1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Garbage collector: marking and scanning 6 7package runtime 8 9import ( 10 "runtime/internal/atomic" 11 "runtime/internal/sys" 12 "unsafe" 13) 14 15const ( 16 fixedRootFinalizers = iota 17 fixedRootFreeGStacks 18 fixedRootCount 19 20 // rootBlockBytes is the number of bytes to scan per data or 21 // BSS root. 22 rootBlockBytes = 256 << 10 23 24 // rootBlockSpans is the number of spans to scan per span 25 // root. 26 rootBlockSpans = 8 * 1024 // 64MB worth of spans 27 28 // maxObletBytes is the maximum bytes of an object to scan at 29 // once. Larger objects will be split up into "oblets" of at 30 // most this size. Since we can scan 1–2 MB/ms, 128 KB bounds 31 // scan preemption at ~100 µs. 32 // 33 // This must be > _MaxSmallSize so that the object base is the 34 // span base. 35 maxObletBytes = 128 << 10 36 37 // drainCheckThreshold specifies how many units of work to do 38 // between self-preemption checks in gcDrain. Assuming a scan 39 // rate of 1 MB/ms, this is ~100 µs. Lower values have higher 40 // overhead in the scan loop (the scheduler check may perform 41 // a syscall, so its overhead is nontrivial). Higher values 42 // make the system less responsive to incoming work. 43 drainCheckThreshold = 100000 44) 45 46// gcMarkRootPrepare queues root scanning jobs (stacks, globals, and 47// some miscellany) and initializes scanning-related state. 48// 49// The world must be stopped. 50// 51//go:nowritebarrier 52func gcMarkRootPrepare() { 53 work.nFlushCacheRoots = 0 54 55 work.nDataRoots = 0 56 57 // Only scan globals once per cycle; preferably concurrently. 58 roots := gcRoots 59 for roots != nil { 60 work.nDataRoots++ 61 roots = roots.next 62 } 63 64 // Scan span roots for finalizer specials. 65 // 66 // We depend on addfinalizer to mark objects that get 67 // finalizers after root marking. 68 // 69 // We're only interested in scanning the in-use spans, 70 // which will all be swept at this point. More spans 71 // may be added to this list during concurrent GC, but 72 // we only care about spans that were allocated before 73 // this mark phase. 74 work.nSpanRoots = mheap_.sweepSpans[mheap_.sweepgen/2%2].numBlocks() 75 76 // Scan stacks. 77 // 78 // Gs may be created after this point, but it's okay that we 79 // ignore them because they begin life without any roots, so 80 // there's nothing to scan, and any roots they create during 81 // the concurrent phase will be scanned during mark 82 // termination. 83 work.nStackRoots = int(atomic.Loaduintptr(&allglen)) 84 85 work.markrootNext = 0 86 work.markrootJobs = uint32(fixedRootCount + work.nFlushCacheRoots + work.nDataRoots + work.nSpanRoots + work.nStackRoots) 87} 88 89// gcMarkRootCheck checks that all roots have been scanned. It is 90// purely for debugging. 91func gcMarkRootCheck() { 92 if work.markrootNext < work.markrootJobs { 93 print(work.markrootNext, " of ", work.markrootJobs, " markroot jobs done\n") 94 throw("left over markroot jobs") 95 } 96 97 lock(&allglock) 98 // Check that stacks have been scanned. 99 var gp *g 100 for i := 0; i < work.nStackRoots; i++ { 101 gp = allgs[i] 102 if !gp.gcscandone { 103 goto fail 104 } 105 } 106 unlock(&allglock) 107 return 108 109fail: 110 println("gp", gp, "goid", gp.goid, 111 "status", readgstatus(gp), 112 "gcscandone", gp.gcscandone) 113 unlock(&allglock) // Avoid self-deadlock with traceback. 114 throw("scan missed a g") 115} 116 117// ptrmask for an allocation containing a single pointer. 118var oneptrmask = [...]uint8{1} 119 120// markroot scans the i'th root. 121// 122// Preemption must be disabled (because this uses a gcWork). 123// 124// nowritebarrier is only advisory here. 125// 126//go:nowritebarrier 127func markroot(gcw *gcWork, i uint32) { 128 // TODO(austin): This is a bit ridiculous. Compute and store 129 // the bases in gcMarkRootPrepare instead of the counts. 130 baseFlushCache := uint32(fixedRootCount) 131 baseData := baseFlushCache + uint32(work.nFlushCacheRoots) 132 baseSpans := baseData + uint32(work.nDataRoots) 133 baseStacks := baseSpans + uint32(work.nSpanRoots) 134 end := baseStacks + uint32(work.nStackRoots) 135 136 // Note: if you add a case here, please also update heapdump.go:dumproots. 137 switch { 138 case baseFlushCache <= i && i < baseData: 139 flushmcache(int(i - baseFlushCache)) 140 141 case baseData <= i && i < baseSpans: 142 roots := gcRoots 143 c := baseData 144 for roots != nil { 145 if i == c { 146 markrootBlock(roots, gcw) 147 break 148 } 149 roots = roots.next 150 c++ 151 } 152 153 case i == fixedRootFinalizers: 154 for fb := allfin; fb != nil; fb = fb.alllink { 155 cnt := uintptr(atomic.Load(&fb.cnt)) 156 scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), cnt*unsafe.Sizeof(fb.fin[0]), &finptrmask[0], gcw) 157 } 158 159 case i == fixedRootFreeGStacks: 160 // FIXME: We don't do this for gccgo. 161 162 case baseSpans <= i && i < baseStacks: 163 // mark mspan.specials 164 markrootSpans(gcw, int(i-baseSpans)) 165 166 default: 167 // the rest is scanning goroutine stacks 168 var gp *g 169 if baseStacks <= i && i < end { 170 gp = allgs[i-baseStacks] 171 } else { 172 throw("markroot: bad index") 173 } 174 175 // remember when we've first observed the G blocked 176 // needed only to output in traceback 177 status := readgstatus(gp) // We are not in a scan state 178 if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 { 179 gp.waitsince = work.tstart 180 } 181 182 // scanstack must be done on the system stack in case 183 // we're trying to scan our own stack. 184 systemstack(func() { 185 // If this is a self-scan, put the user G in 186 // _Gwaiting to prevent self-deadlock. It may 187 // already be in _Gwaiting if this is a mark 188 // worker or we're in mark termination. 189 userG := getg().m.curg 190 selfScan := gp == userG && readgstatus(userG) == _Grunning 191 if selfScan { 192 casgstatus(userG, _Grunning, _Gwaiting) 193 userG.waitreason = waitReasonGarbageCollectionScan 194 } 195 196 // TODO: suspendG blocks (and spins) until gp 197 // stops, which may take a while for 198 // running goroutines. Consider doing this in 199 // two phases where the first is non-blocking: 200 // we scan the stacks we can and ask running 201 // goroutines to scan themselves; and the 202 // second blocks. 203 stopped := suspendG(gp) 204 if stopped.dead { 205 gp.gcscandone = true 206 return 207 } 208 if gp.gcscandone { 209 throw("g already scanned") 210 } 211 scanstack(gp, gcw) 212 gp.gcscandone = true 213 resumeG(stopped) 214 215 if selfScan { 216 casgstatus(userG, _Gwaiting, _Grunning) 217 } 218 }) 219 } 220} 221 222// markrootBlock scans one element of the list of GC roots. 223// 224//go:nowritebarrier 225func markrootBlock(roots *gcRootList, gcw *gcWork) { 226 for i := 0; i < roots.count; i++ { 227 r := &roots.roots[i] 228 scanblock(uintptr(r.decl), r.ptrdata, r.gcdata, gcw) 229 } 230} 231 232// markrootSpans marks roots for one shard of work.spans. 233// 234//go:nowritebarrier 235func markrootSpans(gcw *gcWork, shard int) { 236 // Objects with finalizers have two GC-related invariants: 237 // 238 // 1) Everything reachable from the object must be marked. 239 // This ensures that when we pass the object to its finalizer, 240 // everything the finalizer can reach will be retained. 241 // 242 // 2) Finalizer specials (which are not in the garbage 243 // collected heap) are roots. In practice, this means the fn 244 // field must be scanned. 245 // 246 // TODO(austin): There are several ideas for making this more 247 // efficient in issue #11485. 248 249 sg := mheap_.sweepgen 250 spans := mheap_.sweepSpans[mheap_.sweepgen/2%2].block(shard) 251 // Note that work.spans may not include spans that were 252 // allocated between entering the scan phase and now. We may 253 // also race with spans being added into sweepSpans when they're 254 // just created, and as a result we may see nil pointers in the 255 // spans slice. This is okay because any objects with finalizers 256 // in those spans must have been allocated and given finalizers 257 // after we entered the scan phase, so addfinalizer will have 258 // ensured the above invariants for them. 259 for i := 0; i < len(spans); i++ { 260 // sweepBuf.block requires that we read pointers from the block atomically. 261 // It also requires that we ignore nil pointers. 262 s := (*mspan)(atomic.Loadp(unsafe.Pointer(&spans[i]))) 263 264 // This is racing with spans being initialized, so 265 // check the state carefully. 266 if s == nil || s.state.get() != mSpanInUse { 267 continue 268 } 269 // Check that this span was swept (it may be cached or uncached). 270 if !useCheckmark && !(s.sweepgen == sg || s.sweepgen == sg+3) { 271 // sweepgen was updated (+2) during non-checkmark GC pass 272 print("sweep ", s.sweepgen, " ", sg, "\n") 273 throw("gc: unswept span") 274 } 275 276 // Speculatively check if there are any specials 277 // without acquiring the span lock. This may race with 278 // adding the first special to a span, but in that 279 // case addfinalizer will observe that the GC is 280 // active (which is globally synchronized) and ensure 281 // the above invariants. We may also ensure the 282 // invariants, but it's okay to scan an object twice. 283 if s.specials == nil { 284 continue 285 } 286 287 // Lock the specials to prevent a special from being 288 // removed from the list while we're traversing it. 289 lock(&s.speciallock) 290 291 for sp := s.specials; sp != nil; sp = sp.next { 292 if sp.kind != _KindSpecialFinalizer { 293 continue 294 } 295 // don't mark finalized object, but scan it so we 296 // retain everything it points to. 297 spf := (*specialfinalizer)(unsafe.Pointer(sp)) 298 // A finalizer can be set for an inner byte of an object, find object beginning. 299 p := s.base() + uintptr(spf.special.offset)/s.elemsize*s.elemsize 300 301 // Mark everything that can be reached from 302 // the object (but *not* the object itself or 303 // we'll never collect it). 304 scanobject(p, gcw) 305 306 // The special itself is a root. 307 scanblock(uintptr(unsafe.Pointer(&spf.fn)), sys.PtrSize, &oneptrmask[0], gcw) 308 } 309 310 unlock(&s.speciallock) 311 } 312} 313 314// gcAssistAlloc performs GC work to make gp's assist debt positive. 315// gp must be the calling user gorountine. 316// 317// This must be called with preemption enabled. 318func gcAssistAlloc(gp *g) { 319 // Don't assist in non-preemptible contexts. These are 320 // generally fragile and won't allow the assist to block. 321 if getg() == gp.m.g0 { 322 return 323 } 324 if mp := getg().m; mp.locks > 0 || mp.preemptoff != "" { 325 return 326 } 327 328 traced := false 329retry: 330 // Compute the amount of scan work we need to do to make the 331 // balance positive. When the required amount of work is low, 332 // we over-assist to build up credit for future allocations 333 // and amortize the cost of assisting. 334 debtBytes := -gp.gcAssistBytes 335 scanWork := int64(gcController.assistWorkPerByte * float64(debtBytes)) 336 if scanWork < gcOverAssistWork { 337 scanWork = gcOverAssistWork 338 debtBytes = int64(gcController.assistBytesPerWork * float64(scanWork)) 339 } 340 341 // Steal as much credit as we can from the background GC's 342 // scan credit. This is racy and may drop the background 343 // credit below 0 if two mutators steal at the same time. This 344 // will just cause steals to fail until credit is accumulated 345 // again, so in the long run it doesn't really matter, but we 346 // do have to handle the negative credit case. 347 bgScanCredit := atomic.Loadint64(&gcController.bgScanCredit) 348 stolen := int64(0) 349 if bgScanCredit > 0 { 350 if bgScanCredit < scanWork { 351 stolen = bgScanCredit 352 gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(stolen)) 353 } else { 354 stolen = scanWork 355 gp.gcAssistBytes += debtBytes 356 } 357 atomic.Xaddint64(&gcController.bgScanCredit, -stolen) 358 359 scanWork -= stolen 360 361 if scanWork == 0 { 362 // We were able to steal all of the credit we 363 // needed. 364 if traced { 365 traceGCMarkAssistDone() 366 } 367 return 368 } 369 } 370 371 if trace.enabled && !traced { 372 traced = true 373 traceGCMarkAssistStart() 374 } 375 376 // Perform assist work 377 systemstack(func() { 378 gcAssistAlloc1(gp, scanWork) 379 // The user stack may have moved, so this can't touch 380 // anything on it until it returns from systemstack. 381 }) 382 383 completed := gp.param != nil 384 gp.param = nil 385 if completed { 386 gcMarkDone() 387 } 388 389 if gp.gcAssistBytes < 0 { 390 // We were unable steal enough credit or perform 391 // enough work to pay off the assist debt. We need to 392 // do one of these before letting the mutator allocate 393 // more to prevent over-allocation. 394 // 395 // If this is because we were preempted, reschedule 396 // and try some more. 397 if gp.preempt { 398 Gosched() 399 goto retry 400 } 401 402 // Add this G to an assist queue and park. When the GC 403 // has more background credit, it will satisfy queued 404 // assists before flushing to the global credit pool. 405 // 406 // Note that this does *not* get woken up when more 407 // work is added to the work list. The theory is that 408 // there wasn't enough work to do anyway, so we might 409 // as well let background marking take care of the 410 // work that is available. 411 if !gcParkAssist() { 412 goto retry 413 } 414 415 // At this point either background GC has satisfied 416 // this G's assist debt, or the GC cycle is over. 417 } 418 if traced { 419 traceGCMarkAssistDone() 420 } 421} 422 423// gcAssistAlloc1 is the part of gcAssistAlloc that runs on the system 424// stack. This is a separate function to make it easier to see that 425// we're not capturing anything from the user stack, since the user 426// stack may move while we're in this function. 427// 428// gcAssistAlloc1 indicates whether this assist completed the mark 429// phase by setting gp.param to non-nil. This can't be communicated on 430// the stack since it may move. 431// 432//go:systemstack 433func gcAssistAlloc1(gp *g, scanWork int64) { 434 // Clear the flag indicating that this assist completed the 435 // mark phase. 436 gp.param = nil 437 438 if atomic.Load(&gcBlackenEnabled) == 0 { 439 // The gcBlackenEnabled check in malloc races with the 440 // store that clears it but an atomic check in every malloc 441 // would be a performance hit. 442 // Instead we recheck it here on the non-preemptable system 443 // stack to determine if we should perform an assist. 444 445 // GC is done, so ignore any remaining debt. 446 gp.gcAssistBytes = 0 447 return 448 } 449 // Track time spent in this assist. Since we're on the 450 // system stack, this is non-preemptible, so we can 451 // just measure start and end time. 452 startTime := nanotime() 453 454 decnwait := atomic.Xadd(&work.nwait, -1) 455 if decnwait == work.nproc { 456 println("runtime: work.nwait =", decnwait, "work.nproc=", work.nproc) 457 throw("nwait > work.nprocs") 458 } 459 460 // gcDrainN requires the caller to be preemptible. 461 casgstatus(gp, _Grunning, _Gwaiting) 462 gp.waitreason = waitReasonGCAssistMarking 463 464 // drain own cached work first in the hopes that it 465 // will be more cache friendly. 466 gcw := &getg().m.p.ptr().gcw 467 workDone := gcDrainN(gcw, scanWork) 468 469 casgstatus(gp, _Gwaiting, _Grunning) 470 471 // Record that we did this much scan work. 472 // 473 // Back out the number of bytes of assist credit that 474 // this scan work counts for. The "1+" is a poor man's 475 // round-up, to ensure this adds credit even if 476 // assistBytesPerWork is very low. 477 gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(workDone)) 478 479 // If this is the last worker and we ran out of work, 480 // signal a completion point. 481 incnwait := atomic.Xadd(&work.nwait, +1) 482 if incnwait > work.nproc { 483 println("runtime: work.nwait=", incnwait, 484 "work.nproc=", work.nproc) 485 throw("work.nwait > work.nproc") 486 } 487 488 if incnwait == work.nproc && !gcMarkWorkAvailable(nil) { 489 // This has reached a background completion point. Set 490 // gp.param to a non-nil value to indicate this. It 491 // doesn't matter what we set it to (it just has to be 492 // a valid pointer). 493 gp.param = unsafe.Pointer(gp) 494 } 495 duration := nanotime() - startTime 496 _p_ := gp.m.p.ptr() 497 _p_.gcAssistTime += duration 498 if _p_.gcAssistTime > gcAssistTimeSlack { 499 atomic.Xaddint64(&gcController.assistTime, _p_.gcAssistTime) 500 _p_.gcAssistTime = 0 501 } 502} 503 504// gcWakeAllAssists wakes all currently blocked assists. This is used 505// at the end of a GC cycle. gcBlackenEnabled must be false to prevent 506// new assists from going to sleep after this point. 507func gcWakeAllAssists() { 508 lock(&work.assistQueue.lock) 509 list := work.assistQueue.q.popList() 510 injectglist(&list) 511 unlock(&work.assistQueue.lock) 512} 513 514// gcParkAssist puts the current goroutine on the assist queue and parks. 515// 516// gcParkAssist reports whether the assist is now satisfied. If it 517// returns false, the caller must retry the assist. 518// 519//go:nowritebarrier 520func gcParkAssist() bool { 521 lock(&work.assistQueue.lock) 522 // If the GC cycle finished while we were getting the lock, 523 // exit the assist. The cycle can't finish while we hold the 524 // lock. 525 if atomic.Load(&gcBlackenEnabled) == 0 { 526 unlock(&work.assistQueue.lock) 527 return true 528 } 529 530 gp := getg() 531 oldList := work.assistQueue.q 532 work.assistQueue.q.pushBack(gp) 533 534 // Recheck for background credit now that this G is in 535 // the queue, but can still back out. This avoids a 536 // race in case background marking has flushed more 537 // credit since we checked above. 538 if atomic.Loadint64(&gcController.bgScanCredit) > 0 { 539 work.assistQueue.q = oldList 540 if oldList.tail != 0 { 541 oldList.tail.ptr().schedlink.set(nil) 542 } 543 unlock(&work.assistQueue.lock) 544 return false 545 } 546 // Park. 547 goparkunlock(&work.assistQueue.lock, waitReasonGCAssistWait, traceEvGoBlockGC, 2) 548 return true 549} 550 551// gcFlushBgCredit flushes scanWork units of background scan work 552// credit. This first satisfies blocked assists on the 553// work.assistQueue and then flushes any remaining credit to 554// gcController.bgScanCredit. 555// 556// Write barriers are disallowed because this is used by gcDrain after 557// it has ensured that all work is drained and this must preserve that 558// condition. 559// 560//go:nowritebarrierrec 561func gcFlushBgCredit(scanWork int64) { 562 if work.assistQueue.q.empty() { 563 // Fast path; there are no blocked assists. There's a 564 // small window here where an assist may add itself to 565 // the blocked queue and park. If that happens, we'll 566 // just get it on the next flush. 567 atomic.Xaddint64(&gcController.bgScanCredit, scanWork) 568 return 569 } 570 571 scanBytes := int64(float64(scanWork) * gcController.assistBytesPerWork) 572 573 lock(&work.assistQueue.lock) 574 for !work.assistQueue.q.empty() && scanBytes > 0 { 575 gp := work.assistQueue.q.pop() 576 // Note that gp.gcAssistBytes is negative because gp 577 // is in debt. Think carefully about the signs below. 578 if scanBytes+gp.gcAssistBytes >= 0 { 579 // Satisfy this entire assist debt. 580 scanBytes += gp.gcAssistBytes 581 gp.gcAssistBytes = 0 582 // It's important that we *not* put gp in 583 // runnext. Otherwise, it's possible for user 584 // code to exploit the GC worker's high 585 // scheduler priority to get itself always run 586 // before other goroutines and always in the 587 // fresh quantum started by GC. 588 ready(gp, 0, false) 589 } else { 590 // Partially satisfy this assist. 591 gp.gcAssistBytes += scanBytes 592 scanBytes = 0 593 // As a heuristic, we move this assist to the 594 // back of the queue so that large assists 595 // can't clog up the assist queue and 596 // substantially delay small assists. 597 work.assistQueue.q.pushBack(gp) 598 break 599 } 600 } 601 602 if scanBytes > 0 { 603 // Convert from scan bytes back to work. 604 scanWork = int64(float64(scanBytes) * gcController.assistWorkPerByte) 605 atomic.Xaddint64(&gcController.bgScanCredit, scanWork) 606 } 607 unlock(&work.assistQueue.lock) 608} 609 610// We use a C function to find the stack. 611// Returns whether we succesfully scanned the stack. 612func doscanstack(*g, *gcWork) bool 613 614func doscanstackswitch(*g, *g) 615 616// scanstack scans gp's stack, greying all pointers found on the stack. 617// 618// scanstack will also shrink the stack if it is safe to do so. If it 619// is not, it schedules a stack shrink for the next synchronous safe 620// point. 621// 622// scanstack is marked go:systemstack because it must not be preempted 623// while using a workbuf. 624// 625//go:nowritebarrier 626//go:systemstack 627func scanstack(gp *g, gcw *gcWork) { 628 if readgstatus(gp)&_Gscan == 0 { 629 print("runtime:scanstack: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", hex(readgstatus(gp)), "\n") 630 throw("scanstack - bad status") 631 } 632 633 switch readgstatus(gp) &^ _Gscan { 634 default: 635 print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 636 throw("mark - bad status") 637 case _Gdead: 638 return 639 case _Grunning: 640 print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 641 throw("scanstack: goroutine not stopped") 642 case _Grunnable, _Gsyscall, _Gwaiting: 643 // ok 644 } 645 646 // Scan the stack. 647 if usestackmaps { 648 g := getg() 649 if g == gp { 650 // Scan its own stack. 651 doscanstack(gp, gcw) 652 } else if gp.entry != nil { 653 // This is a newly created g that hasn't run. No stack to scan. 654 } else if readgstatus(gp)&^_Gscan == _Gsyscall { 655 scanSyscallStack(gp, gcw) 656 } else { 657 // Scanning another g's stack. We need to switch to that g 658 // to unwind its stack. And switch back after scan. 659 scanstackswitch(gp, gcw) 660 } 661 } else { 662 doscanstack(gp, gcw) 663 664 // Conservatively scan the saved register values. 665 scanstackblock(uintptr(unsafe.Pointer(&gp.gcregs)), unsafe.Sizeof(gp.gcregs), gcw) 666 scanstackblock(uintptr(unsafe.Pointer(&gp.context)), unsafe.Sizeof(gp.context), gcw) 667 } 668 669 // Note: in the gc runtime scanstack also scans defer records. 670 // This is necessary as it uses stack objects (a.k.a. stack tracing). 671 // We don't (yet) do stack objects, and regular stack/heap scan 672 // will take care of defer records just fine. 673} 674 675// scanstackswitch scans gp's stack by switching (gogo) to gp and 676// letting it scan its own stack, and switching back upon finish. 677// 678//go:nowritebarrier 679func scanstackswitch(gp *g, gcw *gcWork) { 680 g := getg() 681 682 // We are on the system stack which prevents preemption. But 683 // we are going to switch to g stack. Lock m to block preemption. 684 mp := acquirem() 685 686 // The doscanstackswitch function will modify the current g's 687 // context. Preserve it. 688 // The stack scan code may call systemstack, which will modify 689 // gp's context. Preserve it as well so we can resume gp. 690 context := g.context 691 stackcontext := g.stackcontext 692 context2 := gp.context 693 stackcontext2 := gp.stackcontext 694 695 gp.scangcw = uintptr(unsafe.Pointer(gcw)) 696 gp.scang = uintptr(unsafe.Pointer(g)) 697 doscanstackswitch(g, gp) 698 699 // Restore the contexts. 700 g.context = context 701 g.stackcontext = stackcontext 702 gp.context = context2 703 gp.stackcontext = stackcontext2 704 gp.scangcw = 0 705 // gp.scang is already cleared in C code. 706 707 releasem(mp) 708} 709 710// scanSyscallStack scans the stack of a goroutine blocked in a 711// syscall by waking it up and asking it to scan its own stack. 712func scanSyscallStack(gp *g, gcw *gcWork) { 713 if gp.scanningself { 714 // We've suspended the goroutine by setting the _Gscan bit, 715 // so this shouldn't be possible. 716 throw("scanSyscallStack: scanningself") 717 } 718 if gp.gcscandone { 719 // We've suspended the goroutine by setting the _Gscan bit, 720 // so this shouldn't be possible. 721 722 throw("scanSyscallStack: gcscandone") 723 } 724 725 gp.gcScannedSyscallStack = false 726 for { 727 mp := gp.m 728 noteclear(&mp.scannote) 729 gp.scangcw = uintptr(unsafe.Pointer(gcw)) 730 tgkill(getpid(), _pid_t(mp.procid), _SIGURG) 731 // Wait for gp to scan its own stack. 732 notesleep(&mp.scannote) 733 if gp.gcScannedSyscallStack { 734 return 735 } 736 737 // The signal was delivered at a bad time. Try again. 738 osyield() 739 } 740} 741 742type gcDrainFlags int 743 744const ( 745 gcDrainUntilPreempt gcDrainFlags = 1 << iota 746 gcDrainFlushBgCredit 747 gcDrainIdle 748 gcDrainFractional 749) 750 751// gcDrain scans roots and objects in work buffers, blackening grey 752// objects until it is unable to get more work. It may return before 753// GC is done; it's the caller's responsibility to balance work from 754// other Ps. 755// 756// If flags&gcDrainUntilPreempt != 0, gcDrain returns when g.preempt 757// is set. 758// 759// If flags&gcDrainIdle != 0, gcDrain returns when there is other work 760// to do. 761// 762// If flags&gcDrainFractional != 0, gcDrain self-preempts when 763// pollFractionalWorkerExit() returns true. This implies 764// gcDrainNoBlock. 765// 766// If flags&gcDrainFlushBgCredit != 0, gcDrain flushes scan work 767// credit to gcController.bgScanCredit every gcCreditSlack units of 768// scan work. 769// 770//go:nowritebarrier 771func gcDrain(gcw *gcWork, flags gcDrainFlags) { 772 if !writeBarrier.needed { 773 throw("gcDrain phase incorrect") 774 } 775 776 gp := getg().m.curg 777 preemptible := flags&gcDrainUntilPreempt != 0 778 flushBgCredit := flags&gcDrainFlushBgCredit != 0 779 idle := flags&gcDrainIdle != 0 780 781 initScanWork := gcw.scanWork 782 783 // checkWork is the scan work before performing the next 784 // self-preempt check. 785 checkWork := int64(1<<63 - 1) 786 var check func() bool 787 if flags&(gcDrainIdle|gcDrainFractional) != 0 { 788 checkWork = initScanWork + drainCheckThreshold 789 if idle { 790 check = pollWork 791 } else if flags&gcDrainFractional != 0 { 792 check = pollFractionalWorkerExit 793 } 794 } 795 796 // Drain root marking jobs. 797 if work.markrootNext < work.markrootJobs { 798 for !(preemptible && gp.preempt) { 799 job := atomic.Xadd(&work.markrootNext, +1) - 1 800 if job >= work.markrootJobs { 801 break 802 } 803 markroot(gcw, job) 804 if check != nil && check() { 805 goto done 806 } 807 } 808 } 809 810 // Drain heap marking jobs. 811 for !(preemptible && gp.preempt) { 812 // Try to keep work available on the global queue. We used to 813 // check if there were waiting workers, but it's better to 814 // just keep work available than to make workers wait. In the 815 // worst case, we'll do O(log(_WorkbufSize)) unnecessary 816 // balances. 817 if work.full == 0 { 818 gcw.balance() 819 } 820 821 b := gcw.tryGetFast() 822 if b == 0 { 823 b = gcw.tryGet() 824 if b == 0 { 825 // Flush the write barrier 826 // buffer; this may create 827 // more work. 828 wbBufFlush(nil, 0) 829 b = gcw.tryGet() 830 } 831 } 832 if b == 0 { 833 // Unable to get work. 834 break 835 } 836 scanobject(b, gcw) 837 838 // Flush background scan work credit to the global 839 // account if we've accumulated enough locally so 840 // mutator assists can draw on it. 841 if gcw.scanWork >= gcCreditSlack { 842 atomic.Xaddint64(&gcController.scanWork, gcw.scanWork) 843 if flushBgCredit { 844 gcFlushBgCredit(gcw.scanWork - initScanWork) 845 initScanWork = 0 846 } 847 checkWork -= gcw.scanWork 848 gcw.scanWork = 0 849 850 if checkWork <= 0 { 851 checkWork += drainCheckThreshold 852 if check != nil && check() { 853 break 854 } 855 } 856 } 857 } 858 859done: 860 // Flush remaining scan work credit. 861 if gcw.scanWork > 0 { 862 atomic.Xaddint64(&gcController.scanWork, gcw.scanWork) 863 if flushBgCredit { 864 gcFlushBgCredit(gcw.scanWork - initScanWork) 865 } 866 gcw.scanWork = 0 867 } 868} 869 870// gcDrainN blackens grey objects until it has performed roughly 871// scanWork units of scan work or the G is preempted. This is 872// best-effort, so it may perform less work if it fails to get a work 873// buffer. Otherwise, it will perform at least n units of work, but 874// may perform more because scanning is always done in whole object 875// increments. It returns the amount of scan work performed. 876// 877// The caller goroutine must be in a preemptible state (e.g., 878// _Gwaiting) to prevent deadlocks during stack scanning. As a 879// consequence, this must be called on the system stack. 880// 881//go:nowritebarrier 882//go:systemstack 883func gcDrainN(gcw *gcWork, scanWork int64) int64 { 884 if !writeBarrier.needed { 885 throw("gcDrainN phase incorrect") 886 } 887 888 // There may already be scan work on the gcw, which we don't 889 // want to claim was done by this call. 890 workFlushed := -gcw.scanWork 891 892 gp := getg().m.curg 893 for !gp.preempt && workFlushed+gcw.scanWork < scanWork { 894 // See gcDrain comment. 895 if work.full == 0 { 896 gcw.balance() 897 } 898 899 // This might be a good place to add prefetch code... 900 // if(wbuf.nobj > 4) { 901 // PREFETCH(wbuf->obj[wbuf.nobj - 3]; 902 // } 903 // 904 b := gcw.tryGetFast() 905 if b == 0 { 906 b = gcw.tryGet() 907 if b == 0 { 908 // Flush the write barrier buffer; 909 // this may create more work. 910 wbBufFlush(nil, 0) 911 b = gcw.tryGet() 912 } 913 } 914 915 if b == 0 { 916 // Try to do a root job. 917 // 918 // TODO: Assists should get credit for this 919 // work. 920 if work.markrootNext < work.markrootJobs { 921 job := atomic.Xadd(&work.markrootNext, +1) - 1 922 if job < work.markrootJobs { 923 markroot(gcw, job) 924 continue 925 } 926 } 927 // No heap or root jobs. 928 break 929 } 930 scanobject(b, gcw) 931 932 // Flush background scan work credit. 933 if gcw.scanWork >= gcCreditSlack { 934 atomic.Xaddint64(&gcController.scanWork, gcw.scanWork) 935 workFlushed += gcw.scanWork 936 gcw.scanWork = 0 937 } 938 } 939 940 // Unlike gcDrain, there's no need to flush remaining work 941 // here because this never flushes to bgScanCredit and 942 // gcw.dispose will flush any remaining work to scanWork. 943 944 return workFlushed + gcw.scanWork 945} 946 947// scanblock scans b as scanobject would, but using an explicit 948// pointer bitmap instead of the heap bitmap. 949// 950// This is used to scan non-heap roots, so it does not update 951// gcw.bytesMarked or gcw.scanWork. 952// 953//go:nowritebarrier 954func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) { 955 // Use local copies of original parameters, so that a stack trace 956 // due to one of the throws below shows the original block 957 // base and extent. 958 b := b0 959 n := n0 960 961 for i := uintptr(0); i < n; { 962 // Find bits for the next word. 963 bits := uint32(*addb(ptrmask, i/(sys.PtrSize*8))) 964 if bits == 0 { 965 i += sys.PtrSize * 8 966 continue 967 } 968 for j := 0; j < 8 && i < n; j++ { 969 if bits&1 != 0 { 970 // Same work as in scanobject; see comments there. 971 p := *(*uintptr)(unsafe.Pointer(b + i)) 972 if p != 0 { 973 if obj, span, objIndex := findObject(p, b, i, false); obj != 0 { 974 greyobject(obj, b, i, span, gcw, objIndex, false) 975 } 976 } 977 } 978 bits >>= 1 979 i += sys.PtrSize 980 } 981 } 982} 983 984// scanobject scans the object starting at b, adding pointers to gcw. 985// b must point to the beginning of a heap object or an oblet. 986// scanobject consults the GC bitmap for the pointer mask and the 987// spans for the size of the object. 988// 989//go:nowritebarrier 990func scanobject(b uintptr, gcw *gcWork) { 991 // Find the bits for b and the size of the object at b. 992 // 993 // b is either the beginning of an object, in which case this 994 // is the size of the object to scan, or it points to an 995 // oblet, in which case we compute the size to scan below. 996 hbits := heapBitsForAddr(b) 997 s := spanOfUnchecked(b) 998 n := s.elemsize 999 if n == 0 { 1000 throw("scanobject n == 0") 1001 } 1002 1003 if n > maxObletBytes { 1004 // Large object. Break into oblets for better 1005 // parallelism and lower latency. 1006 if b == s.base() { 1007 // It's possible this is a noscan object (not 1008 // from greyobject, but from other code 1009 // paths), in which case we must *not* enqueue 1010 // oblets since their bitmaps will be 1011 // uninitialized. 1012 if s.spanclass.noscan() { 1013 // Bypass the whole scan. 1014 gcw.bytesMarked += uint64(n) 1015 return 1016 } 1017 1018 // Enqueue the other oblets to scan later. 1019 // Some oblets may be in b's scalar tail, but 1020 // these will be marked as "no more pointers", 1021 // so we'll drop out immediately when we go to 1022 // scan those. 1023 for oblet := b + maxObletBytes; oblet < s.base()+s.elemsize; oblet += maxObletBytes { 1024 if !gcw.putFast(oblet) { 1025 gcw.put(oblet) 1026 } 1027 } 1028 } 1029 1030 // Compute the size of the oblet. Since this object 1031 // must be a large object, s.base() is the beginning 1032 // of the object. 1033 n = s.base() + s.elemsize - b 1034 if n > maxObletBytes { 1035 n = maxObletBytes 1036 } 1037 } 1038 1039 var i uintptr 1040 for i = 0; i < n; i += sys.PtrSize { 1041 // Find bits for this word. 1042 if i != 0 { 1043 // Avoid needless hbits.next() on last iteration. 1044 hbits = hbits.next() 1045 } 1046 // Load bits once. See CL 22712 and issue 16973 for discussion. 1047 bits := hbits.bits() 1048 // During checkmarking, 1-word objects store the checkmark 1049 // in the type bit for the one word. The only one-word objects 1050 // are pointers, or else they'd be merged with other non-pointer 1051 // data into larger allocations. 1052 if i != 1*sys.PtrSize && bits&bitScan == 0 { 1053 break // no more pointers in this object 1054 } 1055 if bits&bitPointer == 0 { 1056 continue // not a pointer 1057 } 1058 1059 // Work here is duplicated in scanblock and above. 1060 // If you make changes here, make changes there too. 1061 obj := *(*uintptr)(unsafe.Pointer(b + i)) 1062 1063 // At this point we have extracted the next potential pointer. 1064 // Quickly filter out nil and pointers back to the current object. 1065 if obj != 0 && obj-b >= n { 1066 // Test if obj points into the Go heap and, if so, 1067 // mark the object. 1068 // 1069 // Note that it's possible for findObject to 1070 // fail if obj points to a just-allocated heap 1071 // object because of a race with growing the 1072 // heap. In this case, we know the object was 1073 // just allocated and hence will be marked by 1074 // allocation itself. 1075 if obj, span, objIndex := findObject(obj, b, i, false); obj != 0 { 1076 greyobject(obj, b, i, span, gcw, objIndex, false) 1077 } 1078 } 1079 } 1080 gcw.bytesMarked += uint64(n) 1081 gcw.scanWork += int64(i) 1082} 1083 1084//go:linkname scanstackblock 1085 1086// scanstackblock is called by the stack scanning code in C to 1087// actually find and mark pointers in the stack block. This is like 1088// scanblock, but we scan the stack conservatively, so there is no 1089// bitmask of pointers. 1090func scanstackblock(b, n uintptr, gcw *gcWork) { 1091 if usestackmaps { 1092 throw("scanstackblock: conservative scan but stack map is used") 1093 } 1094 1095 for i := uintptr(0); i < n; i += sys.PtrSize { 1096 // Same work as in scanobject; see comments there. 1097 obj := *(*uintptr)(unsafe.Pointer(b + i)) 1098 if obj, span, objIndex := findObject(obj, b, i, true); obj != 0 { 1099 greyobject(obj, b, i, span, gcw, objIndex, true) 1100 } 1101 } 1102} 1103 1104// scanstackblockwithmap is like scanstackblock, but with an explicit 1105// pointer bitmap. This is used only when precise stack scan is enabled. 1106//go:linkname scanstackblockwithmap 1107//go:nowritebarrier 1108func scanstackblockwithmap(pc, b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) { 1109 // Use local copies of original parameters, so that a stack trace 1110 // due to one of the throws below shows the original block 1111 // base and extent. 1112 b := b0 1113 n := n0 1114 1115 for i := uintptr(0); i < n; { 1116 // Find bits for the next word. 1117 bits := uint32(*addb(ptrmask, i/(sys.PtrSize*8))) 1118 if bits == 0 { 1119 i += sys.PtrSize * 8 1120 continue 1121 } 1122 for j := 0; j < 8 && i < n; j++ { 1123 if bits&1 != 0 { 1124 // Same work as in scanobject; see comments there. 1125 obj := *(*uintptr)(unsafe.Pointer(b + i)) 1126 if obj != 0 { 1127 o, span, objIndex := findObject(obj, b, i, false) 1128 if obj < minPhysPageSize || 1129 span != nil && span.state.get() != mSpanManual && 1130 (obj < span.base() || obj >= span.limit || span.state.get() != mSpanInUse) { 1131 print("runtime: found in object at *(", hex(b), "+", hex(i), ") = ", hex(obj), ", pc=", hex(pc), "\n") 1132 name, file, line, _ := funcfileline(pc, -1, false) 1133 print(name, "\n", file, ":", line, "\n") 1134 //gcDumpObject("object", b, i) 1135 throw("found bad pointer in Go stack (incorrect use of unsafe or cgo?)") 1136 } 1137 if o != 0 { 1138 greyobject(o, b, i, span, gcw, objIndex, false) 1139 } 1140 } 1141 } 1142 bits >>= 1 1143 i += sys.PtrSize 1144 } 1145 } 1146} 1147 1148// Shade the object if it isn't already. 1149// The object is not nil and known to be in the heap. 1150// Preemption must be disabled. 1151//go:nowritebarrier 1152func shade(b uintptr) { 1153 if obj, span, objIndex := findObject(b, 0, 0, !usestackmaps); obj != 0 { 1154 gcw := &getg().m.p.ptr().gcw 1155 greyobject(obj, 0, 0, span, gcw, objIndex, !usestackmaps) 1156 } 1157} 1158 1159// obj is the start of an object with mark mbits. 1160// If it isn't already marked, mark it and enqueue into gcw. 1161// base and off are for debugging only and could be removed. 1162// 1163// See also wbBufFlush1, which partially duplicates this logic. 1164// 1165//go:nowritebarrierrec 1166func greyobject(obj, base, off uintptr, span *mspan, gcw *gcWork, objIndex uintptr, forStack bool) { 1167 // obj should be start of allocation, and so must be at least pointer-aligned. 1168 if obj&(sys.PtrSize-1) != 0 { 1169 throw("greyobject: obj not pointer-aligned") 1170 } 1171 mbits := span.markBitsForIndex(objIndex) 1172 1173 if useCheckmark { 1174 if !mbits.isMarked() { 1175 // Stack scanning is conservative, so we can 1176 // see a reference to an object not previously 1177 // found. Assume the object was correctly not 1178 // marked and ignore the pointer. 1179 if forStack { 1180 return 1181 } 1182 printlock() 1183 print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), "\n") 1184 print("runtime: found obj at *(", hex(base), "+", hex(off), ")\n") 1185 1186 // Dump the source (base) object 1187 gcDumpObject("base", base, off) 1188 1189 // Dump the object 1190 gcDumpObject("obj", obj, ^uintptr(0)) 1191 1192 getg().m.traceback = 2 1193 throw("checkmark found unmarked object") 1194 } 1195 hbits := heapBitsForAddr(obj) 1196 if hbits.isCheckmarked(span.elemsize) { 1197 return 1198 } 1199 hbits.setCheckmarked(span.elemsize) 1200 if !hbits.isCheckmarked(span.elemsize) { 1201 throw("setCheckmarked and isCheckmarked disagree") 1202 } 1203 } else { 1204 // Stack scanning is conservative, so we can see a 1205 // pointer to a free object. Assume the object was 1206 // correctly freed and we must ignore the pointer. 1207 if forStack && span.isFree(objIndex) { 1208 return 1209 } 1210 1211 if debug.gccheckmark > 0 && span.isFree(objIndex) { 1212 print("runtime: marking free object ", hex(obj), " found at *(", hex(base), "+", hex(off), ")\n") 1213 gcDumpObject("base", base, off) 1214 gcDumpObject("obj", obj, ^uintptr(0)) 1215 getg().m.traceback = 2 1216 throw("marking free object") 1217 } 1218 1219 // If marked we have nothing to do. 1220 if mbits.isMarked() { 1221 return 1222 } 1223 mbits.setMarked() 1224 1225 // Mark span. 1226 arena, pageIdx, pageMask := pageIndexOf(span.base()) 1227 if arena.pageMarks[pageIdx]&pageMask == 0 { 1228 atomic.Or8(&arena.pageMarks[pageIdx], pageMask) 1229 } 1230 1231 // If this is a noscan object, fast-track it to black 1232 // instead of greying it. 1233 if span.spanclass.noscan() { 1234 gcw.bytesMarked += uint64(span.elemsize) 1235 return 1236 } 1237 } 1238 1239 // Queue the obj for scanning. The PREFETCH(obj) logic has been removed but 1240 // seems like a nice optimization that can be added back in. 1241 // There needs to be time between the PREFETCH and the use. 1242 // Previously we put the obj in an 8 element buffer that is drained at a rate 1243 // to give the PREFETCH time to do its work. 1244 // Use of PREFETCHNTA might be more appropriate than PREFETCH 1245 if !gcw.putFast(obj) { 1246 gcw.put(obj) 1247 } 1248} 1249 1250// gcDumpObject dumps the contents of obj for debugging and marks the 1251// field at byte offset off in obj. 1252func gcDumpObject(label string, obj, off uintptr) { 1253 s := spanOf(obj) 1254 print(label, "=", hex(obj)) 1255 if s == nil { 1256 print(" s=nil\n") 1257 return 1258 } 1259 print(" s.base()=", hex(s.base()), " s.limit=", hex(s.limit), " s.spanclass=", s.spanclass, " s.elemsize=", s.elemsize, " s.state=") 1260 if state := s.state.get(); 0 <= state && int(state) < len(mSpanStateNames) { 1261 print(mSpanStateNames[state], "\n") 1262 } else { 1263 print("unknown(", state, ")\n") 1264 } 1265 1266 skipped := false 1267 size := s.elemsize 1268 if s.state.get() == mSpanManual && size == 0 { 1269 // We're printing something from a stack frame. We 1270 // don't know how big it is, so just show up to an 1271 // including off. 1272 size = off + sys.PtrSize 1273 } 1274 for i := uintptr(0); i < size; i += sys.PtrSize { 1275 // For big objects, just print the beginning (because 1276 // that usually hints at the object's type) and the 1277 // fields around off. 1278 if !(i < 128*sys.PtrSize || off-16*sys.PtrSize < i && i < off+16*sys.PtrSize) { 1279 skipped = true 1280 continue 1281 } 1282 if skipped { 1283 print(" ...\n") 1284 skipped = false 1285 } 1286 print(" *(", label, "+", i, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + i)))) 1287 if i == off { 1288 print(" <==") 1289 } 1290 print("\n") 1291 } 1292 if skipped { 1293 print(" ...\n") 1294 } 1295} 1296 1297// gcmarknewobject marks a newly allocated object black. obj must 1298// not contain any non-nil pointers. 1299// 1300// This is nosplit so it can manipulate a gcWork without preemption. 1301// 1302//go:nowritebarrier 1303//go:nosplit 1304func gcmarknewobject(obj, size, scanSize uintptr) { 1305 if useCheckmark { // The world should be stopped so this should not happen. 1306 throw("gcmarknewobject called while doing checkmark") 1307 } 1308 markBitsForAddr(obj).setMarked() 1309 gcw := &getg().m.p.ptr().gcw 1310 gcw.bytesMarked += uint64(size) 1311 gcw.scanWork += int64(scanSize) 1312} 1313 1314// gcMarkTinyAllocs greys all active tiny alloc blocks. 1315// 1316// The world must be stopped. 1317func gcMarkTinyAllocs() { 1318 for _, p := range allp { 1319 c := p.mcache 1320 if c == nil || c.tiny == 0 { 1321 continue 1322 } 1323 _, span, objIndex := findObject(c.tiny, 0, 0, false) 1324 gcw := &p.gcw 1325 greyobject(c.tiny, 0, 0, span, gcw, objIndex, false) 1326 } 1327} 1328 1329// Checkmarking 1330 1331// To help debug the concurrent GC we remark with the world 1332// stopped ensuring that any object encountered has their normal 1333// mark bit set. To do this we use an orthogonal bit 1334// pattern to indicate the object is marked. The following pattern 1335// uses the upper two bits in the object's boundary nibble. 1336// 01: scalar not marked 1337// 10: pointer not marked 1338// 11: pointer marked 1339// 00: scalar marked 1340// Xoring with 01 will flip the pattern from marked to unmarked and vica versa. 1341// The higher bit is 1 for pointers and 0 for scalars, whether the object 1342// is marked or not. 1343// The first nibble no longer holds the typeDead pattern indicating that the 1344// there are no more pointers in the object. This information is held 1345// in the second nibble. 1346 1347// If useCheckmark is true, marking of an object uses the 1348// checkmark bits (encoding above) instead of the standard 1349// mark bits. 1350var useCheckmark = false 1351 1352//go:nowritebarrier 1353func initCheckmarks() { 1354 useCheckmark = true 1355 for _, s := range mheap_.allspans { 1356 if s.state.get() == mSpanInUse { 1357 heapBitsForAddr(s.base()).initCheckmarkSpan(s.layout()) 1358 } 1359 } 1360} 1361 1362func clearCheckmarks() { 1363 useCheckmark = false 1364 for _, s := range mheap_.allspans { 1365 if s.state.get() == mSpanInUse { 1366 heapBitsForAddr(s.base()).clearCheckmarkSpan(s.layout()) 1367 } 1368 } 1369} 1370