1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ P A K D                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2020, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Einfo;    use Einfo;
29with Errout;   use Errout;
30with Exp_Dbug; use Exp_Dbug;
31with Exp_Util; use Exp_Util;
32with Layout;   use Layout;
33with Lib.Xref; use Lib.Xref;
34with Namet;    use Namet;
35with Nlists;   use Nlists;
36with Nmake;    use Nmake;
37with Opt;      use Opt;
38with Sem;      use Sem;
39with Sem_Aux;  use Sem_Aux;
40with Sem_Ch3;  use Sem_Ch3;
41with Sem_Ch8;  use Sem_Ch8;
42with Sem_Ch13; use Sem_Ch13;
43with Sem_Eval; use Sem_Eval;
44with Sem_Res;  use Sem_Res;
45with Sem_Util; use Sem_Util;
46with Sinfo;    use Sinfo;
47with Snames;   use Snames;
48with Stand;    use Stand;
49with Targparm; use Targparm;
50with Tbuild;   use Tbuild;
51with Ttypes;   use Ttypes;
52with Uintp;    use Uintp;
53
54package body Exp_Pakd is
55
56   ---------------------------
57   -- Endian Considerations --
58   ---------------------------
59
60   --  As described in the specification, bit numbering in a packed array
61   --  is consistent with bit numbering in a record representation clause,
62   --  and hence dependent on the endianness of the machine:
63
64   --    For little-endian machines, element zero is at the right hand end
65   --    (low order end) of a bit field.
66
67   --    For big-endian machines, element zero is at the left hand end
68   --    (high order end) of a bit field.
69
70   --  The shifts that are used to right justify a field therefore differ in
71   --  the two cases. For the little-endian case, we can simply use the bit
72   --  number (i.e. the element number * element size) as the count for a right
73   --  shift. For the big-endian case, we have to subtract the shift count from
74   --  an appropriate constant to use in the right shift. We use rotates
75   --  instead of shifts (which is necessary in the store case to preserve
76   --  other fields), and we expect that the backend will be able to change the
77   --  right rotate into a left rotate, avoiding the subtract, if the machine
78   --  architecture provides such an instruction.
79
80   -----------------------
81   -- Local Subprograms --
82   -----------------------
83
84   procedure Compute_Linear_Subscript
85     (Atyp   : Entity_Id;
86      N      : Node_Id;
87      Subscr : out Node_Id);
88   --  Given a constrained array type Atyp, and an indexed component node N
89   --  referencing an array object of this type, build an expression of type
90   --  Standard.Integer representing the zero-based linear subscript value.
91   --  This expression includes any required range checks.
92
93   function Compute_Number_Components
94      (N   : Node_Id;
95       Typ : Entity_Id) return Node_Id;
96   --  Build an expression that multiplies the length of the dimensions of the
97   --  array, used to control array equality checks.
98
99   procedure Convert_To_PAT_Type (Aexp : Node_Id);
100   --  Given an expression of a packed array type, builds a corresponding
101   --  expression whose type is the implementation type used to represent
102   --  the packed array. Aexp is analyzed and resolved on entry and on exit.
103
104   procedure Get_Base_And_Bit_Offset
105     (N      : Node_Id;
106      Base   : out Node_Id;
107      Offset : out Node_Id);
108   --  Given a node N for a name which involves a packed array reference,
109   --  return the base object of the reference and build an expression of
110   --  type Standard.Integer representing the zero-based offset in bits
111   --  from Base'Address to the first bit of the reference.
112
113   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
114   --  There are two versions of the Set routines, the ones used when the
115   --  object is known to be sufficiently well aligned given the number of
116   --  bits, and the ones used when the object is not known to be aligned.
117   --  This routine is used to determine which set to use. Obj is a reference
118   --  to the object, and Csiz is the component size of the packed array.
119   --  True is returned if the alignment of object is known to be sufficient,
120   --  defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
121   --  2 otherwise.
122
123   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
124   --  Build a left shift node, checking for the case of a shift count of zero
125
126   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
127   --  Build a right shift node, checking for the case of a shift count of zero
128
129   function RJ_Unchecked_Convert_To
130     (Typ  : Entity_Id;
131      Expr : Node_Id) return Node_Id;
132   --  The packed array code does unchecked conversions which in some cases
133   --  may involve non-discrete types with differing sizes. The semantics of
134   --  such conversions is potentially endianness dependent, and the effect
135   --  we want here for such a conversion is to do the conversion in size as
136   --  though numeric items are involved, and we extend or truncate on the
137   --  left side. This happens naturally in the little-endian case, but in
138   --  the big endian case we can get left justification, when what we want
139   --  is right justification. This routine does the unchecked conversion in
140   --  a stepwise manner to ensure that it gives the expected result. Hence
141   --  the name (RJ = Right justified). The parameters Typ and Expr are as
142   --  for the case of a normal Unchecked_Convert_To call.
143
144   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
145   --  This routine is called in the Get and Set case for arrays that are
146   --  packed but not bit-packed, meaning that they have at least one
147   --  subscript that is of an enumeration type with a non-standard
148   --  representation. This routine modifies the given node to properly
149   --  reference the corresponding packed array type.
150
151   procedure Setup_Inline_Packed_Array_Reference
152     (N      : Node_Id;
153      Atyp   : Entity_Id;
154      Obj    : in out Node_Id;
155      Cmask  : out Uint;
156      Shift  : out Node_Id);
157   --  This procedure performs common processing on the N_Indexed_Component
158   --  parameter given as N, whose prefix is a reference to a packed array.
159   --  This is used for the get and set when the component size is 1, 2, 4,
160   --  or for other component sizes when the packed array type is a modular
161   --  type (i.e. the cases that are handled with inline code).
162   --
163   --  On entry:
164   --
165   --    N is the N_Indexed_Component node for the packed array reference
166   --
167   --    Atyp is the constrained array type (the actual subtype has been
168   --    computed if necessary to obtain the constraints, but this is still
169   --    the original array type, not the Packed_Array_Impl_Type value).
170   --
171   --    Obj is the object which is to be indexed. It is always of type Atyp.
172   --
173   --  On return:
174   --
175   --    Obj is the object containing the desired bit field. It is of type
176   --    Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
177   --    entire value, for the small static case, or the proper selected byte
178   --    from the array in the large or dynamic case. This node is analyzed
179   --    and resolved on return.
180   --
181   --    Shift is a node representing the shift count to be used in the
182   --    rotate right instruction that positions the field for access.
183   --    This node is analyzed and resolved on return.
184   --
185   --    Cmask is a mask corresponding to the width of the component field.
186   --    Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
187   --
188   --  Note: in some cases the call to this routine may generate actions
189   --  (for handling multi-use references and the generation of the packed
190   --  array type on the fly). Such actions are inserted into the tree
191   --  directly using Insert_Action.
192
193   function Revert_Storage_Order (N : Node_Id) return Node_Id;
194   --  Perform appropriate justification and byte ordering adjustments for N,
195   --  an element of a packed array type, when both the component type and
196   --  the enclosing packed array type have reverse scalar storage order.
197   --  On little-endian targets, the value is left justified before byte
198   --  swapping. The Etype of the returned expression is an integer type of
199   --  an appropriate power-of-2 size.
200
201   --------------------------
202   -- Revert_Storage_Order --
203   --------------------------
204
205   function Revert_Storage_Order (N : Node_Id) return Node_Id is
206      Loc     : constant Source_Ptr := Sloc (N);
207      T       : constant Entity_Id := Etype (N);
208      T_Size  : constant Uint := RM_Size (T);
209
210      Swap_RE : RE_Id;
211      Swap_F  : Entity_Id;
212      Swap_T  : Entity_Id;
213      --  Swapping function
214
215      Arg      : Node_Id;
216      Adjusted : Node_Id;
217      Shift    : Uint;
218
219   begin
220      if T_Size <= 8 then
221
222         --  Array component size is less than a byte: no swapping needed
223
224         Swap_F := Empty;
225         Swap_T := RTE (RE_Unsigned_8);
226
227      else
228         --  Select byte swapping function depending on array component size
229
230         if T_Size <= 16 then
231            Swap_RE := RE_Bswap_16;
232
233         elsif T_Size <= 32 then
234            Swap_RE := RE_Bswap_32;
235
236         elsif T_Size <= 64 then
237            Swap_RE := RE_Bswap_64;
238
239         else pragma Assert (T_Size <= 128);
240            Swap_RE := RE_Bswap_128;
241         end if;
242
243         Swap_F := RTE (Swap_RE);
244         Swap_T := Etype (Swap_F);
245
246      end if;
247
248      Shift := Esize (Swap_T) - T_Size;
249
250      Arg := RJ_Unchecked_Convert_To (Swap_T, N);
251
252      if not Bytes_Big_Endian and then Shift > Uint_0 then
253         Arg :=
254           Make_Op_Shift_Left (Loc,
255             Left_Opnd  => Arg,
256             Right_Opnd => Make_Integer_Literal (Loc, Shift));
257      end if;
258
259      if Present (Swap_F) then
260         Adjusted :=
261           Make_Function_Call (Loc,
262             Name                   => New_Occurrence_Of (Swap_F, Loc),
263             Parameter_Associations => New_List (Arg));
264      else
265         Adjusted := Arg;
266      end if;
267
268      Set_Etype (Adjusted, Swap_T);
269      return Adjusted;
270   end Revert_Storage_Order;
271
272   ------------------------------
273   -- Compute_Linear_Subscript --
274   ------------------------------
275
276   procedure Compute_Linear_Subscript
277     (Atyp   : Entity_Id;
278      N      : Node_Id;
279      Subscr : out Node_Id)
280   is
281      Loc    : constant Source_Ptr := Sloc (N);
282      Oldsub : Node_Id;
283      Newsub : Node_Id;
284      Indx   : Node_Id;
285      Styp   : Entity_Id;
286
287   begin
288      Subscr := Empty;
289
290      --  Loop through dimensions
291
292      Indx   := First_Index (Atyp);
293      Oldsub := First (Expressions (N));
294
295      while Present (Indx) loop
296         Styp := Etype (Indx);
297         Newsub := Relocate_Node (Oldsub);
298
299         --  Get expression for the subscript value. First, if Do_Range_Check
300         --  is set on a subscript, then we must do a range check against the
301         --  original bounds (not the bounds of the packed array type). We do
302         --  this by introducing a subtype conversion.
303
304         if Do_Range_Check (Newsub)
305           and then Etype (Newsub) /= Styp
306         then
307            Newsub := Convert_To (Styp, Newsub);
308         end if;
309
310         --  Now evolve the expression for the subscript. First convert
311         --  the subscript to be zero based and of an integer type.
312
313         --  Case of integer type, where we just subtract to get lower bound
314
315         if Is_Integer_Type (Styp) then
316
317            --  If length of integer type is smaller than standard integer,
318            --  then we convert to integer first, then do the subtract
319
320            --  Integer (subscript) - Integer (Styp'First)
321
322            if Esize (Styp) < Standard_Integer_Size then
323               Newsub :=
324                 Make_Op_Subtract (Loc,
325                   Left_Opnd => Convert_To (Standard_Integer, Newsub),
326                 Right_Opnd =>
327                   Convert_To (Standard_Integer,
328                     Make_Attribute_Reference (Loc,
329                       Prefix         => New_Occurrence_Of (Styp, Loc),
330                       Attribute_Name => Name_First)));
331
332            --  For larger integer types, subtract first, then convert to
333            --  integer, this deals with strange long long integer bounds.
334
335            --    Integer (subscript - Styp'First)
336
337            else
338               Newsub :=
339                 Convert_To (Standard_Integer,
340                   Make_Op_Subtract (Loc,
341                     Left_Opnd => Newsub,
342                   Right_Opnd =>
343                     Make_Attribute_Reference (Loc,
344                       Prefix         => New_Occurrence_Of (Styp, Loc),
345                       Attribute_Name => Name_First)));
346            end if;
347
348         --  For the enumeration case, we have to use 'Pos to get the value
349         --  to work with before subtracting the lower bound.
350
351         --    Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
352
353         --  This is not quite right for bizarre cases where the size of the
354         --  enumeration type is > Integer'Size bits due to rep clause ???
355
356         else
357            pragma Assert (Is_Enumeration_Type (Styp));
358
359            Newsub :=
360              Make_Op_Subtract (Loc,
361                Left_Opnd => Convert_To (Standard_Integer,
362                  Make_Attribute_Reference (Loc,
363                    Prefix         => New_Occurrence_Of (Styp, Loc),
364                    Attribute_Name => Name_Pos,
365                    Expressions    => New_List (Newsub))),
366
367                Right_Opnd =>
368                  Convert_To (Standard_Integer,
369                    Make_Attribute_Reference (Loc,
370                      Prefix         => New_Occurrence_Of (Styp, Loc),
371                      Attribute_Name => Name_Pos,
372                      Expressions    => New_List (
373                        Make_Attribute_Reference (Loc,
374                          Prefix         => New_Occurrence_Of (Styp, Loc),
375                          Attribute_Name => Name_First)))));
376         end if;
377
378         Set_Paren_Count (Newsub, 1);
379
380         --  For the first subscript, we just copy that subscript value
381
382         if No (Subscr) then
383            Subscr := Newsub;
384
385         --  Otherwise, we must multiply what we already have by the current
386         --  stride and then add in the new value to the evolving subscript.
387
388         else
389            Subscr :=
390              Make_Op_Add (Loc,
391                Left_Opnd =>
392                  Make_Op_Multiply (Loc,
393                    Left_Opnd  => Subscr,
394                    Right_Opnd =>
395                      Make_Attribute_Reference (Loc,
396                        Attribute_Name => Name_Range_Length,
397                        Prefix         => New_Occurrence_Of (Styp, Loc))),
398                Right_Opnd => Newsub);
399         end if;
400
401         --  Move to next subscript
402
403         Next_Index (Indx);
404         Next (Oldsub);
405      end loop;
406   end Compute_Linear_Subscript;
407
408   -------------------------------
409   -- Compute_Number_Components --
410   -------------------------------
411
412   function Compute_Number_Components
413      (N   : Node_Id;
414       Typ : Entity_Id) return Node_Id
415   is
416      Loc      : constant Source_Ptr := Sloc (N);
417      Len_Expr : Node_Id;
418
419   begin
420      Len_Expr :=
421        Make_Attribute_Reference (Loc,
422          Attribute_Name => Name_Length,
423          Prefix         => New_Occurrence_Of (Typ, Loc),
424          Expressions    => New_List (Make_Integer_Literal (Loc, 1)));
425
426      for J in 2 .. Number_Dimensions (Typ) loop
427         Len_Expr :=
428           Make_Op_Multiply (Loc,
429             Left_Opnd  => Len_Expr,
430             Right_Opnd =>
431               Make_Attribute_Reference (Loc,
432                Attribute_Name => Name_Length,
433                Prefix         => New_Occurrence_Of (Typ, Loc),
434                Expressions    => New_List (Make_Integer_Literal (Loc, J))));
435      end loop;
436
437      return Len_Expr;
438   end Compute_Number_Components;
439
440   -------------------------
441   -- Convert_To_PAT_Type --
442   -------------------------
443
444   --  The PAT is always obtained from the actual subtype
445
446   procedure Convert_To_PAT_Type (Aexp : Node_Id) is
447      Act_ST : Entity_Id;
448
449   begin
450      Convert_To_Actual_Subtype (Aexp);
451      Act_ST := Underlying_Type (Etype (Aexp));
452      Create_Packed_Array_Impl_Type (Act_ST);
453
454      --  Just replace the etype with the packed array type. This works because
455      --  the expression will not be further analyzed, and Gigi considers the
456      --  two types equivalent in any case.
457
458      --  This is not strictly the case ??? If the reference is an actual in
459      --  call, the expansion of the prefix is delayed, and must be reanalyzed,
460      --  see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
461      --  array reference, reanalysis can produce spurious type errors when the
462      --  PAT type is replaced again with the original type of the array. Same
463      --  for the case of a dereference. Ditto for function calls: expansion
464      --  may introduce additional actuals which will trigger errors if call is
465      --  reanalyzed. The following is correct and minimal, but the handling of
466      --  more complex packed expressions in actuals is confused. Probably the
467      --  problem only remains for actuals in calls.
468
469      Set_Etype (Aexp, Packed_Array_Impl_Type (Act_ST));
470
471      if Is_Entity_Name (Aexp)
472        or else
473           (Nkind (Aexp) = N_Indexed_Component
474             and then Is_Entity_Name (Prefix (Aexp)))
475        or else Nkind (Aexp) in N_Explicit_Dereference | N_Function_Call
476      then
477         Set_Analyzed (Aexp);
478      end if;
479   end Convert_To_PAT_Type;
480
481   -----------------------------------
482   -- Create_Packed_Array_Impl_Type --
483   -----------------------------------
484
485   procedure Create_Packed_Array_Impl_Type (Typ : Entity_Id) is
486      Loc      : constant Source_Ptr := Sloc (Typ);
487      Ctyp     : constant Entity_Id  := Component_Type (Typ);
488      Csize    : constant Uint       := Component_Size (Typ);
489
490      Ancest   : Entity_Id;
491      PB_Type  : Entity_Id;
492      PASize   : Uint;
493      Decl     : Node_Id;
494      PAT      : Entity_Id;
495      Len_Expr : Node_Id;
496      Len_Bits : Uint;
497      Bits_U1  : Node_Id;
498      PAT_High : Node_Id;
499      Btyp     : Entity_Id;
500      Lit      : Node_Id;
501
502      procedure Install_PAT;
503      --  This procedure is called with Decl set to the declaration for the
504      --  packed array type. It creates the type and installs it as required.
505
506      procedure Set_PB_Type;
507      --  Set PB_Type to [Rev_]Packed_Bytes{1,2,4} as required by the alignment
508      --  and the scalar storage order requirements (see documentation in the
509      --  spec of this package).
510
511      -----------------
512      -- Install_PAT --
513      -----------------
514
515      procedure Install_PAT is
516         Pushed_Scope : Boolean := False;
517
518      begin
519         --  We do not want to put the declaration we have created in the tree
520         --  since it is often hard, and sometimes impossible to find a proper
521         --  place for it (the impossible case arises for a packed array type
522         --  with bounds depending on the discriminant, a declaration cannot
523         --  be put inside the record, and the reference to the discriminant
524         --  cannot be outside the record).
525
526         --  The solution is to analyze the declaration while temporarily
527         --  attached to the tree at an appropriate point, and then we install
528         --  the resulting type as an Itype in the packed array type field of
529         --  the original type, so that no explicit declaration is required.
530
531         --  Note: the packed type is created in the scope of its parent type.
532         --  There are at least some cases where the current scope is deeper,
533         --  and so when this is the case, we temporarily reset the scope
534         --  for the definition. This is clearly safe, since the first use
535         --  of the packed array type will be the implicit reference from
536         --  the corresponding unpacked type when it is elaborated.
537
538         if Is_Itype (Typ) then
539            Set_Parent (Decl, Associated_Node_For_Itype (Typ));
540         else
541            Set_Parent (Decl, Declaration_Node (Typ));
542         end if;
543
544         if Scope (Typ) /= Current_Scope then
545            Push_Scope (Scope (Typ));
546            Pushed_Scope := True;
547         end if;
548
549         Set_Is_Itype (PAT, True);
550         Set_Is_Packed_Array_Impl_Type (PAT, True);
551         Set_Packed_Array_Impl_Type (Typ, PAT);
552         Analyze (Decl, Suppress => All_Checks);
553
554         if Pushed_Scope then
555            Pop_Scope;
556         end if;
557
558         --  Set Esize and RM_Size to the actual size of the packed object
559         --  Do not reset RM_Size if already set, as happens in the case of
560         --  a modular type.
561
562         if Unknown_Esize (PAT) then
563            Set_Esize (PAT, PASize);
564         end if;
565
566         if Unknown_RM_Size (PAT) then
567            Set_RM_Size (PAT, PASize);
568         end if;
569
570         Adjust_Esize_Alignment (PAT);
571
572         --  Set remaining fields of packed array type
573
574         Init_Alignment                (PAT);
575         Set_Parent                    (PAT, Empty);
576         Set_Associated_Node_For_Itype (PAT, Typ);
577         Set_Original_Array_Type       (PAT, Typ);
578
579         --  Propagate representation aspects
580
581         Set_Is_Atomic               (PAT, Is_Atomic                (Typ));
582         Set_Is_Independent          (PAT, Is_Independent           (Typ));
583         Set_Is_Volatile             (PAT, Is_Volatile              (Typ));
584         Set_Is_Volatile_Full_Access (PAT, Is_Volatile_Full_Access  (Typ));
585         Set_Treat_As_Volatile       (PAT, Treat_As_Volatile        (Typ));
586
587         --  We definitely do not want to delay freezing for packed array
588         --  types. This is of particular importance for the itypes that are
589         --  generated for record components depending on discriminants where
590         --  there is no place to put the freeze node.
591
592         Set_Has_Delayed_Freeze (PAT, False);
593         Set_Has_Delayed_Freeze (Etype (PAT), False);
594
595         --  If we did allocate a freeze node, then clear out the reference
596         --  since it is obsolete (should we delete the freeze node???)
597
598         Set_Freeze_Node (PAT, Empty);
599         Set_Freeze_Node (Etype (PAT), Empty);
600      end Install_PAT;
601
602      -----------------
603      -- Set_PB_Type --
604      -----------------
605
606      procedure Set_PB_Type is
607      begin
608         --  If the user has specified an explicit alignment for the
609         --  type or component, take it into account.
610
611         if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
612           or else Alignment (Typ) = 1
613           or else Component_Alignment (Typ) = Calign_Storage_Unit
614         then
615            if Reverse_Storage_Order (Typ) then
616               PB_Type := RTE (RE_Rev_Packed_Bytes1);
617            else
618               PB_Type := RTE (RE_Packed_Bytes1);
619            end if;
620
621         elsif Csize mod 4 /= 0
622           or else Alignment (Typ) = 2
623         then
624            if Reverse_Storage_Order (Typ) then
625               PB_Type := RTE (RE_Rev_Packed_Bytes2);
626            else
627               PB_Type := RTE (RE_Packed_Bytes2);
628            end if;
629
630         else
631            if Reverse_Storage_Order (Typ) then
632               PB_Type := RTE (RE_Rev_Packed_Bytes4);
633            else
634               PB_Type := RTE (RE_Packed_Bytes4);
635            end if;
636         end if;
637
638         --  The Rev_Packed_Bytes{1,2,4} types cannot be directly declared with
639         --  the reverse scalar storage order in System.Unsigned_Types because
640         --  their component type is aliased and the combination would then be
641         --  flagged as illegal by the compiler. Moreover changing the compiler
642         --  would not address the bootstrap path issue with earlier versions.
643
644         Set_Reverse_Storage_Order (PB_Type, Reverse_Storage_Order (Typ));
645      end Set_PB_Type;
646
647   --  Start of processing for Create_Packed_Array_Impl_Type
648
649   begin
650      --  If we already have a packed array type, nothing to do
651
652      if Present (Packed_Array_Impl_Type (Typ)) then
653         return;
654      end if;
655
656      --  If our immediate ancestor subtype is constrained, and it already
657      --  has a packed array type, then just share the same type, since the
658      --  bounds must be the same. If the ancestor is not an array type but
659      --  a private type, as can happen with multiple instantiations, create
660      --  a new packed type, to avoid privacy issues.
661
662      if Ekind (Typ) = E_Array_Subtype then
663         Ancest := Ancestor_Subtype (Typ);
664
665         if Present (Ancest)
666           and then Is_Array_Type (Ancest)
667           and then Is_Constrained (Ancest)
668           and then Present (Packed_Array_Impl_Type (Ancest))
669         then
670            Set_Packed_Array_Impl_Type (Typ, Packed_Array_Impl_Type (Ancest));
671            return;
672         end if;
673      end if;
674
675      --  We preset the result type size from the size of the original array
676      --  type, since this size clearly belongs to the packed array type. The
677      --  size of the conceptual unpacked type is always set to unknown.
678
679      PASize := RM_Size (Typ);
680
681      --  Case of an array where at least one index is of an enumeration
682      --  type with a non-standard representation, but the component size
683      --  is not appropriate for bit packing. This is the case where we
684      --  have Is_Packed set (we would never be in this unit otherwise),
685      --  but Is_Bit_Packed_Array is false.
686
687      --  Note that if the component size is appropriate for bit packing,
688      --  then the circuit for the computation of the subscript properly
689      --  deals with the non-standard enumeration type case by taking the
690      --  Pos anyway.
691
692      if not Is_Bit_Packed_Array (Typ) then
693
694         --  Here we build a declaration:
695
696         --    type tttP is array (index1, index2, ...) of component_type
697
698         --  where index1, index2, are the index types. These are the same
699         --  as the index types of the original array, except for the non-
700         --  standard representation enumeration type case, where we have
701         --  two subcases.
702
703         --  For the unconstrained array case, we use
704
705         --    Natural range <>
706
707         --  For the constrained case, we use
708
709         --    Natural range Enum_Type'Pos (Enum_Type'First) ..
710         --                  Enum_Type'Pos (Enum_Type'Last);
711
712         --  Note that tttP is created even if no index subtype is a non
713         --  standard enumeration, because we still need to remove padding
714         --  normally inserted for component alignment.
715
716         PAT :=
717           Make_Defining_Identifier (Loc,
718             Chars => New_External_Name (Chars (Typ), 'P'));
719
720         declare
721            Indexes   : constant List_Id := New_List;
722            Indx      : Node_Id;
723            Indx_Typ  : Entity_Id;
724            Enum_Case : Boolean;
725            Typedef   : Node_Id;
726
727         begin
728            Indx := First_Index (Typ);
729
730            while Present (Indx) loop
731               Indx_Typ := Etype (Indx);
732
733               Enum_Case := Is_Enumeration_Type (Indx_Typ)
734                              and then Has_Non_Standard_Rep (Indx_Typ);
735
736               --  Unconstrained case
737
738               if not Is_Constrained (Typ) then
739                  if Enum_Case then
740                     Indx_Typ := Standard_Natural;
741                  end if;
742
743                  Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
744
745               --  Constrained case
746
747               else
748                  if not Enum_Case then
749                     Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
750
751                  else
752                     Append_To (Indexes,
753                       Make_Subtype_Indication (Loc,
754                         Subtype_Mark =>
755                           New_Occurrence_Of (Standard_Natural, Loc),
756                         Constraint =>
757                           Make_Range_Constraint (Loc,
758                             Range_Expression =>
759                               Make_Range (Loc,
760                                 Low_Bound =>
761                                   Make_Attribute_Reference (Loc,
762                                     Prefix         =>
763                                       New_Occurrence_Of (Indx_Typ, Loc),
764                                     Attribute_Name => Name_Pos,
765                                     Expressions    => New_List (
766                                       Make_Attribute_Reference (Loc,
767                                         Prefix         =>
768                                           New_Occurrence_Of (Indx_Typ, Loc),
769                                         Attribute_Name => Name_First))),
770
771                                 High_Bound =>
772                                   Make_Attribute_Reference (Loc,
773                                     Prefix         =>
774                                       New_Occurrence_Of (Indx_Typ, Loc),
775                                     Attribute_Name => Name_Pos,
776                                     Expressions    => New_List (
777                                       Make_Attribute_Reference (Loc,
778                                         Prefix         =>
779                                           New_Occurrence_Of (Indx_Typ, Loc),
780                                         Attribute_Name => Name_Last)))))));
781
782                  end if;
783               end if;
784
785               Next_Index (Indx);
786            end loop;
787
788            if not Is_Constrained (Typ) then
789               Typedef :=
790                 Make_Unconstrained_Array_Definition (Loc,
791                   Subtype_Marks => Indexes,
792                   Component_Definition =>
793                     Make_Component_Definition (Loc,
794                       Aliased_Present    => False,
795                       Subtype_Indication =>
796                          New_Occurrence_Of (Ctyp, Loc)));
797
798            else
799               Typedef :=
800                  Make_Constrained_Array_Definition (Loc,
801                    Discrete_Subtype_Definitions => Indexes,
802                    Component_Definition =>
803                      Make_Component_Definition (Loc,
804                        Aliased_Present    => False,
805                        Subtype_Indication =>
806                          New_Occurrence_Of (Ctyp, Loc)));
807            end if;
808
809            Decl :=
810              Make_Full_Type_Declaration (Loc,
811                Defining_Identifier => PAT,
812                Type_Definition     => Typedef);
813         end;
814
815         Install_PAT;
816
817         --  Propagate the reverse storage order flag to the base type
818
819         Set_Reverse_Storage_Order (Etype (PAT), Reverse_Storage_Order (Typ));
820         return;
821
822      --  Case of bit-packing required for unconstrained array. We create
823      --  a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
824
825      elsif not Is_Constrained (Typ) then
826
827         --  When generating standard DWARF (i.e when GNAT_Encodings is
828         --  DWARF_GNAT_Encodings_Minimal), the ___XP suffix will be stripped
829         --  by the back-end but generate it anyway to ease compiler debugging.
830         --  This will help to distinguish implementation types from original
831         --  packed arrays.
832
833         PAT :=
834           Make_Defining_Identifier (Loc,
835             Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
836
837         Set_PB_Type;
838
839         Decl :=
840           Make_Subtype_Declaration (Loc,
841             Defining_Identifier => PAT,
842               Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
843
844         Install_PAT;
845         return;
846
847      --  Remaining code is for the case of bit-packing for constrained array
848
849      --  The name of the packed array subtype is
850
851      --    ttt___XPsss
852
853      --  where sss is the component size in bits and ttt is the name of
854      --  the parent packed type.
855
856      else
857         PAT :=
858           Make_Defining_Identifier (Loc,
859             Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
860
861         --  Build an expression for the length of the array in bits.
862         --  This is the product of the length of each of the dimensions
863
864         Len_Expr := Compute_Number_Components (Typ, Typ);
865
866         --  Temporarily attach the length expression to the tree and analyze
867         --  and resolve it, so that we can test its value. We assume that the
868         --  total length fits in type Integer. This expression may involve
869         --  discriminants, so we treat it as a default/per-object expression.
870
871         Set_Parent (Len_Expr, Typ);
872         Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
873
874         --  Use a modular type if possible. We can do this if we have
875         --  static bounds, and the length is small enough, and the length
876         --  is not zero. We exclude the zero length case because the size
877         --  of things is always at least one, and the zero length object
878         --  would have an anomalous size.
879
880         if Compile_Time_Known_Value (Len_Expr) then
881            Len_Bits := Expr_Value (Len_Expr) * Csize;
882
883            --  Check for size known to be too large
884
885            if Len_Bits >
886              Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
887            then
888               if System_Storage_Unit = 8 then
889                  Error_Msg_N
890                    ("packed array size cannot exceed " &
891                     "Integer''Last bytes", Typ);
892               else
893                  Error_Msg_N
894                    ("packed array size cannot exceed " &
895                     "Integer''Last storage units", Typ);
896               end if;
897
898               --  Reset length to arbitrary not too high value to continue
899
900               Len_Expr := Make_Integer_Literal (Loc, 65535);
901               Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
902            end if;
903
904            --  We normally consider small enough to mean no larger than the
905            --  value of System_Max_Binary_Modulus_Power, checking that in the
906            --  case of values longer than word size, we have long shifts.
907
908            if Len_Bits > 0
909              and then
910                (Len_Bits <= System_Word_Size
911                   or else (Len_Bits <= System_Max_Binary_Modulus_Power
912                              and then Support_Long_Shifts_On_Target))
913            then
914               --  We can use the modular type, it has the form:
915
916               --    subtype tttPn is btyp
917               --      range 0 .. 2 ** ((Typ'Length (1)
918               --                * ... * Typ'Length (n)) * Csize) - 1;
919
920               --  The bounds are statically known, and btyp is one of the
921               --  unsigned types, depending on the length.
922
923               Btyp := Small_Integer_Type_For (Len_Bits, Uns => True);
924               Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
925               Set_Print_In_Hex (Lit);
926
927               Decl :=
928                 Make_Subtype_Declaration (Loc,
929                   Defining_Identifier => PAT,
930                     Subtype_Indication =>
931                       Make_Subtype_Indication (Loc,
932                         Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
933
934                         Constraint =>
935                           Make_Range_Constraint (Loc,
936                             Range_Expression =>
937                               Make_Range (Loc,
938                                 Low_Bound =>
939                                   Make_Integer_Literal (Loc, 0),
940                                 High_Bound => Lit))));
941
942               if PASize = Uint_0 then
943                  PASize := Len_Bits;
944               end if;
945
946               Install_PAT;
947
948               --  Propagate a given alignment to the modular type. This can
949               --  cause it to be under-aligned, but that's OK.
950
951               if Present (Alignment_Clause (Typ)) then
952                  Set_Alignment (PAT, Alignment (Typ));
953               end if;
954
955               return;
956            end if;
957         end if;
958
959         --  Could not use a modular type, for all other cases, we build
960         --  a packed array subtype:
961
962         --    subtype tttPn is
963         --      System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
964
965         --  Bits is the length of the array in bits
966
967         Set_PB_Type;
968
969         Bits_U1 :=
970           Make_Op_Add (Loc,
971             Left_Opnd =>
972               Make_Op_Multiply (Loc,
973                 Left_Opnd  =>
974                   Make_Integer_Literal (Loc, Csize),
975                 Right_Opnd => Len_Expr),
976
977             Right_Opnd =>
978               Make_Integer_Literal (Loc, 7));
979
980         Set_Paren_Count (Bits_U1, 1);
981
982         PAT_High :=
983           Make_Op_Subtract (Loc,
984             Left_Opnd =>
985               Make_Op_Divide (Loc,
986                 Left_Opnd => Bits_U1,
987                 Right_Opnd => Make_Integer_Literal (Loc, 8)),
988             Right_Opnd => Make_Integer_Literal (Loc, 1));
989
990         Decl :=
991           Make_Subtype_Declaration (Loc,
992             Defining_Identifier => PAT,
993               Subtype_Indication =>
994                 Make_Subtype_Indication (Loc,
995                   Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
996                   Constraint =>
997                     Make_Index_Or_Discriminant_Constraint (Loc,
998                       Constraints => New_List (
999                         Make_Range (Loc,
1000                           Low_Bound =>
1001                             Make_Integer_Literal (Loc, 0),
1002                           High_Bound =>
1003                             Convert_To (Standard_Integer, PAT_High))))));
1004
1005         Install_PAT;
1006
1007         --  Currently the code in this unit requires that packed arrays
1008         --  represented by non-modular arrays of bytes be on a byte
1009         --  boundary for bit sizes handled by System.Pack_nn units.
1010         --  That's because these units assume the array being accessed
1011         --  starts on a byte boundary.
1012
1013         if Get_Id (UI_To_Int (Csize)) /= RE_Null then
1014            Set_Must_Be_On_Byte_Boundary (Typ);
1015         end if;
1016      end if;
1017   end Create_Packed_Array_Impl_Type;
1018
1019   -----------------------------------
1020   -- Expand_Bit_Packed_Element_Set --
1021   -----------------------------------
1022
1023   procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1024      Loc : constant Source_Ptr := Sloc (N);
1025      Lhs : constant Node_Id    := Name (N);
1026
1027      Ass_OK : constant Boolean := Assignment_OK (Lhs);
1028      --  Used to preserve assignment OK status when assignment is rewritten
1029
1030      Expr : Node_Id;
1031
1032      Rhs  : Node_Id := Expression (N);
1033      --  Initially Rhs is the right hand side value, it will be replaced
1034      --  later by an appropriate unchecked conversion for the assignment.
1035
1036      Obj   : Node_Id;
1037      Atyp  : Entity_Id;
1038      PAT   : Entity_Id;
1039      Ctyp  : Entity_Id;
1040      Csiz  : Int;
1041      Cmask : Uint;
1042
1043      Shift : Node_Id;
1044      --  The expression for the shift value that is required
1045
1046      Shift_Used : Boolean := False;
1047      --  Set True if Shift has been used in the generated code at least once,
1048      --  so that it must be duplicated if used again.
1049
1050      New_Lhs : Node_Id;
1051      New_Rhs : Node_Id;
1052
1053      Rhs_Val_Known : Boolean;
1054      Rhs_Val       : Uint;
1055      --  If the value of the right hand side as an integer constant is
1056      --  known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1057      --  contains the value. Otherwise Rhs_Val_Known is set False, and
1058      --  the Rhs_Val is undefined.
1059
1060      function Get_Shift return Node_Id;
1061      --  Function used to get the value of Shift, making sure that it
1062      --  gets duplicated if the function is called more than once.
1063
1064      ---------------
1065      -- Get_Shift --
1066      ---------------
1067
1068      function Get_Shift return Node_Id is
1069      begin
1070         --  If we used the shift value already, then duplicate it. We
1071         --  set a temporary parent in case actions have to be inserted.
1072
1073         if Shift_Used then
1074            Set_Parent (Shift, N);
1075            return Duplicate_Subexpr_No_Checks (Shift);
1076
1077         --  If first time, use Shift unchanged, and set flag for first use
1078
1079         else
1080            Shift_Used := True;
1081            return Shift;
1082         end if;
1083      end Get_Shift;
1084
1085   --  Start of processing for Expand_Bit_Packed_Element_Set
1086
1087   begin
1088      pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1089
1090      Obj := Relocate_Node (Prefix (Lhs));
1091      Convert_To_Actual_Subtype (Obj);
1092      Atyp := Etype (Obj);
1093      PAT  := Packed_Array_Impl_Type (Atyp);
1094      Ctyp := Component_Type (Atyp);
1095      Csiz := UI_To_Int (Component_Size (Atyp));
1096
1097      --  We remove side effects, in case the rhs modifies the lhs, because we
1098      --  are about to transform the rhs into an expression that first READS
1099      --  the lhs, so we can do the necessary shifting and masking. Example:
1100      --  "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1101      --  will be lost.
1102
1103      Remove_Side_Effects (Rhs);
1104
1105      --  We convert the right hand side to the proper subtype to ensure
1106      --  that an appropriate range check is made (since the normal range
1107      --  check from assignment will be lost in the transformations). This
1108      --  conversion is analyzed immediately so that subsequent processing
1109      --  can work with an analyzed Rhs (and e.g. look at its Etype)
1110
1111      --  If the right-hand side is a string literal, create a temporary for
1112      --  it, constant-folding is not ready to wrap the bit representation
1113      --  of a string literal.
1114
1115      if Nkind (Rhs) = N_String_Literal then
1116         declare
1117            Decl : Node_Id;
1118         begin
1119            Decl :=
1120              Make_Object_Declaration (Loc,
1121                Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
1122                Object_Definition   => New_Occurrence_Of (Ctyp, Loc),
1123                Expression          => New_Copy_Tree (Rhs));
1124
1125            Insert_Actions (N, New_List (Decl));
1126            Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1127         end;
1128      end if;
1129
1130      Rhs := Convert_To (Ctyp, Rhs);
1131      Set_Parent (Rhs, N);
1132
1133      --  If we are building the initialization procedure for a packed array,
1134      --  and Initialize_Scalars is enabled, each component assignment is an
1135      --  out-of-range value by design. Compile this value without checks,
1136      --  because a call to the array init_proc must not raise an exception.
1137
1138      --  Condition is not consistent with description above, Within_Init_Proc
1139      --  is True also when we are building the IP for a record or protected
1140      --  type that has a packed array component???
1141
1142      if Within_Init_Proc
1143        and then Initialize_Scalars
1144      then
1145         Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1146      else
1147         Analyze_And_Resolve (Rhs, Ctyp);
1148      end if;
1149
1150      --  If any of the indices has a nonstandard representation, introduce
1151      --  the proper Rep_To_Pos conversion, which in turn will generate index
1152      --  checks when needed. We do this on a copy of the index expression,
1153      --  rather that rewriting the LHS altogether.
1154
1155      Expr := First (Expressions (Lhs));
1156      while Present (Expr) loop
1157         declare
1158            Expr_Typ : constant Entity_Id  := Etype (Expr);
1159            Loc      : constant Source_Ptr := Sloc  (Expr);
1160
1161            Expr_Copy : Node_Id;
1162
1163         begin
1164            if Is_Enumeration_Type (Expr_Typ)
1165              and then Has_Non_Standard_Rep (Expr_Typ)
1166            then
1167               Expr_Copy :=
1168                 Make_Attribute_Reference (Loc,
1169                   Prefix         => New_Occurrence_Of (Expr_Typ, Loc),
1170                   Attribute_Name => Name_Pos,
1171                   Expressions    => New_List (Relocate_Node (Expr)));
1172               Set_Parent (Expr_Copy, N);
1173               Analyze_And_Resolve (Expr_Copy, Standard_Natural);
1174            end if;
1175         end;
1176
1177         Next (Expr);
1178      end loop;
1179
1180      --  Case of component size 1,2,4 or any component size for the modular
1181      --  case. These are the cases for which we can inline the code.
1182
1183      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1184        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1185      then
1186         Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1187
1188         --  The statement to be generated is:
1189
1190         --    Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1191
1192         --  or in the case of a freestanding Reverse_Storage_Order object,
1193
1194         --    Obj := Swap (atyp!((Swap (Obj) and Mask1)
1195         --                         or (shift_left (rhs, Shift))))
1196
1197         --      where Mask1 is obtained by shifting Cmask left Shift bits
1198         --      and then complementing the result.
1199
1200         --      the "and Mask1" is omitted if rhs is constant and all 1 bits
1201
1202         --      the "or ..." is omitted if rhs is constant and all 0 bits
1203
1204         --      rhs is converted to the appropriate type
1205
1206         --      The result is converted back to the array type, since
1207         --      otherwise we lose knowledge of the packed nature.
1208
1209         --  Determine if right side is all 0 bits or all 1 bits
1210
1211         if Compile_Time_Known_Value (Rhs) then
1212            Rhs_Val       := Expr_Rep_Value (Rhs);
1213            Rhs_Val_Known := True;
1214
1215         --  The following test catches the case of an unchecked conversion of
1216         --  an integer literal. This results from optimizing aggregates of
1217         --  packed types.
1218
1219         elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1220           and then Compile_Time_Known_Value (Expression (Rhs))
1221         then
1222            Rhs_Val       := Expr_Rep_Value (Expression (Rhs));
1223            Rhs_Val_Known := True;
1224
1225         else
1226            Rhs_Val       := No_Uint;
1227            Rhs_Val_Known := False;
1228         end if;
1229
1230         --  Some special checks for the case where the right hand value is
1231         --  known at compile time. Basically we have to take care of the
1232         --  implicit conversion to the subtype of the component object.
1233
1234         if Rhs_Val_Known then
1235
1236            --  If we have a biased component type then we must manually do the
1237            --  biasing, since we are taking responsibility in this case for
1238            --  constructing the exact bit pattern to be used.
1239
1240            if Has_Biased_Representation (Ctyp) then
1241               Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1242            end if;
1243
1244            --  For a negative value, we manually convert the two's complement
1245            --  value to a corresponding unsigned value, so that the proper
1246            --  field width is maintained. If we did not do this, we would
1247            --  get too many leading sign bits later on.
1248
1249            if Rhs_Val < 0 then
1250               Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1251            end if;
1252         end if;
1253
1254         --  Now create copies removing side effects. Note that in some complex
1255         --  cases, this may cause the fact that we have already set a packed
1256         --  array type on Obj to get lost. So we save the type of Obj, and
1257         --  make sure it is reset properly.
1258
1259         declare
1260            T : constant Entity_Id := Etype (Obj);
1261         begin
1262            New_Lhs := Duplicate_Subexpr (Obj, Name_Req => True);
1263            New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1264            Set_Etype (Obj, T);
1265            Set_Etype (New_Lhs, T);
1266            Set_Etype (New_Rhs, T);
1267         end;
1268
1269         --  First we deal with the "and"
1270
1271         if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1272            declare
1273               Mask1 : Node_Id;
1274               Lit   : Node_Id;
1275
1276            begin
1277               if Compile_Time_Known_Value (Shift) then
1278                  Mask1 :=
1279                    Make_Integer_Literal (Loc,
1280                      Modulus (Etype (Obj)) - 1 -
1281                                 (Cmask * (2 ** Expr_Value (Get_Shift))));
1282                  Set_Print_In_Hex (Mask1);
1283
1284               else
1285                  Lit := Make_Integer_Literal (Loc, Cmask);
1286                  Set_Print_In_Hex (Lit);
1287                  Mask1 :=
1288                    Make_Op_Not (Loc,
1289                      Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1290               end if;
1291
1292               New_Rhs :=
1293                 Make_Op_And (Loc,
1294                   Left_Opnd  => New_Rhs,
1295                   Right_Opnd => Mask1);
1296            end;
1297         end if;
1298
1299         --  Then deal with the "or"
1300
1301         if not Rhs_Val_Known or else Rhs_Val /= 0 then
1302            declare
1303               Or_Rhs : Node_Id;
1304
1305               procedure Fixup_Rhs;
1306               --  Adjust Rhs by bias if biased representation for components
1307               --  or remove extraneous high order sign bits if signed.
1308
1309               procedure Fixup_Rhs is
1310                  Etyp : constant Entity_Id := Etype (Rhs);
1311
1312               begin
1313                  --  For biased case, do the required biasing by simply
1314                  --  converting to the biased subtype (the conversion
1315                  --  will generate the required bias).
1316
1317                  if Has_Biased_Representation (Ctyp) then
1318                     Rhs := Convert_To (Ctyp, Rhs);
1319
1320                  --  For a signed integer type that is not biased, generate
1321                  --  a conversion to unsigned to strip high order sign bits.
1322
1323                  elsif Is_Signed_Integer_Type (Ctyp) then
1324                     Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1325                  end if;
1326
1327                  --  Set Etype, since it can be referenced before the node is
1328                  --  completely analyzed.
1329
1330                  Set_Etype (Rhs, Etyp);
1331
1332                  --  We now need to do an unchecked conversion of the
1333                  --  result to the target type, but it is important that
1334                  --  this conversion be a right justified conversion and
1335                  --  not a left justified conversion.
1336
1337                  Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1338               end Fixup_Rhs;
1339
1340            begin
1341               if Rhs_Val_Known
1342                 and then Compile_Time_Known_Value (Get_Shift)
1343               then
1344                  Or_Rhs :=
1345                    Make_Integer_Literal (Loc,
1346                      Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1347                  Set_Print_In_Hex (Or_Rhs);
1348
1349               else
1350                  --  We have to convert the right hand side to Etype (Obj).
1351                  --  A special case arises if what we have now is a Val
1352                  --  attribute reference whose expression type is Etype (Obj).
1353                  --  This happens for assignments of fields from the same
1354                  --  array. In this case we get the required right hand side
1355                  --  by simply removing the inner attribute reference.
1356
1357                  if Nkind (Rhs) = N_Attribute_Reference
1358                    and then Attribute_Name (Rhs) = Name_Val
1359                    and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1360                  then
1361                     Rhs := Relocate_Node (First (Expressions (Rhs)));
1362                     Fixup_Rhs;
1363
1364                  --  If the value of the right hand side is a known integer
1365                  --  value, then just replace it by an untyped constant,
1366                  --  which will be properly retyped when we analyze and
1367                  --  resolve the expression.
1368
1369                  elsif Rhs_Val_Known then
1370
1371                     --  Note that Rhs_Val has already been normalized to
1372                     --  be an unsigned value with the proper number of bits.
1373
1374                     Rhs := Make_Integer_Literal (Loc, Rhs_Val);
1375
1376                  --  Otherwise we need an unchecked conversion
1377
1378                  else
1379                     Fixup_Rhs;
1380                  end if;
1381
1382                  Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1383               end if;
1384
1385               if Nkind (New_Rhs) = N_Op_And then
1386                  Set_Paren_Count (New_Rhs, 1);
1387                  Set_Etype (New_Rhs, Etype (Left_Opnd (New_Rhs)));
1388               end if;
1389
1390               New_Rhs :=
1391                 Make_Op_Or (Loc,
1392                   Left_Opnd  => New_Rhs,
1393                   Right_Opnd => Or_Rhs);
1394            end;
1395         end if;
1396
1397         --  Now do the rewrite
1398
1399         Rewrite (N,
1400           Make_Assignment_Statement (Loc,
1401             Name       => New_Lhs,
1402             Expression =>
1403               Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1404         Set_Assignment_OK (Name (N), Ass_OK);
1405
1406      --  All other component sizes for non-modular case
1407
1408      else
1409         --  We generate
1410
1411         --    Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1412
1413         --  where Subscr is the computed linear subscript
1414
1415         declare
1416            Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1417            Set_nn  : Entity_Id;
1418            Subscr  : Node_Id;
1419            Atyp    : Entity_Id;
1420            Rev_SSO : Node_Id;
1421
1422         begin
1423            if No (Bits_nn) then
1424
1425               --  Error, most likely High_Integrity_Mode restriction
1426
1427               return;
1428            end if;
1429
1430            --  Acquire proper Set entity. We use the aligned or unaligned
1431            --  case as appropriate.
1432
1433            if Known_Aligned_Enough (Obj, Csiz) then
1434               Set_nn := RTE (Set_Id (Csiz));
1435            else
1436               Set_nn := RTE (SetU_Id (Csiz));
1437            end if;
1438
1439            --  Now generate the set reference
1440
1441            Obj := Relocate_Node (Prefix (Lhs));
1442            Convert_To_Actual_Subtype (Obj);
1443            Atyp := Etype (Obj);
1444            Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1445
1446            --  Set indication of whether the packed array has reverse SSO
1447
1448            Rev_SSO :=
1449              New_Occurrence_Of
1450                (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1451
1452            --  Below we must make the assumption that Obj is
1453            --  at least byte aligned, since otherwise its address
1454            --  cannot be taken. The assumption holds since the
1455            --  only arrays that can be misaligned are small packed
1456            --  arrays which are implemented as a modular type, and
1457            --  that is not the case here.
1458
1459            Rewrite (N,
1460              Make_Procedure_Call_Statement (Loc,
1461                  Name => New_Occurrence_Of (Set_nn, Loc),
1462                  Parameter_Associations => New_List (
1463                    Make_Attribute_Reference (Loc,
1464                      Prefix         => Obj,
1465                      Attribute_Name => Name_Address),
1466                    Subscr,
1467                    Unchecked_Convert_To (Bits_nn, Convert_To (Ctyp, Rhs)),
1468                    Rev_SSO)));
1469
1470         end;
1471      end if;
1472
1473      Analyze (N, Suppress => All_Checks);
1474   end Expand_Bit_Packed_Element_Set;
1475
1476   -------------------------------------
1477   -- Expand_Packed_Address_Reference --
1478   -------------------------------------
1479
1480   procedure Expand_Packed_Address_Reference (N : Node_Id) is
1481      Loc    : constant Source_Ptr := Sloc (N);
1482      Base   : Node_Id;
1483      Offset : Node_Id;
1484
1485   begin
1486      --  We build an expression that has the form
1487
1488      --    outer_object'Address
1489      --      + (linear-subscript * component_size  for each array reference
1490      --      +  field'Bit_Position                 for each record field
1491      --      +  ...
1492      --      +  ...) / Storage_Unit;
1493
1494      Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1495
1496      Rewrite (N,
1497        Unchecked_Convert_To (RTE (RE_Address),
1498          Make_Op_Add (Loc,
1499            Left_Opnd =>
1500              Unchecked_Convert_To (RTE (RE_Integer_Address),
1501                Make_Attribute_Reference (Loc,
1502                  Prefix         => Base,
1503                  Attribute_Name => Name_Address)),
1504
1505            Right_Opnd =>
1506              Unchecked_Convert_To (RTE (RE_Integer_Address),
1507                Make_Op_Divide (Loc,
1508                  Left_Opnd => Offset,
1509                  Right_Opnd =>
1510                    Make_Integer_Literal (Loc, System_Storage_Unit))))));
1511
1512      Analyze_And_Resolve (N, RTE (RE_Address));
1513   end Expand_Packed_Address_Reference;
1514
1515   ---------------------------------
1516   -- Expand_Packed_Bit_Reference --
1517   ---------------------------------
1518
1519   procedure Expand_Packed_Bit_Reference (N : Node_Id) is
1520      Loc    : constant Source_Ptr := Sloc (N);
1521      Base   : Node_Id;
1522      Offset : Node_Id;
1523
1524   begin
1525      --  We build an expression that has the form
1526
1527      --    (linear-subscript * component_size      for each array reference
1528      --      +  field'Bit_Position                 for each record field
1529      --      +  ...
1530      --      +  ...) mod Storage_Unit;
1531
1532      Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1533
1534      Rewrite (N,
1535        Unchecked_Convert_To (Standard_Natural,
1536          Make_Op_Mod (Loc,
1537            Left_Opnd => Offset,
1538            Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
1539
1540      Analyze_And_Resolve (N, Standard_Natural);
1541   end Expand_Packed_Bit_Reference;
1542
1543   ------------------------------------
1544   -- Expand_Packed_Boolean_Operator --
1545   ------------------------------------
1546
1547   --  This routine expands "a op b" for the packed cases
1548
1549   procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1550      Loc : constant Source_Ptr := Sloc (N);
1551      Typ : constant Entity_Id  := Etype (N);
1552      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
1553      R   :          Node_Id    := Relocate_Node (Right_Opnd (N));
1554
1555      Ltyp : Entity_Id;
1556      Rtyp : Entity_Id;
1557      PAT  : Entity_Id;
1558
1559   begin
1560      Convert_To_Actual_Subtype (L);
1561      Convert_To_Actual_Subtype (R);
1562
1563      Ensure_Defined (Etype (L), N);
1564      Ensure_Defined (Etype (R), N);
1565
1566      Apply_Length_Check (R, Etype (L));
1567
1568      Ltyp := Etype (L);
1569      Rtyp := Etype (R);
1570
1571      --  Deal with silly case of XOR where the subcomponent has a range
1572      --  True .. True where an exception must be raised.
1573
1574      if Nkind (N) = N_Op_Xor then
1575         R := Duplicate_Subexpr (R);
1576         Silly_Boolean_Array_Xor_Test (N, R, Rtyp);
1577      end if;
1578
1579      --  Now that silliness is taken care of, get packed array type
1580
1581      Convert_To_PAT_Type (L);
1582      Convert_To_PAT_Type (R);
1583
1584      PAT := Etype (L);
1585
1586      --  For the modular case, we expand a op b into
1587
1588      --    rtyp!(pat!(a) op pat!(b))
1589
1590      --  where rtyp is the Etype of the left operand. Note that we do not
1591      --  convert to the base type, since this would be unconstrained, and
1592      --  hence not have a corresponding packed array type set.
1593
1594      --  Note that both operands must be modular for this code to be used
1595
1596      if Is_Modular_Integer_Type (PAT)
1597           and then
1598         Is_Modular_Integer_Type (Etype (R))
1599      then
1600         declare
1601            P : Node_Id;
1602
1603         begin
1604            if Nkind (N) = N_Op_And then
1605               P := Make_Op_And (Loc, L, R);
1606
1607            elsif Nkind (N) = N_Op_Or then
1608               P := Make_Op_Or  (Loc, L, R);
1609
1610            else -- Nkind (N) = N_Op_Xor
1611               P := Make_Op_Xor (Loc, L, R);
1612            end if;
1613
1614            Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1615         end;
1616
1617      --  For the array case, we insert the actions
1618
1619      --    Result : Ltype;
1620
1621      --    System.Bit_Ops.Bit_And/Or/Xor
1622      --     (Left'Address,
1623      --      Ltype'Length * Ltype'Component_Size;
1624      --      Right'Address,
1625      --      Rtype'Length * Rtype'Component_Size
1626      --      Result'Address);
1627
1628      --  where Left and Right are the Packed_Bytes{1,2,4} operands and
1629      --  the second argument and fourth arguments are the lengths of the
1630      --  operands in bits. Then we replace the expression by a reference
1631      --  to Result.
1632
1633      --  Note that if we are mixing a modular and array operand, everything
1634      --  works fine, since we ensure that the modular representation has the
1635      --  same physical layout as the array representation (that's what the
1636      --  left justified modular stuff in the big-endian case is about).
1637
1638      else
1639         declare
1640            Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1641            E_Id       : RE_Id;
1642
1643         begin
1644            if Nkind (N) = N_Op_And then
1645               E_Id := RE_Bit_And;
1646
1647            elsif Nkind (N) = N_Op_Or then
1648               E_Id := RE_Bit_Or;
1649
1650            else -- Nkind (N) = N_Op_Xor
1651               E_Id := RE_Bit_Xor;
1652            end if;
1653
1654            Insert_Actions (N, New_List (
1655
1656              Make_Object_Declaration (Loc,
1657                Defining_Identifier => Result_Ent,
1658                Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1659
1660              Make_Procedure_Call_Statement (Loc,
1661                Name => New_Occurrence_Of (RTE (E_Id), Loc),
1662                  Parameter_Associations => New_List (
1663
1664                    Make_Byte_Aligned_Attribute_Reference (Loc,
1665                      Prefix         => L,
1666                      Attribute_Name => Name_Address),
1667
1668                    Make_Op_Multiply (Loc,
1669                      Left_Opnd =>
1670                        Make_Attribute_Reference (Loc,
1671                          Prefix         =>
1672                            New_Occurrence_Of
1673                              (Etype (First_Index (Ltyp)), Loc),
1674                          Attribute_Name => Name_Range_Length),
1675
1676                      Right_Opnd =>
1677                        Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1678
1679                    Make_Byte_Aligned_Attribute_Reference (Loc,
1680                      Prefix         => R,
1681                      Attribute_Name => Name_Address),
1682
1683                    Make_Op_Multiply (Loc,
1684                      Left_Opnd =>
1685                        Make_Attribute_Reference (Loc,
1686                          Prefix         =>
1687                            New_Occurrence_Of
1688                              (Etype (First_Index (Rtyp)), Loc),
1689                          Attribute_Name => Name_Range_Length),
1690
1691                      Right_Opnd =>
1692                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1693
1694                    Make_Byte_Aligned_Attribute_Reference (Loc,
1695                      Prefix => New_Occurrence_Of (Result_Ent, Loc),
1696                      Attribute_Name => Name_Address)))));
1697
1698            Rewrite (N,
1699              New_Occurrence_Of (Result_Ent, Loc));
1700         end;
1701      end if;
1702
1703      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1704   end Expand_Packed_Boolean_Operator;
1705
1706   -------------------------------------
1707   -- Expand_Packed_Element_Reference --
1708   -------------------------------------
1709
1710   procedure Expand_Packed_Element_Reference (N : Node_Id) is
1711      Loc   : constant Source_Ptr := Sloc (N);
1712      Obj   : Node_Id;
1713      Atyp  : Entity_Id;
1714      PAT   : Entity_Id;
1715      Ctyp  : Entity_Id;
1716      Csiz  : Int;
1717      Shift : Node_Id;
1718      Cmask : Uint;
1719      Lit   : Node_Id;
1720      Arg   : Node_Id;
1721
1722   begin
1723      --  If the node is an actual in a call, the prefix has not been fully
1724      --  expanded, to account for the additional expansion for in-out actuals
1725      --  (see expand_actuals for details). If the prefix itself is a packed
1726      --  reference as well, we have to recurse to complete the transformation
1727      --  of the prefix.
1728
1729      if Nkind (Prefix (N)) = N_Indexed_Component
1730        and then not Analyzed (Prefix (N))
1731        and then Is_Bit_Packed_Array (Etype (Prefix (Prefix (N))))
1732      then
1733         Expand_Packed_Element_Reference (Prefix (N));
1734      end if;
1735
1736      --  The prefix may be rewritten below as a conversion. If it is a source
1737      --  entity generate reference to it now, to prevent spurious warnings
1738      --  about unused entities.
1739
1740      if Is_Entity_Name (Prefix (N))
1741        and then Comes_From_Source (Prefix (N))
1742      then
1743         Generate_Reference (Entity (Prefix (N)), Prefix (N), 'r');
1744      end if;
1745
1746      --  If not bit packed, we have the enumeration case, which is easily
1747      --  dealt with (just adjust the subscripts of the indexed component)
1748
1749      --  Note: this leaves the result as an indexed component, which is
1750      --  still a variable, so can be used in the assignment case, as is
1751      --  required in the enumeration case.
1752
1753      if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
1754         Setup_Enumeration_Packed_Array_Reference (N);
1755         return;
1756      end if;
1757
1758      --  Remaining processing is for the bit-packed case
1759
1760      Obj := Relocate_Node (Prefix (N));
1761      Convert_To_Actual_Subtype (Obj);
1762      Atyp := Etype (Obj);
1763      PAT  := Packed_Array_Impl_Type (Atyp);
1764      Ctyp := Component_Type (Atyp);
1765      Csiz := UI_To_Int (Component_Size (Atyp));
1766
1767      --  Case of component size 1,2,4 or any component size for the modular
1768      --  case. These are the cases for which we can inline the code.
1769
1770      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1771        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1772      then
1773         Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
1774         Lit := Make_Integer_Literal (Loc, Cmask);
1775         Set_Print_In_Hex (Lit);
1776
1777         --  We generate a shift right to position the field, followed by a
1778         --  masking operation to extract the bit field, and we finally do an
1779         --  unchecked conversion to convert the result to the required target.
1780
1781         --  Note that the unchecked conversion automatically deals with the
1782         --  bias if we are dealing with a biased representation. What will
1783         --  happen is that we temporarily generate the biased representation,
1784         --  but almost immediately that will be converted to the original
1785         --  unbiased component type, and the bias will disappear.
1786
1787         Arg :=
1788           Make_Op_And (Loc,
1789             Left_Opnd  => Make_Shift_Right (Obj, Shift),
1790             Right_Opnd => Lit);
1791         Set_Etype (Arg, Ctyp);
1792
1793         --  Component extraction is performed on a native endianness scalar
1794         --  value: if Atyp has reverse storage order, then it has been byte
1795         --  swapped, and if the component being extracted is itself of a
1796         --  composite type with reverse storage order, then we need to swap
1797         --  it back to its expected endianness after extraction.
1798
1799         if Reverse_Storage_Order (Atyp)
1800           and then (Is_Record_Type (Ctyp) or else Is_Array_Type (Ctyp))
1801           and then Reverse_Storage_Order (Ctyp)
1802         then
1803            Arg := Revert_Storage_Order (Arg);
1804         end if;
1805
1806         --  We needed to analyze this before we do the unchecked convert
1807         --  below, but we need it temporarily attached to the tree for
1808         --  this analysis (hence the temporary Set_Parent call).
1809
1810         Set_Parent (Arg, Parent (N));
1811         Analyze_And_Resolve (Arg);
1812
1813         Rewrite (N, RJ_Unchecked_Convert_To (Ctyp, Arg));
1814
1815      --  All other component sizes for non-modular case
1816
1817      else
1818         --  We generate
1819
1820         --    Component_Type!(Get_nn (Arr'address, Subscr))
1821
1822         --  where Subscr is the computed linear subscript
1823
1824         declare
1825            Get_nn  : Entity_Id;
1826            Subscr  : Node_Id;
1827            Rev_SSO : constant Node_Id :=
1828              New_Occurrence_Of
1829                (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1830
1831         begin
1832            --  Acquire proper Get entity. We use the aligned or unaligned
1833            --  case as appropriate.
1834
1835            if Known_Aligned_Enough (Obj, Csiz) then
1836               Get_nn := RTE (Get_Id (Csiz));
1837            else
1838               Get_nn := RTE (GetU_Id (Csiz));
1839            end if;
1840
1841            --  Now generate the get reference
1842
1843            Compute_Linear_Subscript (Atyp, N, Subscr);
1844
1845            --  Below we make the assumption that Obj is at least byte
1846            --  aligned, since otherwise its address cannot be taken.
1847            --  The assumption holds since the only arrays that can be
1848            --  misaligned are small packed arrays which are implemented
1849            --  as a modular type, and that is not the case here.
1850
1851            Rewrite (N,
1852              Unchecked_Convert_To (Ctyp,
1853                Make_Function_Call (Loc,
1854                  Name => New_Occurrence_Of (Get_nn, Loc),
1855                  Parameter_Associations => New_List (
1856                    Make_Attribute_Reference (Loc,
1857                      Prefix         => Obj,
1858                      Attribute_Name => Name_Address),
1859                    Subscr,
1860                    Rev_SSO))));
1861         end;
1862      end if;
1863
1864      Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
1865   end Expand_Packed_Element_Reference;
1866
1867   ----------------------
1868   -- Expand_Packed_Eq --
1869   ----------------------
1870
1871   --  Handles expansion of "=" on packed array types
1872
1873   procedure Expand_Packed_Eq (N : Node_Id) is
1874      Loc : constant Source_Ptr := Sloc (N);
1875      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
1876      R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1877
1878      LLexpr : Node_Id;
1879      RLexpr : Node_Id;
1880
1881      Ltyp : Entity_Id;
1882      Rtyp : Entity_Id;
1883      PAT  : Entity_Id;
1884
1885   begin
1886      Convert_To_Actual_Subtype (L);
1887      Convert_To_Actual_Subtype (R);
1888      Ltyp := Underlying_Type (Etype (L));
1889      Rtyp := Underlying_Type (Etype (R));
1890
1891      Convert_To_PAT_Type (L);
1892      Convert_To_PAT_Type (R);
1893      PAT := Etype (L);
1894
1895      LLexpr :=
1896        Make_Op_Multiply (Loc,
1897          Left_Opnd  => Compute_Number_Components (N, Ltyp),
1898          Right_Opnd => Make_Integer_Literal (Loc, Component_Size (Ltyp)));
1899
1900      RLexpr :=
1901        Make_Op_Multiply (Loc,
1902          Left_Opnd  => Compute_Number_Components (N, Rtyp),
1903          Right_Opnd => Make_Integer_Literal (Loc, Component_Size (Rtyp)));
1904
1905      --  For the modular case, we transform the comparison to:
1906
1907      --    Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
1908
1909      --  where PAT is the packed array type. This works fine, since in the
1910      --  modular case we guarantee that the unused bits are always zeroes.
1911      --  We do have to compare the lengths because we could be comparing
1912      --  two different subtypes of the same base type.
1913
1914      if Is_Modular_Integer_Type (PAT) then
1915         Rewrite (N,
1916           Make_And_Then (Loc,
1917             Left_Opnd =>
1918               Make_Op_Eq (Loc,
1919                 Left_Opnd  => LLexpr,
1920                 Right_Opnd => RLexpr),
1921
1922             Right_Opnd =>
1923               Make_Op_Eq (Loc,
1924                 Left_Opnd => L,
1925                 Right_Opnd => R)));
1926
1927      --  For the non-modular case, we call a runtime routine
1928
1929      --    System.Bit_Ops.Bit_Eq
1930      --      (L'Address, L_Length, R'Address, R_Length)
1931
1932      --  where PAT is the packed array type, and the lengths are the lengths
1933      --  in bits of the original packed arrays. This routine takes care of
1934      --  not comparing the unused bits in the last byte.
1935
1936      else
1937         Rewrite (N,
1938           Make_Function_Call (Loc,
1939             Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
1940             Parameter_Associations => New_List (
1941               Make_Byte_Aligned_Attribute_Reference (Loc,
1942                 Prefix         => L,
1943                 Attribute_Name => Name_Address),
1944
1945               LLexpr,
1946
1947               Make_Byte_Aligned_Attribute_Reference (Loc,
1948                 Prefix         => R,
1949                 Attribute_Name => Name_Address),
1950
1951               RLexpr)));
1952      end if;
1953
1954      Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
1955   end Expand_Packed_Eq;
1956
1957   -----------------------
1958   -- Expand_Packed_Not --
1959   -----------------------
1960
1961   --  Handles expansion of "not" on packed array types
1962
1963   procedure Expand_Packed_Not (N : Node_Id) is
1964      Loc  : constant Source_Ptr := Sloc (N);
1965      Typ  : constant Entity_Id  := Etype (N);
1966      Opnd : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1967
1968      Rtyp : Entity_Id;
1969      PAT  : Entity_Id;
1970      Lit  : Node_Id;
1971
1972   begin
1973      Convert_To_Actual_Subtype (Opnd);
1974      Rtyp := Etype (Opnd);
1975
1976      --  Deal with silly False..False and True..True subtype case
1977
1978      Silly_Boolean_Array_Not_Test (N, Rtyp);
1979
1980      --  Now that the silliness is taken care of, get packed array type
1981
1982      Convert_To_PAT_Type (Opnd);
1983      PAT := Etype (Opnd);
1984
1985      --  For the case where the packed array type is a modular type, "not A"
1986      --  expands simply into:
1987
1988      --     Rtyp!(PAT!(A) xor Mask)
1989
1990      --  where PAT is the packed array type, Mask is a mask of all 1 bits of
1991      --  length equal to the size of this packed type, and Rtyp is the actual
1992      --  actual subtype of the operand.
1993
1994      Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
1995      Set_Print_In_Hex (Lit);
1996
1997      if not Is_Array_Type (PAT) then
1998         Rewrite (N,
1999           Unchecked_Convert_To (Rtyp,
2000             Make_Op_Xor (Loc,
2001               Left_Opnd  => Opnd,
2002               Right_Opnd => Lit)));
2003
2004      --  For the array case, we insert the actions
2005
2006      --    Result : Typ;
2007
2008      --    System.Bit_Ops.Bit_Not
2009      --     (Opnd'Address,
2010      --      Typ'Length * Typ'Component_Size,
2011      --      Result'Address);
2012
2013      --  where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
2014      --  is the length of the operand in bits. We then replace the expression
2015      --  with a reference to Result.
2016
2017      else
2018         declare
2019            Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
2020
2021         begin
2022            Insert_Actions (N, New_List (
2023              Make_Object_Declaration (Loc,
2024                Defining_Identifier => Result_Ent,
2025                Object_Definition   => New_Occurrence_Of (Rtyp, Loc)),
2026
2027              Make_Procedure_Call_Statement (Loc,
2028                Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
2029                  Parameter_Associations => New_List (
2030                    Make_Byte_Aligned_Attribute_Reference (Loc,
2031                      Prefix         => Opnd,
2032                      Attribute_Name => Name_Address),
2033
2034                    Make_Op_Multiply (Loc,
2035                      Left_Opnd =>
2036                        Make_Attribute_Reference (Loc,
2037                          Prefix         =>
2038                            New_Occurrence_Of
2039                              (Etype (First_Index (Rtyp)), Loc),
2040                          Attribute_Name => Name_Range_Length),
2041
2042                      Right_Opnd =>
2043                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
2044
2045                    Make_Byte_Aligned_Attribute_Reference (Loc,
2046                      Prefix         => New_Occurrence_Of (Result_Ent, Loc),
2047                      Attribute_Name => Name_Address)))));
2048
2049            Rewrite (N, New_Occurrence_Of (Result_Ent, Loc));
2050         end;
2051      end if;
2052
2053      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2054   end Expand_Packed_Not;
2055
2056   -----------------------------
2057   -- Get_Base_And_Bit_Offset --
2058   -----------------------------
2059
2060   procedure Get_Base_And_Bit_Offset
2061     (N      : Node_Id;
2062      Base   : out Node_Id;
2063      Offset : out Node_Id)
2064   is
2065      Loc    : Source_Ptr;
2066      Term   : Node_Id;
2067      Atyp   : Entity_Id;
2068      Subscr : Node_Id;
2069
2070   begin
2071      Base   := N;
2072      Offset := Empty;
2073
2074      --  We build up an expression serially that has the form
2075
2076      --    linear-subscript * component_size       for each array reference
2077      --      +  field'Bit_Position                 for each record field
2078      --      +  ...
2079
2080      loop
2081         Loc := Sloc (Base);
2082
2083         if Nkind (Base) = N_Indexed_Component then
2084            Convert_To_Actual_Subtype (Prefix (Base));
2085            Atyp := Etype (Prefix (Base));
2086            Compute_Linear_Subscript (Atyp, Base, Subscr);
2087
2088            Term :=
2089              Make_Op_Multiply (Loc,
2090                Left_Opnd => Subscr,
2091                Right_Opnd =>
2092                 Make_Attribute_Reference (Loc,
2093                   Prefix         => New_Occurrence_Of (Atyp, Loc),
2094                   Attribute_Name => Name_Component_Size));
2095
2096         elsif Nkind (Base) = N_Selected_Component then
2097            Term :=
2098              Make_Attribute_Reference (Loc,
2099                Prefix         => Selector_Name (Base),
2100                Attribute_Name => Name_Bit_Position);
2101
2102         else
2103            return;
2104         end if;
2105
2106         if No (Offset) then
2107            Offset := Term;
2108
2109         else
2110            Offset :=
2111              Make_Op_Add (Loc,
2112                Left_Opnd  => Offset,
2113                Right_Opnd => Term);
2114         end if;
2115
2116         Base := Prefix (Base);
2117      end loop;
2118   end Get_Base_And_Bit_Offset;
2119
2120   -------------------------------------
2121   -- Involves_Packed_Array_Reference --
2122   -------------------------------------
2123
2124   function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2125   begin
2126      if Nkind (N) = N_Indexed_Component
2127        and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2128      then
2129         return True;
2130
2131      elsif Nkind (N) = N_Selected_Component then
2132         return Involves_Packed_Array_Reference (Prefix (N));
2133
2134      else
2135         return False;
2136      end if;
2137   end Involves_Packed_Array_Reference;
2138
2139   --------------------------
2140   -- Known_Aligned_Enough --
2141   --------------------------
2142
2143   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2144      Typ : constant Entity_Id := Etype (Obj);
2145
2146      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2147      --  If the component is in a record that contains previous packed
2148      --  components, consider it unaligned because the back-end might
2149      --  choose to pack the rest of the record. Lead to less efficient code,
2150      --  but safer vis-a-vis of back-end choices.
2151
2152      --------------------------------
2153      -- In_Partially_Packed_Record --
2154      --------------------------------
2155
2156      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2157         Rec_Type  : constant Entity_Id := Scope (Comp);
2158         Prev_Comp : Entity_Id;
2159
2160      begin
2161         Prev_Comp := First_Entity (Rec_Type);
2162         while Present (Prev_Comp) loop
2163            if Is_Packed (Etype (Prev_Comp)) then
2164               return True;
2165
2166            elsif Prev_Comp = Comp then
2167               return False;
2168            end if;
2169
2170            Next_Entity (Prev_Comp);
2171         end loop;
2172
2173         return False;
2174      end  In_Partially_Packed_Record;
2175
2176   --  Start of processing for Known_Aligned_Enough
2177
2178   begin
2179      --  Odd bit sizes don't need alignment anyway
2180
2181      if Csiz mod 2 = 1 then
2182         return True;
2183
2184      --  If we have a specified alignment, see if it is sufficient, if not
2185      --  then we can't possibly be aligned enough in any case.
2186
2187      elsif Known_Alignment (Etype (Obj)) then
2188         --  Alignment required is 4 if size is a multiple of 4, and
2189         --  2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2190
2191         if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2192            return False;
2193         end if;
2194      end if;
2195
2196      --  OK, alignment should be sufficient, if object is aligned
2197
2198      --  If object is strictly aligned, then it is definitely aligned
2199
2200      if Strict_Alignment (Typ) then
2201         return True;
2202
2203      --  Case of subscripted array reference
2204
2205      elsif Nkind (Obj) = N_Indexed_Component then
2206
2207         --  If we have a pointer to an array, then this is definitely
2208         --  aligned, because pointers always point to aligned versions.
2209
2210         if Is_Access_Type (Etype (Prefix (Obj))) then
2211            return True;
2212
2213         --  Otherwise, go look at the prefix
2214
2215         else
2216            return Known_Aligned_Enough (Prefix (Obj), Csiz);
2217         end if;
2218
2219      --  Case of record field
2220
2221      elsif Nkind (Obj) = N_Selected_Component then
2222
2223         --  What is significant here is whether the record type is packed
2224
2225         if Is_Record_Type (Etype (Prefix (Obj)))
2226           and then Is_Packed (Etype (Prefix (Obj)))
2227         then
2228            return False;
2229
2230         --  Or the component has a component clause which might cause
2231         --  the component to become unaligned (we can't tell if the
2232         --  backend is doing alignment computations).
2233
2234         elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2235            return False;
2236
2237         elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2238            return False;
2239
2240         --  In all other cases, go look at prefix
2241
2242         else
2243            return Known_Aligned_Enough (Prefix (Obj), Csiz);
2244         end if;
2245
2246      elsif Nkind (Obj) = N_Type_Conversion then
2247         return Known_Aligned_Enough (Expression (Obj), Csiz);
2248
2249      --  For a formal parameter, it is safer to assume that it is not
2250      --  aligned, because the formal may be unconstrained while the actual
2251      --  is constrained. In this situation, a small constrained packed
2252      --  array, represented in modular form, may be unaligned.
2253
2254      elsif Is_Entity_Name (Obj) then
2255         return not Is_Formal (Entity (Obj));
2256      else
2257
2258      --  If none of the above, must be aligned
2259         return True;
2260      end if;
2261   end Known_Aligned_Enough;
2262
2263   ---------------------
2264   -- Make_Shift_Left --
2265   ---------------------
2266
2267   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2268      Nod : Node_Id;
2269
2270   begin
2271      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2272         return N;
2273      else
2274         Nod :=
2275           Make_Op_Shift_Left (Sloc (N),
2276             Left_Opnd  => N,
2277             Right_Opnd => S);
2278         Set_Shift_Count_OK (Nod, True);
2279         return Nod;
2280      end if;
2281   end Make_Shift_Left;
2282
2283   ----------------------
2284   -- Make_Shift_Right --
2285   ----------------------
2286
2287   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2288      Nod : Node_Id;
2289
2290   begin
2291      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2292         return N;
2293      else
2294         Nod :=
2295           Make_Op_Shift_Right (Sloc (N),
2296             Left_Opnd  => N,
2297             Right_Opnd => S);
2298         Set_Shift_Count_OK (Nod, True);
2299         return Nod;
2300      end if;
2301   end Make_Shift_Right;
2302
2303   -----------------------------
2304   -- RJ_Unchecked_Convert_To --
2305   -----------------------------
2306
2307   function RJ_Unchecked_Convert_To
2308     (Typ  : Entity_Id;
2309      Expr : Node_Id) return Node_Id
2310   is
2311      Source_Typ : constant Entity_Id := Etype (Expr);
2312      Target_Typ : constant Entity_Id := Typ;
2313
2314      Src : Node_Id := Expr;
2315
2316      Source_Siz : Nat;
2317      Target_Siz : Nat;
2318
2319   begin
2320      Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2321      Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2322
2323      --  For a little-endian target type stored byte-swapped on a
2324      --  big-endian machine, do not mask to Target_Siz bits.
2325
2326      if Bytes_Big_Endian
2327           and then (Is_Record_Type (Target_Typ)
2328                       or else
2329                     Is_Array_Type (Target_Typ))
2330           and then Reverse_Storage_Order (Target_Typ)
2331      then
2332         Source_Siz := Target_Siz;
2333      end if;
2334
2335      --  First step, if the source type is not a discrete type, then we first
2336      --  convert to a modular type of the source length, since otherwise, on
2337      --  a big-endian machine, we get left-justification. We do it for little-
2338      --  endian machines as well, because there might be junk bits that are
2339      --  not cleared if the type is not numeric. This can be done only if the
2340      --  source siz is different from 0 (i.e. known), otherwise we must trust
2341      --  the type declarations (case of non-discrete components).
2342
2343      if Source_Siz /= 0
2344        and then Source_Siz /= Target_Siz
2345        and then not Is_Discrete_Type (Source_Typ)
2346      then
2347         Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2348      end if;
2349
2350      --  In the big endian case, if the lengths of the two types differ, then
2351      --  we must worry about possible left justification in the conversion,
2352      --  and avoiding that is what this is all about.
2353
2354      if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2355
2356         --  Next step. If the target is not a discrete type, then we first
2357         --  convert to a modular type of the target length, since otherwise,
2358         --  on a big-endian machine, we get left-justification.
2359
2360         if not Is_Discrete_Type (Target_Typ) then
2361            Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2362         end if;
2363      end if;
2364
2365      --  And now we can do the final conversion to the target type
2366
2367      return Unchecked_Convert_To (Target_Typ, Src);
2368   end RJ_Unchecked_Convert_To;
2369
2370   ----------------------------------------------
2371   -- Setup_Enumeration_Packed_Array_Reference --
2372   ----------------------------------------------
2373
2374   --  All we have to do here is to find the subscripts that correspond to the
2375   --  index positions that have non-standard enumeration types and insert a
2376   --  Pos attribute to get the proper subscript value.
2377
2378   --  Finally the prefix must be uncheck-converted to the corresponding packed
2379   --  array type.
2380
2381   --  Note that the component type is unchanged, so we do not need to fiddle
2382   --  with the types (Gigi always automatically takes the packed array type if
2383   --  it is set, as it will be in this case).
2384
2385   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2386      Pfx   : constant Node_Id   := Prefix (N);
2387      Typ   : constant Entity_Id := Etype (N);
2388      Exprs : constant List_Id   := Expressions (N);
2389      Expr  : Node_Id;
2390
2391   begin
2392      --  If the array is unconstrained, then we replace the array reference
2393      --  with its actual subtype. This actual subtype will have a packed array
2394      --  type with appropriate bounds.
2395
2396      if not Is_Constrained (Packed_Array_Impl_Type (Etype (Pfx))) then
2397         Convert_To_Actual_Subtype (Pfx);
2398      end if;
2399
2400      Expr := First (Exprs);
2401      while Present (Expr) loop
2402         declare
2403            Loc      : constant Source_Ptr := Sloc (Expr);
2404            Expr_Typ : constant Entity_Id := Etype (Expr);
2405
2406         begin
2407            if Is_Enumeration_Type (Expr_Typ)
2408              and then Has_Non_Standard_Rep (Expr_Typ)
2409            then
2410               Rewrite (Expr,
2411                 Make_Attribute_Reference (Loc,
2412                   Prefix         => New_Occurrence_Of (Expr_Typ, Loc),
2413                   Attribute_Name => Name_Pos,
2414                   Expressions    => New_List (Relocate_Node (Expr))));
2415               Analyze_And_Resolve (Expr, Standard_Natural);
2416            end if;
2417         end;
2418
2419         Next (Expr);
2420      end loop;
2421
2422      Rewrite (N,
2423        Make_Indexed_Component (Sloc (N),
2424          Prefix      =>
2425            Unchecked_Convert_To (Packed_Array_Impl_Type (Etype (Pfx)), Pfx),
2426          Expressions => Exprs));
2427
2428      Analyze_And_Resolve (N, Typ);
2429   end Setup_Enumeration_Packed_Array_Reference;
2430
2431   -----------------------------------------
2432   -- Setup_Inline_Packed_Array_Reference --
2433   -----------------------------------------
2434
2435   procedure Setup_Inline_Packed_Array_Reference
2436     (N      : Node_Id;
2437      Atyp   : Entity_Id;
2438      Obj    : in out Node_Id;
2439      Cmask  : out Uint;
2440      Shift  : out Node_Id)
2441   is
2442      Loc  : constant Source_Ptr := Sloc (N);
2443      PAT  : Entity_Id;
2444      Otyp : Entity_Id;
2445      Csiz : Uint;
2446      Osiz : Uint;
2447
2448   begin
2449      Csiz := Component_Size (Atyp);
2450
2451      Convert_To_PAT_Type (Obj);
2452      PAT := Etype (Obj);
2453
2454      Cmask := 2 ** Csiz - 1;
2455
2456      if Is_Array_Type (PAT) then
2457         Otyp := Component_Type (PAT);
2458         Osiz := Component_Size (PAT);
2459
2460      else
2461         Otyp := PAT;
2462
2463         --  In the case where the PAT is a modular type, we want the actual
2464         --  size in bits of the modular value we use. This is neither the
2465         --  Object_Size nor the Value_Size, either of which may have been
2466         --  reset to strange values, but rather the minimum size. Note that
2467         --  since this is a modular type with full range, the issue of
2468         --  biased representation does not arise.
2469
2470         Osiz := UI_From_Int (Minimum_Size (Otyp));
2471      end if;
2472
2473      Compute_Linear_Subscript (Atyp, N, Shift);
2474
2475      --  If the component size is not 1, then the subscript must be multiplied
2476      --  by the component size to get the shift count.
2477
2478      if Csiz /= 1 then
2479         Shift :=
2480           Make_Op_Multiply (Loc,
2481             Left_Opnd  => Make_Integer_Literal (Loc, Csiz),
2482             Right_Opnd => Shift);
2483      end if;
2484
2485      --  If we have the array case, then this shift count must be broken down
2486      --  into a byte subscript, and a shift within the byte.
2487
2488      if Is_Array_Type (PAT) then
2489
2490         declare
2491            New_Shift : Node_Id;
2492
2493         begin
2494            --  We must analyze shift, since we will duplicate it
2495
2496            Set_Parent (Shift, N);
2497            Analyze_And_Resolve
2498              (Shift, Standard_Integer, Suppress => All_Checks);
2499
2500            --  The shift count within the word is
2501            --    shift mod Osiz
2502
2503            New_Shift :=
2504              Make_Op_Mod (Loc,
2505                Left_Opnd  => Duplicate_Subexpr (Shift),
2506                Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2507
2508            --  The subscript to be used on the PAT array is
2509            --    shift / Osiz
2510
2511            Obj :=
2512              Make_Indexed_Component (Loc,
2513                Prefix => Obj,
2514                Expressions => New_List (
2515                  Make_Op_Divide (Loc,
2516                    Left_Opnd  => Duplicate_Subexpr (Shift),
2517                    Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2518
2519            Shift := New_Shift;
2520         end;
2521
2522      --  For the modular integer case, the object to be manipulated is the
2523      --  entire array, so Obj is unchanged. Note that we will reset its type
2524      --  to PAT before returning to the caller.
2525
2526      else
2527         null;
2528      end if;
2529
2530      --  The one remaining step is to modify the shift count for the
2531      --  big-endian case. Consider the following example in a byte:
2532
2533      --     xxxxxxxx  bits of byte
2534      --     vvvvvvvv  bits of value
2535      --     33221100  little-endian numbering
2536      --     00112233  big-endian numbering
2537
2538      --  Here we have the case of 2-bit fields
2539
2540      --  For the little-endian case, we already have the proper shift count
2541      --  set, e.g. for element 2, the shift count is 2*2 = 4.
2542
2543      --  For the big endian case, we have to adjust the shift count, computing
2544      --  it as (N - F) - Shift, where N is the number of bits in an element of
2545      --  the array used to implement the packed array, F is the number of bits
2546      --  in a source array element, and Shift is the count so far computed.
2547
2548      --  We also have to adjust if the storage order is reversed
2549
2550      if Bytes_Big_Endian xor Reverse_Storage_Order (Base_Type (Atyp)) then
2551         Shift :=
2552           Make_Op_Subtract (Loc,
2553             Left_Opnd  => Make_Integer_Literal (Loc, Osiz - Csiz),
2554             Right_Opnd => Shift);
2555      end if;
2556
2557      Set_Parent (Shift, N);
2558      Set_Parent (Obj, N);
2559      Analyze_And_Resolve (Obj,   Otyp,             Suppress => All_Checks);
2560      Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2561
2562      --  Make sure final type of object is the appropriate packed type
2563
2564      Set_Etype (Obj, Otyp);
2565
2566   end Setup_Inline_Packed_Array_Reference;
2567
2568end Exp_Pakd;
2569