1 /* Subroutines used for code generation on Renesas RL78 processors.
2    Copyright (C) 2011-2021 Free Software Foundation, Inc.
3    Contributed by Red Hat.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3, or (at your option)
10    any later version.
11 
12    GCC is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 #define IN_TARGET_CODE 1
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "optabs.h"
36 #include "emit-rtl.h"
37 #include "recog.h"
38 #include "diagnostic-core.h"
39 #include "varasm.h"
40 #include "stor-layout.h"
41 #include "calls.h"
42 #include "output.h"
43 #include "insn-attr.h"
44 #include "explow.h"
45 #include "expr.h"
46 #include "reload.h"
47 #include "cfgrtl.h"
48 #include "langhooks.h"
49 #include "tree-pass.h"
50 #include "context.h"
51 #include "tm-constrs.h" /* for satisfies_constraint_*().  */
52 #include "builtins.h"
53 
54 /* This file should be included last.  */
55 #include "target-def.h"
56 
57 static inline bool is_interrupt_func (const_tree decl);
58 static inline bool is_brk_interrupt_func (const_tree decl);
59 static void rl78_reorg (void);
60 static const char *rl78_strip_name_encoding (const char *);
61 static const char *rl78_strip_nonasm_name_encoding (const char *);
62 static section * rl78_select_section (tree, int, unsigned HOST_WIDE_INT);
63 
64 
65 /* Debugging statements are tagged with DEBUG0 only so that they can
66    be easily enabled individually, by replacing the '0' with '1' as
67    needed.  */
68 #define DEBUG0 0
69 #define DEBUG1 1
70 
71 /* REGISTER_NAMES has the names for individual 8-bit registers, but
72    these have the names we need to use when referring to 16-bit
73    register pairs.  */
74 static const char * const word_regnames[] =
75 {
76   "ax", "AX", "bc", "BC", "de", "DE", "hl", "HL",
77   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
78   "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
79   "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
80   "sp", "ap", "psw", "es", "cs"
81 };
82 
83 /* used by rl78_addsi3_internal for formatting insns output */
84 static char fmt_buffer[1024];
85 
86 /* Structure for G13 MDUC registers.  */
87 struct mduc_reg_type
88 {
89   unsigned int       address;
90   enum machine_mode  mode;
91 };
92 
93 struct mduc_reg_type  mduc_regs[] =
94 {
95   {0xf00e8, E_QImode},
96   {0xffff0, E_HImode},
97   {0xffff2, E_HImode},
98   {0xf2224, E_HImode},
99   {0xf00e0, E_HImode},
100   {0xf00e2, E_HImode}
101 };
102 
103 struct GTY(()) machine_function
104 {
105   /* If set, the rest of the fields have been computed.  */
106   int computed;
107   /* Which register pairs need to be pushed in the prologue.  */
108   int need_to_push [FIRST_PSEUDO_REGISTER / 2];
109 
110   /* These fields describe the frame layout...  */
111   /* arg pointer */
112   /* 4 bytes for saved PC */
113   int framesize_regs;
114   /* frame pointer */
115   int framesize_locals;
116   int framesize_outgoing;
117   /* stack pointer */
118   int framesize;
119 
120   /* If set, recog is allowed to match against the "real" patterns.  */
121   int real_insns_ok;
122   /* If set, recog is allowed to match against the "virtual" patterns.  */
123   int virt_insns_ok;
124   /* Set if the current function needs to clean up any trampolines.  */
125   int trampolines_used;
126   /* True if the ES register is used and hence
127      needs to be saved inside interrupt handlers.  */
128   bool uses_es;
129 };
130 
131 /* This is our init_machine_status, as set in
132    rl78_option_override.  */
133 static struct machine_function *
rl78_init_machine_status(void)134 rl78_init_machine_status (void)
135 {
136   struct machine_function *m;
137 
138   m = ggc_cleared_alloc<machine_function> ();
139   m->virt_insns_ok = 1;
140 
141   return m;
142 }
143 
144 /* This pass converts virtual instructions using virtual registers, to
145    real instructions using real registers.  Rather than run it as
146    reorg, we reschedule it before vartrack to help with debugging.  */
147 namespace
148 {
149   const pass_data pass_data_rl78_devirt =
150     {
151       RTL_PASS, /* type */
152       "devirt", /* name */
153       OPTGROUP_NONE, /* optinfo_flags */
154       TV_MACH_DEP, /* tv_id */
155       0, /* properties_required */
156       0, /* properties_provided */
157       0, /* properties_destroyed */
158       0, /* todo_flags_start */
159       0, /* todo_flags_finish */
160     };
161 
162   class pass_rl78_devirt : public rtl_opt_pass
163   {
164   public:
pass_rl78_devirt(gcc::context * ctxt)165     pass_rl78_devirt (gcc::context *ctxt)
166       : rtl_opt_pass (pass_data_rl78_devirt, ctxt)
167       {
168       }
169 
170     /* opt_pass methods: */
execute(function *)171     virtual unsigned int execute (function *)
172     {
173       rl78_reorg ();
174       return 0;
175     }
176   };
177 } // anon namespace
178 
179 rtl_opt_pass *
make_pass_rl78_devirt(gcc::context * ctxt)180 make_pass_rl78_devirt (gcc::context *ctxt)
181 {
182   return new pass_rl78_devirt (ctxt);
183 }
184 
185 /* Redundant move elimination pass.  Must be run after the basic block
186    reordering pass for the best effect.  */
187 
188 static unsigned int
move_elim_pass(void)189 move_elim_pass (void)
190 {
191   rtx_insn *insn, *ninsn;
192   rtx prev = NULL_RTX;
193 
194   for (insn = get_insns (); insn; insn = ninsn)
195     {
196       rtx set;
197 
198       ninsn = next_nonnote_nondebug_insn (insn);
199 
200       if ((set = single_set (insn)) == NULL_RTX)
201 	{
202 	  prev = NULL_RTX;
203 	  continue;
204 	}
205 
206       /* If we have two SET insns in a row (without anything
207 	 between them) and the source of the second one is the
208 	 destination of the first one, and vice versa, then we
209 	 can eliminate the second SET.  */
210       if (prev
211 	  && rtx_equal_p (SET_DEST (prev), SET_SRC (set))
212 	  && rtx_equal_p (SET_DEST (set), SET_SRC (prev))
213 	  /* ... and none of the operands are volatile.  */
214 	  && ! volatile_refs_p (SET_SRC (prev))
215 	  && ! volatile_refs_p (SET_DEST (prev))
216 	  && ! volatile_refs_p (SET_SRC (set))
217 	  && ! volatile_refs_p (SET_DEST (set)))
218 	{
219 	  if (dump_file)
220 	    fprintf (dump_file, " Delete insn %d because it is redundant\n",
221 		     INSN_UID (insn));
222 
223 	  delete_insn (insn);
224 	  prev = NULL_RTX;
225 	}
226       else
227 	prev = set;
228     }
229 
230   if (dump_file)
231     print_rtl_with_bb (dump_file, get_insns (), TDF_NONE);
232 
233   return 0;
234 }
235 
236 namespace
237 {
238   const pass_data pass_data_rl78_move_elim =
239     {
240       RTL_PASS, /* type */
241       "move_elim", /* name */
242       OPTGROUP_NONE, /* optinfo_flags */
243       TV_MACH_DEP, /* tv_id */
244       0, /* properties_required */
245       0, /* properties_provided */
246       0, /* properties_destroyed */
247       0, /* todo_flags_start */
248       0, /* todo_flags_finish */
249     };
250 
251   class pass_rl78_move_elim : public rtl_opt_pass
252   {
253   public:
pass_rl78_move_elim(gcc::context * ctxt)254     pass_rl78_move_elim (gcc::context *ctxt)
255       : rtl_opt_pass (pass_data_rl78_move_elim, ctxt)
256       {
257       }
258 
259     /* opt_pass methods: */
execute(function *)260     virtual unsigned int execute (function *) { return move_elim_pass (); }
261   };
262 } // anon namespace
263 
264 rtl_opt_pass *
make_pass_rl78_move_elim(gcc::context * ctxt)265 make_pass_rl78_move_elim (gcc::context *ctxt)
266 {
267   return new pass_rl78_move_elim (ctxt);
268 }
269 
270 #undef  TARGET_ASM_FILE_START
271 #define TARGET_ASM_FILE_START rl78_asm_file_start
272 
273 static void
rl78_asm_file_start(void)274 rl78_asm_file_start (void)
275 {
276   int i;
277 
278   if (TARGET_G10)
279     {
280       /* The memory used is 0xffec8 to 0xffedf; real registers are in
281 	 0xffee0 to 0xffee7.  */
282       for (i = 8; i < 32; i++)
283 	fprintf (asm_out_file, "r%d\t=\t0x%x\n", i, 0xffec0 + i);
284     }
285   else
286     {
287       for (i = 0; i < 8; i++)
288 	{
289 	  fprintf (asm_out_file, "r%d\t=\t0x%x\n", 8 + i, 0xffef0 + i);
290 	  fprintf (asm_out_file, "r%d\t=\t0x%x\n", 16 + i, 0xffee8 + i);
291 	  fprintf (asm_out_file, "r%d\t=\t0x%x\n", 24 + i, 0xffee0 + i);
292 	}
293     }
294 
295   opt_pass *rl78_devirt_pass = make_pass_rl78_devirt (g);
296   struct register_pass_info rl78_devirt_info =
297     {
298       rl78_devirt_pass,
299       "pro_and_epilogue",
300       1,
301       PASS_POS_INSERT_BEFORE
302     };
303 
304   opt_pass *rl78_move_elim_pass = make_pass_rl78_move_elim (g);
305   struct register_pass_info rl78_move_elim_info =
306     {
307       rl78_move_elim_pass,
308       "bbro",
309       1,
310       PASS_POS_INSERT_AFTER
311     };
312 
313   register_pass (& rl78_devirt_info);
314   register_pass (& rl78_move_elim_info);
315 }
316 
317 void
rl78_output_symbol_ref(FILE * file,rtx sym)318 rl78_output_symbol_ref (FILE * file, rtx sym)
319 {
320   tree type = SYMBOL_REF_DECL (sym);
321   const char *str = XSTR (sym, 0);
322 
323   if (str[0] == '*')
324     {
325       fputs (str + 1, file);
326     }
327   else
328     {
329       str = rl78_strip_nonasm_name_encoding (str);
330       if (type && TREE_CODE (type) == FUNCTION_DECL)
331 	{
332 	  fprintf (file, "%%code(");
333 	  assemble_name (file, str);
334 	  fprintf (file, ")");
335 	}
336       else
337 	assemble_name (file, str);
338     }
339 }
340 
341 #undef  TARGET_OPTION_OVERRIDE
342 #define TARGET_OPTION_OVERRIDE		rl78_option_override
343 
344 #define MUST_SAVE_MDUC_REGISTERS			\
345   (TARGET_SAVE_MDUC_REGISTERS				\
346    && (is_interrupt_func (NULL_TREE)) && RL78_MUL_G13)
347 
348 static void
rl78_option_override(void)349 rl78_option_override (void)
350 {
351   flag_omit_frame_pointer = 1;
352   flag_no_function_cse = 1;
353   flag_split_wide_types = 0;
354 
355   init_machine_status = rl78_init_machine_status;
356 
357   if (TARGET_ALLREGS)
358     {
359       int i;
360 
361       for (i = 24; i < 32; i++)
362 	fixed_regs[i] = 0;
363     }
364 
365   if (TARGET_ES0
366       && strcmp (lang_hooks.name, "GNU C")
367       && strcmp (lang_hooks.name, "GNU C11")
368       && strcmp (lang_hooks.name, "GNU C17")
369       && strcmp (lang_hooks.name, "GNU C2X")
370       && strcmp (lang_hooks.name, "GNU C89")
371       && strcmp (lang_hooks.name, "GNU C99")
372       /* Compiling with -flto results in a language of GNU GIMPLE being used... */
373       && strcmp (lang_hooks.name, "GNU GIMPLE"))
374     /* Address spaces are currently only supported by C.  */
375     error ("%<-mes0%> can only be used with C");
376 
377   if (TARGET_SAVE_MDUC_REGISTERS && !(TARGET_G13 || RL78_MUL_G13))
378     warning (0, "mduc registers only saved for G13 target");
379 
380   switch (rl78_cpu_type)
381     {
382     case CPU_UNINIT:
383       rl78_cpu_type = CPU_G14;
384       if (rl78_mul_type == MUL_UNINIT)
385 	rl78_mul_type = MUL_NONE;
386       break;
387 
388     case CPU_G10:
389       switch (rl78_mul_type)
390 	{
391 	case MUL_UNINIT: rl78_mul_type = MUL_NONE; break;
392 	case MUL_NONE:   break;
393 	case MUL_G13:  	 error ("%<-mmul=g13%> cannot be used with "
394 				"%<-mcpu=g10%>"); break;
395 	case MUL_G14:  	 error ("%<-mmul=g14%> cannot be used with "
396 				"%<-mcpu=g10%>"); break;
397 	}
398       break;
399 
400     case CPU_G13:
401       switch (rl78_mul_type)
402 	{
403 	case MUL_UNINIT: rl78_mul_type = MUL_G13; break;
404 	case MUL_NONE:   break;
405 	case MUL_G13:  	break;
406 	  /* The S2 core does not have mul/div instructions.  */
407 	case MUL_G14: 	error ("%<-mmul=g14%> cannot be used with "
408 			       "%<-mcpu=g13%>"); break;
409 	}
410       break;
411 
412     case CPU_G14:
413       switch (rl78_mul_type)
414 	{
415 	case MUL_UNINIT: rl78_mul_type = MUL_G14; break;
416 	case MUL_NONE:   break;
417 	case MUL_G14:  	break;
418 	/* The G14 core does not have the hardware multiply peripheral used by the
419 	   G13 core, hence you cannot use G13 multipliy routines on G14 hardware.  */
420 	case MUL_G13: 	error ("%<-mmul=g13%> cannot be used with "
421 			       "%<-mcpu=g14%>"); break;
422 	}
423       break;
424     }
425 }
426 
427 /* Most registers are 8 bits.  Some are 16 bits because, for example,
428    gcc doesn't like dealing with $FP as a register pair (the second
429    half of $fp is also 2 to keep reload happy wrt register pairs, but
430    no register class includes it).  This table maps register numbers
431    to size in bytes.  */
432 static const int register_sizes[] =
433 {
434   1, 1, 1, 1, 1, 1, 1, 1,
435   1, 1, 1, 1, 1, 1, 1, 1,
436   1, 1, 1, 1, 1, 1, 2, 2,
437   1, 1, 1, 1, 1, 1, 1, 1,
438   2, 2, 1, 1, 1
439 };
440 
441 /* Predicates used in the MD patterns.  This one is true when virtual
442    insns may be matched, which typically means before (or during) the
443    devirt pass.  */
444 bool
rl78_virt_insns_ok(void)445 rl78_virt_insns_ok (void)
446 {
447   if (cfun)
448     return cfun->machine->virt_insns_ok;
449   return true;
450 }
451 
452 /* Predicates used in the MD patterns.  This one is true when real
453    insns may be matched, which typically means after (or during) the
454    devirt pass.  */
455 bool
rl78_real_insns_ok(void)456 rl78_real_insns_ok (void)
457 {
458   if (cfun)
459     return cfun->machine->real_insns_ok;
460   return false;
461 }
462 
463 #undef TARGET_HARD_REGNO_NREGS
464 #define TARGET_HARD_REGNO_NREGS rl78_hard_regno_nregs
465 
466 static unsigned int
rl78_hard_regno_nregs(unsigned int regno,machine_mode mode)467 rl78_hard_regno_nregs (unsigned int regno, machine_mode mode)
468 {
469   int rs = register_sizes[regno];
470   if (rs < 1)
471     rs = 1;
472   return ((GET_MODE_SIZE (mode) + rs - 1) / rs);
473 }
474 
475 #undef TARGET_HARD_REGNO_MODE_OK
476 #define TARGET_HARD_REGNO_MODE_OK rl78_hard_regno_mode_ok
477 
478 static bool
rl78_hard_regno_mode_ok(unsigned int regno,machine_mode mode)479 rl78_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
480 {
481   int s = GET_MODE_SIZE (mode);
482 
483   if (s < 1)
484     return false;
485   /* These are not to be used by gcc.  */
486   if (regno == 23 || regno == ES_REG || regno == CS_REG)
487     return false;
488   /* $fp can always be accessed as a 16-bit value.  */
489   if (regno == FP_REG && s == 2)
490     return true;
491   if (regno < SP_REG)
492     {
493       /* Since a reg-reg move is really a reg-mem move, we must
494 	 enforce alignment.  */
495       if (s > 1 && (regno % 2))
496 	return false;
497       return true;
498     }
499   if (s == CC_REGNUM)
500     return (mode == BImode);
501   /* All other registers must be accessed in their natural sizes.  */
502   if (s == register_sizes [regno])
503     return true;
504   return false;
505 }
506 
507 #undef TARGET_MODES_TIEABLE_P
508 #define TARGET_MODES_TIEABLE_P rl78_modes_tieable_p
509 
510 static bool
rl78_modes_tieable_p(machine_mode mode1,machine_mode mode2)511 rl78_modes_tieable_p (machine_mode mode1, machine_mode mode2)
512 {
513   return ((GET_MODE_CLASS (mode1) == MODE_FLOAT
514 	   || GET_MODE_CLASS (mode1) == MODE_COMPLEX_FLOAT)
515 	  == (GET_MODE_CLASS (mode2) == MODE_FLOAT
516 	      || GET_MODE_CLASS (mode2) == MODE_COMPLEX_FLOAT));
517 }
518 
519 /* Simplify_gen_subreg() doesn't handle memory references the way we
520    need it to below, so we use this function for when we must get a
521    valid subreg in a "natural" state.  */
522 static rtx
rl78_subreg(machine_mode mode,rtx r,machine_mode omode,int byte)523 rl78_subreg (machine_mode mode, rtx r, machine_mode omode, int byte)
524 {
525   if (GET_CODE (r) == MEM)
526     return adjust_address (r, mode, byte);
527   else
528     return simplify_gen_subreg (mode, r, omode, byte);
529 }
530 
531 /* Used by movsi.  Split SImode moves into two HImode moves, using
532    appropriate patterns for the upper and lower halves of symbols.  */
533 void
rl78_expand_movsi(rtx * operands)534 rl78_expand_movsi (rtx *operands)
535 {
536   rtx op00, op02, op10, op12;
537 
538   op00 = rl78_subreg (HImode, operands[0], SImode, 0);
539   op02 = rl78_subreg (HImode, operands[0], SImode, 2);
540   if (GET_CODE (operands[1]) == CONST
541       || GET_CODE (operands[1]) == SYMBOL_REF)
542     {
543       op10 = gen_rtx_ZERO_EXTRACT (HImode, operands[1], GEN_INT (16), GEN_INT (0));
544       op10 = gen_rtx_CONST (HImode, op10);
545       op12 = gen_rtx_ZERO_EXTRACT (HImode, operands[1], GEN_INT (16), GEN_INT (16));
546       op12 = gen_rtx_CONST (HImode, op12);
547     }
548   else
549     {
550       op10 = rl78_subreg (HImode, operands[1], SImode, 0);
551       op12 = rl78_subreg (HImode, operands[1], SImode, 2);
552     }
553 
554   if (rtx_equal_p (operands[0], operands[1]))
555     ;
556   else if (rtx_equal_p (op00, op12))
557     {
558       emit_move_insn (op02, op12);
559       emit_move_insn (op00, op10);
560     }
561   else
562     {
563       emit_move_insn (op00, op10);
564       emit_move_insn (op02, op12);
565     }
566 }
567 
568 /* Generate code to move an SImode value.  */
569 void
rl78_split_movsi(rtx * operands,machine_mode omode)570 rl78_split_movsi (rtx *operands, machine_mode omode)
571 {
572   rtx op00, op02, op10, op12;
573 
574   op00 = rl78_subreg (HImode, operands[0], omode, 0);
575   op02 = rl78_subreg (HImode, operands[0], omode, 2);
576 
577   if (GET_CODE (operands[1]) == CONST
578       || GET_CODE (operands[1]) == SYMBOL_REF)
579     {
580       op10 = gen_rtx_ZERO_EXTRACT (HImode, operands[1], GEN_INT (16), GEN_INT (0));
581       op10 = gen_rtx_CONST (HImode, op10);
582       op12 = gen_rtx_ZERO_EXTRACT (HImode, operands[1], GEN_INT (16), GEN_INT (16));
583       op12 = gen_rtx_CONST (HImode, op12);
584     }
585   else
586     {
587       op10 = rl78_subreg (HImode, operands[1], omode, 0);
588       op12 = rl78_subreg (HImode, operands[1], omode, 2);
589     }
590 
591   if (rtx_equal_p (operands[0], operands[1]))
592     ;
593   else if (rtx_equal_p (op00, op12))
594     {
595       operands[2] = op02;
596       operands[4] = op12;
597       operands[3] = op00;
598       operands[5] = op10;
599     }
600   else
601     {
602       operands[2] = op00;
603       operands[4] = op10;
604       operands[3] = op02;
605       operands[5] = op12;
606     }
607 }
608 
609 void
rl78_split_movdi(rtx * operands,enum machine_mode omode)610 rl78_split_movdi (rtx *operands, enum machine_mode omode)
611 {
612     rtx op00, op04, op10, op14;
613     op00 = rl78_subreg (SImode, operands[0], omode, 0);
614     op04 = rl78_subreg (SImode, operands[0], omode, 4);
615     op10 = rl78_subreg (SImode, operands[1], omode, 0);
616     op14 = rl78_subreg (SImode, operands[1], omode, 4);
617     emit_insn (gen_movsi (op00, op10));
618     emit_insn (gen_movsi (op04, op14));
619 }
620 
621 /* Used by various two-operand expanders which cannot accept all
622    operands in the "far" namespace.  Force some such operands into
623    registers so that each pattern has at most one far operand.  */
624 int
rl78_force_nonfar_2(rtx * operands,rtx (* gen)(rtx,rtx))625 rl78_force_nonfar_2 (rtx *operands, rtx (*gen)(rtx,rtx))
626 {
627   int did = 0;
628   rtx temp_reg = NULL;
629 
630   /* FIXME: in the future, be smarter about only doing this if the
631      other operand is also far, assuming the devirtualizer can also
632      handle that.  */
633   if (rl78_far_p (operands[0]))
634     {
635       temp_reg = operands[0];
636       operands[0] = gen_reg_rtx (GET_MODE (operands[0]));
637       did = 1;
638     }
639   if (!did)
640     return 0;
641 
642   emit_insn (gen (operands[0], operands[1]));
643   if (temp_reg)
644     emit_move_insn (temp_reg, operands[0]);
645   return 1;
646 }
647 
648 /* Likewise, but for three-operand expanders.  */
649 int
rl78_force_nonfar_3(rtx * operands,rtx (* gen)(rtx,rtx,rtx))650 rl78_force_nonfar_3 (rtx *operands, rtx (*gen)(rtx,rtx,rtx))
651 {
652   int did = 0;
653   rtx temp_reg = NULL;
654 
655   /* FIXME: Likewise.  */
656   if (rl78_far_p (operands[1]))
657     {
658       rtx temp_reg = gen_reg_rtx (GET_MODE (operands[1]));
659       emit_move_insn (temp_reg, operands[1]);
660       operands[1] = temp_reg;
661       did = 1;
662     }
663   if (rl78_far_p (operands[0]))
664     {
665       temp_reg = operands[0];
666       operands[0] = gen_reg_rtx (GET_MODE (operands[0]));
667       did = 1;
668     }
669   if (!did)
670     return 0;
671 
672   emit_insn (gen (operands[0], operands[1], operands[2]));
673   if (temp_reg)
674     emit_move_insn (temp_reg, operands[0]);
675   return 1;
676 }
677 
678 int
rl78_one_far_p(rtx * operands,int n)679 rl78_one_far_p (rtx *operands, int n)
680 {
681   rtx which = NULL;
682   int i, c = 0;
683 
684   for (i = 0; i < n; i ++)
685     if (rl78_far_p (operands[i]))
686       {
687 	if (which == NULL)
688 	  which = operands[i];
689 	else if (rtx_equal_p (operands[i], which))
690 	  continue;
691 	c ++;
692       }
693   return c <= 1;
694 }
695 
696 #undef  TARGET_CAN_ELIMINATE
697 #define TARGET_CAN_ELIMINATE		rl78_can_eliminate
698 
699 static bool
rl78_can_eliminate(const int from ATTRIBUTE_UNUSED,const int to ATTRIBUTE_UNUSED)700 rl78_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to ATTRIBUTE_UNUSED)
701 {
702   return true;
703 }
704 
705 /* Returns true if the given register needs to be saved by the
706    current function.  */
707 static bool
need_to_save(unsigned int regno)708 need_to_save (unsigned int regno)
709 {
710   if (is_interrupt_func (cfun->decl))
711     {
712       /* We don't know what devirt will need */
713       if (regno < 8)
714 	return true;
715 
716        /* We don't need to save registers that have
717 	  been reserved for interrupt handlers.  */
718       if (regno > 23)
719 	return false;
720 
721       /* If the handler is a non-leaf function then it may call
722 	 non-interrupt aware routines which will happily clobber
723 	 any call_used registers, so we have to preserve them.
724          We do not have to worry about the frame pointer register
725 	 though, as that is handled below.  */
726       if (!crtl->is_leaf && call_used_or_fixed_reg_p (regno) && regno < 22)
727 	return true;
728 
729       /* Otherwise we only have to save a register, call_used
730 	 or not, if it is used by this handler.  */
731       return df_regs_ever_live_p (regno);
732     }
733 
734   if (regno == FRAME_POINTER_REGNUM
735       && (frame_pointer_needed || df_regs_ever_live_p (regno)))
736     return true;
737   if (fixed_regs[regno])
738     return false;
739   if (crtl->calls_eh_return)
740     return true;
741   if (df_regs_ever_live_p (regno)
742       && !call_used_or_fixed_reg_p (regno))
743     return true;
744   return false;
745 }
746 
747 /* We use this to wrap all emitted insns in the prologue.  */
748 static rtx
F(rtx x)749 F (rtx x)
750 {
751   RTX_FRAME_RELATED_P (x) = 1;
752   return x;
753 }
754 
755 /* Compute all the frame-related fields in our machine_function
756    structure.  */
757 static void
rl78_compute_frame_info(void)758 rl78_compute_frame_info (void)
759 {
760   int i;
761 
762   cfun->machine->computed = 1;
763   cfun->machine->framesize_regs = 0;
764   cfun->machine->framesize_locals = get_frame_size ();
765   cfun->machine->framesize_outgoing = crtl->outgoing_args_size;
766 
767   for (i = 0; i < 16; i ++)
768     if (need_to_save (i * 2) || need_to_save (i * 2 + 1))
769       {
770 	cfun->machine->need_to_push [i] = 1;
771 	cfun->machine->framesize_regs += 2;
772       }
773     else
774       cfun->machine->need_to_push [i] = 0;
775 
776   if ((cfun->machine->framesize_locals + cfun->machine->framesize_outgoing) & 1)
777     cfun->machine->framesize_locals ++;
778 
779   cfun->machine->framesize = (cfun->machine->framesize_regs
780 			      + cfun->machine->framesize_locals
781 			      + cfun->machine->framesize_outgoing);
782 }
783 
784 /* Returns true if the provided function has the specified attribute.  */
785 static inline bool
has_func_attr(const_tree decl,const char * func_attr)786 has_func_attr (const_tree decl, const char * func_attr)
787 {
788   if (decl == NULL_TREE)
789     decl = current_function_decl;
790 
791   return lookup_attribute (func_attr, DECL_ATTRIBUTES (decl)) != NULL_TREE;
792 }
793 
794 /* Returns true if the provided function has the "interrupt" attribute.  */
795 static inline bool
is_interrupt_func(const_tree decl)796 is_interrupt_func (const_tree decl)
797 {
798   return has_func_attr (decl, "interrupt") || has_func_attr (decl, "brk_interrupt");
799 }
800 
801 /* Returns true if the provided function has the "brk_interrupt" attribute.  */
802 static inline bool
is_brk_interrupt_func(const_tree decl)803 is_brk_interrupt_func (const_tree decl)
804 {
805   return has_func_attr (decl, "brk_interrupt");
806 }
807 
808 /* Check "interrupt" attributes.  */
809 static tree
rl78_handle_func_attribute(tree * node,tree name,tree args ATTRIBUTE_UNUSED,int flags ATTRIBUTE_UNUSED,bool * no_add_attrs)810 rl78_handle_func_attribute (tree * node,
811 			    tree   name,
812 			    tree   args ATTRIBUTE_UNUSED,
813 			    int    flags ATTRIBUTE_UNUSED,
814 			    bool * no_add_attrs)
815 {
816   gcc_assert (DECL_P (* node));
817 
818   if (TREE_CODE (* node) != FUNCTION_DECL)
819     {
820       warning (OPT_Wattributes, "%qE attribute only applies to functions",
821 	       name);
822       * no_add_attrs = true;
823     }
824 
825   /* FIXME: We ought to check that the interrupt and exception
826      handler attributes have been applied to void functions.  */
827   return NULL_TREE;
828 }
829 
830 /* Check "naked" attributes.  */
831 static tree
rl78_handle_naked_attribute(tree * node,tree name ATTRIBUTE_UNUSED,tree args,int flags ATTRIBUTE_UNUSED,bool * no_add_attrs)832 rl78_handle_naked_attribute (tree * node,
833 			     tree   name ATTRIBUTE_UNUSED,
834 			     tree   args,
835 			     int    flags ATTRIBUTE_UNUSED,
836 			     bool * no_add_attrs)
837 {
838   gcc_assert (DECL_P (* node));
839   gcc_assert (args == NULL_TREE);
840 
841   if (TREE_CODE (* node) != FUNCTION_DECL)
842     {
843       warning (OPT_Wattributes, "naked attribute only applies to functions");
844       * no_add_attrs = true;
845     }
846 
847   /* Disable warnings about this function - eg reaching the end without
848      seeing a return statement - because the programmer is doing things
849      that gcc does not know about.  */
850   TREE_NO_WARNING (* node) = 1;
851 
852   return NULL_TREE;
853 }
854 
855 /* Check "saddr" attributes.  */
856 static tree
rl78_handle_saddr_attribute(tree * node,tree name,tree args ATTRIBUTE_UNUSED,int flags ATTRIBUTE_UNUSED,bool * no_add_attrs)857 rl78_handle_saddr_attribute (tree * node,
858 			     tree   name,
859 			     tree   args ATTRIBUTE_UNUSED,
860 			     int    flags ATTRIBUTE_UNUSED,
861 			     bool * no_add_attrs)
862 {
863   gcc_assert (DECL_P (* node));
864 
865   if (TREE_CODE (* node) == FUNCTION_DECL)
866     {
867       warning (OPT_Wattributes, "%qE attribute doesn%'t apply to functions",
868 	       name);
869       * no_add_attrs = true;
870     }
871 
872   return NULL_TREE;
873 }
874 
875 /* Check "vector" attribute.  */
876 
877 static tree
rl78_handle_vector_attribute(tree * node,tree name,tree args,int flags ATTRIBUTE_UNUSED,bool * no_add_attrs)878 rl78_handle_vector_attribute (tree * node,
879 			    tree   name,
880 			    tree   args,
881 			    int    flags ATTRIBUTE_UNUSED,
882 			    bool * no_add_attrs)
883 {
884   gcc_assert (DECL_P (* node));
885   gcc_assert (args != NULL_TREE);
886 
887   if (TREE_CODE (* node) != FUNCTION_DECL)
888     {
889       warning (OPT_Wattributes, "%qE attribute only applies to functions",
890 	       name);
891       * no_add_attrs = true;
892     }
893 
894   return NULL_TREE;
895 }
896 
897 #undef  TARGET_ATTRIBUTE_TABLE
898 #define TARGET_ATTRIBUTE_TABLE		rl78_attribute_table
899 
900 /* Table of RL78-specific attributes.  */
901 const struct attribute_spec rl78_attribute_table[] =
902 {
903   /* Name, min_len, max_len, decl_req, type_req, fn_type_req,
904      affects_type_identity, handler, exclude.  */
905   { "interrupt",      0, -1, true, false, false, false,
906     rl78_handle_func_attribute, NULL },
907   { "brk_interrupt",  0, 0, true, false, false, false,
908     rl78_handle_func_attribute, NULL },
909   { "naked",          0, 0, true, false, false, false,
910     rl78_handle_naked_attribute, NULL },
911   { "saddr",          0, 0, true, false, false, false,
912     rl78_handle_saddr_attribute, NULL },
913   { "vector",         1, -1, true, false, false, false,
914 	rl78_handle_vector_attribute, NULL },
915   { NULL,             0, 0, false, false, false, false, NULL, NULL }
916 };
917 
918 
919 
920 /* Break down an address RTX into its component base/index/addend
921    portions and return TRUE if the address is of a valid form, else
922    FALSE.  */
923 static bool
characterize_address(rtx x,rtx * base,rtx * index,rtx * addend)924 characterize_address (rtx x, rtx *base, rtx *index, rtx *addend)
925 {
926   *base = NULL_RTX;
927   *index = NULL_RTX;
928   *addend = NULL_RTX;
929 
930   if (GET_CODE (x) == UNSPEC
931       && XINT (x, 1) == UNS_ES_ADDR)
932     x = XVECEXP (x, 0, 1);
933 
934   if (GET_CODE (x) == REG)
935     {
936       *base = x;
937       return true;
938     }
939 
940   /* We sometimes get these without the CONST wrapper */
941   if (GET_CODE (x) == PLUS
942       && GET_CODE (XEXP (x, 0)) == SYMBOL_REF
943       && GET_CODE (XEXP (x, 1)) == CONST_INT)
944     {
945       *addend = x;
946       return true;
947     }
948 
949   if (GET_CODE (x) == PLUS)
950     {
951       *base = XEXP (x, 0);
952       x = XEXP (x, 1);
953 
954       if (GET_CODE (*base) == SUBREG)
955 	{
956 	  if (GET_MODE (*base) == HImode
957 	      && GET_MODE (XEXP (*base, 0)) == SImode
958 	      && GET_CODE (XEXP (*base, 0)) == REG)
959 	    {
960 	      /* This is a throw-away rtx just to tell everyone
961 		 else what effective register we're using.  */
962 	      *base = gen_rtx_REG (HImode, REGNO (XEXP (*base, 0)));
963 	    }
964 	}
965 
966       if (GET_CODE (*base) != REG
967 	  && GET_CODE (x) == REG)
968 	{
969 	  rtx tmp = *base;
970 	  *base = x;
971 	  x = tmp;
972 	}
973 
974       if (GET_CODE (*base) != REG)
975 	return false;
976 
977       if (GET_CODE (x) == ZERO_EXTEND
978 	  && GET_CODE (XEXP (x, 0)) == REG)
979 	{
980 	  *index = XEXP (x, 0);
981 	  return false;
982 	}
983     }
984 
985   switch (GET_CODE (x))
986     {
987     case PLUS:
988       if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
989 	  && GET_CODE (XEXP (x, 0)) == CONST_INT)
990 	{
991 	  *addend = x;
992 	  return true;
993 	}
994       /* fall through */
995     case MEM:
996     case REG:
997       return false;
998 
999     case SUBREG:
1000       switch (GET_CODE (XEXP (x, 0)))
1001 	{
1002 	case CONST:
1003 	case SYMBOL_REF:
1004 	case CONST_INT:
1005 	  *addend = x;
1006 	  return true;
1007 	default:
1008 	  return false;
1009 	}
1010 
1011     case CONST:
1012     case SYMBOL_REF:
1013     case CONST_INT:
1014       *addend = x;
1015       return true;
1016 
1017     default:
1018       return false;
1019     }
1020 
1021   return false;
1022 }
1023 
1024 /* Used by the Whb constraint.  Match addresses that use HL+B or HL+C
1025    addressing.  */
1026 bool
rl78_hl_b_c_addr_p(rtx op)1027 rl78_hl_b_c_addr_p (rtx op)
1028 {
1029   rtx hl, bc;
1030 
1031   if (GET_CODE (op) != PLUS)
1032     return false;
1033   hl = XEXP (op, 0);
1034   bc = XEXP (op, 1);
1035   if (GET_CODE (hl) == ZERO_EXTEND)
1036     {
1037       rtx tmp = hl;
1038       hl = bc;
1039       bc = tmp;
1040     }
1041   if (GET_CODE (hl) != REG)
1042     return false;
1043   if (GET_CODE (bc) != ZERO_EXTEND)
1044     return false;
1045   bc = XEXP (bc, 0);
1046   if (GET_CODE (bc) != REG)
1047     return false;
1048   if (REGNO (hl) != HL_REG)
1049     return false;
1050   if (REGNO (bc) != B_REG && REGNO (bc) != C_REG)
1051     return false;
1052 
1053   return true;
1054 }
1055 
1056 #define REG_IS(r, regno) (((r) == (regno)) || ((r) >= FIRST_PSEUDO_REGISTER && !(strict)))
1057 
1058 /* Return the appropriate mode for a named address address.  */
1059 
1060 #undef  TARGET_ADDR_SPACE_ADDRESS_MODE
1061 #define TARGET_ADDR_SPACE_ADDRESS_MODE rl78_addr_space_address_mode
1062 
1063 static scalar_int_mode
rl78_addr_space_address_mode(addr_space_t addrspace)1064 rl78_addr_space_address_mode (addr_space_t addrspace)
1065 {
1066   switch (addrspace)
1067     {
1068     case ADDR_SPACE_GENERIC:
1069       return HImode;
1070     case ADDR_SPACE_NEAR:
1071       return HImode;
1072     case ADDR_SPACE_FAR:
1073       return SImode;
1074     default:
1075       gcc_unreachable ();
1076     }
1077 }
1078 
1079 /* Used in various constraints and predicates to match operands in the
1080    "far" address space.  */
1081 int
rl78_far_p(rtx x)1082 rl78_far_p (rtx x)
1083 {
1084   if (! MEM_P (x))
1085     return 0;
1086 #if DEBUG0
1087   fprintf (stderr, "\033[35mrl78_far_p: "); debug_rtx (x);
1088   fprintf (stderr, " = %d\033[0m\n", MEM_ADDR_SPACE (x) == ADDR_SPACE_FAR);
1089 #endif
1090 
1091   /* Not all far addresses are legitimate, because the devirtualizer
1092      can't handle them.  */
1093   if (! rl78_as_legitimate_address (GET_MODE (x), XEXP (x, 0), false, ADDR_SPACE_FAR))
1094     return 0;
1095 
1096   return GET_MODE_BITSIZE (rl78_addr_space_address_mode (MEM_ADDR_SPACE (x))) == 32;
1097 }
1098 
1099 /* Return the appropriate mode for a named address pointer.  */
1100 #undef  TARGET_ADDR_SPACE_POINTER_MODE
1101 #define TARGET_ADDR_SPACE_POINTER_MODE rl78_addr_space_pointer_mode
1102 
1103 static scalar_int_mode
rl78_addr_space_pointer_mode(addr_space_t addrspace)1104 rl78_addr_space_pointer_mode (addr_space_t addrspace)
1105 {
1106   switch (addrspace)
1107     {
1108     case ADDR_SPACE_GENERIC:
1109       return HImode;
1110     case ADDR_SPACE_NEAR:
1111       return HImode;
1112     case ADDR_SPACE_FAR:
1113       return SImode;
1114     default:
1115       gcc_unreachable ();
1116     }
1117 }
1118 
1119 /* Returns TRUE for valid addresses.  */
1120 #undef  TARGET_VALID_POINTER_MODE
1121 #define TARGET_VALID_POINTER_MODE rl78_valid_pointer_mode
1122 
1123 static bool
rl78_valid_pointer_mode(scalar_int_mode m)1124 rl78_valid_pointer_mode (scalar_int_mode m)
1125 {
1126   return (m == HImode || m == SImode);
1127 }
1128 
1129 #undef  TARGET_LEGITIMATE_CONSTANT_P
1130 #define TARGET_LEGITIMATE_CONSTANT_P		rl78_is_legitimate_constant
1131 
1132 static bool
rl78_is_legitimate_constant(machine_mode mode ATTRIBUTE_UNUSED,rtx x ATTRIBUTE_UNUSED)1133 rl78_is_legitimate_constant (machine_mode mode ATTRIBUTE_UNUSED, rtx x ATTRIBUTE_UNUSED)
1134 {
1135   return true;
1136 }
1137 
1138 #undef TARGET_LRA_P
1139 #define TARGET_LRA_P hook_bool_void_false
1140 
1141 #undef  TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
1142 #define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P	rl78_as_legitimate_address
1143 
1144 bool
rl78_as_legitimate_address(machine_mode mode ATTRIBUTE_UNUSED,rtx x,bool strict ATTRIBUTE_UNUSED,addr_space_t as ATTRIBUTE_UNUSED)1145 rl78_as_legitimate_address (machine_mode mode ATTRIBUTE_UNUSED, rtx x,
1146 			    bool strict ATTRIBUTE_UNUSED, addr_space_t as ATTRIBUTE_UNUSED)
1147 {
1148   rtx base, index, addend;
1149   bool is_far_addr = false;
1150   int as_bits;
1151 
1152   as_bits = GET_MODE_BITSIZE (rl78_addr_space_address_mode (as));
1153 
1154   if (GET_CODE (x) == UNSPEC
1155       && XINT (x, 1) == UNS_ES_ADDR)
1156     {
1157       x = XVECEXP (x, 0, 1);
1158       is_far_addr = true;
1159     }
1160 
1161   if (as_bits == 16 && is_far_addr)
1162     return false;
1163 
1164   if (! characterize_address (x, &base, &index, &addend))
1165     return false;
1166 
1167   /* We can't extract the high/low portions of a PLUS address
1168      involving a register during devirtualization, so make sure all
1169      such __far addresses do not have addends.  This forces GCC to do
1170      the sum separately.  */
1171   if (addend && base && as_bits == 32 && GET_MODE (base) == SImode)
1172     return false;
1173 
1174   if (base && index)
1175     {
1176       int ir = REGNO (index);
1177       int br = REGNO (base);
1178 
1179 #define OK(test, debug) if (test) { /*fprintf(stderr, "%d: OK %s\n", __LINE__, debug);*/ return true; }
1180       OK (REG_IS (br, HL_REG) && REG_IS (ir, B_REG), "[hl+b]");
1181       OK (REG_IS (br, HL_REG) && REG_IS (ir, C_REG), "[hl+c]");
1182       return false;
1183     }
1184 
1185   if (strict && base && GET_CODE (base) == REG && REGNO (base) >= FIRST_PSEUDO_REGISTER)
1186     return false;
1187 
1188   if (! cfun->machine->virt_insns_ok && base && GET_CODE (base) == REG
1189       && REGNO (base) >= 8 && REGNO (base) <= 31)
1190     return false;
1191 
1192   return true;
1193 }
1194 
1195 /* Determine if one named address space is a subset of another.  */
1196 #undef  TARGET_ADDR_SPACE_SUBSET_P
1197 #define TARGET_ADDR_SPACE_SUBSET_P rl78_addr_space_subset_p
1198 
1199 static bool
rl78_addr_space_subset_p(addr_space_t subset,addr_space_t superset)1200 rl78_addr_space_subset_p (addr_space_t subset, addr_space_t superset)
1201 {
1202   int subset_bits;
1203   int superset_bits;
1204 
1205   subset_bits = GET_MODE_BITSIZE (rl78_addr_space_address_mode (subset));
1206   superset_bits = GET_MODE_BITSIZE (rl78_addr_space_address_mode (superset));
1207 
1208   return (subset_bits <= superset_bits);
1209 }
1210 
1211 #undef  TARGET_ADDR_SPACE_CONVERT
1212 #define TARGET_ADDR_SPACE_CONVERT rl78_addr_space_convert
1213 
1214 /* Convert from one address space to another.  */
1215 static rtx
rl78_addr_space_convert(rtx op,tree from_type,tree to_type)1216 rl78_addr_space_convert (rtx op, tree from_type, tree to_type)
1217 {
1218   addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (from_type));
1219   addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (to_type));
1220   rtx result;
1221   int to_bits;
1222   int from_bits;
1223 
1224   to_bits = GET_MODE_BITSIZE (rl78_addr_space_address_mode (to_as));
1225   from_bits = GET_MODE_BITSIZE (rl78_addr_space_address_mode (from_as));
1226 
1227   if (to_bits < from_bits)
1228     {
1229       rtx tmp;
1230       /* This is unpredictable, as we're truncating off usable address
1231 	 bits.  */
1232 
1233       warning (OPT_Waddress, "converting far pointer to near pointer");
1234       result = gen_reg_rtx (HImode);
1235       if (GET_CODE (op) == SYMBOL_REF
1236 	  || (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER))
1237 	tmp = gen_rtx_raw_SUBREG (HImode, op, 0);
1238       else
1239 	tmp = simplify_subreg (HImode, op, SImode, 0);
1240       gcc_assert (tmp != NULL_RTX);
1241       emit_move_insn (result, tmp);
1242       return result;
1243     }
1244   else if (to_bits > from_bits)
1245     {
1246       /* This always works.  */
1247       result = gen_reg_rtx (SImode);
1248       emit_move_insn (rl78_subreg (HImode, result, SImode, 0), op);
1249       if (TREE_CODE (from_type) == POINTER_TYPE
1250 	  && TREE_CODE (TREE_TYPE (from_type)) == FUNCTION_TYPE)
1251 	emit_move_insn (rl78_subreg (HImode, result, SImode, 2), const0_rtx);
1252       else
1253 	emit_move_insn (rl78_subreg (HImode, result, SImode, 2), GEN_INT (0x0f));
1254       return result;
1255     }
1256   else
1257     return op;
1258   gcc_unreachable ();
1259 }
1260 
1261 /* Implements REGNO_MODE_CODE_OK_FOR_BASE_P.  */
1262 bool
rl78_regno_mode_code_ok_for_base_p(int regno,machine_mode mode ATTRIBUTE_UNUSED,addr_space_t address_space ATTRIBUTE_UNUSED,int outer_code ATTRIBUTE_UNUSED,int index_code)1263 rl78_regno_mode_code_ok_for_base_p (int regno, machine_mode mode ATTRIBUTE_UNUSED,
1264 				    addr_space_t address_space ATTRIBUTE_UNUSED,
1265 				    int outer_code ATTRIBUTE_UNUSED, int index_code)
1266 {
1267   if (regno <= SP_REG && regno >= 16)
1268     return true;
1269   if (index_code == REG)
1270     return (regno == HL_REG);
1271   if (regno == C_REG || regno == B_REG || regno == E_REG || regno == L_REG)
1272     return true;
1273   return false;
1274 }
1275 
1276 /* Implements MODE_CODE_BASE_REG_CLASS.  */
1277 enum reg_class
rl78_mode_code_base_reg_class(machine_mode mode ATTRIBUTE_UNUSED,addr_space_t address_space ATTRIBUTE_UNUSED,int outer_code ATTRIBUTE_UNUSED,int index_code ATTRIBUTE_UNUSED)1278 rl78_mode_code_base_reg_class (machine_mode mode ATTRIBUTE_UNUSED,
1279 			       addr_space_t address_space ATTRIBUTE_UNUSED,
1280 			       int outer_code ATTRIBUTE_UNUSED,
1281 			       int index_code ATTRIBUTE_UNUSED)
1282 {
1283   return V_REGS;
1284 }
1285 
1286 /* Typical stack layout should looks like this after the function's prologue:
1287 
1288                             |    |
1289                               --                       ^
1290                             |    | \                   |
1291                             |    |   arguments saved   | Increasing
1292                             |    |   on the stack      |  addresses
1293     PARENT   arg pointer -> |    | /
1294   -------------------------- ---- -------------------
1295     CHILD                   |ret |   return address
1296                               --
1297                             |    | \
1298                             |    |   call saved
1299                             |    |   registers
1300 	frame pointer ->    |    | /
1301                               --
1302                             |    | \
1303                             |    |   local
1304                             |    |   variables
1305                             |    | /
1306                               --
1307                             |    | \
1308                             |    |   outgoing          | Decreasing
1309                             |    |   arguments         |  addresses
1310    current stack pointer -> |    | /                   |
1311   -------------------------- ---- ------------------   V
1312                             |    |                 */
1313 
1314 /* Implements INITIAL_ELIMINATION_OFFSET.  The frame layout is
1315    described in the machine_Function struct definition, above.  */
1316 int
rl78_initial_elimination_offset(int from,int to)1317 rl78_initial_elimination_offset (int from, int to)
1318 {
1319   int rv = 0; /* as if arg to arg */
1320 
1321   rl78_compute_frame_info ();
1322 
1323   switch (to)
1324     {
1325     case STACK_POINTER_REGNUM:
1326       rv += cfun->machine->framesize_outgoing;
1327       rv += cfun->machine->framesize_locals;
1328       /* Fall through.  */
1329     case FRAME_POINTER_REGNUM:
1330       rv += cfun->machine->framesize_regs;
1331       rv += 4;
1332       break;
1333     default:
1334       gcc_unreachable ();
1335     }
1336 
1337   switch (from)
1338     {
1339     case FRAME_POINTER_REGNUM:
1340       rv -= 4;
1341       rv -= cfun->machine->framesize_regs;
1342     case ARG_POINTER_REGNUM:
1343       break;
1344     default:
1345       gcc_unreachable ();
1346     }
1347 
1348   return rv;
1349 }
1350 
1351 static bool
rl78_is_naked_func(void)1352 rl78_is_naked_func (void)
1353 {
1354   return (lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE);
1355 }
1356 
1357 /* Check if the block uses mul/div insns for G13 target.  */
1358 
1359 static bool
check_mduc_usage(void)1360 check_mduc_usage (void)
1361 {
1362   rtx_insn * insn;
1363   basic_block bb;
1364 
1365   FOR_EACH_BB_FN (bb, cfun)
1366     {
1367       FOR_BB_INSNS (bb, insn)
1368         {
1369           if (INSN_P (insn)
1370               && (get_attr_is_g13_muldiv_insn (insn) == IS_G13_MULDIV_INSN_YES))
1371 	    return true;
1372 	}
1373     }
1374   return false;
1375 }
1376 
1377 /* Expand the function prologue (from the prologue pattern).  */
1378 
1379 void
rl78_expand_prologue(void)1380 rl78_expand_prologue (void)
1381 {
1382   int i, fs;
1383   rtx sp = gen_rtx_REG (HImode, STACK_POINTER_REGNUM);
1384   rtx ax = gen_rtx_REG (HImode, AX_REG);
1385   int rb = 0;
1386 
1387   if (rl78_is_naked_func ())
1388     return;
1389 
1390   /* Always re-compute the frame info - the register usage may have changed.  */
1391   rl78_compute_frame_info ();
1392 
1393   if (MUST_SAVE_MDUC_REGISTERS && (!crtl->is_leaf || check_mduc_usage ()))
1394     cfun->machine->framesize += ARRAY_SIZE (mduc_regs) * 2;
1395 
1396   if (flag_stack_usage_info)
1397     current_function_static_stack_size = cfun->machine->framesize;
1398 
1399   if (is_interrupt_func (cfun->decl) && !TARGET_G10)
1400     for (i = 0; i < 4; i++)
1401       if (cfun->machine->need_to_push [i])
1402 	{
1403 	  /* Select Bank 0 if we are using any registers from Bank 0.   */
1404 	  emit_insn (gen_sel_rb (GEN_INT (0)));
1405 	  break;
1406 	}
1407 
1408   for (i = 0; i < 16; i++)
1409     if (cfun->machine->need_to_push [i])
1410       {
1411 	int reg = i * 2;
1412 
1413 	if (TARGET_G10)
1414 	  {
1415 	    if (reg >= 8)
1416 	      {
1417 		emit_move_insn (ax, gen_rtx_REG (HImode, reg));
1418 		reg = AX_REG;
1419 	      }
1420 	  }
1421 	else
1422 	  {
1423 	    int need_bank = i/4;
1424 
1425 	    if (need_bank != rb)
1426 	      {
1427 		emit_insn (gen_sel_rb (GEN_INT (need_bank)));
1428 		rb = need_bank;
1429 	      }
1430 	  }
1431 
1432 	F (emit_insn (gen_push (gen_rtx_REG (HImode, reg))));
1433       }
1434 
1435   if (rb != 0)
1436     emit_insn (gen_sel_rb (GEN_INT (0)));
1437 
1438   /* Save ES register inside interrupt functions if it is used.  */
1439   if (is_interrupt_func (cfun->decl) && cfun->machine->uses_es)
1440     {
1441       emit_insn (gen_movqi_from_es (gen_rtx_REG (QImode, A_REG)));
1442       F (emit_insn (gen_push (ax)));
1443     }
1444 
1445   /* Save MDUC registers inside interrupt routine.  */
1446   if (MUST_SAVE_MDUC_REGISTERS && (!crtl->is_leaf || check_mduc_usage ()))
1447     {
1448       for (unsigned i = 0; i < ARRAY_SIZE (mduc_regs); i++)
1449         {
1450           mduc_reg_type *reg = mduc_regs + i;
1451           rtx mem_mduc = gen_rtx_MEM (reg->mode, GEN_INT (reg->address));
1452 
1453           MEM_VOLATILE_P (mem_mduc) = 1;
1454           if (reg->mode == QImode)
1455             emit_insn (gen_movqi (gen_rtx_REG (QImode, A_REG), mem_mduc));
1456           else
1457             emit_insn (gen_movhi (gen_rtx_REG (HImode, AX_REG), mem_mduc));
1458 
1459           emit_insn (gen_push (gen_rtx_REG (HImode, AX_REG)));
1460         }
1461     }
1462 
1463   if (frame_pointer_needed)
1464     {
1465       F (emit_move_insn (ax, sp));
1466       F (emit_move_insn (gen_rtx_REG (HImode, FRAME_POINTER_REGNUM), ax));
1467     }
1468 
1469   fs = cfun->machine->framesize_locals + cfun->machine->framesize_outgoing;
1470   if (fs > 0)
1471     {
1472       /* If we need to subtract more than 254*3 then it is faster and
1473 	 smaller to move SP into AX and perform the subtraction there.  */
1474       if (fs > 254 * 3)
1475 	{
1476 	  rtx insn;
1477 
1478 	  emit_move_insn (ax, sp);
1479 	  emit_insn (gen_subhi3 (ax, ax, GEN_INT (fs)));
1480 	  insn = F (emit_move_insn (sp, ax));
1481 	  add_reg_note (insn, REG_FRAME_RELATED_EXPR,
1482 			gen_rtx_SET (sp, gen_rtx_PLUS (HImode, sp,
1483 						       GEN_INT (-fs))));
1484 	}
1485       else
1486 	{
1487 	  while (fs > 0)
1488 	    {
1489 	      int fs_byte = (fs > 254) ? 254 : fs;
1490 
1491 	      F (emit_insn (gen_subhi3 (sp, sp, GEN_INT (fs_byte))));
1492 	      fs -= fs_byte;
1493 	    }
1494 	}
1495     }
1496 }
1497 
1498 /* Expand the function epilogue (from the epilogue pattern).  */
1499 void
rl78_expand_epilogue(void)1500 rl78_expand_epilogue (void)
1501 {
1502   int i, fs;
1503   rtx sp = gen_rtx_REG (HImode, STACK_POINTER_REGNUM);
1504   rtx ax = gen_rtx_REG (HImode, AX_REG);
1505   int rb = 0;
1506 
1507   if (rl78_is_naked_func ())
1508     return;
1509 
1510   if (frame_pointer_needed)
1511     {
1512       emit_move_insn (ax, gen_rtx_REG (HImode, FRAME_POINTER_REGNUM));
1513       emit_move_insn (sp, ax);
1514     }
1515   else
1516     {
1517       fs = cfun->machine->framesize_locals + cfun->machine->framesize_outgoing;
1518       if (fs > 254 * 3)
1519 	{
1520 	  emit_move_insn (ax, sp);
1521 	  emit_insn (gen_addhi3 (ax, ax, GEN_INT (fs)));
1522 	  emit_move_insn (sp, ax);
1523 	}
1524       else
1525 	{
1526 	  while (fs > 0)
1527 	    {
1528 	      int fs_byte = (fs > 254) ? 254 : fs;
1529 
1530 	      emit_insn (gen_addhi3 (sp, sp, GEN_INT (fs_byte)));
1531 	      fs -= fs_byte;
1532 	    }
1533 	}
1534     }
1535 
1536   /* Restore MDUC registers from interrupt routine.  */
1537   if (MUST_SAVE_MDUC_REGISTERS && (!crtl->is_leaf || check_mduc_usage ()))
1538     {
1539       for (int i = ARRAY_SIZE (mduc_regs) - 1; i >= 0; i--)
1540         {
1541           mduc_reg_type *reg = mduc_regs + i;
1542           rtx mem_mduc = gen_rtx_MEM (reg->mode, GEN_INT (reg->address));
1543 
1544           emit_insn (gen_pop (gen_rtx_REG (HImode, AX_REG)));
1545           MEM_VOLATILE_P (mem_mduc) = 1;
1546           if (reg->mode == QImode)
1547             emit_insn (gen_movqi (mem_mduc, gen_rtx_REG (QImode, A_REG)));
1548           else
1549             emit_insn (gen_movhi (mem_mduc, gen_rtx_REG (HImode, AX_REG)));
1550         }
1551     }
1552 
1553   if (is_interrupt_func (cfun->decl) && cfun->machine->uses_es)
1554     {
1555       emit_insn (gen_pop (gen_rtx_REG (HImode, AX_REG)));
1556       emit_insn (gen_movqi_to_es (gen_rtx_REG (QImode, A_REG)));
1557     }
1558 
1559   for (i = 15; i >= 0; i--)
1560     if (cfun->machine->need_to_push [i])
1561       {
1562 	rtx dest = gen_rtx_REG (HImode, i * 2);
1563 
1564 	if (TARGET_G10)
1565 	  {
1566 	    if (i < 8)
1567 	      emit_insn (gen_pop (dest));
1568 	    else
1569 	      {
1570 		emit_insn (gen_pop (ax));
1571 		emit_move_insn (dest, ax);
1572 		/* Generate a USE of the pop'd register so that DCE will not eliminate the move.  */
1573 		emit_insn (gen_use (dest));
1574 	      }
1575 	  }
1576 	else
1577 	  {
1578 	    int need_bank = i / 4;
1579 
1580 	    if (need_bank != rb)
1581 	      {
1582 		emit_insn (gen_sel_rb (GEN_INT (need_bank)));
1583 		rb = need_bank;
1584 	      }
1585 	    emit_insn (gen_pop (dest));
1586 	  }
1587       }
1588 
1589   if (rb != 0)
1590     emit_insn (gen_sel_rb (GEN_INT (0)));
1591 
1592   if (cfun->machine->trampolines_used)
1593     emit_insn (gen_trampoline_uninit ());
1594 
1595   if (is_brk_interrupt_func (cfun->decl))
1596     emit_jump_insn (gen_brk_interrupt_return ());
1597   else if (is_interrupt_func (cfun->decl))
1598     emit_jump_insn (gen_interrupt_return ());
1599   else
1600     emit_jump_insn (gen_rl78_return ());
1601 }
1602 
1603 /* Likewise, for exception handlers.  */
1604 void
rl78_expand_eh_epilogue(rtx x ATTRIBUTE_UNUSED)1605 rl78_expand_eh_epilogue (rtx x ATTRIBUTE_UNUSED)
1606 {
1607   /* FIXME - replace this with an indirect jump with stack adjust.  */
1608   emit_jump_insn (gen_rl78_return ());
1609 }
1610 
1611 #undef  TARGET_ASM_FUNCTION_PROLOGUE
1612 #define TARGET_ASM_FUNCTION_PROLOGUE	rl78_start_function
1613 
1614 static void
add_vector_labels(FILE * file,const char * aname)1615 add_vector_labels (FILE *file, const char *aname)
1616 {
1617   tree vec_attr;
1618   tree val_attr;
1619   const char *vname = "vect";
1620   const char *s;
1621   int vnum;
1622 
1623   /* This node is for the vector/interrupt tag itself */
1624   vec_attr = lookup_attribute (aname, DECL_ATTRIBUTES (current_function_decl));
1625   if (!vec_attr)
1626     return;
1627 
1628   /* Now point it at the first argument */
1629   vec_attr = TREE_VALUE (vec_attr);
1630 
1631   /* Iterate through the arguments.  */
1632   while (vec_attr)
1633     {
1634       val_attr = TREE_VALUE (vec_attr);
1635       switch (TREE_CODE (val_attr))
1636 	{
1637 	case STRING_CST:
1638 	  s = TREE_STRING_POINTER (val_attr);
1639 	  goto string_id_common;
1640 
1641 	case IDENTIFIER_NODE:
1642 	  s = IDENTIFIER_POINTER (val_attr);
1643 
1644 	string_id_common:
1645 	  if (strcmp (s, "$default") == 0)
1646 	    {
1647 	      fprintf (file, "\t.global\t$tableentry$default$%s\n", vname);
1648 	      fprintf (file, "$tableentry$default$%s:\n", vname);
1649 	    }
1650 	  else
1651 	    vname = s;
1652 	  break;
1653 
1654 	case INTEGER_CST:
1655 	  vnum = TREE_INT_CST_LOW (val_attr);
1656 
1657 	  fprintf (file, "\t.global\t$tableentry$%d$%s\n", vnum, vname);
1658 	  fprintf (file, "$tableentry$%d$%s:\n", vnum, vname);
1659 	  break;
1660 
1661 	default:
1662 	  ;
1663 	}
1664 
1665       vec_attr = TREE_CHAIN (vec_attr);
1666     }
1667 
1668 }
1669 
1670 /* We don't use this to actually emit the function prologue.  We use
1671    this to insert a comment in the asm file describing the
1672    function.  */
1673 static void
rl78_start_function(FILE * file)1674 rl78_start_function (FILE *file)
1675 {
1676   int i;
1677 
1678   add_vector_labels (file, "interrupt");
1679   add_vector_labels (file, "vector");
1680 
1681   if (cfun->machine->framesize == 0)
1682     return;
1683   fprintf (file, "\t; start of function\n");
1684 
1685   if (cfun->machine->framesize_regs)
1686     {
1687       fprintf (file, "\t; push %d:", cfun->machine->framesize_regs);
1688       for (i = 0; i < 16; i ++)
1689 	if (cfun->machine->need_to_push[i])
1690 	  fprintf (file, " %s", word_regnames[i*2]);
1691       fprintf (file, "\n");
1692     }
1693 
1694   if (frame_pointer_needed)
1695     fprintf (file, "\t; $fp points here (r22)\n");
1696 
1697   if (cfun->machine->framesize_locals)
1698     fprintf (file, "\t; locals: %d byte%s\n", cfun->machine->framesize_locals,
1699 	     cfun->machine->framesize_locals == 1 ? "" : "s");
1700 
1701   if (cfun->machine->framesize_outgoing)
1702     fprintf (file, "\t; outgoing: %d byte%s\n", cfun->machine->framesize_outgoing,
1703 	     cfun->machine->framesize_outgoing == 1 ? "" : "s");
1704 
1705   if (cfun->machine->uses_es)
1706     fprintf (file, "\t; uses ES register\n");
1707 
1708   if (MUST_SAVE_MDUC_REGISTERS)
1709     fprintf (file, "\t; preserves MDUC registers\n");
1710 }
1711 
1712 /* Return an RTL describing where a function return value of type RET_TYPE
1713    is held.  */
1714 
1715 #undef  TARGET_FUNCTION_VALUE
1716 #define TARGET_FUNCTION_VALUE		rl78_function_value
1717 
1718 static rtx
rl78_function_value(const_tree ret_type,const_tree fn_decl_or_type ATTRIBUTE_UNUSED,bool outgoing ATTRIBUTE_UNUSED)1719 rl78_function_value (const_tree ret_type,
1720 		     const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
1721 		     bool       outgoing ATTRIBUTE_UNUSED)
1722 {
1723   machine_mode mode = TYPE_MODE (ret_type);
1724 
1725   return gen_rtx_REG (mode, 8);
1726 }
1727 
1728 #undef  TARGET_PROMOTE_FUNCTION_MODE
1729 #define TARGET_PROMOTE_FUNCTION_MODE rl78_promote_function_mode
1730 
1731 static machine_mode
rl78_promote_function_mode(const_tree type ATTRIBUTE_UNUSED,machine_mode mode,int * punsignedp ATTRIBUTE_UNUSED,const_tree funtype ATTRIBUTE_UNUSED,int for_return ATTRIBUTE_UNUSED)1732 rl78_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
1733 			    machine_mode mode,
1734 			    int *punsignedp ATTRIBUTE_UNUSED,
1735 			    const_tree funtype ATTRIBUTE_UNUSED, int for_return ATTRIBUTE_UNUSED)
1736 {
1737   return mode;
1738 }
1739 
1740 #undef  TARGET_FUNCTION_ARG
1741 #define TARGET_FUNCTION_ARG     	rl78_function_arg
1742 
1743 static rtx
rl78_function_arg(cumulative_args_t,const function_arg_info &)1744 rl78_function_arg (cumulative_args_t, const function_arg_info &)
1745 {
1746   return NULL_RTX;
1747 }
1748 
1749 #undef  TARGET_FUNCTION_ARG_ADVANCE
1750 #define TARGET_FUNCTION_ARG_ADVANCE     rl78_function_arg_advance
1751 
1752 static void
rl78_function_arg_advance(cumulative_args_t cum_v,const function_arg_info & arg)1753 rl78_function_arg_advance (cumulative_args_t cum_v,
1754 			   const function_arg_info &arg)
1755 {
1756   int rounded_size;
1757   CUMULATIVE_ARGS * cum = get_cumulative_args (cum_v);
1758 
1759   rounded_size = arg.promoted_size_in_bytes ();
1760   if (rounded_size & 1)
1761     rounded_size ++;
1762   (*cum) += rounded_size;
1763 }
1764 
1765 #undef  TARGET_FUNCTION_ARG_BOUNDARY
1766 #define	TARGET_FUNCTION_ARG_BOUNDARY rl78_function_arg_boundary
1767 
1768 static unsigned int
rl78_function_arg_boundary(machine_mode mode ATTRIBUTE_UNUSED,const_tree type ATTRIBUTE_UNUSED)1769 rl78_function_arg_boundary (machine_mode mode ATTRIBUTE_UNUSED,
1770 			    const_tree type ATTRIBUTE_UNUSED)
1771 {
1772   return 16;
1773 }
1774 
1775 /* Supported modifier letters:
1776 
1777    A - address of a MEM
1778    S - SADDR form of a real register
1779    v - real register corresponding to a virtual register
1780    m - minus - negative of CONST_INT value.
1781    C - inverse of a conditional (NE vs EQ for example)
1782    C - complement of an integer
1783    z - collapsed conditional
1784    s - shift count mod 8
1785    S - shift count mod 16
1786    r - reverse shift count (8-(count mod 8))
1787    B - bit position
1788 
1789    h - bottom HI of an SI
1790    H - top HI of an SI
1791    q - bottom QI of an HI
1792    Q - top QI of an HI
1793    e - third QI of an SI (i.e. where the ES register gets values from)
1794    E - fourth QI of an SI (i.e. MSB)
1795 
1796    p - Add +0 to a zero-indexed HL based address.
1797 */
1798 
1799 /* Implements the bulk of rl78_print_operand, below.  We do it this
1800    way because we need to test for a constant at the top level and
1801    insert the '#', but not test for it anywhere else as we recurse
1802    down into the operand.  */
1803 static void
rl78_print_operand_1(FILE * file,rtx op,int letter)1804 rl78_print_operand_1 (FILE * file, rtx op, int letter)
1805 {
1806   int need_paren;
1807 
1808   switch (GET_CODE (op))
1809     {
1810     case MEM:
1811       if (letter == 'A')
1812 	rl78_print_operand_1 (file, XEXP (op, 0), letter);
1813       else
1814 	{
1815 	  if (rl78_far_p (op))
1816 	    {
1817 	      fprintf (file, "es:");
1818 	      if (GET_CODE (XEXP (op, 0)) == UNSPEC)
1819 		op = gen_rtx_MEM (GET_MODE (op), XVECEXP (XEXP (op, 0), 0, 1));
1820 	    }
1821 	  if (letter == 'H')
1822 	    {
1823 	      op = adjust_address (op, HImode, 2);
1824 	      letter = 0;
1825 	    }
1826 	  if (letter == 'h')
1827 	    {
1828 	      op = adjust_address (op, HImode, 0);
1829 	      letter = 0;
1830 	    }
1831 	  if (letter == 'Q')
1832 	    {
1833 	      op = adjust_address (op, QImode, 1);
1834 	      letter = 0;
1835 	    }
1836 	  if (letter == 'q')
1837 	    {
1838 	      op = adjust_address (op, QImode, 0);
1839 	      letter = 0;
1840 	    }
1841 	  if (letter == 'e')
1842 	    {
1843 	      op = adjust_address (op, QImode, 2);
1844 	      letter = 0;
1845 	    }
1846 	  if (letter == 'E')
1847 	    {
1848 	      op = adjust_address (op, QImode, 3);
1849 	      letter = 0;
1850 	    }
1851 	  if (CONSTANT_P (XEXP (op, 0)))
1852 	    {
1853 	      if (!rl78_saddr_p (op))
1854 		fprintf (file, "!");
1855 	      rl78_print_operand_1 (file, XEXP (op, 0), letter);
1856 	    }
1857 	  else if (GET_CODE (XEXP (op, 0)) == PLUS
1858 		   && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF)
1859 	    {
1860 	      if (!rl78_saddr_p (op))
1861 		fprintf (file, "!");
1862 	      rl78_print_operand_1 (file, XEXP (op, 0), letter);
1863 	    }
1864 	  else if (GET_CODE (XEXP (op, 0)) == PLUS
1865 		   && GET_CODE (XEXP (XEXP (op, 0), 0)) == REG
1866 		   && REGNO (XEXP (XEXP (op, 0), 0)) == 2)
1867 	    {
1868 	      rl78_print_operand_1 (file, XEXP (XEXP (op, 0), 1), 'u');
1869 	      fprintf (file, "[");
1870 	      rl78_print_operand_1 (file, XEXP (XEXP (op, 0), 0), 0);
1871 	      if (letter == 'p' && GET_CODE (XEXP (op, 0)) == REG)
1872 		fprintf (file, "+0");
1873 	      fprintf (file, "]");
1874 	    }
1875 	  else
1876 	    {
1877 	      op = XEXP (op, 0);
1878 	      fprintf (file, "[");
1879 	      rl78_print_operand_1 (file, op, letter);
1880 	      if (letter == 'p' && REG_P (op) && REGNO (op) == 6)
1881 		fprintf (file, "+0");
1882 	      fprintf (file, "]");
1883 	    }
1884 	}
1885       break;
1886 
1887     case REG:
1888       if (letter == 'Q')
1889 	fprintf (file, "%s", reg_names [REGNO (op) | 1]);
1890       else if (letter == 'H')
1891 	fprintf (file, "%s", reg_names [REGNO (op) + 2]);
1892       else if (letter == 'q')
1893 	fprintf (file, "%s", reg_names [REGNO (op) & ~1]);
1894       else if (letter == 'e')
1895 	fprintf (file, "%s", reg_names [REGNO (op) + 2]);
1896       else if (letter == 'E')
1897 	fprintf (file, "%s", reg_names [REGNO (op) + 3]);
1898       else if (letter == 'S')
1899 	fprintf (file, "0x%x", 0xffef8 + REGNO (op));
1900       else if (GET_MODE (op) == HImode
1901 	       && ! (REGNO (op) & ~0xfe))
1902 	{
1903 	  if (letter == 'v')
1904 	    fprintf (file, "%s", word_regnames [REGNO (op) % 8]);
1905 	  else
1906 	    fprintf (file, "%s", word_regnames [REGNO (op)]);
1907 	}
1908       else
1909 	fprintf (file, "%s", reg_names [REGNO (op)]);
1910       break;
1911 
1912     case CONST_INT:
1913       if (letter == 'Q')
1914 	fprintf (file, "%ld", INTVAL (op) >> 8);
1915       else if (letter == 'H')
1916 	fprintf (file, "%ld", INTVAL (op) >> 16);
1917       else if (letter == 'q')
1918 	fprintf (file, "%ld", INTVAL (op) & 0xff);
1919       else if (letter == 'h')
1920 	fprintf (file, "%ld", INTVAL (op) & 0xffff);
1921       else if (letter == 'e')
1922 	fprintf (file, "%ld", (INTVAL (op) >> 16) & 0xff);
1923       else if (letter == 'B')
1924 	{
1925 	  int ival = INTVAL (op);
1926 	  if (ival == -128)
1927 	    ival = 0x80;
1928 	  if (exact_log2 (ival) >= 0)
1929 	    fprintf (file, "%d", exact_log2 (ival));
1930 	  else
1931 	    fprintf (file, "%d", exact_log2 (~ival & 0xff));
1932 	}
1933       else if (letter == 'E')
1934 	fprintf (file, "%ld", (INTVAL (op) >> 24) & 0xff);
1935       else if (letter == 'm')
1936 	fprintf (file, "%ld", - INTVAL (op));
1937       else if (letter == 's')
1938 	fprintf (file, "%ld", INTVAL (op) % 8);
1939       else if (letter == 'S')
1940 	fprintf (file, "%ld", INTVAL (op) % 16);
1941       else if (letter == 'r')
1942 	fprintf (file, "%ld", 8 - (INTVAL (op) % 8));
1943       else if (letter == 'C')
1944 	fprintf (file, "%ld", (INTVAL (op) ^ 0x8000) & 0xffff);
1945       else
1946 	fprintf (file, "%ld", INTVAL (op));
1947       break;
1948 
1949     case CONST:
1950       rl78_print_operand_1 (file, XEXP (op, 0), letter);
1951       break;
1952 
1953     case ZERO_EXTRACT:
1954       {
1955 	int bits = INTVAL (XEXP (op, 1));
1956 	int ofs = INTVAL (XEXP (op, 2));
1957 	if (bits == 16 && ofs == 0)
1958 	  fprintf (file, "%%lo16(");
1959 	else if (bits == 16 && ofs == 16)
1960 	  fprintf (file, "%%hi16(");
1961 	else if (bits == 8 && ofs == 16)
1962 	  fprintf (file, "%%hi8(");
1963 	else
1964 	  gcc_unreachable ();
1965 	rl78_print_operand_1 (file, XEXP (op, 0), 0);
1966 	fprintf (file, ")");
1967       }
1968       break;
1969 
1970     case ZERO_EXTEND:
1971       if (GET_CODE (XEXP (op, 0)) == REG)
1972 	fprintf (file, "%s", reg_names [REGNO (XEXP (op, 0))]);
1973       else
1974 	print_rtl (file, op);
1975       break;
1976 
1977     case PLUS:
1978       need_paren = 0;
1979       if (letter == 'H')
1980 	{
1981 	  fprintf (file, "%%hi16(");
1982 	  need_paren = 1;
1983 	  letter = 0;
1984 	}
1985       if (letter == 'h')
1986 	{
1987 	  fprintf (file, "%%lo16(");
1988 	  need_paren = 1;
1989 	  letter = 0;
1990 	}
1991       if (letter == 'e')
1992 	{
1993 	  fprintf (file, "%%hi8(");
1994 	  need_paren = 1;
1995 	  letter = 0;
1996 	}
1997       if (letter == 'q' || letter == 'Q')
1998 	output_operand_lossage ("q/Q modifiers invalid for symbol references");
1999 
2000       if (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
2001 	{
2002 	  if (GET_CODE (XEXP (op, 1)) == SYMBOL_REF
2003 	      && SYMBOL_REF_DECL (XEXP (op, 1))
2004 	      && TREE_CODE (SYMBOL_REF_DECL (XEXP (op, 1))) == FUNCTION_DECL)
2005 	    {
2006 	      fprintf (file, "%%code(");
2007 	      assemble_name (file, rl78_strip_nonasm_name_encoding (XSTR (XEXP (op, 1), 0)));
2008 	      fprintf (file, "+");
2009 	      rl78_print_operand_1 (file, XEXP (op, 0), letter);
2010 	      fprintf (file, ")");
2011 	    }
2012 	  else
2013 	    {
2014 	      rl78_print_operand_1 (file, XEXP (op, 1), letter);
2015 	      fprintf (file, "+");
2016 	      rl78_print_operand_1 (file, XEXP (op, 0), letter);
2017 	    }
2018 	}
2019       else
2020 	{
2021 	  if (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
2022 	      && SYMBOL_REF_DECL (XEXP (op, 0))
2023 	      && TREE_CODE (SYMBOL_REF_DECL (XEXP (op, 0))) == FUNCTION_DECL)
2024 	    {
2025 	      fprintf (file, "%%code(");
2026 	      assemble_name (file, rl78_strip_nonasm_name_encoding (XSTR (XEXP (op, 0), 0)));
2027 	      fprintf (file, "+");
2028 	      rl78_print_operand_1 (file, XEXP (op, 1), letter);
2029 	      fprintf (file, ")");
2030 	    }
2031 	  else
2032 	    {
2033 	      rl78_print_operand_1 (file, XEXP (op, 0), letter);
2034 	      fprintf (file, "+");
2035 	      rl78_print_operand_1 (file, XEXP (op, 1), letter);
2036 	    }
2037 	}
2038       if (need_paren)
2039 	fprintf (file, ")");
2040       break;
2041 
2042     case SUBREG:
2043       if (GET_MODE (op) == HImode
2044 	  && SUBREG_BYTE (op) == 0)
2045 	{
2046 	  fprintf (file, "%%lo16(");
2047 	  rl78_print_operand_1 (file, SUBREG_REG (op), 0);
2048 	  fprintf (file, ")");
2049 	}
2050       else if (GET_MODE (op) == HImode
2051 	       && SUBREG_BYTE (op) == 2)
2052 	{
2053 	  fprintf (file, "%%hi16(");
2054 	  rl78_print_operand_1 (file, SUBREG_REG (op), 0);
2055 	  fprintf (file, ")");
2056 	}
2057       else
2058 	{
2059 	  fprintf (file, "(%s)", GET_RTX_NAME (GET_CODE (op)));
2060 	}
2061       break;
2062 
2063     case SYMBOL_REF:
2064       need_paren = 0;
2065       if (letter == 'H')
2066 	{
2067 	  fprintf (file, "%%hi16(");
2068 	  need_paren = 1;
2069 	  letter = 0;
2070 	}
2071       if (letter == 'h')
2072 	{
2073 	  fprintf (file, "%%lo16(");
2074 	  need_paren = 1;
2075 	  letter = 0;
2076 	}
2077       if (letter == 'e')
2078 	{
2079 	  fprintf (file, "%%hi8(");
2080 	  need_paren = 1;
2081 	  letter = 0;
2082 	}
2083       if (letter == 'q' || letter == 'Q')
2084 	output_operand_lossage ("q/Q modifiers invalid for symbol references");
2085 
2086       if (SYMBOL_REF_DECL (op) && TREE_CODE (SYMBOL_REF_DECL (op)) == FUNCTION_DECL)
2087 	{
2088 	  fprintf (file, "%%code(");
2089 	  assemble_name (file, rl78_strip_nonasm_name_encoding (XSTR (op, 0)));
2090 	  fprintf (file, ")");
2091 	}
2092       else
2093         assemble_name (file, rl78_strip_nonasm_name_encoding (XSTR (op, 0)));
2094       if (need_paren)
2095 	fprintf (file, ")");
2096       break;
2097 
2098     case CODE_LABEL:
2099     case LABEL_REF:
2100       output_asm_label (op);
2101       break;
2102 
2103     case LTU:
2104       if (letter == 'z')
2105 	fprintf (file, "#comparison eliminated");
2106       else
2107 	fprintf (file, letter == 'C' ? "nc" : "c");
2108       break;
2109     case LEU:
2110       if (letter == 'z')
2111 	fprintf (file, "br");
2112       else
2113 	fprintf (file, letter == 'C' ? "h" : "nh");
2114       break;
2115     case GEU:
2116       if (letter == 'z')
2117 	fprintf (file, "br");
2118       else
2119 	fprintf (file, letter == 'C' ? "c" : "nc");
2120       break;
2121     case GTU:
2122       if (letter == 'z')
2123 	fprintf (file, "#comparison eliminated");
2124       else
2125 	fprintf (file, letter == 'C' ? "nh" : "h");
2126       break;
2127     case EQ:
2128       if (letter == 'z')
2129 	fprintf (file, "br");
2130       else
2131 	fprintf (file, letter == 'C' ? "nz" : "z");
2132       break;
2133     case NE:
2134       if (letter == 'z')
2135 	fprintf (file, "#comparison eliminated");
2136       else
2137 	fprintf (file, letter == 'C' ? "z" : "nz");
2138       break;
2139 
2140     /* Note: these assume appropriate adjustments were made so that
2141        unsigned comparisons, which is all this chip has, will
2142        work.  */
2143     case LT:
2144       if (letter == 'z')
2145 	fprintf (file, "#comparison eliminated");
2146       else
2147 	fprintf (file, letter == 'C' ? "nc" : "c");
2148       break;
2149     case LE:
2150       if (letter == 'z')
2151 	fprintf (file, "br");
2152       else
2153         fprintf (file, letter == 'C' ? "h" : "nh");
2154       break;
2155     case GE:
2156       if (letter == 'z')
2157 	fprintf (file, "br");
2158       else
2159 	fprintf (file, letter == 'C' ? "c" : "nc");
2160       break;
2161     case GT:
2162       if (letter == 'z')
2163 	fprintf (file, "#comparison eliminated");
2164       else
2165 	fprintf (file, letter == 'C' ? "nh" : "h");
2166       break;
2167 
2168     default:
2169       fprintf (file, "(%s)", GET_RTX_NAME (GET_CODE (op)));
2170       break;
2171     }
2172 }
2173 
2174 #undef  TARGET_PRINT_OPERAND
2175 #define TARGET_PRINT_OPERAND		rl78_print_operand
2176 
2177 static void
rl78_print_operand(FILE * file,rtx op,int letter)2178 rl78_print_operand (FILE * file, rtx op, int letter)
2179 {
2180   if (CONSTANT_P (op) && letter != 'u' && letter != 's' && letter != 'r' && letter != 'S' && letter != 'B')
2181     fprintf (file, "#");
2182   rl78_print_operand_1 (file, op, letter);
2183 }
2184 
2185 #undef  TARGET_TRAMPOLINE_INIT
2186 #define TARGET_TRAMPOLINE_INIT rl78_trampoline_init
2187 
2188 /* Note that the RL78's addressing makes it very difficult to do
2189    trampolines on the stack.  So, libgcc has a small pool of
2190    trampolines from which one is allocated to this task.  */
2191 static void
rl78_trampoline_init(rtx m_tramp,tree fndecl,rtx static_chain)2192 rl78_trampoline_init (rtx m_tramp, tree fndecl, rtx static_chain)
2193 {
2194   rtx mov_addr, thunk_addr;
2195   rtx function = XEXP (DECL_RTL (fndecl), 0);
2196 
2197   mov_addr = adjust_address (m_tramp, HImode, 0);
2198   thunk_addr = gen_reg_rtx (HImode);
2199 
2200   function = force_reg (HImode, function);
2201   static_chain = force_reg (HImode, static_chain);
2202 
2203   emit_insn (gen_trampoline_init (thunk_addr, function, static_chain));
2204   emit_move_insn (mov_addr, thunk_addr);
2205 
2206   cfun->machine->trampolines_used = 1;
2207 }
2208 
2209 #undef  TARGET_TRAMPOLINE_ADJUST_ADDRESS
2210 #define TARGET_TRAMPOLINE_ADJUST_ADDRESS rl78_trampoline_adjust_address
2211 
2212 static rtx
rl78_trampoline_adjust_address(rtx m_tramp)2213 rl78_trampoline_adjust_address (rtx m_tramp)
2214 {
2215   rtx x = gen_rtx_MEM (HImode, m_tramp);
2216   return x;
2217 }
2218 
2219 /* Expander for cbranchqi4 and cbranchhi4.  RL78 is missing some of
2220    the "normal" compares, specifically, it only has unsigned compares,
2221    so we must synthesize the missing ones.  */
2222 void
rl78_expand_compare(rtx * operands)2223 rl78_expand_compare (rtx *operands)
2224 {
2225   if (GET_CODE (operands[2]) == MEM)
2226     operands[2] = copy_to_mode_reg (GET_MODE (operands[2]), operands[2]);
2227 }
2228 
2229 
2230 
2231 /* Define this to 1 if you are debugging the peephole optimizers.  */
2232 #define DEBUG_PEEP 0
2233 
2234 /* Predicate used to enable the peephole2 patterns in rl78-virt.md.
2235    The default "word" size is a byte so we can effectively use all the
2236    registers, but we want to do 16-bit moves whenever possible.  This
2237    function determines when such a move is an option.  */
2238 bool
rl78_peep_movhi_p(rtx * operands)2239 rl78_peep_movhi_p (rtx *operands)
2240 {
2241   int i;
2242   rtx m, a;
2243 
2244   /* (set (op0) (op1))
2245      (set (op2) (op3)) */
2246 
2247   if (! rl78_virt_insns_ok ())
2248     return false;
2249 
2250 #if DEBUG_PEEP
2251   fprintf (stderr, "\033[33m");
2252   debug_rtx (operands[0]);
2253   debug_rtx (operands[1]);
2254   debug_rtx (operands[2]);
2255   debug_rtx (operands[3]);
2256   fprintf (stderr, "\033[0m");
2257 #endif
2258 
2259   /* You can move a constant to memory as QImode, but not HImode.  */
2260   if (GET_CODE (operands[0]) == MEM
2261       && GET_CODE (operands[1]) != REG)
2262     {
2263 #if DEBUG_PEEP
2264       fprintf (stderr, "no peep: move constant to memory\n");
2265 #endif
2266       return false;
2267     }
2268 
2269   if (rtx_equal_p (operands[0], operands[3]))
2270     {
2271 #if DEBUG_PEEP
2272       fprintf (stderr, "no peep: overlapping\n");
2273 #endif
2274       return false;
2275     }
2276 
2277   for (i = 0; i < 2; i ++)
2278     {
2279       if (GET_CODE (operands[i]) != GET_CODE (operands[i+2]))
2280 	{
2281 #if DEBUG_PEEP
2282 	  fprintf (stderr, "no peep: different codes\n");
2283 #endif
2284 	  return false;
2285 	}
2286       if (GET_MODE (operands[i]) != GET_MODE (operands[i+2]))
2287 	{
2288 #if DEBUG_PEEP
2289 	  fprintf (stderr, "no peep: different modes\n");
2290 #endif
2291 	  return false;
2292 	}
2293 
2294       switch (GET_CODE (operands[i]))
2295 	{
2296 	case REG:
2297 	  /*   LSB                      MSB  */
2298 	  if (REGNO (operands[i]) + 1 != REGNO (operands[i+2])
2299 	      || GET_MODE (operands[i]) != QImode)
2300 	    {
2301 #if DEBUG_PEEP
2302 	      fprintf (stderr, "no peep: wrong regnos %d %d %d\n",
2303 		       REGNO (operands[i]), REGNO (operands[i+2]),
2304 		       i);
2305 #endif
2306 	      return false;
2307 	    }
2308 	  if (! rl78_hard_regno_mode_ok (REGNO (operands[i]), HImode))
2309 	    {
2310 #if DEBUG_PEEP
2311 	      fprintf (stderr, "no peep: reg %d not HI\n", REGNO (operands[i]));
2312 #endif
2313 	      return false;
2314 	    }
2315 	  break;
2316 
2317 	case CONST_INT:
2318 	  break;
2319 
2320 	case MEM:
2321 	  if (GET_MODE (operands[i]) != QImode)
2322 	    return false;
2323 	  if (MEM_ALIGN (operands[i]) < 16)
2324 	    return false;
2325 	  a = XEXP (operands[i], 0);
2326 	  if (GET_CODE (a) == CONST)
2327 	    a = XEXP (a, 0);
2328 	  if (GET_CODE (a) == PLUS)
2329 	    a = XEXP (a, 1);
2330 	  if (GET_CODE (a) == CONST_INT
2331 	      && INTVAL (a) & 1)
2332 	    {
2333 #if DEBUG_PEEP
2334 	      fprintf (stderr, "no peep: misaligned mem %d\n", i);
2335 	      debug_rtx (operands[i]);
2336 #endif
2337 	      return false;
2338 	    }
2339 	  m = adjust_address (operands[i], QImode, 1);
2340 	  if (! rtx_equal_p (m, operands[i+2]))
2341 	    {
2342 #if DEBUG_PEEP
2343 	      fprintf (stderr, "no peep: wrong mem %d\n", i);
2344 	      debug_rtx (m);
2345 	      debug_rtx (operands[i+2]);
2346 #endif
2347 	      return false;
2348 	    }
2349 	  break;
2350 
2351 	default:
2352 #if DEBUG_PEEP
2353 	  fprintf (stderr, "no peep: wrong rtx %d\n", i);
2354 #endif
2355 	  return false;
2356 	}
2357     }
2358 #if DEBUG_PEEP
2359   fprintf (stderr, "\033[32mpeep!\033[0m\n");
2360 #endif
2361   return true;
2362 }
2363 
2364 /* Likewise, when a peephole is activated, this function helps compute
2365    the new operands.  */
2366 void
rl78_setup_peep_movhi(rtx * operands)2367 rl78_setup_peep_movhi (rtx *operands)
2368 {
2369   int i;
2370 
2371   for (i = 0; i < 2; i ++)
2372     {
2373       switch (GET_CODE (operands[i]))
2374 	{
2375 	case REG:
2376 	  operands[i+4] = gen_rtx_REG (HImode, REGNO (operands[i]));
2377 	  break;
2378 
2379 	case CONST_INT:
2380 	  operands[i+4] = GEN_INT ((INTVAL (operands[i]) & 0xff) + ((char) INTVAL (operands[i+2])) * 256);
2381 	  break;
2382 
2383 	case MEM:
2384 	  operands[i+4] = adjust_address (operands[i], HImode, 0);
2385 	  break;
2386 
2387 	default:
2388 	  break;
2389 	}
2390     }
2391 }
2392 
2393 /*
2394 	How Devirtualization works in the RL78 GCC port
2395 
2396 Background
2397 
2398 The RL78 is an 8-bit port with some 16-bit operations.  It has 32
2399 bytes of register space, in four banks, memory-mapped.  One bank is
2400 the "selected" bank and holds the registers used for primary
2401 operations.  Since the registers are memory mapped, often you can
2402 still refer to the unselected banks via memory accesses.
2403 
2404 Virtual Registers
2405 
2406 The GCC port uses bank 0 as the "selected" registers (A, X, BC, etc)
2407 and refers to the other banks via their memory addresses, although
2408 they're treated as regular registers internally.  These "virtual"
2409 registers are R8 through R23 (bank3 is reserved for asm-based
2410 interrupt handlers).
2411 
2412 There are four machine description files:
2413 
2414 rl78.md        - common register-independent patterns and definitions
2415 rl78-expand.md - expanders
2416 rl78-virt.md   - patterns that match BEFORE devirtualization
2417 rl78-real.md   - patterns that match AFTER devirtualization
2418 
2419 At least through register allocation and reload, gcc is told that it
2420 can do pretty much anything - but may only use the virtual registers.
2421 GCC cannot properly create the varying addressing modes that the RL78
2422 supports in an efficient way.
2423 
2424 Sometime after reload, the RL78 backend "devirtualizes" the RTL.  It
2425 uses the "valloc" attribute in rl78-virt.md for determining the rules
2426 by which it will replace virtual registers with real registers (or
2427 not) and how to make up addressing modes.  For example, insns tagged
2428 with "ro1" have a single read-only parameter, which may need to be
2429 moved from memory/constant/vreg to a suitable real register.  As part
2430 of devirtualization, a flag is toggled, disabling the rl78-virt.md
2431 patterns and enabling the rl78-real.md patterns.  The new patterns'
2432 constraints are used to determine the real registers used.  NOTE:
2433 patterns in rl78-virt.md essentially ignore the constrains and rely on
2434 predicates, where the rl78-real.md ones essentially ignore the
2435 predicates and rely on the constraints.
2436 
2437 The devirtualization pass is scheduled via the pass manager (despite
2438 being called "rl78_reorg") so it can be scheduled prior to var-track
2439 (the idea is to let gdb know about the new registers).  Ideally, it
2440 would be scheduled right after pro/epilogue generation, so the
2441 post-reload optimizers could operate on the real registers, but when I
2442 tried that there were some issues building the target libraries.
2443 
2444 During devirtualization, a simple register move optimizer is run.  It
2445 would be better to run a full CSE/propogation pass on it though, but
2446 that has not yet been attempted.
2447 
2448  */
2449 #define DEBUG_ALLOC 0
2450 
2451 #define OP(x) (*recog_data.operand_loc[x])
2452 
2453 /* This array is used to hold knowledge about the contents of the
2454    real registers (A ... H), the memory-based registers (r8 ... r31)
2455    and the first NUM_STACK_LOCS words on the stack.  We use this to
2456    avoid generating redundant move instructions.
2457 
2458    A value in the range 0 .. 31 indicates register A .. r31.
2459    A value in the range 32 .. 63 indicates stack slot (value - 32).
2460    A value of NOT_KNOWN indicates that the contents of that location
2461    are not known.  */
2462 
2463 #define NUM_STACK_LOCS	32
2464 #define NOT_KNOWN       127
2465 
2466 static unsigned char content_memory [32 + NUM_STACK_LOCS];
2467 
2468 static unsigned char saved_update_index = NOT_KNOWN;
2469 static unsigned char saved_update_value;
2470 static machine_mode saved_update_mode;
2471 
2472 
2473 static inline void
clear_content_memory(void)2474 clear_content_memory (void)
2475 {
2476   memset (content_memory, NOT_KNOWN, sizeof content_memory);
2477   if (dump_file)
2478     fprintf (dump_file, "  clear content memory\n");
2479   saved_update_index = NOT_KNOWN;
2480 }
2481 
2482 /* Convert LOC into an index into the content_memory array.
2483    If LOC cannot be converted, return NOT_KNOWN.  */
2484 
2485 static unsigned char
get_content_index(rtx loc)2486 get_content_index (rtx loc)
2487 {
2488   machine_mode mode;
2489 
2490   if (loc == NULL_RTX)
2491     return NOT_KNOWN;
2492 
2493   if (REG_P (loc))
2494     {
2495       if (REGNO (loc) < 32)
2496 	return REGNO (loc);
2497       return NOT_KNOWN;
2498     }
2499 
2500   mode = GET_MODE (loc);
2501 
2502   if (! rl78_stack_based_mem (loc, mode))
2503     return NOT_KNOWN;
2504 
2505   loc = XEXP (loc, 0);
2506 
2507   if (REG_P (loc))
2508     /* loc = MEM (SP) */
2509     return 32;
2510 
2511   /* loc = MEM (PLUS (SP, INT)).  */
2512   loc = XEXP (loc, 1);
2513 
2514   if (INTVAL (loc) < NUM_STACK_LOCS)
2515     return 32 + INTVAL (loc);
2516 
2517   return NOT_KNOWN;
2518 }
2519 
2520 /* Return a string describing content INDEX in mode MODE.
2521    WARNING: Can return a pointer to a static buffer.  */
2522 static const char *
get_content_name(unsigned char index,machine_mode mode)2523 get_content_name (unsigned char index, machine_mode mode)
2524 {
2525   static char buffer [128];
2526 
2527   if (index == NOT_KNOWN)
2528     return "Unknown";
2529 
2530   if (index > 31)
2531     sprintf (buffer, "stack slot %d", index - 32);
2532   else if (mode == HImode)
2533     sprintf (buffer, "%s%s",
2534 	     reg_names [index + 1], reg_names [index]);
2535   else
2536     return reg_names [index];
2537 
2538   return buffer;
2539 }
2540 
2541 #if DEBUG_ALLOC
2542 
2543 static void
display_content_memory(FILE * file)2544 display_content_memory (FILE * file)
2545 {
2546   unsigned int i;
2547 
2548   fprintf (file, " Known memory contents:\n");
2549 
2550   for (i = 0; i < sizeof content_memory; i++)
2551     if (content_memory[i] != NOT_KNOWN)
2552       {
2553 	fprintf (file, "   %s contains a copy of ", get_content_name (i, QImode));
2554 	fprintf (file, "%s\n", get_content_name (content_memory [i], QImode));
2555       }
2556 }
2557 #endif
2558 
2559 static void
update_content(unsigned char index,unsigned char val,machine_mode mode)2560 update_content (unsigned char index, unsigned char val, machine_mode mode)
2561 {
2562   unsigned int i;
2563 
2564   gcc_assert (index < sizeof content_memory);
2565 
2566   content_memory [index] = val;
2567   if (val != NOT_KNOWN)
2568     content_memory [val] = index;
2569 
2570   /* Make the entry in dump_file *before* VAL is increased below.  */
2571   if (dump_file)
2572     {
2573       fprintf (dump_file, "  %s now contains ", get_content_name (index, mode));
2574       if (val == NOT_KNOWN)
2575 	fprintf (dump_file, "Unknown\n");
2576       else
2577 	fprintf (dump_file, "%s and vice versa\n", get_content_name (val, mode));
2578     }
2579 
2580   if (mode == HImode)
2581     {
2582       val = val == NOT_KNOWN ? val : val + 1;
2583 
2584       content_memory [index + 1] = val;
2585       if (val != NOT_KNOWN)
2586 	{
2587 	  content_memory [val] = index + 1;
2588 	  -- val;
2589 	}
2590     }
2591 
2592   /* Any other places that had INDEX recorded as their contents are now invalid.  */
2593   for (i = 0; i < sizeof content_memory; i++)
2594     {
2595       if (i == index
2596 	  || (val != NOT_KNOWN && i == val))
2597 	{
2598 	  if (mode == HImode)
2599 	    ++ i;
2600 	  continue;
2601 	}
2602 
2603       if (content_memory[i] == index
2604 	  || (val != NOT_KNOWN && content_memory[i] == val))
2605 	{
2606 	  content_memory[i] = NOT_KNOWN;
2607 
2608 	  if (dump_file)
2609 	    fprintf (dump_file, "  %s cleared\n", get_content_name (i, mode));
2610 
2611 	  if (mode == HImode)
2612 	    content_memory[++ i] = NOT_KNOWN;
2613 	}
2614     }
2615 }
2616 
2617 /* Record that LOC contains VALUE.
2618    For HImode locations record that LOC+1 contains VALUE+1.
2619    If LOC is not a register or stack slot, do nothing.
2620    If VALUE is not a register or stack slot, clear the recorded content.  */
2621 
2622 static void
record_content(rtx loc,rtx value)2623 record_content (rtx loc, rtx value)
2624 {
2625   machine_mode mode;
2626   unsigned char index;
2627   unsigned char val;
2628 
2629   if ((index = get_content_index (loc)) == NOT_KNOWN)
2630     return;
2631 
2632   val = get_content_index (value);
2633 
2634   mode = GET_MODE (loc);
2635 
2636   if (val == index)
2637     {
2638       if (! optimize)
2639 	return;
2640 
2641       /* This should not happen when optimizing.  */
2642 #if 1
2643       fprintf (stderr, "ASSIGNMENT of location to itself detected! [%s]\n",
2644 	       get_content_name (val, mode));
2645       return;
2646 #else
2647       gcc_unreachable ();
2648 #endif
2649     }
2650 
2651   update_content (index, val, mode);
2652 }
2653 
2654 /* Returns TRUE if LOC already contains a copy of VALUE.  */
2655 
2656 static bool
already_contains(rtx loc,rtx value)2657 already_contains (rtx loc, rtx value)
2658 {
2659   unsigned char index;
2660   unsigned char val;
2661 
2662   if ((index = get_content_index (loc)) == NOT_KNOWN)
2663     return false;
2664 
2665   if ((val = get_content_index (value)) == NOT_KNOWN)
2666     return false;
2667 
2668   if (content_memory [index] != val)
2669     return false;
2670 
2671   if (GET_MODE (loc) == HImode)
2672     return content_memory [index + 1] == val + 1;
2673 
2674   return true;
2675 }
2676 
2677 bool
rl78_es_addr(rtx addr)2678 rl78_es_addr (rtx addr)
2679 {
2680   if (GET_CODE (addr) == MEM)
2681     addr = XEXP (addr, 0);
2682   if (GET_CODE (addr) != UNSPEC)
2683     return false;
2684   if (XINT (addr, 1) != UNS_ES_ADDR)
2685     return false;
2686   return true;
2687 }
2688 
2689 rtx
rl78_es_base(rtx addr)2690 rl78_es_base (rtx addr)
2691 {
2692   if (GET_CODE (addr) == MEM)
2693     addr = XEXP (addr, 0);
2694   addr = XVECEXP (addr, 0, 1);
2695   if (GET_CODE (addr) == CONST
2696       && GET_CODE (XEXP (addr, 0)) == ZERO_EXTRACT)
2697     addr = XEXP (XEXP (addr, 0), 0);
2698   /* Mode doesn't matter here.  */
2699   return gen_rtx_MEM (HImode, addr);
2700 }
2701 
2702 /* Rescans an insn to see if it's recognized again.  This is done
2703    carefully to ensure that all the constraint information is accurate
2704    for the newly matched insn.  */
2705 static bool
insn_ok_now(rtx_insn * insn)2706 insn_ok_now (rtx_insn * insn)
2707 {
2708   rtx pattern = PATTERN (insn);
2709   int i;
2710 
2711   INSN_CODE (insn) = -1;
2712 
2713   if (recog (pattern, insn, 0) > -1)
2714     {
2715       extract_insn (insn);
2716       if (constrain_operands (1, get_preferred_alternatives (insn)))
2717 	{
2718 #if DEBUG_ALLOC
2719 	  fprintf (stderr, "\033[32m");
2720 	  debug_rtx (insn);
2721 	  fprintf (stderr, "\033[0m");
2722 #endif
2723 	  if (SET_P (pattern))
2724 	    record_content (SET_DEST (pattern), SET_SRC (pattern));
2725 
2726 	  /* We need to detect far addresses that haven't been
2727 	     converted to es/lo16 format.  */
2728 	  for (i=0; i<recog_data.n_operands; i++)
2729 	    if (GET_CODE (OP (i)) == MEM
2730 		&& GET_MODE (XEXP (OP (i), 0)) == SImode
2731 		&& GET_CODE (XEXP (OP (i), 0)) != UNSPEC)
2732 	      goto not_ok;
2733 
2734 	  return true;
2735 	}
2736     }
2737 
2738   /* INSN is not OK as-is.  It may not be recognized in real mode or
2739      it might not have satisfied its constraints in real mode.  Either
2740      way it will require fixups.
2741 
2742      It is vital we always re-recognize at this point as some insns
2743      have fewer operands in real mode than virtual mode.  If we do
2744      not re-recognize, then the recog_data will refer to real mode
2745      operands and we may read invalid data.  Usually this isn't a
2746      problem, but once in a while the data we read is bogus enough
2747      to cause a segfault or other undesirable behavior.  */
2748  not_ok:
2749 
2750   /* We need to re-recog the insn with virtual registers to get
2751      the operands.  */
2752     INSN_CODE (insn) = -1;
2753     cfun->machine->virt_insns_ok = 1;
2754     if (recog (pattern, insn, 0) > -1)
2755       {
2756 	extract_insn (insn);
2757 	/* In theory this should always be true.  */
2758 	if (constrain_operands (0, get_preferred_alternatives (insn)))
2759 	  {
2760 	    cfun->machine->virt_insns_ok = 0;
2761 	    return false;
2762 	  }
2763       }
2764 
2765 #if DEBUG_ALLOC
2766   fprintf (stderr, "\033[41;30m Unrecognized *virtual* insn \033[0m\n");
2767   debug_rtx (insn);
2768 #endif
2769   gcc_unreachable ();
2770   return false;
2771 }
2772 
2773 #if DEBUG_ALLOC
2774 #define WORKED      fprintf (stderr, "\033[48;5;22m Worked at line %d \033[0m\n", __LINE__)
2775 #define FAILEDSOFAR fprintf (stderr, "\033[48;5;52m FAILED at line %d \033[0m\n", __LINE__)
2776 #define FAILED      fprintf (stderr, "\033[48;5;52m FAILED at line %d \033[0m\n", __LINE__), gcc_unreachable ()
2777 #define MAYBE_OK(insn) if (insn_ok_now (insn)) { WORKED; return; } else { FAILEDSOFAR; }
2778 #define MUST_BE_OK(insn) if (insn_ok_now (insn)) { WORKED; return; } FAILED
2779 #else
2780 #define FAILED gcc_unreachable ()
2781 #define MAYBE_OK(insn) if (insn_ok_now (insn)) return;
2782 #define MUST_BE_OK(insn) if (insn_ok_now (insn)) return; FAILED
2783 #endif
2784 
2785 /* Registers into which we move the contents of virtual registers.  */
2786 #define X gen_rtx_REG (QImode, X_REG)
2787 #define A gen_rtx_REG (QImode, A_REG)
2788 #define C gen_rtx_REG (QImode, C_REG)
2789 #define B gen_rtx_REG (QImode, B_REG)
2790 #define E gen_rtx_REG (QImode, E_REG)
2791 #define D gen_rtx_REG (QImode, D_REG)
2792 #define L gen_rtx_REG (QImode, L_REG)
2793 #define H gen_rtx_REG (QImode, H_REG)
2794 
2795 #define AX gen_rtx_REG (HImode, AX_REG)
2796 #define BC gen_rtx_REG (HImode, BC_REG)
2797 #define DE gen_rtx_REG (HImode, DE_REG)
2798 #define HL gen_rtx_REG (HImode, HL_REG)
2799 
2800 /* Returns TRUE if R is a virtual register.  */
2801 static inline bool
is_virtual_register(rtx r)2802 is_virtual_register (rtx r)
2803 {
2804   return (GET_CODE (r) == REG
2805 	  && REGNO (r) >= 8
2806 	  && REGNO (r) < 32);
2807 }
2808 
2809 /* In all these alloc routines, we expect the following: the insn
2810    pattern is unshared, the insn was previously recognized and failed
2811    due to predicates or constraints, and the operand data is in
2812    recog_data.  */
2813 
2814 static int virt_insn_was_frame;
2815 
2816 /* Hook for all insns we emit.  Re-mark them as FRAME_RELATED if
2817    needed.  */
2818 static rtx
EM2(int line ATTRIBUTE_UNUSED,rtx r)2819 EM2 (int line ATTRIBUTE_UNUSED, rtx r)
2820 {
2821 #if DEBUG_ALLOC
2822   fprintf (stderr, "\033[36m%d: ", line);
2823   debug_rtx (r);
2824   fprintf (stderr, "\033[0m");
2825 #endif
2826   /*SCHED_GROUP_P (r) = 1;*/
2827   if (virt_insn_was_frame)
2828     RTX_FRAME_RELATED_P (r) = 1;
2829   return r;
2830 }
2831 
2832 #define EM(x) EM2 (__LINE__, x)
2833 
2834 /* Return a suitable RTX for the low half of a __far address.  */
2835 static rtx
rl78_lo16(rtx addr)2836 rl78_lo16 (rtx addr)
2837 {
2838   rtx r;
2839 
2840   if (GET_CODE (addr) == SYMBOL_REF
2841       || GET_CODE (addr) == CONST)
2842     {
2843       r = gen_rtx_ZERO_EXTRACT (HImode, addr, GEN_INT (16), GEN_INT (0));
2844       r = gen_rtx_CONST (HImode, r);
2845     }
2846   else
2847     r = rl78_subreg (HImode, addr, SImode, 0);
2848 
2849   r = gen_es_addr (r);
2850   cfun->machine->uses_es = true;
2851 
2852   return r;
2853 }
2854 
2855 /* Return a suitable RTX for the high half's lower byte of a __far address.  */
2856 static rtx
rl78_hi8(rtx addr)2857 rl78_hi8 (rtx addr)
2858 {
2859   if (GET_CODE (addr) == SYMBOL_REF
2860       || GET_CODE (addr) == CONST)
2861     {
2862       rtx r = gen_rtx_ZERO_EXTRACT (QImode, addr, GEN_INT (8), GEN_INT (16));
2863       r = gen_rtx_CONST (QImode, r);
2864       return r;
2865     }
2866   return rl78_subreg (QImode, addr, SImode, 2);
2867 }
2868 
2869 static void
add_postponed_content_update(rtx to,rtx value)2870 add_postponed_content_update (rtx to, rtx value)
2871 {
2872   unsigned char index;
2873 
2874   if ((index = get_content_index (to)) == NOT_KNOWN)
2875     return;
2876 
2877   gcc_assert (saved_update_index == NOT_KNOWN);
2878   saved_update_index = index;
2879   saved_update_value = get_content_index (value);
2880   saved_update_mode  = GET_MODE (to);
2881 }
2882 
2883 static void
process_postponed_content_update(void)2884 process_postponed_content_update (void)
2885 {
2886   if (saved_update_index != NOT_KNOWN)
2887     {
2888       update_content (saved_update_index, saved_update_value, saved_update_mode);
2889       saved_update_index = NOT_KNOWN;
2890     }
2891 }
2892 
2893 /* Generate and emit a move of (register) FROM into TO.  if WHERE is not NULL
2894    then if BEFORE is true then emit the insn before WHERE, otherwise emit it
2895    after WHERE.  If TO already contains FROM then do nothing.  Returns TO if
2896    BEFORE is true, FROM otherwise.  */
2897 static rtx
gen_and_emit_move(rtx to,rtx from,rtx_insn * where,bool before)2898 gen_and_emit_move (rtx to, rtx from, rtx_insn *where, bool before)
2899 {
2900   machine_mode mode = GET_MODE (to);
2901 
2902   if (optimize && before && already_contains (to, from))
2903     {
2904 #if DEBUG_ALLOC
2905       display_content_memory (stderr);
2906 #endif
2907       if (dump_file)
2908 	{
2909 	  fprintf (dump_file, " Omit move of %s into ",
2910 		   get_content_name (get_content_index (from), mode));
2911 	  fprintf (dump_file, "%s as it already contains this value\n",
2912 		   get_content_name (get_content_index (to), mode));
2913 	}
2914     }
2915   else
2916     {
2917       rtx move = mode == QImode ? gen_movqi (to, from) : gen_movhi (to, from);
2918 
2919       EM (move);
2920 
2921       if (where == NULL_RTX)
2922 	emit_insn (move);
2923       else if (before)
2924 	emit_insn_before (move, where);
2925       else
2926 	{
2927 	  rtx note = find_reg_note (where, REG_EH_REGION, NULL_RTX);
2928 
2929 	  /* If necessary move REG_EH_REGION notes forward.
2930 	     cf. compiling gcc.dg/pr44545.c.  */
2931 	  if (note != NULL_RTX)
2932 	    {
2933 	      add_reg_note (move, REG_EH_REGION, XEXP (note, 0));
2934 	      remove_note (where, note);
2935 	    }
2936 
2937 	  emit_insn_after (move, where);
2938 	}
2939 
2940       if (before)
2941 	record_content (to, from);
2942       else
2943 	add_postponed_content_update (to, from);
2944     }
2945 
2946   return before ? to : from;
2947 }
2948 
2949 /* If M is MEM(REG) or MEM(PLUS(REG,INT)) and REG is virtual then
2950    copy it into NEWBASE and return the updated MEM.  Otherwise just
2951    return M.  Any needed insns are emitted before BEFORE.  */
2952 static rtx
transcode_memory_rtx(rtx m,rtx newbase,rtx_insn * before)2953 transcode_memory_rtx (rtx m, rtx newbase, rtx_insn *before)
2954 {
2955   rtx base, index, addendr;
2956   int addend = 0;
2957   int need_es = 0;
2958 
2959   if (! MEM_P (m))
2960     return m;
2961 
2962   if (GET_MODE (XEXP (m, 0)) == SImode)
2963     {
2964       rtx new_m;
2965       rtx seg = rl78_hi8 (XEXP (m, 0));
2966 
2967       if (!TARGET_ES0)
2968 	{
2969           emit_insn_before (EM (gen_movqi (A, seg)), before);
2970           emit_insn_before (EM (gen_movqi_to_es (A)), before);
2971         }
2972 
2973       record_content (A, NULL_RTX);
2974 
2975       new_m = gen_rtx_MEM (GET_MODE (m), rl78_lo16 (XEXP (m, 0)));
2976       MEM_COPY_ATTRIBUTES (new_m, m);
2977       m = new_m;
2978       need_es = 1;
2979     }
2980 
2981   characterize_address (XEXP (m, 0), & base, & index, & addendr);
2982   gcc_assert (index == NULL_RTX);
2983 
2984   if (base == NULL_RTX)
2985     return m;
2986 
2987   if (addendr && GET_CODE (addendr) == CONST_INT)
2988     addend = INTVAL (addendr);
2989 
2990   gcc_assert (REG_P (base));
2991   gcc_assert (REG_P (newbase));
2992 
2993   int limit = 256 - GET_MODE_SIZE (GET_MODE (m));
2994 
2995   if (REGNO (base) == SP_REG)
2996     {
2997       if (addend >= 0 && addend <= limit)
2998 	return m;
2999     }
3000 
3001   /* BASE should be a virtual register.  We copy it to NEWBASE.  If
3002      the addend is out of range for DE/HL, we use AX to compute the full
3003      address.  */
3004 
3005   if (addend < 0
3006       || (addend > limit && REGNO (newbase) != BC_REG)
3007       || (addendr
3008 	  && (GET_CODE (addendr) != CONST_INT)
3009 	  && ((REGNO (newbase) != BC_REG))
3010 	  ))
3011     {
3012       /* mov ax, vreg
3013 	 add ax, #imm
3014 	 mov hl, ax	*/
3015       EM (emit_insn_before (gen_movhi (AX, base), before));
3016       EM (emit_insn_before (gen_addhi3 (AX, AX, addendr), before));
3017       EM (emit_insn_before (gen_movhi (newbase, AX), before));
3018       record_content (AX, NULL_RTX);
3019       record_content (newbase, NULL_RTX);
3020 
3021       base = newbase;
3022       addend = 0;
3023       addendr = 0;
3024     }
3025   else
3026     {
3027       base = gen_and_emit_move (newbase, base, before, true);
3028     }
3029 
3030   if (addend)
3031     {
3032       record_content (base, NULL_RTX);
3033       base = gen_rtx_PLUS (HImode, base, GEN_INT (addend));
3034     }
3035   else if (addendr)
3036     {
3037       record_content (base, NULL_RTX);
3038       base = gen_rtx_PLUS (HImode, base, addendr);
3039     }
3040 
3041   if (need_es)
3042     {
3043       m = change_address (m, GET_MODE (m), gen_es_addr (base));
3044       cfun->machine->uses_es = true;
3045     }
3046   else
3047     m = change_address (m, GET_MODE (m), base);
3048   return m;
3049 }
3050 
3051 /* Copy SRC to accumulator (A or AX), placing any generated insns
3052    before BEFORE.  Returns accumulator RTX.  */
3053 static rtx
move_to_acc(int opno,rtx_insn * before)3054 move_to_acc (int opno, rtx_insn *before)
3055 {
3056   rtx src = OP (opno);
3057   machine_mode mode = GET_MODE (src);
3058 
3059   if (REG_P (src) && REGNO (src) < 2)
3060     return src;
3061 
3062   if (mode == VOIDmode)
3063     mode = recog_data.operand_mode[opno];
3064 
3065   return gen_and_emit_move (mode == QImode ? A : AX, src, before, true);
3066 }
3067 
3068 static void
force_into_acc(rtx src,rtx_insn * before)3069 force_into_acc (rtx src, rtx_insn *before)
3070 {
3071   machine_mode mode = GET_MODE (src);
3072   rtx move;
3073 
3074   if (REG_P (src) && REGNO (src) < 2)
3075     return;
3076 
3077   move = mode == QImode ? gen_movqi (A, src) : gen_movhi (AX, src);
3078 
3079   EM (move);
3080 
3081   emit_insn_before (move, before);
3082   record_content (AX, NULL_RTX);
3083 }
3084 
3085 /* Copy accumulator (A or AX) to DEST, placing any generated insns
3086    after AFTER.  Returns accumulator RTX.  */
3087 static rtx
move_from_acc(unsigned int opno,rtx_insn * after)3088 move_from_acc (unsigned int opno, rtx_insn *after)
3089 {
3090   rtx dest = OP (opno);
3091   machine_mode mode = GET_MODE (dest);
3092 
3093   if (REG_P (dest) && REGNO (dest) < 2)
3094     return dest;
3095 
3096   return gen_and_emit_move (dest, mode == QImode ? A : AX, after, false);
3097 }
3098 
3099 /* Copy accumulator (A or AX) to REGNO, placing any generated insns
3100    before BEFORE.  Returns reg RTX.  */
3101 static rtx
move_acc_to_reg(rtx acc,int regno,rtx_insn * before)3102 move_acc_to_reg (rtx acc, int regno, rtx_insn *before)
3103 {
3104   machine_mode mode = GET_MODE (acc);
3105   rtx reg;
3106 
3107   reg = gen_rtx_REG (mode, regno);
3108 
3109   return gen_and_emit_move (reg, acc, before, true);
3110 }
3111 
3112 /* Copy SRC to X, placing any generated insns before BEFORE.
3113    Returns X RTX.  */
3114 static rtx
move_to_x(int opno,rtx_insn * before)3115 move_to_x (int opno, rtx_insn *before)
3116 {
3117   rtx src = OP (opno);
3118   machine_mode mode = GET_MODE (src);
3119   rtx reg;
3120 
3121   if (mode == VOIDmode)
3122     mode = recog_data.operand_mode[opno];
3123   reg = (mode == QImode) ? X : AX;
3124 
3125   if (mode == QImode || ! is_virtual_register (OP (opno)))
3126     {
3127       OP (opno) = move_to_acc (opno, before);
3128       OP (opno) = move_acc_to_reg (OP (opno), X_REG, before);
3129       return reg;
3130     }
3131 
3132   return gen_and_emit_move (reg, src, before, true);
3133 }
3134 
3135 /* Copy OP (opno) to H or HL, placing any generated insns before BEFORE.
3136    Returns H/HL RTX.  */
3137 static rtx
move_to_hl(int opno,rtx_insn * before)3138 move_to_hl (int opno, rtx_insn *before)
3139 {
3140   rtx src = OP (opno);
3141   machine_mode mode = GET_MODE (src);
3142   rtx reg;
3143 
3144   if (mode == VOIDmode)
3145     mode = recog_data.operand_mode[opno];
3146   reg = (mode == QImode) ? L : HL;
3147 
3148   if (mode == QImode || ! is_virtual_register (OP (opno)))
3149     {
3150       OP (opno) = move_to_acc (opno, before);
3151       OP (opno) = move_acc_to_reg (OP (opno), L_REG, before);
3152       return reg;
3153     }
3154 
3155   return gen_and_emit_move (reg, src, before, true);
3156 }
3157 
3158 /* Copy OP (opno) to E or DE, placing any generated insns before BEFORE.
3159    Returns E/DE RTX.  */
3160 static rtx
move_to_de(int opno,rtx_insn * before)3161 move_to_de (int opno, rtx_insn *before)
3162 {
3163   rtx src = OP (opno);
3164   machine_mode mode = GET_MODE (src);
3165   rtx reg;
3166 
3167   if (mode == VOIDmode)
3168     mode = recog_data.operand_mode[opno];
3169 
3170   reg = (mode == QImode) ? E : DE;
3171 
3172   if (mode == QImode || ! is_virtual_register (OP (opno)))
3173     {
3174       OP (opno) = move_to_acc (opno, before);
3175       OP (opno) = move_acc_to_reg (OP (opno), E_REG, before);
3176     }
3177   else
3178     {
3179       gen_and_emit_move (reg, src, before, true);
3180     }
3181 
3182   return reg;
3183 }
3184 
3185 /* Devirtualize an insn of the form (SET (op) (unop (op))).  */
3186 static void
rl78_alloc_physical_registers_op1(rtx_insn * insn)3187 rl78_alloc_physical_registers_op1 (rtx_insn * insn)
3188 {
3189   /* op[0] = func op[1] */
3190 
3191   /* We first try using A as the destination, then copying it
3192      back.  */
3193   if (rtx_equal_p (OP (0), OP (1)))
3194     {
3195       OP (0) =
3196       OP (1) = transcode_memory_rtx (OP (1), DE, insn);
3197     }
3198   else
3199     {
3200       /* If necessary, load the operands into BC and HL.
3201 	 Check to see if we already have OP (0) in HL
3202 	 and if so, swap the order.
3203 
3204 	 It is tempting to perform this optimization when OP(0) does
3205 	 not hold a MEM, but this leads to bigger code in general.
3206 	 The problem is that if OP(1) holds a MEM then swapping it
3207 	 into BC means a BC-relative load is used and these are 3
3208 	 bytes long vs 1 byte for an HL load.  */
3209       if (MEM_P (OP (0))
3210 	  && already_contains (HL, XEXP (OP (0), 0)))
3211 	{
3212 	  OP (0) = transcode_memory_rtx (OP (0), HL, insn);
3213 	  OP (1) = transcode_memory_rtx (OP (1), BC, insn);
3214 	}
3215       else
3216 	{
3217 	  OP (0) = transcode_memory_rtx (OP (0), BC, insn);
3218 	  OP (1) = transcode_memory_rtx (OP (1), HL, insn);
3219 	}
3220     }
3221 
3222   MAYBE_OK (insn);
3223 
3224   OP (0) = move_from_acc (0, insn);
3225 
3226   MAYBE_OK (insn);
3227 
3228   /* Try copying the src to acc first, then.  This is for, for
3229      example, ZERO_EXTEND or NOT.  */
3230   OP (1) = move_to_acc (1, insn);
3231 
3232   MUST_BE_OK (insn);
3233 }
3234 
3235 /* Returns true if operand OPNUM contains a constraint of type CONSTRAINT.
3236    Assumes that the current insn has already been recognised and hence the
3237    constraint data has been filled in.  */
3238 static bool
has_constraint(unsigned int opnum,enum constraint_num constraint)3239 has_constraint (unsigned int opnum, enum constraint_num constraint)
3240 {
3241   const char * p = recog_data.constraints[opnum];
3242 
3243   /* No constraints means anything is accepted.  */
3244   if (p == NULL || *p == 0 || *p == ',')
3245     return true;
3246 
3247   do
3248     {
3249       char c;
3250       unsigned int len;
3251 
3252       c = *p;
3253       len = CONSTRAINT_LEN (c, p);
3254       gcc_assert (len > 0);
3255 
3256       switch (c)
3257 	{
3258 	case 0:
3259 	case ',':
3260 	  return false;
3261 	default:
3262 	  if (lookup_constraint (p) == constraint)
3263 	    return true;
3264 	}
3265       p += len;
3266     }
3267   while (1);
3268 }
3269 
3270 /* Devirtualize an insn of the form (SET (op) (binop (op) (op))).  */
3271 static void
rl78_alloc_physical_registers_op2(rtx_insn * insn)3272 rl78_alloc_physical_registers_op2 (rtx_insn * insn)
3273 {
3274   rtx_insn *prev;
3275   rtx_insn *first;
3276   bool hl_used;
3277   int tmp_id;
3278   rtx saved_op1;
3279 
3280   if (rtx_equal_p (OP (0), OP (1)))
3281     {
3282       if (MEM_P (OP (2)))
3283 	{
3284 	  OP (0) =
3285 	  OP (1) = transcode_memory_rtx (OP (1), DE, insn);
3286 	  OP (2) = transcode_memory_rtx (OP (2), HL, insn);
3287 	}
3288       else
3289 	{
3290 	  OP (0) =
3291 	  OP (1) = transcode_memory_rtx (OP (1), HL, insn);
3292 	  OP (2) = transcode_memory_rtx (OP (2), DE, insn);
3293 	}
3294     }
3295   else if (rtx_equal_p (OP (0), OP (2)))
3296     {
3297       OP (1) = transcode_memory_rtx (OP (1), DE, insn);
3298       OP (0) =
3299       OP (2) = transcode_memory_rtx (OP (2), HL, insn);
3300     }
3301   else
3302     {
3303       OP (0) = transcode_memory_rtx (OP (0), BC, insn);
3304       OP (1) = transcode_memory_rtx (OP (1), DE, insn);
3305       OP (2) = transcode_memory_rtx (OP (2), HL, insn);
3306     }
3307 
3308   MAYBE_OK (insn);
3309 
3310   prev = prev_nonnote_nondebug_insn (insn);
3311   if (recog_data.constraints[1][0] == '%'
3312       && is_virtual_register (OP (1))
3313       && ! is_virtual_register (OP (2))
3314       && ! CONSTANT_P (OP (2)))
3315     {
3316       rtx tmp = OP (1);
3317       OP (1) = OP (2);
3318       OP (2) = tmp;
3319     }
3320 
3321   /* Make a note of whether (H)L is being used.  It matters
3322      because if OP (2) also needs reloading, then we must take
3323      care not to corrupt HL.  */
3324   hl_used = reg_mentioned_p (L, OP (0)) || reg_mentioned_p (L, OP (1));
3325 
3326   /* If HL is not currently being used and dest == op1 then there are
3327      some possible optimizations available by reloading one of the
3328      operands into HL, before trying to use the accumulator.  */
3329   if (optimize
3330       && ! hl_used
3331       && rtx_equal_p (OP (0), OP (1)))
3332     {
3333       /* If op0 is a Ws1 type memory address then switching the base
3334 	 address register to HL might allow us to perform an in-memory
3335 	 operation.  (eg for the INCW instruction).
3336 
3337 	 FIXME: Adding the move into HL is costly if this optimization is not
3338 	 going to work, so for now, make sure that we know that the new insn will
3339 	 match the requirements of the addhi3_real pattern.  Really we ought to
3340 	 generate a candidate sequence, test that, and then install it if the
3341 	 results are good.  */
3342       if (satisfies_constraint_Ws1 (OP (0))
3343 	  && has_constraint (0, CONSTRAINT_Wh1)
3344 	  && (satisfies_constraint_K (OP (2)) || satisfies_constraint_L (OP (2))))
3345 	{
3346 	  rtx base, index, addend, newbase;
3347 
3348 	  characterize_address (XEXP (OP (0), 0), & base, & index, & addend);
3349 	  gcc_assert (index == NULL_RTX);
3350 	  gcc_assert (REG_P (base) && REGNO (base) == SP_REG);
3351 
3352 	  /* Ws1 addressing allows an offset of 0, Wh1 addressing requires a non-zero offset.  */
3353 	  if (addend != NULL_RTX)
3354 	    {
3355 	      newbase = gen_and_emit_move (HL, base, insn, true);
3356 	      record_content (newbase, NULL_RTX);
3357 	      newbase = gen_rtx_PLUS (HImode, newbase, addend);
3358 
3359 	      OP (0) = OP (1) = change_address (OP (0), VOIDmode, newbase);
3360 
3361 	      /* We do not want to fail here as this means that
3362 		 we have inserted useless insns into the stream.  */
3363 	      MUST_BE_OK (insn);
3364 	    }
3365 	}
3366       else if (REG_P (OP (0))
3367 	       && satisfies_constraint_Ws1 (OP (2))
3368 	       && has_constraint (2, CONSTRAINT_Wh1))
3369 	{
3370 	  rtx base, index, addend, newbase;
3371 
3372 	  characterize_address (XEXP (OP (2), 0), & base, & index, & addend);
3373 	  gcc_assert (index == NULL_RTX);
3374 	  gcc_assert (REG_P (base) && REGNO (base) == SP_REG);
3375 
3376 	  /* Ws1 addressing allows an offset of 0, Wh1 addressing requires a non-zero offset.  */
3377 	  if (addend != NULL_RTX)
3378 	    {
3379 	      gen_and_emit_move (HL, base, insn, true);
3380 
3381 	      if (REGNO (OP (0)) != X_REG)
3382 		{
3383 		  OP (1) = move_to_acc (1, insn);
3384 		  OP (0) = move_from_acc (0, insn);
3385 		}
3386 
3387 	      record_content (HL, NULL_RTX);
3388 	      newbase = gen_rtx_PLUS (HImode, HL, addend);
3389 
3390 	      OP (2) = change_address (OP (2), VOIDmode, newbase);
3391 
3392 	      /* We do not want to fail here as this means that
3393 		 we have inserted useless insns into the stream.  */
3394 	      MUST_BE_OK (insn);
3395 	    }
3396 	}
3397     }
3398 
3399   OP (0) = move_from_acc (0, insn);
3400 
3401   tmp_id = get_max_insn_count ();
3402   saved_op1 = OP (1);
3403 
3404   if (rtx_equal_p (OP (1), OP (2)))
3405     OP (2) = OP (1) = move_to_acc (1, insn);
3406   else
3407     OP (1) = move_to_acc (1, insn);
3408 
3409   MAYBE_OK (insn);
3410 
3411   /* If we omitted the move of OP1 into the accumulator (because
3412      it was already there from a previous insn), then force the
3413      generation of the move instruction now.  We know that we
3414      are about to emit a move into HL (or DE) via AX, and hence
3415      our optimization to remove the load of OP1 is no longer valid.  */
3416   if (tmp_id == get_max_insn_count ())
3417     force_into_acc (saved_op1, insn);
3418 
3419   /* We have to copy op2 to HL (or DE), but that involves AX, which
3420      already has a live value.  Emit it before those insns.  */
3421 
3422   if (prev)
3423     first = next_nonnote_nondebug_insn (prev);
3424   else
3425     for (first = insn; prev_nonnote_nondebug_insn (first); first = prev_nonnote_nondebug_insn (first))
3426       ;
3427 
3428   OP (2) = hl_used ? move_to_de (2, first) : move_to_hl (2, first);
3429 
3430   MUST_BE_OK (insn);
3431 }
3432 
3433 /* Devirtualize an insn of the form SET (PC) (MEM/REG).  */
3434 static void
rl78_alloc_physical_registers_ro1(rtx_insn * insn)3435 rl78_alloc_physical_registers_ro1 (rtx_insn * insn)
3436 {
3437   OP (0) = transcode_memory_rtx (OP (0), BC, insn);
3438 
3439   MAYBE_OK (insn);
3440 
3441   OP (0) = move_to_acc (0, insn);
3442 
3443   MUST_BE_OK (insn);
3444 }
3445 
3446 /* Devirtualize a compare insn.  */
3447 static void
rl78_alloc_physical_registers_cmp(rtx_insn * insn)3448 rl78_alloc_physical_registers_cmp (rtx_insn * insn)
3449 {
3450   int tmp_id;
3451   rtx saved_op1;
3452   rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3453   rtx_insn *first;
3454 
3455   OP (1) = transcode_memory_rtx (OP (1), DE, insn);
3456   OP (2) = transcode_memory_rtx (OP (2), HL, insn);
3457 
3458   /* HI compares have to have OP (1) in AX, but QI
3459      compares do not, so it is worth checking here.  */
3460   MAYBE_OK (insn);
3461 
3462   /* For an HImode compare, OP (1) must always be in AX.
3463      But if OP (1) is a REG (and not AX), then we can avoid
3464      a reload of OP (1) if we reload OP (2) into AX and invert
3465      the comparison.  */
3466   if (REG_P (OP (1))
3467       && REGNO (OP (1)) != AX_REG
3468       && GET_MODE (OP (1)) == HImode
3469       && MEM_P (OP (2)))
3470     {
3471       rtx cmp = XEXP (SET_SRC (PATTERN (insn)), 0);
3472 
3473       OP (2) = move_to_acc (2, insn);
3474 
3475       switch (GET_CODE (cmp))
3476 	{
3477 	case EQ:
3478 	case NE:
3479 	  break;
3480 	case LTU: cmp = gen_rtx_GTU (HImode, OP (2), OP (1)); break;
3481 	case GTU: cmp = gen_rtx_LTU (HImode, OP (2), OP (1)); break;
3482 	case LEU: cmp = gen_rtx_GEU (HImode, OP (2), OP (1)); break;
3483 	case GEU: cmp = gen_rtx_LEU (HImode, OP (2), OP (1)); break;
3484 
3485 	case LT:
3486 	case GT:
3487 	case LE:
3488 	case GE:
3489 #if DEBUG_ALLOC
3490 	  debug_rtx (insn);
3491 #endif
3492 	default:
3493 	  gcc_unreachable ();
3494 	}
3495 
3496       if (GET_CODE (cmp) == EQ || GET_CODE (cmp) == NE)
3497 	PATTERN (insn) = gen_cbranchhi4_real (cmp, OP (2), OP (1), OP (3));
3498       else
3499 	PATTERN (insn) = gen_cbranchhi4_real_inverted (cmp, OP (2), OP (1), OP (3));
3500 
3501       MUST_BE_OK (insn);
3502     }
3503 
3504   /* Surprisingly, gcc can generate a comparison of a register with itself, but this
3505      should be handled by the second alternative of the cbranchhi_real pattern.  */
3506   if (rtx_equal_p (OP (1), OP (2)))
3507     {
3508       OP (1) = OP (2) = BC;
3509       MUST_BE_OK (insn);
3510     }
3511 
3512   tmp_id = get_max_insn_count ();
3513   saved_op1 = OP (1);
3514 
3515   OP (1) = move_to_acc (1, insn);
3516 
3517   MAYBE_OK (insn);
3518 
3519   /* If we omitted the move of OP1 into the accumulator (because
3520      it was already there from a previous insn), then force the
3521      generation of the move instruction now.  We know that we
3522      are about to emit a move into HL via AX, and hence our
3523      optimization to remove the load of OP1 is no longer valid.  */
3524   if (tmp_id == get_max_insn_count ())
3525     force_into_acc (saved_op1, insn);
3526 
3527   /* We have to copy op2 to HL, but that involves the acc, which
3528      already has a live value.  Emit it before those insns.  */
3529   if (prev)
3530     first = next_nonnote_nondebug_insn (prev);
3531   else
3532     for (first = insn; prev_nonnote_nondebug_insn (first); first = prev_nonnote_nondebug_insn (first))
3533       ;
3534   OP (2) = move_to_hl (2, first);
3535 
3536   MUST_BE_OK (insn);
3537 }
3538 
3539 /* Like op2, but AX = A * X.  */
3540 static void
rl78_alloc_physical_registers_umul(rtx_insn * insn)3541 rl78_alloc_physical_registers_umul (rtx_insn * insn)
3542 {
3543   rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3544   rtx_insn *first;
3545   int tmp_id;
3546   rtx saved_op1;
3547 
3548   OP (0) = transcode_memory_rtx (OP (0), BC, insn);
3549   OP (1) = transcode_memory_rtx (OP (1), DE, insn);
3550   OP (2) = transcode_memory_rtx (OP (2), HL, insn);
3551 
3552   MAYBE_OK (insn);
3553 
3554   if (recog_data.constraints[1][0] == '%'
3555       && is_virtual_register (OP (1))
3556       && !is_virtual_register (OP (2))
3557       && !CONSTANT_P (OP (2)))
3558     {
3559       rtx tmp = OP (1);
3560       OP (1) = OP (2);
3561       OP (2) = tmp;
3562     }
3563 
3564   OP (0) = move_from_acc (0, insn);
3565 
3566   tmp_id = get_max_insn_count ();
3567   saved_op1 = OP (1);
3568 
3569   if (rtx_equal_p (OP (1), OP (2)))
3570     {
3571       gcc_assert (GET_MODE (OP (2)) == QImode);
3572       /* The MULU instruction does not support duplicate arguments
3573 	 but we know that if we copy OP (2) to X it will do so via
3574 	 A and thus OP (1) will already be loaded into A.  */
3575       OP (2) = move_to_x (2, insn);
3576       OP (1) = A;
3577     }
3578   else
3579     OP (1) = move_to_acc (1, insn);
3580 
3581   MAYBE_OK (insn);
3582 
3583   /* If we omitted the move of OP1 into the accumulator (because
3584      it was already there from a previous insn), then force the
3585      generation of the move instruction now.  We know that we
3586      are about to emit a move into HL (or DE) via AX, and hence
3587      our optimization to remove the load of OP1 is no longer valid.  */
3588   if (tmp_id == get_max_insn_count ())
3589     force_into_acc (saved_op1, insn);
3590 
3591   /* We have to copy op2 to X, but that involves the acc, which
3592      already has a live value.  Emit it before those insns.  */
3593 
3594   if (prev)
3595     first = next_nonnote_nondebug_insn (prev);
3596   else
3597     for (first = insn; prev_nonnote_nondebug_insn (first); first = prev_nonnote_nondebug_insn (first))
3598       ;
3599   OP (2) = move_to_x (2, first);
3600 
3601   MUST_BE_OK (insn);
3602 }
3603 
3604 static void
rl78_alloc_address_registers_macax(rtx_insn * insn)3605 rl78_alloc_address_registers_macax (rtx_insn * insn)
3606 {
3607   int which, op;
3608   bool replace_in_op0 = false;
3609   bool replace_in_op1 = false;
3610 
3611   MAYBE_OK (insn);
3612 
3613   /* Two different MEMs are not allowed.  */
3614   which = 0;
3615   for (op = 2; op >= 0; op --)
3616     {
3617       if (MEM_P (OP (op)))
3618 	{
3619 	  if (op == 0 && replace_in_op0)
3620 	    continue;
3621 	  if (op == 1 && replace_in_op1)
3622 	    continue;
3623 
3624 	  switch (which)
3625 	    {
3626 	    case 0:
3627 	      /* If we replace a MEM, make sure that we replace it for all
3628 		 occurrences of the same MEM in the insn.  */
3629 	      replace_in_op0 = (op > 0 && rtx_equal_p (OP (op), OP (0)));
3630 	      replace_in_op1 = (op > 1 && rtx_equal_p (OP (op), OP (1)));
3631 
3632 	      OP (op) = transcode_memory_rtx (OP (op), HL, insn);
3633 	      if (op == 2
3634 		  && MEM_P (OP (op))
3635 		  && ((GET_CODE (XEXP (OP (op), 0)) == REG
3636 		       && REGNO (XEXP (OP (op), 0)) == SP_REG)
3637 		      || (GET_CODE (XEXP (OP (op), 0)) == PLUS
3638 			  && REGNO (XEXP (XEXP (OP (op), 0), 0)) == SP_REG)))
3639 		{
3640 		  emit_insn_before (gen_movhi (HL, gen_rtx_REG (HImode, SP_REG)), insn);
3641 		  OP (op) = replace_rtx (OP (op), gen_rtx_REG (HImode, SP_REG), HL);
3642 		}
3643 	      if (replace_in_op0)
3644 		OP (0) = OP (op);
3645 	      if (replace_in_op1)
3646 		OP (1) = OP (op);
3647 	      break;
3648 	    case 1:
3649 	      OP (op) = transcode_memory_rtx (OP (op), DE, insn);
3650 	      break;
3651 	    case 2:
3652 	      OP (op) = transcode_memory_rtx (OP (op), BC, insn);
3653 	      break;
3654 	    }
3655 	  which ++;
3656 	}
3657     }
3658 
3659   MUST_BE_OK (insn);
3660 }
3661 
3662 static void
rl78_alloc_address_registers_div(rtx_insn * insn)3663 rl78_alloc_address_registers_div (rtx_insn * insn)
3664 {
3665   MUST_BE_OK (insn);
3666 }
3667 
3668 /* Scan all insns and devirtualize them.  */
3669 static void
rl78_alloc_physical_registers(void)3670 rl78_alloc_physical_registers (void)
3671 {
3672   /* During most of the compile, gcc is dealing with virtual
3673      registers.  At this point, we need to assign physical registers
3674      to the vitual ones, and copy in/out as needed.  */
3675 
3676   rtx_insn *insn, *curr;
3677   enum attr_valloc valloc_method;
3678 
3679   for (insn = get_insns (); insn; insn = curr)
3680     {
3681       int i;
3682 
3683       curr = next_nonnote_nondebug_insn (insn);
3684 
3685       if (INSN_P (insn)
3686 	  && (GET_CODE (PATTERN (insn)) == SET
3687 	      || GET_CODE (PATTERN (insn)) == CALL)
3688 	  && INSN_CODE (insn) == -1)
3689 	{
3690 	  if (GET_CODE (SET_SRC (PATTERN (insn))) == ASM_OPERANDS)
3691 	    continue;
3692 	  i = recog (PATTERN (insn), insn, 0);
3693 	  if (i == -1)
3694 	    {
3695 	      debug_rtx (insn);
3696 	      gcc_unreachable ();
3697 	    }
3698 	  INSN_CODE (insn) = i;
3699 	}
3700     }
3701 
3702   cfun->machine->virt_insns_ok = 0;
3703   cfun->machine->real_insns_ok = 1;
3704 
3705   clear_content_memory ();
3706 
3707   for (insn = get_insns (); insn; insn = curr)
3708     {
3709       rtx pattern;
3710 
3711       curr = insn ? next_nonnote_nondebug_insn (insn) : NULL;
3712 
3713       if (!INSN_P (insn))
3714 	{
3715 	  if (LABEL_P (insn))
3716 	    clear_content_memory ();
3717 
3718  	  continue;
3719 	}
3720 
3721       if (dump_file)
3722 	fprintf (dump_file, "Converting insn %d\n", INSN_UID (insn));
3723 
3724       pattern = PATTERN (insn);
3725       if (GET_CODE (pattern) == PARALLEL)
3726 	pattern = XVECEXP (pattern, 0, 0);
3727       if (JUMP_P (insn) || CALL_P (insn) || GET_CODE (pattern) == CALL)
3728 	clear_content_memory ();
3729       if (GET_CODE (pattern) != SET
3730 	  && GET_CODE (pattern) != CALL)
3731 	continue;
3732       if (GET_CODE (pattern) == SET
3733 	  && GET_CODE (SET_SRC (pattern)) == ASM_OPERANDS)
3734 	continue;
3735 
3736       valloc_method = get_attr_valloc (insn);
3737 
3738       PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3739 
3740       if (valloc_method == VALLOC_MACAX)
3741 	{
3742 	  record_content (AX, NULL_RTX);
3743 	  record_content (BC, NULL_RTX);
3744 	  record_content (DE, NULL_RTX);
3745 	}
3746       else if (valloc_method == VALLOC_DIVHI)
3747 	{
3748 	  record_content (AX, NULL_RTX);
3749 	  record_content (BC, NULL_RTX);
3750 	}
3751       else if (valloc_method == VALLOC_DIVSI)
3752 	{
3753 	  record_content (AX, NULL_RTX);
3754 	  record_content (BC, NULL_RTX);
3755 	  record_content (DE, NULL_RTX);
3756 	  record_content (HL, NULL_RTX);
3757 	}
3758 
3759       if (insn_ok_now (insn))
3760 	continue;
3761 
3762       INSN_CODE (insn) = -1;
3763 
3764       if (RTX_FRAME_RELATED_P (insn))
3765 	virt_insn_was_frame = 1;
3766       else
3767 	virt_insn_was_frame = 0;
3768 
3769       switch (valloc_method)
3770 	{
3771 	case VALLOC_OP1:
3772 	  rl78_alloc_physical_registers_op1 (insn);
3773 	  break;
3774 	case VALLOC_OP2:
3775 	  rl78_alloc_physical_registers_op2 (insn);
3776 	  break;
3777 	case VALLOC_RO1:
3778 	  rl78_alloc_physical_registers_ro1 (insn);
3779 	  break;
3780 	case VALLOC_CMP:
3781 	  rl78_alloc_physical_registers_cmp (insn);
3782 	  break;
3783 	case VALLOC_UMUL:
3784 	  rl78_alloc_physical_registers_umul (insn);
3785 	  record_content (AX, NULL_RTX);
3786 	  break;
3787 	case VALLOC_MACAX:
3788 	  /* Macro that clobbers AX.  */
3789 	  rl78_alloc_address_registers_macax (insn);
3790 	  record_content (AX, NULL_RTX);
3791 	  record_content (BC, NULL_RTX);
3792 	  record_content (DE, NULL_RTX);
3793 	  break;
3794 	case VALLOC_DIVSI:
3795 	  rl78_alloc_address_registers_div (insn);
3796 	  record_content (AX, NULL_RTX);
3797 	  record_content (BC, NULL_RTX);
3798 	  record_content (DE, NULL_RTX);
3799 	  record_content (HL, NULL_RTX);
3800 	  break;
3801 	case VALLOC_DIVHI:
3802 	  rl78_alloc_address_registers_div (insn);
3803 	  record_content (AX, NULL_RTX);
3804 	  record_content (BC, NULL_RTX);
3805 	  break;
3806 	default:
3807 	  gcc_unreachable ();
3808 	}
3809 
3810       if (JUMP_P (insn) || CALL_P (insn) || GET_CODE (pattern) == CALL)
3811 	clear_content_memory ();
3812       else
3813 	process_postponed_content_update ();
3814     }
3815 
3816 #if DEBUG_ALLOC
3817   fprintf (stderr, "\033[0m");
3818 #endif
3819 }
3820 
3821 /* Add REG_DEAD notes using DEAD[reg] for rtx S which is part of INSN.
3822    This function scans for uses of registers; the last use (i.e. first
3823    encounter when scanning backwards) triggers a REG_DEAD note if the
3824    reg was previously in DEAD[].  */
3825 static void
rl78_note_reg_uses(char * dead,rtx s,rtx insn)3826 rl78_note_reg_uses (char *dead, rtx s, rtx insn)
3827 {
3828   const char *fmt;
3829   int i, r;
3830   enum rtx_code code;
3831 
3832   if (!s)
3833     return;
3834 
3835   code = GET_CODE (s);
3836 
3837   switch (code)
3838     {
3839       /* Compare registers by number.  */
3840     case REG:
3841       r = REGNO (s);
3842       if (dump_file)
3843 	{
3844 	  fprintf (dump_file, "note use reg %d size %d on insn %d\n",
3845 		   r, GET_MODE_SIZE (GET_MODE (s)), INSN_UID (insn));
3846 	  print_rtl_single (dump_file, s);
3847 	}
3848       if (dead [r])
3849 	add_reg_note (insn, REG_DEAD, gen_rtx_REG (GET_MODE (s), r));
3850       for (i = 0; i < GET_MODE_SIZE (GET_MODE (s)); i ++)
3851 	dead [r + i] = 0;
3852       return;
3853 
3854       /* These codes have no constituent expressions
3855 	 and are unique.  */
3856     case SCRATCH:
3857     case CC0:
3858     case PC:
3859       return;
3860 
3861     case CONST_INT:
3862     case CONST_VECTOR:
3863     case CONST_DOUBLE:
3864     case CONST_FIXED:
3865       /* These are kept unique for a given value.  */
3866       return;
3867 
3868     default:
3869       break;
3870     }
3871 
3872   fmt = GET_RTX_FORMAT (code);
3873 
3874   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3875     {
3876       if (fmt[i] == 'E')
3877 	{
3878 	  int j;
3879 	  for (j = XVECLEN (s, i) - 1; j >= 0; j--)
3880 	    rl78_note_reg_uses (dead, XVECEXP (s, i, j), insn);
3881 	}
3882       else if (fmt[i] == 'e')
3883 	rl78_note_reg_uses (dead, XEXP (s, i), insn);
3884     }
3885 }
3886 
3887 /* Like the previous function, but scan for SETs instead.  */
3888 static void
rl78_note_reg_set(char * dead,rtx d,rtx insn)3889 rl78_note_reg_set (char *dead, rtx d, rtx insn)
3890 {
3891   int r, i;
3892   bool is_dead;
3893   if (GET_CODE (d) == MEM)
3894     rl78_note_reg_uses (dead, XEXP (d, 0), insn);
3895 
3896   if (GET_CODE (d) != REG)
3897     return;
3898 
3899   /* Do not mark the reg unused unless all QImode parts of it are dead.  */
3900   r = REGNO (d);
3901   is_dead = true;
3902   for (i = 0; i < GET_MODE_SIZE (GET_MODE (d)); i ++)
3903 	  if (!dead [r + i])
3904 		  is_dead = false;
3905   if(is_dead)
3906 	add_reg_note (insn, REG_UNUSED, gen_rtx_REG (GET_MODE (d), r));
3907   if (dump_file)
3908     fprintf (dump_file, "note set reg %d size %d\n", r, GET_MODE_SIZE (GET_MODE (d)));
3909   for (i = 0; i < GET_MODE_SIZE (GET_MODE (d)); i ++)
3910     dead [r + i] = 1;
3911 }
3912 
3913 /* This is a rather crude register death pass.  Death status is reset
3914    at every jump or call insn.  */
3915 static void
rl78_calculate_death_notes(void)3916 rl78_calculate_death_notes (void)
3917 {
3918   char dead[FIRST_PSEUDO_REGISTER];
3919   rtx p, s, d;
3920 rtx_insn *insn;
3921   int i;
3922 
3923   memset (dead, 0, sizeof (dead));
3924 
3925   for (insn = get_last_insn ();
3926        insn;
3927        insn = prev_nonnote_nondebug_insn (insn))
3928     {
3929       if (dump_file)
3930 	{
3931 	  fprintf (dump_file, "\n--------------------------------------------------");
3932 	  fprintf (dump_file, "\nDead:");
3933 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i ++)
3934 	    if (dead[i])
3935 	      fprintf (dump_file, " %s", reg_names[i]);
3936 	  fprintf (dump_file, "\n");
3937 	  print_rtl_single (dump_file, insn);
3938 	}
3939 
3940       switch (GET_CODE (insn))
3941 	{
3942 	case INSN:
3943 	  p = PATTERN (insn);
3944 	  if (GET_CODE (p) == PARALLEL)
3945 	    {
3946 	      rtx q = XVECEXP (p, 0 ,1);
3947 
3948 	      /* This happens with the DIV patterns.  */
3949 	      if (GET_CODE (q) == SET)
3950 		{
3951 		  s = SET_SRC (q);
3952 		  d = SET_DEST (q);
3953 		  rl78_note_reg_set (dead, d, insn);
3954 		  rl78_note_reg_uses (dead, s, insn);
3955 
3956 		}
3957 	      p = XVECEXP (p, 0, 0);
3958 	    }
3959 
3960 	  switch (GET_CODE (p))
3961 	    {
3962 	    case SET:
3963 	      s = SET_SRC (p);
3964 	      d = SET_DEST (p);
3965 	      rl78_note_reg_set (dead, d, insn);
3966 	      rl78_note_reg_uses (dead, s, insn);
3967 	      break;
3968 
3969 	    case USE:
3970 	      rl78_note_reg_uses (dead, p, insn);
3971 	      break;
3972 
3973 	    default:
3974 	      break;
3975 	    }
3976 	  break;
3977 
3978 	case JUMP_INSN:
3979 	  if (INSN_CODE (insn) == CODE_FOR_rl78_return)
3980 	    {
3981 	      memset (dead, 1, sizeof (dead));
3982 	      /* We expect a USE just prior to this, which will mark
3983 		 the actual return registers.  The USE will have a
3984 		 death note, but we aren't going to be modifying it
3985 		 after this pass.  */
3986 	      break;
3987 	    }
3988 	  /* FALLTHRU */
3989 	case CALL_INSN:
3990 	  memset (dead, 0, sizeof (dead));
3991 	  break;
3992 
3993 	default:
3994 	  break;
3995 	}
3996       if (dump_file)
3997 	print_rtl_single (dump_file, insn);
3998     }
3999 }
4000 
4001 /* Helper function to reset the origins in RP and the age in AGE for
4002    all registers.  */
4003 static void
reset_origins(int * rp,int * age)4004 reset_origins (int *rp, int *age)
4005 {
4006   int i;
4007   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4008     {
4009       rp[i] = i;
4010       age[i] = 0;
4011     }
4012 }
4013 
4014 static void
set_origin(rtx pat,rtx_insn * insn,int * origins,int * age)4015 set_origin (rtx pat, rtx_insn * insn, int * origins, int * age)
4016 {
4017   rtx src = SET_SRC (pat);
4018   rtx dest = SET_DEST (pat);
4019   int mb = GET_MODE_SIZE (GET_MODE (dest));
4020   int i;
4021 
4022   if (GET_CODE (dest) == REG)
4023     {
4024       int dr = REGNO (dest);
4025 
4026       if (GET_CODE (src) == REG)
4027 	{
4028 	  int sr = REGNO (src);
4029 	  bool same = true;
4030 	  int best_age, best_reg;
4031 
4032 	  /* See if the copy is not needed.  */
4033 	  for (i = 0; i < mb; i ++)
4034 	    if (origins[dr + i] != origins[sr + i])
4035 	      same = false;
4036 
4037 	  if (same)
4038 	    {
4039 	      if (dump_file)
4040 		fprintf (dump_file, "deleting because dest already has correct value\n");
4041 	      delete_insn (insn);
4042 	      return;
4043 	    }
4044 
4045 	  if (dr < 8 || sr >= 8)
4046 	    {
4047 	      int ar;
4048 
4049 	      best_age = -1;
4050 	      best_reg = -1;
4051 
4052 	      /* See if the copy can be made from another
4053 		 bank 0 register instead, instead of the
4054 		 virtual src register.  */
4055 	      for (ar = 0; ar < 8; ar += mb)
4056 		{
4057 		  same = true;
4058 
4059 		  for (i = 0; i < mb; i ++)
4060 		    if (origins[ar + i] != origins[sr + i])
4061 		      same = false;
4062 
4063 		  /* The chip has some reg-reg move limitations.  */
4064 		  if (mb == 1 && dr > 3)
4065 		    same = false;
4066 
4067 		  if (same)
4068 		    {
4069 		      if (best_age == -1 || best_age > age[sr + i])
4070 			{
4071 			  best_age = age[sr + i];
4072 			  best_reg = sr;
4073 			}
4074 		    }
4075 		}
4076 
4077 	      if (best_reg != -1)
4078 		{
4079 		  /* FIXME: copy debug info too.  */
4080 		  SET_SRC (pat) = gen_rtx_REG (GET_MODE (src), best_reg);
4081 		  sr = best_reg;
4082 		}
4083 	    }
4084 
4085 	  for (i = 0; i < mb; i++)
4086 	    {
4087 	      origins[dr + i] = origins[sr + i];
4088 	      age[dr + i] = age[sr + i] + 1;
4089 	    }
4090 	}
4091       else
4092 	{
4093 	  /* The destination is computed, its origin is itself.  */
4094 	  if (dump_file)
4095 	    fprintf (dump_file, "resetting origin of r%d for %d byte%s\n",
4096 		     dr, mb, mb == 1 ? "" : "s");
4097 
4098 	  for (i = 0; i < mb; i ++)
4099 	    {
4100 	      origins[dr + i] = dr + i;
4101 	      age[dr + i] = 0;
4102 	    }
4103 	}
4104 
4105       /* Any registers marked with that reg as an origin are reset.  */
4106       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4107 	if (origins[i] >= dr && origins[i] < dr + mb)
4108 	  {
4109 	    origins[i] = i;
4110 	    age[i] = 0;
4111 	  }
4112     }
4113 
4114   /* Special case - our MUL patterns uses AX and sometimes BC.  */
4115   if (get_attr_valloc (insn) == VALLOC_MACAX)
4116     {
4117       if (dump_file)
4118 	fprintf (dump_file, "Resetting origin of AX/BC for MUL pattern.\n");
4119 
4120       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4121 	if (i <= 3 || origins[i] <= 3)
4122 	  {
4123 	    origins[i] = i;
4124 	    age[i] = 0;
4125 	  }
4126     }
4127   else if (get_attr_valloc (insn) == VALLOC_DIVHI)
4128     {
4129       if (dump_file)
4130 	fprintf (dump_file, "Resetting origin of AX/DE for DIVHI pattern.\n");
4131 
4132       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4133 	if (i == A_REG
4134 	    || i == X_REG
4135 	    || i == D_REG
4136 	    || i == E_REG
4137 	    || origins[i] == A_REG
4138 	    || origins[i] == X_REG
4139 	    || origins[i] == D_REG
4140 	    || origins[i] == E_REG)
4141 	  {
4142 	    origins[i] = i;
4143 	    age[i] = 0;
4144 	  }
4145     }
4146   else if (get_attr_valloc (insn) == VALLOC_DIVSI)
4147     {
4148       if (dump_file)
4149 	fprintf (dump_file, "Resetting origin of AX/BC/DE/HL for DIVSI pattern.\n");
4150 
4151       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4152 	if (i <= 7 || origins[i] <= 7)
4153 	  {
4154 	    origins[i] = i;
4155 	    age[i] = 0;
4156 	  }
4157     }
4158 
4159   if (GET_CODE (src) == ASHIFT
4160       || GET_CODE (src) == ASHIFTRT
4161       || GET_CODE (src) == LSHIFTRT)
4162     {
4163       rtx count = XEXP (src, 1);
4164 
4165       if (GET_CODE (count) == REG)
4166 	{
4167 	  /* Special case - our pattern clobbers the count register.  */
4168 	  int r = REGNO (count);
4169 
4170 	  if (dump_file)
4171 	    fprintf (dump_file, "Resetting origin of r%d for shift.\n", r);
4172 
4173 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4174 	    if (i == r || origins[i] == r)
4175 	      {
4176 		origins[i] = i;
4177 		age[i] = 0;
4178 	      }
4179 	}
4180     }
4181 }
4182 
4183 /* The idea behind this optimization is to look for cases where we
4184    move data from A to B to C, and instead move from A to B, and A to
4185    C.  If B is a virtual register or memory, this is a big win on its
4186    own.  If B turns out to be unneeded after this, it's a bigger win.
4187    For each register, we try to determine where it's value originally
4188    came from, if it's propogated purely through moves (and not
4189    computes).  The ORIGINS[] array has the regno for the "origin" of
4190    the value in the [regno] it's indexed by.  */
4191 static void
rl78_propogate_register_origins(void)4192 rl78_propogate_register_origins (void)
4193 {
4194   int origins[FIRST_PSEUDO_REGISTER];
4195   int age[FIRST_PSEUDO_REGISTER];
4196   int i;
4197   rtx_insn *insn, *ninsn = NULL;
4198   rtx pat;
4199 
4200   reset_origins (origins, age);
4201 
4202   for (insn = get_insns (); insn; insn = ninsn)
4203     {
4204       ninsn = next_nonnote_nondebug_insn (insn);
4205 
4206       if (dump_file)
4207 	{
4208 	  fprintf (dump_file, "\n");
4209 	  fprintf (dump_file, "Origins:");
4210 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i ++)
4211 	    if (origins[i] != i)
4212 	      fprintf (dump_file, " r%d=r%d", i, origins[i]);
4213 	  fprintf (dump_file, "\n");
4214 	  print_rtl_single (dump_file, insn);
4215 	}
4216 
4217       switch (GET_CODE (insn))
4218 	{
4219 	case CODE_LABEL:
4220 	case BARRIER:
4221 	case CALL_INSN:
4222 	case JUMP_INSN:
4223 	  reset_origins (origins, age);
4224 	  break;
4225 
4226 	default:
4227 	  break;
4228 
4229 	case INSN:
4230 	  pat = PATTERN (insn);
4231 
4232 	  if (GET_CODE (pat) == PARALLEL)
4233 	    {
4234 	      rtx clobber = XVECEXP (pat, 0, 1);
4235 	      pat = XVECEXP (pat, 0, 0);
4236 	      if (GET_CODE (clobber) == CLOBBER
4237 		  && GET_CODE (XEXP (clobber, 0)) == REG)
4238 		{
4239 		  int cr = REGNO (XEXP (clobber, 0));
4240 		  int mb = GET_MODE_SIZE (GET_MODE (XEXP (clobber, 0)));
4241 		  if (dump_file)
4242 		    fprintf (dump_file, "reset origins of %d regs at %d\n", mb, cr);
4243 		  for (i = 0; i < mb; i++)
4244 		    {
4245 		      origins[cr + i] = cr + i;
4246 		      age[cr + i] = 0;
4247 		    }
4248 		}
4249 	      /* This happens with the DIV patterns.  */
4250 	      else if (GET_CODE (clobber) == SET)
4251 		{
4252 		  set_origin (clobber, insn, origins, age);
4253 		}
4254 	      else
4255 		break;
4256 	    }
4257 
4258 	  if (GET_CODE (pat) == SET)
4259 	    {
4260 	      set_origin (pat, insn, origins, age);
4261 	    }
4262 	  else if (GET_CODE (pat) == CLOBBER
4263 		   && GET_CODE (XEXP (pat, 0)) == REG)
4264 	    {
4265 	      if (REG_P (XEXP (pat, 0)))
4266 		{
4267 		  unsigned int reg = REGNO (XEXP (pat, 0));
4268 
4269 		  origins[reg] = reg;
4270 		  age[reg] = 0;
4271 		}
4272 	    }
4273 	}
4274     }
4275 }
4276 
4277 /* Remove any SETs where the destination is unneeded.  */
4278 static void
rl78_remove_unused_sets(void)4279 rl78_remove_unused_sets (void)
4280 {
4281   rtx_insn *insn, *ninsn = NULL;
4282   rtx dest;
4283 
4284   for (insn = get_insns (); insn; insn = ninsn)
4285     {
4286       ninsn = next_nonnote_nondebug_insn (insn);
4287 
4288       rtx set = single_set (insn);
4289       if (set == NULL)
4290 	continue;
4291 
4292       dest = SET_DEST (set);
4293 
4294       if (GET_CODE (dest) != REG || REGNO (dest) > 23)
4295 	continue;
4296 
4297       if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
4298 	{
4299 	  if (dump_file)
4300 	    fprintf (dump_file, "deleting because the set register is never used.\n");
4301 	  delete_insn (insn);
4302 	}
4303     }
4304 }
4305 
4306 /* This is the top of the devritualization pass.  */
4307 static void
rl78_reorg(void)4308 rl78_reorg (void)
4309 {
4310   /* split2 only happens when optimizing, but we need all movSIs to be
4311      split now.  */
4312   if (optimize <= 0)
4313     split_all_insns ();
4314 
4315   rl78_alloc_physical_registers ();
4316 
4317   if (dump_file)
4318     {
4319       fprintf (dump_file, "\n================DEVIRT:=AFTER=ALLOC=PHYSICAL=REGISTERS================\n");
4320       print_rtl_with_bb (dump_file, get_insns (), TDF_NONE);
4321     }
4322 
4323   rl78_propogate_register_origins ();
4324   rl78_calculate_death_notes ();
4325 
4326   if (dump_file)
4327     {
4328       fprintf (dump_file, "\n================DEVIRT:=AFTER=PROPOGATION=============================\n");
4329       print_rtl_with_bb (dump_file, get_insns (), TDF_NONE);
4330       fprintf (dump_file, "\n======================================================================\n");
4331     }
4332 
4333   rl78_remove_unused_sets ();
4334 
4335   /* The code after devirtualizing has changed so much that at this point
4336      we might as well just rescan everything.  Note that
4337      df_rescan_all_insns is not going to help here because it does not
4338      touch the artificial uses and defs.  */
4339   df_finish_pass (true);
4340   if (optimize > 1)
4341     df_live_add_problem ();
4342   df_scan_alloc (NULL);
4343   df_scan_blocks ();
4344 
4345   if (optimize)
4346     df_analyze ();
4347 }
4348 
4349 #undef  TARGET_RETURN_IN_MEMORY
4350 #define TARGET_RETURN_IN_MEMORY rl78_return_in_memory
4351 
4352 static bool
rl78_return_in_memory(const_tree type,const_tree fntype ATTRIBUTE_UNUSED)4353 rl78_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
4354 {
4355   const HOST_WIDE_INT size = int_size_in_bytes (type);
4356   return (size == -1 || size > 8);
4357 }
4358 
4359 
4360 #undef  TARGET_RTX_COSTS
4361 #define TARGET_RTX_COSTS rl78_rtx_costs
4362 
4363 static bool
rl78_rtx_costs(rtx x,machine_mode mode,int outer_code ATTRIBUTE_UNUSED,int opno ATTRIBUTE_UNUSED,int * total,bool speed ATTRIBUTE_UNUSED)4364 rl78_rtx_costs (rtx          x,
4365 		machine_mode mode,
4366 		int          outer_code ATTRIBUTE_UNUSED,
4367 		int          opno ATTRIBUTE_UNUSED,
4368 		int *        total,
4369 		bool         speed ATTRIBUTE_UNUSED)
4370 {
4371   int code = GET_CODE (x);
4372 
4373   if (code == IF_THEN_ELSE)
4374     {
4375       *total = COSTS_N_INSNS (10);
4376       return true;
4377     }
4378 
4379   if (mode == HImode)
4380     {
4381       if (code == MULT && ! speed)
4382 	{
4383 	  * total = COSTS_N_INSNS (8);
4384 	  return true;
4385 	}
4386       return false;
4387     }
4388 
4389   if (mode == SImode)
4390     {
4391       switch (code)
4392 	{
4393 	case MULT:
4394 	  if (! speed)
4395 	    /* If we are compiling for space then we do not want to use the
4396 	       inline SImode multiplication patterns or shift sequences.
4397 	       The cost is not set to 1 or 5 however as we have to allow for
4398 	       the possibility that we might be converting a leaf function
4399 	       into a non-leaf function.  (There is no way to tell here).
4400 	       A value of 13 seems to be a reasonable compromise for the
4401 	       moment.  */
4402 	    * total = COSTS_N_INSNS (13);
4403 	  else if (RL78_MUL_G14)
4404 	    *total = COSTS_N_INSNS (14);
4405 	  else if (RL78_MUL_G13)
4406 	    *total = COSTS_N_INSNS (29);
4407 	  else
4408 	    *total = COSTS_N_INSNS (500);
4409 	  return true;
4410 
4411 	case PLUS:
4412 	  *total = COSTS_N_INSNS (8);
4413 	  return true;
4414 
4415 	case ASHIFT:
4416 	case ASHIFTRT:
4417 	case LSHIFTRT:
4418 	  if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4419 	    {
4420 	      switch (INTVAL (XEXP (x, 1)))
4421 		{
4422 		case 0:  *total = COSTS_N_INSNS (0);	break;
4423 		case 1:  *total = COSTS_N_INSNS (6);	break;
4424 		case 2: case 3: case 4: case 5: case 6: case 7:
4425 		  *total = COSTS_N_INSNS (10); break;
4426 		case 8:  *total = COSTS_N_INSNS (6);	break;
4427 		case 9: case 10: case 11: case 12: case 13: case 14: case 15:
4428 		  *total = COSTS_N_INSNS (10); break;
4429 		case 16: *total = COSTS_N_INSNS (3);	break;
4430 		case 17: case 18: case 19: case 20: case 21: case 22: case 23:
4431 		  *total = COSTS_N_INSNS (4); break;
4432 		case 24: *total = COSTS_N_INSNS (4);	break;
4433 		case 25: case 26: case 27: case 28: case 29: case 30: case 31:
4434 		  *total = COSTS_N_INSNS (5); break;
4435 		}
4436 	    }
4437 	  else
4438 	    *total = COSTS_N_INSNS (10+4*16);
4439 	  return true;
4440 
4441 	default:
4442 	  break;
4443 	}
4444     }
4445   return false;
4446 }
4447 
4448 
4449 static GTY(()) section * saddr_section;
4450 static GTY(()) section * frodata_section;
4451 
4452 int
rl78_saddr_p(rtx x)4453 rl78_saddr_p (rtx x)
4454 {
4455   const char * c;
4456 
4457   if (MEM_P (x))
4458     x = XEXP (x, 0);
4459   if (GET_CODE (x) == PLUS)
4460     x = XEXP (x, 0);
4461   if (GET_CODE (x) != SYMBOL_REF)
4462     return 0;
4463 
4464   c = XSTR (x, 0);
4465   if (memcmp (c, "@s.", 3) == 0)
4466     return 1;
4467 
4468   return 0;
4469 }
4470 
4471 int
rl78_sfr_p(rtx x)4472 rl78_sfr_p (rtx x)
4473 {
4474   if (MEM_P (x))
4475     x = XEXP (x, 0);
4476   if (GET_CODE (x) != CONST_INT)
4477     return 0;
4478 
4479   if ((INTVAL (x) & 0xFF00) != 0xFF00)
4480     return 0;
4481 
4482   return 1;
4483 }
4484 
4485 #undef  TARGET_STRIP_NAME_ENCODING
4486 #define TARGET_STRIP_NAME_ENCODING rl78_strip_name_encoding
4487 
4488 static const char *
rl78_strip_name_encoding(const char * sym)4489 rl78_strip_name_encoding (const char * sym)
4490 {
4491   while (1)
4492     {
4493       if (*sym == '*')
4494 	sym++;
4495       else if (*sym == '@' && sym[2] == '.')
4496 	sym += 3;
4497       else
4498 	return sym;
4499     }
4500 }
4501 
4502 /* Like rl78_strip_name_encoding, but does not strip leading asterisks.  This
4503    is important if the stripped name is going to be passed to assemble_name()
4504    as that handles asterisk prefixed names in a special manner.  */
4505 
4506 static const char *
rl78_strip_nonasm_name_encoding(const char * sym)4507 rl78_strip_nonasm_name_encoding (const char * sym)
4508 {
4509   while (1)
4510     {
4511       if (*sym == '@' && sym[2] == '.')
4512 	sym += 3;
4513       else
4514 	return sym;
4515     }
4516 }
4517 
4518 
4519 static int
rl78_attrlist_to_encoding(tree list,tree decl ATTRIBUTE_UNUSED)4520 rl78_attrlist_to_encoding (tree list, tree decl ATTRIBUTE_UNUSED)
4521 {
4522   while (list)
4523     {
4524       if (is_attribute_p ("saddr", TREE_PURPOSE (list)))
4525 	return 's';
4526       list = TREE_CHAIN (list);
4527     }
4528 
4529   return 0;
4530 }
4531 
4532 #define RL78_ATTRIBUTES(decl)				\
4533   (TYPE_P (decl)) ? TYPE_ATTRIBUTES (decl)		\
4534                 : DECL_ATTRIBUTES (decl)		\
4535                   ? (DECL_ATTRIBUTES (decl))		\
4536 		  : TYPE_ATTRIBUTES (TREE_TYPE (decl))
4537 
4538 #undef  TARGET_ENCODE_SECTION_INFO
4539 #define TARGET_ENCODE_SECTION_INFO rl78_encode_section_info
4540 
4541 static void
rl78_encode_section_info(tree decl,rtx rtl,int first)4542 rl78_encode_section_info (tree decl, rtx rtl, int first)
4543 {
4544   rtx rtlname;
4545   const char * oldname;
4546   char encoding;
4547   char * newname;
4548   tree idp;
4549   tree type;
4550   tree rl78_attributes;
4551 
4552   if (!first)
4553     return;
4554 
4555   rtlname = XEXP (rtl, 0);
4556 
4557   if (GET_CODE (rtlname) == SYMBOL_REF)
4558     oldname = XSTR (rtlname, 0);
4559   else if (GET_CODE (rtlname) == MEM
4560 	   && GET_CODE (XEXP (rtlname, 0)) == SYMBOL_REF)
4561     oldname = XSTR (XEXP (rtlname, 0), 0);
4562   else
4563     gcc_unreachable ();
4564 
4565   type = TREE_TYPE (decl);
4566   if (type == error_mark_node)
4567     return;
4568   if (! DECL_P (decl))
4569     return;
4570   rl78_attributes = RL78_ATTRIBUTES (decl);
4571 
4572   encoding = rl78_attrlist_to_encoding (rl78_attributes, decl);
4573 
4574   if (encoding)
4575     {
4576       newname = (char *) alloca (strlen (oldname) + 4);
4577       sprintf (newname, "@%c.%s", encoding, oldname);
4578       idp = get_identifier (newname);
4579       XEXP (rtl, 0) =
4580 	gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
4581       SYMBOL_REF_WEAK (XEXP (rtl, 0)) = DECL_WEAK (decl);
4582       SET_SYMBOL_REF_DECL (XEXP (rtl, 0), decl);
4583     }
4584 }
4585 
4586 #undef  TARGET_ASM_INIT_SECTIONS
4587 #define TARGET_ASM_INIT_SECTIONS 	rl78_asm_init_sections
4588 
4589 static void
rl78_asm_init_sections(void)4590 rl78_asm_init_sections (void)
4591 {
4592   saddr_section
4593     = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
4594 			   "\t.section .saddr,\"aw\",@progbits");
4595   frodata_section
4596     = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
4597 			   "\t.section .frodata,\"aw\",@progbits");
4598 }
4599 
4600 #undef  TARGET_ASM_SELECT_SECTION
4601 #define TARGET_ASM_SELECT_SECTION	rl78_select_section
4602 
4603 static section *
rl78_select_section(tree decl,int reloc,unsigned HOST_WIDE_INT align)4604 rl78_select_section (tree decl,
4605 		     int reloc,
4606 		     unsigned HOST_WIDE_INT align)
4607 {
4608   int readonly = 1;
4609 
4610   switch (TREE_CODE (decl))
4611     {
4612     case VAR_DECL:
4613       if (!TREE_READONLY (decl)
4614 	  || TREE_SIDE_EFFECTS (decl)
4615 	  || !DECL_INITIAL (decl)
4616 	  || (DECL_INITIAL (decl) != error_mark_node
4617 	      && !TREE_CONSTANT (DECL_INITIAL (decl))))
4618 	readonly = 0;
4619       break;
4620     case CONSTRUCTOR:
4621       if (! TREE_CONSTANT (decl))
4622 	readonly = 0;
4623       break;
4624 
4625     default:
4626       break;
4627     }
4628 
4629   if (TREE_CODE (decl) == VAR_DECL)
4630     {
4631       const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
4632 
4633       if (name[0] == '@' && name[2] == '.')
4634 	switch (name[1])
4635 	  {
4636 	  case 's':
4637 	    return saddr_section;
4638 	  }
4639 
4640       if (TYPE_ADDR_SPACE (TREE_TYPE (decl)) == ADDR_SPACE_FAR
4641 	  && readonly)
4642 	{
4643 	  return frodata_section;
4644 	}
4645     }
4646 
4647   if (readonly)
4648     return TARGET_ES0 ? frodata_section : readonly_data_section;
4649 
4650   switch (categorize_decl_for_section (decl, reloc))
4651     {
4652     case SECCAT_TEXT:   return text_section;
4653     case SECCAT_DATA:   return data_section;
4654     case SECCAT_BSS:    return bss_section;
4655     case SECCAT_RODATA: return TARGET_ES0 ? frodata_section : readonly_data_section;
4656     default:
4657       return default_select_section (decl, reloc, align);
4658     }
4659 }
4660 
4661 void
rl78_output_labelref(FILE * file,const char * str)4662 rl78_output_labelref (FILE *file, const char *str)
4663 {
4664   const char *str2;
4665 
4666   str2 = targetm.strip_name_encoding (str);
4667   if (str2[0] != '.')
4668     fputs (user_label_prefix, file);
4669   fputs (str2, file);
4670 }
4671 
4672 void
rl78_output_aligned_common(FILE * stream,tree decl ATTRIBUTE_UNUSED,const char * name,int size,int align,int global)4673 rl78_output_aligned_common (FILE *stream,
4674 			    tree decl ATTRIBUTE_UNUSED,
4675 			    const char *name,
4676 			    int size, int align, int global)
4677 {
4678   /* We intentionally don't use rl78_section_tag() here.  */
4679   if (name[0] == '@' && name[2] == '.')
4680     {
4681       const char *sec = 0;
4682       switch (name[1])
4683 	{
4684 	case 's':
4685 	  switch_to_section (saddr_section);
4686 	  sec = ".saddr";
4687 	  break;
4688 	}
4689       if (sec)
4690 	{
4691 	  const char *name2;
4692 	  int p2align = 0;
4693 
4694 	  while (align > BITS_PER_UNIT)
4695 	    {
4696 	      align /= 2;
4697 	      p2align ++;
4698 	    }
4699 	  name2 = targetm.strip_name_encoding (name);
4700 	  if (global)
4701 	    fprintf (stream, "\t.global\t_%s\n", name2);
4702 	  fprintf (stream, "\t.p2align %d\n", p2align);
4703 	  fprintf (stream, "\t.type\t_%s,@object\n", name2);
4704 	  fprintf (stream, "\t.size\t_%s,%d\n", name2, size);
4705 	  fprintf (stream, "_%s:\n\t.zero\t%d\n", name2, size);
4706 	  return;
4707 	}
4708     }
4709 
4710   if (!global)
4711     {
4712       fprintf (stream, "\t.local\t");
4713       assemble_name (stream, name);
4714       fprintf (stream, "\n");
4715     }
4716   fprintf (stream, "\t.comm\t");
4717   assemble_name (stream, name);
4718   fprintf (stream, ",%u,%u\n", size, align / BITS_PER_UNIT);
4719 }
4720 
4721 #undef  TARGET_INSERT_ATTRIBUTES
4722 #define TARGET_INSERT_ATTRIBUTES rl78_insert_attributes
4723 
4724 static void
rl78_insert_attributes(tree decl,tree * attributes ATTRIBUTE_UNUSED)4725 rl78_insert_attributes (tree decl, tree *attributes ATTRIBUTE_UNUSED)
4726 {
4727   if (TARGET_ES0
4728       && TREE_CODE (decl) == VAR_DECL
4729       && TREE_READONLY (decl)
4730       && TREE_ADDRESSABLE (decl)
4731       && TYPE_ADDR_SPACE (TREE_TYPE (decl)) == ADDR_SPACE_GENERIC)
4732     {
4733       tree type = TREE_TYPE (decl);
4734       tree attr = TYPE_ATTRIBUTES (type);
4735       int q = TYPE_QUALS_NO_ADDR_SPACE (type) | ENCODE_QUAL_ADDR_SPACE (ADDR_SPACE_FAR);
4736 
4737       TREE_TYPE (decl) = build_type_attribute_qual_variant (type, attr, q);
4738     }
4739 }
4740 
4741 #undef  TARGET_ASM_INTEGER
4742 #define TARGET_ASM_INTEGER rl78_asm_out_integer
4743 
4744 static bool
rl78_asm_out_integer(rtx x,unsigned int size,int aligned_p)4745 rl78_asm_out_integer (rtx x, unsigned int size, int aligned_p)
4746 {
4747   if (default_assemble_integer (x, size, aligned_p))
4748     return true;
4749 
4750   if (size == 4)
4751     {
4752       assemble_integer_with_op (".long\t", x);
4753       return true;
4754     }
4755 
4756   return false;
4757 }
4758 
4759 #undef  TARGET_UNWIND_WORD_MODE
4760 #define TARGET_UNWIND_WORD_MODE rl78_unwind_word_mode
4761 
4762 static scalar_int_mode
rl78_unwind_word_mode(void)4763 rl78_unwind_word_mode (void)
4764 {
4765   return HImode;
4766 }
4767 
4768 #ifndef USE_COLLECT2
4769 #undef  TARGET_ASM_CONSTRUCTOR
4770 #define TARGET_ASM_CONSTRUCTOR rl78_asm_constructor
4771 #undef  TARGET_ASM_DESTRUCTOR
4772 #define TARGET_ASM_DESTRUCTOR  rl78_asm_destructor
4773 
4774 static void
rl78_asm_ctor_dtor(rtx symbol,int priority,bool is_ctor)4775 rl78_asm_ctor_dtor (rtx symbol, int priority, bool is_ctor)
4776 {
4777   section *sec;
4778 
4779   if (priority != DEFAULT_INIT_PRIORITY)
4780     {
4781       /* This section of the function is based upon code copied
4782 	 from: gcc/varasm.c:get_cdtor_priority_section().  */
4783       char buf[18];
4784 
4785       sprintf (buf, "%s.%.5u", is_ctor ? ".ctors" : ".dtors",
4786 	       MAX_INIT_PRIORITY - priority);
4787       sec = get_section (buf, 0, NULL);
4788     }
4789   else
4790     sec = is_ctor ? ctors_section : dtors_section;
4791 
4792   assemble_addr_to_section (symbol, sec);
4793 }
4794 
4795 static void
rl78_asm_constructor(rtx symbol,int priority)4796 rl78_asm_constructor (rtx symbol, int priority)
4797 {
4798   rl78_asm_ctor_dtor (symbol, priority, true);
4799 }
4800 
4801 static void
rl78_asm_destructor(rtx symbol,int priority)4802 rl78_asm_destructor (rtx symbol, int priority)
4803 {
4804   rl78_asm_ctor_dtor (symbol, priority, false);
4805 }
4806 #endif /* ! USE_COLLECT2 */
4807 
4808 /* Scan backwards through the insn chain looking to see if the flags
4809    have been set for a comparison of OP against OPERAND.  Start with
4810    the insn *before* the current insn.  */
4811 
4812 bool
rl78_flags_already_set(rtx op,rtx operand)4813 rl78_flags_already_set (rtx op, rtx operand)
4814 {
4815   /* We only track the Z flag.  */
4816   if (GET_CODE (op) != EQ && GET_CODE (op) != NE)
4817     return false;
4818 
4819   /* This should not happen, but let's be paranoid.  */
4820   if (current_output_insn == NULL_RTX)
4821     return false;
4822 
4823   rtx_insn *insn;
4824   bool res = false;
4825 
4826   for (insn = prev_nonnote_nondebug_insn (current_output_insn);
4827        insn != NULL_RTX;
4828        insn = prev_nonnote_nondebug_insn (insn))
4829     {
4830       if (LABEL_P (insn))
4831 	break;
4832 
4833       if (! INSN_P (insn))
4834 	continue;
4835 
4836       /* Make sure that the insn can be recognized.  */
4837       if (recog_memoized (insn) == -1)
4838 	continue;
4839 
4840       enum attr_update_Z updated = get_attr_update_Z (insn);
4841 
4842       rtx set = single_set (insn);
4843       bool must_break = (set != NULL_RTX && rtx_equal_p (operand, SET_DEST (set)));
4844 
4845       switch (updated)
4846 	{
4847 	case UPDATE_Z_NO:
4848 	  break;
4849 	case UPDATE_Z_CLOBBER:
4850 	  must_break = true;
4851 	  break;
4852 	case UPDATE_Z_UPDATE_Z:
4853 	  res = must_break;
4854 	  must_break = true;
4855 	  break;
4856 	default:
4857 	  gcc_unreachable ();
4858 	}
4859 
4860       if (must_break)
4861 	break;
4862     }
4863 
4864   /* We have to re-recognize the current insn as the call(s) to
4865      get_attr_update_Z() above will have overwritten the recog_data cache.  */
4866   recog_memoized (current_output_insn);
4867   cleanup_subreg_operands (current_output_insn);
4868   constrain_operands_cached (current_output_insn, 1);
4869 
4870   return res;
4871 }
4872 
4873 const char *
rl78_addsi3_internal(rtx * operands,unsigned int alternative)4874 rl78_addsi3_internal (rtx * operands, unsigned int alternative)
4875 {
4876   const char *addH2 = "addw ax, %H2\n\t";
4877 
4878   /* If we are adding in a constant symbolic address when -mes0
4879      is active then we know that the address must be <64K and
4880      that it is invalid to access anything above 64K relative to
4881      this address.  So we can skip adding in the high bytes.  */
4882   if (TARGET_ES0
4883       && GET_CODE (operands[2]) == SYMBOL_REF
4884       && TREE_CODE (SYMBOL_REF_DECL (operands[2])) == VAR_DECL
4885       && TREE_READONLY (SYMBOL_REF_DECL (operands[2]))
4886       && ! TREE_SIDE_EFFECTS (SYMBOL_REF_DECL (operands[2])))
4887     return "movw ax, %h1\n\taddw ax, %h2\n\tmovw %h0, ax";
4888 
4889   if(CONST_INT_P(operands[2]))
4890   {
4891     if((INTVAL(operands[2]) & 0xFFFF0000) == 0)
4892     {
4893         addH2 = "";
4894     }
4895     else if((INTVAL(operands[2]) & 0xFFFF0000) == 0x00010000)
4896     {
4897         addH2 = "incw ax\n\t";
4898     }
4899     else if((INTVAL(operands[2]) & 0xFFFF0000) == 0xFFFF0000)
4900     {
4901         addH2 = "decw ax\n\t";
4902     }
4903   }
4904 
4905   switch (alternative)
4906     {
4907     case 0:
4908     case 1:
4909 	  snprintf(fmt_buffer, sizeof(fmt_buffer),
4910                "movw ax, %%h1\n\taddw ax, %%h2\n\tmovw %%h0, ax\n\tmovw ax, %%H1\n\tsknc\n\tincw ax\n\t%smovw %%H0,ax", addH2);
4911 	  break;
4912     case 2:
4913 	  snprintf(fmt_buffer, sizeof(fmt_buffer),
4914                "movw ax, %%h1\n\taddw ax, %%h2\n\tmovw bc, ax\n\tmovw ax, %%H1\n\tsknc\n\tincw ax\n\t%smovw %%H0, ax\n\tmovw ax, bc\n\tmovw %%h0, ax", addH2);
4915  	  break;
4916     default:
4917       gcc_unreachable ();
4918     }
4919 
4920   return fmt_buffer;
4921 }
4922 
4923 rtx
rl78_emit_libcall(const char * name,enum rtx_code code,enum machine_mode dmode,enum machine_mode smode,int noperands,rtx * operands)4924 rl78_emit_libcall (const char *name, enum rtx_code code,
4925                    enum machine_mode dmode, enum machine_mode smode,
4926                    int noperands, rtx *operands)
4927 {
4928   rtx ret;
4929   rtx_insn *insns;
4930   rtx libcall;
4931   rtx equiv;
4932 
4933   start_sequence ();
4934   libcall = gen_rtx_SYMBOL_REF (Pmode, name);
4935 
4936   switch (noperands)
4937     {
4938     case 2:
4939       ret = emit_library_call_value (libcall, NULL_RTX, LCT_CONST,
4940                                      dmode, operands[1], smode);
4941       equiv = gen_rtx_fmt_e (code, dmode, operands[1]);
4942       break;
4943 
4944     case 3:
4945       ret = emit_library_call_value (libcall, NULL_RTX,
4946                                      LCT_CONST, dmode,
4947                                      operands[1], smode, operands[2],
4948                                      smode);
4949       equiv = gen_rtx_fmt_ee (code, dmode, operands[1], operands[2]);
4950       break;
4951 
4952     default:
4953       gcc_unreachable ();
4954     }
4955 
4956   insns = get_insns ();
4957   end_sequence ();
4958   emit_libcall_block (insns, operands[0], ret, equiv);
4959   return ret;
4960 }
4961 
4962 
4963 #undef  TARGET_PREFERRED_RELOAD_CLASS
4964 #define TARGET_PREFERRED_RELOAD_CLASS rl78_preferred_reload_class
4965 
4966 static reg_class_t
rl78_preferred_reload_class(rtx x ATTRIBUTE_UNUSED,reg_class_t rclass)4967 rl78_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, reg_class_t rclass)
4968 {
4969   if (rclass == NO_REGS)
4970     rclass = V_REGS;
4971 
4972   return rclass;
4973 }
4974 
4975 
4976 struct gcc_target targetm = TARGET_INITIALIZER;
4977 
4978 #include "gt-rl78.h"
4979