1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Malloc profiling. 6// Patterned after tcmalloc's algorithms; shorter code. 7 8package runtime 9 10import ( 11 "runtime/internal/atomic" 12 "unsafe" 13) 14 15// NOTE(rsc): Everything here could use cas if contention became an issue. 16var proflock mutex 17 18// All memory allocations are local and do not escape outside of the profiler. 19// The profiler is forbidden from referring to garbage-collected memory. 20 21const ( 22 // profile types 23 memProfile bucketType = 1 + iota 24 blockProfile 25 mutexProfile 26 27 // a profile bucket from one of the categories above whose stack 28 // trace has been fixed up / pruned. 29 prunedProfile 30 31 // size of bucket hash table 32 buckHashSize = 179999 33 34 // max depth of stack to record in bucket 35 maxStack = 32 36) 37 38type bucketType int 39 40// A bucket holds per-call-stack profiling information. 41// The representation is a bit sleazy, inherited from C. 42// This struct defines the bucket header. It is followed in 43// memory by the stack words and then the actual record 44// data, either a memRecord or a blockRecord. 45// 46// Per-call-stack profiling information. 47// Lookup by hashing call stack into a linked-list hash table. 48// 49// No heap pointers. 50// 51//go:notinheap 52type bucket struct { 53 next *bucket 54 allnext *bucket 55 typ bucketType // memBucket or blockBucket (includes mutexProfile) 56 hash uintptr 57 size uintptr 58 nstk uintptr 59 skip int 60} 61 62// A memRecord is the bucket data for a bucket of type memProfile, 63// part of the memory profile. 64type memRecord struct { 65 // The following complex 3-stage scheme of stats accumulation 66 // is required to obtain a consistent picture of mallocs and frees 67 // for some point in time. 68 // The problem is that mallocs come in real time, while frees 69 // come only after a GC during concurrent sweeping. So if we would 70 // naively count them, we would get a skew toward mallocs. 71 // 72 // Hence, we delay information to get consistent snapshots as 73 // of mark termination. Allocations count toward the next mark 74 // termination's snapshot, while sweep frees count toward the 75 // previous mark termination's snapshot: 76 // 77 // MT MT MT MT 78 // .·| .·| .·| .·| 79 // .·˙ | .·˙ | .·˙ | .·˙ | 80 // .·˙ | .·˙ | .·˙ | .·˙ | 81 // .·˙ |.·˙ |.·˙ |.·˙ | 82 // 83 // alloc → ▲ ← free 84 // ┠┅┅┅┅┅┅┅┅┅┅┅P 85 // C+2 → C+1 → C 86 // 87 // alloc → ▲ ← free 88 // ┠┅┅┅┅┅┅┅┅┅┅┅P 89 // C+2 → C+1 → C 90 // 91 // Since we can't publish a consistent snapshot until all of 92 // the sweep frees are accounted for, we wait until the next 93 // mark termination ("MT" above) to publish the previous mark 94 // termination's snapshot ("P" above). To do this, allocation 95 // and free events are accounted to *future* heap profile 96 // cycles ("C+n" above) and we only publish a cycle once all 97 // of the events from that cycle must be done. Specifically: 98 // 99 // Mallocs are accounted to cycle C+2. 100 // Explicit frees are accounted to cycle C+2. 101 // GC frees (done during sweeping) are accounted to cycle C+1. 102 // 103 // After mark termination, we increment the global heap 104 // profile cycle counter and accumulate the stats from cycle C 105 // into the active profile. 106 107 // active is the currently published profile. A profiling 108 // cycle can be accumulated into active once its complete. 109 active memRecordCycle 110 111 // future records the profile events we're counting for cycles 112 // that have not yet been published. This is ring buffer 113 // indexed by the global heap profile cycle C and stores 114 // cycles C, C+1, and C+2. Unlike active, these counts are 115 // only for a single cycle; they are not cumulative across 116 // cycles. 117 // 118 // We store cycle C here because there's a window between when 119 // C becomes the active cycle and when we've flushed it to 120 // active. 121 future [3]memRecordCycle 122} 123 124// memRecordCycle 125type memRecordCycle struct { 126 allocs, frees uintptr 127 alloc_bytes, free_bytes uintptr 128} 129 130// add accumulates b into a. It does not zero b. 131func (a *memRecordCycle) add(b *memRecordCycle) { 132 a.allocs += b.allocs 133 a.frees += b.frees 134 a.alloc_bytes += b.alloc_bytes 135 a.free_bytes += b.free_bytes 136} 137 138// A blockRecord is the bucket data for a bucket of type blockProfile, 139// which is used in blocking and mutex profiles. 140type blockRecord struct { 141 count int64 142 cycles int64 143} 144 145var ( 146 mbuckets *bucket // memory profile buckets 147 bbuckets *bucket // blocking profile buckets 148 xbuckets *bucket // mutex profile buckets 149 sbuckets *bucket // pre-symbolization profile buckets (stacks fixed up) 150 freebuckets *bucket // freelist of unused fixed up profile buckets 151 buckhash *[179999]*bucket 152 bucketmem uintptr 153 154 mProf struct { 155 // All fields in mProf are protected by proflock. 156 157 // cycle is the global heap profile cycle. This wraps 158 // at mProfCycleWrap. 159 cycle uint32 160 // flushed indicates that future[cycle] in all buckets 161 // has been flushed to the active profile. 162 flushed bool 163 } 164) 165 166const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24) 167 168// payloadOffset() returns a pointer into the part of a bucket 169// containing the profile payload (skips past the bucket struct itself 170// and then the stack trace). 171func payloadOffset(typ bucketType, nstk uintptr) uintptr { 172 if typ == prunedProfile { 173 // To allow reuse of prunedProfile buckets between different 174 // collections, allocate them with the max stack size (the portion 175 // of the stack used will vary from trace to trace). 176 nstk = maxStack 177 } 178 return unsafe.Sizeof(bucket{}) + uintptr(nstk)*unsafe.Sizeof(uintptr) 179} 180 181func max(x, y uintptr) uintptr { 182 if x > y { 183 return x 184 } 185 return y 186} 187 188// newBucket allocates a bucket with the given type and number of stack entries. 189func newBucket(typ bucketType, nstk int, skipCount int) *bucket { 190 size := payloadOffset(typ, uintptr(nstk)) 191 switch typ { 192 default: 193 throw("invalid profile bucket type") 194 case prunedProfile: 195 // stack-fixed buckets are large enough to accommodate any payload. 196 size += max(unsafe.Sizeof(memRecord{}), unsafe.Sizeof(blockRecord{})) 197 case memProfile: 198 size += unsafe.Sizeof(memRecord{}) 199 case blockProfile, mutexProfile: 200 size += unsafe.Sizeof(blockRecord{}) 201 } 202 203 b := (*bucket)(persistentalloc(size, 0, &memstats.buckhash_sys)) 204 bucketmem += size 205 b.typ = typ 206 b.nstk = uintptr(nstk) 207 b.skip = skipCount 208 return b 209} 210 211// stk returns the slice in b holding the stack. 212func (b *bucket) stk() []uintptr { 213 stk := (*[maxStack]uintptr)(add(unsafe.Pointer(b), unsafe.Sizeof(*b))) 214 return stk[:b.nstk:b.nstk] 215} 216 217// mp returns the memRecord associated with the memProfile bucket b. 218func (b *bucket) mp() *memRecord { 219 if b.typ != memProfile && b.typ != prunedProfile { 220 throw("bad use of bucket.mp") 221 } 222 return (*memRecord)(add(unsafe.Pointer(b), payloadOffset(b.typ, b.nstk))) 223} 224 225// bp returns the blockRecord associated with the blockProfile bucket b. 226func (b *bucket) bp() *blockRecord { 227 if b.typ != blockProfile && b.typ != mutexProfile && b.typ != prunedProfile { 228 throw("bad use of bucket.bp") 229 } 230 return (*blockRecord)(add(unsafe.Pointer(b), payloadOffset(b.typ, b.nstk))) 231} 232 233// Return the bucket for stk[0:nstk], allocating new bucket if needed. 234func stkbucket(typ bucketType, size uintptr, skip int, stk []uintptr, alloc bool) *bucket { 235 if buckhash == nil { 236 buckhash = (*[buckHashSize]*bucket)(sysAlloc(unsafe.Sizeof(*buckhash), &memstats.buckhash_sys)) 237 if buckhash == nil { 238 throw("runtime: cannot allocate memory") 239 } 240 } 241 242 // Hash stack. 243 var h uintptr 244 for _, pc := range stk { 245 h += pc 246 h += h << 10 247 h ^= h >> 6 248 } 249 // hash in size 250 h += size 251 h += h << 10 252 h ^= h >> 6 253 // finalize 254 h += h << 3 255 h ^= h >> 11 256 257 i := int(h % buckHashSize) 258 for b := buckhash[i]; b != nil; b = b.next { 259 if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) { 260 return b 261 } 262 } 263 264 if !alloc { 265 return nil 266 } 267 268 // Create new bucket. 269 b := newBucket(typ, len(stk), skip) 270 copy(b.stk(), stk) 271 b.hash = h 272 b.size = size 273 b.next = buckhash[i] 274 buckhash[i] = b 275 if typ == memProfile { 276 b.allnext = mbuckets 277 mbuckets = b 278 } else if typ == mutexProfile { 279 b.allnext = xbuckets 280 xbuckets = b 281 } else if typ == prunedProfile { 282 b.allnext = sbuckets 283 sbuckets = b 284 } else { 285 b.allnext = bbuckets 286 bbuckets = b 287 } 288 return b 289} 290 291func eqslice(x, y []uintptr) bool { 292 if len(x) != len(y) { 293 return false 294 } 295 for i, xi := range x { 296 if xi != y[i] { 297 return false 298 } 299 } 300 return true 301} 302 303// mProf_NextCycle publishes the next heap profile cycle and creates a 304// fresh heap profile cycle. This operation is fast and can be done 305// during STW. The caller must call mProf_Flush before calling 306// mProf_NextCycle again. 307// 308// This is called by mark termination during STW so allocations and 309// frees after the world is started again count towards a new heap 310// profiling cycle. 311func mProf_NextCycle() { 312 lock(&proflock) 313 // We explicitly wrap mProf.cycle rather than depending on 314 // uint wraparound because the memRecord.future ring does not 315 // itself wrap at a power of two. 316 mProf.cycle = (mProf.cycle + 1) % mProfCycleWrap 317 mProf.flushed = false 318 unlock(&proflock) 319} 320 321// mProf_Flush flushes the events from the current heap profiling 322// cycle into the active profile. After this it is safe to start a new 323// heap profiling cycle with mProf_NextCycle. 324// 325// This is called by GC after mark termination starts the world. In 326// contrast with mProf_NextCycle, this is somewhat expensive, but safe 327// to do concurrently. 328func mProf_Flush() { 329 lock(&proflock) 330 if !mProf.flushed { 331 mProf_FlushLocked() 332 mProf.flushed = true 333 } 334 unlock(&proflock) 335} 336 337func mProf_FlushLocked() { 338 c := mProf.cycle 339 for b := mbuckets; b != nil; b = b.allnext { 340 mp := b.mp() 341 342 // Flush cycle C into the published profile and clear 343 // it for reuse. 344 mpc := &mp.future[c%uint32(len(mp.future))] 345 mp.active.add(mpc) 346 *mpc = memRecordCycle{} 347 } 348} 349 350// mProf_PostSweep records that all sweep frees for this GC cycle have 351// completed. This has the effect of publishing the heap profile 352// snapshot as of the last mark termination without advancing the heap 353// profile cycle. 354func mProf_PostSweep() { 355 lock(&proflock) 356 // Flush cycle C+1 to the active profile so everything as of 357 // the last mark termination becomes visible. *Don't* advance 358 // the cycle, since we're still accumulating allocs in cycle 359 // C+2, which have to become C+1 in the next mark termination 360 // and so on. 361 c := mProf.cycle 362 for b := mbuckets; b != nil; b = b.allnext { 363 mp := b.mp() 364 mpc := &mp.future[(c+1)%uint32(len(mp.future))] 365 mp.active.add(mpc) 366 *mpc = memRecordCycle{} 367 } 368 unlock(&proflock) 369} 370 371// Called by malloc to record a profiled block. 372func mProf_Malloc(p unsafe.Pointer, size uintptr) { 373 var stk [maxStack]uintptr 374 nstk := callersRaw(stk[:]) 375 lock(&proflock) 376 skip := 1 377 b := stkbucket(memProfile, size, skip, stk[:nstk], true) 378 c := mProf.cycle 379 mp := b.mp() 380 mpc := &mp.future[(c+2)%uint32(len(mp.future))] 381 mpc.allocs++ 382 mpc.alloc_bytes += size 383 unlock(&proflock) 384 385 // Setprofilebucket locks a bunch of other mutexes, so we call it outside of proflock. 386 // This reduces potential contention and chances of deadlocks. 387 // Since the object must be alive during call to mProf_Malloc, 388 // it's fine to do this non-atomically. 389 systemstack(func() { 390 setprofilebucket(p, b) 391 }) 392} 393 394// Called when freeing a profiled block. 395func mProf_Free(b *bucket, size uintptr) { 396 lock(&proflock) 397 c := mProf.cycle 398 mp := b.mp() 399 mpc := &mp.future[(c+1)%uint32(len(mp.future))] 400 mpc.frees++ 401 mpc.free_bytes += size 402 unlock(&proflock) 403} 404 405var blockprofilerate uint64 // in CPU ticks 406 407// SetBlockProfileRate controls the fraction of goroutine blocking events 408// that are reported in the blocking profile. The profiler aims to sample 409// an average of one blocking event per rate nanoseconds spent blocked. 410// 411// To include every blocking event in the profile, pass rate = 1. 412// To turn off profiling entirely, pass rate <= 0. 413func SetBlockProfileRate(rate int) { 414 var r int64 415 if rate <= 0 { 416 r = 0 // disable profiling 417 } else if rate == 1 { 418 r = 1 // profile everything 419 } else { 420 // convert ns to cycles, use float64 to prevent overflow during multiplication 421 r = int64(float64(rate) * float64(tickspersecond()) / (1000 * 1000 * 1000)) 422 if r == 0 { 423 r = 1 424 } 425 } 426 427 atomic.Store64(&blockprofilerate, uint64(r)) 428} 429 430func blockevent(cycles int64, skip int) { 431 if cycles <= 0 { 432 cycles = 1 433 } 434 if blocksampled(cycles) { 435 saveblockevent(cycles, skip+1, blockProfile) 436 } 437} 438 439func blocksampled(cycles int64) bool { 440 rate := int64(atomic.Load64(&blockprofilerate)) 441 if rate <= 0 || (rate > cycles && int64(fastrand())%rate > cycles) { 442 return false 443 } 444 return true 445} 446 447func saveblockevent(cycles int64, skip int, which bucketType) { 448 gp := getg() 449 var nstk int 450 var stk [maxStack]uintptr 451 if gp.m.curg == nil || gp.m.curg == gp { 452 nstk = callersRaw(stk[:]) 453 } else { 454 // FIXME: This should get a traceback of gp.m.curg. 455 // nstk = gcallers(gp.m.curg, skip, stk[:]) 456 nstk = callersRaw(stk[:]) 457 } 458 lock(&proflock) 459 b := stkbucket(which, 0, skip, stk[:nstk], true) 460 b.bp().count++ 461 b.bp().cycles += cycles 462 unlock(&proflock) 463} 464 465var mutexprofilerate uint64 // fraction sampled 466 467// SetMutexProfileFraction controls the fraction of mutex contention events 468// that are reported in the mutex profile. On average 1/rate events are 469// reported. The previous rate is returned. 470// 471// To turn off profiling entirely, pass rate 0. 472// To just read the current rate, pass rate < 0. 473// (For n>1 the details of sampling may change.) 474func SetMutexProfileFraction(rate int) int { 475 if rate < 0 { 476 return int(mutexprofilerate) 477 } 478 old := mutexprofilerate 479 atomic.Store64(&mutexprofilerate, uint64(rate)) 480 return int(old) 481} 482 483//go:linkname mutexevent sync.event 484func mutexevent(cycles int64, skip int) { 485 if cycles < 0 { 486 cycles = 0 487 } 488 rate := int64(atomic.Load64(&mutexprofilerate)) 489 // TODO(pjw): measure impact of always calling fastrand vs using something 490 // like malloc.go:nextSample() 491 if rate > 0 && int64(fastrand())%rate == 0 { 492 saveblockevent(cycles, skip+1, mutexProfile) 493 } 494} 495 496// Go interface to profile data. 497 498// A StackRecord describes a single execution stack. 499type StackRecord struct { 500 Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry 501} 502 503// Stack returns the stack trace associated with the record, 504// a prefix of r.Stack0. 505func (r *StackRecord) Stack() []uintptr { 506 for i, v := range r.Stack0 { 507 if v == 0 { 508 return r.Stack0[0:i] 509 } 510 } 511 return r.Stack0[0:] 512} 513 514// MemProfileRate controls the fraction of memory allocations 515// that are recorded and reported in the memory profile. 516// The profiler aims to sample an average of 517// one allocation per MemProfileRate bytes allocated. 518// 519// To include every allocated block in the profile, set MemProfileRate to 1. 520// To turn off profiling entirely, set MemProfileRate to 0. 521// 522// The tools that process the memory profiles assume that the 523// profile rate is constant across the lifetime of the program 524// and equal to the current value. Programs that change the 525// memory profiling rate should do so just once, as early as 526// possible in the execution of the program (for example, 527// at the beginning of main). 528var MemProfileRate int = 512 * 1024 529 530// A MemProfileRecord describes the live objects allocated 531// by a particular call sequence (stack trace). 532type MemProfileRecord struct { 533 AllocBytes, FreeBytes int64 // number of bytes allocated, freed 534 AllocObjects, FreeObjects int64 // number of objects allocated, freed 535 Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry 536} 537 538// InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes). 539func (r *MemProfileRecord) InUseBytes() int64 { return r.AllocBytes - r.FreeBytes } 540 541// InUseObjects returns the number of objects in use (AllocObjects - FreeObjects). 542func (r *MemProfileRecord) InUseObjects() int64 { 543 return r.AllocObjects - r.FreeObjects 544} 545 546// Stack returns the stack trace associated with the record, 547// a prefix of r.Stack0. 548func (r *MemProfileRecord) Stack() []uintptr { 549 for i, v := range r.Stack0 { 550 if v == 0 { 551 return r.Stack0[0:i] 552 } 553 } 554 return r.Stack0[0:] 555} 556 557// reusebucket tries to pick a prunedProfile bucket off 558// the freebuckets list, returning it if one is available or nil 559// if the free list is empty. 560func reusebucket(nstk int) *bucket { 561 var b *bucket 562 if freebuckets != nil { 563 b = freebuckets 564 freebuckets = freebuckets.allnext 565 b.typ = prunedProfile 566 b.nstk = uintptr(nstk) 567 mp := b.mp() 568 // Hack: rely on the fact that memprofile records are 569 // larger than blockprofile records when clearing. 570 *mp = memRecord{} 571 } 572 return b 573} 574 575// freebucket appends the specified prunedProfile bucket 576// onto the free list, and removes references to it from the hash. 577func freebucket(tofree *bucket) *bucket { 578 // Thread this bucket into the free list. 579 ret := tofree.allnext 580 tofree.allnext = freebuckets 581 freebuckets = tofree 582 583 // Clean up the hash. The hash may point directly to this bucket... 584 i := int(tofree.hash % buckHashSize) 585 if buckhash[i] == tofree { 586 buckhash[i] = tofree.next 587 } else { 588 // ... or when this bucket was inserted by stkbucket, it may have been 589 // chained off some other unrelated bucket. 590 for b := buckhash[i]; b != nil; b = b.next { 591 if b.next == tofree { 592 b.next = tofree.next 593 break 594 } 595 } 596 } 597 return ret 598} 599 600// fixupStack takes a 'raw' stack trace (stack of PCs generated by 601// callersRaw) and performs pre-symbolization fixup on it, returning 602// the results in 'canonStack'. For each frame we look at the 603// file/func/line information, then use that info to decide whether to 604// include the frame in the final symbolized stack (removing frames 605// corresponding to 'morestack' routines, for example). We also expand 606// frames if the PC values to which they refer correponds to inlined 607// functions to allow for expanded symbolic info to be filled in 608// later. Note: there is code in go-callers.c's backtrace_full callback() 609// function that performs very similar fixups; these two code paths 610// should be kept in sync. 611func fixupStack(stk []uintptr, skip int, canonStack *[maxStack]uintptr, size uintptr) int { 612 var cidx int 613 var termTrace bool 614 // Increase the skip count to take into account the frames corresponding 615 // to runtime.callersRaw and to the C routine that it invokes. 616 skip += 2 617 sawSigtramp := false 618 for _, pc := range stk { 619 // Subtract 1 from PC to undo the 1 we added in callback in 620 // go-callers.c. 621 function, file, _, frames := funcfileline(pc-1, -1, false) 622 623 // Skip an unnamed function above sigtramp, as it is 624 // likely the signal handler. 625 if sawSigtramp { 626 sawSigtramp = false 627 if function == "" { 628 continue 629 } 630 } 631 632 // Skip split-stack functions (match by function name) 633 skipFrame := false 634 if hasPrefix(function, "_____morestack_") || hasPrefix(function, "__morestack_") { 635 skipFrame = true 636 } 637 638 // Skip split-stack functions (match by file) 639 if hasSuffix(file, "/morestack.S") { 640 skipFrame = true 641 } 642 643 // Skip thunks and recover functions and other functions 644 // specific to gccgo, that do not appear in the gc toolchain. 645 fcn := function 646 if hasSuffix(fcn, "..r") { 647 skipFrame = true 648 } else if function == "runtime.deferreturn" || function == "runtime.sighandler" { 649 skipFrame = true 650 } else if function == "runtime.sigtramp" || function == "runtime.sigtrampgo" { 651 skipFrame = true 652 // Also skip subsequent unnamed functions, 653 // which will be the signal handler itself. 654 sawSigtramp = true 655 } else { 656 for fcn != "" && (fcn[len(fcn)-1] >= '0' && fcn[len(fcn)-1] <= '9') { 657 fcn = fcn[:len(fcn)-1] 658 } 659 if hasSuffix(fcn, "..stub") || hasSuffix(fcn, "..thunk") { 660 skipFrame = true 661 } 662 } 663 if skipFrame { 664 continue 665 } 666 667 // Terminate the trace if we encounter a frame corresponding to 668 // runtime.main, runtime.kickoff, makecontext, etc. See the 669 // corresponding code in go-callers.c, callback function used 670 // with backtrace_full. 671 if function == "makecontext" { 672 termTrace = true 673 } 674 if hasSuffix(file, "/proc.c") && function == "runtime_mstart" { 675 termTrace = true 676 } 677 if hasSuffix(file, "/proc.go") && 678 (function == "runtime.main" || function == "runtime.kickoff") { 679 termTrace = true 680 } 681 682 // Expand inline frames. 683 for i := 0; i < frames; i++ { 684 (*canonStack)[cidx] = pc 685 cidx++ 686 if cidx >= maxStack { 687 termTrace = true 688 break 689 } 690 } 691 if termTrace { 692 break 693 } 694 } 695 696 // Apply skip count. Needs to be done after expanding inline frames. 697 if skip != 0 { 698 if skip >= cidx { 699 return 0 700 } 701 copy(canonStack[:cidx-skip], canonStack[skip:]) 702 return cidx - skip 703 } 704 705 return cidx 706} 707 708// fixupBucket takes a raw memprofile bucket and creates a new bucket 709// in which the stack trace has been fixed up (inline frames expanded, 710// unwanted frames stripped out). Original bucket is left unmodified; 711// a new symbolizeProfile bucket may be generated as a side effect. 712// Payload information from the original bucket is incorporated into 713// the new bucket. 714func fixupBucket(b *bucket) { 715 var canonStack [maxStack]uintptr 716 frames := fixupStack(b.stk(), b.skip, &canonStack, b.size) 717 cb := stkbucket(prunedProfile, b.size, 0, canonStack[:frames], true) 718 switch b.typ { 719 default: 720 throw("invalid profile bucket type") 721 case memProfile: 722 rawrecord := b.mp() 723 cb.mp().active.add(&rawrecord.active) 724 case blockProfile, mutexProfile: 725 bpcount := b.bp().count 726 cb.bp().count += bpcount 727 cb.bp().cycles += bpcount 728 } 729} 730 731// MemProfile returns a profile of memory allocated and freed per allocation 732// site. 733// 734// MemProfile returns n, the number of records in the current memory profile. 735// If len(p) >= n, MemProfile copies the profile into p and returns n, true. 736// If len(p) < n, MemProfile does not change p and returns n, false. 737// 738// If inuseZero is true, the profile includes allocation records 739// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes. 740// These are sites where memory was allocated, but it has all 741// been released back to the runtime. 742// 743// The returned profile may be up to two garbage collection cycles old. 744// This is to avoid skewing the profile toward allocations; because 745// allocations happen in real time but frees are delayed until the garbage 746// collector performs sweeping, the profile only accounts for allocations 747// that have had a chance to be freed by the garbage collector. 748// 749// Most clients should use the runtime/pprof package or 750// the testing package's -test.memprofile flag instead 751// of calling MemProfile directly. 752func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool) { 753 lock(&proflock) 754 // If we're between mProf_NextCycle and mProf_Flush, take care 755 // of flushing to the active profile so we only have to look 756 // at the active profile below. 757 mProf_FlushLocked() 758 clear := true 759 for b := mbuckets; b != nil; b = b.allnext { 760 mp := b.mp() 761 if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes { 762 n++ 763 } 764 if mp.active.allocs != 0 || mp.active.frees != 0 { 765 clear = false 766 } 767 } 768 if clear { 769 // Absolutely no data, suggesting that a garbage collection 770 // has not yet happened. In order to allow profiling when 771 // garbage collection is disabled from the beginning of execution, 772 // accumulate all of the cycles, and recount buckets. 773 n = 0 774 for b := mbuckets; b != nil; b = b.allnext { 775 mp := b.mp() 776 for c := range mp.future { 777 mp.active.add(&mp.future[c]) 778 mp.future[c] = memRecordCycle{} 779 } 780 if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes { 781 n++ 782 } 783 } 784 } 785 if n <= len(p) { 786 var bnext *bucket 787 788 // Post-process raw buckets to fix up their stack traces 789 for b := mbuckets; b != nil; b = bnext { 790 bnext = b.allnext 791 mp := b.mp() 792 if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes { 793 fixupBucket(b) 794 } 795 } 796 797 // Record pruned/fixed-up buckets 798 ok = true 799 idx := 0 800 for b := sbuckets; b != nil; b = b.allnext { 801 record(&p[idx], b) 802 idx++ 803 } 804 n = idx 805 806 // Free up pruned buckets for use in next round 807 for b := sbuckets; b != nil; b = bnext { 808 bnext = freebucket(b) 809 } 810 sbuckets = nil 811 } 812 unlock(&proflock) 813 return 814} 815 816// Write b's data to r. 817func record(r *MemProfileRecord, b *bucket) { 818 mp := b.mp() 819 r.AllocBytes = int64(mp.active.alloc_bytes) 820 r.FreeBytes = int64(mp.active.free_bytes) 821 r.AllocObjects = int64(mp.active.allocs) 822 r.FreeObjects = int64(mp.active.frees) 823 for i, pc := range b.stk() { 824 if i >= len(r.Stack0) { 825 break 826 } 827 r.Stack0[i] = pc 828 } 829 for i := int(b.nstk); i < len(r.Stack0); i++ { 830 r.Stack0[i] = 0 831 } 832} 833 834func iterate_memprof(fn func(*bucket, uintptr, *uintptr, uintptr, uintptr, uintptr)) { 835 lock(&proflock) 836 for b := mbuckets; b != nil; b = b.allnext { 837 mp := b.mp() 838 fn(b, b.nstk, &b.stk()[0], b.size, mp.active.allocs, mp.active.frees) 839 } 840 unlock(&proflock) 841} 842 843// BlockProfileRecord describes blocking events originated 844// at a particular call sequence (stack trace). 845type BlockProfileRecord struct { 846 Count int64 847 Cycles int64 848 StackRecord 849} 850 851func harvestBlockMutexProfile(buckets *bucket, p []BlockProfileRecord) (n int, ok bool) { 852 for b := buckets; b != nil; b = b.allnext { 853 n++ 854 } 855 if n <= len(p) { 856 var bnext *bucket 857 858 // Post-process raw buckets to create pruned/fixed-up buckets 859 for b := buckets; b != nil; b = bnext { 860 bnext = b.allnext 861 fixupBucket(b) 862 } 863 864 // Record 865 ok = true 866 for b := sbuckets; b != nil; b = b.allnext { 867 bp := b.bp() 868 r := &p[0] 869 r.Count = bp.count 870 r.Cycles = bp.cycles 871 i := 0 872 var pc uintptr 873 for i, pc = range b.stk() { 874 if i >= len(r.Stack0) { 875 break 876 } 877 r.Stack0[i] = pc 878 } 879 for ; i < len(r.Stack0); i++ { 880 r.Stack0[i] = 0 881 } 882 p = p[1:] 883 } 884 885 // Free up pruned buckets for use in next round. 886 for b := sbuckets; b != nil; b = bnext { 887 bnext = freebucket(b) 888 } 889 sbuckets = nil 890 } 891 return 892} 893 894// BlockProfile returns n, the number of records in the current blocking profile. 895// If len(p) >= n, BlockProfile copies the profile into p and returns n, true. 896// If len(p) < n, BlockProfile does not change p and returns n, false. 897// 898// Most clients should use the runtime/pprof package or 899// the testing package's -test.blockprofile flag instead 900// of calling BlockProfile directly. 901func BlockProfile(p []BlockProfileRecord) (n int, ok bool) { 902 lock(&proflock) 903 n, ok = harvestBlockMutexProfile(bbuckets, p) 904 unlock(&proflock) 905 return 906} 907 908// MutexProfile returns n, the number of records in the current mutex profile. 909// If len(p) >= n, MutexProfile copies the profile into p and returns n, true. 910// Otherwise, MutexProfile does not change p, and returns n, false. 911// 912// Most clients should use the runtime/pprof package 913// instead of calling MutexProfile directly. 914func MutexProfile(p []BlockProfileRecord) (n int, ok bool) { 915 lock(&proflock) 916 n, ok = harvestBlockMutexProfile(xbuckets, p) 917 unlock(&proflock) 918 return 919} 920 921// ThreadCreateProfile returns n, the number of records in the thread creation profile. 922// If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true. 923// If len(p) < n, ThreadCreateProfile does not change p and returns n, false. 924// 925// Most clients should use the runtime/pprof package instead 926// of calling ThreadCreateProfile directly. 927func ThreadCreateProfile(p []StackRecord) (n int, ok bool) { 928 first := (*m)(atomic.Loadp(unsafe.Pointer(&allm))) 929 for mp := first; mp != nil; mp = mp.alllink { 930 n++ 931 } 932 if n <= len(p) { 933 ok = true 934 i := 0 935 for mp := first; mp != nil; mp = mp.alllink { 936 for j := range mp.createstack { 937 p[i].Stack0[j] = mp.createstack[j].pc 938 } 939 i++ 940 } 941 } 942 return 943} 944 945// GoroutineProfile returns n, the number of records in the active goroutine stack profile. 946// If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true. 947// If len(p) < n, GoroutineProfile does not change p and returns n, false. 948// 949// Most clients should use the runtime/pprof package instead 950// of calling GoroutineProfile directly. 951func GoroutineProfile(p []StackRecord) (n int, ok bool) { 952 gp := getg() 953 954 isOK := func(gp1 *g) bool { 955 // Checking isSystemGoroutine here makes GoroutineProfile 956 // consistent with both NumGoroutine and Stack. 957 return gp1 != gp && readgstatus(gp1) != _Gdead && !isSystemGoroutine(gp1, false) 958 } 959 960 stopTheWorld("profile") 961 962 n = 1 963 for _, gp1 := range allgs { 964 if isOK(gp1) { 965 n++ 966 } 967 } 968 969 if n <= len(p) { 970 ok = true 971 r := p 972 973 // Save current goroutine. 974 saveg(gp, &r[0]) 975 r = r[1:] 976 977 // Save other goroutines. 978 for _, gp1 := range allgs { 979 if isOK(gp1) { 980 if len(r) == 0 { 981 // Should be impossible, but better to return a 982 // truncated profile than to crash the entire process. 983 break 984 } 985 saveg(gp1, &r[0]) 986 r = r[1:] 987 } 988 } 989 } 990 991 startTheWorld() 992 993 return n, ok 994} 995 996func saveg(gp *g, r *StackRecord) { 997 if gp == getg() { 998 var locbuf [32]location 999 n := callers(1, locbuf[:]) 1000 for i := 0; i < n; i++ { 1001 r.Stack0[i] = locbuf[i].pc 1002 } 1003 if n < len(r.Stack0) { 1004 r.Stack0[n] = 0 1005 } 1006 } else { 1007 // FIXME: Not implemented. 1008 r.Stack0[0] = 0 1009 } 1010} 1011 1012// Stack formats a stack trace of the calling goroutine into buf 1013// and returns the number of bytes written to buf. 1014// If all is true, Stack formats stack traces of all other goroutines 1015// into buf after the trace for the current goroutine. 1016func Stack(buf []byte, all bool) int { 1017 if all { 1018 stopTheWorld("stack trace") 1019 } 1020 1021 n := 0 1022 if len(buf) > 0 { 1023 gp := getg() 1024 // Force traceback=1 to override GOTRACEBACK setting, 1025 // so that Stack's results are consistent. 1026 // GOTRACEBACK is only about crash dumps. 1027 gp.m.traceback = 1 1028 gp.writebuf = buf[0:0:len(buf)] 1029 goroutineheader(gp) 1030 traceback(1) 1031 if all { 1032 tracebackothers(gp) 1033 } 1034 gp.m.traceback = 0 1035 n = len(gp.writebuf) 1036 gp.writebuf = nil 1037 } 1038 1039 if all { 1040 startTheWorld() 1041 } 1042 return n 1043} 1044 1045// Tracing of alloc/free/gc. 1046 1047var tracelock mutex 1048 1049func tracealloc(p unsafe.Pointer, size uintptr, typ *_type) { 1050 lock(&tracelock) 1051 gp := getg() 1052 gp.m.traceback = 2 1053 if typ == nil { 1054 print("tracealloc(", p, ", ", hex(size), ")\n") 1055 } else { 1056 print("tracealloc(", p, ", ", hex(size), ", ", typ.string(), ")\n") 1057 } 1058 if gp.m.curg == nil || gp == gp.m.curg { 1059 goroutineheader(gp) 1060 traceback(1) 1061 } else { 1062 goroutineheader(gp.m.curg) 1063 // FIXME: Can't do traceback of other g. 1064 } 1065 print("\n") 1066 gp.m.traceback = 0 1067 unlock(&tracelock) 1068} 1069 1070func tracefree(p unsafe.Pointer, size uintptr) { 1071 lock(&tracelock) 1072 gp := getg() 1073 gp.m.traceback = 2 1074 print("tracefree(", p, ", ", hex(size), ")\n") 1075 goroutineheader(gp) 1076 traceback(1) 1077 print("\n") 1078 gp.m.traceback = 0 1079 unlock(&tracelock) 1080} 1081 1082func tracegc() { 1083 lock(&tracelock) 1084 gp := getg() 1085 gp.m.traceback = 2 1086 print("tracegc()\n") 1087 // running on m->g0 stack; show all non-g0 goroutines 1088 tracebackothers(gp) 1089 print("end tracegc\n") 1090 print("\n") 1091 gp.m.traceback = 0 1092 unlock(&tracelock) 1093} 1094