1 /* Integrated Register Allocator (IRA) intercommunication header file.
2    Copyright (C) 2006-2021 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_IRA_INT_H
22 #define GCC_IRA_INT_H
23 
24 #include "recog.h"
25 #include "function-abi.h"
26 
27 /* To provide consistency in naming, all IRA external variables,
28    functions, common typedefs start with prefix ira_.  */
29 
30 #if CHECKING_P
31 #define ENABLE_IRA_CHECKING
32 #endif
33 
34 #ifdef ENABLE_IRA_CHECKING
35 #define ira_assert(c) gcc_assert (c)
36 #else
37 /* Always define and include C, so that warnings for empty body in an
38   'if' statement and unused variable do not occur.  */
39 #define ira_assert(c) ((void)(0 && (c)))
40 #endif
41 
42 /* Compute register frequency from edge frequency FREQ.  It is
43    analogous to REG_FREQ_FROM_BB.  When optimizing for size, or
44    profile driven feedback is available and the function is never
45    executed, frequency is always equivalent.  Otherwise rescale the
46    edge frequency.  */
47 #define REG_FREQ_FROM_EDGE_FREQ(freq)				   \
48   (optimize_function_for_size_p (cfun)				   \
49    ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX)		   \
50    ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
51 
52 /* A modified value of flag `-fira-verbose' used internally.  */
53 extern int internal_flag_ira_verbose;
54 
55 /* Dump file of the allocator if it is not NULL.  */
56 extern FILE *ira_dump_file;
57 
58 /* Typedefs for pointers to allocno live range, allocno, and copy of
59    allocnos.  */
60 typedef struct live_range *live_range_t;
61 typedef struct ira_allocno *ira_allocno_t;
62 typedef struct ira_allocno_pref *ira_pref_t;
63 typedef struct ira_allocno_copy *ira_copy_t;
64 typedef struct ira_object *ira_object_t;
65 
66 /* Definition of vector of allocnos and copies.  */
67 
68 /* Typedef for pointer to the subsequent structure.  */
69 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
70 
71 typedef unsigned short move_table[N_REG_CLASSES];
72 
73 /* In general case, IRA is a regional allocator.  The regions are
74    nested and form a tree.  Currently regions are natural loops.  The
75    following structure describes loop tree node (representing basic
76    block or loop).  We need such tree because the loop tree from
77    cfgloop.h is not convenient for the optimization: basic blocks are
78    not a part of the tree from cfgloop.h.  We also use the nodes for
79    storing additional information about basic blocks/loops for the
80    register allocation purposes.  */
81 struct ira_loop_tree_node
82 {
83   /* The node represents basic block if children == NULL.  */
84   basic_block bb;    /* NULL for loop.  */
85   /* NULL for BB or for loop tree root if we did not build CFG loop tree.  */
86   class loop *loop;
87   /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
88      SUBLOOP_NEXT is always NULL for BBs.  */
89   ira_loop_tree_node_t subloop_next, next;
90   /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
91      the node.  They are NULL for BBs.  */
92   ira_loop_tree_node_t subloops, children;
93   /* The node immediately containing given node.  */
94   ira_loop_tree_node_t parent;
95 
96   /* Loop level in range [0, ira_loop_tree_height).  */
97   int level;
98 
99   /* All the following members are defined only for nodes representing
100      loops.  */
101 
102   /* The loop number from CFG loop tree.  The root number is 0.  */
103   int loop_num;
104 
105   /* True if the loop was marked for removal from the register
106      allocation.  */
107   bool to_remove_p;
108 
109   /* Allocnos in the loop corresponding to their regnos.  If it is
110      NULL the loop does not form a separate register allocation region
111      (e.g. because it has abnormal enter/exit edges and we cannot put
112      code for register shuffling on the edges if a different
113      allocation is used for a pseudo-register on different sides of
114      the edges).  Caps are not in the map (remember we can have more
115      one cap with the same regno in a region).  */
116   ira_allocno_t *regno_allocno_map;
117 
118   /* True if there is an entry to given loop not from its parent (or
119      grandparent) basic block.  For example, it is possible for two
120      adjacent loops inside another loop.  */
121   bool entered_from_non_parent_p;
122 
123   /* Maximal register pressure inside loop for given register class
124      (defined only for the pressure classes).  */
125   int reg_pressure[N_REG_CLASSES];
126 
127   /* Numbers of allocnos referred or living in the loop node (except
128      for its subloops).  */
129   bitmap all_allocnos;
130 
131   /* Numbers of allocnos living at the loop borders.  */
132   bitmap border_allocnos;
133 
134   /* Regnos of pseudos modified in the loop node (including its
135      subloops).  */
136   bitmap modified_regnos;
137 
138   /* Numbers of copies referred in the corresponding loop.  */
139   bitmap local_copies;
140 };
141 
142 /* The root of the loop tree corresponding to the all function.  */
143 extern ira_loop_tree_node_t ira_loop_tree_root;
144 
145 /* Height of the loop tree.  */
146 extern int ira_loop_tree_height;
147 
148 /* All nodes representing basic blocks are referred through the
149    following array.  We cannot use basic block member `aux' for this
150    because it is used for insertion of insns on edges.  */
151 extern ira_loop_tree_node_t ira_bb_nodes;
152 
153 /* Two access macros to the nodes representing basic blocks.  */
154 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
155 #define IRA_BB_NODE_BY_INDEX(index) __extension__			\
156 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]);		\
157      if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
158        {								\
159          fprintf (stderr,						\
160                   "\n%s: %d: error in %s: it is not a block node\n",	\
161                   __FILE__, __LINE__, __FUNCTION__);			\
162          gcc_unreachable ();						\
163        }								\
164      _node; }))
165 #else
166 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
167 #endif
168 
169 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
170 
171 /* All nodes representing loops are referred through the following
172    array.  */
173 extern ira_loop_tree_node_t ira_loop_nodes;
174 
175 /* Two access macros to the nodes representing loops.  */
176 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
177 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__			\
178 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);	\
179      if (_node->children == NULL || _node->bb != NULL			\
180          || (_node->loop == NULL && current_loops != NULL))		\
181        {								\
182          fprintf (stderr,						\
183                   "\n%s: %d: error in %s: it is not a loop node\n",	\
184                   __FILE__, __LINE__, __FUNCTION__);			\
185          gcc_unreachable ();						\
186        }								\
187      _node; }))
188 #else
189 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
190 #endif
191 
192 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
193 
194 
195 /* The structure describes program points where a given allocno lives.
196    If the live ranges of two allocnos are intersected, the allocnos
197    are in conflict.  */
198 struct live_range
199 {
200   /* Object whose live range is described by given structure.  */
201   ira_object_t object;
202   /* Program point range.  */
203   int start, finish;
204   /* Next structure describing program points where the allocno
205      lives.  */
206   live_range_t next;
207   /* Pointer to structures with the same start/finish.  */
208   live_range_t start_next, finish_next;
209 };
210 
211 /* Program points are enumerated by numbers from range
212    0..IRA_MAX_POINT-1.  There are approximately two times more program
213    points than insns.  Program points are places in the program where
214    liveness info can be changed.  In most general case (there are more
215    complicated cases too) some program points correspond to places
216    where input operand dies and other ones correspond to places where
217    output operands are born.  */
218 extern int ira_max_point;
219 
220 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
221    live ranges with given start/finish point.  */
222 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
223 
224 /* A structure representing conflict information for an allocno
225    (or one of its subwords).  */
226 struct ira_object
227 {
228   /* The allocno associated with this record.  */
229   ira_allocno_t allocno;
230   /* Vector of accumulated conflicting conflict_redords with NULL end
231      marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
232      otherwise.  */
233   void *conflicts_array;
234   /* Pointer to structures describing at what program point the
235      object lives.  We always maintain the list in such way that *the
236      ranges in the list are not intersected and ordered by decreasing
237      their program points*.  */
238   live_range_t live_ranges;
239   /* The subword within ALLOCNO which is represented by this object.
240      Zero means the lowest-order subword (or the entire allocno in case
241      it is not being tracked in subwords).  */
242   int subword;
243   /* Allocated size of the conflicts array.  */
244   unsigned int conflicts_array_size;
245   /* A unique number for every instance of this structure, which is used
246      to represent it in conflict bit vectors.  */
247   int id;
248   /* Before building conflicts, MIN and MAX are initialized to
249      correspondingly minimal and maximal points of the accumulated
250      live ranges.  Afterwards, they hold the minimal and maximal ids
251      of other ira_objects that this one can conflict with.  */
252   int min, max;
253   /* Initial and accumulated hard registers conflicting with this
254      object and as a consequences cannot be assigned to the allocno.
255      All non-allocatable hard regs and hard regs of register classes
256      different from given allocno one are included in the sets.  */
257   HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
258   /* Number of accumulated conflicts in the vector of conflicting
259      objects.  */
260   int num_accumulated_conflicts;
261   /* TRUE if conflicts are represented by a vector of pointers to
262      ira_object structures.  Otherwise, we use a bit vector indexed
263      by conflict ID numbers.  */
264   unsigned int conflict_vec_p : 1;
265 };
266 
267 /* A structure representing an allocno (allocation entity).  Allocno
268    represents a pseudo-register in an allocation region.  If
269    pseudo-register does not live in a region but it lives in the
270    nested regions, it is represented in the region by special allocno
271    called *cap*.  There may be more one cap representing the same
272    pseudo-register in region.  It means that the corresponding
273    pseudo-register lives in more one non-intersected subregion.  */
274 struct ira_allocno
275 {
276   /* The allocno order number starting with 0.  Each allocno has an
277      unique number and the number is never changed for the
278      allocno.  */
279   int num;
280   /* Regno for allocno or cap.  */
281   int regno;
282   /* Mode of the allocno which is the mode of the corresponding
283      pseudo-register.  */
284   ENUM_BITFIELD (machine_mode) mode : 8;
285   /* Widest mode of the allocno which in at least one case could be
286      for paradoxical subregs where wmode > mode.  */
287   ENUM_BITFIELD (machine_mode) wmode : 8;
288   /* Register class which should be used for allocation for given
289      allocno.  NO_REGS means that we should use memory.  */
290   ENUM_BITFIELD (reg_class) aclass : 16;
291   /* A bitmask of the ABIs used by calls that occur while the allocno
292      is live.  */
293   unsigned int crossed_calls_abis : NUM_ABI_IDS;
294   /* During the reload, value TRUE means that we should not reassign a
295      hard register to the allocno got memory earlier.  It is set up
296      when we removed memory-memory move insn before each iteration of
297      the reload.  */
298   unsigned int dont_reassign_p : 1;
299 #ifdef STACK_REGS
300   /* Set to TRUE if allocno can't be assigned to the stack hard
301      register correspondingly in this region and area including the
302      region and all its subregions recursively.  */
303   unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
304 #endif
305   /* TRUE value means that there is no sense to spill the allocno
306      during coloring because the spill will result in additional
307      reloads in reload pass.  */
308   unsigned int bad_spill_p : 1;
309   /* TRUE if a hard register or memory has been assigned to the
310      allocno.  */
311   unsigned int assigned_p : 1;
312   /* TRUE if conflicts for given allocno are represented by vector of
313      pointers to the conflicting allocnos.  Otherwise, we use a bit
314      vector where a bit with given index represents allocno with the
315      same number.  */
316   unsigned int conflict_vec_p : 1;
317   /* Hard register assigned to given allocno.  Negative value means
318      that memory was allocated to the allocno.  During the reload,
319      spilled allocno has value equal to the corresponding stack slot
320      number (0, ...) - 2.  Value -1 is used for allocnos spilled by the
321      reload (at this point pseudo-register has only one allocno) which
322      did not get stack slot yet.  */
323   signed int hard_regno : 16;
324   /* Allocnos with the same regno are linked by the following member.
325      Allocnos corresponding to inner loops are first in the list (it
326      corresponds to depth-first traverse of the loops).  */
327   ira_allocno_t next_regno_allocno;
328   /* There may be different allocnos with the same regno in different
329      regions.  Allocnos are bound to the corresponding loop tree node.
330      Pseudo-register may have only one regular allocno with given loop
331      tree node but more than one cap (see comments above).  */
332   ira_loop_tree_node_t loop_tree_node;
333   /* Accumulated usage references of the allocno.  Here and below,
334      word 'accumulated' means info for given region and all nested
335      subregions.  In this case, 'accumulated' means sum of references
336      of the corresponding pseudo-register in this region and in all
337      nested subregions recursively. */
338   int nrefs;
339   /* Accumulated frequency of usage of the allocno.  */
340   int freq;
341   /* Minimal accumulated and updated costs of usage register of the
342      allocno class.  */
343   int class_cost, updated_class_cost;
344   /* Minimal accumulated, and updated costs of memory for the allocno.
345      At the allocation start, the original and updated costs are
346      equal.  The updated cost may be changed after finishing
347      allocation in a region and starting allocation in a subregion.
348      The change reflects the cost of spill/restore code on the
349      subregion border if we assign memory to the pseudo in the
350      subregion.  */
351   int memory_cost, updated_memory_cost;
352   /* Accumulated number of points where the allocno lives and there is
353      excess pressure for its class.  Excess pressure for a register
354      class at some point means that there are more allocnos of given
355      register class living at the point than number of hard-registers
356      of the class available for the allocation.  */
357   int excess_pressure_points_num;
358   /* Allocno hard reg preferences.  */
359   ira_pref_t allocno_prefs;
360   /* Copies to other non-conflicting allocnos.  The copies can
361      represent move insn or potential move insn usually because of two
362      operand insn constraints.  */
363   ira_copy_t allocno_copies;
364   /* It is a allocno (cap) representing given allocno on upper loop tree
365      level.  */
366   ira_allocno_t cap;
367   /* It is a link to allocno (cap) on lower loop level represented by
368      given cap.  Null if given allocno is not a cap.  */
369   ira_allocno_t cap_member;
370   /* The number of objects tracked in the following array.  */
371   int num_objects;
372   /* An array of structures describing conflict information and live
373      ranges for each object associated with the allocno.  There may be
374      more than one such object in cases where the allocno represents a
375      multi-word register.  */
376   ira_object_t objects[2];
377   /* Accumulated frequency of calls which given allocno
378      intersects.  */
379   int call_freq;
380   /* Accumulated number of the intersected calls.  */
381   int calls_crossed_num;
382   /* The number of calls across which it is live, but which should not
383      affect register preferences.  */
384   int cheap_calls_crossed_num;
385   /* Registers clobbered by intersected calls.  */
386    HARD_REG_SET crossed_calls_clobbered_regs;
387   /* Array of usage costs (accumulated and the one updated during
388      coloring) for each hard register of the allocno class.  The
389      member value can be NULL if all costs are the same and equal to
390      CLASS_COST.  For example, the costs of two different hard
391      registers can be different if one hard register is callee-saved
392      and another one is callee-used and the allocno lives through
393      calls.  Another example can be case when for some insn the
394      corresponding pseudo-register value should be put in specific
395      register class (e.g. AREG for x86) which is a strict subset of
396      the allocno class (GENERAL_REGS for x86).  We have updated costs
397      to reflect the situation when the usage cost of a hard register
398      is decreased because the allocno is connected to another allocno
399      by a copy and the another allocno has been assigned to the hard
400      register.  */
401   int *hard_reg_costs, *updated_hard_reg_costs;
402   /* Array of decreasing costs (accumulated and the one updated during
403      coloring) for allocnos conflicting with given allocno for hard
404      regno of the allocno class.  The member value can be NULL if all
405      costs are the same.  These costs are used to reflect preferences
406      of other allocnos not assigned yet during assigning to given
407      allocno.  */
408   int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
409   /* Different additional data.  It is used to decrease size of
410      allocno data footprint.  */
411   void *add_data;
412 };
413 
414 
415 /* All members of the allocno structures should be accessed only
416    through the following macros.  */
417 #define ALLOCNO_NUM(A) ((A)->num)
418 #define ALLOCNO_REGNO(A) ((A)->regno)
419 #define ALLOCNO_REG(A) ((A)->reg)
420 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
421 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
422 #define ALLOCNO_CAP(A) ((A)->cap)
423 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
424 #define ALLOCNO_NREFS(A) ((A)->nrefs)
425 #define ALLOCNO_FREQ(A) ((A)->freq)
426 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
427 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
428 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
429 #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
430 #define ALLOCNO_CROSSED_CALLS_ABIS(A) ((A)->crossed_calls_abis)
431 #define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
432   ((A)->crossed_calls_clobbered_regs)
433 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
434 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
435 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
436 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
437 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
438 #ifdef STACK_REGS
439 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
440 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
441 #endif
442 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
443 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
444 #define ALLOCNO_MODE(A) ((A)->mode)
445 #define ALLOCNO_WMODE(A) ((A)->wmode)
446 #define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
447 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
448 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
449 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
450 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
451   ((A)->conflict_hard_reg_costs)
452 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
453   ((A)->updated_conflict_hard_reg_costs)
454 #define ALLOCNO_CLASS(A) ((A)->aclass)
455 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
456 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
457 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
458 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
459 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
460   ((A)->excess_pressure_points_num)
461 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
462 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
463 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
464 
465 /* Typedef for pointer to the subsequent structure.  */
466 typedef struct ira_emit_data *ira_emit_data_t;
467 
468 /* Allocno bound data used for emit pseudo live range split insns and
469    to flattening IR.  */
470 struct ira_emit_data
471 {
472   /* TRUE if the allocno assigned to memory was a destination of
473      removed move (see ira-emit.c) at loop exit because the value of
474      the corresponding pseudo-register is not changed inside the
475      loop.  */
476   unsigned int mem_optimized_dest_p : 1;
477   /* TRUE if the corresponding pseudo-register has disjoint live
478      ranges and the other allocnos of the pseudo-register except this
479      one changed REG.  */
480   unsigned int somewhere_renamed_p : 1;
481   /* TRUE if allocno with the same REGNO in a subregion has been
482      renamed, in other words, got a new pseudo-register.  */
483   unsigned int child_renamed_p : 1;
484   /* Final rtx representation of the allocno.  */
485   rtx reg;
486   /* Non NULL if we remove restoring value from given allocno to
487      MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
488      allocno value is not changed inside the loop.  */
489   ira_allocno_t mem_optimized_dest;
490 };
491 
492 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
493 
494 /* Data used to emit live range split insns and to flattening IR.  */
495 extern ira_emit_data_t ira_allocno_emit_data;
496 
497 /* Abbreviation for frequent emit data access.  */
498 static inline rtx
allocno_emit_reg(ira_allocno_t a)499 allocno_emit_reg (ira_allocno_t a)
500 {
501   return ALLOCNO_EMIT_DATA (a)->reg;
502 }
503 
504 #define OBJECT_ALLOCNO(O) ((O)->allocno)
505 #define OBJECT_SUBWORD(O) ((O)->subword)
506 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
507 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
508 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
509 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
510 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
511 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
512 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
513 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
514 #define OBJECT_MIN(O) ((O)->min)
515 #define OBJECT_MAX(O) ((O)->max)
516 #define OBJECT_CONFLICT_ID(O) ((O)->id)
517 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
518 
519 /* Map regno -> allocnos with given regno (see comments for
520    allocno member `next_regno_allocno').  */
521 extern ira_allocno_t *ira_regno_allocno_map;
522 
523 /* Array of references to all allocnos.  The order number of the
524    allocno corresponds to the index in the array.  Removed allocnos
525    have NULL element value.  */
526 extern ira_allocno_t *ira_allocnos;
527 
528 /* The size of the previous array.  */
529 extern int ira_allocnos_num;
530 
531 /* Map a conflict id to its corresponding ira_object structure.  */
532 extern ira_object_t *ira_object_id_map;
533 
534 /* The size of the previous array.  */
535 extern int ira_objects_num;
536 
537 /* The following structure represents a hard register preference of
538    allocno.  The preference represent move insns or potential move
539    insns usually because of two operand insn constraints.  One move
540    operand is a hard register.  */
541 struct ira_allocno_pref
542 {
543   /* The unique order number of the preference node starting with 0.  */
544   int num;
545   /* Preferred hard register.  */
546   int hard_regno;
547   /* Accumulated execution frequency of insns from which the
548      preference created.  */
549   int freq;
550   /* Given allocno.  */
551   ira_allocno_t allocno;
552   /* All preferences with the same allocno are linked by the following
553      member.  */
554   ira_pref_t next_pref;
555 };
556 
557 /* Array of references to all allocno preferences.  The order number
558    of the preference corresponds to the index in the array.  */
559 extern ira_pref_t *ira_prefs;
560 
561 /* Size of the previous array.  */
562 extern int ira_prefs_num;
563 
564 /* The following structure represents a copy of two allocnos.  The
565    copies represent move insns or potential move insns usually because
566    of two operand insn constraints.  To remove register shuffle, we
567    also create copies between allocno which is output of an insn and
568    allocno becoming dead in the insn.  */
569 struct ira_allocno_copy
570 {
571   /* The unique order number of the copy node starting with 0.  */
572   int num;
573   /* Allocnos connected by the copy.  The first allocno should have
574      smaller order number than the second one.  */
575   ira_allocno_t first, second;
576   /* Execution frequency of the copy.  */
577   int freq;
578   bool constraint_p;
579   /* It is a move insn which is an origin of the copy.  The member
580      value for the copy representing two operand insn constraints or
581      for the copy created to remove register shuffle is NULL.  In last
582      case the copy frequency is smaller than the corresponding insn
583      execution frequency.  */
584   rtx_insn *insn;
585   /* All copies with the same allocno as FIRST are linked by the two
586      following members.  */
587   ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
588   /* All copies with the same allocno as SECOND are linked by the two
589      following members.  */
590   ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
591   /* Region from which given copy is originated.  */
592   ira_loop_tree_node_t loop_tree_node;
593 };
594 
595 /* Array of references to all copies.  The order number of the copy
596    corresponds to the index in the array.  Removed copies have NULL
597    element value.  */
598 extern ira_copy_t *ira_copies;
599 
600 /* Size of the previous array.  */
601 extern int ira_copies_num;
602 
603 /* The following structure describes a stack slot used for spilled
604    pseudo-registers.  */
605 class ira_spilled_reg_stack_slot
606 {
607 public:
608   /* pseudo-registers assigned to the stack slot.  */
609   bitmap_head spilled_regs;
610   /* RTL representation of the stack slot.  */
611   rtx mem;
612   /* Size of the stack slot.  */
613   poly_uint64_pod width;
614 };
615 
616 /* The number of elements in the following array.  */
617 extern int ira_spilled_reg_stack_slots_num;
618 
619 /* The following array contains info about spilled pseudo-registers
620    stack slots used in current function so far.  */
621 extern class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
622 
623 /* Correspondingly overall cost of the allocation, cost of the
624    allocnos assigned to hard-registers, cost of the allocnos assigned
625    to memory, cost of loads, stores and register move insns generated
626    for pseudo-register live range splitting (see ira-emit.c).  */
627 extern int64_t ira_overall_cost;
628 extern int64_t ira_reg_cost, ira_mem_cost;
629 extern int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
630 extern int ira_move_loops_num, ira_additional_jumps_num;
631 
632 
633 /* This page contains a bitset implementation called 'min/max sets' used to
634    record conflicts in IRA.
635    They are named min/maxs set since we keep track of a minimum and a maximum
636    bit number for each set representing the bounds of valid elements.  Otherwise,
637    the implementation resembles sbitmaps in that we store an array of integers
638    whose bits directly represent the members of the set.  */
639 
640 /* The type used as elements in the array, and the number of bits in
641    this type.  */
642 
643 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
644 #define IRA_INT_TYPE HOST_WIDE_INT
645 
646 /* Set, clear or test bit number I in R, a bit vector of elements with
647    minimal index and maximal index equal correspondingly to MIN and
648    MAX.  */
649 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
650 
651 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__	        \
652   (({ int _min = (MIN), _max = (MAX), _i = (I);				\
653      if (_i < _min || _i > _max)					\
654        {								\
655          fprintf (stderr,						\
656                   "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
657                   __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);	\
658          gcc_unreachable ();						\
659        }								\
660      ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]			\
661       |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
662 
663 
664 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__	        \
665   (({ int _min = (MIN), _max = (MAX), _i = (I);				\
666      if (_i < _min || _i > _max)					\
667        {								\
668          fprintf (stderr,						\
669                   "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
670                   __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);	\
671          gcc_unreachable ();						\
672        }								\
673      ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]			\
674       &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
675 
676 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__	        \
677   (({ int _min = (MIN), _max = (MAX), _i = (I);				\
678      if (_i < _min || _i > _max)					\
679        {								\
680          fprintf (stderr,						\
681                   "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
682                   __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);	\
683          gcc_unreachable ();						\
684        }								\
685      ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]			\
686       & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
687 
688 #else
689 
690 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX)			\
691   ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]			\
692    |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
693 
694 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX)			\
695   ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]			\
696    &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
697 
698 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX)			\
699   ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]			\
700    & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
701 
702 #endif
703 
704 /* The iterator for min/max sets.  */
705 struct minmax_set_iterator {
706 
707   /* Array containing the bit vector.  */
708   IRA_INT_TYPE *vec;
709 
710   /* The number of the current element in the vector.  */
711   unsigned int word_num;
712 
713   /* The number of bits in the bit vector.  */
714   unsigned int nel;
715 
716   /* The current bit index of the bit vector.  */
717   unsigned int bit_num;
718 
719   /* Index corresponding to the 1st bit of the bit vector.   */
720   int start_val;
721 
722   /* The word of the bit vector currently visited.  */
723   unsigned IRA_INT_TYPE word;
724 };
725 
726 /* Initialize the iterator I for bit vector VEC containing minimal and
727    maximal values MIN and MAX.  */
728 static inline void
minmax_set_iter_init(minmax_set_iterator * i,IRA_INT_TYPE * vec,int min,int max)729 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
730 		      int max)
731 {
732   i->vec = vec;
733   i->word_num = 0;
734   i->nel = max < min ? 0 : max - min + 1;
735   i->start_val = min;
736   i->bit_num = 0;
737   i->word = i->nel == 0 ? 0 : vec[0];
738 }
739 
740 /* Return TRUE if we have more allocnos to visit, in which case *N is
741    set to the number of the element to be visited.  Otherwise, return
742    FALSE.  */
743 static inline bool
minmax_set_iter_cond(minmax_set_iterator * i,int * n)744 minmax_set_iter_cond (minmax_set_iterator *i, int *n)
745 {
746   /* Skip words that are zeros.  */
747   for (; i->word == 0; i->word = i->vec[i->word_num])
748     {
749       i->word_num++;
750       i->bit_num = i->word_num * IRA_INT_BITS;
751 
752       /* If we have reached the end, break.  */
753       if (i->bit_num >= i->nel)
754 	return false;
755     }
756 
757   /* Skip bits that are zero.  */
758   for (; (i->word & 1) == 0; i->word >>= 1)
759     i->bit_num++;
760 
761   *n = (int) i->bit_num + i->start_val;
762 
763   return true;
764 }
765 
766 /* Advance to the next element in the set.  */
767 static inline void
minmax_set_iter_next(minmax_set_iterator * i)768 minmax_set_iter_next (minmax_set_iterator *i)
769 {
770   i->word >>= 1;
771   i->bit_num++;
772 }
773 
774 /* Loop over all elements of a min/max set given by bit vector VEC and
775    their minimal and maximal values MIN and MAX.  In each iteration, N
776    is set to the number of next allocno.  ITER is an instance of
777    minmax_set_iterator used to iterate over the set.  */
778 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER)	\
779   for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX));	\
780        minmax_set_iter_cond (&(ITER), &(N));			\
781        minmax_set_iter_next (&(ITER)))
782 
783 class target_ira_int {
784 public:
785   ~target_ira_int ();
786 
787   void free_ira_costs ();
788   void free_register_move_costs ();
789 
790   /* Initialized once.  It is a maximal possible size of the allocated
791      struct costs.  */
792   size_t x_max_struct_costs_size;
793 
794   /* Allocated and initialized once, and used to initialize cost values
795      for each insn.  */
796   struct costs *x_init_cost;
797 
798   /* Allocated once, and used for temporary purposes.  */
799   struct costs *x_temp_costs;
800 
801   /* Allocated once, and used for the cost calculation.  */
802   struct costs *x_op_costs[MAX_RECOG_OPERANDS];
803   struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
804 
805   /* Hard registers that cannot be used for the register allocator for
806      all functions of the current compilation unit.  */
807   HARD_REG_SET x_no_unit_alloc_regs;
808 
809   /* Map: hard regs X modes -> set of hard registers for storing value
810      of given mode starting with given hard register.  */
811   HARD_REG_SET (x_ira_reg_mode_hard_regset
812 		[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
813 
814   /* Maximum cost of moving from a register in one class to a register
815      in another class.  Based on TARGET_REGISTER_MOVE_COST.  */
816   move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
817 
818   /* Similar, but here we don't have to move if the first index is a
819      subset of the second so in that case the cost is zero.  */
820   move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
821 
822   /* Similar, but here we don't have to move if the first index is a
823      superset of the second so in that case the cost is zero.  */
824   move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
825 
826   /* Keep track of the last mode we initialized move costs for.  */
827   int x_last_mode_for_init_move_cost;
828 
829   /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
830      cost not minimal.  */
831   short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
832 
833   /* Map class->true if class is a possible allocno class, false
834      otherwise. */
835   bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
836 
837   /* Map class->true if class is a pressure class, false otherwise. */
838   bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
839 
840   /* Array of the number of hard registers of given class which are
841      available for allocation.  The order is defined by the hard
842      register numbers.  */
843   short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
844 
845   /* Index (in ira_class_hard_regs; for given register class and hard
846      register (in general case a hard register can belong to several
847      register classes;.  The index is negative for hard registers
848      unavailable for the allocation.  */
849   short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
850 
851   /* Index [CL][M] contains R if R appears somewhere in a register of the form:
852 
853          (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
854 
855      For example, if:
856 
857      - (reg:M 2) is valid and occupies two registers;
858      - register 2 belongs to CL; and
859      - register 3 belongs to the same pressure class as CL
860 
861      then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
862      in the set.  */
863   HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
864 
865   /* The value is number of elements in the subsequent array.  */
866   int x_ira_important_classes_num;
867 
868   /* The array containing all non-empty classes.  Such classes is
869      important for calculation of the hard register usage costs.  */
870   enum reg_class x_ira_important_classes[N_REG_CLASSES];
871 
872   /* The array containing indexes of important classes in the previous
873      array.  The array elements are defined only for important
874      classes.  */
875   int x_ira_important_class_nums[N_REG_CLASSES];
876 
877   /* Map class->true if class is an uniform class, false otherwise.  */
878   bool x_ira_uniform_class_p[N_REG_CLASSES];
879 
880   /* The biggest important class inside of intersection of the two
881      classes (that is calculated taking only hard registers available
882      for allocation into account;.  If the both classes contain no hard
883      registers available for allocation, the value is calculated with
884      taking all hard-registers including fixed ones into account.  */
885   enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
886 
887   /* Classes with end marker LIM_REG_CLASSES which are intersected with
888      given class (the first index).  That includes given class itself.
889      This is calculated taking only hard registers available for
890      allocation into account.  */
891   enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
892 
893   /* The biggest (smallest) important class inside of (covering) union
894      of the two classes (that is calculated taking only hard registers
895      available for allocation into account).  If the both classes
896      contain no hard registers available for allocation, the value is
897      calculated with taking all hard-registers including fixed ones
898      into account.  In other words, the value is the corresponding
899      reg_class_subunion (reg_class_superunion) value.  */
900   enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
901   enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
902 
903   /* For each reg class, table listing all the classes contained in it
904      (excluding the class itself.  Non-allocatable registers are
905      excluded from the consideration).  */
906   enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
907 
908   /* Array whose values are hard regset of hard registers for which
909      move of the hard register in given mode into itself is
910      prohibited.  */
911   HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
912 
913   /* Flag of that the above array has been initialized.  */
914   bool x_ira_prohibited_mode_move_regs_initialized_p;
915 };
916 
917 extern class target_ira_int default_target_ira_int;
918 #if SWITCHABLE_TARGET
919 extern class target_ira_int *this_target_ira_int;
920 #else
921 #define this_target_ira_int (&default_target_ira_int)
922 #endif
923 
924 #define ira_reg_mode_hard_regset \
925   (this_target_ira_int->x_ira_reg_mode_hard_regset)
926 #define ira_register_move_cost \
927   (this_target_ira_int->x_ira_register_move_cost)
928 #define ira_max_memory_move_cost \
929   (this_target_ira_int->x_ira_max_memory_move_cost)
930 #define ira_may_move_in_cost \
931   (this_target_ira_int->x_ira_may_move_in_cost)
932 #define ira_may_move_out_cost \
933   (this_target_ira_int->x_ira_may_move_out_cost)
934 #define ira_reg_allocno_class_p \
935   (this_target_ira_int->x_ira_reg_allocno_class_p)
936 #define ira_reg_pressure_class_p \
937   (this_target_ira_int->x_ira_reg_pressure_class_p)
938 #define ira_non_ordered_class_hard_regs \
939   (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
940 #define ira_class_hard_reg_index \
941   (this_target_ira_int->x_ira_class_hard_reg_index)
942 #define ira_useful_class_mode_regs \
943   (this_target_ira_int->x_ira_useful_class_mode_regs)
944 #define ira_important_classes_num \
945   (this_target_ira_int->x_ira_important_classes_num)
946 #define ira_important_classes \
947   (this_target_ira_int->x_ira_important_classes)
948 #define ira_important_class_nums \
949   (this_target_ira_int->x_ira_important_class_nums)
950 #define ira_uniform_class_p \
951   (this_target_ira_int->x_ira_uniform_class_p)
952 #define ira_reg_class_intersect \
953   (this_target_ira_int->x_ira_reg_class_intersect)
954 #define ira_reg_class_super_classes \
955   (this_target_ira_int->x_ira_reg_class_super_classes)
956 #define ira_reg_class_subunion \
957   (this_target_ira_int->x_ira_reg_class_subunion)
958 #define ira_reg_class_superunion \
959   (this_target_ira_int->x_ira_reg_class_superunion)
960 #define ira_prohibited_mode_move_regs \
961   (this_target_ira_int->x_ira_prohibited_mode_move_regs)
962 
963 /* ira.c: */
964 
965 extern void *ira_allocate (size_t);
966 extern void ira_free (void *addr);
967 extern bitmap ira_allocate_bitmap (void);
968 extern void ira_free_bitmap (bitmap);
969 extern void ira_print_disposition (FILE *);
970 extern void ira_debug_disposition (void);
971 extern void ira_debug_allocno_classes (void);
972 extern void ira_init_register_move_cost (machine_mode);
973 extern alternative_mask ira_setup_alts (rtx_insn *);
974 extern int ira_get_dup_out_num (int, alternative_mask);
975 
976 /* ira-build.c */
977 
978 /* The current loop tree node and its regno allocno map.  */
979 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
980 extern ira_allocno_t *ira_curr_regno_allocno_map;
981 
982 extern void ira_debug_pref (ira_pref_t);
983 extern void ira_debug_prefs (void);
984 extern void ira_debug_allocno_prefs (ira_allocno_t);
985 
986 extern void ira_debug_copy (ira_copy_t);
987 extern void debug (ira_allocno_copy &ref);
988 extern void debug (ira_allocno_copy *ptr);
989 
990 extern void ira_debug_copies (void);
991 extern void ira_debug_allocno_copies (ira_allocno_t);
992 extern void debug (ira_allocno &ref);
993 extern void debug (ira_allocno *ptr);
994 
995 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
996 				    void (*) (ira_loop_tree_node_t),
997 				    void (*) (ira_loop_tree_node_t));
998 extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
999 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
1000 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
1001 extern void ira_create_allocno_objects (ira_allocno_t);
1002 extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
1003 extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
1004 extern void ira_allocate_conflict_vec (ira_object_t, int);
1005 extern void ira_allocate_object_conflicts (ira_object_t, int);
1006 extern void ior_hard_reg_conflicts (ira_allocno_t, const_hard_reg_set);
1007 extern void ira_print_expanded_allocno (ira_allocno_t);
1008 extern void ira_add_live_range_to_object (ira_object_t, int, int);
1009 extern live_range_t ira_create_live_range (ira_object_t, int, int,
1010 					   live_range_t);
1011 extern live_range_t ira_copy_live_range_list (live_range_t);
1012 extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
1013 extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
1014 extern void ira_finish_live_range (live_range_t);
1015 extern void ira_finish_live_range_list (live_range_t);
1016 extern void ira_free_allocno_updated_costs (ira_allocno_t);
1017 extern ira_pref_t ira_create_pref (ira_allocno_t, int, int);
1018 extern void ira_add_allocno_pref (ira_allocno_t, int, int);
1019 extern void ira_remove_pref (ira_pref_t);
1020 extern void ira_remove_allocno_prefs (ira_allocno_t);
1021 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
1022 				   int, bool, rtx_insn *,
1023 				   ira_loop_tree_node_t);
1024 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
1025 					bool, rtx_insn *,
1026 					ira_loop_tree_node_t);
1027 
1028 extern int *ira_allocate_cost_vector (reg_class_t);
1029 extern void ira_free_cost_vector (int *, reg_class_t);
1030 
1031 extern void ira_flattening (int, int);
1032 extern bool ira_build (void);
1033 extern void ira_destroy (void);
1034 
1035 /* ira-costs.c */
1036 extern void ira_init_costs_once (void);
1037 extern void ira_init_costs (void);
1038 extern void ira_costs (void);
1039 extern void ira_tune_allocno_costs (void);
1040 
1041 /* ira-lives.c */
1042 
1043 extern void ira_rebuild_start_finish_chains (void);
1044 extern void ira_print_live_range_list (FILE *, live_range_t);
1045 extern void debug (live_range &ref);
1046 extern void debug (live_range *ptr);
1047 extern void ira_debug_live_range_list (live_range_t);
1048 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1049 extern void ira_debug_live_ranges (void);
1050 extern void ira_create_allocno_live_ranges (void);
1051 extern void ira_compress_allocno_live_ranges (void);
1052 extern void ira_finish_allocno_live_ranges (void);
1053 extern void ira_implicitly_set_insn_hard_regs (HARD_REG_SET *,
1054 					       alternative_mask);
1055 
1056 /* ira-conflicts.c */
1057 extern void ira_debug_conflicts (bool);
1058 extern void ira_build_conflicts (void);
1059 
1060 /* ira-color.c */
1061 extern void ira_debug_hard_regs_forest (void);
1062 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1063 extern void ira_reassign_conflict_allocnos (int);
1064 extern void ira_initiate_assign (void);
1065 extern void ira_finish_assign (void);
1066 extern void ira_color (void);
1067 
1068 /* ira-emit.c */
1069 extern void ira_initiate_emit_data (void);
1070 extern void ira_finish_emit_data (void);
1071 extern void ira_emit (bool);
1072 
1073 
1074 
1075 /* Return true if equivalence of pseudo REGNO is not a lvalue.  */
1076 static inline bool
ira_equiv_no_lvalue_p(int regno)1077 ira_equiv_no_lvalue_p (int regno)
1078 {
1079   if (regno >= ira_reg_equiv_len)
1080     return false;
1081   return (ira_reg_equiv[regno].constant != NULL_RTX
1082 	  || ira_reg_equiv[regno].invariant != NULL_RTX
1083 	  || (ira_reg_equiv[regno].memory != NULL_RTX
1084 	      && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1085 }
1086 
1087 
1088 
1089 /* Initialize register costs for MODE if necessary.  */
1090 static inline void
ira_init_register_move_cost_if_necessary(machine_mode mode)1091 ira_init_register_move_cost_if_necessary (machine_mode mode)
1092 {
1093   if (ira_register_move_cost[mode] == NULL)
1094     ira_init_register_move_cost (mode);
1095 }
1096 
1097 
1098 
1099 /* The iterator for all allocnos.  */
1100 struct ira_allocno_iterator {
1101   /* The number of the current element in IRA_ALLOCNOS.  */
1102   int n;
1103 };
1104 
1105 /* Initialize the iterator I.  */
1106 static inline void
ira_allocno_iter_init(ira_allocno_iterator * i)1107 ira_allocno_iter_init (ira_allocno_iterator *i)
1108 {
1109   i->n = 0;
1110 }
1111 
1112 /* Return TRUE if we have more allocnos to visit, in which case *A is
1113    set to the allocno to be visited.  Otherwise, return FALSE.  */
1114 static inline bool
ira_allocno_iter_cond(ira_allocno_iterator * i,ira_allocno_t * a)1115 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1116 {
1117   int n;
1118 
1119   for (n = i->n; n < ira_allocnos_num; n++)
1120     if (ira_allocnos[n] != NULL)
1121       {
1122 	*a = ira_allocnos[n];
1123 	i->n = n + 1;
1124 	return true;
1125       }
1126   return false;
1127 }
1128 
1129 /* Loop over all allocnos.  In each iteration, A is set to the next
1130    allocno.  ITER is an instance of ira_allocno_iterator used to iterate
1131    the allocnos.  */
1132 #define FOR_EACH_ALLOCNO(A, ITER)			\
1133   for (ira_allocno_iter_init (&(ITER));			\
1134        ira_allocno_iter_cond (&(ITER), &(A));)
1135 
1136 /* The iterator for all objects.  */
1137 struct ira_object_iterator {
1138   /* The number of the current element in ira_object_id_map.  */
1139   int n;
1140 };
1141 
1142 /* Initialize the iterator I.  */
1143 static inline void
ira_object_iter_init(ira_object_iterator * i)1144 ira_object_iter_init (ira_object_iterator *i)
1145 {
1146   i->n = 0;
1147 }
1148 
1149 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1150    set to the object to be visited.  Otherwise, return FALSE.  */
1151 static inline bool
ira_object_iter_cond(ira_object_iterator * i,ira_object_t * obj)1152 ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1153 {
1154   int n;
1155 
1156   for (n = i->n; n < ira_objects_num; n++)
1157     if (ira_object_id_map[n] != NULL)
1158       {
1159 	*obj = ira_object_id_map[n];
1160 	i->n = n + 1;
1161 	return true;
1162       }
1163   return false;
1164 }
1165 
1166 /* Loop over all objects.  In each iteration, OBJ is set to the next
1167    object.  ITER is an instance of ira_object_iterator used to iterate
1168    the objects.  */
1169 #define FOR_EACH_OBJECT(OBJ, ITER)			\
1170   for (ira_object_iter_init (&(ITER));			\
1171        ira_object_iter_cond (&(ITER), &(OBJ));)
1172 
1173 /* The iterator for objects associated with an allocno.  */
1174 struct ira_allocno_object_iterator {
1175   /* The number of the element the allocno's object array.  */
1176   int n;
1177 };
1178 
1179 /* Initialize the iterator I.  */
1180 static inline void
ira_allocno_object_iter_init(ira_allocno_object_iterator * i)1181 ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1182 {
1183   i->n = 0;
1184 }
1185 
1186 /* Return TRUE if we have more objects to visit in allocno A, in which
1187    case *O is set to the object to be visited.  Otherwise, return
1188    FALSE.  */
1189 static inline bool
ira_allocno_object_iter_cond(ira_allocno_object_iterator * i,ira_allocno_t a,ira_object_t * o)1190 ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1191 			      ira_object_t *o)
1192 {
1193   int n = i->n++;
1194   if (n < ALLOCNO_NUM_OBJECTS (a))
1195     {
1196       *o = ALLOCNO_OBJECT (a, n);
1197       return true;
1198     }
1199   return false;
1200 }
1201 
1202 /* Loop over all objects associated with allocno A.  In each
1203    iteration, O is set to the next object.  ITER is an instance of
1204    ira_allocno_object_iterator used to iterate the conflicts.  */
1205 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER)			\
1206   for (ira_allocno_object_iter_init (&(ITER));			\
1207        ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1208 
1209 
1210 /* The iterator for prefs.  */
1211 struct ira_pref_iterator {
1212   /* The number of the current element in IRA_PREFS.  */
1213   int n;
1214 };
1215 
1216 /* Initialize the iterator I.  */
1217 static inline void
ira_pref_iter_init(ira_pref_iterator * i)1218 ira_pref_iter_init (ira_pref_iterator *i)
1219 {
1220   i->n = 0;
1221 }
1222 
1223 /* Return TRUE if we have more prefs to visit, in which case *PREF is
1224    set to the pref to be visited.  Otherwise, return FALSE.  */
1225 static inline bool
ira_pref_iter_cond(ira_pref_iterator * i,ira_pref_t * pref)1226 ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref)
1227 {
1228   int n;
1229 
1230   for (n = i->n; n < ira_prefs_num; n++)
1231     if (ira_prefs[n] != NULL)
1232       {
1233 	*pref = ira_prefs[n];
1234 	i->n = n + 1;
1235 	return true;
1236       }
1237   return false;
1238 }
1239 
1240 /* Loop over all prefs.  In each iteration, P is set to the next
1241    pref.  ITER is an instance of ira_pref_iterator used to iterate
1242    the prefs.  */
1243 #define FOR_EACH_PREF(P, ITER)				\
1244   for (ira_pref_iter_init (&(ITER));			\
1245        ira_pref_iter_cond (&(ITER), &(P));)
1246 
1247 
1248 /* The iterator for copies.  */
1249 struct ira_copy_iterator {
1250   /* The number of the current element in IRA_COPIES.  */
1251   int n;
1252 };
1253 
1254 /* Initialize the iterator I.  */
1255 static inline void
ira_copy_iter_init(ira_copy_iterator * i)1256 ira_copy_iter_init (ira_copy_iterator *i)
1257 {
1258   i->n = 0;
1259 }
1260 
1261 /* Return TRUE if we have more copies to visit, in which case *CP is
1262    set to the copy to be visited.  Otherwise, return FALSE.  */
1263 static inline bool
ira_copy_iter_cond(ira_copy_iterator * i,ira_copy_t * cp)1264 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1265 {
1266   int n;
1267 
1268   for (n = i->n; n < ira_copies_num; n++)
1269     if (ira_copies[n] != NULL)
1270       {
1271 	*cp = ira_copies[n];
1272 	i->n = n + 1;
1273 	return true;
1274       }
1275   return false;
1276 }
1277 
1278 /* Loop over all copies.  In each iteration, C is set to the next
1279    copy.  ITER is an instance of ira_copy_iterator used to iterate
1280    the copies.  */
1281 #define FOR_EACH_COPY(C, ITER)				\
1282   for (ira_copy_iter_init (&(ITER));			\
1283        ira_copy_iter_cond (&(ITER), &(C));)
1284 
1285 /* The iterator for object conflicts.  */
1286 struct ira_object_conflict_iterator {
1287 
1288   /* TRUE if the conflicts are represented by vector of allocnos.  */
1289   bool conflict_vec_p;
1290 
1291   /* The conflict vector or conflict bit vector.  */
1292   void *vec;
1293 
1294   /* The number of the current element in the vector (of type
1295      ira_object_t or IRA_INT_TYPE).  */
1296   unsigned int word_num;
1297 
1298   /* The bit vector size.  It is defined only if
1299      OBJECT_CONFLICT_VEC_P is FALSE.  */
1300   unsigned int size;
1301 
1302   /* The current bit index of bit vector.  It is defined only if
1303      OBJECT_CONFLICT_VEC_P is FALSE.  */
1304   unsigned int bit_num;
1305 
1306   /* The object id corresponding to the 1st bit of the bit vector.  It
1307      is defined only if OBJECT_CONFLICT_VEC_P is FALSE.  */
1308   int base_conflict_id;
1309 
1310   /* The word of bit vector currently visited.  It is defined only if
1311      OBJECT_CONFLICT_VEC_P is FALSE.  */
1312   unsigned IRA_INT_TYPE word;
1313 };
1314 
1315 /* Initialize the iterator I with ALLOCNO conflicts.  */
1316 static inline void
ira_object_conflict_iter_init(ira_object_conflict_iterator * i,ira_object_t obj)1317 ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1318 			       ira_object_t obj)
1319 {
1320   i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1321   i->vec = OBJECT_CONFLICT_ARRAY (obj);
1322   i->word_num = 0;
1323   if (i->conflict_vec_p)
1324     i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1325   else
1326     {
1327       if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1328 	i->size = 0;
1329       else
1330 	i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1331 		    + IRA_INT_BITS)
1332 		   / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1333       i->bit_num = 0;
1334       i->base_conflict_id = OBJECT_MIN (obj);
1335       i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1336     }
1337 }
1338 
1339 /* Return TRUE if we have more conflicting allocnos to visit, in which
1340    case *A is set to the allocno to be visited.  Otherwise, return
1341    FALSE.  */
1342 static inline bool
ira_object_conflict_iter_cond(ira_object_conflict_iterator * i,ira_object_t * pobj)1343 ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1344 			       ira_object_t *pobj)
1345 {
1346   ira_object_t obj;
1347 
1348   if (i->conflict_vec_p)
1349     {
1350       obj = ((ira_object_t *) i->vec)[i->word_num++];
1351       if (obj == NULL)
1352 	return false;
1353     }
1354   else
1355     {
1356       unsigned IRA_INT_TYPE word = i->word;
1357       unsigned int bit_num = i->bit_num;
1358 
1359       /* Skip words that are zeros.  */
1360       for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1361 	{
1362 	  i->word_num++;
1363 
1364 	  /* If we have reached the end, break.  */
1365 	  if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1366 	    return false;
1367 
1368 	  bit_num = i->word_num * IRA_INT_BITS;
1369 	}
1370 
1371       /* Skip bits that are zero.  */
1372       for (; (word & 1) == 0; word >>= 1)
1373 	bit_num++;
1374 
1375       obj = ira_object_id_map[bit_num + i->base_conflict_id];
1376       i->bit_num = bit_num + 1;
1377       i->word = word >> 1;
1378     }
1379 
1380   *pobj = obj;
1381   return true;
1382 }
1383 
1384 /* Loop over all objects conflicting with OBJ.  In each iteration,
1385    CONF is set to the next conflicting object.  ITER is an instance
1386    of ira_object_conflict_iterator used to iterate the conflicts.  */
1387 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER)			\
1388   for (ira_object_conflict_iter_init (&(ITER), (OBJ));			\
1389        ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1390 
1391 
1392 
1393 /* The function returns TRUE if at least one hard register from ones
1394    starting with HARD_REGNO and containing value of MODE are in set
1395    HARD_REGSET.  */
1396 static inline bool
ira_hard_reg_set_intersection_p(int hard_regno,machine_mode mode,HARD_REG_SET hard_regset)1397 ira_hard_reg_set_intersection_p (int hard_regno, machine_mode mode,
1398 				 HARD_REG_SET hard_regset)
1399 {
1400   int i;
1401 
1402   gcc_assert (hard_regno >= 0);
1403   for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
1404     if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1405       return true;
1406   return false;
1407 }
1408 
1409 /* Return number of hard registers in hard register SET.  */
1410 static inline int
hard_reg_set_size(HARD_REG_SET set)1411 hard_reg_set_size (HARD_REG_SET set)
1412 {
1413   int i, size;
1414 
1415   for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1416     if (TEST_HARD_REG_BIT (set, i))
1417       size++;
1418   return size;
1419 }
1420 
1421 /* The function returns TRUE if hard registers starting with
1422    HARD_REGNO and containing value of MODE are fully in set
1423    HARD_REGSET.  */
1424 static inline bool
ira_hard_reg_in_set_p(int hard_regno,machine_mode mode,HARD_REG_SET hard_regset)1425 ira_hard_reg_in_set_p (int hard_regno, machine_mode mode,
1426 		       HARD_REG_SET hard_regset)
1427 {
1428   int i;
1429 
1430   ira_assert (hard_regno >= 0);
1431   for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
1432     if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1433       return false;
1434   return true;
1435 }
1436 
1437 
1438 
1439 /* To save memory we use a lazy approach for allocation and
1440    initialization of the cost vectors.  We do this only when it is
1441    really necessary.  */
1442 
1443 /* Allocate cost vector *VEC for hard registers of ACLASS and
1444    initialize the elements by VAL if it is necessary */
1445 static inline void
ira_allocate_and_set_costs(int ** vec,reg_class_t aclass,int val)1446 ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1447 {
1448   int i, *reg_costs;
1449   int len;
1450 
1451   if (*vec != NULL)
1452     return;
1453   *vec = reg_costs = ira_allocate_cost_vector (aclass);
1454   len = ira_class_hard_regs_num[(int) aclass];
1455   for (i = 0; i < len; i++)
1456     reg_costs[i] = val;
1457 }
1458 
1459 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1460    values of vector SRC into the vector if it is necessary */
1461 static inline void
ira_allocate_and_copy_costs(int ** vec,enum reg_class aclass,int * src)1462 ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1463 {
1464   int len;
1465 
1466   if (*vec != NULL || src == NULL)
1467     return;
1468   *vec = ira_allocate_cost_vector (aclass);
1469   len = ira_class_hard_regs_num[aclass];
1470   memcpy (*vec, src, sizeof (int) * len);
1471 }
1472 
1473 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1474    values of vector SRC into the vector if it is necessary */
1475 static inline void
ira_allocate_and_accumulate_costs(int ** vec,enum reg_class aclass,int * src)1476 ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1477 {
1478   int i, len;
1479 
1480   if (src == NULL)
1481     return;
1482   len = ira_class_hard_regs_num[aclass];
1483   if (*vec == NULL)
1484     {
1485       *vec = ira_allocate_cost_vector (aclass);
1486       memset (*vec, 0, sizeof (int) * len);
1487     }
1488   for (i = 0; i < len; i++)
1489     (*vec)[i] += src[i];
1490 }
1491 
1492 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1493    values of vector SRC into the vector or initialize it by VAL (if
1494    SRC is null).  */
1495 static inline void
ira_allocate_and_set_or_copy_costs(int ** vec,enum reg_class aclass,int val,int * src)1496 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1497 				    int val, int *src)
1498 {
1499   int i, *reg_costs;
1500   int len;
1501 
1502   if (*vec != NULL)
1503     return;
1504   *vec = reg_costs = ira_allocate_cost_vector (aclass);
1505   len = ira_class_hard_regs_num[aclass];
1506   if (src != NULL)
1507     memcpy (reg_costs, src, sizeof (int) * len);
1508   else
1509     {
1510       for (i = 0; i < len; i++)
1511 	reg_costs[i] = val;
1512     }
1513 }
1514 
1515 extern rtx ira_create_new_reg (rtx);
1516 extern int first_moveable_pseudo, last_moveable_pseudo;
1517 
1518 /* Return the set of registers that would need a caller save if allocno A
1519    overlapped them.  */
1520 
1521 inline HARD_REG_SET
ira_need_caller_save_regs(ira_allocno_t a)1522 ira_need_caller_save_regs (ira_allocno_t a)
1523 {
1524   return call_clobbers_in_region (ALLOCNO_CROSSED_CALLS_ABIS (a),
1525 				  ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1526 				  ALLOCNO_MODE (a));
1527 }
1528 
1529 /* Return true if we would need to save allocno A around a call if we
1530    assigned hard register REGNO.  */
1531 
1532 inline bool
ira_need_caller_save_p(ira_allocno_t a,unsigned int regno)1533 ira_need_caller_save_p (ira_allocno_t a, unsigned int regno)
1534 {
1535   if (ALLOCNO_CALLS_CROSSED_NUM (a) == 0)
1536     return false;
1537   return call_clobbered_in_region_p (ALLOCNO_CROSSED_CALLS_ABIS (a),
1538 				     ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1539 				     ALLOCNO_MODE (a), regno);
1540 }
1541 
1542 #endif /* GCC_IRA_INT_H */
1543