info bi = BLOCK_INFO (bb);
3315       edge_iterator ei;
3316       edge e;
3317       int reg;
3318 
3319       FOR_EACH_EDGE (e, ei, bb->preds)
3320 	if (!(e->flags & EDGE_DFS_BACK)
3321 	    && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3322 	  bi->predecessors++;
3323 
3324       /* Set current register status at last instruction `uninitialized'.  */
3325       bi->stack_in.top = -2;
3326 
3327       /* Copy live_at_end and live_at_start into temporaries.  */
3328       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3329 	{
3330 	  if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3331 	    SET_HARD_REG_BIT (bi->out_reg_set, reg);
3332 	  if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3333 	    SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3334 	}
3335     }
3336 
3337   /* Create the replacement registers up front.  */
3338   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3339     {
3340       machine_mode mode;
3341       FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
3342 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3343       FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
3344 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3345     }
3346 
3347   ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3348 
3349   /* A QNaN for initializing uninitialized variables.
3350 
3351      ??? We can't load from constant memory in PIC mode, because
3352      we're inserting these instructions before the prologue and
3353      the PIC register hasn't been set up.  In that case, fall back
3354      on zero, which we can get from `fldz'.  */
3355 
3356   if ((flag_pic && !TARGET_64BIT)
3357       || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3358     not_a_num = CONST0_RTX (SFmode);
3359   else
3360     {
3361       REAL_VALUE_TYPE r;
3362 
3363       real_nan (&r, "", 1, SFmode);
3364       not_a_num = const_double_from_real_value (r, SFmode);
3365       not_a_num = force_const_mem (SFmode, not_a_num);
3366     }
3367 
3368   /* Allocate a cache for stack_regs_mentioned.  */
3369   max_uid = get_max_uid ();
3370   stack_regs_mentioned_data.create (max_uid + 1);
3371   memset (stack_regs_mentioned_data.address (),
3372 	  0, sizeof (char) * (max_uid + 1));
3373 
3374   convert_regs ();
3375 
3376   free_aux_for_blocks ();
3377   return true;
3378 }
3379 #endif /* STACK_REGS */
3380 
3381 namespace {
3382 
3383 const pass_data pass_data_stack_regs =
3384 {
3385   RTL_PASS, /* type */
3386   "*stack_regs", /* name */
3387   OPTGROUP_NONE, /* optinfo_flags */
3388   TV_REG_STACK, /* tv_id */
3389   0, /* properties_required */
3390   0, /* properties_provided */
3391   0, /* properties_destroyed */
3392   0, /* todo_flags_start */
3393   0, /* todo_flags_finish */
3394 };
3395 
3396 class pass_stack_regs : public rtl_opt_pass
3397 {
3398 public:
pass_stack_regs(gcc::context * ctxt)3399   pass_stack_regs (gcc::context *ctxt)
3400     : rtl_opt_pass (pass_data_stack_regs, ctxt)
3401   {}
3402 
3403   /* opt_pass methods: */
gate(function *)3404   virtual bool gate (function *)
3405     {
3406 #ifdef STACK_REGS
3407       return true;
3408 #else
3409       return false;
3410 #endif
3411     }
3412 
3413 }; // class pass_stack_regs
3414 
3415 } // anon namespace
3416 
3417 rtl_opt_pass *
make_pass_stack_regs(gcc::context * ctxt)3418 make_pass_stack_regs (gcc::context *ctxt)
3419 {
3420   return new pass_stack_regs (ctxt);
3421 }
3422 
3423 /* Convert register usage from flat register file usage to a stack
3424    register file.  */
3425 static unsigned int
rest_of_handle_stack_regs(void)3426 rest_of_handle_stack_regs (void)
3427 {
3428 #ifdef STACK_REGS
3429   reg_to_stack ();
3430   regstack_completed = 1;
3431 #endif
3432   return 0;
3433 }
3434 
3435 namespace {
3436 
3437 const pass_data pass_data_stack_regs_run =
3438 {
3439   RTL_PASS, /* type */
3440   "stack", /* name */
3441   OPTGROUP_NONE, /* optinfo_flags */
3442   TV_REG_STACK, /* tv_id */
3443   0, /* properties_required */
3444   0, /* properties_provided */
3445   0, /* properties_destroyed */
3446   0, /* todo_flags_start */
3447   TODO_df_finish, /* todo_flags_finish */
3448 };
3449 
3450 class pass_stack_regs_run : public rtl_opt_pass
3451 {
3452 public:
pass_stack_regs_run(gcc::context * ctxt)3453   pass_stack_regs_run (gcc::context *ctxt)
3454     : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3455   {}
3456 
3457   /* opt_pass methods: */
execute(function *)3458   virtual unsigned int execute (function *)
3459     {
3460       return rest_of_handle_stack_regs ();
3461     }
3462 
3463 }; // class pass_stack_regs_run
3464 
3465 } // anon namespace
3466 
3467 rtl_opt_pass *
make_pass_stack_regs_run(gcc::context * ctxt)3468 make_pass_stack_regs_run (gcc::context *ctxt)
3469 {
3470   return new pass_stack_regs_run (ctxt);
3471 }
3472