1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package template
6
7import (
8	"fmt"
9	"internal/fmtsort"
10	"io"
11	"reflect"
12	"runtime"
13	"strings"
14	"text/template/parse"
15)
16
17// maxExecDepth specifies the maximum stack depth of templates within
18// templates. This limit is only practically reached by accidentally
19// recursive template invocations. This limit allows us to return
20// an error instead of triggering a stack overflow.
21var maxExecDepth = initMaxExecDepth()
22
23func initMaxExecDepth() int {
24	// For gccgo we make this 1000 rather than 100000 to avoid
25	// stack overflow on non-split-stack systems.
26	if runtime.GOARCH == "wasm" || runtime.Compiler == "gccgo" {
27		return 1000
28	}
29	return 100000
30}
31
32// state represents the state of an execution. It's not part of the
33// template so that multiple executions of the same template
34// can execute in parallel.
35type state struct {
36	tmpl  *Template
37	wr    io.Writer
38	node  parse.Node // current node, for errors
39	vars  []variable // push-down stack of variable values.
40	depth int        // the height of the stack of executing templates.
41}
42
43// variable holds the dynamic value of a variable such as $, $x etc.
44type variable struct {
45	name  string
46	value reflect.Value
47}
48
49// push pushes a new variable on the stack.
50func (s *state) push(name string, value reflect.Value) {
51	s.vars = append(s.vars, variable{name, value})
52}
53
54// mark returns the length of the variable stack.
55func (s *state) mark() int {
56	return len(s.vars)
57}
58
59// pop pops the variable stack up to the mark.
60func (s *state) pop(mark int) {
61	s.vars = s.vars[0:mark]
62}
63
64// setVar overwrites the last declared variable with the given name.
65// Used by variable assignments.
66func (s *state) setVar(name string, value reflect.Value) {
67	for i := s.mark() - 1; i >= 0; i-- {
68		if s.vars[i].name == name {
69			s.vars[i].value = value
70			return
71		}
72	}
73	s.errorf("undefined variable: %s", name)
74}
75
76// setTopVar overwrites the top-nth variable on the stack. Used by range iterations.
77func (s *state) setTopVar(n int, value reflect.Value) {
78	s.vars[len(s.vars)-n].value = value
79}
80
81// varValue returns the value of the named variable.
82func (s *state) varValue(name string) reflect.Value {
83	for i := s.mark() - 1; i >= 0; i-- {
84		if s.vars[i].name == name {
85			return s.vars[i].value
86		}
87	}
88	s.errorf("undefined variable: %s", name)
89	return zero
90}
91
92var zero reflect.Value
93
94type missingValType struct{}
95
96var missingVal = reflect.ValueOf(missingValType{})
97
98// at marks the state to be on node n, for error reporting.
99func (s *state) at(node parse.Node) {
100	s.node = node
101}
102
103// doublePercent returns the string with %'s replaced by %%, if necessary,
104// so it can be used safely inside a Printf format string.
105func doublePercent(str string) string {
106	return strings.ReplaceAll(str, "%", "%%")
107}
108
109// TODO: It would be nice if ExecError was more broken down, but
110// the way ErrorContext embeds the template name makes the
111// processing too clumsy.
112
113// ExecError is the custom error type returned when Execute has an
114// error evaluating its template. (If a write error occurs, the actual
115// error is returned; it will not be of type ExecError.)
116type ExecError struct {
117	Name string // Name of template.
118	Err  error  // Pre-formatted error.
119}
120
121func (e ExecError) Error() string {
122	return e.Err.Error()
123}
124
125func (e ExecError) Unwrap() error {
126	return e.Err
127}
128
129// errorf records an ExecError and terminates processing.
130func (s *state) errorf(format string, args ...interface{}) {
131	name := doublePercent(s.tmpl.Name())
132	if s.node == nil {
133		format = fmt.Sprintf("template: %s: %s", name, format)
134	} else {
135		location, context := s.tmpl.ErrorContext(s.node)
136		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
137	}
138	panic(ExecError{
139		Name: s.tmpl.Name(),
140		Err:  fmt.Errorf(format, args...),
141	})
142}
143
144// writeError is the wrapper type used internally when Execute has an
145// error writing to its output. We strip the wrapper in errRecover.
146// Note that this is not an implementation of error, so it cannot escape
147// from the package as an error value.
148type writeError struct {
149	Err error // Original error.
150}
151
152func (s *state) writeError(err error) {
153	panic(writeError{
154		Err: err,
155	})
156}
157
158// errRecover is the handler that turns panics into returns from the top
159// level of Parse.
160func errRecover(errp *error) {
161	e := recover()
162	if e != nil {
163		switch err := e.(type) {
164		case runtime.Error:
165			panic(e)
166		case writeError:
167			*errp = err.Err // Strip the wrapper.
168		case ExecError:
169			*errp = err // Keep the wrapper.
170		default:
171			panic(e)
172		}
173	}
174}
175
176// ExecuteTemplate applies the template associated with t that has the given name
177// to the specified data object and writes the output to wr.
178// If an error occurs executing the template or writing its output,
179// execution stops, but partial results may already have been written to
180// the output writer.
181// A template may be executed safely in parallel, although if parallel
182// executions share a Writer the output may be interleaved.
183func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
184	var tmpl *Template
185	if t.common != nil {
186		tmpl = t.tmpl[name]
187	}
188	if tmpl == nil {
189		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
190	}
191	return tmpl.Execute(wr, data)
192}
193
194// Execute applies a parsed template to the specified data object,
195// and writes the output to wr.
196// If an error occurs executing the template or writing its output,
197// execution stops, but partial results may already have been written to
198// the output writer.
199// A template may be executed safely in parallel, although if parallel
200// executions share a Writer the output may be interleaved.
201//
202// If data is a reflect.Value, the template applies to the concrete
203// value that the reflect.Value holds, as in fmt.Print.
204func (t *Template) Execute(wr io.Writer, data interface{}) error {
205	return t.execute(wr, data)
206}
207
208func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
209	defer errRecover(&err)
210	value, ok := data.(reflect.Value)
211	if !ok {
212		value = reflect.ValueOf(data)
213	}
214	state := &state{
215		tmpl: t,
216		wr:   wr,
217		vars: []variable{{"$", value}},
218	}
219	if t.Tree == nil || t.Root == nil {
220		state.errorf("%q is an incomplete or empty template", t.Name())
221	}
222	state.walk(value, t.Root)
223	return
224}
225
226// DefinedTemplates returns a string listing the defined templates,
227// prefixed by the string "; defined templates are: ". If there are none,
228// it returns the empty string. For generating an error message here
229// and in html/template.
230func (t *Template) DefinedTemplates() string {
231	if t.common == nil {
232		return ""
233	}
234	var b strings.Builder
235	for name, tmpl := range t.tmpl {
236		if tmpl.Tree == nil || tmpl.Root == nil {
237			continue
238		}
239		if b.Len() == 0 {
240			b.WriteString("; defined templates are: ")
241		} else {
242			b.WriteString(", ")
243		}
244		fmt.Fprintf(&b, "%q", name)
245	}
246	return b.String()
247}
248
249// Walk functions step through the major pieces of the template structure,
250// generating output as they go.
251func (s *state) walk(dot reflect.Value, node parse.Node) {
252	s.at(node)
253	switch node := node.(type) {
254	case *parse.ActionNode:
255		// Do not pop variables so they persist until next end.
256		// Also, if the action declares variables, don't print the result.
257		val := s.evalPipeline(dot, node.Pipe)
258		if len(node.Pipe.Decl) == 0 {
259			s.printValue(node, val)
260		}
261	case *parse.IfNode:
262		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
263	case *parse.ListNode:
264		for _, node := range node.Nodes {
265			s.walk(dot, node)
266		}
267	case *parse.RangeNode:
268		s.walkRange(dot, node)
269	case *parse.TemplateNode:
270		s.walkTemplate(dot, node)
271	case *parse.TextNode:
272		if _, err := s.wr.Write(node.Text); err != nil {
273			s.writeError(err)
274		}
275	case *parse.WithNode:
276		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
277	default:
278		s.errorf("unknown node: %s", node)
279	}
280}
281
282// walkIfOrWith walks an 'if' or 'with' node. The two control structures
283// are identical in behavior except that 'with' sets dot.
284func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
285	defer s.pop(s.mark())
286	val := s.evalPipeline(dot, pipe)
287	truth, ok := isTrue(indirectInterface(val))
288	if !ok {
289		s.errorf("if/with can't use %v", val)
290	}
291	if truth {
292		if typ == parse.NodeWith {
293			s.walk(val, list)
294		} else {
295			s.walk(dot, list)
296		}
297	} else if elseList != nil {
298		s.walk(dot, elseList)
299	}
300}
301
302// IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
303// and whether the value has a meaningful truth value. This is the definition of
304// truth used by if and other such actions.
305func IsTrue(val interface{}) (truth, ok bool) {
306	return isTrue(reflect.ValueOf(val))
307}
308
309func isTrue(val reflect.Value) (truth, ok bool) {
310	if !val.IsValid() {
311		// Something like var x interface{}, never set. It's a form of nil.
312		return false, true
313	}
314	switch val.Kind() {
315	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
316		truth = val.Len() > 0
317	case reflect.Bool:
318		truth = val.Bool()
319	case reflect.Complex64, reflect.Complex128:
320		truth = val.Complex() != 0
321	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
322		truth = !val.IsNil()
323	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
324		truth = val.Int() != 0
325	case reflect.Float32, reflect.Float64:
326		truth = val.Float() != 0
327	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
328		truth = val.Uint() != 0
329	case reflect.Struct:
330		truth = true // Struct values are always true.
331	default:
332		return
333	}
334	return truth, true
335}
336
337func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
338	s.at(r)
339	defer s.pop(s.mark())
340	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
341	// mark top of stack before any variables in the body are pushed.
342	mark := s.mark()
343	oneIteration := func(index, elem reflect.Value) {
344		// Set top var (lexically the second if there are two) to the element.
345		if len(r.Pipe.Decl) > 0 {
346			s.setTopVar(1, elem)
347		}
348		// Set next var (lexically the first if there are two) to the index.
349		if len(r.Pipe.Decl) > 1 {
350			s.setTopVar(2, index)
351		}
352		s.walk(elem, r.List)
353		s.pop(mark)
354	}
355	switch val.Kind() {
356	case reflect.Array, reflect.Slice:
357		if val.Len() == 0 {
358			break
359		}
360		for i := 0; i < val.Len(); i++ {
361			oneIteration(reflect.ValueOf(i), val.Index(i))
362		}
363		return
364	case reflect.Map:
365		if val.Len() == 0 {
366			break
367		}
368		om := fmtsort.Sort(val)
369		for i, key := range om.Key {
370			oneIteration(key, om.Value[i])
371		}
372		return
373	case reflect.Chan:
374		if val.IsNil() {
375			break
376		}
377		i := 0
378		for ; ; i++ {
379			elem, ok := val.Recv()
380			if !ok {
381				break
382			}
383			oneIteration(reflect.ValueOf(i), elem)
384		}
385		if i == 0 {
386			break
387		}
388		return
389	case reflect.Invalid:
390		break // An invalid value is likely a nil map, etc. and acts like an empty map.
391	default:
392		s.errorf("range can't iterate over %v", val)
393	}
394	if r.ElseList != nil {
395		s.walk(dot, r.ElseList)
396	}
397}
398
399func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
400	s.at(t)
401	tmpl := s.tmpl.tmpl[t.Name]
402	if tmpl == nil {
403		s.errorf("template %q not defined", t.Name)
404	}
405	if s.depth == maxExecDepth {
406		s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
407	}
408	// Variables declared by the pipeline persist.
409	dot = s.evalPipeline(dot, t.Pipe)
410	newState := *s
411	newState.depth++
412	newState.tmpl = tmpl
413	// No dynamic scoping: template invocations inherit no variables.
414	newState.vars = []variable{{"$", dot}}
415	newState.walk(dot, tmpl.Root)
416}
417
418// Eval functions evaluate pipelines, commands, and their elements and extract
419// values from the data structure by examining fields, calling methods, and so on.
420// The printing of those values happens only through walk functions.
421
422// evalPipeline returns the value acquired by evaluating a pipeline. If the
423// pipeline has a variable declaration, the variable will be pushed on the
424// stack. Callers should therefore pop the stack after they are finished
425// executing commands depending on the pipeline value.
426func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
427	if pipe == nil {
428		return
429	}
430	s.at(pipe)
431	value = missingVal
432	for _, cmd := range pipe.Cmds {
433		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
434		// If the object has type interface{}, dig down one level to the thing inside.
435		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
436			value = reflect.ValueOf(value.Interface()) // lovely!
437		}
438	}
439	for _, variable := range pipe.Decl {
440		if pipe.IsAssign {
441			s.setVar(variable.Ident[0], value)
442		} else {
443			s.push(variable.Ident[0], value)
444		}
445	}
446	return value
447}
448
449func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
450	if len(args) > 1 || final != missingVal {
451		s.errorf("can't give argument to non-function %s", args[0])
452	}
453}
454
455func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
456	firstWord := cmd.Args[0]
457	switch n := firstWord.(type) {
458	case *parse.FieldNode:
459		return s.evalFieldNode(dot, n, cmd.Args, final)
460	case *parse.ChainNode:
461		return s.evalChainNode(dot, n, cmd.Args, final)
462	case *parse.IdentifierNode:
463		// Must be a function.
464		return s.evalFunction(dot, n, cmd, cmd.Args, final)
465	case *parse.PipeNode:
466		// Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent.
467		s.notAFunction(cmd.Args, final)
468		return s.evalPipeline(dot, n)
469	case *parse.VariableNode:
470		return s.evalVariableNode(dot, n, cmd.Args, final)
471	}
472	s.at(firstWord)
473	s.notAFunction(cmd.Args, final)
474	switch word := firstWord.(type) {
475	case *parse.BoolNode:
476		return reflect.ValueOf(word.True)
477	case *parse.DotNode:
478		return dot
479	case *parse.NilNode:
480		s.errorf("nil is not a command")
481	case *parse.NumberNode:
482		return s.idealConstant(word)
483	case *parse.StringNode:
484		return reflect.ValueOf(word.Text)
485	}
486	s.errorf("can't evaluate command %q", firstWord)
487	panic("not reached")
488}
489
490// idealConstant is called to return the value of a number in a context where
491// we don't know the type. In that case, the syntax of the number tells us
492// its type, and we use Go rules to resolve. Note there is no such thing as
493// a uint ideal constant in this situation - the value must be of int type.
494func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
495	// These are ideal constants but we don't know the type
496	// and we have no context.  (If it was a method argument,
497	// we'd know what we need.) The syntax guides us to some extent.
498	s.at(constant)
499	switch {
500	case constant.IsComplex:
501		return reflect.ValueOf(constant.Complex128) // incontrovertible.
502
503	case constant.IsFloat &&
504		!isHexInt(constant.Text) && !isRuneInt(constant.Text) &&
505		strings.ContainsAny(constant.Text, ".eEpP"):
506		return reflect.ValueOf(constant.Float64)
507
508	case constant.IsInt:
509		n := int(constant.Int64)
510		if int64(n) != constant.Int64 {
511			s.errorf("%s overflows int", constant.Text)
512		}
513		return reflect.ValueOf(n)
514
515	case constant.IsUint:
516		s.errorf("%s overflows int", constant.Text)
517	}
518	return zero
519}
520
521func isRuneInt(s string) bool {
522	return len(s) > 0 && s[0] == '\''
523}
524
525func isHexInt(s string) bool {
526	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP")
527}
528
529func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
530	s.at(field)
531	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
532}
533
534func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
535	s.at(chain)
536	if len(chain.Field) == 0 {
537		s.errorf("internal error: no fields in evalChainNode")
538	}
539	if chain.Node.Type() == parse.NodeNil {
540		s.errorf("indirection through explicit nil in %s", chain)
541	}
542	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
543	pipe := s.evalArg(dot, nil, chain.Node)
544	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
545}
546
547func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
548	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
549	s.at(variable)
550	value := s.varValue(variable.Ident[0])
551	if len(variable.Ident) == 1 {
552		s.notAFunction(args, final)
553		return value
554	}
555	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
556}
557
558// evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
559// dot is the environment in which to evaluate arguments, while
560// receiver is the value being walked along the chain.
561func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
562	n := len(ident)
563	for i := 0; i < n-1; i++ {
564		receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver)
565	}
566	// Now if it's a method, it gets the arguments.
567	return s.evalField(dot, ident[n-1], node, args, final, receiver)
568}
569
570func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
571	s.at(node)
572	name := node.Ident
573	function, ok := findFunction(name, s.tmpl)
574	if !ok {
575		s.errorf("%q is not a defined function", name)
576	}
577	return s.evalCall(dot, function, cmd, name, args, final)
578}
579
580// evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
581// The 'final' argument represents the return value from the preceding
582// value of the pipeline, if any.
583func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
584	if !receiver.IsValid() {
585		if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
586			s.errorf("nil data; no entry for key %q", fieldName)
587		}
588		return zero
589	}
590	typ := receiver.Type()
591	receiver, isNil := indirect(receiver)
592	if receiver.Kind() == reflect.Interface && isNil {
593		// Calling a method on a nil interface can't work. The
594		// MethodByName method call below would panic.
595		s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
596		return zero
597	}
598
599	// Unless it's an interface, need to get to a value of type *T to guarantee
600	// we see all methods of T and *T.
601	ptr := receiver
602	if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() {
603		ptr = ptr.Addr()
604	}
605	if method := ptr.MethodByName(fieldName); method.IsValid() {
606		return s.evalCall(dot, method, node, fieldName, args, final)
607	}
608	hasArgs := len(args) > 1 || final != missingVal
609	// It's not a method; must be a field of a struct or an element of a map.
610	switch receiver.Kind() {
611	case reflect.Struct:
612		tField, ok := receiver.Type().FieldByName(fieldName)
613		if ok {
614			field := receiver.FieldByIndex(tField.Index)
615			if tField.PkgPath != "" { // field is unexported
616				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
617			}
618			// If it's a function, we must call it.
619			if hasArgs {
620				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
621			}
622			return field
623		}
624	case reflect.Map:
625		// If it's a map, attempt to use the field name as a key.
626		nameVal := reflect.ValueOf(fieldName)
627		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
628			if hasArgs {
629				s.errorf("%s is not a method but has arguments", fieldName)
630			}
631			result := receiver.MapIndex(nameVal)
632			if !result.IsValid() {
633				switch s.tmpl.option.missingKey {
634				case mapInvalid:
635					// Just use the invalid value.
636				case mapZeroValue:
637					result = reflect.Zero(receiver.Type().Elem())
638				case mapError:
639					s.errorf("map has no entry for key %q", fieldName)
640				}
641			}
642			return result
643		}
644	case reflect.Ptr:
645		etyp := receiver.Type().Elem()
646		if etyp.Kind() == reflect.Struct {
647			if _, ok := etyp.FieldByName(fieldName); !ok {
648				// If there's no such field, say "can't evaluate"
649				// instead of "nil pointer evaluating".
650				break
651			}
652		}
653		if isNil {
654			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
655		}
656	}
657	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
658	panic("not reached")
659}
660
661var (
662	errorType        = reflect.TypeOf((*error)(nil)).Elem()
663	fmtStringerType  = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
664	reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
665)
666
667// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
668// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
669// as the function itself.
670func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
671	if args != nil {
672		args = args[1:] // Zeroth arg is function name/node; not passed to function.
673	}
674	typ := fun.Type()
675	numIn := len(args)
676	if final != missingVal {
677		numIn++
678	}
679	numFixed := len(args)
680	if typ.IsVariadic() {
681		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
682		if numIn < numFixed {
683			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
684		}
685	} else if numIn != typ.NumIn() {
686		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn)
687	}
688	if !goodFunc(typ) {
689		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
690		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
691	}
692	// Build the arg list.
693	argv := make([]reflect.Value, numIn)
694	// Args must be evaluated. Fixed args first.
695	i := 0
696	for ; i < numFixed && i < len(args); i++ {
697		argv[i] = s.evalArg(dot, typ.In(i), args[i])
698	}
699	// Now the ... args.
700	if typ.IsVariadic() {
701		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
702		for ; i < len(args); i++ {
703			argv[i] = s.evalArg(dot, argType, args[i])
704		}
705	}
706	// Add final value if necessary.
707	if final != missingVal {
708		t := typ.In(typ.NumIn() - 1)
709		if typ.IsVariadic() {
710			if numIn-1 < numFixed {
711				// The added final argument corresponds to a fixed parameter of the function.
712				// Validate against the type of the actual parameter.
713				t = typ.In(numIn - 1)
714			} else {
715				// The added final argument corresponds to the variadic part.
716				// Validate against the type of the elements of the variadic slice.
717				t = t.Elem()
718			}
719		}
720		argv[i] = s.validateType(final, t)
721	}
722	v, err := safeCall(fun, argv)
723	// If we have an error that is not nil, stop execution and return that
724	// error to the caller.
725	if err != nil {
726		s.at(node)
727		s.errorf("error calling %s: %v", name, err)
728	}
729	if v.Type() == reflectValueType {
730		v = v.Interface().(reflect.Value)
731	}
732	return v
733}
734
735// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
736func canBeNil(typ reflect.Type) bool {
737	switch typ.Kind() {
738	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
739		return true
740	case reflect.Struct:
741		return typ == reflectValueType
742	}
743	return false
744}
745
746// validateType guarantees that the value is valid and assignable to the type.
747func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
748	if !value.IsValid() {
749		if typ == nil {
750			// An untyped nil interface{}. Accept as a proper nil value.
751			return reflect.ValueOf(nil)
752		}
753		if canBeNil(typ) {
754			// Like above, but use the zero value of the non-nil type.
755			return reflect.Zero(typ)
756		}
757		s.errorf("invalid value; expected %s", typ)
758	}
759	if typ == reflectValueType && value.Type() != typ {
760		return reflect.ValueOf(value)
761	}
762	if typ != nil && !value.Type().AssignableTo(typ) {
763		if value.Kind() == reflect.Interface && !value.IsNil() {
764			value = value.Elem()
765			if value.Type().AssignableTo(typ) {
766				return value
767			}
768			// fallthrough
769		}
770		// Does one dereference or indirection work? We could do more, as we
771		// do with method receivers, but that gets messy and method receivers
772		// are much more constrained, so it makes more sense there than here.
773		// Besides, one is almost always all you need.
774		switch {
775		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
776			value = value.Elem()
777			if !value.IsValid() {
778				s.errorf("dereference of nil pointer of type %s", typ)
779			}
780		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
781			value = value.Addr()
782		default:
783			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
784		}
785	}
786	return value
787}
788
789func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
790	s.at(n)
791	switch arg := n.(type) {
792	case *parse.DotNode:
793		return s.validateType(dot, typ)
794	case *parse.NilNode:
795		if canBeNil(typ) {
796			return reflect.Zero(typ)
797		}
798		s.errorf("cannot assign nil to %s", typ)
799	case *parse.FieldNode:
800		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ)
801	case *parse.VariableNode:
802		return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ)
803	case *parse.PipeNode:
804		return s.validateType(s.evalPipeline(dot, arg), typ)
805	case *parse.IdentifierNode:
806		return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ)
807	case *parse.ChainNode:
808		return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ)
809	}
810	switch typ.Kind() {
811	case reflect.Bool:
812		return s.evalBool(typ, n)
813	case reflect.Complex64, reflect.Complex128:
814		return s.evalComplex(typ, n)
815	case reflect.Float32, reflect.Float64:
816		return s.evalFloat(typ, n)
817	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
818		return s.evalInteger(typ, n)
819	case reflect.Interface:
820		if typ.NumMethod() == 0 {
821			return s.evalEmptyInterface(dot, n)
822		}
823	case reflect.Struct:
824		if typ == reflectValueType {
825			return reflect.ValueOf(s.evalEmptyInterface(dot, n))
826		}
827	case reflect.String:
828		return s.evalString(typ, n)
829	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
830		return s.evalUnsignedInteger(typ, n)
831	}
832	s.errorf("can't handle %s for arg of type %s", n, typ)
833	panic("not reached")
834}
835
836func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
837	s.at(n)
838	if n, ok := n.(*parse.BoolNode); ok {
839		value := reflect.New(typ).Elem()
840		value.SetBool(n.True)
841		return value
842	}
843	s.errorf("expected bool; found %s", n)
844	panic("not reached")
845}
846
847func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
848	s.at(n)
849	if n, ok := n.(*parse.StringNode); ok {
850		value := reflect.New(typ).Elem()
851		value.SetString(n.Text)
852		return value
853	}
854	s.errorf("expected string; found %s", n)
855	panic("not reached")
856}
857
858func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
859	s.at(n)
860	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
861		value := reflect.New(typ).Elem()
862		value.SetInt(n.Int64)
863		return value
864	}
865	s.errorf("expected integer; found %s", n)
866	panic("not reached")
867}
868
869func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
870	s.at(n)
871	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
872		value := reflect.New(typ).Elem()
873		value.SetUint(n.Uint64)
874		return value
875	}
876	s.errorf("expected unsigned integer; found %s", n)
877	panic("not reached")
878}
879
880func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
881	s.at(n)
882	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
883		value := reflect.New(typ).Elem()
884		value.SetFloat(n.Float64)
885		return value
886	}
887	s.errorf("expected float; found %s", n)
888	panic("not reached")
889}
890
891func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
892	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
893		value := reflect.New(typ).Elem()
894		value.SetComplex(n.Complex128)
895		return value
896	}
897	s.errorf("expected complex; found %s", n)
898	panic("not reached")
899}
900
901func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
902	s.at(n)
903	switch n := n.(type) {
904	case *parse.BoolNode:
905		return reflect.ValueOf(n.True)
906	case *parse.DotNode:
907		return dot
908	case *parse.FieldNode:
909		return s.evalFieldNode(dot, n, nil, missingVal)
910	case *parse.IdentifierNode:
911		return s.evalFunction(dot, n, n, nil, missingVal)
912	case *parse.NilNode:
913		// NilNode is handled in evalArg, the only place that calls here.
914		s.errorf("evalEmptyInterface: nil (can't happen)")
915	case *parse.NumberNode:
916		return s.idealConstant(n)
917	case *parse.StringNode:
918		return reflect.ValueOf(n.Text)
919	case *parse.VariableNode:
920		return s.evalVariableNode(dot, n, nil, missingVal)
921	case *parse.PipeNode:
922		return s.evalPipeline(dot, n)
923	}
924	s.errorf("can't handle assignment of %s to empty interface argument", n)
925	panic("not reached")
926}
927
928// indirect returns the item at the end of indirection, and a bool to indicate
929// if it's nil. If the returned bool is true, the returned value's kind will be
930// either a pointer or interface.
931func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
932	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
933		if v.IsNil() {
934			return v, true
935		}
936	}
937	return v, false
938}
939
940// indirectInterface returns the concrete value in an interface value,
941// or else the zero reflect.Value.
942// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
943// the fact that x was an interface value is forgotten.
944func indirectInterface(v reflect.Value) reflect.Value {
945	if v.Kind() != reflect.Interface {
946		return v
947	}
948	if v.IsNil() {
949		return reflect.Value{}
950	}
951	return v.Elem()
952}
953
954// printValue writes the textual representation of the value to the output of
955// the template.
956func (s *state) printValue(n parse.Node, v reflect.Value) {
957	s.at(n)
958	iface, ok := printableValue(v)
959	if !ok {
960		s.errorf("can't print %s of type %s", n, v.Type())
961	}
962	_, err := fmt.Fprint(s.wr, iface)
963	if err != nil {
964		s.writeError(err)
965	}
966}
967
968// printableValue returns the, possibly indirected, interface value inside v that
969// is best for a call to formatted printer.
970func printableValue(v reflect.Value) (interface{}, bool) {
971	if v.Kind() == reflect.Ptr {
972		v, _ = indirect(v) // fmt.Fprint handles nil.
973	}
974	if !v.IsValid() {
975		return "<no value>", true
976	}
977
978	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
979		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
980			v = v.Addr()
981		} else {
982			switch v.Kind() {
983			case reflect.Chan, reflect.Func:
984				return nil, false
985			}
986		}
987	}
988	return v.Interface(), true
989}
990