1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
45 #include "calls.h"
46
47 /* Data type for the expressions representing sizes of data types.
48 It is the first integer type laid out. */
49 tree sizetype_tab[(int) stk_type_kind_last];
50
51 /* If nonzero, this is an upper limit on alignment of structure fields.
52 The value is measured in bits. */
53 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
54
55 static tree self_referential_size (tree);
56 static void finalize_record_size (record_layout_info);
57 static void finalize_type_size (tree);
58 static void place_union_field (record_layout_info, tree);
59 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
60 HOST_WIDE_INT, tree);
61 extern void debug_rli (record_layout_info);
62
63 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
64 to serve as the actual size-expression for a type or decl. */
65
66 tree
variable_size(tree size)67 variable_size (tree size)
68 {
69 /* Obviously. */
70 if (TREE_CONSTANT (size))
71 return size;
72
73 /* If the size is self-referential, we can't make a SAVE_EXPR (see
74 save_expr for the rationale). But we can do something else. */
75 if (CONTAINS_PLACEHOLDER_P (size))
76 return self_referential_size (size);
77
78 /* If we are in the global binding level, we can't make a SAVE_EXPR
79 since it may end up being shared across functions, so it is up
80 to the front-end to deal with this case. */
81 if (lang_hooks.decls.global_bindings_p ())
82 return size;
83
84 return save_expr (size);
85 }
86
87 /* An array of functions used for self-referential size computation. */
88 static GTY(()) vec<tree, va_gc> *size_functions;
89
90 /* Return true if T is a self-referential component reference. */
91
92 static bool
self_referential_component_ref_p(tree t)93 self_referential_component_ref_p (tree t)
94 {
95 if (TREE_CODE (t) != COMPONENT_REF)
96 return false;
97
98 while (REFERENCE_CLASS_P (t))
99 t = TREE_OPERAND (t, 0);
100
101 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102 }
103
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
107
108 static tree
copy_self_referential_tree_r(tree * tp,int * walk_subtrees,void * data)109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 {
111 enum tree_code code = TREE_CODE (*tp);
112
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
117 {
118 *walk_subtrees = 0;
119 return NULL_TREE;
120 }
121
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 {
126 *walk_subtrees = 0;
127 return NULL_TREE;
128 }
129
130 /* Default case: the component reference. */
131 else if (self_referential_component_ref_p (*tp))
132 {
133 *walk_subtrees = 0;
134 return NULL_TREE;
135 }
136
137 /* We're not supposed to have them in self-referential size trees
138 because we wouldn't properly control when they are evaluated.
139 However, not creating superfluous SAVE_EXPRs requires accurate
140 tracking of readonly-ness all the way down to here, which we
141 cannot always guarantee in practice. So punt in this case. */
142 else if (code == SAVE_EXPR)
143 return error_mark_node;
144
145 else if (code == STATEMENT_LIST)
146 gcc_unreachable ();
147
148 return copy_tree_r (tp, walk_subtrees, data);
149 }
150
151 /* Given a SIZE expression that is self-referential, return an equivalent
152 expression to serve as the actual size expression for a type. */
153
154 static tree
self_referential_size(tree size)155 self_referential_size (tree size)
156 {
157 static unsigned HOST_WIDE_INT fnno = 0;
158 vec<tree> self_refs = vNULL;
159 tree param_type_list = NULL, param_decl_list = NULL;
160 tree t, ref, return_type, fntype, fnname, fndecl;
161 unsigned int i;
162 char buf[128];
163 vec<tree, va_gc> *args = NULL;
164
165 /* Do not factor out simple operations. */
166 t = skip_simple_constant_arithmetic (size);
167 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
168 return size;
169
170 /* Collect the list of self-references in the expression. */
171 find_placeholder_in_expr (size, &self_refs);
172 gcc_assert (self_refs.length () > 0);
173
174 /* Obtain a private copy of the expression. */
175 t = size;
176 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
177 return size;
178 size = t;
179
180 /* Build the parameter and argument lists in parallel; also
181 substitute the former for the latter in the expression. */
182 vec_alloc (args, self_refs.length ());
183 FOR_EACH_VEC_ELT (self_refs, i, ref)
184 {
185 tree subst, param_name, param_type, param_decl;
186
187 if (DECL_P (ref))
188 {
189 /* We shouldn't have true variables here. */
190 gcc_assert (TREE_READONLY (ref));
191 subst = ref;
192 }
193 /* This is the pattern built in ada/make_aligning_type. */
194 else if (TREE_CODE (ref) == ADDR_EXPR)
195 subst = ref;
196 /* Default case: the component reference. */
197 else
198 subst = TREE_OPERAND (ref, 1);
199
200 sprintf (buf, "p%d", i);
201 param_name = get_identifier (buf);
202 param_type = TREE_TYPE (ref);
203 param_decl
204 = build_decl (input_location, PARM_DECL, param_name, param_type);
205 DECL_ARG_TYPE (param_decl) = param_type;
206 DECL_ARTIFICIAL (param_decl) = 1;
207 TREE_READONLY (param_decl) = 1;
208
209 size = substitute_in_expr (size, subst, param_decl);
210
211 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
212 param_decl_list = chainon (param_decl, param_decl_list);
213 args->quick_push (ref);
214 }
215
216 self_refs.release ();
217
218 /* Append 'void' to indicate that the number of parameters is fixed. */
219 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
220
221 /* The 3 lists have been created in reverse order. */
222 param_type_list = nreverse (param_type_list);
223 param_decl_list = nreverse (param_decl_list);
224
225 /* Build the function type. */
226 return_type = TREE_TYPE (size);
227 fntype = build_function_type (return_type, param_type_list);
228
229 /* Build the function declaration. */
230 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
231 fnname = get_file_function_name (buf);
232 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
233 for (t = param_decl_list; t; t = DECL_CHAIN (t))
234 DECL_CONTEXT (t) = fndecl;
235 DECL_ARGUMENTS (fndecl) = param_decl_list;
236 DECL_RESULT (fndecl)
237 = build_decl (input_location, RESULT_DECL, 0, return_type);
238 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
239
240 /* The function has been created by the compiler and we don't
241 want to emit debug info for it. */
242 DECL_ARTIFICIAL (fndecl) = 1;
243 DECL_IGNORED_P (fndecl) = 1;
244
245 /* It is supposed to be "const" and never throw. */
246 TREE_READONLY (fndecl) = 1;
247 TREE_NOTHROW (fndecl) = 1;
248
249 /* We want it to be inlined when this is deemed profitable, as
250 well as discarded if every call has been integrated. */
251 DECL_DECLARED_INLINE_P (fndecl) = 1;
252
253 /* It is made up of a unique return statement. */
254 DECL_INITIAL (fndecl) = make_node (BLOCK);
255 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
256 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
257 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
258 TREE_STATIC (fndecl) = 1;
259
260 /* Put it onto the list of size functions. */
261 vec_safe_push (size_functions, fndecl);
262
263 /* Replace the original expression with a call to the size function. */
264 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265 }
266
267 /* Take, queue and compile all the size functions. It is essential that
268 the size functions be gimplified at the very end of the compilation
269 in order to guarantee transparent handling of self-referential sizes.
270 Otherwise the GENERIC inliner would not be able to inline them back
271 at each of their call sites, thus creating artificial non-constant
272 size expressions which would trigger nasty problems later on. */
273
274 void
finalize_size_functions(void)275 finalize_size_functions (void)
276 {
277 unsigned int i;
278 tree fndecl;
279
280 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
281 {
282 allocate_struct_function (fndecl, false);
283 set_cfun (NULL);
284 dump_function (TDI_original, fndecl);
285
286 /* As these functions are used to describe the layout of variable-length
287 structures, debug info generation needs their implementation. */
288 debug_hooks->size_function (fndecl);
289 gimplify_function_tree (fndecl);
290 cgraph_node::finalize_function (fndecl, false);
291 }
292
293 vec_free (size_functions);
294 }
295
296 /* Return a machine mode of class MCLASS with SIZE bits of precision,
297 if one exists. The mode may have padding bits as well the SIZE
298 value bits. If LIMIT is nonzero, disregard modes wider than
299 MAX_FIXED_MODE_SIZE. */
300
301 opt_machine_mode
mode_for_size(poly_uint64 size,enum mode_class mclass,int limit)302 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
303 {
304 machine_mode mode;
305 int i;
306
307 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
308 return opt_machine_mode ();
309
310 /* Get the first mode which has this size, in the specified class. */
311 FOR_EACH_MODE_IN_CLASS (mode, mclass)
312 if (known_eq (GET_MODE_PRECISION (mode), size))
313 return mode;
314
315 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
316 for (i = 0; i < NUM_INT_N_ENTS; i ++)
317 if (known_eq (int_n_data[i].bitsize, size)
318 && int_n_enabled_p[i])
319 return int_n_data[i].m;
320
321 return opt_machine_mode ();
322 }
323
324 /* Similar, except passed a tree node. */
325
326 opt_machine_mode
mode_for_size_tree(const_tree size,enum mode_class mclass,int limit)327 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 {
329 unsigned HOST_WIDE_INT uhwi;
330 unsigned int ui;
331
332 if (!tree_fits_uhwi_p (size))
333 return opt_machine_mode ();
334 uhwi = tree_to_uhwi (size);
335 ui = uhwi;
336 if (uhwi != ui)
337 return opt_machine_mode ();
338 return mode_for_size (ui, mclass, limit);
339 }
340
341 /* Return the narrowest mode of class MCLASS that contains at least
342 SIZE bits. Abort if no such mode exists. */
343
344 machine_mode
smallest_mode_for_size(poly_uint64 size,enum mode_class mclass)345 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
346 {
347 machine_mode mode = VOIDmode;
348 int i;
349
350 /* Get the first mode which has at least this size, in the
351 specified class. */
352 FOR_EACH_MODE_IN_CLASS (mode, mclass)
353 if (known_ge (GET_MODE_PRECISION (mode), size))
354 break;
355
356 gcc_assert (mode != VOIDmode);
357
358 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
359 for (i = 0; i < NUM_INT_N_ENTS; i ++)
360 if (known_ge (int_n_data[i].bitsize, size)
361 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
362 && int_n_enabled_p[i])
363 mode = int_n_data[i].m;
364
365 return mode;
366 }
367
368 /* Return an integer mode of exactly the same size as MODE, if one exists. */
369
370 opt_scalar_int_mode
int_mode_for_mode(machine_mode mode)371 int_mode_for_mode (machine_mode mode)
372 {
373 switch (GET_MODE_CLASS (mode))
374 {
375 case MODE_INT:
376 case MODE_PARTIAL_INT:
377 return as_a <scalar_int_mode> (mode);
378
379 case MODE_COMPLEX_INT:
380 case MODE_COMPLEX_FLOAT:
381 case MODE_FLOAT:
382 case MODE_DECIMAL_FLOAT:
383 case MODE_FRACT:
384 case MODE_ACCUM:
385 case MODE_UFRACT:
386 case MODE_UACCUM:
387 case MODE_VECTOR_BOOL:
388 case MODE_VECTOR_INT:
389 case MODE_VECTOR_FLOAT:
390 case MODE_VECTOR_FRACT:
391 case MODE_VECTOR_ACCUM:
392 case MODE_VECTOR_UFRACT:
393 case MODE_VECTOR_UACCUM:
394 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395
396 case MODE_RANDOM:
397 if (mode == BLKmode)
398 return opt_scalar_int_mode ();
399
400 /* fall through */
401
402 case MODE_CC:
403 default:
404 gcc_unreachable ();
405 }
406 }
407
408 /* Find a mode that can be used for efficient bitwise operations on MODE,
409 if one exists. */
410
411 opt_machine_mode
bitwise_mode_for_mode(machine_mode mode)412 bitwise_mode_for_mode (machine_mode mode)
413 {
414 /* Quick exit if we already have a suitable mode. */
415 scalar_int_mode int_mode;
416 if (is_a <scalar_int_mode> (mode, &int_mode)
417 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418 return int_mode;
419
420 /* Reuse the sanity checks from int_mode_for_mode. */
421 gcc_checking_assert ((int_mode_for_mode (mode), true));
422
423 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
424
425 /* Try to replace complex modes with complex modes. In general we
426 expect both components to be processed independently, so we only
427 care whether there is a register for the inner mode. */
428 if (COMPLEX_MODE_P (mode))
429 {
430 machine_mode trial = mode;
431 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
432 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
433 && have_regs_of_mode[GET_MODE_INNER (trial)])
434 return trial;
435 }
436
437 /* Try to replace vector modes with vector modes. Also try using vector
438 modes if an integer mode would be too big. */
439 if (VECTOR_MODE_P (mode)
440 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
441 {
442 machine_mode trial = mode;
443 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
444 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
445 && have_regs_of_mode[trial]
446 && targetm.vector_mode_supported_p (trial))
447 return trial;
448 }
449
450 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
451 return mode_for_size (bitsize, MODE_INT, true);
452 }
453
454 /* Find a type that can be used for efficient bitwise operations on MODE.
455 Return null if no such mode exists. */
456
457 tree
bitwise_type_for_mode(machine_mode mode)458 bitwise_type_for_mode (machine_mode mode)
459 {
460 if (!bitwise_mode_for_mode (mode).exists (&mode))
461 return NULL_TREE;
462
463 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
464 tree inner_type = build_nonstandard_integer_type (inner_size, true);
465
466 if (VECTOR_MODE_P (mode))
467 return build_vector_type_for_mode (inner_type, mode);
468
469 if (COMPLEX_MODE_P (mode))
470 return build_complex_type (inner_type);
471
472 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
473 return inner_type;
474 }
475
476 /* Find a mode that is suitable for representing a vector with NUNITS
477 elements of mode INNERMODE, if one exists. The returned mode can be
478 either an integer mode or a vector mode. */
479
480 opt_machine_mode
mode_for_vector(scalar_mode innermode,poly_uint64 nunits)481 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
482 {
483 machine_mode mode;
484
485 /* First, look for a supported vector type. */
486 if (SCALAR_FLOAT_MODE_P (innermode))
487 mode = MIN_MODE_VECTOR_FLOAT;
488 else if (SCALAR_FRACT_MODE_P (innermode))
489 mode = MIN_MODE_VECTOR_FRACT;
490 else if (SCALAR_UFRACT_MODE_P (innermode))
491 mode = MIN_MODE_VECTOR_UFRACT;
492 else if (SCALAR_ACCUM_MODE_P (innermode))
493 mode = MIN_MODE_VECTOR_ACCUM;
494 else if (SCALAR_UACCUM_MODE_P (innermode))
495 mode = MIN_MODE_VECTOR_UACCUM;
496 else
497 mode = MIN_MODE_VECTOR_INT;
498
499 /* Do not check vector_mode_supported_p here. We'll do that
500 later in vector_type_mode. */
501 FOR_EACH_MODE_FROM (mode, mode)
502 if (known_eq (GET_MODE_NUNITS (mode), nunits)
503 && GET_MODE_INNER (mode) == innermode)
504 return mode;
505
506 /* For integers, try mapping it to a same-sized scalar mode. */
507 if (GET_MODE_CLASS (innermode) == MODE_INT)
508 {
509 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
510 if (int_mode_for_size (nbits, 0).exists (&mode)
511 && have_regs_of_mode[mode])
512 return mode;
513 }
514
515 return opt_machine_mode ();
516 }
517
518 /* If a piece of code is using vector mode VECTOR_MODE and also wants
519 to operate on elements of mode ELEMENT_MODE, return the vector mode
520 it should use for those elements. If NUNITS is nonzero, ensure that
521 the mode has exactly NUNITS elements, otherwise pick whichever vector
522 size pairs the most naturally with VECTOR_MODE; this may mean choosing
523 a mode with a different size and/or number of elements, depending on
524 what the target prefers. Return an empty opt_machine_mode if there
525 is no supported vector mode with the required properties.
526
527 Unlike mode_for_vector. any returned mode is guaranteed to satisfy
528 both VECTOR_MODE_P and targetm.vector_mode_supported_p. */
529
530 opt_machine_mode
related_vector_mode(machine_mode vector_mode,scalar_mode element_mode,poly_uint64 nunits)531 related_vector_mode (machine_mode vector_mode, scalar_mode element_mode,
532 poly_uint64 nunits)
533 {
534 gcc_assert (VECTOR_MODE_P (vector_mode));
535 return targetm.vectorize.related_mode (vector_mode, element_mode, nunits);
536 }
537
538 /* If a piece of code is using vector mode VECTOR_MODE and also wants
539 to operate on integer vectors with the same element size and number
540 of elements, return the vector mode it should use. Return an empty
541 opt_machine_mode if there is no supported vector mode with the
542 required properties.
543
544 Unlike mode_for_vector. any returned mode is guaranteed to satisfy
545 both VECTOR_MODE_P and targetm.vector_mode_supported_p. */
546
547 opt_machine_mode
related_int_vector_mode(machine_mode vector_mode)548 related_int_vector_mode (machine_mode vector_mode)
549 {
550 gcc_assert (VECTOR_MODE_P (vector_mode));
551 scalar_int_mode int_mode;
552 if (int_mode_for_mode (GET_MODE_INNER (vector_mode)).exists (&int_mode))
553 return related_vector_mode (vector_mode, int_mode,
554 GET_MODE_NUNITS (vector_mode));
555 return opt_machine_mode ();
556 }
557
558 /* Return the alignment of MODE. This will be bounded by 1 and
559 BIGGEST_ALIGNMENT. */
560
561 unsigned int
get_mode_alignment(machine_mode mode)562 get_mode_alignment (machine_mode mode)
563 {
564 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
565 }
566
567 /* Return the natural mode of an array, given that it is SIZE bytes in
568 total and has elements of type ELEM_TYPE. */
569
570 static machine_mode
mode_for_array(tree elem_type,tree size)571 mode_for_array (tree elem_type, tree size)
572 {
573 tree elem_size;
574 poly_uint64 int_size, int_elem_size;
575 unsigned HOST_WIDE_INT num_elems;
576 bool limit_p;
577
578 /* One-element arrays get the component type's mode. */
579 elem_size = TYPE_SIZE (elem_type);
580 if (simple_cst_equal (size, elem_size))
581 return TYPE_MODE (elem_type);
582
583 limit_p = true;
584 if (poly_int_tree_p (size, &int_size)
585 && poly_int_tree_p (elem_size, &int_elem_size)
586 && maybe_ne (int_elem_size, 0U)
587 && constant_multiple_p (int_size, int_elem_size, &num_elems))
588 {
589 machine_mode elem_mode = TYPE_MODE (elem_type);
590 machine_mode mode;
591 if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
592 return mode;
593 if (targetm.array_mode_supported_p (elem_mode, num_elems))
594 limit_p = false;
595 }
596 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
597 }
598
599 /* Subroutine of layout_decl: Force alignment required for the data type.
600 But if the decl itself wants greater alignment, don't override that. */
601
602 static inline void
do_type_align(tree type,tree decl)603 do_type_align (tree type, tree decl)
604 {
605 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
606 {
607 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
608 if (TREE_CODE (decl) == FIELD_DECL)
609 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
610 }
611 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
612 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
613 }
614
615 /* Set the size, mode and alignment of a ..._DECL node.
616 TYPE_DECL does need this for C++.
617 Note that LABEL_DECL and CONST_DECL nodes do not need this,
618 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
619 Don't call layout_decl for them.
620
621 KNOWN_ALIGN is the amount of alignment we can assume this
622 decl has with no special effort. It is relevant only for FIELD_DECLs
623 and depends on the previous fields.
624 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
625 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
626 the record will be aligned to suit. */
627
628 void
layout_decl(tree decl,unsigned int known_align)629 layout_decl (tree decl, unsigned int known_align)
630 {
631 tree type = TREE_TYPE (decl);
632 enum tree_code code = TREE_CODE (decl);
633 rtx rtl = NULL_RTX;
634 location_t loc = DECL_SOURCE_LOCATION (decl);
635
636 if (code == CONST_DECL)
637 return;
638
639 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
640 || code == TYPE_DECL || code == FIELD_DECL);
641
642 rtl = DECL_RTL_IF_SET (decl);
643
644 if (type == error_mark_node)
645 type = void_type_node;
646
647 /* Usually the size and mode come from the data type without change,
648 however, the front-end may set the explicit width of the field, so its
649 size may not be the same as the size of its type. This happens with
650 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
651 also happens with other fields. For example, the C++ front-end creates
652 zero-sized fields corresponding to empty base classes, and depends on
653 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
654 size in bytes from the size in bits. If we have already set the mode,
655 don't set it again since we can be called twice for FIELD_DECLs. */
656
657 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
658 if (DECL_MODE (decl) == VOIDmode)
659 SET_DECL_MODE (decl, TYPE_MODE (type));
660
661 if (DECL_SIZE (decl) == 0)
662 {
663 DECL_SIZE (decl) = TYPE_SIZE (type);
664 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
665 }
666 else if (DECL_SIZE_UNIT (decl) == 0)
667 DECL_SIZE_UNIT (decl)
668 = fold_convert_loc (loc, sizetype,
669 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
670 bitsize_unit_node));
671
672 if (code != FIELD_DECL)
673 /* For non-fields, update the alignment from the type. */
674 do_type_align (type, decl);
675 else
676 /* For fields, it's a bit more complicated... */
677 {
678 bool old_user_align = DECL_USER_ALIGN (decl);
679 bool zero_bitfield = false;
680 bool packed_p = DECL_PACKED (decl);
681 unsigned int mfa;
682
683 if (DECL_BIT_FIELD (decl))
684 {
685 DECL_BIT_FIELD_TYPE (decl) = type;
686
687 /* A zero-length bit-field affects the alignment of the next
688 field. In essence such bit-fields are not influenced by
689 any packing due to #pragma pack or attribute packed. */
690 if (integer_zerop (DECL_SIZE (decl))
691 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
692 {
693 zero_bitfield = true;
694 packed_p = false;
695 if (PCC_BITFIELD_TYPE_MATTERS)
696 do_type_align (type, decl);
697 else
698 {
699 #ifdef EMPTY_FIELD_BOUNDARY
700 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
701 {
702 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
703 DECL_USER_ALIGN (decl) = 0;
704 }
705 #endif
706 }
707 }
708
709 /* See if we can use an ordinary integer mode for a bit-field.
710 Conditions are: a fixed size that is correct for another mode,
711 occupying a complete byte or bytes on proper boundary. */
712 if (TYPE_SIZE (type) != 0
713 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
714 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
715 {
716 machine_mode xmode;
717 if (mode_for_size_tree (DECL_SIZE (decl),
718 MODE_INT, 1).exists (&xmode))
719 {
720 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
721 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
722 && (known_align == 0 || known_align >= xalign))
723 {
724 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
725 SET_DECL_MODE (decl, xmode);
726 DECL_BIT_FIELD (decl) = 0;
727 }
728 }
729 }
730
731 /* Turn off DECL_BIT_FIELD if we won't need it set. */
732 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
733 && known_align >= TYPE_ALIGN (type)
734 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
735 DECL_BIT_FIELD (decl) = 0;
736 }
737 else if (packed_p && DECL_USER_ALIGN (decl))
738 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
739 round up; we'll reduce it again below. We want packing to
740 supersede USER_ALIGN inherited from the type, but defer to
741 alignment explicitly specified on the field decl. */;
742 else
743 do_type_align (type, decl);
744
745 /* If the field is packed and not explicitly aligned, give it the
746 minimum alignment. Note that do_type_align may set
747 DECL_USER_ALIGN, so we need to check old_user_align instead. */
748 if (packed_p
749 && !old_user_align)
750 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
751
752 if (! packed_p && ! DECL_USER_ALIGN (decl))
753 {
754 /* Some targets (i.e. i386, VMS) limit struct field alignment
755 to a lower boundary than alignment of variables unless
756 it was overridden by attribute aligned. */
757 #ifdef BIGGEST_FIELD_ALIGNMENT
758 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
759 (unsigned) BIGGEST_FIELD_ALIGNMENT));
760 #endif
761 #ifdef ADJUST_FIELD_ALIGN
762 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
763 DECL_ALIGN (decl)));
764 #endif
765 }
766
767 if (zero_bitfield)
768 mfa = initial_max_fld_align * BITS_PER_UNIT;
769 else
770 mfa = maximum_field_alignment;
771 /* Should this be controlled by DECL_USER_ALIGN, too? */
772 if (mfa != 0)
773 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
774 }
775
776 /* Evaluate nonconstant size only once, either now or as soon as safe. */
777 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
778 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
779 if (DECL_SIZE_UNIT (decl) != 0
780 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
781 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
782
783 /* If requested, warn about definitions of large data objects. */
784 if ((code == PARM_DECL || (code == VAR_DECL && !DECL_NONLOCAL_FRAME (decl)))
785 && !DECL_EXTERNAL (decl))
786 {
787 tree size = DECL_SIZE_UNIT (decl);
788
789 if (size != 0 && TREE_CODE (size) == INTEGER_CST)
790 {
791 /* -Wlarger-than= argument of HOST_WIDE_INT_MAX is treated
792 as if PTRDIFF_MAX had been specified, with the value
793 being that on the target rather than the host. */
794 unsigned HOST_WIDE_INT max_size = warn_larger_than_size;
795 if (max_size == HOST_WIDE_INT_MAX)
796 max_size = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
797
798 if (compare_tree_int (size, max_size) > 0)
799 warning (OPT_Wlarger_than_, "size of %q+D %E bytes exceeds "
800 "maximum object size %wu",
801 decl, size, max_size);
802 }
803 }
804
805 /* If the RTL was already set, update its mode and mem attributes. */
806 if (rtl)
807 {
808 PUT_MODE (rtl, DECL_MODE (decl));
809 SET_DECL_RTL (decl, 0);
810 if (MEM_P (rtl))
811 set_mem_attributes (rtl, decl, 1);
812 SET_DECL_RTL (decl, rtl);
813 }
814 }
815
816 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
817 results of a previous call to layout_decl and calls it again. */
818
819 void
relayout_decl(tree decl)820 relayout_decl (tree decl)
821 {
822 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
823 SET_DECL_MODE (decl, VOIDmode);
824 if (!DECL_USER_ALIGN (decl))
825 SET_DECL_ALIGN (decl, 0);
826 if (DECL_RTL_SET_P (decl))
827 SET_DECL_RTL (decl, 0);
828
829 layout_decl (decl, 0);
830 }
831
832 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
833 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
834 is to be passed to all other layout functions for this record. It is the
835 responsibility of the caller to call `free' for the storage returned.
836 Note that garbage collection is not permitted until we finish laying
837 out the record. */
838
839 record_layout_info
start_record_layout(tree t)840 start_record_layout (tree t)
841 {
842 record_layout_info rli = XNEW (struct record_layout_info_s);
843
844 rli->t = t;
845
846 /* If the type has a minimum specified alignment (via an attribute
847 declaration, for example) use it -- otherwise, start with a
848 one-byte alignment. */
849 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
850 rli->unpacked_align = rli->record_align;
851 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
852
853 #ifdef STRUCTURE_SIZE_BOUNDARY
854 /* Packed structures don't need to have minimum size. */
855 if (! TYPE_PACKED (t))
856 {
857 unsigned tmp;
858
859 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
860 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
861 if (maximum_field_alignment != 0)
862 tmp = MIN (tmp, maximum_field_alignment);
863 rli->record_align = MAX (rli->record_align, tmp);
864 }
865 #endif
866
867 rli->offset = size_zero_node;
868 rli->bitpos = bitsize_zero_node;
869 rli->prev_field = 0;
870 rli->pending_statics = 0;
871 rli->packed_maybe_necessary = 0;
872 rli->remaining_in_alignment = 0;
873
874 return rli;
875 }
876
877 /* Fold sizetype value X to bitsizetype, given that X represents a type
878 size or offset. */
879
880 static tree
bits_from_bytes(tree x)881 bits_from_bytes (tree x)
882 {
883 if (POLY_INT_CST_P (x))
884 /* The runtime calculation isn't allowed to overflow sizetype;
885 increasing the runtime values must always increase the size
886 or offset of the object. This means that the object imposes
887 a maximum value on the runtime parameters, but we don't record
888 what that is. */
889 return build_poly_int_cst
890 (bitsizetype,
891 poly_wide_int::from (poly_int_cst_value (x),
892 TYPE_PRECISION (bitsizetype),
893 TYPE_SIGN (TREE_TYPE (x))));
894 x = fold_convert (bitsizetype, x);
895 gcc_checking_assert (x);
896 return x;
897 }
898
899 /* Return the combined bit position for the byte offset OFFSET and the
900 bit position BITPOS.
901
902 These functions operate on byte and bit positions present in FIELD_DECLs
903 and assume that these expressions result in no (intermediate) overflow.
904 This assumption is necessary to fold the expressions as much as possible,
905 so as to avoid creating artificially variable-sized types in languages
906 supporting variable-sized types like Ada. */
907
908 tree
bit_from_pos(tree offset,tree bitpos)909 bit_from_pos (tree offset, tree bitpos)
910 {
911 return size_binop (PLUS_EXPR, bitpos,
912 size_binop (MULT_EXPR, bits_from_bytes (offset),
913 bitsize_unit_node));
914 }
915
916 /* Return the combined truncated byte position for the byte offset OFFSET and
917 the bit position BITPOS. */
918
919 tree
byte_from_pos(tree offset,tree bitpos)920 byte_from_pos (tree offset, tree bitpos)
921 {
922 tree bytepos;
923 if (TREE_CODE (bitpos) == MULT_EXPR
924 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
925 bytepos = TREE_OPERAND (bitpos, 0);
926 else
927 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
928 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
929 }
930
931 /* Split the bit position POS into a byte offset *POFFSET and a bit
932 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
933
934 void
pos_from_bit(tree * poffset,tree * pbitpos,unsigned int off_align,tree pos)935 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
936 tree pos)
937 {
938 tree toff_align = bitsize_int (off_align);
939 if (TREE_CODE (pos) == MULT_EXPR
940 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
941 {
942 *poffset = size_binop (MULT_EXPR,
943 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
944 size_int (off_align / BITS_PER_UNIT));
945 *pbitpos = bitsize_zero_node;
946 }
947 else
948 {
949 *poffset = size_binop (MULT_EXPR,
950 fold_convert (sizetype,
951 size_binop (FLOOR_DIV_EXPR, pos,
952 toff_align)),
953 size_int (off_align / BITS_PER_UNIT));
954 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
955 }
956 }
957
958 /* Given a pointer to bit and byte offsets and an offset alignment,
959 normalize the offsets so they are within the alignment. */
960
961 void
normalize_offset(tree * poffset,tree * pbitpos,unsigned int off_align)962 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
963 {
964 /* If the bit position is now larger than it should be, adjust it
965 downwards. */
966 if (compare_tree_int (*pbitpos, off_align) >= 0)
967 {
968 tree offset, bitpos;
969 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
970 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
971 *pbitpos = bitpos;
972 }
973 }
974
975 /* Print debugging information about the information in RLI. */
976
977 DEBUG_FUNCTION void
debug_rli(record_layout_info rli)978 debug_rli (record_layout_info rli)
979 {
980 print_node_brief (stderr, "type", rli->t, 0);
981 print_node_brief (stderr, "\noffset", rli->offset, 0);
982 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
983
984 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
985 rli->record_align, rli->unpacked_align,
986 rli->offset_align);
987
988 /* The ms_struct code is the only that uses this. */
989 if (targetm.ms_bitfield_layout_p (rli->t))
990 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
991
992 if (rli->packed_maybe_necessary)
993 fprintf (stderr, "packed may be necessary\n");
994
995 if (!vec_safe_is_empty (rli->pending_statics))
996 {
997 fprintf (stderr, "pending statics:\n");
998 debug (rli->pending_statics);
999 }
1000 }
1001
1002 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
1003 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
1004
1005 void
normalize_rli(record_layout_info rli)1006 normalize_rli (record_layout_info rli)
1007 {
1008 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
1009 }
1010
1011 /* Returns the size in bytes allocated so far. */
1012
1013 tree
rli_size_unit_so_far(record_layout_info rli)1014 rli_size_unit_so_far (record_layout_info rli)
1015 {
1016 return byte_from_pos (rli->offset, rli->bitpos);
1017 }
1018
1019 /* Returns the size in bits allocated so far. */
1020
1021 tree
rli_size_so_far(record_layout_info rli)1022 rli_size_so_far (record_layout_info rli)
1023 {
1024 return bit_from_pos (rli->offset, rli->bitpos);
1025 }
1026
1027 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1028 the next available location within the record is given by KNOWN_ALIGN.
1029 Update the variable alignment fields in RLI, and return the alignment
1030 to give the FIELD. */
1031
1032 unsigned int
update_alignment_for_field(record_layout_info rli,tree field,unsigned int known_align)1033 update_alignment_for_field (record_layout_info rli, tree field,
1034 unsigned int known_align)
1035 {
1036 /* The alignment required for FIELD. */
1037 unsigned int desired_align;
1038 /* The type of this field. */
1039 tree type = TREE_TYPE (field);
1040 /* True if the field was explicitly aligned by the user. */
1041 bool user_align;
1042 bool is_bitfield;
1043
1044 /* Do not attempt to align an ERROR_MARK node */
1045 if (TREE_CODE (type) == ERROR_MARK)
1046 return 0;
1047
1048 /* Lay out the field so we know what alignment it needs. */
1049 layout_decl (field, known_align);
1050 desired_align = DECL_ALIGN (field);
1051 user_align = DECL_USER_ALIGN (field);
1052
1053 is_bitfield = (type != error_mark_node
1054 && DECL_BIT_FIELD_TYPE (field)
1055 && ! integer_zerop (TYPE_SIZE (type)));
1056
1057 /* Record must have at least as much alignment as any field.
1058 Otherwise, the alignment of the field within the record is
1059 meaningless. */
1060 if (targetm.ms_bitfield_layout_p (rli->t))
1061 {
1062 /* Here, the alignment of the underlying type of a bitfield can
1063 affect the alignment of a record; even a zero-sized field
1064 can do this. The alignment should be to the alignment of
1065 the type, except that for zero-size bitfields this only
1066 applies if there was an immediately prior, nonzero-size
1067 bitfield. (That's the way it is, experimentally.) */
1068 if (!is_bitfield
1069 || ((DECL_SIZE (field) == NULL_TREE
1070 || !integer_zerop (DECL_SIZE (field)))
1071 ? !DECL_PACKED (field)
1072 : (rli->prev_field
1073 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1074 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1075 {
1076 unsigned int type_align = TYPE_ALIGN (type);
1077 if (!is_bitfield && DECL_PACKED (field))
1078 type_align = desired_align;
1079 else
1080 type_align = MAX (type_align, desired_align);
1081 if (maximum_field_alignment != 0)
1082 type_align = MIN (type_align, maximum_field_alignment);
1083 rli->record_align = MAX (rli->record_align, type_align);
1084 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1085 }
1086 }
1087 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1088 {
1089 /* Named bit-fields cause the entire structure to have the
1090 alignment implied by their type. Some targets also apply the same
1091 rules to unnamed bitfields. */
1092 if (DECL_NAME (field) != 0
1093 || targetm.align_anon_bitfield ())
1094 {
1095 unsigned int type_align = TYPE_ALIGN (type);
1096
1097 #ifdef ADJUST_FIELD_ALIGN
1098 if (! TYPE_USER_ALIGN (type))
1099 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1100 #endif
1101
1102 /* Targets might chose to handle unnamed and hence possibly
1103 zero-width bitfield. Those are not influenced by #pragmas
1104 or packed attributes. */
1105 if (integer_zerop (DECL_SIZE (field)))
1106 {
1107 if (initial_max_fld_align)
1108 type_align = MIN (type_align,
1109 initial_max_fld_align * BITS_PER_UNIT);
1110 }
1111 else if (maximum_field_alignment != 0)
1112 type_align = MIN (type_align, maximum_field_alignment);
1113 else if (DECL_PACKED (field))
1114 type_align = MIN (type_align, BITS_PER_UNIT);
1115
1116 /* The alignment of the record is increased to the maximum
1117 of the current alignment, the alignment indicated on the
1118 field (i.e., the alignment specified by an __aligned__
1119 attribute), and the alignment indicated by the type of
1120 the field. */
1121 rli->record_align = MAX (rli->record_align, desired_align);
1122 rli->record_align = MAX (rli->record_align, type_align);
1123
1124 if (warn_packed)
1125 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1126 user_align |= TYPE_USER_ALIGN (type);
1127 }
1128 }
1129 else
1130 {
1131 rli->record_align = MAX (rli->record_align, desired_align);
1132 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1133 }
1134
1135 TYPE_USER_ALIGN (rli->t) |= user_align;
1136
1137 return desired_align;
1138 }
1139
1140 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1141 the field alignment of FIELD or FIELD isn't aligned. */
1142
1143 static void
handle_warn_if_not_align(tree field,unsigned int record_align)1144 handle_warn_if_not_align (tree field, unsigned int record_align)
1145 {
1146 tree type = TREE_TYPE (field);
1147
1148 if (type == error_mark_node)
1149 return;
1150
1151 unsigned int warn_if_not_align = 0;
1152
1153 int opt_w = 0;
1154
1155 if (warn_if_not_aligned)
1156 {
1157 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1158 if (!warn_if_not_align)
1159 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1160 if (warn_if_not_align)
1161 opt_w = OPT_Wif_not_aligned;
1162 }
1163
1164 if (!warn_if_not_align
1165 && warn_packed_not_aligned
1166 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1167 {
1168 warn_if_not_align = TYPE_ALIGN (type);
1169 opt_w = OPT_Wpacked_not_aligned;
1170 }
1171
1172 if (!warn_if_not_align)
1173 return;
1174
1175 tree context = DECL_CONTEXT (field);
1176
1177 warn_if_not_align /= BITS_PER_UNIT;
1178 record_align /= BITS_PER_UNIT;
1179 if ((record_align % warn_if_not_align) != 0)
1180 warning (opt_w, "alignment %u of %qT is less than %u",
1181 record_align, context, warn_if_not_align);
1182
1183 tree off = byte_position (field);
1184 if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1185 {
1186 if (TREE_CODE (off) == INTEGER_CST)
1187 warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1188 field, off, context, warn_if_not_align);
1189 else
1190 warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1191 field, off, context, warn_if_not_align);
1192 }
1193 }
1194
1195 /* Called from place_field to handle unions. */
1196
1197 static void
place_union_field(record_layout_info rli,tree field)1198 place_union_field (record_layout_info rli, tree field)
1199 {
1200 update_alignment_for_field (rli, field, /*known_align=*/0);
1201
1202 DECL_FIELD_OFFSET (field) = size_zero_node;
1203 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1204 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1205 handle_warn_if_not_align (field, rli->record_align);
1206
1207 /* If this is an ERROR_MARK return *after* having set the
1208 field at the start of the union. This helps when parsing
1209 invalid fields. */
1210 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1211 return;
1212
1213 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1214 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1215 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1216
1217 /* We assume the union's size will be a multiple of a byte so we don't
1218 bother with BITPOS. */
1219 if (TREE_CODE (rli->t) == UNION_TYPE)
1220 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1221 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1222 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1223 DECL_SIZE_UNIT (field), rli->offset);
1224 }
1225
1226 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1227 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1228 units of alignment than the underlying TYPE. */
1229 static int
excess_unit_span(HOST_WIDE_INT byte_offset,HOST_WIDE_INT bit_offset,HOST_WIDE_INT size,HOST_WIDE_INT align,tree type)1230 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1231 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1232 {
1233 /* Note that the calculation of OFFSET might overflow; we calculate it so
1234 that we still get the right result as long as ALIGN is a power of two. */
1235 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1236
1237 offset = offset % align;
1238 return ((offset + size + align - 1) / align
1239 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1240 }
1241
1242 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1243 is a FIELD_DECL to be added after those fields already present in
1244 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1245 callers that desire that behavior must manually perform that step.) */
1246
1247 void
place_field(record_layout_info rli,tree field)1248 place_field (record_layout_info rli, tree field)
1249 {
1250 /* The alignment required for FIELD. */
1251 unsigned int desired_align;
1252 /* The alignment FIELD would have if we just dropped it into the
1253 record as it presently stands. */
1254 unsigned int known_align;
1255 unsigned int actual_align;
1256 /* The type of this field. */
1257 tree type = TREE_TYPE (field);
1258
1259 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1260
1261 /* If FIELD is static, then treat it like a separate variable, not
1262 really like a structure field. If it is a FUNCTION_DECL, it's a
1263 method. In both cases, all we do is lay out the decl, and we do
1264 it *after* the record is laid out. */
1265 if (VAR_P (field))
1266 {
1267 vec_safe_push (rli->pending_statics, field);
1268 return;
1269 }
1270
1271 /* Enumerators and enum types which are local to this class need not
1272 be laid out. Likewise for initialized constant fields. */
1273 else if (TREE_CODE (field) != FIELD_DECL)
1274 return;
1275
1276 /* Unions are laid out very differently than records, so split
1277 that code off to another function. */
1278 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1279 {
1280 place_union_field (rli, field);
1281 return;
1282 }
1283
1284 else if (TREE_CODE (type) == ERROR_MARK)
1285 {
1286 /* Place this field at the current allocation position, so we
1287 maintain monotonicity. */
1288 DECL_FIELD_OFFSET (field) = rli->offset;
1289 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1290 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1291 handle_warn_if_not_align (field, rli->record_align);
1292 return;
1293 }
1294
1295 if (AGGREGATE_TYPE_P (type)
1296 && TYPE_TYPELESS_STORAGE (type))
1297 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1298
1299 /* Work out the known alignment so far. Note that A & (-A) is the
1300 value of the least-significant bit in A that is one. */
1301 if (! integer_zerop (rli->bitpos))
1302 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1303 else if (integer_zerop (rli->offset))
1304 known_align = 0;
1305 else if (tree_fits_uhwi_p (rli->offset))
1306 known_align = (BITS_PER_UNIT
1307 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1308 else
1309 known_align = rli->offset_align;
1310
1311 desired_align = update_alignment_for_field (rli, field, known_align);
1312 if (known_align == 0)
1313 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1314
1315 if (warn_packed && DECL_PACKED (field))
1316 {
1317 if (known_align >= TYPE_ALIGN (type))
1318 {
1319 if (TYPE_ALIGN (type) > desired_align)
1320 {
1321 if (STRICT_ALIGNMENT)
1322 warning (OPT_Wattributes, "packed attribute causes "
1323 "inefficient alignment for %q+D", field);
1324 /* Don't warn if DECL_PACKED was set by the type. */
1325 else if (!TYPE_PACKED (rli->t))
1326 warning (OPT_Wattributes, "packed attribute is "
1327 "unnecessary for %q+D", field);
1328 }
1329 }
1330 else
1331 rli->packed_maybe_necessary = 1;
1332 }
1333
1334 /* Does this field automatically have alignment it needs by virtue
1335 of the fields that precede it and the record's own alignment? */
1336 if (known_align < desired_align
1337 && (! targetm.ms_bitfield_layout_p (rli->t)
1338 || rli->prev_field == NULL))
1339 {
1340 /* No, we need to skip space before this field.
1341 Bump the cumulative size to multiple of field alignment. */
1342
1343 if (!targetm.ms_bitfield_layout_p (rli->t)
1344 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION
1345 && !TYPE_ARTIFICIAL (rli->t))
1346 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1347
1348 /* If the alignment is still within offset_align, just align
1349 the bit position. */
1350 if (desired_align < rli->offset_align)
1351 rli->bitpos = round_up (rli->bitpos, desired_align);
1352 else
1353 {
1354 /* First adjust OFFSET by the partial bits, then align. */
1355 rli->offset
1356 = size_binop (PLUS_EXPR, rli->offset,
1357 fold_convert (sizetype,
1358 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1359 bitsize_unit_node)));
1360 rli->bitpos = bitsize_zero_node;
1361
1362 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1363 }
1364
1365 if (! TREE_CONSTANT (rli->offset))
1366 rli->offset_align = desired_align;
1367 }
1368
1369 /* Handle compatibility with PCC. Note that if the record has any
1370 variable-sized fields, we need not worry about compatibility. */
1371 if (PCC_BITFIELD_TYPE_MATTERS
1372 && ! targetm.ms_bitfield_layout_p (rli->t)
1373 && TREE_CODE (field) == FIELD_DECL
1374 && type != error_mark_node
1375 && DECL_BIT_FIELD (field)
1376 && (! DECL_PACKED (field)
1377 /* Enter for these packed fields only to issue a warning. */
1378 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1379 && maximum_field_alignment == 0
1380 && ! integer_zerop (DECL_SIZE (field))
1381 && tree_fits_uhwi_p (DECL_SIZE (field))
1382 && tree_fits_uhwi_p (rli->offset)
1383 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1384 {
1385 unsigned int type_align = TYPE_ALIGN (type);
1386 tree dsize = DECL_SIZE (field);
1387 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1388 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1389 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1390
1391 #ifdef ADJUST_FIELD_ALIGN
1392 if (! TYPE_USER_ALIGN (type))
1393 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1394 #endif
1395
1396 /* A bit field may not span more units of alignment of its type
1397 than its type itself. Advance to next boundary if necessary. */
1398 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1399 {
1400 if (DECL_PACKED (field))
1401 {
1402 if (warn_packed_bitfield_compat == 1)
1403 inform
1404 (input_location,
1405 "offset of packed bit-field %qD has changed in GCC 4.4",
1406 field);
1407 }
1408 else
1409 rli->bitpos = round_up (rli->bitpos, type_align);
1410 }
1411
1412 if (! DECL_PACKED (field))
1413 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1414
1415 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1416 TYPE_WARN_IF_NOT_ALIGN (type));
1417 }
1418
1419 #ifdef BITFIELD_NBYTES_LIMITED
1420 if (BITFIELD_NBYTES_LIMITED
1421 && ! targetm.ms_bitfield_layout_p (rli->t)
1422 && TREE_CODE (field) == FIELD_DECL
1423 && type != error_mark_node
1424 && DECL_BIT_FIELD_TYPE (field)
1425 && ! DECL_PACKED (field)
1426 && ! integer_zerop (DECL_SIZE (field))
1427 && tree_fits_uhwi_p (DECL_SIZE (field))
1428 && tree_fits_uhwi_p (rli->offset)
1429 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1430 {
1431 unsigned int type_align = TYPE_ALIGN (type);
1432 tree dsize = DECL_SIZE (field);
1433 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1434 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1435 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1436
1437 #ifdef ADJUST_FIELD_ALIGN
1438 if (! TYPE_USER_ALIGN (type))
1439 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1440 #endif
1441
1442 if (maximum_field_alignment != 0)
1443 type_align = MIN (type_align, maximum_field_alignment);
1444 /* ??? This test is opposite the test in the containing if
1445 statement, so this code is unreachable currently. */
1446 else if (DECL_PACKED (field))
1447 type_align = MIN (type_align, BITS_PER_UNIT);
1448
1449 /* A bit field may not span the unit of alignment of its type.
1450 Advance to next boundary if necessary. */
1451 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1452 rli->bitpos = round_up (rli->bitpos, type_align);
1453
1454 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1455 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1456 TYPE_WARN_IF_NOT_ALIGN (type));
1457 }
1458 #endif
1459
1460 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1461 A subtlety:
1462 When a bit field is inserted into a packed record, the whole
1463 size of the underlying type is used by one or more same-size
1464 adjacent bitfields. (That is, if its long:3, 32 bits is
1465 used in the record, and any additional adjacent long bitfields are
1466 packed into the same chunk of 32 bits. However, if the size
1467 changes, a new field of that size is allocated.) In an unpacked
1468 record, this is the same as using alignment, but not equivalent
1469 when packing.
1470
1471 Note: for compatibility, we use the type size, not the type alignment
1472 to determine alignment, since that matches the documentation */
1473
1474 if (targetm.ms_bitfield_layout_p (rli->t))
1475 {
1476 tree prev_saved = rli->prev_field;
1477 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1478
1479 /* This is a bitfield if it exists. */
1480 if (rli->prev_field)
1481 {
1482 bool realign_p = known_align < desired_align;
1483
1484 /* If both are bitfields, nonzero, and the same size, this is
1485 the middle of a run. Zero declared size fields are special
1486 and handled as "end of run". (Note: it's nonzero declared
1487 size, but equal type sizes!) (Since we know that both
1488 the current and previous fields are bitfields by the
1489 time we check it, DECL_SIZE must be present for both.) */
1490 if (DECL_BIT_FIELD_TYPE (field)
1491 && !integer_zerop (DECL_SIZE (field))
1492 && !integer_zerop (DECL_SIZE (rli->prev_field))
1493 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1494 && tree_fits_uhwi_p (TYPE_SIZE (type))
1495 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1496 {
1497 /* We're in the middle of a run of equal type size fields; make
1498 sure we realign if we run out of bits. (Not decl size,
1499 type size!) */
1500 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1501
1502 if (rli->remaining_in_alignment < bitsize)
1503 {
1504 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1505
1506 /* out of bits; bump up to next 'word'. */
1507 rli->bitpos
1508 = size_binop (PLUS_EXPR, rli->bitpos,
1509 bitsize_int (rli->remaining_in_alignment));
1510 rli->prev_field = field;
1511 if (typesize < bitsize)
1512 rli->remaining_in_alignment = 0;
1513 else
1514 rli->remaining_in_alignment = typesize - bitsize;
1515 }
1516 else
1517 {
1518 rli->remaining_in_alignment -= bitsize;
1519 realign_p = false;
1520 }
1521 }
1522 else
1523 {
1524 /* End of a run: if leaving a run of bitfields of the same type
1525 size, we have to "use up" the rest of the bits of the type
1526 size.
1527
1528 Compute the new position as the sum of the size for the prior
1529 type and where we first started working on that type.
1530 Note: since the beginning of the field was aligned then
1531 of course the end will be too. No round needed. */
1532
1533 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1534 {
1535 rli->bitpos
1536 = size_binop (PLUS_EXPR, rli->bitpos,
1537 bitsize_int (rli->remaining_in_alignment));
1538 }
1539 else
1540 /* We "use up" size zero fields; the code below should behave
1541 as if the prior field was not a bitfield. */
1542 prev_saved = NULL;
1543
1544 /* Cause a new bitfield to be captured, either this time (if
1545 currently a bitfield) or next time we see one. */
1546 if (!DECL_BIT_FIELD_TYPE (field)
1547 || integer_zerop (DECL_SIZE (field)))
1548 rli->prev_field = NULL;
1549 }
1550
1551 /* Does this field automatically have alignment it needs by virtue
1552 of the fields that precede it and the record's own alignment? */
1553 if (realign_p)
1554 {
1555 /* If the alignment is still within offset_align, just align
1556 the bit position. */
1557 if (desired_align < rli->offset_align)
1558 rli->bitpos = round_up (rli->bitpos, desired_align);
1559 else
1560 {
1561 /* First adjust OFFSET by the partial bits, then align. */
1562 tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1563 bitsize_unit_node);
1564 rli->offset = size_binop (PLUS_EXPR, rli->offset,
1565 fold_convert (sizetype, d));
1566 rli->bitpos = bitsize_zero_node;
1567
1568 rli->offset = round_up (rli->offset,
1569 desired_align / BITS_PER_UNIT);
1570 }
1571
1572 if (! TREE_CONSTANT (rli->offset))
1573 rli->offset_align = desired_align;
1574 }
1575
1576 normalize_rli (rli);
1577 }
1578
1579 /* If we're starting a new run of same type size bitfields
1580 (or a run of non-bitfields), set up the "first of the run"
1581 fields.
1582
1583 That is, if the current field is not a bitfield, or if there
1584 was a prior bitfield the type sizes differ, or if there wasn't
1585 a prior bitfield the size of the current field is nonzero.
1586
1587 Note: we must be sure to test ONLY the type size if there was
1588 a prior bitfield and ONLY for the current field being zero if
1589 there wasn't. */
1590
1591 if (!DECL_BIT_FIELD_TYPE (field)
1592 || (prev_saved != NULL
1593 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1594 : !integer_zerop (DECL_SIZE (field))))
1595 {
1596 /* Never smaller than a byte for compatibility. */
1597 unsigned int type_align = BITS_PER_UNIT;
1598
1599 /* (When not a bitfield), we could be seeing a flex array (with
1600 no DECL_SIZE). Since we won't be using remaining_in_alignment
1601 until we see a bitfield (and come by here again) we just skip
1602 calculating it. */
1603 if (DECL_SIZE (field) != NULL
1604 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1605 && tree_fits_uhwi_p (DECL_SIZE (field)))
1606 {
1607 unsigned HOST_WIDE_INT bitsize
1608 = tree_to_uhwi (DECL_SIZE (field));
1609 unsigned HOST_WIDE_INT typesize
1610 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1611
1612 if (typesize < bitsize)
1613 rli->remaining_in_alignment = 0;
1614 else
1615 rli->remaining_in_alignment = typesize - bitsize;
1616 }
1617
1618 /* Now align (conventionally) for the new type. */
1619 if (! DECL_PACKED (field))
1620 type_align = TYPE_ALIGN (TREE_TYPE (field));
1621
1622 if (maximum_field_alignment != 0)
1623 type_align = MIN (type_align, maximum_field_alignment);
1624
1625 rli->bitpos = round_up (rli->bitpos, type_align);
1626
1627 /* If we really aligned, don't allow subsequent bitfields
1628 to undo that. */
1629 rli->prev_field = NULL;
1630 }
1631 }
1632
1633 /* Offset so far becomes the position of this field after normalizing. */
1634 normalize_rli (rli);
1635 DECL_FIELD_OFFSET (field) = rli->offset;
1636 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1637 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1638 handle_warn_if_not_align (field, rli->record_align);
1639
1640 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1641 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1642 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1643
1644 /* If this field ended up more aligned than we thought it would be (we
1645 approximate this by seeing if its position changed), lay out the field
1646 again; perhaps we can use an integral mode for it now. */
1647 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1648 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1649 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1650 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1651 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1652 actual_align = (BITS_PER_UNIT
1653 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1654 else
1655 actual_align = DECL_OFFSET_ALIGN (field);
1656 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1657 store / extract bit field operations will check the alignment of the
1658 record against the mode of bit fields. */
1659
1660 if (known_align != actual_align)
1661 layout_decl (field, actual_align);
1662
1663 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1664 rli->prev_field = field;
1665
1666 /* Now add size of this field to the size of the record. If the size is
1667 not constant, treat the field as being a multiple of bytes and just
1668 adjust the offset, resetting the bit position. Otherwise, apportion the
1669 size amongst the bit position and offset. First handle the case of an
1670 unspecified size, which can happen when we have an invalid nested struct
1671 definition, such as struct j { struct j { int i; } }. The error message
1672 is printed in finish_struct. */
1673 if (DECL_SIZE (field) == 0)
1674 /* Do nothing. */;
1675 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1676 || TREE_OVERFLOW (DECL_SIZE (field)))
1677 {
1678 rli->offset
1679 = size_binop (PLUS_EXPR, rli->offset,
1680 fold_convert (sizetype,
1681 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1682 bitsize_unit_node)));
1683 rli->offset
1684 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1685 rli->bitpos = bitsize_zero_node;
1686 rli->offset_align = MIN (rli->offset_align, desired_align);
1687
1688 if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1689 bitsize_int (rli->offset_align)))
1690 {
1691 tree type = strip_array_types (TREE_TYPE (field));
1692 /* The above adjusts offset_align just based on the start of the
1693 field. The field might not have a size that is a multiple of
1694 that offset_align though. If the field is an array of fixed
1695 sized elements, assume there can be any multiple of those
1696 sizes. If it is a variable length aggregate or array of
1697 variable length aggregates, assume worst that the end is
1698 just BITS_PER_UNIT aligned. */
1699 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1700 {
1701 if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1702 {
1703 unsigned HOST_WIDE_INT sz
1704 = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1705 rli->offset_align = MIN (rli->offset_align, sz);
1706 }
1707 }
1708 else
1709 rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1710 }
1711 }
1712 else if (targetm.ms_bitfield_layout_p (rli->t))
1713 {
1714 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1715
1716 /* If FIELD is the last field and doesn't end at the full length
1717 of the type then pad the struct out to the full length of the
1718 last type. */
1719 if (DECL_BIT_FIELD_TYPE (field)
1720 && !integer_zerop (DECL_SIZE (field)))
1721 {
1722 /* We have to scan, because non-field DECLS are also here. */
1723 tree probe = field;
1724 while ((probe = DECL_CHAIN (probe)))
1725 if (TREE_CODE (probe) == FIELD_DECL)
1726 break;
1727 if (!probe)
1728 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1729 bitsize_int (rli->remaining_in_alignment));
1730 }
1731
1732 normalize_rli (rli);
1733 }
1734 else
1735 {
1736 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1737 normalize_rli (rli);
1738 }
1739 }
1740
1741 /* Assuming that all the fields have been laid out, this function uses
1742 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1743 indicated by RLI. */
1744
1745 static void
finalize_record_size(record_layout_info rli)1746 finalize_record_size (record_layout_info rli)
1747 {
1748 tree unpadded_size, unpadded_size_unit;
1749
1750 /* Now we want just byte and bit offsets, so set the offset alignment
1751 to be a byte and then normalize. */
1752 rli->offset_align = BITS_PER_UNIT;
1753 normalize_rli (rli);
1754
1755 /* Determine the desired alignment. */
1756 #ifdef ROUND_TYPE_ALIGN
1757 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1758 rli->record_align));
1759 #else
1760 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1761 #endif
1762
1763 /* Compute the size so far. Be sure to allow for extra bits in the
1764 size in bytes. We have guaranteed above that it will be no more
1765 than a single byte. */
1766 unpadded_size = rli_size_so_far (rli);
1767 unpadded_size_unit = rli_size_unit_so_far (rli);
1768 if (! integer_zerop (rli->bitpos))
1769 unpadded_size_unit
1770 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1771
1772 /* Round the size up to be a multiple of the required alignment. */
1773 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1774 TYPE_SIZE_UNIT (rli->t)
1775 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1776
1777 if (TREE_CONSTANT (unpadded_size)
1778 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1779 && input_location != BUILTINS_LOCATION
1780 && !TYPE_ARTIFICIAL (rli->t))
1781 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1782
1783 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1784 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1785 && TREE_CONSTANT (unpadded_size))
1786 {
1787 tree unpacked_size;
1788
1789 #ifdef ROUND_TYPE_ALIGN
1790 rli->unpacked_align
1791 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1792 #else
1793 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1794 #endif
1795
1796 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1797 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1798 {
1799 if (TYPE_NAME (rli->t))
1800 {
1801 tree name;
1802
1803 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1804 name = TYPE_NAME (rli->t);
1805 else
1806 name = DECL_NAME (TYPE_NAME (rli->t));
1807
1808 if (STRICT_ALIGNMENT)
1809 warning (OPT_Wpacked, "packed attribute causes inefficient "
1810 "alignment for %qE", name);
1811 else
1812 warning (OPT_Wpacked,
1813 "packed attribute is unnecessary for %qE", name);
1814 }
1815 else
1816 {
1817 if (STRICT_ALIGNMENT)
1818 warning (OPT_Wpacked,
1819 "packed attribute causes inefficient alignment");
1820 else
1821 warning (OPT_Wpacked, "packed attribute is unnecessary");
1822 }
1823 }
1824 }
1825 }
1826
1827 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1828
1829 void
compute_record_mode(tree type)1830 compute_record_mode (tree type)
1831 {
1832 tree field;
1833 machine_mode mode = VOIDmode;
1834
1835 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1836 However, if possible, we use a mode that fits in a register
1837 instead, in order to allow for better optimization down the
1838 line. */
1839 SET_TYPE_MODE (type, BLKmode);
1840
1841 poly_uint64 type_size;
1842 if (!poly_int_tree_p (TYPE_SIZE (type), &type_size))
1843 return;
1844
1845 /* A record which has any BLKmode members must itself be
1846 BLKmode; it can't go in a register. Unless the member is
1847 BLKmode only because it isn't aligned. */
1848 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1849 {
1850 if (TREE_CODE (field) != FIELD_DECL)
1851 continue;
1852
1853 poly_uint64 field_size;
1854 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1855 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1856 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1857 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1858 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1859 || !tree_fits_poly_uint64_p (bit_position (field))
1860 || DECL_SIZE (field) == 0
1861 || !poly_int_tree_p (DECL_SIZE (field), &field_size))
1862 return;
1863
1864 /* If this field is the whole struct, remember its mode so
1865 that, say, we can put a double in a class into a DF
1866 register instead of forcing it to live in the stack. */
1867 if (known_eq (field_size, type_size)
1868 /* Partial int types (e.g. __int20) may have TYPE_SIZE equal to
1869 wider types (e.g. int32), despite precision being less. Ensure
1870 that the TYPE_MODE of the struct does not get set to the partial
1871 int mode if there is a wider type also in the struct. */
1872 && known_gt (GET_MODE_PRECISION (DECL_MODE (field)),
1873 GET_MODE_PRECISION (mode)))
1874 mode = DECL_MODE (field);
1875
1876 /* With some targets, it is sub-optimal to access an aligned
1877 BLKmode structure as a scalar. */
1878 if (targetm.member_type_forces_blk (field, mode))
1879 return;
1880 }
1881
1882 /* If we only have one real field; use its mode if that mode's size
1883 matches the type's size. This generally only applies to RECORD_TYPE.
1884 For UNION_TYPE, if the widest field is MODE_INT then use that mode.
1885 If the widest field is MODE_PARTIAL_INT, and the union will be passed
1886 by reference, then use that mode. */
1887 if ((TREE_CODE (type) == RECORD_TYPE
1888 || (TREE_CODE (type) == UNION_TYPE
1889 && (GET_MODE_CLASS (mode) == MODE_INT
1890 || (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
1891 && (targetm.calls.pass_by_reference
1892 (pack_cumulative_args (0),
1893 function_arg_info (type, mode, /*named=*/false)))))))
1894 && mode != VOIDmode
1895 && known_eq (GET_MODE_BITSIZE (mode), type_size))
1896 ;
1897 else
1898 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1899
1900 /* If structure's known alignment is less than what the scalar
1901 mode would need, and it matters, then stick with BLKmode. */
1902 if (mode != BLKmode
1903 && STRICT_ALIGNMENT
1904 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1905 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1906 {
1907 /* If this is the only reason this type is BLKmode, then
1908 don't force containing types to be BLKmode. */
1909 TYPE_NO_FORCE_BLK (type) = 1;
1910 mode = BLKmode;
1911 }
1912
1913 SET_TYPE_MODE (type, mode);
1914 }
1915
1916 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1917 out. */
1918
1919 static void
finalize_type_size(tree type)1920 finalize_type_size (tree type)
1921 {
1922 /* Normally, use the alignment corresponding to the mode chosen.
1923 However, where strict alignment is not required, avoid
1924 over-aligning structures, since most compilers do not do this
1925 alignment. */
1926 if (TYPE_MODE (type) != BLKmode
1927 && TYPE_MODE (type) != VOIDmode
1928 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1929 {
1930 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1931
1932 /* Don't override a larger alignment requirement coming from a user
1933 alignment of one of the fields. */
1934 if (mode_align >= TYPE_ALIGN (type))
1935 {
1936 SET_TYPE_ALIGN (type, mode_align);
1937 TYPE_USER_ALIGN (type) = 0;
1938 }
1939 }
1940
1941 /* Do machine-dependent extra alignment. */
1942 #ifdef ROUND_TYPE_ALIGN
1943 SET_TYPE_ALIGN (type,
1944 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1945 #endif
1946
1947 /* If we failed to find a simple way to calculate the unit size
1948 of the type, find it by division. */
1949 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1950 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1951 result will fit in sizetype. We will get more efficient code using
1952 sizetype, so we force a conversion. */
1953 TYPE_SIZE_UNIT (type)
1954 = fold_convert (sizetype,
1955 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1956 bitsize_unit_node));
1957
1958 if (TYPE_SIZE (type) != 0)
1959 {
1960 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1961 TYPE_SIZE_UNIT (type)
1962 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1963 }
1964
1965 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1966 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1967 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1968 if (TYPE_SIZE_UNIT (type) != 0
1969 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1970 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1971
1972 /* Handle empty records as per the x86-64 psABI. */
1973 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1974
1975 /* Also layout any other variants of the type. */
1976 if (TYPE_NEXT_VARIANT (type)
1977 || type != TYPE_MAIN_VARIANT (type))
1978 {
1979 tree variant;
1980 /* Record layout info of this variant. */
1981 tree size = TYPE_SIZE (type);
1982 tree size_unit = TYPE_SIZE_UNIT (type);
1983 unsigned int align = TYPE_ALIGN (type);
1984 unsigned int precision = TYPE_PRECISION (type);
1985 unsigned int user_align = TYPE_USER_ALIGN (type);
1986 machine_mode mode = TYPE_MODE (type);
1987 bool empty_p = TYPE_EMPTY_P (type);
1988
1989 /* Copy it into all variants. */
1990 for (variant = TYPE_MAIN_VARIANT (type);
1991 variant != 0;
1992 variant = TYPE_NEXT_VARIANT (variant))
1993 {
1994 TYPE_SIZE (variant) = size;
1995 TYPE_SIZE_UNIT (variant) = size_unit;
1996 unsigned valign = align;
1997 if (TYPE_USER_ALIGN (variant))
1998 valign = MAX (valign, TYPE_ALIGN (variant));
1999 else
2000 TYPE_USER_ALIGN (variant) = user_align;
2001 SET_TYPE_ALIGN (variant, valign);
2002 TYPE_PRECISION (variant) = precision;
2003 SET_TYPE_MODE (variant, mode);
2004 TYPE_EMPTY_P (variant) = empty_p;
2005 }
2006 }
2007 }
2008
2009 /* Return a new underlying object for a bitfield started with FIELD. */
2010
2011 static tree
start_bitfield_representative(tree field)2012 start_bitfield_representative (tree field)
2013 {
2014 tree repr = make_node (FIELD_DECL);
2015 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
2016 /* Force the representative to begin at a BITS_PER_UNIT aligned
2017 boundary - C++ may use tail-padding of a base object to
2018 continue packing bits so the bitfield region does not start
2019 at bit zero (see g++.dg/abi/bitfield5.C for example).
2020 Unallocated bits may happen for other reasons as well,
2021 for example Ada which allows explicit bit-granular structure layout. */
2022 DECL_FIELD_BIT_OFFSET (repr)
2023 = size_binop (BIT_AND_EXPR,
2024 DECL_FIELD_BIT_OFFSET (field),
2025 bitsize_int (~(BITS_PER_UNIT - 1)));
2026 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
2027 DECL_SIZE (repr) = DECL_SIZE (field);
2028 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
2029 DECL_PACKED (repr) = DECL_PACKED (field);
2030 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
2031 /* There are no indirect accesses to this field. If we introduce
2032 some then they have to use the record alias set. This makes
2033 sure to properly conflict with [indirect] accesses to addressable
2034 fields of the bitfield group. */
2035 DECL_NONADDRESSABLE_P (repr) = 1;
2036 return repr;
2037 }
2038
2039 /* Finish up a bitfield group that was started by creating the underlying
2040 object REPR with the last field in the bitfield group FIELD. */
2041
2042 static void
finish_bitfield_representative(tree repr,tree field)2043 finish_bitfield_representative (tree repr, tree field)
2044 {
2045 unsigned HOST_WIDE_INT bitsize, maxbitsize;
2046 tree nextf, size;
2047
2048 size = size_diffop (DECL_FIELD_OFFSET (field),
2049 DECL_FIELD_OFFSET (repr));
2050 while (TREE_CODE (size) == COMPOUND_EXPR)
2051 size = TREE_OPERAND (size, 1);
2052 gcc_assert (tree_fits_uhwi_p (size));
2053 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2054 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2055 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2056 + tree_to_uhwi (DECL_SIZE (field)));
2057
2058 /* Round up bitsize to multiples of BITS_PER_UNIT. */
2059 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2060
2061 /* Now nothing tells us how to pad out bitsize ... */
2062 nextf = DECL_CHAIN (field);
2063 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2064 nextf = DECL_CHAIN (nextf);
2065 if (nextf)
2066 {
2067 tree maxsize;
2068 /* If there was an error, the field may be not laid out
2069 correctly. Don't bother to do anything. */
2070 if (TREE_TYPE (nextf) == error_mark_node)
2071 return;
2072 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2073 DECL_FIELD_OFFSET (repr));
2074 if (tree_fits_uhwi_p (maxsize))
2075 {
2076 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2077 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2078 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2079 /* If the group ends within a bitfield nextf does not need to be
2080 aligned to BITS_PER_UNIT. Thus round up. */
2081 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2082 }
2083 else
2084 maxbitsize = bitsize;
2085 }
2086 else
2087 {
2088 /* Note that if the C++ FE sets up tail-padding to be re-used it
2089 creates a as-base variant of the type with TYPE_SIZE adjusted
2090 accordingly. So it is safe to include tail-padding here. */
2091 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2092 (DECL_CONTEXT (field));
2093 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2094 /* We cannot generally rely on maxsize to fold to an integer constant,
2095 so use bitsize as fallback for this case. */
2096 if (tree_fits_uhwi_p (maxsize))
2097 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2098 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2099 else
2100 maxbitsize = bitsize;
2101 }
2102
2103 /* Only if we don't artificially break up the representative in
2104 the middle of a large bitfield with different possibly
2105 overlapping representatives. And all representatives start
2106 at byte offset. */
2107 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2108
2109 /* Find the smallest nice mode to use. */
2110 opt_scalar_int_mode mode_iter;
2111 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2112 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2113 break;
2114
2115 scalar_int_mode mode;
2116 if (!mode_iter.exists (&mode)
2117 || GET_MODE_BITSIZE (mode) > maxbitsize
2118 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2119 {
2120 /* We really want a BLKmode representative only as a last resort,
2121 considering the member b in
2122 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2123 Otherwise we simply want to split the representative up
2124 allowing for overlaps within the bitfield region as required for
2125 struct { int a : 7; int b : 7;
2126 int c : 10; int d; } __attribute__((packed));
2127 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2128 DECL_SIZE (repr) = bitsize_int (bitsize);
2129 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2130 SET_DECL_MODE (repr, BLKmode);
2131 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2132 bitsize / BITS_PER_UNIT);
2133 }
2134 else
2135 {
2136 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2137 DECL_SIZE (repr) = bitsize_int (modesize);
2138 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2139 SET_DECL_MODE (repr, mode);
2140 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2141 }
2142
2143 /* Remember whether the bitfield group is at the end of the
2144 structure or not. */
2145 DECL_CHAIN (repr) = nextf;
2146 }
2147
2148 /* Compute and set FIELD_DECLs for the underlying objects we should
2149 use for bitfield access for the structure T. */
2150
2151 void
finish_bitfield_layout(tree t)2152 finish_bitfield_layout (tree t)
2153 {
2154 tree field, prev;
2155 tree repr = NULL_TREE;
2156
2157 /* Unions would be special, for the ease of type-punning optimizations
2158 we could use the underlying type as hint for the representative
2159 if the bitfield would fit and the representative would not exceed
2160 the union in size. */
2161 if (TREE_CODE (t) != RECORD_TYPE)
2162 return;
2163
2164 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2165 field; field = DECL_CHAIN (field))
2166 {
2167 if (TREE_CODE (field) != FIELD_DECL)
2168 continue;
2169
2170 /* In the C++ memory model, consecutive bit fields in a structure are
2171 considered one memory location and updating a memory location
2172 may not store into adjacent memory locations. */
2173 if (!repr
2174 && DECL_BIT_FIELD_TYPE (field))
2175 {
2176 /* Start new representative. */
2177 repr = start_bitfield_representative (field);
2178 }
2179 else if (repr
2180 && ! DECL_BIT_FIELD_TYPE (field))
2181 {
2182 /* Finish off new representative. */
2183 finish_bitfield_representative (repr, prev);
2184 repr = NULL_TREE;
2185 }
2186 else if (DECL_BIT_FIELD_TYPE (field))
2187 {
2188 gcc_assert (repr != NULL_TREE);
2189
2190 /* Zero-size bitfields finish off a representative and
2191 do not have a representative themselves. This is
2192 required by the C++ memory model. */
2193 if (integer_zerop (DECL_SIZE (field)))
2194 {
2195 finish_bitfield_representative (repr, prev);
2196 repr = NULL_TREE;
2197 }
2198
2199 /* We assume that either DECL_FIELD_OFFSET of the representative
2200 and each bitfield member is a constant or they are equal.
2201 This is because we need to be able to compute the bit-offset
2202 of each field relative to the representative in get_bit_range
2203 during RTL expansion.
2204 If these constraints are not met, simply force a new
2205 representative to be generated. That will at most
2206 generate worse code but still maintain correctness with
2207 respect to the C++ memory model. */
2208 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2209 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2210 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2211 DECL_FIELD_OFFSET (field), 0)))
2212 {
2213 finish_bitfield_representative (repr, prev);
2214 repr = start_bitfield_representative (field);
2215 }
2216 }
2217 else
2218 continue;
2219
2220 if (repr)
2221 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2222
2223 prev = field;
2224 }
2225
2226 if (repr)
2227 finish_bitfield_representative (repr, prev);
2228 }
2229
2230 /* Do all of the work required to layout the type indicated by RLI,
2231 once the fields have been laid out. This function will call `free'
2232 for RLI, unless FREE_P is false. Passing a value other than false
2233 for FREE_P is bad practice; this option only exists to support the
2234 G++ 3.2 ABI. */
2235
2236 void
finish_record_layout(record_layout_info rli,int free_p)2237 finish_record_layout (record_layout_info rli, int free_p)
2238 {
2239 tree variant;
2240
2241 /* Compute the final size. */
2242 finalize_record_size (rli);
2243
2244 /* Compute the TYPE_MODE for the record. */
2245 compute_record_mode (rli->t);
2246
2247 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2248 finalize_type_size (rli->t);
2249
2250 /* Compute bitfield representatives. */
2251 finish_bitfield_layout (rli->t);
2252
2253 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2254 With C++ templates, it is too early to do this when the attribute
2255 is being parsed. */
2256 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2257 variant = TYPE_NEXT_VARIANT (variant))
2258 {
2259 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2260 TYPE_REVERSE_STORAGE_ORDER (variant)
2261 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2262 }
2263
2264 /* Lay out any static members. This is done now because their type
2265 may use the record's type. */
2266 while (!vec_safe_is_empty (rli->pending_statics))
2267 layout_decl (rli->pending_statics->pop (), 0);
2268
2269 /* Clean up. */
2270 if (free_p)
2271 {
2272 vec_free (rli->pending_statics);
2273 free (rli);
2274 }
2275 }
2276
2277
2278 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2279 NAME, its fields are chained in reverse on FIELDS.
2280
2281 If ALIGN_TYPE is non-null, it is given the same alignment as
2282 ALIGN_TYPE. */
2283
2284 void
finish_builtin_struct(tree type,const char * name,tree fields,tree align_type)2285 finish_builtin_struct (tree type, const char *name, tree fields,
2286 tree align_type)
2287 {
2288 tree tail, next;
2289
2290 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2291 {
2292 DECL_FIELD_CONTEXT (fields) = type;
2293 next = DECL_CHAIN (fields);
2294 DECL_CHAIN (fields) = tail;
2295 }
2296 TYPE_FIELDS (type) = tail;
2297
2298 if (align_type)
2299 {
2300 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2301 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2302 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2303 TYPE_WARN_IF_NOT_ALIGN (align_type));
2304 }
2305
2306 layout_type (type);
2307 #if 0 /* not yet, should get fixed properly later */
2308 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2309 #else
2310 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2311 TYPE_DECL, get_identifier (name), type);
2312 #endif
2313 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2314 layout_decl (TYPE_NAME (type), 0);
2315 }
2316
2317 /* Calculate the mode, size, and alignment for TYPE.
2318 For an array type, calculate the element separation as well.
2319 Record TYPE on the chain of permanent or temporary types
2320 so that dbxout will find out about it.
2321
2322 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2323 layout_type does nothing on such a type.
2324
2325 If the type is incomplete, its TYPE_SIZE remains zero. */
2326
2327 void
layout_type(tree type)2328 layout_type (tree type)
2329 {
2330 gcc_assert (type);
2331
2332 if (type == error_mark_node)
2333 return;
2334
2335 /* We don't want finalize_type_size to copy an alignment attribute to
2336 variants that don't have it. */
2337 type = TYPE_MAIN_VARIANT (type);
2338
2339 /* Do nothing if type has been laid out before. */
2340 if (TYPE_SIZE (type))
2341 return;
2342
2343 switch (TREE_CODE (type))
2344 {
2345 case LANG_TYPE:
2346 /* This kind of type is the responsibility
2347 of the language-specific code. */
2348 gcc_unreachable ();
2349
2350 case BOOLEAN_TYPE:
2351 case INTEGER_TYPE:
2352 case ENUMERAL_TYPE:
2353 {
2354 scalar_int_mode mode
2355 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2356 SET_TYPE_MODE (type, mode);
2357 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2358 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2359 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2360 break;
2361 }
2362
2363 case REAL_TYPE:
2364 {
2365 /* Allow the caller to choose the type mode, which is how decimal
2366 floats are distinguished from binary ones. */
2367 if (TYPE_MODE (type) == VOIDmode)
2368 SET_TYPE_MODE
2369 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2370 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2371 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2372 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2373 break;
2374 }
2375
2376 case FIXED_POINT_TYPE:
2377 {
2378 /* TYPE_MODE (type) has been set already. */
2379 scalar_mode mode = SCALAR_TYPE_MODE (type);
2380 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2381 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2382 break;
2383 }
2384
2385 case COMPLEX_TYPE:
2386 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2387 SET_TYPE_MODE (type,
2388 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2389
2390 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2391 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2392 break;
2393
2394 case VECTOR_TYPE:
2395 {
2396 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2397 tree innertype = TREE_TYPE (type);
2398
2399 /* Find an appropriate mode for the vector type. */
2400 if (TYPE_MODE (type) == VOIDmode)
2401 SET_TYPE_MODE (type,
2402 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2403 nunits).else_blk ());
2404
2405 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2406 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2407 /* Several boolean vector elements may fit in a single unit. */
2408 if (VECTOR_BOOLEAN_TYPE_P (type)
2409 && type->type_common.mode != BLKmode)
2410 TYPE_SIZE_UNIT (type)
2411 = size_int (GET_MODE_SIZE (type->type_common.mode));
2412 else
2413 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2414 TYPE_SIZE_UNIT (innertype),
2415 size_int (nunits));
2416 TYPE_SIZE (type) = int_const_binop
2417 (MULT_EXPR,
2418 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2419 bitsize_int (BITS_PER_UNIT));
2420
2421 /* For vector types, we do not default to the mode's alignment.
2422 Instead, query a target hook, defaulting to natural alignment.
2423 This prevents ABI changes depending on whether or not native
2424 vector modes are supported. */
2425 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2426
2427 /* However, if the underlying mode requires a bigger alignment than
2428 what the target hook provides, we cannot use the mode. For now,
2429 simply reject that case. */
2430 gcc_assert (TYPE_ALIGN (type)
2431 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2432 break;
2433 }
2434
2435 case VOID_TYPE:
2436 /* This is an incomplete type and so doesn't have a size. */
2437 SET_TYPE_ALIGN (type, 1);
2438 TYPE_USER_ALIGN (type) = 0;
2439 SET_TYPE_MODE (type, VOIDmode);
2440 break;
2441
2442 case OFFSET_TYPE:
2443 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2444 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2445 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2446 integral, which may be an __intN. */
2447 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2448 TYPE_PRECISION (type) = POINTER_SIZE;
2449 break;
2450
2451 case FUNCTION_TYPE:
2452 case METHOD_TYPE:
2453 /* It's hard to see what the mode and size of a function ought to
2454 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2455 make it consistent with that. */
2456 SET_TYPE_MODE (type,
2457 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2458 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2459 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2460 break;
2461
2462 case POINTER_TYPE:
2463 case REFERENCE_TYPE:
2464 {
2465 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2466 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2467 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2468 TYPE_UNSIGNED (type) = 1;
2469 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2470 }
2471 break;
2472
2473 case ARRAY_TYPE:
2474 {
2475 tree index = TYPE_DOMAIN (type);
2476 tree element = TREE_TYPE (type);
2477
2478 /* We need to know both bounds in order to compute the size. */
2479 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2480 && TYPE_SIZE (element))
2481 {
2482 tree ub = TYPE_MAX_VALUE (index);
2483 tree lb = TYPE_MIN_VALUE (index);
2484 tree element_size = TYPE_SIZE (element);
2485 tree length;
2486
2487 /* Make sure that an array of zero-sized element is zero-sized
2488 regardless of its extent. */
2489 if (integer_zerop (element_size))
2490 length = size_zero_node;
2491
2492 /* The computation should happen in the original signedness so
2493 that (possible) negative values are handled appropriately
2494 when determining overflow. */
2495 else
2496 {
2497 /* ??? When it is obvious that the range is signed
2498 represent it using ssizetype. */
2499 if (TREE_CODE (lb) == INTEGER_CST
2500 && TREE_CODE (ub) == INTEGER_CST
2501 && TYPE_UNSIGNED (TREE_TYPE (lb))
2502 && tree_int_cst_lt (ub, lb))
2503 {
2504 lb = wide_int_to_tree (ssizetype,
2505 offset_int::from (wi::to_wide (lb),
2506 SIGNED));
2507 ub = wide_int_to_tree (ssizetype,
2508 offset_int::from (wi::to_wide (ub),
2509 SIGNED));
2510 }
2511 length
2512 = fold_convert (sizetype,
2513 size_binop (PLUS_EXPR,
2514 build_int_cst (TREE_TYPE (lb), 1),
2515 size_binop (MINUS_EXPR, ub, lb)));
2516 }
2517
2518 /* ??? We have no way to distinguish a null-sized array from an
2519 array spanning the whole sizetype range, so we arbitrarily
2520 decide that [0, -1] is the only valid representation. */
2521 if (integer_zerop (length)
2522 && TREE_OVERFLOW (length)
2523 && integer_zerop (lb))
2524 length = size_zero_node;
2525
2526 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2527 bits_from_bytes (length));
2528
2529 /* If we know the size of the element, calculate the total size
2530 directly, rather than do some division thing below. This
2531 optimization helps Fortran assumed-size arrays (where the
2532 size of the array is determined at runtime) substantially. */
2533 if (TYPE_SIZE_UNIT (element))
2534 TYPE_SIZE_UNIT (type)
2535 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2536 }
2537
2538 /* Now round the alignment and size,
2539 using machine-dependent criteria if any. */
2540
2541 unsigned align = TYPE_ALIGN (element);
2542 if (TYPE_USER_ALIGN (type))
2543 align = MAX (align, TYPE_ALIGN (type));
2544 else
2545 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2546 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2547 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2548 TYPE_WARN_IF_NOT_ALIGN (element));
2549 #ifdef ROUND_TYPE_ALIGN
2550 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2551 #else
2552 align = MAX (align, BITS_PER_UNIT);
2553 #endif
2554 SET_TYPE_ALIGN (type, align);
2555 SET_TYPE_MODE (type, BLKmode);
2556 if (TYPE_SIZE (type) != 0
2557 && ! targetm.member_type_forces_blk (type, VOIDmode)
2558 /* BLKmode elements force BLKmode aggregate;
2559 else extract/store fields may lose. */
2560 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2561 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2562 {
2563 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2564 TYPE_SIZE (type)));
2565 if (TYPE_MODE (type) != BLKmode
2566 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2567 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2568 {
2569 TYPE_NO_FORCE_BLK (type) = 1;
2570 SET_TYPE_MODE (type, BLKmode);
2571 }
2572 }
2573 if (AGGREGATE_TYPE_P (element))
2574 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2575 /* When the element size is constant, check that it is at least as
2576 large as the element alignment. */
2577 if (TYPE_SIZE_UNIT (element)
2578 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2579 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2580 TYPE_ALIGN_UNIT. */
2581 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2582 && !integer_zerop (TYPE_SIZE_UNIT (element))
2583 && compare_tree_int (TYPE_SIZE_UNIT (element),
2584 TYPE_ALIGN_UNIT (element)) < 0)
2585 error ("alignment of array elements is greater than element size");
2586 break;
2587 }
2588
2589 case RECORD_TYPE:
2590 case UNION_TYPE:
2591 case QUAL_UNION_TYPE:
2592 {
2593 tree field;
2594 record_layout_info rli;
2595
2596 /* Initialize the layout information. */
2597 rli = start_record_layout (type);
2598
2599 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2600 in the reverse order in building the COND_EXPR that denotes
2601 its size. We reverse them again later. */
2602 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2603 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2604
2605 /* Place all the fields. */
2606 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2607 place_field (rli, field);
2608
2609 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2610 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2611
2612 /* Finish laying out the record. */
2613 finish_record_layout (rli, /*free_p=*/true);
2614 }
2615 break;
2616
2617 default:
2618 gcc_unreachable ();
2619 }
2620
2621 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2622 records and unions, finish_record_layout already called this
2623 function. */
2624 if (!RECORD_OR_UNION_TYPE_P (type))
2625 finalize_type_size (type);
2626
2627 /* We should never see alias sets on incomplete aggregates. And we
2628 should not call layout_type on not incomplete aggregates. */
2629 if (AGGREGATE_TYPE_P (type))
2630 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2631 }
2632
2633 /* Return the least alignment required for type TYPE. */
2634
2635 unsigned int
min_align_of_type(tree type)2636 min_align_of_type (tree type)
2637 {
2638 unsigned int align = TYPE_ALIGN (type);
2639 if (!TYPE_USER_ALIGN (type))
2640 {
2641 align = MIN (align, BIGGEST_ALIGNMENT);
2642 #ifdef BIGGEST_FIELD_ALIGNMENT
2643 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2644 #endif
2645 unsigned int field_align = align;
2646 #ifdef ADJUST_FIELD_ALIGN
2647 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2648 #endif
2649 align = MIN (align, field_align);
2650 }
2651 return align / BITS_PER_UNIT;
2652 }
2653
2654 /* Create and return a type for signed integers of PRECISION bits. */
2655
2656 tree
make_signed_type(int precision)2657 make_signed_type (int precision)
2658 {
2659 tree type = make_node (INTEGER_TYPE);
2660
2661 TYPE_PRECISION (type) = precision;
2662
2663 fixup_signed_type (type);
2664 return type;
2665 }
2666
2667 /* Create and return a type for unsigned integers of PRECISION bits. */
2668
2669 tree
make_unsigned_type(int precision)2670 make_unsigned_type (int precision)
2671 {
2672 tree type = make_node (INTEGER_TYPE);
2673
2674 TYPE_PRECISION (type) = precision;
2675
2676 fixup_unsigned_type (type);
2677 return type;
2678 }
2679
2680 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2681 and SATP. */
2682
2683 tree
make_fract_type(int precision,int unsignedp,int satp)2684 make_fract_type (int precision, int unsignedp, int satp)
2685 {
2686 tree type = make_node (FIXED_POINT_TYPE);
2687
2688 TYPE_PRECISION (type) = precision;
2689
2690 if (satp)
2691 TYPE_SATURATING (type) = 1;
2692
2693 /* Lay out the type: set its alignment, size, etc. */
2694 TYPE_UNSIGNED (type) = unsignedp;
2695 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2696 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2697 layout_type (type);
2698
2699 return type;
2700 }
2701
2702 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2703 and SATP. */
2704
2705 tree
make_accum_type(int precision,int unsignedp,int satp)2706 make_accum_type (int precision, int unsignedp, int satp)
2707 {
2708 tree type = make_node (FIXED_POINT_TYPE);
2709
2710 TYPE_PRECISION (type) = precision;
2711
2712 if (satp)
2713 TYPE_SATURATING (type) = 1;
2714
2715 /* Lay out the type: set its alignment, size, etc. */
2716 TYPE_UNSIGNED (type) = unsignedp;
2717 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2718 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2719 layout_type (type);
2720
2721 return type;
2722 }
2723
2724 /* Initialize sizetypes so layout_type can use them. */
2725
2726 void
initialize_sizetypes(void)2727 initialize_sizetypes (void)
2728 {
2729 int precision, bprecision;
2730
2731 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2732 if (strcmp (SIZETYPE, "unsigned int") == 0)
2733 precision = INT_TYPE_SIZE;
2734 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2735 precision = LONG_TYPE_SIZE;
2736 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2737 precision = LONG_LONG_TYPE_SIZE;
2738 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2739 precision = SHORT_TYPE_SIZE;
2740 else
2741 {
2742 int i;
2743
2744 precision = -1;
2745 for (i = 0; i < NUM_INT_N_ENTS; i++)
2746 if (int_n_enabled_p[i])
2747 {
2748 char name[50], altname[50];
2749 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2750 sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
2751
2752 if (strcmp (name, SIZETYPE) == 0
2753 || strcmp (altname, SIZETYPE) == 0)
2754 {
2755 precision = int_n_data[i].bitsize;
2756 }
2757 }
2758 if (precision == -1)
2759 gcc_unreachable ();
2760 }
2761
2762 bprecision
2763 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2764 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2765 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2766 bprecision = HOST_BITS_PER_DOUBLE_INT;
2767
2768 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2769 sizetype = make_node (INTEGER_TYPE);
2770 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2771 TYPE_PRECISION (sizetype) = precision;
2772 TYPE_UNSIGNED (sizetype) = 1;
2773 bitsizetype = make_node (INTEGER_TYPE);
2774 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2775 TYPE_PRECISION (bitsizetype) = bprecision;
2776 TYPE_UNSIGNED (bitsizetype) = 1;
2777
2778 /* Now layout both types manually. */
2779 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2780 SET_TYPE_MODE (sizetype, mode);
2781 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2782 TYPE_SIZE (sizetype) = bitsize_int (precision);
2783 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2784 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2785
2786 mode = smallest_int_mode_for_size (bprecision);
2787 SET_TYPE_MODE (bitsizetype, mode);
2788 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2789 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2790 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2791 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2792
2793 /* Create the signed variants of *sizetype. */
2794 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2795 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2796 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2797 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2798 }
2799
2800 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2801 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2802 for TYPE, based on the PRECISION and whether or not the TYPE
2803 IS_UNSIGNED. PRECISION need not correspond to a width supported
2804 natively by the hardware; for example, on a machine with 8-bit,
2805 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2806 61. */
2807
2808 void
set_min_and_max_values_for_integral_type(tree type,int precision,signop sgn)2809 set_min_and_max_values_for_integral_type (tree type,
2810 int precision,
2811 signop sgn)
2812 {
2813 /* For bitfields with zero width we end up creating integer types
2814 with zero precision. Don't assign any minimum/maximum values
2815 to those types, they don't have any valid value. */
2816 if (precision < 1)
2817 return;
2818
2819 gcc_assert (precision <= WIDE_INT_MAX_PRECISION);
2820
2821 TYPE_MIN_VALUE (type)
2822 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2823 TYPE_MAX_VALUE (type)
2824 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2825 }
2826
2827 /* Set the extreme values of TYPE based on its precision in bits,
2828 then lay it out. Used when make_signed_type won't do
2829 because the tree code is not INTEGER_TYPE. */
2830
2831 void
fixup_signed_type(tree type)2832 fixup_signed_type (tree type)
2833 {
2834 int precision = TYPE_PRECISION (type);
2835
2836 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2837
2838 /* Lay out the type: set its alignment, size, etc. */
2839 layout_type (type);
2840 }
2841
2842 /* Set the extreme values of TYPE based on its precision in bits,
2843 then lay it out. This is used both in `make_unsigned_type'
2844 and for enumeral types. */
2845
2846 void
fixup_unsigned_type(tree type)2847 fixup_unsigned_type (tree type)
2848 {
2849 int precision = TYPE_PRECISION (type);
2850
2851 TYPE_UNSIGNED (type) = 1;
2852
2853 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2854
2855 /* Lay out the type: set its alignment, size, etc. */
2856 layout_type (type);
2857 }
2858
2859 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2860 starting at BITPOS.
2861
2862 BITREGION_START is the bit position of the first bit in this
2863 sequence of bit fields. BITREGION_END is the last bit in this
2864 sequence. If these two fields are non-zero, we should restrict the
2865 memory access to that range. Otherwise, we are allowed to touch
2866 any adjacent non bit-fields.
2867
2868 ALIGN is the alignment of the underlying object in bits.
2869 VOLATILEP says whether the bitfield is volatile. */
2870
2871 bit_field_mode_iterator
bit_field_mode_iterator(HOST_WIDE_INT bitsize,HOST_WIDE_INT bitpos,poly_int64 bitregion_start,poly_int64 bitregion_end,unsigned int align,bool volatilep)2872 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2873 poly_int64 bitregion_start,
2874 poly_int64 bitregion_end,
2875 unsigned int align, bool volatilep)
2876 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2877 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2878 m_bitregion_end (bitregion_end), m_align (align),
2879 m_volatilep (volatilep), m_count (0)
2880 {
2881 if (known_eq (m_bitregion_end, 0))
2882 {
2883 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2884 the bitfield is mapped and won't trap, provided that ALIGN isn't
2885 too large. The cap is the biggest required alignment for data,
2886 or at least the word size. And force one such chunk at least. */
2887 unsigned HOST_WIDE_INT units
2888 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2889 if (bitsize <= 0)
2890 bitsize = 1;
2891 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2892 m_bitregion_end = end - end % units - 1;
2893 }
2894 }
2895
2896 /* Calls to this function return successively larger modes that can be used
2897 to represent the bitfield. Return true if another bitfield mode is
2898 available, storing it in *OUT_MODE if so. */
2899
2900 bool
next_mode(scalar_int_mode * out_mode)2901 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2902 {
2903 scalar_int_mode mode;
2904 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2905 {
2906 unsigned int unit = GET_MODE_BITSIZE (mode);
2907
2908 /* Skip modes that don't have full precision. */
2909 if (unit != GET_MODE_PRECISION (mode))
2910 continue;
2911
2912 /* Stop if the mode is too wide to handle efficiently. */
2913 if (unit > MAX_FIXED_MODE_SIZE)
2914 break;
2915
2916 /* Don't deliver more than one multiword mode; the smallest one
2917 should be used. */
2918 if (m_count > 0 && unit > BITS_PER_WORD)
2919 break;
2920
2921 /* Skip modes that are too small. */
2922 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2923 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2924 if (subend > unit)
2925 continue;
2926
2927 /* Stop if the mode goes outside the bitregion. */
2928 HOST_WIDE_INT start = m_bitpos - substart;
2929 if (maybe_ne (m_bitregion_start, 0)
2930 && maybe_lt (start, m_bitregion_start))
2931 break;
2932 HOST_WIDE_INT end = start + unit;
2933 if (maybe_gt (end, m_bitregion_end + 1))
2934 break;
2935
2936 /* Stop if the mode requires too much alignment. */
2937 if (GET_MODE_ALIGNMENT (mode) > m_align
2938 && targetm.slow_unaligned_access (mode, m_align))
2939 break;
2940
2941 *out_mode = mode;
2942 m_mode = GET_MODE_WIDER_MODE (mode);
2943 m_count++;
2944 return true;
2945 }
2946 return false;
2947 }
2948
2949 /* Return true if smaller modes are generally preferred for this kind
2950 of bitfield. */
2951
2952 bool
prefer_smaller_modes()2953 bit_field_mode_iterator::prefer_smaller_modes ()
2954 {
2955 return (m_volatilep
2956 ? targetm.narrow_volatile_bitfield ()
2957 : !SLOW_BYTE_ACCESS);
2958 }
2959
2960 /* Find the best machine mode to use when referencing a bit field of length
2961 BITSIZE bits starting at BITPOS.
2962
2963 BITREGION_START is the bit position of the first bit in this
2964 sequence of bit fields. BITREGION_END is the last bit in this
2965 sequence. If these two fields are non-zero, we should restrict the
2966 memory access to that range. Otherwise, we are allowed to touch
2967 any adjacent non bit-fields.
2968
2969 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2970 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2971 doesn't want to apply a specific limit.
2972
2973 If no mode meets all these conditions, we return VOIDmode.
2974
2975 The underlying object is known to be aligned to a boundary of ALIGN bits.
2976
2977 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2978 smallest mode meeting these conditions.
2979
2980 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2981 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2982 all the conditions.
2983
2984 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2985 decide which of the above modes should be used. */
2986
2987 bool
get_best_mode(int bitsize,int bitpos,poly_uint64 bitregion_start,poly_uint64 bitregion_end,unsigned int align,unsigned HOST_WIDE_INT largest_mode_bitsize,bool volatilep,scalar_int_mode * best_mode)2988 get_best_mode (int bitsize, int bitpos,
2989 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2990 unsigned int align,
2991 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2992 scalar_int_mode *best_mode)
2993 {
2994 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2995 bitregion_end, align, volatilep);
2996 scalar_int_mode mode;
2997 bool found = false;
2998 while (iter.next_mode (&mode)
2999 /* ??? For historical reasons, reject modes that would normally
3000 receive greater alignment, even if unaligned accesses are
3001 acceptable. This has both advantages and disadvantages.
3002 Removing this check means that something like:
3003
3004 struct s { unsigned int x; unsigned int y; };
3005 int f (struct s *s) { return s->x == 0 && s->y == 0; }
3006
3007 can be implemented using a single load and compare on
3008 64-bit machines that have no alignment restrictions.
3009 For example, on powerpc64-linux-gnu, we would generate:
3010
3011 ld 3,0(3)
3012 cntlzd 3,3
3013 srdi 3,3,6
3014 blr
3015
3016 rather than:
3017
3018 lwz 9,0(3)
3019 cmpwi 7,9,0
3020 bne 7,.L3
3021 lwz 3,4(3)
3022 cntlzw 3,3
3023 srwi 3,3,5
3024 extsw 3,3
3025 blr
3026 .p2align 4,,15
3027 .L3:
3028 li 3,0
3029 blr
3030
3031 However, accessing more than one field can make life harder
3032 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
3033 has a series of unsigned short copies followed by a series of
3034 unsigned short comparisons. With this check, both the copies
3035 and comparisons remain 16-bit accesses and FRE is able
3036 to eliminate the latter. Without the check, the comparisons
3037 can be done using 2 64-bit operations, which FRE isn't able
3038 to handle in the same way.
3039
3040 Either way, it would probably be worth disabling this check
3041 during expand. One particular example where removing the
3042 check would help is the get_best_mode call in store_bit_field.
3043 If we are given a memory bitregion of 128 bits that is aligned
3044 to a 64-bit boundary, and the bitfield we want to modify is
3045 in the second half of the bitregion, this check causes
3046 store_bitfield to turn the memory into a 64-bit reference
3047 to the _first_ half of the region. We later use
3048 adjust_bitfield_address to get a reference to the correct half,
3049 but doing so looks to adjust_bitfield_address as though we are
3050 moving past the end of the original object, so it drops the
3051 associated MEM_EXPR and MEM_OFFSET. Removing the check
3052 causes store_bit_field to keep a 128-bit memory reference,
3053 so that the final bitfield reference still has a MEM_EXPR
3054 and MEM_OFFSET. */
3055 && GET_MODE_ALIGNMENT (mode) <= align
3056 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3057 {
3058 *best_mode = mode;
3059 found = true;
3060 if (iter.prefer_smaller_modes ())
3061 break;
3062 }
3063
3064 return found;
3065 }
3066
3067 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3068 SIGN). The returned constants are made to be usable in TARGET_MODE. */
3069
3070 void
get_mode_bounds(scalar_int_mode mode,int sign,scalar_int_mode target_mode,rtx * mmin,rtx * mmax)3071 get_mode_bounds (scalar_int_mode mode, int sign,
3072 scalar_int_mode target_mode,
3073 rtx *mmin, rtx *mmax)
3074 {
3075 unsigned size = GET_MODE_PRECISION (mode);
3076 unsigned HOST_WIDE_INT min_val, max_val;
3077
3078 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3079
3080 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
3081 if (mode == BImode)
3082 {
3083 if (STORE_FLAG_VALUE < 0)
3084 {
3085 min_val = STORE_FLAG_VALUE;
3086 max_val = 0;
3087 }
3088 else
3089 {
3090 min_val = 0;
3091 max_val = STORE_FLAG_VALUE;
3092 }
3093 }
3094 else if (sign)
3095 {
3096 min_val = -(HOST_WIDE_INT_1U << (size - 1));
3097 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3098 }
3099 else
3100 {
3101 min_val = 0;
3102 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3103 }
3104
3105 *mmin = gen_int_mode (min_val, target_mode);
3106 *mmax = gen_int_mode (max_val, target_mode);
3107 }
3108
3109 #include "gt-stor-layout.h"
3110