1 /* C-compiler utilities for types and variables storage layout
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
45 #include "calls.h"
46 
47 /* Data type for the expressions representing sizes of data types.
48    It is the first integer type laid out.  */
49 tree sizetype_tab[(int) stk_type_kind_last];
50 
51 /* If nonzero, this is an upper limit on alignment of structure fields.
52    The value is measured in bits.  */
53 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
54 
55 static tree self_referential_size (tree);
56 static void finalize_record_size (record_layout_info);
57 static void finalize_type_size (tree);
58 static void place_union_field (record_layout_info, tree);
59 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
60 			     HOST_WIDE_INT, tree);
61 extern void debug_rli (record_layout_info);
62 
63 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
64    to serve as the actual size-expression for a type or decl.  */
65 
66 tree
variable_size(tree size)67 variable_size (tree size)
68 {
69   /* Obviously.  */
70   if (TREE_CONSTANT (size))
71     return size;
72 
73   /* If the size is self-referential, we can't make a SAVE_EXPR (see
74      save_expr for the rationale).  But we can do something else.  */
75   if (CONTAINS_PLACEHOLDER_P (size))
76     return self_referential_size (size);
77 
78   /* If we are in the global binding level, we can't make a SAVE_EXPR
79      since it may end up being shared across functions, so it is up
80      to the front-end to deal with this case.  */
81   if (lang_hooks.decls.global_bindings_p ())
82     return size;
83 
84   return save_expr (size);
85 }
86 
87 /* An array of functions used for self-referential size computation.  */
88 static GTY(()) vec<tree, va_gc> *size_functions;
89 
90 /* Return true if T is a self-referential component reference.  */
91 
92 static bool
self_referential_component_ref_p(tree t)93 self_referential_component_ref_p (tree t)
94 {
95   if (TREE_CODE (t) != COMPONENT_REF)
96     return false;
97 
98   while (REFERENCE_CLASS_P (t))
99     t = TREE_OPERAND (t, 0);
100 
101   return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102 }
103 
104 /* Similar to copy_tree_r but do not copy component references involving
105    PLACEHOLDER_EXPRs.  These nodes are spotted in find_placeholder_in_expr
106    and substituted in substitute_in_expr.  */
107 
108 static tree
copy_self_referential_tree_r(tree * tp,int * walk_subtrees,void * data)109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 {
111   enum tree_code code = TREE_CODE (*tp);
112 
113   /* Stop at types, decls, constants like copy_tree_r.  */
114   if (TREE_CODE_CLASS (code) == tcc_type
115       || TREE_CODE_CLASS (code) == tcc_declaration
116       || TREE_CODE_CLASS (code) == tcc_constant)
117     {
118       *walk_subtrees = 0;
119       return NULL_TREE;
120     }
121 
122   /* This is the pattern built in ada/make_aligning_type.  */
123   else if (code == ADDR_EXPR
124 	   && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125     {
126       *walk_subtrees = 0;
127       return NULL_TREE;
128     }
129 
130   /* Default case: the component reference.  */
131   else if (self_referential_component_ref_p (*tp))
132     {
133       *walk_subtrees = 0;
134       return NULL_TREE;
135     }
136 
137   /* We're not supposed to have them in self-referential size trees
138      because we wouldn't properly control when they are evaluated.
139      However, not creating superfluous SAVE_EXPRs requires accurate
140      tracking of readonly-ness all the way down to here, which we
141      cannot always guarantee in practice.  So punt in this case.  */
142   else if (code == SAVE_EXPR)
143     return error_mark_node;
144 
145   else if (code == STATEMENT_LIST)
146     gcc_unreachable ();
147 
148   return copy_tree_r (tp, walk_subtrees, data);
149 }
150 
151 /* Given a SIZE expression that is self-referential, return an equivalent
152    expression to serve as the actual size expression for a type.  */
153 
154 static tree
self_referential_size(tree size)155 self_referential_size (tree size)
156 {
157   static unsigned HOST_WIDE_INT fnno = 0;
158   vec<tree> self_refs = vNULL;
159   tree param_type_list = NULL, param_decl_list = NULL;
160   tree t, ref, return_type, fntype, fnname, fndecl;
161   unsigned int i;
162   char buf[128];
163   vec<tree, va_gc> *args = NULL;
164 
165   /* Do not factor out simple operations.  */
166   t = skip_simple_constant_arithmetic (size);
167   if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
168     return size;
169 
170   /* Collect the list of self-references in the expression.  */
171   find_placeholder_in_expr (size, &self_refs);
172   gcc_assert (self_refs.length () > 0);
173 
174   /* Obtain a private copy of the expression.  */
175   t = size;
176   if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
177     return size;
178   size = t;
179 
180   /* Build the parameter and argument lists in parallel; also
181      substitute the former for the latter in the expression.  */
182   vec_alloc (args, self_refs.length ());
183   FOR_EACH_VEC_ELT (self_refs, i, ref)
184     {
185       tree subst, param_name, param_type, param_decl;
186 
187       if (DECL_P (ref))
188 	{
189 	  /* We shouldn't have true variables here.  */
190 	  gcc_assert (TREE_READONLY (ref));
191 	  subst = ref;
192 	}
193       /* This is the pattern built in ada/make_aligning_type.  */
194       else if (TREE_CODE (ref) == ADDR_EXPR)
195         subst = ref;
196       /* Default case: the component reference.  */
197       else
198 	subst = TREE_OPERAND (ref, 1);
199 
200       sprintf (buf, "p%d", i);
201       param_name = get_identifier (buf);
202       param_type = TREE_TYPE (ref);
203       param_decl
204 	= build_decl (input_location, PARM_DECL, param_name, param_type);
205       DECL_ARG_TYPE (param_decl) = param_type;
206       DECL_ARTIFICIAL (param_decl) = 1;
207       TREE_READONLY (param_decl) = 1;
208 
209       size = substitute_in_expr (size, subst, param_decl);
210 
211       param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
212       param_decl_list = chainon (param_decl, param_decl_list);
213       args->quick_push (ref);
214     }
215 
216   self_refs.release ();
217 
218   /* Append 'void' to indicate that the number of parameters is fixed.  */
219   param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
220 
221   /* The 3 lists have been created in reverse order.  */
222   param_type_list = nreverse (param_type_list);
223   param_decl_list = nreverse (param_decl_list);
224 
225   /* Build the function type.  */
226   return_type = TREE_TYPE (size);
227   fntype = build_function_type (return_type, param_type_list);
228 
229   /* Build the function declaration.  */
230   sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
231   fnname = get_file_function_name (buf);
232   fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
233   for (t = param_decl_list; t; t = DECL_CHAIN (t))
234     DECL_CONTEXT (t) = fndecl;
235   DECL_ARGUMENTS (fndecl) = param_decl_list;
236   DECL_RESULT (fndecl)
237     = build_decl (input_location, RESULT_DECL, 0, return_type);
238   DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
239 
240   /* The function has been created by the compiler and we don't
241      want to emit debug info for it.  */
242   DECL_ARTIFICIAL (fndecl) = 1;
243   DECL_IGNORED_P (fndecl) = 1;
244 
245   /* It is supposed to be "const" and never throw.  */
246   TREE_READONLY (fndecl) = 1;
247   TREE_NOTHROW (fndecl) = 1;
248 
249   /* We want it to be inlined when this is deemed profitable, as
250      well as discarded if every call has been integrated.  */
251   DECL_DECLARED_INLINE_P (fndecl) = 1;
252 
253   /* It is made up of a unique return statement.  */
254   DECL_INITIAL (fndecl) = make_node (BLOCK);
255   BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
256   t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
257   DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
258   TREE_STATIC (fndecl) = 1;
259 
260   /* Put it onto the list of size functions.  */
261   vec_safe_push (size_functions, fndecl);
262 
263   /* Replace the original expression with a call to the size function.  */
264   return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265 }
266 
267 /* Take, queue and compile all the size functions.  It is essential that
268    the size functions be gimplified at the very end of the compilation
269    in order to guarantee transparent handling of self-referential sizes.
270    Otherwise the GENERIC inliner would not be able to inline them back
271    at each of their call sites, thus creating artificial non-constant
272    size expressions which would trigger nasty problems later on.  */
273 
274 void
finalize_size_functions(void)275 finalize_size_functions (void)
276 {
277   unsigned int i;
278   tree fndecl;
279 
280   for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
281     {
282       allocate_struct_function (fndecl, false);
283       set_cfun (NULL);
284       dump_function (TDI_original, fndecl);
285 
286       /* As these functions are used to describe the layout of variable-length
287          structures, debug info generation needs their implementation.  */
288       debug_hooks->size_function (fndecl);
289       gimplify_function_tree (fndecl);
290       cgraph_node::finalize_function (fndecl, false);
291     }
292 
293   vec_free (size_functions);
294 }
295 
296 /* Return a machine mode of class MCLASS with SIZE bits of precision,
297    if one exists.  The mode may have padding bits as well the SIZE
298    value bits.  If LIMIT is nonzero, disregard modes wider than
299    MAX_FIXED_MODE_SIZE.  */
300 
301 opt_machine_mode
mode_for_size(poly_uint64 size,enum mode_class mclass,int limit)302 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
303 {
304   machine_mode mode;
305   int i;
306 
307   if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
308     return opt_machine_mode ();
309 
310   /* Get the first mode which has this size, in the specified class.  */
311   FOR_EACH_MODE_IN_CLASS (mode, mclass)
312     if (known_eq (GET_MODE_PRECISION (mode), size))
313       return mode;
314 
315   if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
316     for (i = 0; i < NUM_INT_N_ENTS; i ++)
317       if (known_eq (int_n_data[i].bitsize, size)
318 	  && int_n_enabled_p[i])
319 	return int_n_data[i].m;
320 
321   return opt_machine_mode ();
322 }
323 
324 /* Similar, except passed a tree node.  */
325 
326 opt_machine_mode
mode_for_size_tree(const_tree size,enum mode_class mclass,int limit)327 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 {
329   unsigned HOST_WIDE_INT uhwi;
330   unsigned int ui;
331 
332   if (!tree_fits_uhwi_p (size))
333     return opt_machine_mode ();
334   uhwi = tree_to_uhwi (size);
335   ui = uhwi;
336   if (uhwi != ui)
337     return opt_machine_mode ();
338   return mode_for_size (ui, mclass, limit);
339 }
340 
341 /* Return the narrowest mode of class MCLASS that contains at least
342    SIZE bits.  Abort if no such mode exists.  */
343 
344 machine_mode
smallest_mode_for_size(poly_uint64 size,enum mode_class mclass)345 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
346 {
347   machine_mode mode = VOIDmode;
348   int i;
349 
350   /* Get the first mode which has at least this size, in the
351      specified class.  */
352   FOR_EACH_MODE_IN_CLASS (mode, mclass)
353     if (known_ge (GET_MODE_PRECISION (mode), size))
354       break;
355 
356   gcc_assert (mode != VOIDmode);
357 
358   if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
359     for (i = 0; i < NUM_INT_N_ENTS; i ++)
360       if (known_ge (int_n_data[i].bitsize, size)
361 	  && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
362 	  && int_n_enabled_p[i])
363 	mode = int_n_data[i].m;
364 
365   return mode;
366 }
367 
368 /* Return an integer mode of exactly the same size as MODE, if one exists.  */
369 
370 opt_scalar_int_mode
int_mode_for_mode(machine_mode mode)371 int_mode_for_mode (machine_mode mode)
372 {
373   switch (GET_MODE_CLASS (mode))
374     {
375     case MODE_INT:
376     case MODE_PARTIAL_INT:
377       return as_a <scalar_int_mode> (mode);
378 
379     case MODE_COMPLEX_INT:
380     case MODE_COMPLEX_FLOAT:
381     case MODE_FLOAT:
382     case MODE_DECIMAL_FLOAT:
383     case MODE_FRACT:
384     case MODE_ACCUM:
385     case MODE_UFRACT:
386     case MODE_UACCUM:
387     case MODE_VECTOR_BOOL:
388     case MODE_VECTOR_INT:
389     case MODE_VECTOR_FLOAT:
390     case MODE_VECTOR_FRACT:
391     case MODE_VECTOR_ACCUM:
392     case MODE_VECTOR_UFRACT:
393     case MODE_VECTOR_UACCUM:
394       return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395 
396     case MODE_RANDOM:
397       if (mode == BLKmode)
398 	return opt_scalar_int_mode ();
399 
400       /* fall through */
401 
402     case MODE_CC:
403     default:
404       gcc_unreachable ();
405     }
406 }
407 
408 /* Find a mode that can be used for efficient bitwise operations on MODE,
409    if one exists.  */
410 
411 opt_machine_mode
bitwise_mode_for_mode(machine_mode mode)412 bitwise_mode_for_mode (machine_mode mode)
413 {
414   /* Quick exit if we already have a suitable mode.  */
415   scalar_int_mode int_mode;
416   if (is_a <scalar_int_mode> (mode, &int_mode)
417       && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418     return int_mode;
419 
420   /* Reuse the sanity checks from int_mode_for_mode.  */
421   gcc_checking_assert ((int_mode_for_mode (mode), true));
422 
423   poly_int64 bitsize = GET_MODE_BITSIZE (mode);
424 
425   /* Try to replace complex modes with complex modes.  In general we
426      expect both components to be processed independently, so we only
427      care whether there is a register for the inner mode.  */
428   if (COMPLEX_MODE_P (mode))
429     {
430       machine_mode trial = mode;
431       if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
432 	   || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
433 	  && have_regs_of_mode[GET_MODE_INNER (trial)])
434 	return trial;
435     }
436 
437   /* Try to replace vector modes with vector modes.  Also try using vector
438      modes if an integer mode would be too big.  */
439   if (VECTOR_MODE_P (mode)
440       || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
441     {
442       machine_mode trial = mode;
443       if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
444 	   || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
445 	  && have_regs_of_mode[trial]
446 	  && targetm.vector_mode_supported_p (trial))
447 	return trial;
448     }
449 
450   /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE.  */
451   return mode_for_size (bitsize, MODE_INT, true);
452 }
453 
454 /* Find a type that can be used for efficient bitwise operations on MODE.
455    Return null if no such mode exists.  */
456 
457 tree
bitwise_type_for_mode(machine_mode mode)458 bitwise_type_for_mode (machine_mode mode)
459 {
460   if (!bitwise_mode_for_mode (mode).exists (&mode))
461     return NULL_TREE;
462 
463   unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
464   tree inner_type = build_nonstandard_integer_type (inner_size, true);
465 
466   if (VECTOR_MODE_P (mode))
467     return build_vector_type_for_mode (inner_type, mode);
468 
469   if (COMPLEX_MODE_P (mode))
470     return build_complex_type (inner_type);
471 
472   gcc_checking_assert (GET_MODE_INNER (mode) == mode);
473   return inner_type;
474 }
475 
476 /* Find a mode that is suitable for representing a vector with NUNITS
477    elements of mode INNERMODE, if one exists.  The returned mode can be
478    either an integer mode or a vector mode.  */
479 
480 opt_machine_mode
mode_for_vector(scalar_mode innermode,poly_uint64 nunits)481 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
482 {
483   machine_mode mode;
484 
485   /* First, look for a supported vector type.  */
486   if (SCALAR_FLOAT_MODE_P (innermode))
487     mode = MIN_MODE_VECTOR_FLOAT;
488   else if (SCALAR_FRACT_MODE_P (innermode))
489     mode = MIN_MODE_VECTOR_FRACT;
490   else if (SCALAR_UFRACT_MODE_P (innermode))
491     mode = MIN_MODE_VECTOR_UFRACT;
492   else if (SCALAR_ACCUM_MODE_P (innermode))
493     mode = MIN_MODE_VECTOR_ACCUM;
494   else if (SCALAR_UACCUM_MODE_P (innermode))
495     mode = MIN_MODE_VECTOR_UACCUM;
496   else
497     mode = MIN_MODE_VECTOR_INT;
498 
499   /* Do not check vector_mode_supported_p here.  We'll do that
500      later in vector_type_mode.  */
501   FOR_EACH_MODE_FROM (mode, mode)
502     if (known_eq (GET_MODE_NUNITS (mode), nunits)
503 	&& GET_MODE_INNER (mode) == innermode)
504       return mode;
505 
506   /* For integers, try mapping it to a same-sized scalar mode.  */
507   if (GET_MODE_CLASS (innermode) == MODE_INT)
508     {
509       poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
510       if (int_mode_for_size (nbits, 0).exists (&mode)
511 	  && have_regs_of_mode[mode])
512 	return mode;
513     }
514 
515   return opt_machine_mode ();
516 }
517 
518 /* If a piece of code is using vector mode VECTOR_MODE and also wants
519    to operate on elements of mode ELEMENT_MODE, return the vector mode
520    it should use for those elements.  If NUNITS is nonzero, ensure that
521    the mode has exactly NUNITS elements, otherwise pick whichever vector
522    size pairs the most naturally with VECTOR_MODE; this may mean choosing
523    a mode with a different size and/or number of elements, depending on
524    what the target prefers.  Return an empty opt_machine_mode if there
525    is no supported vector mode with the required properties.
526 
527    Unlike mode_for_vector. any returned mode is guaranteed to satisfy
528    both VECTOR_MODE_P and targetm.vector_mode_supported_p.  */
529 
530 opt_machine_mode
related_vector_mode(machine_mode vector_mode,scalar_mode element_mode,poly_uint64 nunits)531 related_vector_mode (machine_mode vector_mode, scalar_mode element_mode,
532 		     poly_uint64 nunits)
533 {
534   gcc_assert (VECTOR_MODE_P (vector_mode));
535   return targetm.vectorize.related_mode (vector_mode, element_mode, nunits);
536 }
537 
538 /* If a piece of code is using vector mode VECTOR_MODE and also wants
539    to operate on integer vectors with the same element size and number
540    of elements, return the vector mode it should use.  Return an empty
541    opt_machine_mode if there is no supported vector mode with the
542    required properties.
543 
544    Unlike mode_for_vector. any returned mode is guaranteed to satisfy
545    both VECTOR_MODE_P and targetm.vector_mode_supported_p.  */
546 
547 opt_machine_mode
related_int_vector_mode(machine_mode vector_mode)548 related_int_vector_mode (machine_mode vector_mode)
549 {
550   gcc_assert (VECTOR_MODE_P (vector_mode));
551   scalar_int_mode int_mode;
552   if (int_mode_for_mode (GET_MODE_INNER (vector_mode)).exists (&int_mode))
553     return related_vector_mode (vector_mode, int_mode,
554 				GET_MODE_NUNITS (vector_mode));
555   return opt_machine_mode ();
556 }
557 
558 /* Return the alignment of MODE. This will be bounded by 1 and
559    BIGGEST_ALIGNMENT.  */
560 
561 unsigned int
get_mode_alignment(machine_mode mode)562 get_mode_alignment (machine_mode mode)
563 {
564   return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
565 }
566 
567 /* Return the natural mode of an array, given that it is SIZE bytes in
568    total and has elements of type ELEM_TYPE.  */
569 
570 static machine_mode
mode_for_array(tree elem_type,tree size)571 mode_for_array (tree elem_type, tree size)
572 {
573   tree elem_size;
574   poly_uint64 int_size, int_elem_size;
575   unsigned HOST_WIDE_INT num_elems;
576   bool limit_p;
577 
578   /* One-element arrays get the component type's mode.  */
579   elem_size = TYPE_SIZE (elem_type);
580   if (simple_cst_equal (size, elem_size))
581     return TYPE_MODE (elem_type);
582 
583   limit_p = true;
584   if (poly_int_tree_p (size, &int_size)
585       && poly_int_tree_p (elem_size, &int_elem_size)
586       && maybe_ne (int_elem_size, 0U)
587       && constant_multiple_p (int_size, int_elem_size, &num_elems))
588     {
589       machine_mode elem_mode = TYPE_MODE (elem_type);
590       machine_mode mode;
591       if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
592 	return mode;
593       if (targetm.array_mode_supported_p (elem_mode, num_elems))
594 	limit_p = false;
595     }
596   return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
597 }
598 
599 /* Subroutine of layout_decl: Force alignment required for the data type.
600    But if the decl itself wants greater alignment, don't override that.  */
601 
602 static inline void
do_type_align(tree type,tree decl)603 do_type_align (tree type, tree decl)
604 {
605   if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
606     {
607       SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
608       if (TREE_CODE (decl) == FIELD_DECL)
609 	DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
610     }
611   if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
612     SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
613 }
614 
615 /* Set the size, mode and alignment of a ..._DECL node.
616    TYPE_DECL does need this for C++.
617    Note that LABEL_DECL and CONST_DECL nodes do not need this,
618    and FUNCTION_DECL nodes have them set up in a special (and simple) way.
619    Don't call layout_decl for them.
620 
621    KNOWN_ALIGN is the amount of alignment we can assume this
622    decl has with no special effort.  It is relevant only for FIELD_DECLs
623    and depends on the previous fields.
624    All that matters about KNOWN_ALIGN is which powers of 2 divide it.
625    If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
626    the record will be aligned to suit.  */
627 
628 void
layout_decl(tree decl,unsigned int known_align)629 layout_decl (tree decl, unsigned int known_align)
630 {
631   tree type = TREE_TYPE (decl);
632   enum tree_code code = TREE_CODE (decl);
633   rtx rtl = NULL_RTX;
634   location_t loc = DECL_SOURCE_LOCATION (decl);
635 
636   if (code == CONST_DECL)
637     return;
638 
639   gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
640 	      || code == TYPE_DECL || code == FIELD_DECL);
641 
642   rtl = DECL_RTL_IF_SET (decl);
643 
644   if (type == error_mark_node)
645     type = void_type_node;
646 
647   /* Usually the size and mode come from the data type without change,
648      however, the front-end may set the explicit width of the field, so its
649      size may not be the same as the size of its type.  This happens with
650      bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
651      also happens with other fields.  For example, the C++ front-end creates
652      zero-sized fields corresponding to empty base classes, and depends on
653      layout_type setting DECL_FIELD_BITPOS correctly for the field.  Set the
654      size in bytes from the size in bits.  If we have already set the mode,
655      don't set it again since we can be called twice for FIELD_DECLs.  */
656 
657   DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
658   if (DECL_MODE (decl) == VOIDmode)
659     SET_DECL_MODE (decl, TYPE_MODE (type));
660 
661   if (DECL_SIZE (decl) == 0)
662     {
663       DECL_SIZE (decl) = TYPE_SIZE (type);
664       DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
665     }
666   else if (DECL_SIZE_UNIT (decl) == 0)
667     DECL_SIZE_UNIT (decl)
668       = fold_convert_loc (loc, sizetype,
669 			  size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
670 					  bitsize_unit_node));
671 
672   if (code != FIELD_DECL)
673     /* For non-fields, update the alignment from the type.  */
674     do_type_align (type, decl);
675   else
676     /* For fields, it's a bit more complicated...  */
677     {
678       bool old_user_align = DECL_USER_ALIGN (decl);
679       bool zero_bitfield = false;
680       bool packed_p = DECL_PACKED (decl);
681       unsigned int mfa;
682 
683       if (DECL_BIT_FIELD (decl))
684 	{
685 	  DECL_BIT_FIELD_TYPE (decl) = type;
686 
687 	  /* A zero-length bit-field affects the alignment of the next
688 	     field.  In essence such bit-fields are not influenced by
689 	     any packing due to #pragma pack or attribute packed.  */
690 	  if (integer_zerop (DECL_SIZE (decl))
691 	      && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
692 	    {
693 	      zero_bitfield = true;
694 	      packed_p = false;
695 	      if (PCC_BITFIELD_TYPE_MATTERS)
696 		do_type_align (type, decl);
697 	      else
698 		{
699 #ifdef EMPTY_FIELD_BOUNDARY
700 		  if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
701 		    {
702 		      SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
703 		      DECL_USER_ALIGN (decl) = 0;
704 		    }
705 #endif
706 		}
707 	    }
708 
709 	  /* See if we can use an ordinary integer mode for a bit-field.
710 	     Conditions are: a fixed size that is correct for another mode,
711 	     occupying a complete byte or bytes on proper boundary.  */
712 	  if (TYPE_SIZE (type) != 0
713 	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
714 	      && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
715 	    {
716 	      machine_mode xmode;
717 	      if (mode_for_size_tree (DECL_SIZE (decl),
718 				      MODE_INT, 1).exists (&xmode))
719 		{
720 		  unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
721 		  if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
722 		      && (known_align == 0 || known_align >= xalign))
723 		    {
724 		      SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
725 		      SET_DECL_MODE (decl, xmode);
726 		      DECL_BIT_FIELD (decl) = 0;
727 		    }
728 		}
729 	    }
730 
731 	  /* Turn off DECL_BIT_FIELD if we won't need it set.  */
732 	  if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
733 	      && known_align >= TYPE_ALIGN (type)
734 	      && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
735 	    DECL_BIT_FIELD (decl) = 0;
736 	}
737       else if (packed_p && DECL_USER_ALIGN (decl))
738 	/* Don't touch DECL_ALIGN.  For other packed fields, go ahead and
739 	   round up; we'll reduce it again below.  We want packing to
740 	   supersede USER_ALIGN inherited from the type, but defer to
741 	   alignment explicitly specified on the field decl.  */;
742       else
743 	do_type_align (type, decl);
744 
745       /* If the field is packed and not explicitly aligned, give it the
746 	 minimum alignment.  Note that do_type_align may set
747 	 DECL_USER_ALIGN, so we need to check old_user_align instead.  */
748       if (packed_p
749 	  && !old_user_align)
750 	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
751 
752       if (! packed_p && ! DECL_USER_ALIGN (decl))
753 	{
754 	  /* Some targets (i.e. i386, VMS) limit struct field alignment
755 	     to a lower boundary than alignment of variables unless
756 	     it was overridden by attribute aligned.  */
757 #ifdef BIGGEST_FIELD_ALIGNMENT
758 	  SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
759 				     (unsigned) BIGGEST_FIELD_ALIGNMENT));
760 #endif
761 #ifdef ADJUST_FIELD_ALIGN
762 	  SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
763 						    DECL_ALIGN (decl)));
764 #endif
765 	}
766 
767       if (zero_bitfield)
768         mfa = initial_max_fld_align * BITS_PER_UNIT;
769       else
770 	mfa = maximum_field_alignment;
771       /* Should this be controlled by DECL_USER_ALIGN, too?  */
772       if (mfa != 0)
773 	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
774     }
775 
776   /* Evaluate nonconstant size only once, either now or as soon as safe.  */
777   if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
778     DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
779   if (DECL_SIZE_UNIT (decl) != 0
780       && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
781     DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
782 
783   /* If requested, warn about definitions of large data objects.  */
784   if ((code == PARM_DECL || (code == VAR_DECL && !DECL_NONLOCAL_FRAME (decl)))
785       && !DECL_EXTERNAL (decl))
786     {
787       tree size = DECL_SIZE_UNIT (decl);
788 
789       if (size != 0 && TREE_CODE (size) == INTEGER_CST)
790 	{
791 	  /* -Wlarger-than= argument of HOST_WIDE_INT_MAX is treated
792 	     as if PTRDIFF_MAX had been specified, with the value
793 	     being that on the target rather than the host.  */
794 	  unsigned HOST_WIDE_INT max_size = warn_larger_than_size;
795 	  if (max_size == HOST_WIDE_INT_MAX)
796 	    max_size = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
797 
798 	  if (compare_tree_int (size, max_size) > 0)
799 	    warning (OPT_Wlarger_than_, "size of %q+D %E bytes exceeds "
800 		     "maximum object size %wu",
801 		     decl, size, max_size);
802 	}
803     }
804 
805   /* If the RTL was already set, update its mode and mem attributes.  */
806   if (rtl)
807     {
808       PUT_MODE (rtl, DECL_MODE (decl));
809       SET_DECL_RTL (decl, 0);
810       if (MEM_P (rtl))
811 	set_mem_attributes (rtl, decl, 1);
812       SET_DECL_RTL (decl, rtl);
813     }
814 }
815 
816 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
817    results of a previous call to layout_decl and calls it again.  */
818 
819 void
relayout_decl(tree decl)820 relayout_decl (tree decl)
821 {
822   DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
823   SET_DECL_MODE (decl, VOIDmode);
824   if (!DECL_USER_ALIGN (decl))
825     SET_DECL_ALIGN (decl, 0);
826   if (DECL_RTL_SET_P (decl))
827     SET_DECL_RTL (decl, 0);
828 
829   layout_decl (decl, 0);
830 }
831 
832 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
833    QUAL_UNION_TYPE.  Return a pointer to a struct record_layout_info which
834    is to be passed to all other layout functions for this record.  It is the
835    responsibility of the caller to call `free' for the storage returned.
836    Note that garbage collection is not permitted until we finish laying
837    out the record.  */
838 
839 record_layout_info
start_record_layout(tree t)840 start_record_layout (tree t)
841 {
842   record_layout_info rli = XNEW (struct record_layout_info_s);
843 
844   rli->t = t;
845 
846   /* If the type has a minimum specified alignment (via an attribute
847      declaration, for example) use it -- otherwise, start with a
848      one-byte alignment.  */
849   rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
850   rli->unpacked_align = rli->record_align;
851   rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
852 
853 #ifdef STRUCTURE_SIZE_BOUNDARY
854   /* Packed structures don't need to have minimum size.  */
855   if (! TYPE_PACKED (t))
856     {
857       unsigned tmp;
858 
859       /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY.  */
860       tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
861       if (maximum_field_alignment != 0)
862 	tmp = MIN (tmp, maximum_field_alignment);
863       rli->record_align = MAX (rli->record_align, tmp);
864     }
865 #endif
866 
867   rli->offset = size_zero_node;
868   rli->bitpos = bitsize_zero_node;
869   rli->prev_field = 0;
870   rli->pending_statics = 0;
871   rli->packed_maybe_necessary = 0;
872   rli->remaining_in_alignment = 0;
873 
874   return rli;
875 }
876 
877 /* Fold sizetype value X to bitsizetype, given that X represents a type
878    size or offset.  */
879 
880 static tree
bits_from_bytes(tree x)881 bits_from_bytes (tree x)
882 {
883   if (POLY_INT_CST_P (x))
884     /* The runtime calculation isn't allowed to overflow sizetype;
885        increasing the runtime values must always increase the size
886        or offset of the object.  This means that the object imposes
887        a maximum value on the runtime parameters, but we don't record
888        what that is.  */
889     return build_poly_int_cst
890       (bitsizetype,
891        poly_wide_int::from (poly_int_cst_value (x),
892 			    TYPE_PRECISION (bitsizetype),
893 			    TYPE_SIGN (TREE_TYPE (x))));
894   x = fold_convert (bitsizetype, x);
895   gcc_checking_assert (x);
896   return x;
897 }
898 
899 /* Return the combined bit position for the byte offset OFFSET and the
900    bit position BITPOS.
901 
902    These functions operate on byte and bit positions present in FIELD_DECLs
903    and assume that these expressions result in no (intermediate) overflow.
904    This assumption is necessary to fold the expressions as much as possible,
905    so as to avoid creating artificially variable-sized types in languages
906    supporting variable-sized types like Ada.  */
907 
908 tree
bit_from_pos(tree offset,tree bitpos)909 bit_from_pos (tree offset, tree bitpos)
910 {
911   return size_binop (PLUS_EXPR, bitpos,
912 		     size_binop (MULT_EXPR, bits_from_bytes (offset),
913 				 bitsize_unit_node));
914 }
915 
916 /* Return the combined truncated byte position for the byte offset OFFSET and
917    the bit position BITPOS.  */
918 
919 tree
byte_from_pos(tree offset,tree bitpos)920 byte_from_pos (tree offset, tree bitpos)
921 {
922   tree bytepos;
923   if (TREE_CODE (bitpos) == MULT_EXPR
924       && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
925     bytepos = TREE_OPERAND (bitpos, 0);
926   else
927     bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
928   return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
929 }
930 
931 /* Split the bit position POS into a byte offset *POFFSET and a bit
932    position *PBITPOS with the byte offset aligned to OFF_ALIGN bits.  */
933 
934 void
pos_from_bit(tree * poffset,tree * pbitpos,unsigned int off_align,tree pos)935 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
936 	      tree pos)
937 {
938   tree toff_align = bitsize_int (off_align);
939   if (TREE_CODE (pos) == MULT_EXPR
940       && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
941     {
942       *poffset = size_binop (MULT_EXPR,
943 			     fold_convert (sizetype, TREE_OPERAND (pos, 0)),
944 			     size_int (off_align / BITS_PER_UNIT));
945       *pbitpos = bitsize_zero_node;
946     }
947   else
948     {
949       *poffset = size_binop (MULT_EXPR,
950 			     fold_convert (sizetype,
951 					   size_binop (FLOOR_DIV_EXPR, pos,
952 						       toff_align)),
953 			     size_int (off_align / BITS_PER_UNIT));
954       *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
955     }
956 }
957 
958 /* Given a pointer to bit and byte offsets and an offset alignment,
959    normalize the offsets so they are within the alignment.  */
960 
961 void
normalize_offset(tree * poffset,tree * pbitpos,unsigned int off_align)962 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
963 {
964   /* If the bit position is now larger than it should be, adjust it
965      downwards.  */
966   if (compare_tree_int (*pbitpos, off_align) >= 0)
967     {
968       tree offset, bitpos;
969       pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
970       *poffset = size_binop (PLUS_EXPR, *poffset, offset);
971       *pbitpos = bitpos;
972     }
973 }
974 
975 /* Print debugging information about the information in RLI.  */
976 
977 DEBUG_FUNCTION void
debug_rli(record_layout_info rli)978 debug_rli (record_layout_info rli)
979 {
980   print_node_brief (stderr, "type", rli->t, 0);
981   print_node_brief (stderr, "\noffset", rli->offset, 0);
982   print_node_brief (stderr, " bitpos", rli->bitpos, 0);
983 
984   fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
985 	   rli->record_align, rli->unpacked_align,
986 	   rli->offset_align);
987 
988   /* The ms_struct code is the only that uses this.  */
989   if (targetm.ms_bitfield_layout_p (rli->t))
990     fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
991 
992   if (rli->packed_maybe_necessary)
993     fprintf (stderr, "packed may be necessary\n");
994 
995   if (!vec_safe_is_empty (rli->pending_statics))
996     {
997       fprintf (stderr, "pending statics:\n");
998       debug (rli->pending_statics);
999     }
1000 }
1001 
1002 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
1003    BITPOS if necessary to keep BITPOS below OFFSET_ALIGN.  */
1004 
1005 void
normalize_rli(record_layout_info rli)1006 normalize_rli (record_layout_info rli)
1007 {
1008   normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
1009 }
1010 
1011 /* Returns the size in bytes allocated so far.  */
1012 
1013 tree
rli_size_unit_so_far(record_layout_info rli)1014 rli_size_unit_so_far (record_layout_info rli)
1015 {
1016   return byte_from_pos (rli->offset, rli->bitpos);
1017 }
1018 
1019 /* Returns the size in bits allocated so far.  */
1020 
1021 tree
rli_size_so_far(record_layout_info rli)1022 rli_size_so_far (record_layout_info rli)
1023 {
1024   return bit_from_pos (rli->offset, rli->bitpos);
1025 }
1026 
1027 /* FIELD is about to be added to RLI->T.  The alignment (in bits) of
1028    the next available location within the record is given by KNOWN_ALIGN.
1029    Update the variable alignment fields in RLI, and return the alignment
1030    to give the FIELD.  */
1031 
1032 unsigned int
update_alignment_for_field(record_layout_info rli,tree field,unsigned int known_align)1033 update_alignment_for_field (record_layout_info rli, tree field,
1034 			    unsigned int known_align)
1035 {
1036   /* The alignment required for FIELD.  */
1037   unsigned int desired_align;
1038   /* The type of this field.  */
1039   tree type = TREE_TYPE (field);
1040   /* True if the field was explicitly aligned by the user.  */
1041   bool user_align;
1042   bool is_bitfield;
1043 
1044   /* Do not attempt to align an ERROR_MARK node */
1045   if (TREE_CODE (type) == ERROR_MARK)
1046     return 0;
1047 
1048   /* Lay out the field so we know what alignment it needs.  */
1049   layout_decl (field, known_align);
1050   desired_align = DECL_ALIGN (field);
1051   user_align = DECL_USER_ALIGN (field);
1052 
1053   is_bitfield = (type != error_mark_node
1054 		 && DECL_BIT_FIELD_TYPE (field)
1055 		 && ! integer_zerop (TYPE_SIZE (type)));
1056 
1057   /* Record must have at least as much alignment as any field.
1058      Otherwise, the alignment of the field within the record is
1059      meaningless.  */
1060   if (targetm.ms_bitfield_layout_p (rli->t))
1061     {
1062       /* Here, the alignment of the underlying type of a bitfield can
1063 	 affect the alignment of a record; even a zero-sized field
1064 	 can do this.  The alignment should be to the alignment of
1065 	 the type, except that for zero-size bitfields this only
1066 	 applies if there was an immediately prior, nonzero-size
1067 	 bitfield.  (That's the way it is, experimentally.) */
1068       if (!is_bitfield
1069 	  || ((DECL_SIZE (field) == NULL_TREE
1070 	       || !integer_zerop (DECL_SIZE (field)))
1071 	      ? !DECL_PACKED (field)
1072 	      : (rli->prev_field
1073 		 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1074 		 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1075 	{
1076 	  unsigned int type_align = TYPE_ALIGN (type);
1077 	  if (!is_bitfield && DECL_PACKED (field))
1078 	    type_align = desired_align;
1079 	  else
1080 	    type_align = MAX (type_align, desired_align);
1081 	  if (maximum_field_alignment != 0)
1082 	    type_align = MIN (type_align, maximum_field_alignment);
1083 	  rli->record_align = MAX (rli->record_align, type_align);
1084 	  rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1085 	}
1086     }
1087   else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1088     {
1089       /* Named bit-fields cause the entire structure to have the
1090 	 alignment implied by their type.  Some targets also apply the same
1091 	 rules to unnamed bitfields.  */
1092       if (DECL_NAME (field) != 0
1093 	  || targetm.align_anon_bitfield ())
1094 	{
1095 	  unsigned int type_align = TYPE_ALIGN (type);
1096 
1097 #ifdef ADJUST_FIELD_ALIGN
1098 	  if (! TYPE_USER_ALIGN (type))
1099 	    type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1100 #endif
1101 
1102 	  /* Targets might chose to handle unnamed and hence possibly
1103 	     zero-width bitfield.  Those are not influenced by #pragmas
1104 	     or packed attributes.  */
1105 	  if (integer_zerop (DECL_SIZE (field)))
1106 	    {
1107 	      if (initial_max_fld_align)
1108 	        type_align = MIN (type_align,
1109 				  initial_max_fld_align * BITS_PER_UNIT);
1110 	    }
1111 	  else if (maximum_field_alignment != 0)
1112 	    type_align = MIN (type_align, maximum_field_alignment);
1113 	  else if (DECL_PACKED (field))
1114 	    type_align = MIN (type_align, BITS_PER_UNIT);
1115 
1116 	  /* The alignment of the record is increased to the maximum
1117 	     of the current alignment, the alignment indicated on the
1118 	     field (i.e., the alignment specified by an __aligned__
1119 	     attribute), and the alignment indicated by the type of
1120 	     the field.  */
1121 	  rli->record_align = MAX (rli->record_align, desired_align);
1122 	  rli->record_align = MAX (rli->record_align, type_align);
1123 
1124 	  if (warn_packed)
1125 	    rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1126 	  user_align |= TYPE_USER_ALIGN (type);
1127 	}
1128     }
1129   else
1130     {
1131       rli->record_align = MAX (rli->record_align, desired_align);
1132       rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1133     }
1134 
1135   TYPE_USER_ALIGN (rli->t) |= user_align;
1136 
1137   return desired_align;
1138 }
1139 
1140 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1141    the field alignment of FIELD or FIELD isn't aligned. */
1142 
1143 static void
handle_warn_if_not_align(tree field,unsigned int record_align)1144 handle_warn_if_not_align (tree field, unsigned int record_align)
1145 {
1146   tree type = TREE_TYPE (field);
1147 
1148   if (type == error_mark_node)
1149     return;
1150 
1151   unsigned int warn_if_not_align = 0;
1152 
1153   int opt_w = 0;
1154 
1155   if (warn_if_not_aligned)
1156     {
1157       warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1158       if (!warn_if_not_align)
1159 	warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1160       if (warn_if_not_align)
1161 	opt_w = OPT_Wif_not_aligned;
1162     }
1163 
1164   if (!warn_if_not_align
1165       && warn_packed_not_aligned
1166       && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1167     {
1168       warn_if_not_align = TYPE_ALIGN (type);
1169       opt_w = OPT_Wpacked_not_aligned;
1170     }
1171 
1172   if (!warn_if_not_align)
1173     return;
1174 
1175   tree context = DECL_CONTEXT (field);
1176 
1177   warn_if_not_align /= BITS_PER_UNIT;
1178   record_align /= BITS_PER_UNIT;
1179   if ((record_align % warn_if_not_align) != 0)
1180     warning (opt_w, "alignment %u of %qT is less than %u",
1181 	     record_align, context, warn_if_not_align);
1182 
1183   tree off = byte_position (field);
1184   if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1185     {
1186       if (TREE_CODE (off) == INTEGER_CST)
1187 	warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1188 		 field, off, context, warn_if_not_align);
1189       else
1190 	warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1191 		 field, off, context, warn_if_not_align);
1192     }
1193 }
1194 
1195 /* Called from place_field to handle unions.  */
1196 
1197 static void
place_union_field(record_layout_info rli,tree field)1198 place_union_field (record_layout_info rli, tree field)
1199 {
1200   update_alignment_for_field (rli, field, /*known_align=*/0);
1201 
1202   DECL_FIELD_OFFSET (field) = size_zero_node;
1203   DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1204   SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1205   handle_warn_if_not_align (field, rli->record_align);
1206 
1207   /* If this is an ERROR_MARK return *after* having set the
1208      field at the start of the union. This helps when parsing
1209      invalid fields. */
1210   if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1211     return;
1212 
1213   if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1214       && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1215     TYPE_TYPELESS_STORAGE (rli->t) = 1;
1216 
1217   /* We assume the union's size will be a multiple of a byte so we don't
1218      bother with BITPOS.  */
1219   if (TREE_CODE (rli->t) == UNION_TYPE)
1220     rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1221   else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1222     rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1223 			       DECL_SIZE_UNIT (field), rli->offset);
1224 }
1225 
1226 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1227    at BYTE_OFFSET / BIT_OFFSET.  Return nonzero if the field would span more
1228    units of alignment than the underlying TYPE.  */
1229 static int
excess_unit_span(HOST_WIDE_INT byte_offset,HOST_WIDE_INT bit_offset,HOST_WIDE_INT size,HOST_WIDE_INT align,tree type)1230 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1231 		  HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1232 {
1233   /* Note that the calculation of OFFSET might overflow; we calculate it so
1234      that we still get the right result as long as ALIGN is a power of two.  */
1235   unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1236 
1237   offset = offset % align;
1238   return ((offset + size + align - 1) / align
1239 	  > tree_to_uhwi (TYPE_SIZE (type)) / align);
1240 }
1241 
1242 /* RLI contains information about the layout of a RECORD_TYPE.  FIELD
1243    is a FIELD_DECL to be added after those fields already present in
1244    T.  (FIELD is not actually added to the TYPE_FIELDS list here;
1245    callers that desire that behavior must manually perform that step.)  */
1246 
1247 void
place_field(record_layout_info rli,tree field)1248 place_field (record_layout_info rli, tree field)
1249 {
1250   /* The alignment required for FIELD.  */
1251   unsigned int desired_align;
1252   /* The alignment FIELD would have if we just dropped it into the
1253      record as it presently stands.  */
1254   unsigned int known_align;
1255   unsigned int actual_align;
1256   /* The type of this field.  */
1257   tree type = TREE_TYPE (field);
1258 
1259   gcc_assert (TREE_CODE (field) != ERROR_MARK);
1260 
1261   /* If FIELD is static, then treat it like a separate variable, not
1262      really like a structure field.  If it is a FUNCTION_DECL, it's a
1263      method.  In both cases, all we do is lay out the decl, and we do
1264      it *after* the record is laid out.  */
1265   if (VAR_P (field))
1266     {
1267       vec_safe_push (rli->pending_statics, field);
1268       return;
1269     }
1270 
1271   /* Enumerators and enum types which are local to this class need not
1272      be laid out.  Likewise for initialized constant fields.  */
1273   else if (TREE_CODE (field) != FIELD_DECL)
1274     return;
1275 
1276   /* Unions are laid out very differently than records, so split
1277      that code off to another function.  */
1278   else if (TREE_CODE (rli->t) != RECORD_TYPE)
1279     {
1280       place_union_field (rli, field);
1281       return;
1282     }
1283 
1284   else if (TREE_CODE (type) == ERROR_MARK)
1285     {
1286       /* Place this field at the current allocation position, so we
1287 	 maintain monotonicity.  */
1288       DECL_FIELD_OFFSET (field) = rli->offset;
1289       DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1290       SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1291       handle_warn_if_not_align (field, rli->record_align);
1292       return;
1293     }
1294 
1295   if (AGGREGATE_TYPE_P (type)
1296       && TYPE_TYPELESS_STORAGE (type))
1297     TYPE_TYPELESS_STORAGE (rli->t) = 1;
1298 
1299   /* Work out the known alignment so far.  Note that A & (-A) is the
1300      value of the least-significant bit in A that is one.  */
1301   if (! integer_zerop (rli->bitpos))
1302     known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1303   else if (integer_zerop (rli->offset))
1304     known_align = 0;
1305   else if (tree_fits_uhwi_p (rli->offset))
1306     known_align = (BITS_PER_UNIT
1307 		   * least_bit_hwi (tree_to_uhwi (rli->offset)));
1308   else
1309     known_align = rli->offset_align;
1310 
1311   desired_align = update_alignment_for_field (rli, field, known_align);
1312   if (known_align == 0)
1313     known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1314 
1315   if (warn_packed && DECL_PACKED (field))
1316     {
1317       if (known_align >= TYPE_ALIGN (type))
1318 	{
1319 	  if (TYPE_ALIGN (type) > desired_align)
1320 	    {
1321 	      if (STRICT_ALIGNMENT)
1322 		warning (OPT_Wattributes, "packed attribute causes "
1323                          "inefficient alignment for %q+D", field);
1324 	      /* Don't warn if DECL_PACKED was set by the type.  */
1325 	      else if (!TYPE_PACKED (rli->t))
1326 		warning (OPT_Wattributes, "packed attribute is "
1327 			 "unnecessary for %q+D", field);
1328 	    }
1329 	}
1330       else
1331 	rli->packed_maybe_necessary = 1;
1332     }
1333 
1334   /* Does this field automatically have alignment it needs by virtue
1335      of the fields that precede it and the record's own alignment?  */
1336   if (known_align < desired_align
1337       && (! targetm.ms_bitfield_layout_p (rli->t)
1338 	  || rli->prev_field == NULL))
1339     {
1340       /* No, we need to skip space before this field.
1341 	 Bump the cumulative size to multiple of field alignment.  */
1342 
1343       if (!targetm.ms_bitfield_layout_p (rli->t)
1344 	  && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION
1345 	  && !TYPE_ARTIFICIAL (rli->t))
1346 	warning (OPT_Wpadded, "padding struct to align %q+D", field);
1347 
1348       /* If the alignment is still within offset_align, just align
1349 	 the bit position.  */
1350       if (desired_align < rli->offset_align)
1351 	rli->bitpos = round_up (rli->bitpos, desired_align);
1352       else
1353 	{
1354 	  /* First adjust OFFSET by the partial bits, then align.  */
1355 	  rli->offset
1356 	    = size_binop (PLUS_EXPR, rli->offset,
1357 			  fold_convert (sizetype,
1358 					size_binop (CEIL_DIV_EXPR, rli->bitpos,
1359 						    bitsize_unit_node)));
1360 	  rli->bitpos = bitsize_zero_node;
1361 
1362 	  rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1363 	}
1364 
1365       if (! TREE_CONSTANT (rli->offset))
1366 	rli->offset_align = desired_align;
1367     }
1368 
1369   /* Handle compatibility with PCC.  Note that if the record has any
1370      variable-sized fields, we need not worry about compatibility.  */
1371   if (PCC_BITFIELD_TYPE_MATTERS
1372       && ! targetm.ms_bitfield_layout_p (rli->t)
1373       && TREE_CODE (field) == FIELD_DECL
1374       && type != error_mark_node
1375       && DECL_BIT_FIELD (field)
1376       && (! DECL_PACKED (field)
1377 	  /* Enter for these packed fields only to issue a warning.  */
1378 	  || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1379       && maximum_field_alignment == 0
1380       && ! integer_zerop (DECL_SIZE (field))
1381       && tree_fits_uhwi_p (DECL_SIZE (field))
1382       && tree_fits_uhwi_p (rli->offset)
1383       && tree_fits_uhwi_p (TYPE_SIZE (type)))
1384     {
1385       unsigned int type_align = TYPE_ALIGN (type);
1386       tree dsize = DECL_SIZE (field);
1387       HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1388       HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1389       HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1390 
1391 #ifdef ADJUST_FIELD_ALIGN
1392       if (! TYPE_USER_ALIGN (type))
1393 	type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1394 #endif
1395 
1396       /* A bit field may not span more units of alignment of its type
1397 	 than its type itself.  Advance to next boundary if necessary.  */
1398       if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1399 	{
1400 	  if (DECL_PACKED (field))
1401 	    {
1402 	      if (warn_packed_bitfield_compat == 1)
1403 		inform
1404 		  (input_location,
1405 		   "offset of packed bit-field %qD has changed in GCC 4.4",
1406 		   field);
1407 	    }
1408 	  else
1409 	    rli->bitpos = round_up (rli->bitpos, type_align);
1410 	}
1411 
1412       if (! DECL_PACKED (field))
1413 	TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1414 
1415       SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1416 				  TYPE_WARN_IF_NOT_ALIGN (type));
1417     }
1418 
1419 #ifdef BITFIELD_NBYTES_LIMITED
1420   if (BITFIELD_NBYTES_LIMITED
1421       && ! targetm.ms_bitfield_layout_p (rli->t)
1422       && TREE_CODE (field) == FIELD_DECL
1423       && type != error_mark_node
1424       && DECL_BIT_FIELD_TYPE (field)
1425       && ! DECL_PACKED (field)
1426       && ! integer_zerop (DECL_SIZE (field))
1427       && tree_fits_uhwi_p (DECL_SIZE (field))
1428       && tree_fits_uhwi_p (rli->offset)
1429       && tree_fits_uhwi_p (TYPE_SIZE (type)))
1430     {
1431       unsigned int type_align = TYPE_ALIGN (type);
1432       tree dsize = DECL_SIZE (field);
1433       HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1434       HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1435       HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1436 
1437 #ifdef ADJUST_FIELD_ALIGN
1438       if (! TYPE_USER_ALIGN (type))
1439 	type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1440 #endif
1441 
1442       if (maximum_field_alignment != 0)
1443 	type_align = MIN (type_align, maximum_field_alignment);
1444       /* ??? This test is opposite the test in the containing if
1445 	 statement, so this code is unreachable currently.  */
1446       else if (DECL_PACKED (field))
1447 	type_align = MIN (type_align, BITS_PER_UNIT);
1448 
1449       /* A bit field may not span the unit of alignment of its type.
1450 	 Advance to next boundary if necessary.  */
1451       if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1452 	rli->bitpos = round_up (rli->bitpos, type_align);
1453 
1454       TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1455       SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1456 				  TYPE_WARN_IF_NOT_ALIGN (type));
1457     }
1458 #endif
1459 
1460   /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1461      A subtlety:
1462 	When a bit field is inserted into a packed record, the whole
1463 	size of the underlying type is used by one or more same-size
1464 	adjacent bitfields.  (That is, if its long:3, 32 bits is
1465 	used in the record, and any additional adjacent long bitfields are
1466 	packed into the same chunk of 32 bits. However, if the size
1467 	changes, a new field of that size is allocated.)  In an unpacked
1468 	record, this is the same as using alignment, but not equivalent
1469 	when packing.
1470 
1471      Note: for compatibility, we use the type size, not the type alignment
1472      to determine alignment, since that matches the documentation */
1473 
1474   if (targetm.ms_bitfield_layout_p (rli->t))
1475     {
1476       tree prev_saved = rli->prev_field;
1477       tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1478 
1479       /* This is a bitfield if it exists.  */
1480       if (rli->prev_field)
1481 	{
1482 	  bool realign_p = known_align < desired_align;
1483 
1484 	  /* If both are bitfields, nonzero, and the same size, this is
1485 	     the middle of a run.  Zero declared size fields are special
1486 	     and handled as "end of run". (Note: it's nonzero declared
1487 	     size, but equal type sizes!) (Since we know that both
1488 	     the current and previous fields are bitfields by the
1489 	     time we check it, DECL_SIZE must be present for both.) */
1490 	  if (DECL_BIT_FIELD_TYPE (field)
1491 	      && !integer_zerop (DECL_SIZE (field))
1492 	      && !integer_zerop (DECL_SIZE (rli->prev_field))
1493 	      && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1494 	      && tree_fits_uhwi_p (TYPE_SIZE (type))
1495 	      && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1496 	    {
1497 	      /* We're in the middle of a run of equal type size fields; make
1498 		 sure we realign if we run out of bits.  (Not decl size,
1499 		 type size!) */
1500 	      HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1501 
1502 	      if (rli->remaining_in_alignment < bitsize)
1503 		{
1504 		  HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1505 
1506 		  /* out of bits; bump up to next 'word'.  */
1507 		  rli->bitpos
1508 		    = size_binop (PLUS_EXPR, rli->bitpos,
1509 				  bitsize_int (rli->remaining_in_alignment));
1510 		  rli->prev_field = field;
1511 		  if (typesize < bitsize)
1512 		    rli->remaining_in_alignment = 0;
1513 		  else
1514 		    rli->remaining_in_alignment = typesize - bitsize;
1515 		}
1516 	      else
1517 		{
1518 		  rli->remaining_in_alignment -= bitsize;
1519 		  realign_p = false;
1520 		}
1521 	    }
1522 	  else
1523 	    {
1524 	      /* End of a run: if leaving a run of bitfields of the same type
1525 		 size, we have to "use up" the rest of the bits of the type
1526 		 size.
1527 
1528 		 Compute the new position as the sum of the size for the prior
1529 		 type and where we first started working on that type.
1530 		 Note: since the beginning of the field was aligned then
1531 		 of course the end will be too.  No round needed.  */
1532 
1533 	      if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1534 		{
1535 		  rli->bitpos
1536 		    = size_binop (PLUS_EXPR, rli->bitpos,
1537 				  bitsize_int (rli->remaining_in_alignment));
1538 		}
1539 	      else
1540 		/* We "use up" size zero fields; the code below should behave
1541 		   as if the prior field was not a bitfield.  */
1542 		prev_saved = NULL;
1543 
1544 	      /* Cause a new bitfield to be captured, either this time (if
1545 		 currently a bitfield) or next time we see one.  */
1546 	      if (!DECL_BIT_FIELD_TYPE (field)
1547 		  || integer_zerop (DECL_SIZE (field)))
1548 		rli->prev_field = NULL;
1549 	    }
1550 
1551 	  /* Does this field automatically have alignment it needs by virtue
1552 	     of the fields that precede it and the record's own alignment?  */
1553 	  if (realign_p)
1554 	    {
1555 	      /* If the alignment is still within offset_align, just align
1556 		 the bit position.  */
1557 	      if (desired_align < rli->offset_align)
1558 		rli->bitpos = round_up (rli->bitpos, desired_align);
1559 	      else
1560 		{
1561 		  /* First adjust OFFSET by the partial bits, then align.  */
1562 		  tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1563 				       bitsize_unit_node);
1564 		  rli->offset = size_binop (PLUS_EXPR, rli->offset,
1565 					    fold_convert (sizetype, d));
1566 		  rli->bitpos = bitsize_zero_node;
1567 
1568 		  rli->offset = round_up (rli->offset,
1569 					  desired_align / BITS_PER_UNIT);
1570 		}
1571 
1572 	      if (! TREE_CONSTANT (rli->offset))
1573 		rli->offset_align = desired_align;
1574 	    }
1575 
1576 	  normalize_rli (rli);
1577         }
1578 
1579       /* If we're starting a new run of same type size bitfields
1580 	 (or a run of non-bitfields), set up the "first of the run"
1581 	 fields.
1582 
1583 	 That is, if the current field is not a bitfield, or if there
1584 	 was a prior bitfield the type sizes differ, or if there wasn't
1585 	 a prior bitfield the size of the current field is nonzero.
1586 
1587 	 Note: we must be sure to test ONLY the type size if there was
1588 	 a prior bitfield and ONLY for the current field being zero if
1589 	 there wasn't.  */
1590 
1591       if (!DECL_BIT_FIELD_TYPE (field)
1592 	  || (prev_saved != NULL
1593 	      ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1594 	      : !integer_zerop (DECL_SIZE (field))))
1595 	{
1596 	  /* Never smaller than a byte for compatibility.  */
1597 	  unsigned int type_align = BITS_PER_UNIT;
1598 
1599 	  /* (When not a bitfield), we could be seeing a flex array (with
1600 	     no DECL_SIZE).  Since we won't be using remaining_in_alignment
1601 	     until we see a bitfield (and come by here again) we just skip
1602 	     calculating it.  */
1603 	  if (DECL_SIZE (field) != NULL
1604 	      && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1605 	      && tree_fits_uhwi_p (DECL_SIZE (field)))
1606 	    {
1607 	      unsigned HOST_WIDE_INT bitsize
1608 		= tree_to_uhwi (DECL_SIZE (field));
1609 	      unsigned HOST_WIDE_INT typesize
1610 		= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1611 
1612 	      if (typesize < bitsize)
1613 		rli->remaining_in_alignment = 0;
1614 	      else
1615 		rli->remaining_in_alignment = typesize - bitsize;
1616 	    }
1617 
1618 	  /* Now align (conventionally) for the new type.  */
1619 	  if (! DECL_PACKED (field))
1620 	    type_align = TYPE_ALIGN (TREE_TYPE (field));
1621 
1622 	  if (maximum_field_alignment != 0)
1623 	    type_align = MIN (type_align, maximum_field_alignment);
1624 
1625 	  rli->bitpos = round_up (rli->bitpos, type_align);
1626 
1627           /* If we really aligned, don't allow subsequent bitfields
1628 	     to undo that.  */
1629 	  rli->prev_field = NULL;
1630 	}
1631     }
1632 
1633   /* Offset so far becomes the position of this field after normalizing.  */
1634   normalize_rli (rli);
1635   DECL_FIELD_OFFSET (field) = rli->offset;
1636   DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1637   SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1638   handle_warn_if_not_align (field, rli->record_align);
1639 
1640   /* Evaluate nonconstant offsets only once, either now or as soon as safe.  */
1641   if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1642     DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1643 
1644   /* If this field ended up more aligned than we thought it would be (we
1645      approximate this by seeing if its position changed), lay out the field
1646      again; perhaps we can use an integral mode for it now.  */
1647   if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1648     actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1649   else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1650     actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1651   else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1652     actual_align = (BITS_PER_UNIT
1653 		    * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1654   else
1655     actual_align = DECL_OFFSET_ALIGN (field);
1656   /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1657      store / extract bit field operations will check the alignment of the
1658      record against the mode of bit fields.  */
1659 
1660   if (known_align != actual_align)
1661     layout_decl (field, actual_align);
1662 
1663   if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1664     rli->prev_field = field;
1665 
1666   /* Now add size of this field to the size of the record.  If the size is
1667      not constant, treat the field as being a multiple of bytes and just
1668      adjust the offset, resetting the bit position.  Otherwise, apportion the
1669      size amongst the bit position and offset.  First handle the case of an
1670      unspecified size, which can happen when we have an invalid nested struct
1671      definition, such as struct j { struct j { int i; } }.  The error message
1672      is printed in finish_struct.  */
1673   if (DECL_SIZE (field) == 0)
1674     /* Do nothing.  */;
1675   else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1676 	   || TREE_OVERFLOW (DECL_SIZE (field)))
1677     {
1678       rli->offset
1679 	= size_binop (PLUS_EXPR, rli->offset,
1680 		      fold_convert (sizetype,
1681 				    size_binop (CEIL_DIV_EXPR, rli->bitpos,
1682 						bitsize_unit_node)));
1683       rli->offset
1684 	= size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1685       rli->bitpos = bitsize_zero_node;
1686       rli->offset_align = MIN (rli->offset_align, desired_align);
1687 
1688       if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1689 			  bitsize_int (rli->offset_align)))
1690 	{
1691 	  tree type = strip_array_types (TREE_TYPE (field));
1692 	  /* The above adjusts offset_align just based on the start of the
1693 	     field.  The field might not have a size that is a multiple of
1694 	     that offset_align though.  If the field is an array of fixed
1695 	     sized elements, assume there can be any multiple of those
1696 	     sizes.  If it is a variable length aggregate or array of
1697 	     variable length aggregates, assume worst that the end is
1698 	     just BITS_PER_UNIT aligned.  */
1699 	  if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1700 	    {
1701 	      if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1702 		{
1703 		  unsigned HOST_WIDE_INT sz
1704 		    = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1705 		  rli->offset_align = MIN (rli->offset_align, sz);
1706 		}
1707 	    }
1708 	  else
1709 	    rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1710 	}
1711     }
1712   else if (targetm.ms_bitfield_layout_p (rli->t))
1713     {
1714       rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1715 
1716       /* If FIELD is the last field and doesn't end at the full length
1717 	 of the type then pad the struct out to the full length of the
1718 	 last type.  */
1719       if (DECL_BIT_FIELD_TYPE (field)
1720 	  && !integer_zerop (DECL_SIZE (field)))
1721 	{
1722 	  /* We have to scan, because non-field DECLS are also here.  */
1723 	  tree probe = field;
1724 	  while ((probe = DECL_CHAIN (probe)))
1725 	    if (TREE_CODE (probe) == FIELD_DECL)
1726 	      break;
1727 	  if (!probe)
1728 	    rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1729 				      bitsize_int (rli->remaining_in_alignment));
1730 	}
1731 
1732       normalize_rli (rli);
1733     }
1734   else
1735     {
1736       rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1737       normalize_rli (rli);
1738     }
1739 }
1740 
1741 /* Assuming that all the fields have been laid out, this function uses
1742    RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1743    indicated by RLI.  */
1744 
1745 static void
finalize_record_size(record_layout_info rli)1746 finalize_record_size (record_layout_info rli)
1747 {
1748   tree unpadded_size, unpadded_size_unit;
1749 
1750   /* Now we want just byte and bit offsets, so set the offset alignment
1751      to be a byte and then normalize.  */
1752   rli->offset_align = BITS_PER_UNIT;
1753   normalize_rli (rli);
1754 
1755   /* Determine the desired alignment.  */
1756 #ifdef ROUND_TYPE_ALIGN
1757   SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1758 					    rli->record_align));
1759 #else
1760   SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1761 #endif
1762 
1763   /* Compute the size so far.  Be sure to allow for extra bits in the
1764      size in bytes.  We have guaranteed above that it will be no more
1765      than a single byte.  */
1766   unpadded_size = rli_size_so_far (rli);
1767   unpadded_size_unit = rli_size_unit_so_far (rli);
1768   if (! integer_zerop (rli->bitpos))
1769     unpadded_size_unit
1770       = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1771 
1772   /* Round the size up to be a multiple of the required alignment.  */
1773   TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1774   TYPE_SIZE_UNIT (rli->t)
1775     = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1776 
1777   if (TREE_CONSTANT (unpadded_size)
1778       && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1779       && input_location != BUILTINS_LOCATION
1780       && !TYPE_ARTIFICIAL (rli->t))
1781     warning (OPT_Wpadded, "padding struct size to alignment boundary");
1782 
1783   if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1784       && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1785       && TREE_CONSTANT (unpadded_size))
1786     {
1787       tree unpacked_size;
1788 
1789 #ifdef ROUND_TYPE_ALIGN
1790       rli->unpacked_align
1791 	= ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1792 #else
1793       rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1794 #endif
1795 
1796       unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1797       if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1798 	{
1799 	  if (TYPE_NAME (rli->t))
1800 	    {
1801 	      tree name;
1802 
1803 	      if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1804 		name = TYPE_NAME (rli->t);
1805 	      else
1806 		name = DECL_NAME (TYPE_NAME (rli->t));
1807 
1808 	      if (STRICT_ALIGNMENT)
1809 		warning (OPT_Wpacked, "packed attribute causes inefficient "
1810 			 "alignment for %qE", name);
1811 	      else
1812 		warning (OPT_Wpacked,
1813 			 "packed attribute is unnecessary for %qE", name);
1814 	    }
1815 	  else
1816 	    {
1817 	      if (STRICT_ALIGNMENT)
1818 		warning (OPT_Wpacked,
1819 			 "packed attribute causes inefficient alignment");
1820 	      else
1821 		warning (OPT_Wpacked, "packed attribute is unnecessary");
1822 	    }
1823 	}
1824     }
1825 }
1826 
1827 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE).  */
1828 
1829 void
compute_record_mode(tree type)1830 compute_record_mode (tree type)
1831 {
1832   tree field;
1833   machine_mode mode = VOIDmode;
1834 
1835   /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1836      However, if possible, we use a mode that fits in a register
1837      instead, in order to allow for better optimization down the
1838      line.  */
1839   SET_TYPE_MODE (type, BLKmode);
1840 
1841   poly_uint64 type_size;
1842   if (!poly_int_tree_p (TYPE_SIZE (type), &type_size))
1843     return;
1844 
1845   /* A record which has any BLKmode members must itself be
1846      BLKmode; it can't go in a register.  Unless the member is
1847      BLKmode only because it isn't aligned.  */
1848   for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1849     {
1850       if (TREE_CODE (field) != FIELD_DECL)
1851 	continue;
1852 
1853       poly_uint64 field_size;
1854       if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1855 	  || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1856 	      && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1857 	      && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1858 		   && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1859 	  || !tree_fits_poly_uint64_p (bit_position (field))
1860 	  || DECL_SIZE (field) == 0
1861 	  || !poly_int_tree_p (DECL_SIZE (field), &field_size))
1862 	return;
1863 
1864       /* If this field is the whole struct, remember its mode so
1865 	 that, say, we can put a double in a class into a DF
1866 	 register instead of forcing it to live in the stack.  */
1867       if (known_eq (field_size, type_size)
1868 	  /* Partial int types (e.g. __int20) may have TYPE_SIZE equal to
1869 	     wider types (e.g. int32), despite precision being less.  Ensure
1870 	     that the TYPE_MODE of the struct does not get set to the partial
1871 	     int mode if there is a wider type also in the struct.  */
1872 	  && known_gt (GET_MODE_PRECISION (DECL_MODE (field)),
1873 		       GET_MODE_PRECISION (mode)))
1874 	mode = DECL_MODE (field);
1875 
1876       /* With some targets, it is sub-optimal to access an aligned
1877 	 BLKmode structure as a scalar.  */
1878       if (targetm.member_type_forces_blk (field, mode))
1879 	return;
1880     }
1881 
1882   /* If we only have one real field; use its mode if that mode's size
1883      matches the type's size.  This generally only applies to RECORD_TYPE.
1884      For UNION_TYPE, if the widest field is MODE_INT then use that mode.
1885      If the widest field is MODE_PARTIAL_INT, and the union will be passed
1886      by reference, then use that mode.  */
1887   if ((TREE_CODE (type) == RECORD_TYPE
1888        || (TREE_CODE (type) == UNION_TYPE
1889 	   && (GET_MODE_CLASS (mode) == MODE_INT
1890 	       || (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
1891 		   && (targetm.calls.pass_by_reference
1892 		       (pack_cumulative_args (0),
1893 			function_arg_info (type, mode, /*named=*/false)))))))
1894       && mode != VOIDmode
1895       && known_eq (GET_MODE_BITSIZE (mode), type_size))
1896     ;
1897   else
1898     mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1899 
1900   /* If structure's known alignment is less than what the scalar
1901      mode would need, and it matters, then stick with BLKmode.  */
1902   if (mode != BLKmode
1903       && STRICT_ALIGNMENT
1904       && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1905 	    || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1906     {
1907       /* If this is the only reason this type is BLKmode, then
1908 	 don't force containing types to be BLKmode.  */
1909       TYPE_NO_FORCE_BLK (type) = 1;
1910       mode = BLKmode;
1911     }
1912 
1913   SET_TYPE_MODE (type, mode);
1914 }
1915 
1916 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1917    out.  */
1918 
1919 static void
finalize_type_size(tree type)1920 finalize_type_size (tree type)
1921 {
1922   /* Normally, use the alignment corresponding to the mode chosen.
1923      However, where strict alignment is not required, avoid
1924      over-aligning structures, since most compilers do not do this
1925      alignment.  */
1926   if (TYPE_MODE (type) != BLKmode
1927       && TYPE_MODE (type) != VOIDmode
1928       && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1929     {
1930       unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1931 
1932       /* Don't override a larger alignment requirement coming from a user
1933 	 alignment of one of the fields.  */
1934       if (mode_align >= TYPE_ALIGN (type))
1935 	{
1936 	  SET_TYPE_ALIGN (type, mode_align);
1937 	  TYPE_USER_ALIGN (type) = 0;
1938 	}
1939     }
1940 
1941   /* Do machine-dependent extra alignment.  */
1942 #ifdef ROUND_TYPE_ALIGN
1943   SET_TYPE_ALIGN (type,
1944                   ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1945 #endif
1946 
1947   /* If we failed to find a simple way to calculate the unit size
1948      of the type, find it by division.  */
1949   if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1950     /* TYPE_SIZE (type) is computed in bitsizetype.  After the division, the
1951        result will fit in sizetype.  We will get more efficient code using
1952        sizetype, so we force a conversion.  */
1953     TYPE_SIZE_UNIT (type)
1954       = fold_convert (sizetype,
1955 		      size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1956 				  bitsize_unit_node));
1957 
1958   if (TYPE_SIZE (type) != 0)
1959     {
1960       TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1961       TYPE_SIZE_UNIT (type)
1962 	= round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1963     }
1964 
1965   /* Evaluate nonconstant sizes only once, either now or as soon as safe.  */
1966   if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1967     TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1968   if (TYPE_SIZE_UNIT (type) != 0
1969       && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1970     TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1971 
1972   /* Handle empty records as per the x86-64 psABI.  */
1973   TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1974 
1975   /* Also layout any other variants of the type.  */
1976   if (TYPE_NEXT_VARIANT (type)
1977       || type != TYPE_MAIN_VARIANT (type))
1978     {
1979       tree variant;
1980       /* Record layout info of this variant.  */
1981       tree size = TYPE_SIZE (type);
1982       tree size_unit = TYPE_SIZE_UNIT (type);
1983       unsigned int align = TYPE_ALIGN (type);
1984       unsigned int precision = TYPE_PRECISION (type);
1985       unsigned int user_align = TYPE_USER_ALIGN (type);
1986       machine_mode mode = TYPE_MODE (type);
1987       bool empty_p = TYPE_EMPTY_P (type);
1988 
1989       /* Copy it into all variants.  */
1990       for (variant = TYPE_MAIN_VARIANT (type);
1991 	   variant != 0;
1992 	   variant = TYPE_NEXT_VARIANT (variant))
1993 	{
1994 	  TYPE_SIZE (variant) = size;
1995 	  TYPE_SIZE_UNIT (variant) = size_unit;
1996 	  unsigned valign = align;
1997 	  if (TYPE_USER_ALIGN (variant))
1998 	    valign = MAX (valign, TYPE_ALIGN (variant));
1999 	  else
2000 	    TYPE_USER_ALIGN (variant) = user_align;
2001 	  SET_TYPE_ALIGN (variant, valign);
2002 	  TYPE_PRECISION (variant) = precision;
2003 	  SET_TYPE_MODE (variant, mode);
2004 	  TYPE_EMPTY_P (variant) = empty_p;
2005 	}
2006     }
2007 }
2008 
2009 /* Return a new underlying object for a bitfield started with FIELD.  */
2010 
2011 static tree
start_bitfield_representative(tree field)2012 start_bitfield_representative (tree field)
2013 {
2014   tree repr = make_node (FIELD_DECL);
2015   DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
2016   /* Force the representative to begin at a BITS_PER_UNIT aligned
2017      boundary - C++ may use tail-padding of a base object to
2018      continue packing bits so the bitfield region does not start
2019      at bit zero (see g++.dg/abi/bitfield5.C for example).
2020      Unallocated bits may happen for other reasons as well,
2021      for example Ada which allows explicit bit-granular structure layout.  */
2022   DECL_FIELD_BIT_OFFSET (repr)
2023     = size_binop (BIT_AND_EXPR,
2024 		  DECL_FIELD_BIT_OFFSET (field),
2025 		  bitsize_int (~(BITS_PER_UNIT - 1)));
2026   SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
2027   DECL_SIZE (repr) = DECL_SIZE (field);
2028   DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
2029   DECL_PACKED (repr) = DECL_PACKED (field);
2030   DECL_CONTEXT (repr) = DECL_CONTEXT (field);
2031   /* There are no indirect accesses to this field.  If we introduce
2032      some then they have to use the record alias set.  This makes
2033      sure to properly conflict with [indirect] accesses to addressable
2034      fields of the bitfield group.  */
2035   DECL_NONADDRESSABLE_P (repr) = 1;
2036   return repr;
2037 }
2038 
2039 /* Finish up a bitfield group that was started by creating the underlying
2040    object REPR with the last field in the bitfield group FIELD.  */
2041 
2042 static void
finish_bitfield_representative(tree repr,tree field)2043 finish_bitfield_representative (tree repr, tree field)
2044 {
2045   unsigned HOST_WIDE_INT bitsize, maxbitsize;
2046   tree nextf, size;
2047 
2048   size = size_diffop (DECL_FIELD_OFFSET (field),
2049 		      DECL_FIELD_OFFSET (repr));
2050   while (TREE_CODE (size) == COMPOUND_EXPR)
2051     size = TREE_OPERAND (size, 1);
2052   gcc_assert (tree_fits_uhwi_p (size));
2053   bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2054 	     + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2055 	     - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2056 	     + tree_to_uhwi (DECL_SIZE (field)));
2057 
2058   /* Round up bitsize to multiples of BITS_PER_UNIT.  */
2059   bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2060 
2061   /* Now nothing tells us how to pad out bitsize ...  */
2062   nextf = DECL_CHAIN (field);
2063   while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2064     nextf = DECL_CHAIN (nextf);
2065   if (nextf)
2066     {
2067       tree maxsize;
2068       /* If there was an error, the field may be not laid out
2069          correctly.  Don't bother to do anything.  */
2070       if (TREE_TYPE (nextf) == error_mark_node)
2071 	return;
2072       maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2073 			     DECL_FIELD_OFFSET (repr));
2074       if (tree_fits_uhwi_p (maxsize))
2075 	{
2076 	  maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2077 			+ tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2078 			- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2079 	  /* If the group ends within a bitfield nextf does not need to be
2080 	     aligned to BITS_PER_UNIT.  Thus round up.  */
2081 	  maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2082 	}
2083       else
2084 	maxbitsize = bitsize;
2085     }
2086   else
2087     {
2088       /* Note that if the C++ FE sets up tail-padding to be re-used it
2089          creates a as-base variant of the type with TYPE_SIZE adjusted
2090 	 accordingly.  So it is safe to include tail-padding here.  */
2091       tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2092 							(DECL_CONTEXT (field));
2093       tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2094       /* We cannot generally rely on maxsize to fold to an integer constant,
2095 	 so use bitsize as fallback for this case.  */
2096       if (tree_fits_uhwi_p (maxsize))
2097 	maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2098 		      - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2099       else
2100 	maxbitsize = bitsize;
2101     }
2102 
2103   /* Only if we don't artificially break up the representative in
2104      the middle of a large bitfield with different possibly
2105      overlapping representatives.  And all representatives start
2106      at byte offset.  */
2107   gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2108 
2109   /* Find the smallest nice mode to use.  */
2110   opt_scalar_int_mode mode_iter;
2111   FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2112     if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2113       break;
2114 
2115   scalar_int_mode mode;
2116   if (!mode_iter.exists (&mode)
2117       || GET_MODE_BITSIZE (mode) > maxbitsize
2118       || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2119     {
2120       /* We really want a BLKmode representative only as a last resort,
2121          considering the member b in
2122 	   struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2123 	 Otherwise we simply want to split the representative up
2124 	 allowing for overlaps within the bitfield region as required for
2125 	   struct { int a : 7; int b : 7;
2126 		    int c : 10; int d; } __attribute__((packed));
2127 	 [0, 15] HImode for a and b, [8, 23] HImode for c.  */
2128       DECL_SIZE (repr) = bitsize_int (bitsize);
2129       DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2130       SET_DECL_MODE (repr, BLKmode);
2131       TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2132 						 bitsize / BITS_PER_UNIT);
2133     }
2134   else
2135     {
2136       unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2137       DECL_SIZE (repr) = bitsize_int (modesize);
2138       DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2139       SET_DECL_MODE (repr, mode);
2140       TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2141     }
2142 
2143   /* Remember whether the bitfield group is at the end of the
2144      structure or not.  */
2145   DECL_CHAIN (repr) = nextf;
2146 }
2147 
2148 /* Compute and set FIELD_DECLs for the underlying objects we should
2149    use for bitfield access for the structure T.  */
2150 
2151 void
finish_bitfield_layout(tree t)2152 finish_bitfield_layout (tree t)
2153 {
2154   tree field, prev;
2155   tree repr = NULL_TREE;
2156 
2157   /* Unions would be special, for the ease of type-punning optimizations
2158      we could use the underlying type as hint for the representative
2159      if the bitfield would fit and the representative would not exceed
2160      the union in size.  */
2161   if (TREE_CODE (t) != RECORD_TYPE)
2162     return;
2163 
2164   for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2165        field; field = DECL_CHAIN (field))
2166     {
2167       if (TREE_CODE (field) != FIELD_DECL)
2168 	continue;
2169 
2170       /* In the C++ memory model, consecutive bit fields in a structure are
2171 	 considered one memory location and updating a memory location
2172 	 may not store into adjacent memory locations.  */
2173       if (!repr
2174 	  && DECL_BIT_FIELD_TYPE (field))
2175 	{
2176 	  /* Start new representative.  */
2177 	  repr = start_bitfield_representative (field);
2178 	}
2179       else if (repr
2180 	       && ! DECL_BIT_FIELD_TYPE (field))
2181 	{
2182 	  /* Finish off new representative.  */
2183 	  finish_bitfield_representative (repr, prev);
2184 	  repr = NULL_TREE;
2185 	}
2186       else if (DECL_BIT_FIELD_TYPE (field))
2187 	{
2188 	  gcc_assert (repr != NULL_TREE);
2189 
2190 	  /* Zero-size bitfields finish off a representative and
2191 	     do not have a representative themselves.  This is
2192 	     required by the C++ memory model.  */
2193 	  if (integer_zerop (DECL_SIZE (field)))
2194 	    {
2195 	      finish_bitfield_representative (repr, prev);
2196 	      repr = NULL_TREE;
2197 	    }
2198 
2199 	  /* We assume that either DECL_FIELD_OFFSET of the representative
2200 	     and each bitfield member is a constant or they are equal.
2201 	     This is because we need to be able to compute the bit-offset
2202 	     of each field relative to the representative in get_bit_range
2203 	     during RTL expansion.
2204 	     If these constraints are not met, simply force a new
2205 	     representative to be generated.  That will at most
2206 	     generate worse code but still maintain correctness with
2207 	     respect to the C++ memory model.  */
2208 	  else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2209 		      && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2210 		     || operand_equal_p (DECL_FIELD_OFFSET (repr),
2211 					 DECL_FIELD_OFFSET (field), 0)))
2212 	    {
2213 	      finish_bitfield_representative (repr, prev);
2214 	      repr = start_bitfield_representative (field);
2215 	    }
2216 	}
2217       else
2218 	continue;
2219 
2220       if (repr)
2221 	DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2222 
2223       prev = field;
2224     }
2225 
2226   if (repr)
2227     finish_bitfield_representative (repr, prev);
2228 }
2229 
2230 /* Do all of the work required to layout the type indicated by RLI,
2231    once the fields have been laid out.  This function will call `free'
2232    for RLI, unless FREE_P is false.  Passing a value other than false
2233    for FREE_P is bad practice; this option only exists to support the
2234    G++ 3.2 ABI.  */
2235 
2236 void
finish_record_layout(record_layout_info rli,int free_p)2237 finish_record_layout (record_layout_info rli, int free_p)
2238 {
2239   tree variant;
2240 
2241   /* Compute the final size.  */
2242   finalize_record_size (rli);
2243 
2244   /* Compute the TYPE_MODE for the record.  */
2245   compute_record_mode (rli->t);
2246 
2247   /* Perform any last tweaks to the TYPE_SIZE, etc.  */
2248   finalize_type_size (rli->t);
2249 
2250   /* Compute bitfield representatives.  */
2251   finish_bitfield_layout (rli->t);
2252 
2253   /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2254      With C++ templates, it is too early to do this when the attribute
2255      is being parsed.  */
2256   for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2257        variant = TYPE_NEXT_VARIANT (variant))
2258     {
2259       TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2260       TYPE_REVERSE_STORAGE_ORDER (variant)
2261 	= TYPE_REVERSE_STORAGE_ORDER (rli->t);
2262     }
2263 
2264   /* Lay out any static members.  This is done now because their type
2265      may use the record's type.  */
2266   while (!vec_safe_is_empty (rli->pending_statics))
2267     layout_decl (rli->pending_statics->pop (), 0);
2268 
2269   /* Clean up.  */
2270   if (free_p)
2271     {
2272       vec_free (rli->pending_statics);
2273       free (rli);
2274     }
2275 }
2276 
2277 
2278 /* Finish processing a builtin RECORD_TYPE type TYPE.  It's name is
2279    NAME, its fields are chained in reverse on FIELDS.
2280 
2281    If ALIGN_TYPE is non-null, it is given the same alignment as
2282    ALIGN_TYPE.  */
2283 
2284 void
finish_builtin_struct(tree type,const char * name,tree fields,tree align_type)2285 finish_builtin_struct (tree type, const char *name, tree fields,
2286 		       tree align_type)
2287 {
2288   tree tail, next;
2289 
2290   for (tail = NULL_TREE; fields; tail = fields, fields = next)
2291     {
2292       DECL_FIELD_CONTEXT (fields) = type;
2293       next = DECL_CHAIN (fields);
2294       DECL_CHAIN (fields) = tail;
2295     }
2296   TYPE_FIELDS (type) = tail;
2297 
2298   if (align_type)
2299     {
2300       SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2301       TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2302       SET_TYPE_WARN_IF_NOT_ALIGN (type,
2303 				  TYPE_WARN_IF_NOT_ALIGN (align_type));
2304     }
2305 
2306   layout_type (type);
2307 #if 0 /* not yet, should get fixed properly later */
2308   TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2309 #else
2310   TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2311 				 TYPE_DECL, get_identifier (name), type);
2312 #endif
2313   TYPE_STUB_DECL (type) = TYPE_NAME (type);
2314   layout_decl (TYPE_NAME (type), 0);
2315 }
2316 
2317 /* Calculate the mode, size, and alignment for TYPE.
2318    For an array type, calculate the element separation as well.
2319    Record TYPE on the chain of permanent or temporary types
2320    so that dbxout will find out about it.
2321 
2322    TYPE_SIZE of a type is nonzero if the type has been laid out already.
2323    layout_type does nothing on such a type.
2324 
2325    If the type is incomplete, its TYPE_SIZE remains zero.  */
2326 
2327 void
layout_type(tree type)2328 layout_type (tree type)
2329 {
2330   gcc_assert (type);
2331 
2332   if (type == error_mark_node)
2333     return;
2334 
2335   /* We don't want finalize_type_size to copy an alignment attribute to
2336      variants that don't have it.  */
2337   type = TYPE_MAIN_VARIANT (type);
2338 
2339   /* Do nothing if type has been laid out before.  */
2340   if (TYPE_SIZE (type))
2341     return;
2342 
2343   switch (TREE_CODE (type))
2344     {
2345     case LANG_TYPE:
2346       /* This kind of type is the responsibility
2347 	 of the language-specific code.  */
2348       gcc_unreachable ();
2349 
2350     case BOOLEAN_TYPE:
2351     case INTEGER_TYPE:
2352     case ENUMERAL_TYPE:
2353       {
2354 	scalar_int_mode mode
2355 	  = smallest_int_mode_for_size (TYPE_PRECISION (type));
2356 	SET_TYPE_MODE (type, mode);
2357 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2358 	/* Don't set TYPE_PRECISION here, as it may be set by a bitfield.  */
2359 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2360 	break;
2361       }
2362 
2363     case REAL_TYPE:
2364       {
2365 	/* Allow the caller to choose the type mode, which is how decimal
2366 	   floats are distinguished from binary ones.  */
2367 	if (TYPE_MODE (type) == VOIDmode)
2368 	  SET_TYPE_MODE
2369 	    (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2370 	scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2371 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2372 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2373 	break;
2374       }
2375 
2376    case FIXED_POINT_TYPE:
2377      {
2378        /* TYPE_MODE (type) has been set already.  */
2379        scalar_mode mode = SCALAR_TYPE_MODE (type);
2380        TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2381        TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2382        break;
2383      }
2384 
2385     case COMPLEX_TYPE:
2386       TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2387       SET_TYPE_MODE (type,
2388 		     GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2389 
2390       TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2391       TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2392       break;
2393 
2394     case VECTOR_TYPE:
2395       {
2396 	poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2397 	tree innertype = TREE_TYPE (type);
2398 
2399 	/* Find an appropriate mode for the vector type.  */
2400 	if (TYPE_MODE (type) == VOIDmode)
2401 	  SET_TYPE_MODE (type,
2402 			 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2403 					  nunits).else_blk ());
2404 
2405 	TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2406         TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2407 	/* Several boolean vector elements may fit in a single unit.  */
2408 	if (VECTOR_BOOLEAN_TYPE_P (type)
2409 	    && type->type_common.mode != BLKmode)
2410 	  TYPE_SIZE_UNIT (type)
2411 	    = size_int (GET_MODE_SIZE (type->type_common.mode));
2412 	else
2413 	  TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2414 						   TYPE_SIZE_UNIT (innertype),
2415 						   size_int (nunits));
2416 	TYPE_SIZE (type) = int_const_binop
2417 	  (MULT_EXPR,
2418 	   bits_from_bytes (TYPE_SIZE_UNIT (type)),
2419 	   bitsize_int (BITS_PER_UNIT));
2420 
2421 	/* For vector types, we do not default to the mode's alignment.
2422 	   Instead, query a target hook, defaulting to natural alignment.
2423 	   This prevents ABI changes depending on whether or not native
2424 	   vector modes are supported.  */
2425 	SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2426 
2427 	/* However, if the underlying mode requires a bigger alignment than
2428 	   what the target hook provides, we cannot use the mode.  For now,
2429 	   simply reject that case.  */
2430 	gcc_assert (TYPE_ALIGN (type)
2431 		    >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2432         break;
2433       }
2434 
2435     case VOID_TYPE:
2436       /* This is an incomplete type and so doesn't have a size.  */
2437       SET_TYPE_ALIGN (type, 1);
2438       TYPE_USER_ALIGN (type) = 0;
2439       SET_TYPE_MODE (type, VOIDmode);
2440       break;
2441 
2442     case OFFSET_TYPE:
2443       TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2444       TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2445       /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2446 	 integral, which may be an __intN.  */
2447       SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2448       TYPE_PRECISION (type) = POINTER_SIZE;
2449       break;
2450 
2451     case FUNCTION_TYPE:
2452     case METHOD_TYPE:
2453       /* It's hard to see what the mode and size of a function ought to
2454 	 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2455 	 make it consistent with that.  */
2456       SET_TYPE_MODE (type,
2457 		     int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2458       TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2459       TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2460       break;
2461 
2462     case POINTER_TYPE:
2463     case REFERENCE_TYPE:
2464       {
2465 	scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2466 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2467 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2468 	TYPE_UNSIGNED (type) = 1;
2469 	TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2470       }
2471       break;
2472 
2473     case ARRAY_TYPE:
2474       {
2475 	tree index = TYPE_DOMAIN (type);
2476 	tree element = TREE_TYPE (type);
2477 
2478 	/* We need to know both bounds in order to compute the size.  */
2479 	if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2480 	    && TYPE_SIZE (element))
2481 	  {
2482 	    tree ub = TYPE_MAX_VALUE (index);
2483 	    tree lb = TYPE_MIN_VALUE (index);
2484 	    tree element_size = TYPE_SIZE (element);
2485 	    tree length;
2486 
2487 	    /* Make sure that an array of zero-sized element is zero-sized
2488 	       regardless of its extent.  */
2489 	    if (integer_zerop (element_size))
2490 	      length = size_zero_node;
2491 
2492 	    /* The computation should happen in the original signedness so
2493 	       that (possible) negative values are handled appropriately
2494 	       when determining overflow.  */
2495 	    else
2496 	      {
2497 		/* ???  When it is obvious that the range is signed
2498 		   represent it using ssizetype.  */
2499 		if (TREE_CODE (lb) == INTEGER_CST
2500 		    && TREE_CODE (ub) == INTEGER_CST
2501 		    && TYPE_UNSIGNED (TREE_TYPE (lb))
2502 		    && tree_int_cst_lt (ub, lb))
2503 		  {
2504 		    lb = wide_int_to_tree (ssizetype,
2505 					   offset_int::from (wi::to_wide (lb),
2506 							     SIGNED));
2507 		    ub = wide_int_to_tree (ssizetype,
2508 					   offset_int::from (wi::to_wide (ub),
2509 							     SIGNED));
2510 		  }
2511 		length
2512 		  = fold_convert (sizetype,
2513 				  size_binop (PLUS_EXPR,
2514 					      build_int_cst (TREE_TYPE (lb), 1),
2515 					      size_binop (MINUS_EXPR, ub, lb)));
2516 	      }
2517 
2518 	    /* ??? We have no way to distinguish a null-sized array from an
2519 	       array spanning the whole sizetype range, so we arbitrarily
2520 	       decide that [0, -1] is the only valid representation.  */
2521 	    if (integer_zerop (length)
2522 	        && TREE_OVERFLOW (length)
2523 		&& integer_zerop (lb))
2524 	      length = size_zero_node;
2525 
2526 	    TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2527 					   bits_from_bytes (length));
2528 
2529 	    /* If we know the size of the element, calculate the total size
2530 	       directly, rather than do some division thing below.  This
2531 	       optimization helps Fortran assumed-size arrays (where the
2532 	       size of the array is determined at runtime) substantially.  */
2533 	    if (TYPE_SIZE_UNIT (element))
2534 	      TYPE_SIZE_UNIT (type)
2535 		= size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2536 	  }
2537 
2538 	/* Now round the alignment and size,
2539 	   using machine-dependent criteria if any.  */
2540 
2541 	unsigned align = TYPE_ALIGN (element);
2542 	if (TYPE_USER_ALIGN (type))
2543 	  align = MAX (align, TYPE_ALIGN (type));
2544 	else
2545 	  TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2546 	if (!TYPE_WARN_IF_NOT_ALIGN (type))
2547 	  SET_TYPE_WARN_IF_NOT_ALIGN (type,
2548 				      TYPE_WARN_IF_NOT_ALIGN (element));
2549 #ifdef ROUND_TYPE_ALIGN
2550 	align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2551 #else
2552 	align = MAX (align, BITS_PER_UNIT);
2553 #endif
2554 	SET_TYPE_ALIGN (type, align);
2555 	SET_TYPE_MODE (type, BLKmode);
2556 	if (TYPE_SIZE (type) != 0
2557 	    && ! targetm.member_type_forces_blk (type, VOIDmode)
2558 	    /* BLKmode elements force BLKmode aggregate;
2559 	       else extract/store fields may lose.  */
2560 	    && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2561 		|| TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2562 	  {
2563 	    SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2564 						 TYPE_SIZE (type)));
2565 	    if (TYPE_MODE (type) != BLKmode
2566 		&& STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2567 		&& TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2568 	      {
2569 		TYPE_NO_FORCE_BLK (type) = 1;
2570 		SET_TYPE_MODE (type, BLKmode);
2571 	      }
2572 	  }
2573 	if (AGGREGATE_TYPE_P (element))
2574 	  TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2575 	/* When the element size is constant, check that it is at least as
2576 	   large as the element alignment.  */
2577 	if (TYPE_SIZE_UNIT (element)
2578 	    && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2579 	    /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2580 	       TYPE_ALIGN_UNIT.  */
2581 	    && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2582 	    && !integer_zerop (TYPE_SIZE_UNIT (element))
2583 	    && compare_tree_int (TYPE_SIZE_UNIT (element),
2584 			  	 TYPE_ALIGN_UNIT (element)) < 0)
2585 	  error ("alignment of array elements is greater than element size");
2586 	break;
2587       }
2588 
2589     case RECORD_TYPE:
2590     case UNION_TYPE:
2591     case QUAL_UNION_TYPE:
2592       {
2593 	tree field;
2594 	record_layout_info rli;
2595 
2596 	/* Initialize the layout information.  */
2597 	rli = start_record_layout (type);
2598 
2599 	/* If this is a QUAL_UNION_TYPE, we want to process the fields
2600 	   in the reverse order in building the COND_EXPR that denotes
2601 	   its size.  We reverse them again later.  */
2602 	if (TREE_CODE (type) == QUAL_UNION_TYPE)
2603 	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2604 
2605 	/* Place all the fields.  */
2606 	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2607 	  place_field (rli, field);
2608 
2609 	if (TREE_CODE (type) == QUAL_UNION_TYPE)
2610 	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2611 
2612 	/* Finish laying out the record.  */
2613 	finish_record_layout (rli, /*free_p=*/true);
2614       }
2615       break;
2616 
2617     default:
2618       gcc_unreachable ();
2619     }
2620 
2621   /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE.  For
2622      records and unions, finish_record_layout already called this
2623      function.  */
2624   if (!RECORD_OR_UNION_TYPE_P (type))
2625     finalize_type_size (type);
2626 
2627   /* We should never see alias sets on incomplete aggregates.  And we
2628      should not call layout_type on not incomplete aggregates.  */
2629   if (AGGREGATE_TYPE_P (type))
2630     gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2631 }
2632 
2633 /* Return the least alignment required for type TYPE.  */
2634 
2635 unsigned int
min_align_of_type(tree type)2636 min_align_of_type (tree type)
2637 {
2638   unsigned int align = TYPE_ALIGN (type);
2639   if (!TYPE_USER_ALIGN (type))
2640     {
2641       align = MIN (align, BIGGEST_ALIGNMENT);
2642 #ifdef BIGGEST_FIELD_ALIGNMENT
2643       align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2644 #endif
2645       unsigned int field_align = align;
2646 #ifdef ADJUST_FIELD_ALIGN
2647       field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2648 #endif
2649       align = MIN (align, field_align);
2650     }
2651   return align / BITS_PER_UNIT;
2652 }
2653 
2654 /* Create and return a type for signed integers of PRECISION bits.  */
2655 
2656 tree
make_signed_type(int precision)2657 make_signed_type (int precision)
2658 {
2659   tree type = make_node (INTEGER_TYPE);
2660 
2661   TYPE_PRECISION (type) = precision;
2662 
2663   fixup_signed_type (type);
2664   return type;
2665 }
2666 
2667 /* Create and return a type for unsigned integers of PRECISION bits.  */
2668 
2669 tree
make_unsigned_type(int precision)2670 make_unsigned_type (int precision)
2671 {
2672   tree type = make_node (INTEGER_TYPE);
2673 
2674   TYPE_PRECISION (type) = precision;
2675 
2676   fixup_unsigned_type (type);
2677   return type;
2678 }
2679 
2680 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2681    and SATP.  */
2682 
2683 tree
make_fract_type(int precision,int unsignedp,int satp)2684 make_fract_type (int precision, int unsignedp, int satp)
2685 {
2686   tree type = make_node (FIXED_POINT_TYPE);
2687 
2688   TYPE_PRECISION (type) = precision;
2689 
2690   if (satp)
2691     TYPE_SATURATING (type) = 1;
2692 
2693   /* Lay out the type: set its alignment, size, etc.  */
2694   TYPE_UNSIGNED (type) = unsignedp;
2695   enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2696   SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2697   layout_type (type);
2698 
2699   return type;
2700 }
2701 
2702 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2703    and SATP.  */
2704 
2705 tree
make_accum_type(int precision,int unsignedp,int satp)2706 make_accum_type (int precision, int unsignedp, int satp)
2707 {
2708   tree type = make_node (FIXED_POINT_TYPE);
2709 
2710   TYPE_PRECISION (type) = precision;
2711 
2712   if (satp)
2713     TYPE_SATURATING (type) = 1;
2714 
2715   /* Lay out the type: set its alignment, size, etc.  */
2716   TYPE_UNSIGNED (type) = unsignedp;
2717   enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2718   SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2719   layout_type (type);
2720 
2721   return type;
2722 }
2723 
2724 /* Initialize sizetypes so layout_type can use them.  */
2725 
2726 void
initialize_sizetypes(void)2727 initialize_sizetypes (void)
2728 {
2729   int precision, bprecision;
2730 
2731   /* Get sizetypes precision from the SIZE_TYPE target macro.  */
2732   if (strcmp (SIZETYPE, "unsigned int") == 0)
2733     precision = INT_TYPE_SIZE;
2734   else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2735     precision = LONG_TYPE_SIZE;
2736   else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2737     precision = LONG_LONG_TYPE_SIZE;
2738   else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2739     precision = SHORT_TYPE_SIZE;
2740   else
2741     {
2742       int i;
2743 
2744       precision = -1;
2745       for (i = 0; i < NUM_INT_N_ENTS; i++)
2746 	if (int_n_enabled_p[i])
2747 	  {
2748 	    char name[50], altname[50];
2749 	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2750 	    sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
2751 
2752 	    if (strcmp (name, SIZETYPE) == 0
2753 		|| strcmp (altname, SIZETYPE) == 0)
2754 	      {
2755 		precision = int_n_data[i].bitsize;
2756 	      }
2757 	  }
2758       if (precision == -1)
2759 	gcc_unreachable ();
2760     }
2761 
2762   bprecision
2763     = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2764   bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2765   if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2766     bprecision = HOST_BITS_PER_DOUBLE_INT;
2767 
2768   /* Create stubs for sizetype and bitsizetype so we can create constants.  */
2769   sizetype = make_node (INTEGER_TYPE);
2770   TYPE_NAME (sizetype) = get_identifier ("sizetype");
2771   TYPE_PRECISION (sizetype) = precision;
2772   TYPE_UNSIGNED (sizetype) = 1;
2773   bitsizetype = make_node (INTEGER_TYPE);
2774   TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2775   TYPE_PRECISION (bitsizetype) = bprecision;
2776   TYPE_UNSIGNED (bitsizetype) = 1;
2777 
2778   /* Now layout both types manually.  */
2779   scalar_int_mode mode = smallest_int_mode_for_size (precision);
2780   SET_TYPE_MODE (sizetype, mode);
2781   SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2782   TYPE_SIZE (sizetype) = bitsize_int (precision);
2783   TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2784   set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2785 
2786   mode = smallest_int_mode_for_size (bprecision);
2787   SET_TYPE_MODE (bitsizetype, mode);
2788   SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2789   TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2790   TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2791   set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2792 
2793   /* Create the signed variants of *sizetype.  */
2794   ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2795   TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2796   sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2797   TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2798 }
2799 
2800 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2801    or BOOLEAN_TYPE.  Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2802    for TYPE, based on the PRECISION and whether or not the TYPE
2803    IS_UNSIGNED.  PRECISION need not correspond to a width supported
2804    natively by the hardware; for example, on a machine with 8-bit,
2805    16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2806    61.  */
2807 
2808 void
set_min_and_max_values_for_integral_type(tree type,int precision,signop sgn)2809 set_min_and_max_values_for_integral_type (tree type,
2810 					  int precision,
2811 					  signop sgn)
2812 {
2813   /* For bitfields with zero width we end up creating integer types
2814      with zero precision.  Don't assign any minimum/maximum values
2815      to those types, they don't have any valid value.  */
2816   if (precision < 1)
2817     return;
2818 
2819   gcc_assert (precision <= WIDE_INT_MAX_PRECISION);
2820 
2821   TYPE_MIN_VALUE (type)
2822     = wide_int_to_tree (type, wi::min_value (precision, sgn));
2823   TYPE_MAX_VALUE (type)
2824     = wide_int_to_tree (type, wi::max_value (precision, sgn));
2825 }
2826 
2827 /* Set the extreme values of TYPE based on its precision in bits,
2828    then lay it out.  Used when make_signed_type won't do
2829    because the tree code is not INTEGER_TYPE.  */
2830 
2831 void
fixup_signed_type(tree type)2832 fixup_signed_type (tree type)
2833 {
2834   int precision = TYPE_PRECISION (type);
2835 
2836   set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2837 
2838   /* Lay out the type: set its alignment, size, etc.  */
2839   layout_type (type);
2840 }
2841 
2842 /* Set the extreme values of TYPE based on its precision in bits,
2843    then lay it out.  This is used both in `make_unsigned_type'
2844    and for enumeral types.  */
2845 
2846 void
fixup_unsigned_type(tree type)2847 fixup_unsigned_type (tree type)
2848 {
2849   int precision = TYPE_PRECISION (type);
2850 
2851   TYPE_UNSIGNED (type) = 1;
2852 
2853   set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2854 
2855   /* Lay out the type: set its alignment, size, etc.  */
2856   layout_type (type);
2857 }
2858 
2859 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2860    starting at BITPOS.
2861 
2862    BITREGION_START is the bit position of the first bit in this
2863    sequence of bit fields.  BITREGION_END is the last bit in this
2864    sequence.  If these two fields are non-zero, we should restrict the
2865    memory access to that range.  Otherwise, we are allowed to touch
2866    any adjacent non bit-fields.
2867 
2868    ALIGN is the alignment of the underlying object in bits.
2869    VOLATILEP says whether the bitfield is volatile.  */
2870 
2871 bit_field_mode_iterator
bit_field_mode_iterator(HOST_WIDE_INT bitsize,HOST_WIDE_INT bitpos,poly_int64 bitregion_start,poly_int64 bitregion_end,unsigned int align,bool volatilep)2872 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2873 			   poly_int64 bitregion_start,
2874 			   poly_int64 bitregion_end,
2875 			   unsigned int align, bool volatilep)
2876 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2877   m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2878   m_bitregion_end (bitregion_end), m_align (align),
2879   m_volatilep (volatilep), m_count (0)
2880 {
2881   if (known_eq (m_bitregion_end, 0))
2882     {
2883       /* We can assume that any aligned chunk of ALIGN bits that overlaps
2884 	 the bitfield is mapped and won't trap, provided that ALIGN isn't
2885 	 too large.  The cap is the biggest required alignment for data,
2886 	 or at least the word size.  And force one such chunk at least.  */
2887       unsigned HOST_WIDE_INT units
2888 	= MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2889       if (bitsize <= 0)
2890 	bitsize = 1;
2891       HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2892       m_bitregion_end = end - end % units - 1;
2893     }
2894 }
2895 
2896 /* Calls to this function return successively larger modes that can be used
2897    to represent the bitfield.  Return true if another bitfield mode is
2898    available, storing it in *OUT_MODE if so.  */
2899 
2900 bool
next_mode(scalar_int_mode * out_mode)2901 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2902 {
2903   scalar_int_mode mode;
2904   for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2905     {
2906       unsigned int unit = GET_MODE_BITSIZE (mode);
2907 
2908       /* Skip modes that don't have full precision.  */
2909       if (unit != GET_MODE_PRECISION (mode))
2910 	continue;
2911 
2912       /* Stop if the mode is too wide to handle efficiently.  */
2913       if (unit > MAX_FIXED_MODE_SIZE)
2914 	break;
2915 
2916       /* Don't deliver more than one multiword mode; the smallest one
2917 	 should be used.  */
2918       if (m_count > 0 && unit > BITS_PER_WORD)
2919 	break;
2920 
2921       /* Skip modes that are too small.  */
2922       unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2923       unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2924       if (subend > unit)
2925 	continue;
2926 
2927       /* Stop if the mode goes outside the bitregion.  */
2928       HOST_WIDE_INT start = m_bitpos - substart;
2929       if (maybe_ne (m_bitregion_start, 0)
2930 	  && maybe_lt (start, m_bitregion_start))
2931 	break;
2932       HOST_WIDE_INT end = start + unit;
2933       if (maybe_gt (end, m_bitregion_end + 1))
2934 	break;
2935 
2936       /* Stop if the mode requires too much alignment.  */
2937       if (GET_MODE_ALIGNMENT (mode) > m_align
2938 	  && targetm.slow_unaligned_access (mode, m_align))
2939 	break;
2940 
2941       *out_mode = mode;
2942       m_mode = GET_MODE_WIDER_MODE (mode);
2943       m_count++;
2944       return true;
2945     }
2946   return false;
2947 }
2948 
2949 /* Return true if smaller modes are generally preferred for this kind
2950    of bitfield.  */
2951 
2952 bool
prefer_smaller_modes()2953 bit_field_mode_iterator::prefer_smaller_modes ()
2954 {
2955   return (m_volatilep
2956 	  ? targetm.narrow_volatile_bitfield ()
2957 	  : !SLOW_BYTE_ACCESS);
2958 }
2959 
2960 /* Find the best machine mode to use when referencing a bit field of length
2961    BITSIZE bits starting at BITPOS.
2962 
2963    BITREGION_START is the bit position of the first bit in this
2964    sequence of bit fields.  BITREGION_END is the last bit in this
2965    sequence.  If these two fields are non-zero, we should restrict the
2966    memory access to that range.  Otherwise, we are allowed to touch
2967    any adjacent non bit-fields.
2968 
2969    The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2970    INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2971    doesn't want to apply a specific limit.
2972 
2973    If no mode meets all these conditions, we return VOIDmode.
2974 
2975    The underlying object is known to be aligned to a boundary of ALIGN bits.
2976 
2977    If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2978    smallest mode meeting these conditions.
2979 
2980    If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2981    largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2982    all the conditions.
2983 
2984    If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2985    decide which of the above modes should be used.  */
2986 
2987 bool
get_best_mode(int bitsize,int bitpos,poly_uint64 bitregion_start,poly_uint64 bitregion_end,unsigned int align,unsigned HOST_WIDE_INT largest_mode_bitsize,bool volatilep,scalar_int_mode * best_mode)2988 get_best_mode (int bitsize, int bitpos,
2989 	       poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2990 	       unsigned int align,
2991 	       unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2992 	       scalar_int_mode *best_mode)
2993 {
2994   bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2995 				bitregion_end, align, volatilep);
2996   scalar_int_mode mode;
2997   bool found = false;
2998   while (iter.next_mode (&mode)
2999 	 /* ??? For historical reasons, reject modes that would normally
3000 	    receive greater alignment, even if unaligned accesses are
3001 	    acceptable.  This has both advantages and disadvantages.
3002 	    Removing this check means that something like:
3003 
3004 	       struct s { unsigned int x; unsigned int y; };
3005 	       int f (struct s *s) { return s->x == 0 && s->y == 0; }
3006 
3007 	    can be implemented using a single load and compare on
3008 	    64-bit machines that have no alignment restrictions.
3009 	    For example, on powerpc64-linux-gnu, we would generate:
3010 
3011 		    ld 3,0(3)
3012 		    cntlzd 3,3
3013 		    srdi 3,3,6
3014 		    blr
3015 
3016 	    rather than:
3017 
3018 		    lwz 9,0(3)
3019 		    cmpwi 7,9,0
3020 		    bne 7,.L3
3021 		    lwz 3,4(3)
3022 		    cntlzw 3,3
3023 		    srwi 3,3,5
3024 		    extsw 3,3
3025 		    blr
3026 		    .p2align 4,,15
3027 	    .L3:
3028 		    li 3,0
3029 		    blr
3030 
3031 	    However, accessing more than one field can make life harder
3032 	    for the gimple optimizers.  For example, gcc.dg/vect/bb-slp-5.c
3033 	    has a series of unsigned short copies followed by a series of
3034 	    unsigned short comparisons.  With this check, both the copies
3035 	    and comparisons remain 16-bit accesses and FRE is able
3036 	    to eliminate the latter.  Without the check, the comparisons
3037 	    can be done using 2 64-bit operations, which FRE isn't able
3038 	    to handle in the same way.
3039 
3040 	    Either way, it would probably be worth disabling this check
3041 	    during expand.  One particular example where removing the
3042 	    check would help is the get_best_mode call in store_bit_field.
3043 	    If we are given a memory bitregion of 128 bits that is aligned
3044 	    to a 64-bit boundary, and the bitfield we want to modify is
3045 	    in the second half of the bitregion, this check causes
3046 	    store_bitfield to turn the memory into a 64-bit reference
3047 	    to the _first_ half of the region.  We later use
3048 	    adjust_bitfield_address to get a reference to the correct half,
3049 	    but doing so looks to adjust_bitfield_address as though we are
3050 	    moving past the end of the original object, so it drops the
3051 	    associated MEM_EXPR and MEM_OFFSET.  Removing the check
3052 	    causes store_bit_field to keep a 128-bit memory reference,
3053 	    so that the final bitfield reference still has a MEM_EXPR
3054 	    and MEM_OFFSET.  */
3055 	 && GET_MODE_ALIGNMENT (mode) <= align
3056 	 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3057     {
3058       *best_mode = mode;
3059       found = true;
3060       if (iter.prefer_smaller_modes ())
3061 	break;
3062     }
3063 
3064   return found;
3065 }
3066 
3067 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3068    SIGN).  The returned constants are made to be usable in TARGET_MODE.  */
3069 
3070 void
get_mode_bounds(scalar_int_mode mode,int sign,scalar_int_mode target_mode,rtx * mmin,rtx * mmax)3071 get_mode_bounds (scalar_int_mode mode, int sign,
3072 		 scalar_int_mode target_mode,
3073 		 rtx *mmin, rtx *mmax)
3074 {
3075   unsigned size = GET_MODE_PRECISION (mode);
3076   unsigned HOST_WIDE_INT min_val, max_val;
3077 
3078   gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3079 
3080   /* Special case BImode, which has values 0 and STORE_FLAG_VALUE.  */
3081   if (mode == BImode)
3082     {
3083       if (STORE_FLAG_VALUE < 0)
3084 	{
3085 	  min_val = STORE_FLAG_VALUE;
3086 	  max_val = 0;
3087 	}
3088       else
3089 	{
3090 	  min_val = 0;
3091 	  max_val = STORE_FLAG_VALUE;
3092 	}
3093     }
3094   else if (sign)
3095     {
3096       min_val = -(HOST_WIDE_INT_1U << (size - 1));
3097       max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3098     }
3099   else
3100     {
3101       min_val = 0;
3102       max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3103     }
3104 
3105   *mmin = gen_int_mode (min_val, target_mode);
3106   *mmax = gen_int_mode (max_val, target_mode);
3107 }
3108 
3109 #include "gt-stor-layout.h"
3110