1 /* Instruction scheduling pass.  Selective scheduler and pipeliner.
2    Copyright (C) 2006-2021 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "cfgbuild.h"
31 #include "cfgcleanup.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "target.h"
35 #include "sched-int.h"
36 #include "rtlhooks-def.h"
37 #include "ira.h"
38 #include "ira-int.h"
39 #include "rtl-iter.h"
40 
41 #ifdef INSN_SCHEDULING
42 #include "regset.h"
43 #include "cfgloop.h"
44 #include "sel-sched-ir.h"
45 #include "sel-sched-dump.h"
46 #include "sel-sched.h"
47 #include "dbgcnt.h"
48 #include "function-abi.h"
49 
50 /* Implementation of selective scheduling approach.
51    The below implementation follows the original approach with the following
52    changes:
53 
54    o the scheduler works after register allocation (but can be also tuned
55    to work before RA);
56    o some instructions are not copied or register renamed;
57    o conditional jumps are not moved with code duplication;
58    o several jumps in one parallel group are not supported;
59    o when pipelining outer loops, code motion through inner loops
60    is not supported;
61    o control and data speculation are supported;
62    o some improvements for better compile time/performance were made.
63 
64    Terminology
65    ===========
66 
67    A vinsn, or virtual insn, is an insn with additional data characterizing
68    insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
69    Vinsns also act as smart pointers to save memory by reusing them in
70    different expressions.  A vinsn is described by vinsn_t type.
71 
72    An expression is a vinsn with additional data characterizing its properties
73    at some point in the control flow graph.  The data may be its usefulness,
74    priority, speculative status, whether it was renamed/subsituted, etc.
75    An expression is described by expr_t type.
76 
77    Availability set (av_set) is a set of expressions at a given control flow
78    point. It is represented as av_set_t.  The expressions in av sets are kept
79    sorted in the terms of expr_greater_p function.  It allows to truncate
80    the set while leaving the best expressions.
81 
82    A fence is a point through which code motion is prohibited.  On each step,
83    we gather a parallel group of insns at a fence.  It is possible to have
84    multiple fences. A fence is represented via fence_t.
85 
86    A boundary is the border between the fence group and the rest of the code.
87    Currently, we never have more than one boundary per fence, as we finalize
88    the fence group when a jump is scheduled. A boundary is represented
89    via bnd_t.
90 
91    High-level overview
92    ===================
93 
94    The scheduler finds regions to schedule, schedules each one, and finalizes.
95    The regions are formed starting from innermost loops, so that when the inner
96    loop is pipelined, its prologue can be scheduled together with yet unprocessed
97    outer loop. The rest of acyclic regions are found using extend_rgns:
98    the blocks that are not yet allocated to any regions are traversed in top-down
99    order, and a block is added to a region to which all its predecessors belong;
100    otherwise, the block starts its own region.
101 
102    The main scheduling loop (sel_sched_region_2) consists of just
103    scheduling on each fence and updating fences.  For each fence,
104    we fill a parallel group of insns (fill_insns) until some insns can be added.
105    First, we compute available exprs (av-set) at the boundary of the current
106    group.  Second, we choose the best expression from it.  If the stall is
107    required to schedule any of the expressions, we advance the current cycle
108    appropriately.  So, the final group does not exactly correspond to a VLIW
109    word.  Third, we move the chosen expression to the boundary (move_op)
110    and update the intermediate av sets and liveness sets.  We quit fill_insns
111    when either no insns left for scheduling or we have scheduled enough insns
112    so we feel like advancing a scheduling point.
113 
114    Computing available expressions
115    ===============================
116 
117    The computation (compute_av_set) is a bottom-up traversal.  At each insn,
118    we're moving the union of its successors' sets through it via
119    moveup_expr_set.  The dependent expressions are removed.  Local
120    transformations (substitution, speculation) are applied to move more
121    exprs.  Then the expr corresponding to the current insn is added.
122    The result is saved on each basic block header.
123 
124    When traversing the CFG, we're moving down for no more than max_ws insns.
125    Also, we do not move down to ineligible successors (is_ineligible_successor),
126    which include moving along a back-edge, moving to already scheduled code,
127    and moving to another fence.  The first two restrictions are lifted during
128    pipelining, which allows us to move insns along a back-edge.  We always have
129    an acyclic region for scheduling because we forbid motion through fences.
130 
131    Choosing the best expression
132    ============================
133 
134    We sort the final availability set via sel_rank_for_schedule, then we remove
135    expressions which are not yet ready (tick_check_p) or which dest registers
136    cannot be used.  For some of them, we choose another register via
137    find_best_reg.  To do this, we run find_used_regs to calculate the set of
138    registers which cannot be used.  The find_used_regs function performs
139    a traversal of code motion paths for an expr.  We consider for renaming
140    only registers which are from the same regclass as the original one and
141    using which does not interfere with any live ranges.  Finally, we convert
142    the resulting set to the ready list format and use max_issue and reorder*
143    hooks similarly to the Haifa scheduler.
144 
145    Scheduling the best expression
146    ==============================
147 
148    We run the move_op routine to perform the same type of code motion paths
149    traversal as in find_used_regs.  (These are working via the same driver,
150    code_motion_path_driver.)  When moving down the CFG, we look for original
151    instruction that gave birth to a chosen expression.  We undo
152    the transformations performed on an expression via the history saved in it.
153    When found, we remove the instruction or leave a reg-reg copy/speculation
154    check if needed.  On a way up, we insert bookkeeping copies at each join
155    point.  If a copy is not needed, it will be removed later during this
156    traversal.  We update the saved av sets and liveness sets on the way up, too.
157 
158    Finalizing the schedule
159    =======================
160 
161    When pipelining, we reschedule the blocks from which insns were pipelined
162    to get a tighter schedule.  On Itanium, we also perform bundling via
163    the same routine from ia64.c.
164 
165    Dependence analysis changes
166    ===========================
167 
168    We augmented the sched-deps.c with hooks that get called when a particular
169    dependence is found in a particular part of an insn.  Using these hooks, we
170    can do several actions such as: determine whether an insn can be moved through
171    another (has_dependence_p, moveup_expr); find out whether an insn can be
172    scheduled on the current cycle (tick_check_p); find out registers that
173    are set/used/clobbered by an insn and find out all the strange stuff that
174    restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
175    init_global_and_expr_for_insn).
176 
177    Initialization changes
178    ======================
179 
180    There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
181    reused in all of the schedulers.  We have split up the initialization of data
182    of such parts into different functions prefixed with scheduler type and
183    postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
184    sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
185    The same splitting is done with current_sched_info structure:
186    dependence-related parts are in sched_deps_info, common part is in
187    common_sched_info, and haifa/sel/etc part is in current_sched_info.
188 
189    Target contexts
190    ===============
191 
192    As we now have multiple-point scheduling, this would not work with backends
193    which save some of the scheduler state to use it in the target hooks.
194    For this purpose, we introduce a concept of target contexts, which
195    encapsulate such information.  The backend should implement simple routines
196    of allocating/freeing/setting such a context.  The scheduler calls these
197    as target hooks and handles the target context as an opaque pointer (similar
198    to the DFA state type, state_t).
199 
200    Various speedups
201    ================
202 
203    As the correct data dependence graph is not supported during scheduling (which
204    is to be changed in mid-term), we cache as much of the dependence analysis
205    results as possible to avoid reanalyzing.  This includes: bitmap caches on
206    each insn in stream of the region saying yes/no for a query with a pair of
207    UIDs; hashtables with the previously done transformations on each insn in
208    stream; a vector keeping a history of transformations on each expr.
209 
210    Also, we try to minimize the dependence context used on each fence to check
211    whether the given expression is ready for scheduling by removing from it
212    insns that are definitely completed the execution.  The results of
213    tick_check_p checks are also cached in a vector on each fence.
214 
215    We keep a valid liveness set on each insn in a region to avoid the high
216    cost of recomputation on large basic blocks.
217 
218    Finally, we try to minimize the number of needed updates to the availability
219    sets.  The updates happen in two cases: when fill_insns terminates,
220    we advance all fences and increase the stage number to show that the region
221    has changed and the sets are to be recomputed; and when the next iteration
222    of a loop in fill_insns happens (but this one reuses the saved av sets
223    on bb headers.)  Thus, we try to break the fill_insns loop only when
224    "significant" number of insns from the current scheduling window was
225    scheduled.  This should be made a target param.
226 
227 
228    TODO: correctly support the data dependence graph at all stages and get rid
229    of all caches.  This should speed up the scheduler.
230    TODO: implement moving cond jumps with bookkeeping copies on both targets.
231    TODO: tune the scheduler before RA so it does not create too much pseudos.
232 
233 
234    References:
235    S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
236    selective scheduling and software pipelining.
237    ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
238 
239    Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
240    and Dmitry Zhurikhin.  An interblock VLIW-targeted instruction scheduler
241    for GCC. In Proceedings of GCC Developers' Summit 2006.
242 
243    Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik.  GCC Instruction
244    Scheduler and Software Pipeliner on the Itanium Platform.   EPIC-7 Workshop.
245    http://rogue.colorado.edu/EPIC7/.
246 
247 */
248 
249 /* True when pipelining is enabled.  */
250 bool pipelining_p;
251 
252 /* True if bookkeeping is enabled.  */
253 bool bookkeeping_p;
254 
255 /* Maximum number of insns that are eligible for renaming.  */
256 int max_insns_to_rename;
257 
258 
259 /* Definitions of local types and macros.  */
260 
261 /* Represents possible outcomes of moving an expression through an insn.  */
262 enum MOVEUP_EXPR_CODE
263   {
264     /* The expression is not changed.  */
265     MOVEUP_EXPR_SAME,
266 
267     /* Not changed, but requires a new destination register.  */
268     MOVEUP_EXPR_AS_RHS,
269 
270     /* Cannot be moved.  */
271     MOVEUP_EXPR_NULL,
272 
273     /* Changed (substituted or speculated).  */
274     MOVEUP_EXPR_CHANGED
275   };
276 
277 /* The container to be passed into rtx search & replace functions.  */
278 struct rtx_search_arg
279 {
280   /* What we are searching for.  */
281   rtx x;
282 
283   /* The occurrence counter.  */
284   int n;
285 };
286 
287 typedef struct rtx_search_arg *rtx_search_arg_p;
288 
289 /* This struct contains precomputed hard reg sets that are needed when
290    computing registers available for renaming.  */
291 struct hard_regs_data
292 {
293   /* For every mode, this stores registers available for use with
294      that mode.  */
295   HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
296 
297   /* True when regs_for_mode[mode] is initialized.  */
298   bool regs_for_mode_ok[NUM_MACHINE_MODES];
299 
300   /* For every register, it has regs that are ok to rename into it.
301      The register in question is always set.  If not, this means
302      that the whole set is not computed yet.  */
303   HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
304 
305   /* All registers that are used or call used.  */
306   HARD_REG_SET regs_ever_used;
307 
308 #ifdef STACK_REGS
309   /* Stack registers.  */
310   HARD_REG_SET stack_regs;
311 #endif
312 };
313 
314 /* Holds the results of computation of available for renaming and
315    unavailable hard registers.  */
316 struct reg_rename
317 {
318   /* These are unavailable due to calls crossing, globalness, etc.  */
319   HARD_REG_SET unavailable_hard_regs;
320 
321   /* These are *available* for renaming.  */
322   HARD_REG_SET available_for_renaming;
323 
324   /* The set of ABIs used by calls that the code motion path crosses.  */
325   unsigned int crossed_call_abis : NUM_ABI_IDS;
326 };
327 
328 /* A global structure that contains the needed information about harg
329    regs.  */
330 static struct hard_regs_data sel_hrd;
331 
332 
333 /* This structure holds local data used in code_motion_path_driver hooks on
334    the same or adjacent levels of recursion.  Here we keep those parameters
335    that are not used in code_motion_path_driver routine itself, but only in
336    its hooks.  Moreover, all parameters that can be modified in hooks are
337    in this structure, so all other parameters passed explicitly to hooks are
338    read-only.  */
339 struct cmpd_local_params
340 {
341   /* Local params used in move_op_* functions.  */
342 
343   /* Edges for bookkeeping generation.  */
344   edge e1, e2;
345 
346   /* C_EXPR merged from all successors and locally allocated temporary C_EXPR.  */
347   expr_t c_expr_merged, c_expr_local;
348 
349   /* Local params used in fur_* functions.  */
350   /* Copy of the ORIGINAL_INSN list, stores the original insns already
351      found before entering the current level of code_motion_path_driver.  */
352   def_list_t old_original_insns;
353 
354   /* Local params used in move_op_* functions.  */
355   /* True when we have removed last insn in the block which was
356      also a boundary.  Do not update anything or create bookkeeping copies.  */
357   BOOL_BITFIELD removed_last_insn : 1;
358 };
359 
360 /* Stores the static parameters for move_op_* calls.  */
361 struct moveop_static_params
362 {
363   /* Destination register.  */
364   rtx dest;
365 
366   /* Current C_EXPR.  */
367   expr_t c_expr;
368 
369   /* An UID of expr_vliw which is to be moved up.  If we find other exprs,
370      they are to be removed.  */
371   int uid;
372 
373   /* This is initialized to the insn on which the driver stopped its traversal.  */
374   insn_t failed_insn;
375 
376   /* True if we scheduled an insn with different register.  */
377   bool was_renamed;
378 };
379 
380 /* Stores the static parameters for fur_* calls.  */
381 struct fur_static_params
382 {
383   /* Set of registers unavailable on the code motion path.  */
384   regset used_regs;
385 
386   /* Pointer to the list of original insns definitions.  */
387   def_list_t *original_insns;
388 
389   /* The set of ABIs used by calls that the code motion path crosses.  */
390   unsigned int crossed_call_abis : NUM_ABI_IDS;
391 };
392 
393 typedef struct fur_static_params *fur_static_params_p;
394 typedef struct cmpd_local_params *cmpd_local_params_p;
395 typedef struct moveop_static_params *moveop_static_params_p;
396 
397 /* Set of hooks and parameters that determine behavior specific to
398    move_op or find_used_regs functions.  */
399 struct code_motion_path_driver_info_def
400 {
401   /* Called on enter to the basic block.  */
402   int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
403 
404   /* Called when original expr is found.  */
405   void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
406 
407   /* Called while descending current basic block if current insn is not
408      the original EXPR we're searching for.  */
409   bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
410 
411   /* Function to merge C_EXPRes from different successors.  */
412   void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
413 
414   /* Function to finalize merge from different successors and possibly
415      deallocate temporary data structures used for merging.  */
416   void (*after_merge_succs) (cmpd_local_params_p, void *);
417 
418   /* Called on the backward stage of recursion to do moveup_expr.
419      Used only with move_op_*.  */
420   void (*ascend) (insn_t, void *);
421 
422   /* Called on the ascending pass, before returning from the current basic
423      block or from the whole traversal.  */
424   void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
425 
426   /* When processing successors in move_op we need only descend into
427      SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL.  */
428   int succ_flags;
429 
430   /* The routine name to print in dumps ("move_op" of "find_used_regs").  */
431   const char *routine_name;
432 };
433 
434 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
435    FUR_HOOKS.  */
436 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
437 
438 /* Set of hooks for performing move_op and find_used_regs routines with
439    code_motion_path_driver.  */
440 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
441 
442 /* True if/when we want to emulate Haifa scheduler in the common code.
443    This is used in sched_rgn_local_init and in various places in
444    sched-deps.c.  */
445 int sched_emulate_haifa_p;
446 
447 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
448    av_sets.  Av_set of bb header is valid if its (bb header's) level is equal
449    to GLOBAL_LEVEL.  And invalid if lesser.  This is primarily used to advance
450    scheduling window.  */
451 int global_level;
452 
453 /* Current fences.  */
454 flist_t fences;
455 
456 /* True when separable insns should be scheduled as RHSes.  */
457 static bool enable_schedule_as_rhs_p;
458 
459 /* Used in verify_target_availability to assert that target reg is reported
460    unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
461    we haven't scheduled anything on the previous fence.
462    if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
463    have more conservative value than the one returned by the
464    find_used_regs, thus we shouldn't assert that these values are equal.  */
465 static bool scheduled_something_on_previous_fence;
466 
467 /* All newly emitted insns will have their uids greater than this value.  */
468 static int first_emitted_uid;
469 
470 /* Set of basic blocks that are forced to start new ebbs.  This is a subset
471    of all the ebb heads.  */
472 bitmap forced_ebb_heads;
473 
474 /* Blocks that need to be rescheduled after pipelining.  */
475 bitmap blocks_to_reschedule = NULL;
476 
477 /* True when the first lv set should be ignored when updating liveness.  */
478 static bool ignore_first = false;
479 
480 /* Number of insns max_issue has initialized data structures for.  */
481 static int max_issue_size = 0;
482 
483 /* Whether we can issue more instructions.  */
484 static int can_issue_more;
485 
486 /* Maximum software lookahead window size, reduced when rescheduling after
487    pipelining.  */
488 static int max_ws;
489 
490 /* Number of insns scheduled in current region.  */
491 static int num_insns_scheduled;
492 
493 /* A vector of expressions is used to be able to sort them.  */
494 static vec<expr_t> vec_av_set;
495 
496 /* A vector of vinsns is used to hold temporary lists of vinsns.  */
497 typedef vec<vinsn_t> vinsn_vec_t;
498 
499 /* This vector has the exprs which may still present in av_sets, but actually
500    can't be moved up due to bookkeeping created during code motion to another
501    fence.  See comment near the call to update_and_record_unavailable_insns
502    for the detailed explanations.  */
503 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
504 
505 /* This vector has vinsns which are scheduled with renaming on the first fence
506    and then seen on the second.  For expressions with such vinsns, target
507    availability information may be wrong.  */
508 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
509 
510 /* Vector to store temporary nops inserted in move_op to prevent removal
511    of empty bbs.  */
512 static vec<insn_t> vec_temp_moveop_nops;
513 
514 /* These bitmaps record original instructions scheduled on the current
515    iteration and bookkeeping copies created by them.  */
516 static bitmap current_originators = NULL;
517 static bitmap current_copies = NULL;
518 
519 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
520    visit them afterwards.  */
521 static bitmap code_motion_visited_blocks = NULL;
522 
523 /* Variables to accumulate different statistics.  */
524 
525 /* The number of bookkeeping copies created.  */
526 static int stat_bookkeeping_copies;
527 
528 /* The number of insns that required bookkeeiping for their scheduling.  */
529 static int stat_insns_needed_bookkeeping;
530 
531 /* The number of insns that got renamed.  */
532 static int stat_renamed_scheduled;
533 
534 /* The number of substitutions made during scheduling.  */
535 static int stat_substitutions_total;
536 
537 
538 /* Forward declarations of static functions.  */
539 static bool rtx_ok_for_substitution_p (rtx, rtx);
540 static int sel_rank_for_schedule (const void *, const void *);
541 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
542 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
543 
544 static rtx get_dest_from_orig_ops (av_set_t);
545 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
546 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
547                             def_list_t *);
548 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
549 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
550                                     cmpd_local_params_p, void *);
551 static void sel_sched_region_1 (void);
552 static void sel_sched_region_2 (int);
553 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
554 
555 static void debug_state (state_t);
556 
557 
558 /* Functions that work with fences.  */
559 
560 /* Advance one cycle on FENCE.  */
561 static void
562 advance_one_cycle (fence_t fence)
563 {
564   unsigned i;
565   int cycle;
566   rtx_insn *insn;
567 
568   advance_state (FENCE_STATE (fence));
569   cycle = ++FENCE_CYCLE (fence);
570   FENCE_ISSUED_INSNS (fence) = 0;
571   FENCE_STARTS_CYCLE_P (fence) = 1;
572   can_issue_more = issue_rate;
573   FENCE_ISSUE_MORE (fence) = can_issue_more;
574 
575   for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
576     {
577       if (INSN_READY_CYCLE (insn) < cycle)
578         {
579           remove_from_deps (FENCE_DC (fence), insn);
580           FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
581           continue;
582         }
583       i++;
584     }
585   if (sched_verbose >= 2)
586     {
587       sel_print ("Finished a cycle.  Current cycle = %d\n", FENCE_CYCLE (fence));
588       debug_state (FENCE_STATE (fence));
589     }
590 }
591 
592 /* Returns true when SUCC in a fallthru bb of INSN, possibly
593    skipping empty basic blocks.  */
594 static bool
595 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
596 {
597   basic_block bb = BLOCK_FOR_INSN (insn);
598   edge e;
599 
600   if (bb == BLOCK_FOR_INSN (succ))
601     return true;
602 
603   e = find_fallthru_edge_from (bb);
604   if (e)
605     bb = e->dest;
606   else
607     return false;
608 
609   while (sel_bb_empty_p (bb))
610     bb = bb->next_bb;
611 
612   return bb == BLOCK_FOR_INSN (succ);
613 }
614 
615 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
616    When a successor will continue a ebb, transfer all parameters of a fence
617    to the new fence.  ORIG_MAX_SEQNO is the maximal seqno before this round
618    of scheduling helping to distinguish between the old and the new code.  */
619 static void
620 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
621 			 int orig_max_seqno)
622 {
623   bool was_here_p = false;
624   insn_t insn = NULL;
625   insn_t succ;
626   succ_iterator si;
627   ilist_iterator ii;
628   fence_t fence = FLIST_FENCE (old_fences);
629   basic_block bb;
630 
631   /* Get the only element of FENCE_BNDS (fence).  */
632   FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
633     {
634       gcc_assert (!was_here_p);
635       was_here_p = true;
636     }
637   gcc_assert (was_here_p && insn != NULL_RTX);
638 
639   /* When in the "middle" of the block, just move this fence
640      to the new list.  */
641   bb = BLOCK_FOR_INSN (insn);
642   if (! sel_bb_end_p (insn)
643       || (single_succ_p (bb)
644           && single_pred_p (single_succ (bb))))
645     {
646       insn_t succ;
647 
648       succ = (sel_bb_end_p (insn)
649               ? sel_bb_head (single_succ (bb))
650               : NEXT_INSN (insn));
651 
652       if (INSN_SEQNO (succ) > 0
653           && INSN_SEQNO (succ) <= orig_max_seqno
654           && INSN_SCHED_TIMES (succ) <= 0)
655         {
656           FENCE_INSN (fence) = succ;
657           move_fence_to_fences (old_fences, new_fences);
658 
659           if (sched_verbose >= 1)
660             sel_print ("Fence %d continues as %d[%d] (state continue)\n",
661                        INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
662         }
663       return;
664     }
665 
666   /* Otherwise copy fence's structures to (possibly) multiple successors.  */
667   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
668     {
669       int seqno = INSN_SEQNO (succ);
670 
671       if (seqno > 0 && seqno <= orig_max_seqno
672           && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
673         {
674           bool b = (in_same_ebb_p (insn, succ)
675                     || in_fallthru_bb_p (insn, succ));
676 
677           if (sched_verbose >= 1)
678             sel_print ("Fence %d continues as %d[%d] (state %s)\n",
679                        INSN_UID (insn), INSN_UID (succ),
680                        BLOCK_NUM (succ), b ? "continue" : "reset");
681 
682           if (b)
683             add_dirty_fence_to_fences (new_fences, succ, fence);
684           else
685             {
686               /* Mark block of the SUCC as head of the new ebb.  */
687               bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
688               add_clean_fence_to_fences (new_fences, succ, fence);
689             }
690         }
691     }
692 }
693 
694 
695 /* Functions to support substitution.  */
696 
697 /* Returns whether INSN with dependence status DS is eligible for
698    substitution, i.e. it's a copy operation x := y, and RHS that is
699    moved up through this insn should be substituted.  */
700 static bool
701 can_substitute_through_p (insn_t insn, ds_t ds)
702 {
703   /* We can substitute only true dependencies.  */
704   if ((ds & DEP_OUTPUT)
705       || (ds & DEP_ANTI)
706       || ! INSN_RHS (insn)
707       || ! INSN_LHS (insn))
708     return false;
709 
710   /* Now we just need to make sure the INSN_RHS consists of only one
711      simple REG rtx.  */
712   if (REG_P (INSN_LHS (insn))
713       && REG_P (INSN_RHS (insn)))
714     return true;
715   return false;
716 }
717 
718 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
719    source (if INSN is eligible for substitution).  Returns TRUE if
720    substitution was actually performed, FALSE otherwise.  Substitution might
721    be not performed because it's either EXPR' vinsn doesn't contain INSN's
722    destination or the resulting insn is invalid for the target machine.
723    When UNDO is true, perform unsubstitution instead (the difference is in
724    the part of rtx on which validate_replace_rtx is called).  */
725 static bool
726 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
727 {
728   rtx *where;
729   bool new_insn_valid;
730   vinsn_t *vi = &EXPR_VINSN (expr);
731   bool has_rhs = VINSN_RHS (*vi) != NULL;
732   rtx old, new_rtx;
733 
734   /* Do not try to replace in SET_DEST.  Although we'll choose new
735      register for the RHS, we don't want to change RHS' original reg.
736      If the insn is not SET, we may still be able to substitute something
737      in it, and if we're here (don't have deps), it doesn't write INSN's
738      dest.  */
739   where = (has_rhs
740 	   ? &VINSN_RHS (*vi)
741 	   : &PATTERN (VINSN_INSN_RTX (*vi)));
742   old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
743 
744   /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI.  */
745   if (rtx_ok_for_substitution_p (old, *where))
746     {
747       rtx_insn *new_insn;
748       rtx *where_replace;
749 
750       /* We should copy these rtxes before substitution.  */
751       new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
752       new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
753 
754       /* Where we'll replace.
755          WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
756 	 used instead of SET_SRC.  */
757       where_replace = (has_rhs
758 		       ? &SET_SRC (PATTERN (new_insn))
759 		       : &PATTERN (new_insn));
760 
761       new_insn_valid
762         = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
763                                                 new_insn);
764 
765       /* ??? Actually, constrain_operands result depends upon choice of
766          destination register.  E.g. if we allow single register to be an rhs,
767 	 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
768 	 in invalid insn dx=dx, so we'll loose this rhs here.
769 	 Just can't come up with significant testcase for this, so just
770 	 leaving it for now.  */
771       if (new_insn_valid)
772 	{
773 	  change_vinsn_in_expr (expr,
774 				create_vinsn_from_insn_rtx (new_insn, false));
775 
776 	  /* Do not allow clobbering the address register of speculative
777              insns.  */
778 	  if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
779               && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
780 					 expr_dest_reg (expr)))
781 	    EXPR_TARGET_AVAILABLE (expr) = false;
782 
783 	  return true;
784 	}
785       else
786         return false;
787     }
788   else
789     return false;
790 }
791 
792 /* Return the number of places WHAT appears within WHERE.
793    Bail out when we found a reference occupying several hard registers.  */
794 static int
795 count_occurrences_equiv (const_rtx what, const_rtx where)
796 {
797   int count = 0;
798   subrtx_iterator::array_type array;
799   FOR_EACH_SUBRTX (iter, array, where, NONCONST)
800     {
801       const_rtx x = *iter;
802       if (REG_P (x) && REGNO (x) == REGNO (what))
803 	{
804 	  /* Bail out if mode is different or more than one register is
805 	     used.  */
806 	  if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
807 	    return 0;
808 	  count += 1;
809 	}
810       else if (GET_CODE (x) == SUBREG
811 	       && (!REG_P (SUBREG_REG (x))
812 		   || REGNO (SUBREG_REG (x)) == REGNO (what)))
813 	/* ??? Do not support substituting regs inside subregs.  In that case,
814 	   simplify_subreg will be called by validate_replace_rtx, and
815 	   unsubstitution will fail later.  */
816 	return 0;
817     }
818   return count;
819 }
820 
821 /* Returns TRUE if WHAT is found in WHERE rtx tree.  */
822 static bool
823 rtx_ok_for_substitution_p (rtx what, rtx where)
824 {
825   return (count_occurrences_equiv (what, where) > 0);
826 }
827 
828 
829 /* Functions to support register renaming.  */
830 
831 /* Substitute VI's set source with REGNO.  Returns newly created pattern
832    that has REGNO as its source.  */
833 static rtx_insn *
834 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
835 {
836   rtx lhs_rtx;
837   rtx pattern;
838   rtx_insn *insn_rtx;
839 
840   lhs_rtx = copy_rtx (VINSN_LHS (vi));
841 
842   pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
843   insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
844 
845   return insn_rtx;
846 }
847 
848 /* Returns whether INSN's src can be replaced with register number
849    NEW_SRC_REG. E.g. the following insn is valid for i386:
850 
851     (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
852       (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
853 			(reg:SI 0 ax [orig:770 c1 ] [770]))
854 		    (const_int 288 [0x120])) [0 str S1 A8])
855 	    (const_int 0 [0x0])) 43 {*movqi_1} (nil)
856 	(nil))
857 
858   But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
859   because of operand constraints:
860 
861     (define_insn "*movqi_1"
862       [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
863 	    (match_operand:QI 1 "general_operand"      " q,qn,qm,q,rn,qm,qn")
864 	    )]
865 
866   So do constrain_operands here, before choosing NEW_SRC_REG as best
867   reg for rhs.  */
868 
869 static bool
870 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
871 {
872   vinsn_t vi = INSN_VINSN (insn);
873   machine_mode mode;
874   rtx dst_loc;
875   bool res;
876 
877   gcc_assert (VINSN_SEPARABLE_P (vi));
878 
879   get_dest_and_mode (insn, &dst_loc, &mode);
880   gcc_assert (mode == GET_MODE (new_src_reg));
881 
882   if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
883     return true;
884 
885   /* See whether SET_SRC can be replaced with this register.  */
886   validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
887   res = verify_changes (0);
888   cancel_changes (0);
889 
890   return res;
891 }
892 
893 /* Returns whether INSN still be valid after replacing it's DEST with
894    register NEW_REG.  */
895 static bool
896 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
897 {
898   vinsn_t vi = INSN_VINSN (insn);
899   bool res;
900 
901   /* We should deal here only with separable insns.  */
902   gcc_assert (VINSN_SEPARABLE_P (vi));
903   gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
904 
905   /* See whether SET_DEST can be replaced with this register.  */
906   validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
907   res = verify_changes (0);
908   cancel_changes (0);
909 
910   return res;
911 }
912 
913 /* Create a pattern with rhs of VI and lhs of LHS_RTX.  */
914 static rtx_insn *
915 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
916 {
917   rtx rhs_rtx;
918   rtx pattern;
919   rtx_insn *insn_rtx;
920 
921   rhs_rtx = copy_rtx (VINSN_RHS (vi));
922 
923   pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
924   insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
925 
926   return insn_rtx;
927 }
928 
929 /* Substitute lhs in the given expression EXPR for the register with number
930    NEW_REGNO.  SET_DEST may be arbitrary rtx, not only register.  */
931 static void
932 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
933 {
934   rtx_insn *insn_rtx;
935   vinsn_t vinsn;
936 
937   insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
938   vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
939 
940   change_vinsn_in_expr (expr, vinsn);
941   EXPR_WAS_RENAMED (expr) = 1;
942   EXPR_TARGET_AVAILABLE (expr) = 1;
943 }
944 
945 /* Returns whether VI writes either one of the USED_REGS registers or,
946    if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers.  */
947 static bool
948 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
949                             HARD_REG_SET unavailable_hard_regs)
950 {
951   unsigned regno;
952   reg_set_iterator rsi;
953 
954   EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
955     {
956       if (REGNO_REG_SET_P (used_regs, regno))
957         return true;
958       if (HARD_REGISTER_NUM_P (regno)
959           && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
960 	return true;
961     }
962 
963   EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
964     {
965       if (REGNO_REG_SET_P (used_regs, regno))
966         return true;
967       if (HARD_REGISTER_NUM_P (regno)
968           && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
969 	return true;
970     }
971 
972   return false;
973 }
974 
975 /* Returns register class of the output register in INSN.
976    Returns NO_REGS for call insns because some targets have constraints on
977    destination register of a call insn.
978 
979    Code adopted from regrename.c::build_def_use.  */
980 static enum reg_class
981 get_reg_class (rtx_insn *insn)
982 {
983   int i, n_ops;
984 
985   extract_constrain_insn (insn);
986   preprocess_constraints (insn);
987   n_ops = recog_data.n_operands;
988 
989   const operand_alternative *op_alt = which_op_alt ();
990   if (asm_noperands (PATTERN (insn)) > 0)
991     {
992       for (i = 0; i < n_ops; i++)
993 	if (recog_data.operand_type[i] == OP_OUT)
994 	  {
995 	    rtx *loc = recog_data.operand_loc[i];
996 	    rtx op = *loc;
997 	    enum reg_class cl = alternative_class (op_alt, i);
998 
999 	    if (REG_P (op)
1000 		&& REGNO (op) == ORIGINAL_REGNO (op))
1001 	      continue;
1002 
1003 	    return cl;
1004 	  }
1005     }
1006   else if (!CALL_P (insn))
1007     {
1008       for (i = 0; i < n_ops + recog_data.n_dups; i++)
1009        {
1010 	 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1011 	 enum reg_class cl = alternative_class (op_alt, opn);
1012 
1013 	 if (recog_data.operand_type[opn] == OP_OUT ||
1014 	     recog_data.operand_type[opn] == OP_INOUT)
1015 	   return cl;
1016        }
1017     }
1018 
1019 /*  Insns like
1020     (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1021     may result in returning NO_REGS, cause flags is written implicitly through
1022     CMP insn, which has no OP_OUT | OP_INOUT operands.  */
1023   return NO_REGS;
1024 }
1025 
1026 /* Calculate HARD_REGNO_RENAME_OK data for REGNO.  */
1027 static void
1028 init_hard_regno_rename (int regno)
1029 {
1030   int cur_reg;
1031 
1032   SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1033 
1034   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1035     {
1036       /* We are not interested in renaming in other regs.  */
1037       if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1038         continue;
1039 
1040       if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1041         SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1042     }
1043 }
1044 
1045 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1046    data first.  */
1047 static inline bool
1048 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1049 {
1050   /* Check whether this is all calculated.  */
1051   if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1052     return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1053 
1054   init_hard_regno_rename (from);
1055 
1056   return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1057 }
1058 
1059 /* Calculate set of registers that are capable of holding MODE.  */
1060 static void
1061 init_regs_for_mode (machine_mode mode)
1062 {
1063   int cur_reg;
1064 
1065   CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1066 
1067   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1068     {
1069       int nregs;
1070       int i;
1071 
1072       /* See whether it accepts all modes that occur in
1073          original insns.  */
1074       if (!targetm.hard_regno_mode_ok (cur_reg, mode))
1075         continue;
1076 
1077       nregs = hard_regno_nregs (cur_reg, mode);
1078 
1079       for (i = nregs - 1; i >= 0; --i)
1080         if (fixed_regs[cur_reg + i]
1081                 || global_regs[cur_reg + i]
1082             /* Can't use regs which aren't saved by
1083                the prologue.  */
1084             || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1085 	    /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1086 	       it affects aliasing globally and invalidates all AV sets.  */
1087 	    || get_reg_base_value (cur_reg + i)
1088 #ifdef LEAF_REGISTERS
1089             /* We can't use a non-leaf register if we're in a
1090                leaf function.  */
1091             || (crtl->is_leaf
1092                 && !LEAF_REGISTERS[cur_reg + i])
1093 #endif
1094             )
1095           break;
1096 
1097       if (i >= 0)
1098         continue;
1099 
1100       /* If the CUR_REG passed all the checks above,
1101          then it's ok.  */
1102       SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1103     }
1104 
1105   sel_hrd.regs_for_mode_ok[mode] = true;
1106 }
1107 
1108 /* Init all register sets gathered in HRD.  */
1109 static void
1110 init_hard_regs_data (void)
1111 {
1112   int cur_reg = 0;
1113   int cur_mode = 0;
1114 
1115   CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1116   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1117     if (df_regs_ever_live_p (cur_reg)
1118 	|| crtl->abi->clobbers_full_reg_p (cur_reg))
1119       SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1120 
1121   /* Initialize registers that are valid based on mode when this is
1122      really needed.  */
1123   for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1124     sel_hrd.regs_for_mode_ok[cur_mode] = false;
1125 
1126   /* Mark that all HARD_REGNO_RENAME_OK is not calculated.  */
1127   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1128     CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1129 
1130 #ifdef STACK_REGS
1131   CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1132 
1133   for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1134     SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1135 #endif
1136 }
1137 
1138 /* Mark hardware regs in REG_RENAME_P that are not suitable
1139    for renaming rhs in INSN due to hardware restrictions (register class,
1140    modes compatibility etc).  This doesn't affect original insn's dest reg,
1141    if it isn't in USED_REGS.  DEF is a definition insn of rhs for which the
1142    destination register is sought.  LHS (DEF->ORIG_INSN) may be REG or MEM.
1143    Registers that are in used_regs are always marked in
1144    unavailable_hard_regs as well.  */
1145 
1146 static void
1147 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1148                             regset used_regs ATTRIBUTE_UNUSED)
1149 {
1150   machine_mode mode;
1151   enum reg_class cl = NO_REGS;
1152   rtx orig_dest;
1153   unsigned cur_reg, regno;
1154   hard_reg_set_iterator hrsi;
1155 
1156   gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1157   gcc_assert (reg_rename_p);
1158 
1159   orig_dest = SET_DEST (PATTERN (def->orig_insn));
1160 
1161   /* We have decided not to rename 'mem = something;' insns, as 'something'
1162      is usually a register.  */
1163   if (!REG_P (orig_dest))
1164     return;
1165 
1166   regno = REGNO (orig_dest);
1167 
1168   /* If before reload, don't try to work with pseudos.  */
1169   if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1170     return;
1171 
1172   if (reload_completed)
1173     cl = get_reg_class (def->orig_insn);
1174 
1175   /* Stop if the original register is one of the fixed_regs, global_regs or
1176      frame pointer, or we could not discover its class.  */
1177   if (fixed_regs[regno]
1178       || global_regs[regno]
1179       || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1180 	  && regno == HARD_FRAME_POINTER_REGNUM)
1181       || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1182 	  && regno == FRAME_POINTER_REGNUM)
1183       || (reload_completed && cl == NO_REGS))
1184     {
1185       SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1186 
1187       /* Give a chance for original register, if it isn't in used_regs.  */
1188       if (!def->crossed_call_abis)
1189         CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1190 
1191       return;
1192     }
1193 
1194   /* If something allocated on stack in this function, mark frame pointer
1195      register unavailable, considering also modes.
1196      FIXME: it is enough to do this once per all original defs.  */
1197   if (frame_pointer_needed)
1198     {
1199       add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1200 			   Pmode, FRAME_POINTER_REGNUM);
1201 
1202       if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1203         add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1204 			     Pmode, HARD_FRAME_POINTER_REGNUM);
1205     }
1206 
1207 #ifdef STACK_REGS
1208   /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1209      is equivalent to as if all stack regs were in this set.
1210      I.e. no stack register can be renamed, and even if it's an original
1211      register here we make sure it won't be lifted over it's previous def
1212      (it's previous def will appear as if it's a FIRST_STACK_REG def.
1213      The HARD_REGNO_RENAME_OK covers other cases in condition below.  */
1214   if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1215       && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1216     reg_rename_p->unavailable_hard_regs |= sel_hrd.stack_regs;
1217 #endif
1218 
1219   mode = GET_MODE (orig_dest);
1220 
1221   /* If there's a call on this path, make regs from full_reg_clobbers
1222      unavailable.
1223 
1224      ??? It would be better to track the set of clobbered registers
1225      directly, but that would be quite expensive in a def_t.  */
1226   if (def->crossed_call_abis)
1227     reg_rename_p->unavailable_hard_regs
1228       |= call_clobbers_in_region (def->crossed_call_abis,
1229 				  reg_class_contents[ALL_REGS], mode);
1230 
1231   /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and
1232      crossed_call_abis, but not register classes.  */
1233   if (!reload_completed)
1234     return;
1235 
1236   /* Leave regs as 'available' only from the current
1237      register class.  */
1238   reg_rename_p->available_for_renaming = reg_class_contents[cl];
1239 
1240   /* Leave only registers available for this mode.  */
1241   if (!sel_hrd.regs_for_mode_ok[mode])
1242     init_regs_for_mode (mode);
1243   reg_rename_p->available_for_renaming &= sel_hrd.regs_for_mode[mode];
1244 
1245   /* Leave only those that are ok to rename.  */
1246   EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1247                                   0, cur_reg, hrsi)
1248     {
1249       int nregs;
1250       int i;
1251 
1252       nregs = hard_regno_nregs (cur_reg, mode);
1253       gcc_assert (nregs > 0);
1254 
1255       for (i = nregs - 1; i >= 0; --i)
1256         if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1257           break;
1258 
1259       if (i >= 0)
1260         CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1261                             cur_reg);
1262     }
1263 
1264   reg_rename_p->available_for_renaming &= ~reg_rename_p->unavailable_hard_regs;
1265 
1266   /* Regno is always ok from the renaming part of view, but it really
1267      could be in *unavailable_hard_regs already, so set it here instead
1268      of there.  */
1269   SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1270 }
1271 
1272 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1273    best register more recently than REG2.  */
1274 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1275 
1276 /* Indicates the number of times renaming happened before the current one.  */
1277 static int reg_rename_this_tick;
1278 
1279 /* Choose the register among free, that is suitable for storing
1280    the rhs value.
1281 
1282    ORIGINAL_INSNS is the list of insns where the operation (rhs)
1283    originally appears.  There could be multiple original operations
1284    for single rhs since we moving it up and merging along different
1285    paths.
1286 
1287    Some code is adapted from regrename.c (regrename_optimize).
1288    If original register is available, function returns it.
1289    Otherwise it performs the checks, so the new register should
1290    comply with the following:
1291     - it should not violate any live ranges (such registers are in
1292       REG_RENAME_P->available_for_renaming set);
1293     - it should not be in the HARD_REGS_USED regset;
1294     - it should be in the class compatible with original uses;
1295     - it should not be clobbered through reference with different mode;
1296     - if we're in the leaf function, then the new register should
1297       not be in the LEAF_REGISTERS;
1298     - etc.
1299 
1300    If several registers meet the conditions, the register with smallest
1301    tick is returned to achieve more even register allocation.
1302 
1303    If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1304 
1305    If no register satisfies the above conditions, NULL_RTX is returned.  */
1306 static rtx
1307 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1308                    struct reg_rename *reg_rename_p,
1309                    def_list_t original_insns, bool *is_orig_reg_p_ptr)
1310 {
1311   int best_new_reg;
1312   unsigned cur_reg;
1313   machine_mode mode = VOIDmode;
1314   unsigned regno, i, n;
1315   hard_reg_set_iterator hrsi;
1316   def_list_iterator di;
1317   def_t def;
1318 
1319   /* If original register is available, return it.  */
1320   *is_orig_reg_p_ptr = true;
1321 
1322   FOR_EACH_DEF (def, di, original_insns)
1323     {
1324       rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1325 
1326       gcc_assert (REG_P (orig_dest));
1327 
1328       /* Check that all original operations have the same mode.
1329          This is done for the next loop; if we'd return from this
1330          loop, we'd check only part of them, but in this case
1331          it doesn't matter.  */
1332       if (mode == VOIDmode)
1333         mode = GET_MODE (orig_dest);
1334       gcc_assert (mode == GET_MODE (orig_dest));
1335 
1336       regno = REGNO (orig_dest);
1337       for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
1338         if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1339           break;
1340 
1341       /* All hard registers are available.  */
1342       if (i == n)
1343         {
1344           gcc_assert (mode != VOIDmode);
1345 
1346           /* Hard registers should not be shared.  */
1347           return gen_rtx_REG (mode, regno);
1348         }
1349     }
1350 
1351   *is_orig_reg_p_ptr = false;
1352   best_new_reg = -1;
1353 
1354   /* Among all available regs choose the register that was
1355      allocated earliest.  */
1356   EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1357                                   0, cur_reg, hrsi)
1358     if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1359       {
1360 	/* Check that all hard regs for mode are available.  */
1361 	for (i = 1, n = hard_regno_nregs (cur_reg, mode); i < n; i++)
1362 	  if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1363 	      || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1364 				     cur_reg + i))
1365 	    break;
1366 
1367 	if (i < n)
1368 	  continue;
1369 
1370         /* All hard registers are available.  */
1371         if (best_new_reg < 0
1372             || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1373           {
1374             best_new_reg = cur_reg;
1375 
1376             /* Return immediately when we know there's no better reg.  */
1377             if (! reg_rename_tick[best_new_reg])
1378               break;
1379           }
1380       }
1381 
1382   if (best_new_reg >= 0)
1383     {
1384       /* Use the check from the above loop.  */
1385       gcc_assert (mode != VOIDmode);
1386       return gen_rtx_REG (mode, best_new_reg);
1387     }
1388 
1389   return NULL_RTX;
1390 }
1391 
1392 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1393    assumptions about available registers in the function.  */
1394 static rtx
1395 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1396                  def_list_t original_insns, bool *is_orig_reg_p_ptr)
1397 {
1398   rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1399                                     original_insns, is_orig_reg_p_ptr);
1400 
1401   /* FIXME loop over hard_regno_nregs here.  */
1402   gcc_assert (best_reg == NULL_RTX
1403 	      || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1404 
1405   return best_reg;
1406 }
1407 
1408 /* Choose the pseudo register for storing rhs value.  As this is supposed
1409    to work before reload, we return either the original register or make
1410    the new one.  The parameters are the same that in choose_nest_reg_1
1411    functions, except that USED_REGS may contain pseudos.
1412    If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1413 
1414    TODO: take into account register pressure while doing this.  Up to this
1415    moment, this function would never return NULL for pseudos, but we should
1416    not rely on this.  */
1417 static rtx
1418 choose_best_pseudo_reg (regset used_regs,
1419                         struct reg_rename *reg_rename_p,
1420                         def_list_t original_insns, bool *is_orig_reg_p_ptr)
1421 {
1422   def_list_iterator i;
1423   def_t def;
1424   machine_mode mode = VOIDmode;
1425   bool bad_hard_regs = false;
1426 
1427   /* We should not use this after reload.  */
1428   gcc_assert (!reload_completed);
1429 
1430   /* If original register is available, return it.  */
1431   *is_orig_reg_p_ptr = true;
1432 
1433   FOR_EACH_DEF (def, i, original_insns)
1434     {
1435       rtx dest = SET_DEST (PATTERN (def->orig_insn));
1436       int orig_regno;
1437 
1438       gcc_assert (REG_P (dest));
1439 
1440       /* Check that all original operations have the same mode.  */
1441       if (mode == VOIDmode)
1442         mode = GET_MODE (dest);
1443       else
1444         gcc_assert (mode == GET_MODE (dest));
1445       orig_regno = REGNO (dest);
1446 
1447       /* Check that nothing in used_regs intersects with orig_regno.  When
1448 	 we have a hard reg here, still loop over hard_regno_nregs.  */
1449       if (HARD_REGISTER_NUM_P (orig_regno))
1450 	{
1451 	  int j, n;
1452 	  for (j = 0, n = REG_NREGS (dest); j < n; j++)
1453 	    if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1454 	      break;
1455 	  if (j < n)
1456 	    continue;
1457 	}
1458       else
1459 	{
1460 	  if (REGNO_REG_SET_P (used_regs, orig_regno))
1461 	    continue;
1462 	}
1463       if (HARD_REGISTER_NUM_P (orig_regno))
1464 	{
1465 	  gcc_assert (df_regs_ever_live_p (orig_regno));
1466 
1467 	  /* For hard registers, we have to check hardware imposed
1468 	     limitations (frame/stack registers, calls crossed).  */
1469 	  if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1470 				  orig_regno))
1471 	    {
1472 	      /* Don't let register cross a call if it doesn't already
1473 		 cross one.  This condition is written in accordance with
1474 		 that in sched-deps.c sched_analyze_reg().  */
1475 	      if (!reg_rename_p->crossed_call_abis
1476 		  || REG_N_CALLS_CROSSED (orig_regno) > 0)
1477 		return gen_rtx_REG (mode, orig_regno);
1478 	    }
1479 
1480 	  bad_hard_regs = true;
1481 	}
1482       else
1483 	return dest;
1484     }
1485 
1486   *is_orig_reg_p_ptr = false;
1487 
1488   /* We had some original hard registers that couldn't be used.
1489      Those were likely special.  Don't try to create a pseudo.  */
1490   if (bad_hard_regs)
1491     return NULL_RTX;
1492 
1493   /* We haven't found a register from original operations.  Get a new one.
1494      FIXME: control register pressure somehow.  */
1495   {
1496     rtx new_reg = gen_reg_rtx (mode);
1497 
1498     gcc_assert (mode != VOIDmode);
1499 
1500     max_regno = max_reg_num ();
1501     maybe_extend_reg_info_p ();
1502     REG_N_CALLS_CROSSED (REGNO (new_reg))
1503       = reg_rename_p->crossed_call_abis ? 1 : 0;
1504 
1505     return new_reg;
1506   }
1507 }
1508 
1509 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1510    USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS.  */
1511 static void
1512 verify_target_availability (expr_t expr, regset used_regs,
1513 			    struct reg_rename *reg_rename_p)
1514 {
1515   unsigned n, i, regno;
1516   machine_mode mode;
1517   bool target_available, live_available, hard_available;
1518 
1519   if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1520     return;
1521 
1522   regno = expr_dest_regno (expr);
1523   mode = GET_MODE (EXPR_LHS (expr));
1524   target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1525   n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
1526 
1527   live_available = hard_available = true;
1528   for (i = 0; i < n; i++)
1529     {
1530       if (bitmap_bit_p (used_regs, regno + i))
1531         live_available = false;
1532       if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1533         hard_available = false;
1534     }
1535 
1536   /* When target is not available, it may be due to hard register
1537      restrictions, e.g. crosses calls, so we check hard_available too.  */
1538   if (target_available)
1539     gcc_assert (live_available);
1540   else
1541     /* Check only if we haven't scheduled something on the previous fence,
1542        cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1543        and having more than one fence, we may end having targ_un in a block
1544        in which successors target register is actually available.
1545 
1546        The last condition handles the case when a dependence from a call insn
1547        was created in sched-deps.c for insns with destination registers that
1548        never crossed a call before, but do cross one after our code motion.
1549 
1550        FIXME: in the latter case, we just uselessly called find_used_regs,
1551        because we can't move this expression with any other register
1552        as well.  */
1553     gcc_assert (scheduled_something_on_previous_fence || !live_available
1554 		|| !hard_available
1555 		|| (!reload_completed
1556 		    && reg_rename_p->crossed_call_abis
1557 		    && REG_N_CALLS_CROSSED (regno) == 0));
1558 }
1559 
1560 /* Collect unavailable registers due to liveness for EXPR from BNDS
1561    into USED_REGS.  Save additional information about available
1562    registers and unavailable due to hardware restriction registers
1563    into REG_RENAME_P structure.  Save original insns into ORIGINAL_INSNS
1564    list.  */
1565 static void
1566 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1567 				    struct reg_rename *reg_rename_p,
1568 				    def_list_t *original_insns)
1569 {
1570   for (; bnds; bnds = BLIST_NEXT (bnds))
1571     {
1572       bool res;
1573       av_set_t orig_ops = NULL;
1574       bnd_t bnd = BLIST_BND (bnds);
1575 
1576       /* If the chosen best expr doesn't belong to current boundary,
1577 	 skip it.  */
1578       if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1579 	continue;
1580 
1581       /* Put in ORIG_OPS all exprs from this boundary that became
1582 	 RES on top.  */
1583       orig_ops = find_sequential_best_exprs (bnd, expr, false);
1584 
1585       /* Compute used regs and OR it into the USED_REGS.  */
1586       res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1587 			    reg_rename_p, original_insns);
1588 
1589       /* FIXME: the assert is true until we'd have several boundaries.  */
1590       gcc_assert (res);
1591       av_set_clear (&orig_ops);
1592     }
1593 }
1594 
1595 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1596    If BEST_REG is valid, replace LHS of EXPR with it.  */
1597 static bool
1598 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1599 {
1600   /* Try whether we'll be able to generate the insn
1601      'dest := best_reg' at the place of the original operation.  */
1602   for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1603     {
1604       insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1605 
1606       gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1607 
1608       if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1609 	  && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1610 	      || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1611 	return false;
1612     }
1613 
1614   /* Make sure that EXPR has the right destination
1615      register.  */
1616   if (expr_dest_regno (expr) != REGNO (best_reg))
1617     replace_dest_with_reg_in_expr (expr, best_reg);
1618   else
1619     EXPR_TARGET_AVAILABLE (expr) = 1;
1620 
1621   return true;
1622 }
1623 
1624 /* Select and assign best register to EXPR searching from BNDS.
1625    Set *IS_ORIG_REG_P to TRUE if original register was selected.
1626    Return FALSE if no register can be chosen, which could happen when:
1627    * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1628    * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1629      that are used on the moving path.  */
1630 static bool
1631 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1632 {
1633   static struct reg_rename reg_rename_data;
1634 
1635   regset used_regs;
1636   def_list_t original_insns = NULL;
1637   bool reg_ok;
1638 
1639   *is_orig_reg_p = false;
1640 
1641   /* Don't bother to do anything if this insn doesn't set any registers.  */
1642   if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1643       && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1644     return true;
1645 
1646   used_regs = get_clear_regset_from_pool ();
1647   CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1648 
1649   collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1650 				      &original_insns);
1651 
1652   /* If after reload, make sure we're working with hard regs here.  */
1653   if (flag_checking && reload_completed)
1654     {
1655       reg_set_iterator rsi;
1656       unsigned i;
1657 
1658       EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1659         gcc_unreachable ();
1660     }
1661 
1662   if (EXPR_SEPARABLE_P (expr))
1663     {
1664       rtx best_reg = NULL_RTX;
1665       /* Check that we have computed availability of a target register
1666 	 correctly.  */
1667       verify_target_availability (expr, used_regs, &reg_rename_data);
1668 
1669       /* Turn everything in hard regs after reload.  */
1670       if (reload_completed)
1671 	{
1672 	  HARD_REG_SET hard_regs_used;
1673 	  REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1674 
1675 	  /* Join hard registers unavailable due to register class
1676 	     restrictions and live range intersection.  */
1677 	  hard_regs_used |= reg_rename_data.unavailable_hard_regs;
1678 
1679 	  best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1680 				      original_insns, is_orig_reg_p);
1681 	}
1682       else
1683 	best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1684 					   original_insns, is_orig_reg_p);
1685 
1686       if (!best_reg)
1687 	reg_ok = false;
1688       else if (*is_orig_reg_p)
1689 	{
1690 	  /* In case of unification BEST_REG may be different from EXPR's LHS
1691 	     when EXPR's LHS is unavailable, and there is another LHS among
1692 	     ORIGINAL_INSNS.  */
1693 	  reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1694 	}
1695       else
1696 	{
1697 	  /* Forbid renaming of low-cost insns.  */
1698 	  if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1699 	    reg_ok = false;
1700 	  else
1701 	    reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1702 	}
1703     }
1704   else
1705     {
1706       /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1707 	 any of the HARD_REGS_USED set.  */
1708       if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1709 				      reg_rename_data.unavailable_hard_regs))
1710 	{
1711 	  reg_ok = false;
1712 	  gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1713 	}
1714       else
1715 	{
1716 	  reg_ok = true;
1717 	  gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1718 	}
1719     }
1720 
1721   ilist_clear (&original_insns);
1722   return_regset_to_pool (used_regs);
1723 
1724   return reg_ok;
1725 }
1726 
1727 
1728 /* Return true if dependence described by DS can be overcomed.  */
1729 static bool
1730 can_speculate_dep_p (ds_t ds)
1731 {
1732   if (spec_info == NULL)
1733     return false;
1734 
1735   /* Leave only speculative data.  */
1736   ds &= SPECULATIVE;
1737 
1738   if (ds == 0)
1739     return false;
1740 
1741   {
1742     /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1743        that we can overcome.  */
1744     ds_t spec_mask = spec_info->mask;
1745 
1746     if ((ds & spec_mask) != ds)
1747       return false;
1748   }
1749 
1750   if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1751     return false;
1752 
1753   return true;
1754 }
1755 
1756 /* Get a speculation check instruction.
1757    C_EXPR is a speculative expression,
1758    CHECK_DS describes speculations that should be checked,
1759    ORIG_INSN is the original non-speculative insn in the stream.  */
1760 static insn_t
1761 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1762 {
1763   rtx check_pattern;
1764   rtx_insn *insn_rtx;
1765   insn_t insn;
1766   basic_block recovery_block;
1767   rtx_insn *label;
1768 
1769   /* Create a recovery block if target is going to emit branchy check, or if
1770      ORIG_INSN was speculative already.  */
1771   if (targetm.sched.needs_block_p (check_ds)
1772       || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1773     {
1774       recovery_block = sel_create_recovery_block (orig_insn);
1775       label = BB_HEAD (recovery_block);
1776     }
1777   else
1778     {
1779       recovery_block = NULL;
1780       label = NULL;
1781     }
1782 
1783   /* Get pattern of the check.  */
1784   check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1785 						check_ds);
1786 
1787   gcc_assert (check_pattern != NULL);
1788 
1789   /* Emit check.  */
1790   insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1791 
1792   insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1793 				      INSN_SEQNO (orig_insn), orig_insn);
1794 
1795   /* Make check to be non-speculative.  */
1796   EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1797   INSN_SPEC_CHECKED_DS (insn) = check_ds;
1798 
1799   /* Decrease priority of check by difference of load/check instruction
1800      latencies.  */
1801   EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1802 				       - sel_vinsn_cost (INSN_VINSN (insn)));
1803 
1804   /* Emit copy of original insn (though with replaced target register,
1805      if needed) to the recovery block.  */
1806   if (recovery_block != NULL)
1807     {
1808       rtx twin_rtx;
1809 
1810       twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1811       twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1812       sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1813 					    INSN_EXPR (orig_insn),
1814 					    INSN_SEQNO (insn),
1815 					    bb_note (recovery_block));
1816     }
1817 
1818   /* If we've generated a data speculation check, make sure
1819      that all the bookkeeping instruction we'll create during
1820      this move_op () will allocate an ALAT entry so that the
1821      check won't fail.
1822      In case of control speculation we must convert C_EXPR to control
1823      speculative mode, because failing to do so will bring us an exception
1824      thrown by the non-control-speculative load.  */
1825   check_ds = ds_get_max_dep_weak (check_ds);
1826   speculate_expr (c_expr, check_ds);
1827 
1828   return insn;
1829 }
1830 
1831 /* True when INSN is a "regN = regN" copy.  */
1832 static bool
1833 identical_copy_p (rtx_insn *insn)
1834 {
1835   rtx lhs, rhs, pat;
1836 
1837   pat = PATTERN (insn);
1838 
1839   if (GET_CODE (pat) != SET)
1840     return false;
1841 
1842   lhs = SET_DEST (pat);
1843   if (!REG_P (lhs))
1844     return false;
1845 
1846   rhs = SET_SRC (pat);
1847   if (!REG_P (rhs))
1848     return false;
1849 
1850   return REGNO (lhs) == REGNO (rhs);
1851 }
1852 
1853 /* Undo all transformations on *AV_PTR that were done when
1854    moving through INSN.  */
1855 static void
1856 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1857 {
1858   av_set_iterator av_iter;
1859   expr_t expr;
1860   av_set_t new_set = NULL;
1861 
1862   /* First, kill any EXPR that uses registers set by an insn.  This is
1863      required for correctness.  */
1864   FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1865     if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1866         && bitmap_intersect_p (INSN_REG_SETS (insn),
1867                                VINSN_REG_USES (EXPR_VINSN (expr)))
1868         /* When an insn looks like 'r1 = r1', we could substitute through
1869            it, but the above condition will still hold.  This happened with
1870            gcc.c-torture/execute/961125-1.c.  */
1871         && !identical_copy_p (insn))
1872       {
1873         if (sched_verbose >= 6)
1874           sel_print ("Expr %d removed due to use/set conflict\n",
1875                      INSN_UID (EXPR_INSN_RTX (expr)));
1876         av_set_iter_remove (&av_iter);
1877       }
1878 
1879   /* Undo transformations looking at the history vector.  */
1880   FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1881     {
1882       int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1883                                         insn, EXPR_VINSN (expr), true);
1884 
1885       if (index >= 0)
1886         {
1887           expr_history_def *phist;
1888 
1889           phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1890 
1891           switch (phist->type)
1892             {
1893             case TRANS_SPECULATION:
1894               {
1895                 ds_t old_ds, new_ds;
1896 
1897                 /* Compute the difference between old and new speculative
1898                    statuses: that's what we need to check.
1899                    Earlier we used to assert that the status will really
1900                    change.  This no longer works because only the probability
1901                    bits in the status may have changed during compute_av_set,
1902                    and in the case of merging different probabilities of the
1903                    same speculative status along different paths we do not
1904                    record this in the history vector.  */
1905                 old_ds = phist->spec_ds;
1906                 new_ds = EXPR_SPEC_DONE_DS (expr);
1907 
1908                 old_ds &= SPECULATIVE;
1909                 new_ds &= SPECULATIVE;
1910                 new_ds &= ~old_ds;
1911 
1912                 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1913                 break;
1914               }
1915             case TRANS_SUBSTITUTION:
1916               {
1917                 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1918                 vinsn_t new_vi;
1919                 bool add = true;
1920 
1921                 new_vi = phist->old_expr_vinsn;
1922 
1923                 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1924                             == EXPR_SEPARABLE_P (expr));
1925                 copy_expr (tmp_expr, expr);
1926 
1927                 if (vinsn_equal_p (phist->new_expr_vinsn,
1928                                    EXPR_VINSN (tmp_expr)))
1929                   change_vinsn_in_expr (tmp_expr, new_vi);
1930                 else
1931                   /* This happens when we're unsubstituting on a bookkeeping
1932                      copy, which was in turn substituted.  The history is wrong
1933                      in this case.  Do it the hard way.  */
1934                   add = substitute_reg_in_expr (tmp_expr, insn, true);
1935                 if (add)
1936                   av_set_add (&new_set, tmp_expr);
1937                 clear_expr (tmp_expr);
1938                 break;
1939               }
1940             default:
1941               gcc_unreachable ();
1942             }
1943         }
1944 
1945     }
1946 
1947   av_set_union_and_clear (av_ptr, &new_set, NULL);
1948 }
1949 
1950 
1951 /* Moveup_* helpers for code motion and computing av sets.  */
1952 
1953 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1954    The difference from the below function is that only substitution is
1955    performed.  */
1956 static enum MOVEUP_EXPR_CODE
1957 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1958 {
1959   vinsn_t vi = EXPR_VINSN (expr);
1960   ds_t *has_dep_p;
1961   ds_t full_ds;
1962 
1963   /* Do this only inside insn group.  */
1964   gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1965 
1966   full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1967   if (full_ds == 0)
1968     return MOVEUP_EXPR_SAME;
1969 
1970   /* Substitution is the possible choice in this case.  */
1971   if (has_dep_p[DEPS_IN_RHS])
1972     {
1973       /* Can't substitute UNIQUE VINSNs.  */
1974       gcc_assert (!VINSN_UNIQUE_P (vi));
1975 
1976       if (can_substitute_through_p (through_insn,
1977                                     has_dep_p[DEPS_IN_RHS])
1978           && substitute_reg_in_expr (expr, through_insn, false))
1979         {
1980           EXPR_WAS_SUBSTITUTED (expr) = true;
1981           return MOVEUP_EXPR_CHANGED;
1982         }
1983 
1984       /* Don't care about this, as even true dependencies may be allowed
1985          in an insn group.  */
1986       return MOVEUP_EXPR_SAME;
1987     }
1988 
1989   /* This can catch output dependencies in COND_EXECs.  */
1990   if (has_dep_p[DEPS_IN_INSN])
1991     return MOVEUP_EXPR_NULL;
1992 
1993   /* This is either an output or an anti dependence, which usually have
1994      a zero latency.  Allow this here, if we'd be wrong, tick_check_p
1995      will fix this.  */
1996   gcc_assert (has_dep_p[DEPS_IN_LHS]);
1997   return MOVEUP_EXPR_AS_RHS;
1998 }
1999 
2000 /* True when a trapping EXPR cannot be moved through THROUGH_INSN.  */
2001 #define CANT_MOVE_TRAPPING(expr, through_insn)                \
2002   (VINSN_MAY_TRAP_P (EXPR_VINSN (expr))                       \
2003    && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2004    && !sel_insn_is_speculation_check (through_insn))
2005 
2006 /* True when a conflict on a target register was found during moveup_expr.  */
2007 static bool was_target_conflict = false;
2008 
2009 /* Return true when moving a debug INSN across THROUGH_INSN will
2010    create a bookkeeping block.  We don't want to create such blocks,
2011    for they would cause codegen differences between compilations with
2012    and without debug info.  */
2013 
2014 static bool
2015 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2016 					 insn_t through_insn)
2017 {
2018   basic_block bbi, bbt;
2019   edge e1, e2;
2020   edge_iterator ei1, ei2;
2021 
2022   if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2023     {
2024       if (sched_verbose >= 9)
2025 	sel_print ("no bookkeeping required: ");
2026       return FALSE;
2027     }
2028 
2029   bbi = BLOCK_FOR_INSN (insn);
2030 
2031   if (EDGE_COUNT (bbi->preds) == 1)
2032     {
2033       if (sched_verbose >= 9)
2034 	sel_print ("only one pred edge: ");
2035       return TRUE;
2036     }
2037 
2038   bbt = BLOCK_FOR_INSN (through_insn);
2039 
2040   FOR_EACH_EDGE (e1, ei1, bbt->succs)
2041     {
2042       FOR_EACH_EDGE (e2, ei2, bbi->preds)
2043 	{
2044 	  if (find_block_for_bookkeeping (e1, e2, TRUE))
2045 	    {
2046 	      if (sched_verbose >= 9)
2047 		sel_print ("found existing block: ");
2048 	      return FALSE;
2049 	    }
2050 	}
2051     }
2052 
2053   if (sched_verbose >= 9)
2054     sel_print ("would create bookkeeping block: ");
2055 
2056   return TRUE;
2057 }
2058 
2059 /* Return true when the conflict with newly created implicit clobbers
2060    between EXPR and THROUGH_INSN is found because of renaming.  */
2061 static bool
2062 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2063 {
2064   HARD_REG_SET temp;
2065   rtx_insn *insn;
2066   rtx reg, rhs, pat;
2067   hard_reg_set_iterator hrsi;
2068   unsigned regno;
2069   bool valid;
2070 
2071   /* Make a new pseudo register.  */
2072   reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2073   max_regno = max_reg_num ();
2074   maybe_extend_reg_info_p ();
2075 
2076   /* Validate a change and bail out early.  */
2077   insn = EXPR_INSN_RTX (expr);
2078   validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2079   valid = verify_changes (0);
2080   cancel_changes (0);
2081   if (!valid)
2082     {
2083       if (sched_verbose >= 6)
2084 	sel_print ("implicit clobbers failed validation, ");
2085       return true;
2086     }
2087 
2088   /* Make a new insn with it.  */
2089   rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2090   pat = gen_rtx_SET (reg, rhs);
2091   start_sequence ();
2092   insn = emit_insn (pat);
2093   end_sequence ();
2094 
2095   /* Calculate implicit clobbers.  */
2096   extract_insn (insn);
2097   preprocess_constraints (insn);
2098   alternative_mask prefrred = get_preferred_alternatives (insn);
2099   ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2100   temp &= ~ira_no_alloc_regs;
2101 
2102   /* If any implicit clobber registers intersect with regular ones in
2103      through_insn, we have a dependency and thus bail out.  */
2104   EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2105     {
2106       vinsn_t vi = INSN_VINSN (through_insn);
2107       if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2108 	  || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2109 	  || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2110 	return true;
2111     }
2112 
2113   return false;
2114 }
2115 
2116 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2117    performing necessary transformations.  Record the type of transformation
2118    made in PTRANS_TYPE, when it is not NULL.  When INSIDE_INSN_GROUP,
2119    permit all dependencies except true ones, and try to remove those
2120    too via forward substitution.  All cases when a non-eliminable
2121    non-zero cost dependency exists inside an insn group will be fixed
2122    in tick_check_p instead.  */
2123 static enum MOVEUP_EXPR_CODE
2124 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2125             enum local_trans_type *ptrans_type)
2126 {
2127   vinsn_t vi = EXPR_VINSN (expr);
2128   insn_t insn = VINSN_INSN_RTX (vi);
2129   bool was_changed = false;
2130   bool as_rhs = false;
2131   ds_t *has_dep_p;
2132   ds_t full_ds;
2133 
2134   /* ??? We use dependencies of non-debug insns on debug insns to
2135      indicate that the debug insns need to be reset if the non-debug
2136      insn is pulled ahead of it.  It's hard to figure out how to
2137      introduce such a notion in sel-sched, but it already fails to
2138      support debug insns in other ways, so we just go ahead and
2139      let the deug insns go corrupt for now.  */
2140   if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2141     return MOVEUP_EXPR_SAME;
2142 
2143   /* When inside_insn_group, delegate to the helper.  */
2144   if (inside_insn_group)
2145     return moveup_expr_inside_insn_group (expr, through_insn);
2146 
2147   /* Deal with unique insns and control dependencies.  */
2148   if (VINSN_UNIQUE_P (vi))
2149     {
2150       /* We can move jumps without side-effects or jumps that are
2151 	 mutually exclusive with instruction THROUGH_INSN (all in cases
2152 	 dependencies allow to do so and jump is not speculative).  */
2153       if (control_flow_insn_p (insn))
2154         {
2155           basic_block fallthru_bb;
2156 
2157           /* Do not move checks and do not move jumps through other
2158              jumps.  */
2159           if (control_flow_insn_p (through_insn)
2160               || sel_insn_is_speculation_check (insn))
2161             return MOVEUP_EXPR_NULL;
2162 
2163           /* Don't move jumps through CFG joins.  */
2164           if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2165             return MOVEUP_EXPR_NULL;
2166 
2167           /* The jump should have a clear fallthru block, and
2168              this block should be in the current region.  */
2169           if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2170               || ! in_current_region_p (fallthru_bb))
2171             return MOVEUP_EXPR_NULL;
2172 
2173           /* And it should be mutually exclusive with through_insn.  */
2174           if (! sched_insns_conditions_mutex_p (insn, through_insn)
2175 	      && ! DEBUG_INSN_P (through_insn))
2176             return MOVEUP_EXPR_NULL;
2177         }
2178 
2179       /* Don't move what we can't move.  */
2180       if (EXPR_CANT_MOVE (expr)
2181 	  && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2182 	return MOVEUP_EXPR_NULL;
2183 
2184       /* Don't move SCHED_GROUP instruction through anything.
2185          If we don't force this, then it will be possible to start
2186          scheduling a sched_group before all its dependencies are
2187          resolved.
2188          ??? Haifa deals with this issue by delaying the SCHED_GROUP
2189          as late as possible through rank_for_schedule.  */
2190       if (SCHED_GROUP_P (insn))
2191 	return MOVEUP_EXPR_NULL;
2192     }
2193   else
2194     gcc_assert (!control_flow_insn_p (insn));
2195 
2196   /* Don't move debug insns if this would require bookkeeping.  */
2197   if (DEBUG_INSN_P (insn)
2198       && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2199       && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2200     return MOVEUP_EXPR_NULL;
2201 
2202   /* Deal with data dependencies.  */
2203   was_target_conflict = false;
2204   full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2205   if (full_ds == 0)
2206     {
2207       if (!CANT_MOVE_TRAPPING (expr, through_insn))
2208 	return MOVEUP_EXPR_SAME;
2209     }
2210   else
2211     {
2212       /* We can move UNIQUE insn up only as a whole and unchanged,
2213          so it shouldn't have any dependencies.  */
2214       if (VINSN_UNIQUE_P (vi))
2215 	return MOVEUP_EXPR_NULL;
2216     }
2217 
2218   if (full_ds != 0 && can_speculate_dep_p (full_ds))
2219     {
2220       int res;
2221 
2222       res = speculate_expr (expr, full_ds);
2223       if (res >= 0)
2224 	{
2225           /* Speculation was successful.  */
2226           full_ds = 0;
2227           was_changed = (res > 0);
2228           if (res == 2)
2229             was_target_conflict = true;
2230           if (ptrans_type)
2231             *ptrans_type = TRANS_SPECULATION;
2232 	  sel_clear_has_dependence ();
2233 	}
2234     }
2235 
2236   if (has_dep_p[DEPS_IN_INSN])
2237     /* We have some dependency that cannot be discarded.  */
2238     return MOVEUP_EXPR_NULL;
2239 
2240   if (has_dep_p[DEPS_IN_LHS])
2241     {
2242       /* Only separable insns can be moved up with the new register.
2243          Anyways, we should mark that the original register is
2244          unavailable.  */
2245       if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2246         return MOVEUP_EXPR_NULL;
2247 
2248       /* When renaming a hard register to a pseudo before reload, extra
2249 	 dependencies can occur from the implicit clobbers of the insn.
2250 	 Filter out such cases here.  */
2251       if (!reload_completed && REG_P (EXPR_LHS (expr))
2252 	  && HARD_REGISTER_P (EXPR_LHS (expr))
2253 	  && implicit_clobber_conflict_p (through_insn, expr))
2254 	{
2255 	  if (sched_verbose >= 6)
2256 	    sel_print ("implicit clobbers conflict detected, ");
2257 	  return MOVEUP_EXPR_NULL;
2258 	}
2259       EXPR_TARGET_AVAILABLE (expr) = false;
2260       was_target_conflict = true;
2261       as_rhs = true;
2262     }
2263 
2264   /* At this point we have either separable insns, that will be lifted
2265      up only as RHSes, or non-separable insns with no dependency in lhs.
2266      If dependency is in RHS, then try to perform substitution and move up
2267      substituted RHS:
2268 
2269       Ex. 1:				  Ex.2
2270 	y = x;				    y = x;
2271 	z = y*2;			    y = y*2;
2272 
2273     In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2274     moved above y=x assignment as z=x*2.
2275 
2276     In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2277     side can be moved because of the output dependency.  The operation was
2278     cropped to its rhs above.  */
2279   if (has_dep_p[DEPS_IN_RHS])
2280     {
2281       ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2282 
2283       /* Can't substitute UNIQUE VINSNs.  */
2284       gcc_assert (!VINSN_UNIQUE_P (vi));
2285 
2286       if (can_speculate_dep_p (*rhs_dsp))
2287 	{
2288           int res;
2289 
2290           res = speculate_expr (expr, *rhs_dsp);
2291           if (res >= 0)
2292             {
2293               /* Speculation was successful.  */
2294               *rhs_dsp = 0;
2295               was_changed = (res > 0);
2296               if (res == 2)
2297                 was_target_conflict = true;
2298               if (ptrans_type)
2299                 *ptrans_type = TRANS_SPECULATION;
2300             }
2301 	  else
2302 	    return MOVEUP_EXPR_NULL;
2303 	}
2304       else if (can_substitute_through_p (through_insn,
2305                                          *rhs_dsp)
2306                && substitute_reg_in_expr (expr, through_insn, false))
2307 	{
2308           /* ??? We cannot perform substitution AND speculation on the same
2309              insn.  */
2310           gcc_assert (!was_changed);
2311           was_changed = true;
2312           if (ptrans_type)
2313             *ptrans_type = TRANS_SUBSTITUTION;
2314           EXPR_WAS_SUBSTITUTED (expr) = true;
2315 	}
2316       else
2317 	return MOVEUP_EXPR_NULL;
2318     }
2319 
2320   /* Don't move trapping insns through jumps.
2321      This check should be at the end to give a chance to control speculation
2322      to perform its duties.  */
2323   if (CANT_MOVE_TRAPPING (expr, through_insn))
2324     return MOVEUP_EXPR_NULL;
2325 
2326   return (was_changed
2327           ? MOVEUP_EXPR_CHANGED
2328           : (as_rhs
2329              ? MOVEUP_EXPR_AS_RHS
2330              : MOVEUP_EXPR_SAME));
2331 }
2332 
2333 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2334    if successful.  When INSIDE_INSN_GROUP, also try ignore dependencies
2335    that can exist within a parallel group.  Write to RES the resulting
2336    code for moveup_expr.  */
2337 static bool
2338 try_bitmap_cache (expr_t expr, insn_t insn,
2339                   bool inside_insn_group,
2340                   enum MOVEUP_EXPR_CODE *res)
2341 {
2342   int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2343 
2344   /* First check whether we've analyzed this situation already.  */
2345   if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2346     {
2347       if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2348         {
2349           if (sched_verbose >= 6)
2350             sel_print ("removed (cached)\n");
2351           *res = MOVEUP_EXPR_NULL;
2352           return true;
2353         }
2354       else
2355         {
2356           if (sched_verbose >= 6)
2357             sel_print ("unchanged (cached)\n");
2358           *res = MOVEUP_EXPR_SAME;
2359           return true;
2360         }
2361     }
2362   else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2363     {
2364       if (inside_insn_group)
2365         {
2366           if (sched_verbose >= 6)
2367             sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2368           *res = MOVEUP_EXPR_SAME;
2369           return true;
2370 
2371         }
2372       else
2373         EXPR_TARGET_AVAILABLE (expr) = false;
2374 
2375       /* This is the only case when propagation result can change over time,
2376          as we can dynamically switch off scheduling as RHS.  In this case,
2377          just check the flag to reach the correct decision.  */
2378       if (enable_schedule_as_rhs_p)
2379         {
2380           if (sched_verbose >= 6)
2381             sel_print ("unchanged (as RHS, cached)\n");
2382           *res = MOVEUP_EXPR_AS_RHS;
2383           return true;
2384         }
2385       else
2386         {
2387           if (sched_verbose >= 6)
2388             sel_print ("removed (cached as RHS, but renaming"
2389                        " is now disabled)\n");
2390           *res = MOVEUP_EXPR_NULL;
2391           return true;
2392         }
2393     }
2394 
2395   return false;
2396 }
2397 
2398 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2399    if successful.  Write to RES the resulting code for moveup_expr.  */
2400 static bool
2401 try_transformation_cache (expr_t expr, insn_t insn,
2402                           enum MOVEUP_EXPR_CODE *res)
2403 {
2404   struct transformed_insns *pti
2405     = (struct transformed_insns *)
2406     htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2407                          &EXPR_VINSN (expr),
2408                          VINSN_HASH_RTX (EXPR_VINSN (expr)));
2409   if (pti)
2410     {
2411       /* This EXPR was already moved through this insn and was
2412          changed as a result.  Fetch the proper data from
2413          the hashtable.  */
2414       insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2415                               INSN_UID (insn), pti->type,
2416                               pti->vinsn_old, pti->vinsn_new,
2417                               EXPR_SPEC_DONE_DS (expr));
2418 
2419       if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2420         pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2421       change_vinsn_in_expr (expr, pti->vinsn_new);
2422       if (pti->was_target_conflict)
2423         EXPR_TARGET_AVAILABLE (expr) = false;
2424       if (pti->type == TRANS_SPECULATION)
2425         {
2426           EXPR_SPEC_DONE_DS (expr) = pti->ds;
2427           EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2428         }
2429 
2430       if (sched_verbose >= 6)
2431         {
2432           sel_print ("changed (cached): ");
2433           dump_expr (expr);
2434           sel_print ("\n");
2435         }
2436 
2437       *res = MOVEUP_EXPR_CHANGED;
2438       return true;
2439     }
2440 
2441   return false;
2442 }
2443 
2444 /* Update bitmap caches on INSN with result RES of propagating EXPR.  */
2445 static void
2446 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2447                      enum MOVEUP_EXPR_CODE res)
2448 {
2449   int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2450 
2451   /* Do not cache result of propagating jumps through an insn group,
2452      as it is always true, which is not useful outside the group.  */
2453   if (inside_insn_group)
2454     return;
2455 
2456   if (res == MOVEUP_EXPR_NULL)
2457     {
2458       bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2459       bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2460     }
2461   else if (res == MOVEUP_EXPR_SAME)
2462     {
2463       bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2464       bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2465     }
2466   else if (res == MOVEUP_EXPR_AS_RHS)
2467     {
2468       bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2469       bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2470     }
2471   else
2472     gcc_unreachable ();
2473 }
2474 
2475 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2476    and transformation type TRANS_TYPE.  */
2477 static void
2478 update_transformation_cache (expr_t expr, insn_t insn,
2479                              bool inside_insn_group,
2480                              enum local_trans_type trans_type,
2481                              vinsn_t expr_old_vinsn)
2482 {
2483   struct transformed_insns *pti;
2484 
2485   if (inside_insn_group)
2486     return;
2487 
2488   pti = XNEW (struct transformed_insns);
2489   pti->vinsn_old = expr_old_vinsn;
2490   pti->vinsn_new = EXPR_VINSN (expr);
2491   pti->type = trans_type;
2492   pti->was_target_conflict = was_target_conflict;
2493   pti->ds = EXPR_SPEC_DONE_DS (expr);
2494   pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2495   vinsn_attach (pti->vinsn_old);
2496   vinsn_attach (pti->vinsn_new);
2497   *((struct transformed_insns **)
2498     htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2499                               pti, VINSN_HASH_RTX (expr_old_vinsn),
2500                               INSERT)) = pti;
2501 }
2502 
2503 /* Same as moveup_expr, but first looks up the result of
2504    transformation in caches.  */
2505 static enum MOVEUP_EXPR_CODE
2506 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2507 {
2508   enum MOVEUP_EXPR_CODE res;
2509   bool got_answer = false;
2510 
2511   if (sched_verbose >= 6)
2512     {
2513       sel_print ("Moving ");
2514       dump_expr (expr);
2515       sel_print (" through %d: ", INSN_UID (insn));
2516     }
2517 
2518   if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2519       && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
2520       && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2521 	  == EXPR_INSN_RTX (expr)))
2522     /* Don't use cached information for debug insns that are heads of
2523        basic blocks.  */;
2524   else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2525     /* When inside insn group, we do not want remove stores conflicting
2526        with previosly issued loads.  */
2527     got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2528   else if (try_transformation_cache (expr, insn, &res))
2529     got_answer = true;
2530 
2531   if (! got_answer)
2532     {
2533       /* Invoke moveup_expr and record the results.  */
2534       vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2535       ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2536       int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2537       bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2538       enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2539 
2540       /* ??? Invent something better than this.  We can't allow old_vinsn
2541          to go, we need it for the history vector.  */
2542       vinsn_attach (expr_old_vinsn);
2543 
2544       res = moveup_expr (expr, insn, inside_insn_group,
2545                          &trans_type);
2546       switch (res)
2547         {
2548         case MOVEUP_EXPR_NULL:
2549           update_bitmap_cache (expr, insn, inside_insn_group, res);
2550 	  if (sched_verbose >= 6)
2551             sel_print ("removed\n");
2552 	  break;
2553 
2554 	case MOVEUP_EXPR_SAME:
2555           update_bitmap_cache (expr, insn, inside_insn_group, res);
2556           if (sched_verbose >= 6)
2557             sel_print ("unchanged\n");
2558 	  break;
2559 
2560         case MOVEUP_EXPR_AS_RHS:
2561           gcc_assert (!unique_p || inside_insn_group);
2562           update_bitmap_cache (expr, insn, inside_insn_group, res);
2563 	  if (sched_verbose >= 6)
2564             sel_print ("unchanged (as RHS)\n");
2565 	  break;
2566 
2567 	case MOVEUP_EXPR_CHANGED:
2568           gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2569                       || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2570           insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2571                                   INSN_UID (insn), trans_type,
2572                                   expr_old_vinsn, EXPR_VINSN (expr),
2573                                   expr_old_spec_ds);
2574           update_transformation_cache (expr, insn, inside_insn_group,
2575                                        trans_type, expr_old_vinsn);
2576           if (sched_verbose >= 6)
2577             {
2578               sel_print ("changed: ");
2579               dump_expr (expr);
2580               sel_print ("\n");
2581             }
2582 	  break;
2583 	default:
2584 	  gcc_unreachable ();
2585         }
2586 
2587       vinsn_detach (expr_old_vinsn);
2588     }
2589 
2590   return res;
2591 }
2592 
2593 /* Moves an av set AVP up through INSN, performing necessary
2594    transformations.  */
2595 static void
2596 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2597 {
2598   av_set_iterator i;
2599   expr_t expr;
2600 
2601   FOR_EACH_EXPR_1 (expr, i, avp)
2602     {
2603 
2604       switch (moveup_expr_cached (expr, insn, inside_insn_group))
2605 	{
2606 	case MOVEUP_EXPR_SAME:
2607         case MOVEUP_EXPR_AS_RHS:
2608 	  break;
2609 
2610 	case MOVEUP_EXPR_NULL:
2611 	  av_set_iter_remove (&i);
2612 	  break;
2613 
2614 	case MOVEUP_EXPR_CHANGED:
2615           expr = merge_with_other_exprs (avp, &i, expr);
2616 	  break;
2617 
2618 	default:
2619 	  gcc_unreachable ();
2620 	}
2621     }
2622 }
2623 
2624 /* Moves AVP set along PATH.  */
2625 static void
2626 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2627 {
2628   int last_cycle;
2629 
2630   if (sched_verbose >= 6)
2631     sel_print ("Moving expressions up in the insn group...\n");
2632   if (! path)
2633     return;
2634   last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2635   while (path
2636          && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2637     {
2638       moveup_set_expr (avp, ILIST_INSN (path), true);
2639       path = ILIST_NEXT (path);
2640     }
2641 }
2642 
2643 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW.  */
2644 static bool
2645 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2646 {
2647   expr_def _tmp, *tmp = &_tmp;
2648   int last_cycle;
2649   bool res = true;
2650 
2651   copy_expr_onside (tmp, expr);
2652   last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2653   while (path
2654          && res
2655          && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2656     {
2657       res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2658              != MOVEUP_EXPR_NULL);
2659       path = ILIST_NEXT (path);
2660     }
2661 
2662   if (res)
2663     {
2664       vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2665       vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2666 
2667       if (tmp_vinsn != expr_vliw_vinsn)
2668 	res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2669     }
2670 
2671   clear_expr (tmp);
2672   return res;
2673 }
2674 
2675 
2676 /* Functions that compute av and lv sets.  */
2677 
2678 /* Returns true if INSN is not a downward continuation of the given path P in
2679    the current stage.  */
2680 static bool
2681 is_ineligible_successor (insn_t insn, ilist_t p)
2682 {
2683   insn_t prev_insn;
2684 
2685   /* Check if insn is not deleted.  */
2686   if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2687     gcc_unreachable ();
2688   else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2689     gcc_unreachable ();
2690 
2691   /* If it's the first insn visited, then the successor is ok.  */
2692   if (!p)
2693     return false;
2694 
2695   prev_insn = ILIST_INSN (p);
2696 
2697   if (/* a backward edge.  */
2698       INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2699       /* is already visited.  */
2700       || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2701 	  && (ilist_is_in_p (p, insn)
2702               /* We can reach another fence here and still seqno of insn
2703                  would be equal to seqno of prev_insn.  This is possible
2704                  when prev_insn is a previously created bookkeeping copy.
2705                  In that case it'd get a seqno of insn.  Thus, check here
2706                  whether insn is in current fence too.  */
2707               || IN_CURRENT_FENCE_P (insn)))
2708       /* Was already scheduled on this round.  */
2709       || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2710 	  && IN_CURRENT_FENCE_P (insn))
2711       /* An insn from another fence could also be
2712 	 scheduled earlier even if this insn is not in
2713 	 a fence list right now.  Check INSN_SCHED_CYCLE instead.  */
2714       || (!pipelining_p
2715           && INSN_SCHED_TIMES (insn) > 0))
2716     return true;
2717   else
2718     return false;
2719 }
2720 
2721 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2722    of handling multiple successors and properly merging its av_sets.  P is
2723    the current path traversed.  WS is the size of lookahead window.
2724    Return the av set computed.  */
2725 static av_set_t
2726 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2727 {
2728   struct succs_info *sinfo;
2729   av_set_t expr_in_all_succ_branches = NULL;
2730   int is;
2731   insn_t succ, zero_succ = NULL;
2732   av_set_t av1 = NULL;
2733 
2734   gcc_assert (sel_bb_end_p (insn));
2735 
2736   /* Find different kind of successors needed for correct computing of
2737      SPEC and TARGET_AVAILABLE attributes.  */
2738   sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2739 
2740   /* Debug output.  */
2741   if (sched_verbose >= 6)
2742     {
2743       sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2744       dump_insn_vector (sinfo->succs_ok);
2745       sel_print ("\n");
2746       if (sinfo->succs_ok_n != sinfo->all_succs_n)
2747         sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2748     }
2749 
2750   /* Add insn to the tail of current path.  */
2751   ilist_add (&p, insn);
2752 
2753   FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2754     {
2755       av_set_t succ_set;
2756 
2757       /* We will edit SUCC_SET and EXPR_SPEC field of its elements.  */
2758       succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2759 
2760       av_set_split_usefulness (succ_set,
2761                                sinfo->probs_ok[is],
2762                                sinfo->all_prob);
2763 
2764       if (sinfo->all_succs_n > 1)
2765 	{
2766           /* Find EXPR'es that came from *all* successors and save them
2767              into expr_in_all_succ_branches.  This set will be used later
2768              for calculating speculation attributes of EXPR'es.  */
2769           if (is == 0)
2770             {
2771               expr_in_all_succ_branches = av_set_copy (succ_set);
2772 
2773               /* Remember the first successor for later. */
2774               zero_succ = succ;
2775             }
2776           else
2777             {
2778               av_set_iterator i;
2779               expr_t expr;
2780 
2781               FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2782                 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2783                   av_set_iter_remove (&i);
2784             }
2785 	}
2786 
2787       /* Union the av_sets.  Check liveness restrictions on target registers
2788          in special case of two successors.  */
2789       if (sinfo->succs_ok_n == 2 && is == 1)
2790         {
2791           basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2792           basic_block bb1 = BLOCK_FOR_INSN (succ);
2793 
2794           gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2795           av_set_union_and_live (&av1, &succ_set,
2796                                  BB_LV_SET (bb0),
2797                                  BB_LV_SET (bb1),
2798                                  insn);
2799         }
2800       else
2801         av_set_union_and_clear (&av1, &succ_set, insn);
2802     }
2803 
2804   /* Check liveness restrictions via hard way when there are more than
2805      two successors.  */
2806   if (sinfo->succs_ok_n > 2)
2807     FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2808       {
2809         basic_block succ_bb = BLOCK_FOR_INSN (succ);
2810 	av_set_t av_succ = (is_ineligible_successor (succ, p)
2811 			    ? NULL
2812 			    : BB_AV_SET (succ_bb));
2813 
2814         gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2815 	mark_unavailable_targets (av1, av_succ, BB_LV_SET (succ_bb));
2816       }
2817 
2818   /* Finally, check liveness restrictions on paths leaving the region.  */
2819   if (sinfo->all_succs_n > sinfo->succs_ok_n)
2820     FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2821       mark_unavailable_targets
2822         (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2823 
2824   if (sinfo->all_succs_n > 1)
2825     {
2826       av_set_iterator i;
2827       expr_t expr;
2828 
2829       /* Increase the spec attribute of all EXPR'es that didn't come
2830 	 from all successors.  */
2831       FOR_EACH_EXPR (expr, i, av1)
2832 	if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2833 	  EXPR_SPEC (expr)++;
2834 
2835       av_set_clear (&expr_in_all_succ_branches);
2836 
2837       /* Do not move conditional branches through other
2838 	 conditional branches.  So, remove all conditional
2839 	 branches from av_set if current operator is a conditional
2840 	 branch.  */
2841       av_set_substract_cond_branches (&av1);
2842     }
2843 
2844   ilist_remove (&p);
2845   free_succs_info (sinfo);
2846 
2847   if (sched_verbose >= 6)
2848     {
2849       sel_print ("av_succs (%d): ", INSN_UID (insn));
2850       dump_av_set (av1);
2851       sel_print ("\n");
2852     }
2853 
2854   return av1;
2855 }
2856 
2857 /* This function computes av_set for the FIRST_INSN by dragging valid
2858    av_set through all basic block insns either from the end of basic block
2859    (computed using compute_av_set_at_bb_end) or from the insn on which
2860    MAX_WS was exceeded.  It uses compute_av_set_at_bb_end to compute av_set
2861    below the basic block and handling conditional branches.
2862    FIRST_INSN - the basic block head, P - path consisting of the insns
2863    traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2864    and bb ends are added to the path), WS - current window size,
2865    NEED_COPY_P - true if we'll make a copy of av_set before returning it.  */
2866 static av_set_t
2867 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2868 			  bool need_copy_p)
2869 {
2870   insn_t cur_insn;
2871   int end_ws = ws;
2872   insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2873   insn_t after_bb_end = NEXT_INSN (bb_end);
2874   insn_t last_insn;
2875   av_set_t av = NULL;
2876   basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2877 
2878   /* Return NULL if insn is not on the legitimate downward path.  */
2879   if (is_ineligible_successor (first_insn, p))
2880     {
2881       if (sched_verbose >= 6)
2882         sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2883 
2884       return NULL;
2885     }
2886 
2887   /* If insn already has valid av(insn) computed, just return it.  */
2888   if (AV_SET_VALID_P (first_insn))
2889     {
2890       av_set_t av_set;
2891 
2892       if (sel_bb_head_p (first_insn))
2893 	av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2894       else
2895 	av_set = NULL;
2896 
2897       if (sched_verbose >= 6)
2898         {
2899           sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2900           dump_av_set (av_set);
2901           sel_print ("\n");
2902         }
2903 
2904       return need_copy_p ? av_set_copy (av_set) : av_set;
2905     }
2906 
2907   ilist_add (&p, first_insn);
2908 
2909   /* As the result after this loop have completed, in LAST_INSN we'll
2910      have the insn which has valid av_set to start backward computation
2911      from: it either will be NULL because on it the window size was exceeded
2912      or other valid av_set as returned by compute_av_set for the last insn
2913      of the basic block.  */
2914   for (last_insn = first_insn; last_insn != after_bb_end;
2915        last_insn = NEXT_INSN (last_insn))
2916     {
2917       /* We may encounter valid av_set not only on bb_head, but also on
2918 	 those insns on which previously MAX_WS was exceeded.  */
2919       if (AV_SET_VALID_P (last_insn))
2920 	{
2921           if (sched_verbose >= 6)
2922             sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2923 	  break;
2924 	}
2925 
2926       /* The special case: the last insn of the BB may be an
2927          ineligible_successor due to its SEQ_NO that was set on
2928 	 it as a bookkeeping.  */
2929       if (last_insn != first_insn
2930           && is_ineligible_successor (last_insn, p))
2931 	{
2932           if (sched_verbose >= 6)
2933             sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2934 	  break;
2935 	}
2936 
2937       if (DEBUG_INSN_P (last_insn))
2938 	continue;
2939 
2940       if (end_ws > max_ws)
2941 	{
2942 	  /* We can reach max lookahead size at bb_header, so clean av_set
2943 	     first.  */
2944 	  INSN_WS_LEVEL (last_insn) = global_level;
2945 
2946 	  if (sched_verbose >= 6)
2947             sel_print ("Insn %d is beyond the software lookahead window size\n",
2948                        INSN_UID (last_insn));
2949 	  break;
2950 	}
2951 
2952       end_ws++;
2953     }
2954 
2955   /* Get the valid av_set into AV above the LAST_INSN to start backward
2956      computation from.  It either will be empty av_set or av_set computed from
2957      the successors on the last insn of the current bb.  */
2958   if (last_insn != after_bb_end)
2959     {
2960       av = NULL;
2961 
2962       /* This is needed only to obtain av_sets that are identical to
2963          those computed by the old compute_av_set version.  */
2964       if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2965         av_set_add (&av, INSN_EXPR (last_insn));
2966     }
2967   else
2968     /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END.  */
2969     av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2970 
2971   /* Compute av_set in AV starting from below the LAST_INSN up to
2972      location above the FIRST_INSN.  */
2973   for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2974        cur_insn = PREV_INSN (cur_insn))
2975     if (!INSN_NOP_P (cur_insn))
2976       {
2977         expr_t expr;
2978 
2979         moveup_set_expr (&av, cur_insn, false);
2980 
2981         /* If the expression for CUR_INSN is already in the set,
2982            replace it by the new one.  */
2983         expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2984         if (expr != NULL)
2985           {
2986             clear_expr (expr);
2987             copy_expr (expr, INSN_EXPR (cur_insn));
2988           }
2989         else
2990           av_set_add (&av, INSN_EXPR (cur_insn));
2991       }
2992 
2993   /* Clear stale bb_av_set.  */
2994   if (sel_bb_head_p (first_insn))
2995     {
2996       av_set_clear (&BB_AV_SET (cur_bb));
2997       BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2998       BB_AV_LEVEL (cur_bb) = global_level;
2999     }
3000 
3001   if (sched_verbose >= 6)
3002     {
3003       sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3004       dump_av_set (av);
3005       sel_print ("\n");
3006     }
3007 
3008   ilist_remove (&p);
3009   return av;
3010 }
3011 
3012 /* Compute av set before INSN.
3013    INSN - the current operation (actual rtx INSN)
3014    P - the current path, which is list of insns visited so far
3015    WS - software lookahead window size.
3016    UNIQUE_P - TRUE, if returned av_set will be changed, hence
3017    if we want to save computed av_set in s_i_d, we should make a copy of it.
3018 
3019    In the resulting set we will have only expressions that don't have delay
3020    stalls and nonsubstitutable dependences.  */
3021 static av_set_t
3022 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3023 {
3024   return compute_av_set_inside_bb (insn, p, ws, unique_p);
3025 }
3026 
3027 /* Propagate a liveness set LV through INSN.  */
3028 static void
3029 propagate_lv_set (regset lv, insn_t insn)
3030 {
3031   gcc_assert (INSN_P (insn));
3032 
3033   if (INSN_NOP_P (insn))
3034     return;
3035 
3036   df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3037 }
3038 
3039 /* Return livness set at the end of BB.  */
3040 static regset
3041 compute_live_after_bb (basic_block bb)
3042 {
3043   edge e;
3044   edge_iterator ei;
3045   regset lv = get_clear_regset_from_pool ();
3046 
3047   gcc_assert (!ignore_first);
3048 
3049   FOR_EACH_EDGE (e, ei, bb->succs)
3050     if (sel_bb_empty_p (e->dest))
3051       {
3052         if (! BB_LV_SET_VALID_P (e->dest))
3053           {
3054             gcc_unreachable ();
3055             gcc_assert (BB_LV_SET (e->dest) == NULL);
3056             BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3057             BB_LV_SET_VALID_P (e->dest) = true;
3058           }
3059         IOR_REG_SET (lv, BB_LV_SET (e->dest));
3060       }
3061     else
3062       IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3063 
3064   return lv;
3065 }
3066 
3067 /* Compute the set of all live registers at the point before INSN and save
3068    it at INSN if INSN is bb header.  */
3069 regset
3070 compute_live (insn_t insn)
3071 {
3072   basic_block bb = BLOCK_FOR_INSN (insn);
3073   insn_t final, temp;
3074   regset lv;
3075 
3076   /* Return the valid set if we're already on it.  */
3077   if (!ignore_first)
3078     {
3079       regset src = NULL;
3080 
3081       if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3082         src = BB_LV_SET (bb);
3083       else
3084         {
3085           gcc_assert (in_current_region_p (bb));
3086           if (INSN_LIVE_VALID_P (insn))
3087             src = INSN_LIVE (insn);
3088         }
3089 
3090       if (src)
3091 	{
3092 	  lv = get_regset_from_pool ();
3093 	  COPY_REG_SET (lv, src);
3094 
3095           if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3096             {
3097               COPY_REG_SET (BB_LV_SET (bb), lv);
3098               BB_LV_SET_VALID_P (bb) = true;
3099             }
3100 
3101 	  return_regset_to_pool (lv);
3102 	  return lv;
3103 	}
3104     }
3105 
3106   /* We've skipped the wrong lv_set.  Don't skip the right one.  */
3107   ignore_first = false;
3108   gcc_assert (in_current_region_p (bb));
3109 
3110   /* Find a valid LV set in this block or below, if needed.
3111      Start searching from the next insn: either ignore_first is true, or
3112      INSN doesn't have a correct live set.  */
3113   temp = NEXT_INSN (insn);
3114   final = NEXT_INSN (BB_END (bb));
3115   while (temp != final && ! INSN_LIVE_VALID_P (temp))
3116     temp = NEXT_INSN (temp);
3117   if (temp == final)
3118     {
3119       lv = compute_live_after_bb (bb);
3120       temp = PREV_INSN (temp);
3121     }
3122   else
3123     {
3124       lv = get_regset_from_pool ();
3125       COPY_REG_SET (lv, INSN_LIVE (temp));
3126     }
3127 
3128   /* Put correct lv sets on the insns which have bad sets.  */
3129   final = PREV_INSN (insn);
3130   while (temp != final)
3131     {
3132       propagate_lv_set (lv, temp);
3133       COPY_REG_SET (INSN_LIVE (temp), lv);
3134       INSN_LIVE_VALID_P (temp) = true;
3135       temp = PREV_INSN (temp);
3136     }
3137 
3138   /* Also put it in a BB.  */
3139   if (sel_bb_head_p (insn))
3140     {
3141       basic_block bb = BLOCK_FOR_INSN (insn);
3142 
3143       COPY_REG_SET (BB_LV_SET (bb), lv);
3144       BB_LV_SET_VALID_P (bb) = true;
3145     }
3146 
3147   /* We return LV to the pool, but will not clear it there.  Thus we can
3148      legimatelly use LV till the next use of regset_pool_get ().  */
3149   return_regset_to_pool (lv);
3150   return lv;
3151 }
3152 
3153 /* Update liveness sets for INSN.  */
3154 static inline void
3155 update_liveness_on_insn (rtx_insn *insn)
3156 {
3157   ignore_first = true;
3158   compute_live (insn);
3159 }
3160 
3161 /* Compute liveness below INSN and write it into REGS.  */
3162 static inline void
3163 compute_live_below_insn (rtx_insn *insn, regset regs)
3164 {
3165   rtx_insn *succ;
3166   succ_iterator si;
3167 
3168   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3169     IOR_REG_SET (regs, compute_live (succ));
3170 }
3171 
3172 /* Update the data gathered in av and lv sets starting from INSN.  */
3173 static void
3174 update_data_sets (rtx_insn *insn)
3175 {
3176   update_liveness_on_insn (insn);
3177   if (sel_bb_head_p (insn))
3178     {
3179       gcc_assert (AV_LEVEL (insn) != 0);
3180       BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3181       compute_av_set (insn, NULL, 0, 0);
3182     }
3183 }
3184 
3185 
3186 /* Helper for move_op () and find_used_regs ().
3187    Return speculation type for which a check should be created on the place
3188    of INSN.  EXPR is one of the original ops we are searching for.  */
3189 static ds_t
3190 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3191 {
3192   ds_t to_check_ds;
3193   ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3194 
3195   to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3196 
3197   if (targetm.sched.get_insn_checked_ds)
3198     already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3199 
3200   if (spec_info != NULL
3201       && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3202     already_checked_ds |= BEGIN_CONTROL;
3203 
3204   already_checked_ds = ds_get_speculation_types (already_checked_ds);
3205 
3206   to_check_ds &= ~already_checked_ds;
3207 
3208   return to_check_ds;
3209 }
3210 
3211 /* Find the set of registers that are unavailable for storing expres
3212    while moving ORIG_OPS up on the path starting from INSN due to
3213    liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3214 
3215    All the original operations found during the traversal are saved in the
3216    ORIGINAL_INSNS list.
3217 
3218    REG_RENAME_P denotes the set of hardware registers that
3219    cannot be used with renaming due to the register class restrictions,
3220    mode restrictions and other (the register we'll choose should be
3221    compatible class with the original uses, shouldn't be in call_used_regs,
3222    should be HARD_REGNO_RENAME_OK etc).
3223 
3224    Returns TRUE if we've found all original insns, FALSE otherwise.
3225 
3226    This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3227    to traverse the code motion paths.  This helper function finds registers
3228    that are not available for storing expres while moving ORIG_OPS up on the
3229    path starting from INSN.  A register considered as used on the moving path,
3230    if one of the following conditions is not satisfied:
3231 
3232       (1) a register not set or read on any path from xi to an instance of
3233 	  the original operation,
3234       (2) not among the live registers of the point immediately following the
3235           first original operation on a given downward path, except for the
3236 	  original target register of the operation,
3237       (3) not live on the other path of any conditional branch that is passed
3238 	  by the operation, in case original operations are not present on
3239 	  both paths of the conditional branch.
3240 
3241    All the original operations found during the traversal are saved in the
3242    ORIGINAL_INSNS list.
3243 
3244    REG_RENAME_P->CROSSED_CALL_ABIS is true, if there is a call insn on the path
3245    from INSN to original insn. In this case CALL_USED_REG_SET will be added
3246    to unavailable hard regs at the point original operation is found.  */
3247 
3248 static bool
3249 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3250 		struct reg_rename  *reg_rename_p, def_list_t *original_insns)
3251 {
3252   def_list_iterator i;
3253   def_t def;
3254   int res;
3255   bool needs_spec_check_p = false;
3256   expr_t expr;
3257   av_set_iterator expr_iter;
3258   struct fur_static_params sparams;
3259   struct cmpd_local_params lparams;
3260 
3261   /* We haven't visited any blocks yet.  */
3262   bitmap_clear (code_motion_visited_blocks);
3263 
3264   /* Init parameters for code_motion_path_driver.  */
3265   sparams.crossed_call_abis = 0;
3266   sparams.original_insns = original_insns;
3267   sparams.used_regs = used_regs;
3268 
3269   /* Set the appropriate hooks and data.  */
3270   code_motion_path_driver_info = &fur_hooks;
3271 
3272   res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3273 
3274   reg_rename_p->crossed_call_abis |= sparams.crossed_call_abis;
3275 
3276   gcc_assert (res == 1);
3277   gcc_assert (original_insns && *original_insns);
3278 
3279   /* ??? We calculate whether an expression needs a check when computing
3280      av sets.  This information is not as precise as it could be due to
3281      merging this bit in merge_expr.  We can do better in find_used_regs,
3282      but we want to avoid multiple traversals of the same code motion
3283      paths.  */
3284   FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3285     needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3286 
3287   /* Mark hardware regs in REG_RENAME_P that are not suitable
3288      for renaming expr in INSN due to hardware restrictions (register class,
3289      modes compatibility etc).  */
3290   FOR_EACH_DEF (def, i, *original_insns)
3291     {
3292       vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3293 
3294       if (VINSN_SEPARABLE_P (vinsn))
3295 	mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3296 
3297       /* Do not allow clobbering of ld.[sa] address in case some of the
3298          original operations need a check.  */
3299       if (needs_spec_check_p)
3300 	IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3301     }
3302 
3303   return true;
3304 }
3305 
3306 
3307 /* Functions to choose the best insn from available ones.  */
3308 
3309 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook.  */
3310 static int
3311 sel_target_adjust_priority (expr_t expr)
3312 {
3313   int priority = EXPR_PRIORITY (expr);
3314   int new_priority;
3315 
3316   if (targetm.sched.adjust_priority)
3317     new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3318   else
3319     new_priority = priority;
3320 
3321   /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly.  */
3322   EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3323 
3324   if (sched_verbose >= 4)
3325     sel_print ("sel_target_adjust_priority: insn %d,  %d+%d = %d.\n",
3326 	       INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3327 	       EXPR_PRIORITY_ADJ (expr), new_priority);
3328 
3329   return new_priority;
3330 }
3331 
3332 /* Rank two available exprs for schedule.  Never return 0 here.  */
3333 static int
3334 sel_rank_for_schedule (const void *x, const void *y)
3335 {
3336   expr_t tmp = *(const expr_t *) y;
3337   expr_t tmp2 = *(const expr_t *) x;
3338   insn_t tmp_insn, tmp2_insn;
3339   vinsn_t tmp_vinsn, tmp2_vinsn;
3340   int val;
3341 
3342   tmp_vinsn = EXPR_VINSN (tmp);
3343   tmp2_vinsn = EXPR_VINSN (tmp2);
3344   tmp_insn = EXPR_INSN_RTX (tmp);
3345   tmp2_insn = EXPR_INSN_RTX (tmp2);
3346 
3347   /* Schedule debug insns as early as possible.  */
3348   if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3349     return -1;
3350   else if (DEBUG_INSN_P (tmp2_insn))
3351     return 1;
3352 
3353   /* Prefer SCHED_GROUP_P insns to any others.  */
3354   if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3355     {
3356       if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3357         return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3358 
3359       /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3360          cannot be cloned.  */
3361       if (VINSN_UNIQUE_P (tmp2_vinsn))
3362         return 1;
3363       return -1;
3364     }
3365 
3366   /* Discourage scheduling of speculative checks.  */
3367   val = (sel_insn_is_speculation_check (tmp_insn)
3368 	 - sel_insn_is_speculation_check (tmp2_insn));
3369   if (val)
3370     return val;
3371 
3372   /* Prefer not scheduled insn over scheduled one.  */
3373   if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3374     {
3375       val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3376       if (val)
3377 	return val;
3378     }
3379 
3380   /* Prefer jump over non-jump instruction.  */
3381   if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3382     return -1;
3383   else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3384     return 1;
3385 
3386   /* Prefer an expr with non-zero usefulness.  */
3387   int u1 = EXPR_USEFULNESS (tmp), u2 = EXPR_USEFULNESS (tmp2);
3388 
3389   if (u1 == 0)
3390     {
3391       if (u2 == 0)
3392         u1 = u2 = 1;
3393       else
3394         return 1;
3395     }
3396   else if (u2 == 0)
3397     return -1;
3398 
3399   /* Prefer an expr with greater priority.  */
3400   val = (u2 * (EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2))
3401          - u1 * (EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp)));
3402   if (val)
3403     return val;
3404 
3405   if (spec_info != NULL && spec_info->mask != 0)
3406     /* This code was taken from haifa-sched.c: rank_for_schedule ().  */
3407     {
3408       ds_t ds1, ds2;
3409       dw_t dw1, dw2;
3410       int dw;
3411 
3412       ds1 = EXPR_SPEC_DONE_DS (tmp);
3413       if (ds1)
3414 	dw1 = ds_weak (ds1);
3415       else
3416 	dw1 = NO_DEP_WEAK;
3417 
3418       ds2 = EXPR_SPEC_DONE_DS (tmp2);
3419       if (ds2)
3420 	dw2 = ds_weak (ds2);
3421       else
3422 	dw2 = NO_DEP_WEAK;
3423 
3424       dw = dw2 - dw1;
3425       if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3426 	return dw;
3427     }
3428 
3429   /* Prefer an old insn to a bookkeeping insn.  */
3430   if (INSN_UID (tmp_insn) < first_emitted_uid
3431       && INSN_UID (tmp2_insn) >= first_emitted_uid)
3432     return -1;
3433   if (INSN_UID (tmp_insn) >= first_emitted_uid
3434       && INSN_UID (tmp2_insn) < first_emitted_uid)
3435     return 1;
3436 
3437   /* Prefer an insn with smaller UID, as a last resort.
3438      We can't safely use INSN_LUID as it is defined only for those insns
3439      that are in the stream.  */
3440   return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3441 }
3442 
3443 /* Filter out expressions from av set pointed to by AV_PTR
3444    that are pipelined too many times.  */
3445 static void
3446 process_pipelined_exprs (av_set_t *av_ptr)
3447 {
3448   expr_t expr;
3449   av_set_iterator si;
3450 
3451   /* Don't pipeline already pipelined code as that would increase
3452      number of unnecessary register moves.  */
3453   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3454     {
3455       if (EXPR_SCHED_TIMES (expr)
3456 	  >= param_selsched_max_sched_times)
3457 	av_set_iter_remove (&si);
3458     }
3459 }
3460 
3461 /* Filter speculative insns from AV_PTR if we don't want them.  */
3462 static void
3463 process_spec_exprs (av_set_t *av_ptr)
3464 {
3465   expr_t expr;
3466   av_set_iterator si;
3467 
3468   if (spec_info == NULL)
3469     return;
3470 
3471   /* Scan *AV_PTR to find out if we want to consider speculative
3472      instructions for scheduling.  */
3473   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3474     {
3475       ds_t ds;
3476 
3477       ds = EXPR_SPEC_DONE_DS (expr);
3478 
3479       /* The probability of a success is too low - don't speculate.  */
3480       if ((ds & SPECULATIVE)
3481           && (ds_weak (ds) < spec_info->data_weakness_cutoff
3482               || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3483 	      || (pipelining_p && false
3484 		  && (ds & DATA_SPEC)
3485 		  && (ds & CONTROL_SPEC))))
3486         {
3487           av_set_iter_remove (&si);
3488           continue;
3489         }
3490     }
3491 }
3492 
3493 /* Search for any use-like insns in AV_PTR and decide on scheduling
3494    them.  Return one when found, and NULL otherwise.
3495    Note that we check here whether a USE could be scheduled to avoid
3496    an infinite loop later.  */
3497 static expr_t
3498 process_use_exprs (av_set_t *av_ptr)
3499 {
3500   expr_t expr;
3501   av_set_iterator si;
3502   bool uses_present_p = false;
3503   bool try_uses_p = true;
3504 
3505   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3506     {
3507       /* This will also initialize INSN_CODE for later use.  */
3508       if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3509         {
3510           /* If we have a USE in *AV_PTR that was not scheduled yet,
3511              do so because it will do good only.  */
3512           if (EXPR_SCHED_TIMES (expr) <= 0)
3513             {
3514               if (EXPR_TARGET_AVAILABLE (expr) == 1)
3515                 return expr;
3516 
3517               av_set_iter_remove (&si);
3518             }
3519           else
3520             {
3521               gcc_assert (pipelining_p);
3522 
3523               uses_present_p = true;
3524             }
3525         }
3526       else
3527         try_uses_p = false;
3528     }
3529 
3530   if (uses_present_p)
3531     {
3532       /* If we don't want to schedule any USEs right now and we have some
3533            in *AV_PTR, remove them, else just return the first one found.  */
3534       if (!try_uses_p)
3535         {
3536           FOR_EACH_EXPR_1 (expr, si, av_ptr)
3537             if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3538               av_set_iter_remove (&si);
3539         }
3540       else
3541         {
3542           FOR_EACH_EXPR_1 (expr, si, av_ptr)
3543             {
3544               gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3545 
3546               if (EXPR_TARGET_AVAILABLE (expr) == 1)
3547                 return expr;
3548 
3549               av_set_iter_remove (&si);
3550             }
3551         }
3552     }
3553 
3554   return NULL;
3555 }
3556 
3557 /* Lookup EXPR in VINSN_VEC and return TRUE if found.  Also check patterns from
3558    EXPR's history of changes.  */
3559 static bool
3560 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3561 {
3562   vinsn_t vinsn, expr_vinsn;
3563   int n;
3564   unsigned i;
3565 
3566   /* Start with checking expr itself and then proceed with all the old forms
3567      of expr taken from its history vector.  */
3568   for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3569        expr_vinsn;
3570        expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3571 		     ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3572 		     : NULL))
3573     FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3574       if (VINSN_SEPARABLE_P (vinsn))
3575 	{
3576 	  if (vinsn_equal_p (vinsn, expr_vinsn))
3577 	    return true;
3578 	}
3579       else
3580 	{
3581 	  /* For non-separable instructions, the blocking insn can have
3582 	     another pattern due to substitution, and we can't choose
3583 	     different register as in the above case.  Check all registers
3584 	     being written instead.  */
3585 	  if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3586 				  VINSN_REG_SETS (expr_vinsn)))
3587 	    return true;
3588 	}
3589 
3590   return false;
3591 }
3592 
3593 /* Return true if either of expressions from ORIG_OPS can be blocked
3594    by previously created bookkeeping code.  STATIC_PARAMS points to static
3595    parameters of move_op.  */
3596 static bool
3597 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3598 {
3599   expr_t expr;
3600   av_set_iterator iter;
3601   moveop_static_params_p sparams;
3602 
3603   /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3604      created while scheduling on another fence.  */
3605   FOR_EACH_EXPR (expr, iter, orig_ops)
3606     if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3607       return true;
3608 
3609   gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3610   sparams = (moveop_static_params_p) static_params;
3611 
3612   /* Expressions can be also blocked by bookkeeping created during current
3613      move_op.  */
3614   if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3615     FOR_EACH_EXPR (expr, iter, orig_ops)
3616       if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3617         return true;
3618 
3619   /* Expressions in ORIG_OPS may have wrong destination register due to
3620      renaming.  Check with the right register instead.  */
3621   if (sparams->dest && REG_P (sparams->dest))
3622     {
3623       rtx reg = sparams->dest;
3624       vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3625 
3626       if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3627 	  || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3628 	  || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3629 	return true;
3630     }
3631 
3632   return false;
3633 }
3634 
3635 /* Clear VINSN_VEC and detach vinsns.  */
3636 static void
3637 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3638 {
3639   unsigned len = vinsn_vec->length ();
3640   if (len > 0)
3641     {
3642       vinsn_t vinsn;
3643       int n;
3644 
3645       FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3646         vinsn_detach (vinsn);
3647       vinsn_vec->block_remove (0, len);
3648     }
3649 }
3650 
3651 /* Add the vinsn of EXPR to the VINSN_VEC.  */
3652 static void
3653 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3654 {
3655   vinsn_attach (EXPR_VINSN (expr));
3656   vinsn_vec->safe_push (EXPR_VINSN (expr));
3657 }
3658 
3659 /* Free the vector representing blocked expressions.  */
3660 static void
3661 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3662 {
3663   vinsn_vec.release ();
3664 }
3665 
3666 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT.  */
3667 
3668 void sel_add_to_insn_priority (rtx insn, int amount)
3669 {
3670   EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3671 
3672   if (sched_verbose >= 2)
3673     sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3674 	       INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3675 	       EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3676 }
3677 
3678 /* Turn AV into a vector, filter inappropriate insns and sort it.  Return
3679    true if there is something to schedule.  BNDS and FENCE are current
3680    boundaries and fence, respectively.  If we need to stall for some cycles
3681    before an expr from AV would become available, write this number to
3682    *PNEED_STALL.  */
3683 static bool
3684 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3685                  int *pneed_stall)
3686 {
3687   av_set_iterator si;
3688   expr_t expr;
3689   int sched_next_worked = 0, stalled, n;
3690   static int av_max_prio, est_ticks_till_branch;
3691   int min_need_stall = -1;
3692   deps_t dc = BND_DC (BLIST_BND (bnds));
3693 
3694   /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3695      already scheduled.  */
3696   if (av == NULL)
3697     return false;
3698 
3699   /* Empty vector from the previous stuff.  */
3700   if (vec_av_set.length () > 0)
3701     vec_av_set.block_remove (0, vec_av_set.length ());
3702 
3703   /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3704      for each insn.  */
3705   gcc_assert (vec_av_set.is_empty ());
3706   FOR_EACH_EXPR (expr, si, av)
3707     {
3708       vec_av_set.safe_push (expr);
3709 
3710       gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3711 
3712       /* Adjust priority using target backend hook.  */
3713       sel_target_adjust_priority (expr);
3714     }
3715 
3716   /* Sort the vector.  */
3717   vec_av_set.qsort (sel_rank_for_schedule);
3718 
3719   /* We record maximal priority of insns in av set for current instruction
3720      group.  */
3721   if (FENCE_STARTS_CYCLE_P (fence))
3722     av_max_prio = est_ticks_till_branch = INT_MIN;
3723 
3724   /* Filter out inappropriate expressions.  Loop's direction is reversed to
3725      visit "best" instructions first.  We assume that vec::unordered_remove
3726      moves last element in place of one being deleted.  */
3727   for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3728     {
3729       expr_t expr = vec_av_set[n];
3730       insn_t insn = EXPR_INSN_RTX (expr);
3731       signed char target_available;
3732       bool is_orig_reg_p = true;
3733       int need_cycles, new_prio;
3734       bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3735 
3736       /* Don't allow any insns other than from SCHED_GROUP if we have one.  */
3737       if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3738         {
3739           vec_av_set.unordered_remove (n);
3740           continue;
3741         }
3742 
3743       /* Set number of sched_next insns (just in case there
3744          could be several).  */
3745       if (FENCE_SCHED_NEXT (fence))
3746         sched_next_worked++;
3747 
3748       /* Check all liveness requirements and try renaming.
3749          FIXME: try to minimize calls to this.  */
3750       target_available = EXPR_TARGET_AVAILABLE (expr);
3751 
3752       /* If insn was already scheduled on the current fence,
3753 	 set TARGET_AVAILABLE to -1 no matter what expr's attribute says.  */
3754       if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3755 	  && !fence_insn_p)
3756 	target_available = -1;
3757 
3758       /* If the availability of the EXPR is invalidated by the insertion of
3759 	 bookkeeping earlier, make sure that we won't choose this expr for
3760 	 scheduling if it's not separable, and if it is separable, then
3761 	 we have to recompute the set of available registers for it.  */
3762       if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3763 	{
3764           vec_av_set.unordered_remove (n);
3765           if (sched_verbose >= 4)
3766             sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3767                        INSN_UID (insn));
3768           continue;
3769         }
3770 
3771       if (target_available == true)
3772 	{
3773           /* Do nothing -- we can use an existing register.  */
3774 	  is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3775         }
3776       else if (/* Non-separable instruction will never
3777                   get another register. */
3778                (target_available == false
3779                 && !EXPR_SEPARABLE_P (expr))
3780                /* Don't try to find a register for low-priority expression.  */
3781                || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3782                /* ??? FIXME: Don't try to rename data speculation.  */
3783                || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3784                || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3785         {
3786           vec_av_set.unordered_remove (n);
3787           if (sched_verbose >= 4)
3788             sel_print ("Expr %d has no suitable target register\n",
3789                        INSN_UID (insn));
3790 
3791 	  /* A fence insn should not get here.  */
3792 	  gcc_assert (!fence_insn_p);
3793 	  continue;
3794         }
3795 
3796       /* At this point a fence insn should always be available.  */
3797       gcc_assert (!fence_insn_p
3798 		  || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3799 
3800       /* Filter expressions that need to be renamed or speculated when
3801 	 pipelining, because compensating register copies or speculation
3802 	 checks are likely to be placed near the beginning of the loop,
3803 	 causing a stall.  */
3804       if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3805 	  && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3806 	{
3807 	  /* Estimation of number of cycles until loop branch for
3808 	     renaming/speculation to be successful.  */
3809 	  int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3810 
3811 	  if ((int) current_loop_nest->ninsns < 9)
3812 	    {
3813 	      vec_av_set.unordered_remove (n);
3814 	      if (sched_verbose >= 4)
3815 		sel_print ("Pipelining expr %d will likely cause stall\n",
3816 			   INSN_UID (insn));
3817 	      continue;
3818 	    }
3819 
3820 	  if ((int) current_loop_nest->ninsns - num_insns_scheduled
3821 	      < need_n_ticks_till_branch * issue_rate / 2
3822 	      && est_ticks_till_branch < need_n_ticks_till_branch)
3823 	     {
3824 	       vec_av_set.unordered_remove (n);
3825 	       if (sched_verbose >= 4)
3826 		 sel_print ("Pipelining expr %d will likely cause stall\n",
3827 			    INSN_UID (insn));
3828 	       continue;
3829 	     }
3830 	}
3831 
3832       /* We want to schedule speculation checks as late as possible.  Discard
3833 	 them from av set if there are instructions with higher priority.  */
3834       if (sel_insn_is_speculation_check (insn)
3835 	  && EXPR_PRIORITY (expr) < av_max_prio)
3836 	{
3837           stalled++;
3838           min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3839           vec_av_set.unordered_remove (n);
3840 	  if (sched_verbose >= 4)
3841 	    sel_print ("Delaying speculation check %d until its first use\n",
3842 		       INSN_UID (insn));
3843 	  continue;
3844 	}
3845 
3846       /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO.  */
3847       if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3848 	av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3849 
3850       /* Don't allow any insns whose data is not yet ready.
3851          Check first whether we've already tried them and failed.  */
3852       if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3853 	{
3854           need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3855 			 - FENCE_CYCLE (fence));
3856 	  if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3857 	    est_ticks_till_branch = MAX (est_ticks_till_branch,
3858 					 EXPR_PRIORITY (expr) + need_cycles);
3859 
3860 	  if (need_cycles > 0)
3861 	    {
3862 	      stalled++;
3863 	      min_need_stall = (min_need_stall < 0
3864 				? need_cycles
3865 				: MIN (min_need_stall, need_cycles));
3866 	      vec_av_set.unordered_remove (n);
3867 
3868 	      if (sched_verbose >= 4)
3869 		sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3870 			   INSN_UID (insn),
3871 			   FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3872 	      continue;
3873 	    }
3874 	}
3875 
3876       /* Now resort to dependence analysis to find whether EXPR might be
3877          stalled due to dependencies from FENCE's context.  */
3878       need_cycles = tick_check_p (expr, dc, fence);
3879       new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3880 
3881       if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3882 	est_ticks_till_branch = MAX (est_ticks_till_branch,
3883 				     new_prio);
3884 
3885       if (need_cycles > 0)
3886         {
3887           if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3888             {
3889               int new_size = INSN_UID (insn) * 3 / 2;
3890 
3891               FENCE_READY_TICKS (fence)
3892                 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3893                                      new_size, FENCE_READY_TICKS_SIZE (fence),
3894                                      sizeof (int));
3895             }
3896           FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3897             = FENCE_CYCLE (fence) + need_cycles;
3898 
3899           stalled++;
3900           min_need_stall = (min_need_stall < 0
3901                             ? need_cycles
3902                             : MIN (min_need_stall, need_cycles));
3903 
3904           vec_av_set.unordered_remove (n);
3905 
3906           if (sched_verbose >= 4)
3907             sel_print ("Expr %d is not ready yet until cycle %d\n",
3908                        INSN_UID (insn),
3909                        FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3910           continue;
3911         }
3912 
3913       if (sched_verbose >= 4)
3914         sel_print ("Expr %d is ok\n", INSN_UID (insn));
3915       min_need_stall = 0;
3916     }
3917 
3918   /* Clear SCHED_NEXT.  */
3919   if (FENCE_SCHED_NEXT (fence))
3920     {
3921       gcc_assert (sched_next_worked == 1);
3922       FENCE_SCHED_NEXT (fence) = NULL;
3923     }
3924 
3925   /* No need to stall if this variable was not initialized.  */
3926   if (min_need_stall < 0)
3927     min_need_stall = 0;
3928 
3929   if (vec_av_set.is_empty ())
3930     {
3931       /* We need to set *pneed_stall here, because later we skip this code
3932          when ready list is empty.  */
3933       *pneed_stall = min_need_stall;
3934       return false;
3935     }
3936   else
3937     gcc_assert (min_need_stall == 0);
3938 
3939   /* Sort the vector.  */
3940   vec_av_set.qsort (sel_rank_for_schedule);
3941 
3942   if (sched_verbose >= 4)
3943     {
3944       sel_print ("Total ready exprs: %d, stalled: %d\n",
3945                  vec_av_set.length (), stalled);
3946       sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3947       FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3948         dump_expr (expr);
3949       sel_print ("\n");
3950     }
3951 
3952   *pneed_stall = 0;
3953   return true;
3954 }
3955 
3956 /* Convert a vectored and sorted av set to the ready list that
3957    the rest of the backend wants to see.  */
3958 static void
3959 convert_vec_av_set_to_ready (void)
3960 {
3961   int n;
3962   expr_t expr;
3963 
3964   /* Allocate and fill the ready list from the sorted vector.  */
3965   ready.n_ready = vec_av_set.length ();
3966   ready.first = ready.n_ready - 1;
3967 
3968   gcc_assert (ready.n_ready > 0);
3969 
3970   if (ready.n_ready > max_issue_size)
3971     {
3972       max_issue_size = ready.n_ready;
3973       sched_extend_ready_list (ready.n_ready);
3974     }
3975 
3976   FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3977     {
3978       vinsn_t vi = EXPR_VINSN (expr);
3979       insn_t insn = VINSN_INSN_RTX (vi);
3980 
3981       ready_try[n] = 0;
3982       ready.vec[n] = insn;
3983     }
3984 }
3985 
3986 /* Initialize ready list from *AV_PTR for the max_issue () call.
3987    If any unrecognizable insn found in *AV_PTR, return it (and skip
3988    max_issue).  BND and FENCE are current boundary and fence,
3989    respectively.  If we need to stall for some cycles before an expr
3990    from *AV_PTR would become available, write this number to *PNEED_STALL.  */
3991 static expr_t
3992 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3993                  int *pneed_stall)
3994 {
3995   expr_t expr;
3996 
3997   /* We do not support multiple boundaries per fence.  */
3998   gcc_assert (BLIST_NEXT (bnds) == NULL);
3999 
4000   /* Process expressions required special handling, i.e.  pipelined,
4001      speculative and recog() < 0 expressions first.  */
4002   process_pipelined_exprs (av_ptr);
4003   process_spec_exprs (av_ptr);
4004 
4005   /* A USE could be scheduled immediately.  */
4006   expr = process_use_exprs (av_ptr);
4007   if (expr)
4008     {
4009       *pneed_stall = 0;
4010       return expr;
4011     }
4012 
4013   /* Turn the av set to a vector for sorting.  */
4014   if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4015     {
4016       ready.n_ready = 0;
4017       return NULL;
4018     }
4019 
4020   /* Build the final ready list.  */
4021   convert_vec_av_set_to_ready ();
4022   return NULL;
4023 }
4024 
4025 /* Wrapper for dfa_new_cycle ().  Returns TRUE if cycle was advanced.  */
4026 static bool
4027 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4028 {
4029   int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4030                              ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4031                              : FENCE_CYCLE (fence) - 1;
4032   bool res = false;
4033   int sort_p = 0;
4034 
4035   if (!targetm.sched.dfa_new_cycle)
4036     return false;
4037 
4038   memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4039 
4040   while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4041                                                  insn, last_scheduled_cycle,
4042                                                  FENCE_CYCLE (fence), &sort_p))
4043     {
4044       memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4045       advance_one_cycle (fence);
4046       memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4047       res = true;
4048     }
4049 
4050   return res;
4051 }
4052 
4053 /* Invoke reorder* target hooks on the ready list.  Return the number of insns
4054    we can issue.  FENCE is the current fence.  */
4055 static int
4056 invoke_reorder_hooks (fence_t fence)
4057 {
4058   int issue_more;
4059   bool ran_hook = false;
4060 
4061   /* Call the reorder hook at the beginning of the cycle, and call
4062      the reorder2 hook in the middle of the cycle.  */
4063   if (FENCE_ISSUED_INSNS (fence) == 0)
4064     {
4065       if (targetm.sched.reorder
4066           && !SCHED_GROUP_P (ready_element (&ready, 0))
4067           && ready.n_ready > 1)
4068         {
4069           /* Don't give reorder the most prioritized insn as it can break
4070              pipelining.  */
4071           if (pipelining_p)
4072             --ready.n_ready;
4073 
4074           issue_more
4075             = targetm.sched.reorder (sched_dump, sched_verbose,
4076                                      ready_lastpos (&ready),
4077                                      &ready.n_ready, FENCE_CYCLE (fence));
4078 
4079           if (pipelining_p)
4080             ++ready.n_ready;
4081 
4082           ran_hook = true;
4083         }
4084       else
4085         /* Initialize can_issue_more for variable_issue.  */
4086         issue_more = issue_rate;
4087     }
4088   else if (targetm.sched.reorder2
4089            && !SCHED_GROUP_P (ready_element (&ready, 0)))
4090     {
4091       if (ready.n_ready == 1)
4092         issue_more =
4093           targetm.sched.reorder2 (sched_dump, sched_verbose,
4094                                   ready_lastpos (&ready),
4095                                   &ready.n_ready, FENCE_CYCLE (fence));
4096       else
4097         {
4098           if (pipelining_p)
4099             --ready.n_ready;
4100 
4101           issue_more =
4102             targetm.sched.reorder2 (sched_dump, sched_verbose,
4103                                     ready.n_ready
4104                                     ? ready_lastpos (&ready) : NULL,
4105                                     &ready.n_ready, FENCE_CYCLE (fence));
4106 
4107           if (pipelining_p)
4108             ++ready.n_ready;
4109         }
4110 
4111       ran_hook = true;
4112     }
4113   else
4114     issue_more = FENCE_ISSUE_MORE (fence);
4115 
4116   /* Ensure that ready list and vec_av_set are in line with each other,
4117      i.e. vec_av_set[i] == ready_element (&ready, i).  */
4118   if (issue_more && ran_hook)
4119     {
4120       int i, j, n;
4121       rtx_insn **arr = ready.vec;
4122       expr_t *vec = vec_av_set.address ();
4123 
4124       for (i = 0, n = ready.n_ready; i < n; i++)
4125         if (EXPR_INSN_RTX (vec[i]) != arr[i])
4126           {
4127             for (j = i; j < n; j++)
4128               if (EXPR_INSN_RTX (vec[j]) == arr[i])
4129                 break;
4130             gcc_assert (j < n);
4131 
4132 	    std::swap (vec[i], vec[j]);
4133           }
4134     }
4135 
4136   return issue_more;
4137 }
4138 
4139 /* Return an EXPR corresponding to INDEX element of ready list, if
4140    FOLLOW_READY_ELEMENT is true (i.e., an expr of
4141    ready_element (&ready, INDEX) will be returned), and to INDEX element of
4142    ready.vec otherwise.  */
4143 static inline expr_t
4144 find_expr_for_ready (int index, bool follow_ready_element)
4145 {
4146   expr_t expr;
4147   int real_index;
4148 
4149   real_index = follow_ready_element ? ready.first - index : index;
4150 
4151   expr = vec_av_set[real_index];
4152   gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4153 
4154   return expr;
4155 }
4156 
4157 /* Calculate insns worth trying via lookahead_guard hook.  Return a number
4158    of such insns found.  */
4159 static int
4160 invoke_dfa_lookahead_guard (void)
4161 {
4162   int i, n;
4163   bool have_hook
4164     = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4165 
4166   if (sched_verbose >= 2)
4167     sel_print ("ready after reorder: ");
4168 
4169   for (i = 0, n = 0; i < ready.n_ready; i++)
4170     {
4171       expr_t expr;
4172       insn_t insn;
4173       int r;
4174 
4175       /* In this loop insn is Ith element of the ready list given by
4176          ready_element, not Ith element of ready.vec.  */
4177       insn = ready_element (&ready, i);
4178 
4179       if (! have_hook || i == 0)
4180         r = 0;
4181       else
4182         r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4183 
4184       gcc_assert (INSN_CODE (insn) >= 0);
4185 
4186       /* Only insns with ready_try = 0 can get here
4187          from fill_ready_list.  */
4188       gcc_assert (ready_try [i] == 0);
4189       ready_try[i] = r;
4190       if (!r)
4191         n++;
4192 
4193       expr = find_expr_for_ready (i, true);
4194 
4195       if (sched_verbose >= 2)
4196         {
4197           dump_vinsn (EXPR_VINSN (expr));
4198           sel_print (":%d; ", ready_try[i]);
4199         }
4200     }
4201 
4202   if (sched_verbose >= 2)
4203     sel_print ("\n");
4204   return n;
4205 }
4206 
4207 /* Calculate the number of privileged insns and return it.  */
4208 static int
4209 calculate_privileged_insns (void)
4210 {
4211   expr_t cur_expr, min_spec_expr = NULL;
4212   int privileged_n = 0, i;
4213 
4214   for (i = 0; i < ready.n_ready; i++)
4215     {
4216       if (ready_try[i])
4217         continue;
4218 
4219       if (! min_spec_expr)
4220 	min_spec_expr = find_expr_for_ready (i, true);
4221 
4222       cur_expr = find_expr_for_ready (i, true);
4223 
4224       if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4225         break;
4226 
4227       ++privileged_n;
4228     }
4229 
4230   if (i == ready.n_ready)
4231     privileged_n = 0;
4232 
4233   if (sched_verbose >= 2)
4234     sel_print ("privileged_n: %d insns with SPEC %d\n",
4235                privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4236   return privileged_n;
4237 }
4238 
4239 /* Call the rest of the hooks after the choice was made.  Return
4240    the number of insns that still can be issued given that the current
4241    number is ISSUE_MORE.  FENCE and BEST_INSN are the current fence
4242    and the insn chosen for scheduling, respectively.  */
4243 static int
4244 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4245 {
4246   gcc_assert (INSN_P (best_insn));
4247 
4248   /* First, call dfa_new_cycle, and then variable_issue, if available.  */
4249   sel_dfa_new_cycle (best_insn, fence);
4250 
4251   if (targetm.sched.variable_issue)
4252     {
4253       memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4254       issue_more =
4255         targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4256                                       issue_more);
4257       memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4258     }
4259   else if (!DEBUG_INSN_P (best_insn)
4260 	   && GET_CODE (PATTERN (best_insn)) != USE
4261 	   && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4262     issue_more--;
4263 
4264   return issue_more;
4265 }
4266 
4267 /* Estimate the cost of issuing INSN on DFA state STATE.  */
4268 static int
4269 estimate_insn_cost (rtx_insn *insn, state_t state)
4270 {
4271   static state_t temp = NULL;
4272   int cost;
4273 
4274   if (!temp)
4275     temp = xmalloc (dfa_state_size);
4276 
4277   memcpy (temp, state, dfa_state_size);
4278   cost = state_transition (temp, insn);
4279 
4280   if (cost < 0)
4281     return 0;
4282   else if (cost == 0)
4283     return 1;
4284   return cost;
4285 }
4286 
4287 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4288    This function properly handles ASMs, USEs etc.  */
4289 static int
4290 get_expr_cost (expr_t expr, fence_t fence)
4291 {
4292   rtx_insn *insn = EXPR_INSN_RTX (expr);
4293 
4294   if (recog_memoized (insn) < 0)
4295     {
4296       if (!FENCE_STARTS_CYCLE_P (fence)
4297 	  && INSN_ASM_P (insn))
4298 	/* This is asm insn which is tryed to be issued on the
4299 	   cycle not first.  Issue it on the next cycle.  */
4300 	return 1;
4301       else
4302 	/* A USE insn, or something else we don't need to
4303 	   understand.  We can't pass these directly to
4304 	   state_transition because it will trigger a
4305 	   fatal error for unrecognizable insns.  */
4306 	return 0;
4307     }
4308   else
4309     return estimate_insn_cost (insn, FENCE_STATE (fence));
4310 }
4311 
4312 /* Find the best insn for scheduling, either via max_issue or just take
4313    the most prioritized available.  */
4314 static int
4315 choose_best_insn (fence_t fence, int privileged_n, int *index)
4316 {
4317   int can_issue = 0;
4318 
4319   if (dfa_lookahead > 0)
4320     {
4321       cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4322       /* TODO: pass equivalent of first_cycle_insn_p to max_issue ().  */
4323       can_issue = max_issue (&ready, privileged_n,
4324                              FENCE_STATE (fence), true, index);
4325       if (sched_verbose >= 2)
4326         sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4327                    can_issue, FENCE_ISSUED_INSNS (fence));
4328     }
4329   else
4330     {
4331       /* We can't use max_issue; just return the first available element.  */
4332       int i;
4333 
4334       for (i = 0; i < ready.n_ready; i++)
4335 	{
4336 	  expr_t expr = find_expr_for_ready (i, true);
4337 
4338 	  if (get_expr_cost (expr, fence) < 1)
4339 	    {
4340 	      can_issue = can_issue_more;
4341 	      *index = i;
4342 
4343 	      if (sched_verbose >= 2)
4344 		sel_print ("using %dth insn from the ready list\n", i + 1);
4345 
4346 	      break;
4347 	    }
4348 	}
4349 
4350       if (i == ready.n_ready)
4351 	{
4352 	  can_issue = 0;
4353 	  *index = -1;
4354 	}
4355     }
4356 
4357   return can_issue;
4358 }
4359 
4360 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4361    BNDS and FENCE are current boundaries and scheduling fence respectively.
4362    Return the expr found and NULL if nothing can be issued atm.
4363    Write to PNEED_STALL the number of cycles to stall if no expr was found.  */
4364 static expr_t
4365 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4366                 int *pneed_stall)
4367 {
4368   expr_t best;
4369 
4370   /* Choose the best insn for scheduling via:
4371      1) sorting the ready list based on priority;
4372      2) calling the reorder hook;
4373      3) calling max_issue.  */
4374   best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4375   if (best == NULL && ready.n_ready > 0)
4376     {
4377       int privileged_n, index;
4378 
4379       can_issue_more = invoke_reorder_hooks (fence);
4380       if (can_issue_more > 0)
4381         {
4382           /* Try choosing the best insn until we find one that is could be
4383              scheduled due to liveness restrictions on its destination register.
4384              In the future, we'd like to choose once and then just probe insns
4385              in the order of their priority.  */
4386           invoke_dfa_lookahead_guard ();
4387           privileged_n = calculate_privileged_insns ();
4388           can_issue_more = choose_best_insn (fence, privileged_n, &index);
4389           if (can_issue_more)
4390             best = find_expr_for_ready (index, true);
4391         }
4392       /* We had some available insns, so if we can't issue them,
4393          we have a stall.  */
4394       if (can_issue_more == 0)
4395         {
4396           best = NULL;
4397           *pneed_stall = 1;
4398         }
4399     }
4400 
4401   if (best != NULL)
4402     {
4403       can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4404                                                can_issue_more);
4405       if (targetm.sched.variable_issue
4406 	  && can_issue_more == 0)
4407         *pneed_stall = 1;
4408     }
4409 
4410   if (sched_verbose >= 2)
4411     {
4412       if (best != NULL)
4413         {
4414           sel_print ("Best expression (vliw form): ");
4415           dump_expr (best);
4416           sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4417         }
4418       else
4419         sel_print ("No best expr found!\n");
4420     }
4421 
4422   return best;
4423 }
4424 
4425 
4426 /* Functions that implement the core of the scheduler.  */
4427 
4428 
4429 /* Emit an instruction from EXPR with SEQNO and VINSN after
4430    PLACE_TO_INSERT.  */
4431 static insn_t
4432 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4433                            insn_t place_to_insert)
4434 {
4435   /* This assert fails when we have identical instructions
4436      one of which dominates the other.  In this case move_op ()
4437      finds the first instruction and doesn't search for second one.
4438      The solution would be to compute av_set after the first found
4439      insn and, if insn present in that set, continue searching.
4440      For now we workaround this issue in move_op.  */
4441   gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4442 
4443   if (EXPR_WAS_RENAMED (expr))
4444     {
4445       unsigned regno = expr_dest_regno (expr);
4446 
4447       if (HARD_REGISTER_NUM_P (regno))
4448 	{
4449 	  df_set_regs_ever_live (regno, true);
4450 	  reg_rename_tick[regno] = ++reg_rename_this_tick;
4451 	}
4452     }
4453 
4454   return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4455                                        place_to_insert);
4456 }
4457 
4458 /* Return TRUE if BB can hold bookkeeping code.  */
4459 static bool
4460 block_valid_for_bookkeeping_p (basic_block bb)
4461 {
4462   insn_t bb_end = BB_END (bb);
4463 
4464   if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4465     return false;
4466 
4467   if (INSN_P (bb_end))
4468     {
4469       if (INSN_SCHED_TIMES (bb_end) > 0)
4470 	return false;
4471     }
4472   else
4473     gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4474 
4475   return true;
4476 }
4477 
4478 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4479    into E2->dest, except from E1->src (there may be a sequence of empty basic
4480    blocks between E1->src and E2->dest).  Return found block, or NULL if new
4481    one must be created.  If LAX holds, don't assume there is a simple path
4482    from E1->src to E2->dest.  */
4483 static basic_block
4484 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4485 {
4486   basic_block candidate_block = NULL;
4487   edge e;
4488 
4489   /* Loop over edges from E1 to E2, inclusive.  */
4490   for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4491        EDGE_SUCC (e->dest, 0))
4492     {
4493       if (EDGE_COUNT (e->dest->preds) == 2)
4494 	{
4495 	  if (candidate_block == NULL)
4496 	    candidate_block = (EDGE_PRED (e->dest, 0) == e
4497 			       ? EDGE_PRED (e->dest, 1)->src
4498 			       : EDGE_PRED (e->dest, 0)->src);
4499 	  else
4500 	    /* Found additional edge leading to path from e1 to e2
4501 	       from aside.  */
4502 	    return NULL;
4503 	}
4504       else if (EDGE_COUNT (e->dest->preds) > 2)
4505 	/* Several edges leading to path from e1 to e2 from aside.  */
4506 	return NULL;
4507 
4508       if (e == e2)
4509 	return ((!lax || candidate_block)
4510 		&& block_valid_for_bookkeeping_p (candidate_block)
4511 		? candidate_block
4512 		: NULL);
4513 
4514       if (lax && EDGE_COUNT (e->dest->succs) != 1)
4515 	return NULL;
4516     }
4517 
4518   if (lax)
4519     return NULL;
4520 
4521   gcc_unreachable ();
4522 }
4523 
4524 /* Create new basic block for bookkeeping code for path(s) incoming into
4525    E2->dest, except from E1->src.  Return created block.  */
4526 static basic_block
4527 create_block_for_bookkeeping (edge e1, edge e2)
4528 {
4529   basic_block new_bb, bb = e2->dest;
4530 
4531   /* Check that we don't spoil the loop structure.  */
4532   if (current_loop_nest)
4533     {
4534       basic_block latch = current_loop_nest->latch;
4535 
4536       /* We do not split header.  */
4537       gcc_assert (e2->dest != current_loop_nest->header);
4538 
4539       /* We do not redirect the only edge to the latch block.  */
4540       gcc_assert (e1->dest != latch
4541 		  || !single_pred_p (latch)
4542 		  || e1 != single_pred_edge (latch));
4543     }
4544 
4545   /* Split BB to insert BOOK_INSN there.  */
4546   new_bb = sched_split_block (bb, NULL);
4547 
4548   /* Move note_list from the upper bb.  */
4549   gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4550   BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4551   BB_NOTE_LIST (bb) = NULL;
4552 
4553   gcc_assert (e2->dest == bb);
4554 
4555   /* Skip block for bookkeeping copy when leaving E1->src.  */
4556   if (e1->flags & EDGE_FALLTHRU)
4557     sel_redirect_edge_and_branch_force (e1, new_bb);
4558   else
4559     sel_redirect_edge_and_branch (e1, new_bb);
4560 
4561   gcc_assert (e1->dest == new_bb);
4562   gcc_assert (sel_bb_empty_p (bb));
4563 
4564   /* To keep basic block numbers in sync between debug and non-debug
4565      compilations, we have to rotate blocks here.  Consider that we
4566      started from (a,b)->d, (c,d)->e, and d contained only debug
4567      insns.  It would have been removed before if the debug insns
4568      weren't there, so we'd have split e rather than d.  So what we do
4569      now is to swap the block numbers of new_bb and
4570      single_succ(new_bb) == e, so that the insns that were in e before
4571      get the new block number.  */
4572 
4573   if (MAY_HAVE_DEBUG_INSNS)
4574     {
4575       basic_block succ;
4576       insn_t insn = sel_bb_head (new_bb);
4577       insn_t last;
4578 
4579       if (DEBUG_INSN_P (insn)
4580 	  && single_succ_p (new_bb)
4581 	  && (succ = single_succ (new_bb))
4582 	  && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4583 	  && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4584 	{
4585 	  while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4586 	    insn = NEXT_INSN (insn);
4587 
4588 	  if (insn == last)
4589 	    {
4590 	      sel_global_bb_info_def gbi;
4591 	      sel_region_bb_info_def rbi;
4592 
4593 	      if (sched_verbose >= 2)
4594 		sel_print ("Swapping block ids %i and %i\n",
4595 			   new_bb->index, succ->index);
4596 
4597 	      std::swap (new_bb->index, succ->index);
4598 
4599 	      SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4600 	      SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4601 
4602 	      memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4603 	      memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4604 		      sizeof (gbi));
4605 	      memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4606 
4607 	      memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4608 	      memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4609 		      sizeof (rbi));
4610 	      memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4611 
4612 	      std::swap (BLOCK_TO_BB (new_bb->index),
4613 			 BLOCK_TO_BB (succ->index));
4614 
4615 	      std::swap (CONTAINING_RGN (new_bb->index),
4616 			 CONTAINING_RGN (succ->index));
4617 
4618 	      for (int i = 0; i < current_nr_blocks; i++)
4619 		if (BB_TO_BLOCK (i) == succ->index)
4620 		  BB_TO_BLOCK (i) = new_bb->index;
4621 		else if (BB_TO_BLOCK (i) == new_bb->index)
4622 		  BB_TO_BLOCK (i) = succ->index;
4623 
4624 	      FOR_BB_INSNS (new_bb, insn)
4625 		if (INSN_P (insn))
4626 		  EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4627 
4628 	      FOR_BB_INSNS (succ, insn)
4629 		if (INSN_P (insn))
4630 		  EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4631 
4632 	      if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4633 		bitmap_set_bit (code_motion_visited_blocks, succ->index);
4634 
4635 	      gcc_assert (LABEL_P (BB_HEAD (new_bb))
4636 			  && LABEL_P (BB_HEAD (succ)));
4637 
4638 	      if (sched_verbose >= 4)
4639 		sel_print ("Swapping code labels %i and %i\n",
4640 			   CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4641 			   CODE_LABEL_NUMBER (BB_HEAD (succ)));
4642 
4643 	      std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4644 			 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4645 	    }
4646 	}
4647     }
4648 
4649   return bb;
4650 }
4651 
4652 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4653    into E2->dest, except from E1->src.  If the returned insn immediately
4654    precedes a fence, assign that fence to *FENCE_TO_REWIND.  */
4655 static insn_t
4656 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4657 {
4658   insn_t place_to_insert;
4659   /* Find a basic block that can hold bookkeeping.  If it can be found, do not
4660      create new basic block, but insert bookkeeping there.  */
4661   basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4662 
4663   if (book_block)
4664     {
4665       place_to_insert = BB_END (book_block);
4666 
4667       /* Don't use a block containing only debug insns for
4668 	 bookkeeping, this causes scheduling differences between debug
4669 	 and non-debug compilations, for the block would have been
4670 	 removed already.  */
4671       if (DEBUG_INSN_P (place_to_insert))
4672 	{
4673 	  rtx_insn *insn = sel_bb_head (book_block);
4674 
4675 	  while (insn != place_to_insert &&
4676 		 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4677 	    insn = NEXT_INSN (insn);
4678 
4679 	  if (insn == place_to_insert)
4680 	    book_block = NULL;
4681 	}
4682     }
4683 
4684   if (!book_block)
4685     {
4686       book_block = create_block_for_bookkeeping (e1, e2);
4687       place_to_insert = BB_END (book_block);
4688       if (sched_verbose >= 9)
4689 	sel_print ("New block is %i, split from bookkeeping block %i\n",
4690 		   EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4691     }
4692   else
4693     {
4694       if (sched_verbose >= 9)
4695 	sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4696     }
4697 
4698   *fence_to_rewind = NULL;
4699   /* If basic block ends with a jump, insert bookkeeping code right before it.
4700      Notice if we are crossing a fence when taking PREV_INSN.  */
4701   if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4702     {
4703       *fence_to_rewind = flist_lookup (fences, place_to_insert);
4704       place_to_insert = PREV_INSN (place_to_insert);
4705     }
4706 
4707   return place_to_insert;
4708 }
4709 
4710 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4711    for JOIN_POINT.   */
4712 static int
4713 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4714 {
4715   int seqno;
4716 
4717   /* Check if we are about to insert bookkeeping copy before a jump, and use
4718      jump's seqno for the copy; otherwise, use JOIN_POINT's seqno.  */
4719   rtx_insn *next = NEXT_INSN (place_to_insert);
4720   if (INSN_P (next)
4721       && JUMP_P (next)
4722       && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4723     {
4724       gcc_assert (INSN_SCHED_TIMES (next) == 0);
4725       seqno = INSN_SEQNO (next);
4726     }
4727   else if (INSN_SEQNO (join_point) > 0)
4728     seqno = INSN_SEQNO (join_point);
4729   else
4730     {
4731       seqno = get_seqno_by_preds (place_to_insert);
4732 
4733       /* Sometimes the fences can move in such a way that there will be
4734          no instructions with positive seqno around this bookkeeping.
4735          This means that there will be no way to get to it by a regular
4736          fence movement.  Never mind because we pick up such pieces for
4737          rescheduling anyways, so any positive value will do for now.  */
4738       if (seqno < 0)
4739         {
4740           gcc_assert (pipelining_p);
4741           seqno = 1;
4742         }
4743     }
4744 
4745   gcc_assert (seqno > 0);
4746   return seqno;
4747 }
4748 
4749 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4750    NEW_SEQNO to it.  Return created insn.  */
4751 static insn_t
4752 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4753 {
4754   rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4755 
4756   vinsn_t new_vinsn
4757     = create_vinsn_from_insn_rtx (new_insn_rtx,
4758 				  VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4759 
4760   insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4761 					       place_to_insert);
4762 
4763   INSN_SCHED_TIMES (new_insn) = 0;
4764   bitmap_set_bit (current_copies, INSN_UID (new_insn));
4765 
4766   return new_insn;
4767 }
4768 
4769 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4770    E2->dest, except from E1->src (there may be a sequence of empty blocks
4771    between E1->src and E2->dest).  Return block containing the copy.
4772    All scheduler data is initialized for the newly created insn.  */
4773 static basic_block
4774 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4775 {
4776   insn_t join_point, place_to_insert, new_insn;
4777   int new_seqno;
4778   bool need_to_exchange_data_sets;
4779   fence_t fence_to_rewind;
4780 
4781   if (sched_verbose >= 4)
4782     sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4783 	       e2->dest->index);
4784 
4785   join_point = sel_bb_head (e2->dest);
4786   place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4787   new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4788   need_to_exchange_data_sets
4789     = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4790 
4791   new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4792 
4793   if (fence_to_rewind)
4794     FENCE_INSN (fence_to_rewind) = new_insn;
4795 
4796   /* When inserting bookkeeping insn in new block, av sets should be
4797      following: old basic block (that now holds bookkeeping) data sets are
4798      the same as was before generation of bookkeeping, and new basic block
4799      (that now hold all other insns of old basic block) data sets are
4800      invalid.  So exchange data sets for these basic blocks as sel_split_block
4801      mistakenly exchanges them in this case.  Cannot do it earlier because
4802      when single instruction is added to new basic block it should hold NULL
4803      lv_set.  */
4804   if (need_to_exchange_data_sets)
4805     exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4806 			BLOCK_FOR_INSN (join_point));
4807 
4808   stat_bookkeeping_copies++;
4809   return BLOCK_FOR_INSN (new_insn);
4810 }
4811 
4812 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4813    on FENCE, but we are unable to copy them.  */
4814 static void
4815 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4816 {
4817   expr_t expr;
4818   av_set_iterator i;
4819 
4820   /*  An expression does not need bookkeeping if it is available on all paths
4821       from current block to original block and current block dominates
4822       original block.  We check availability on all paths by examining
4823       EXPR_SPEC; this is not equivalent, because it may be positive even
4824       if expr is available on all paths (but if expr is not available on
4825       any path, EXPR_SPEC will be positive).  */
4826 
4827   FOR_EACH_EXPR_1 (expr, i, av_ptr)
4828     {
4829       if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4830 	  && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4831 	  && (EXPR_SPEC (expr)
4832 	      || !EXPR_ORIG_BB_INDEX (expr)
4833 	      || !dominated_by_p (CDI_DOMINATORS,
4834 				  BASIC_BLOCK_FOR_FN (cfun,
4835 						      EXPR_ORIG_BB_INDEX (expr)),
4836 				  BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4837 	{
4838           if (sched_verbose >= 4)
4839             sel_print ("Expr %d removed because it would need bookkeeping, which "
4840                        "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4841 	  av_set_iter_remove (&i);
4842 	}
4843     }
4844 }
4845 
4846 /* Moving conditional jump through some instructions.
4847 
4848    Consider example:
4849 
4850        ...                     <- current scheduling point
4851        NOTE BASIC BLOCK:       <- bb header
4852        (p8)  add r14=r14+0x9;;
4853        (p8)  mov [r14]=r23
4854        (!p8) jump L1;;
4855        NOTE BASIC BLOCK:
4856        ...
4857 
4858    We can schedule jump one cycle earlier, than mov, because they cannot be
4859    executed together as their predicates are mutually exclusive.
4860 
4861    This is done in this way: first, new fallthrough basic block is created
4862    after jump (it is always can be done, because there already should be a
4863    fallthrough block, where control flow goes in case of predicate being true -
4864    in our example; otherwise there should be a dependence between those
4865    instructions and jump and we cannot schedule jump right now);
4866    next, all instructions between jump and current scheduling point are moved
4867    to this new block.  And the result is this:
4868 
4869       NOTE BASIC BLOCK:
4870       (!p8) jump L1           <- current scheduling point
4871       NOTE BASIC BLOCK:       <- bb header
4872       (p8)  add r14=r14+0x9;;
4873       (p8)  mov [r14]=r23
4874       NOTE BASIC BLOCK:
4875       ...
4876 */
4877 static void
4878 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4879 {
4880   edge ft_edge;
4881   basic_block block_from, block_next, block_new, block_bnd, bb;
4882   rtx_insn *next, *prev, *link, *head;
4883 
4884   block_from = BLOCK_FOR_INSN (insn);
4885   block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4886   prev = BND_TO (bnd);
4887 
4888   /* Moving of jump should not cross any other jumps or beginnings of new
4889      basic blocks.  The only exception is when we move a jump through
4890      mutually exclusive insns along fallthru edges.  */
4891   if (flag_checking && block_from != block_bnd)
4892     {
4893       bb = block_from;
4894       for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4895            link = PREV_INSN (link))
4896         {
4897           if (INSN_P (link))
4898             gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4899           if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4900             {
4901               gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4902               bb = BLOCK_FOR_INSN (link);
4903             }
4904         }
4905     }
4906 
4907   /* Jump is moved to the boundary.  */
4908   next = PREV_INSN (insn);
4909   BND_TO (bnd) = insn;
4910 
4911   ft_edge = find_fallthru_edge_from (block_from);
4912   block_next = ft_edge->dest;
4913   /* There must be a fallthrough block (or where should go
4914   control flow in case of false jump predicate otherwise?).  */
4915   gcc_assert (block_next);
4916 
4917   /* Create new empty basic block after source block.  */
4918   block_new = sel_split_edge (ft_edge);
4919   gcc_assert (block_new->next_bb == block_next
4920               && block_from->next_bb == block_new);
4921 
4922   /* Move all instructions except INSN to BLOCK_NEW.  */
4923   bb = block_bnd;
4924   head = BB_HEAD (block_new);
4925   while (bb != block_from->next_bb)
4926     {
4927       rtx_insn *from, *to;
4928       from = bb == block_bnd ? prev : sel_bb_head (bb);
4929       to = bb == block_from ? next : sel_bb_end (bb);
4930 
4931       /* The jump being moved can be the first insn in the block.
4932          In this case we don't have to move anything in this block.  */
4933       if (NEXT_INSN (to) != from)
4934         {
4935           reorder_insns (from, to, head);
4936 
4937           for (link = to; link != head; link = PREV_INSN (link))
4938             EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4939           head = to;
4940         }
4941 
4942       /* Cleanup possibly empty blocks left.  */
4943       block_next = bb->next_bb;
4944       if (bb != block_from)
4945 	tidy_control_flow (bb, false);
4946       bb = block_next;
4947     }
4948 
4949   /* Assert there is no jump to BLOCK_NEW, only fallthrough edge.  */
4950   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4951 
4952   gcc_assert (!sel_bb_empty_p (block_from)
4953               && !sel_bb_empty_p (block_new));
4954 
4955   /* Update data sets for BLOCK_NEW to represent that INSN and
4956      instructions from the other branch of INSN is no longer
4957      available at BLOCK_NEW.  */
4958   BB_AV_LEVEL (block_new) = global_level;
4959   gcc_assert (BB_LV_SET (block_new) == NULL);
4960   BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4961   update_data_sets (sel_bb_head (block_new));
4962 
4963   /* INSN is a new basic block header - so prepare its data
4964      structures and update availability and liveness sets.  */
4965   update_data_sets (insn);
4966 
4967   if (sched_verbose >= 4)
4968     sel_print ("Moving jump %d\n", INSN_UID (insn));
4969 }
4970 
4971 /* Remove nops generated during move_op for preventing removal of empty
4972    basic blocks.  */
4973 static void
4974 remove_temp_moveop_nops (bool full_tidying)
4975 {
4976   int i;
4977   insn_t insn;
4978 
4979   FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4980     {
4981       gcc_assert (INSN_NOP_P (insn));
4982       return_nop_to_pool (insn, full_tidying);
4983     }
4984 
4985   /* Empty the vector.  */
4986   if (vec_temp_moveop_nops.length () > 0)
4987     vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4988 }
4989 
4990 /* Records the maximal UID before moving up an instruction.  Used for
4991    distinguishing between bookkeeping copies and original insns.  */
4992 static int max_uid_before_move_op = 0;
4993 
4994 /* When true, we're always scheduling next insn on the already scheduled code
4995    to get the right insn data for the following bundling or other passes.  */
4996 static int force_next_insn = 0;
4997 
4998 /* Remove from AV_VLIW_P all instructions but next when debug counter
4999    tells us so.  Next instruction is fetched from BNDS.  */
5000 static void
5001 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5002 {
5003   if (! dbg_cnt (sel_sched_insn_cnt) || force_next_insn)
5004     /* Leave only the next insn in av_vliw.  */
5005     {
5006       av_set_iterator av_it;
5007       expr_t expr;
5008       bnd_t bnd = BLIST_BND (bnds);
5009       insn_t next = BND_TO (bnd);
5010 
5011       gcc_assert (BLIST_NEXT (bnds) == NULL);
5012 
5013       FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5014         if (EXPR_INSN_RTX (expr) != next)
5015           av_set_iter_remove (&av_it);
5016     }
5017 }
5018 
5019 /* Compute available instructions on BNDS.  FENCE is the current fence.  Write
5020    the computed set to *AV_VLIW_P.  */
5021 static void
5022 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5023 {
5024   if (sched_verbose >= 2)
5025     {
5026       sel_print ("Boundaries: ");
5027       dump_blist (bnds);
5028       sel_print ("\n");
5029     }
5030 
5031   for (; bnds; bnds = BLIST_NEXT (bnds))
5032     {
5033       bnd_t bnd = BLIST_BND (bnds);
5034       av_set_t av1_copy;
5035       insn_t bnd_to = BND_TO (bnd);
5036 
5037       /* Rewind BND->TO to the basic block header in case some bookkeeping
5038          instructions were inserted before BND->TO and it needs to be
5039          adjusted.  */
5040       if (sel_bb_head_p (bnd_to))
5041         gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5042       else
5043         while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5044           {
5045             bnd_to = PREV_INSN (bnd_to);
5046             if (sel_bb_head_p (bnd_to))
5047               break;
5048           }
5049 
5050       if (BND_TO (bnd) != bnd_to)
5051 	{
5052   	  gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5053 	  FENCE_INSN (fence) = bnd_to;
5054 	  BND_TO (bnd) = bnd_to;
5055 	}
5056 
5057       av_set_clear (&BND_AV (bnd));
5058       BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5059 
5060       av_set_clear (&BND_AV1 (bnd));
5061       BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5062 
5063       moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5064 
5065       av1_copy = av_set_copy (BND_AV1 (bnd));
5066       av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5067     }
5068 
5069   if (sched_verbose >= 2)
5070     {
5071       sel_print ("Available exprs (vliw form): ");
5072       dump_av_set (*av_vliw_p);
5073       sel_print ("\n");
5074     }
5075 }
5076 
5077 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5078    expression.  When FOR_MOVEOP is true, also replace the register of
5079    expressions found with the register from EXPR_VLIW.  */
5080 static av_set_t
5081 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5082 {
5083   av_set_t expr_seq = NULL;
5084   expr_t expr;
5085   av_set_iterator i;
5086 
5087   FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5088     {
5089       if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5090         {
5091           if (for_moveop)
5092             {
5093               /* The sequential expression has the right form to pass
5094                  to move_op except when renaming happened.  Put the
5095                  correct register in EXPR then.  */
5096               if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5097 		{
5098                   if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5099 		    {
5100 		      replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5101 		      stat_renamed_scheduled++;
5102 		    }
5103 		  /* Also put the correct TARGET_AVAILABLE bit on the expr.
5104                      This is needed when renaming came up with original
5105                      register.  */
5106                   else if (EXPR_TARGET_AVAILABLE (expr)
5107                            != EXPR_TARGET_AVAILABLE (expr_vliw))
5108 		    {
5109 		      gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5110 		      EXPR_TARGET_AVAILABLE (expr) = 1;
5111 		    }
5112 		}
5113               if (EXPR_WAS_SUBSTITUTED (expr))
5114                 stat_substitutions_total++;
5115             }
5116 
5117           av_set_add (&expr_seq, expr);
5118 
5119           /* With substitution inside insn group, it is possible
5120              that more than one expression in expr_seq will correspond
5121              to expr_vliw.  In this case, choose one as the attempt to
5122              move both leads to miscompiles.  */
5123           break;
5124         }
5125     }
5126 
5127   if (for_moveop && sched_verbose >= 2)
5128     {
5129       sel_print ("Best expression(s) (sequential form): ");
5130       dump_av_set (expr_seq);
5131       sel_print ("\n");
5132     }
5133 
5134   return expr_seq;
5135 }
5136 
5137 
5138 /* Move nop to previous block.  */
5139 static void ATTRIBUTE_UNUSED
5140 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5141 {
5142   insn_t prev_insn, next_insn;
5143 
5144   gcc_assert (sel_bb_head_p (nop)
5145               && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5146   rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5147   prev_insn = sel_bb_end (prev_bb);
5148   next_insn = NEXT_INSN (nop);
5149   gcc_assert (prev_insn != NULL_RTX
5150               && PREV_INSN (note) == prev_insn);
5151 
5152   SET_NEXT_INSN (prev_insn) = nop;
5153   SET_PREV_INSN (nop) = prev_insn;
5154 
5155   SET_PREV_INSN (note) = nop;
5156   SET_NEXT_INSN (note) = next_insn;
5157 
5158   SET_NEXT_INSN (nop) = note;
5159   SET_PREV_INSN (next_insn) = note;
5160 
5161   BB_END (prev_bb) = nop;
5162   BLOCK_FOR_INSN (nop) = prev_bb;
5163 }
5164 
5165 /* Prepare a place to insert the chosen expression on BND.  */
5166 static insn_t
5167 prepare_place_to_insert (bnd_t bnd)
5168 {
5169   insn_t place_to_insert;
5170 
5171   /* Init place_to_insert before calling move_op, as the later
5172      can possibly remove BND_TO (bnd).  */
5173   if (/* If this is not the first insn scheduled.  */
5174       BND_PTR (bnd))
5175     {
5176       /* Add it after last scheduled.  */
5177       place_to_insert = ILIST_INSN (BND_PTR (bnd));
5178       if (DEBUG_INSN_P (place_to_insert))
5179 	{
5180 	  ilist_t l = BND_PTR (bnd);
5181 	  while ((l = ILIST_NEXT (l)) &&
5182 		 DEBUG_INSN_P (ILIST_INSN (l)))
5183 	    ;
5184 	  if (!l)
5185 	    place_to_insert = NULL;
5186 	}
5187     }
5188   else
5189     place_to_insert = NULL;
5190 
5191   if (!place_to_insert)
5192     {
5193       /* Add it before BND_TO.  The difference is in the
5194          basic block, where INSN will be added.  */
5195       place_to_insert = get_nop_from_pool (BND_TO (bnd));
5196       gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5197                   == BLOCK_FOR_INSN (BND_TO (bnd)));
5198     }
5199 
5200   return place_to_insert;
5201 }
5202 
5203 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5204    Return the expression to emit in C_EXPR.  */
5205 static bool
5206 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5207                         av_set_t expr_seq, expr_t c_expr)
5208 {
5209   bool b, should_move;
5210   unsigned book_uid;
5211   bitmap_iterator bi;
5212   int n_bookkeeping_copies_before_moveop;
5213 
5214   /* Make a move.  This call will remove the original operation,
5215      insert all necessary bookkeeping instructions and update the
5216      data sets.  After that all we have to do is add the operation
5217      at before BND_TO (BND).  */
5218   n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5219   max_uid_before_move_op = get_max_uid ();
5220   bitmap_clear (current_copies);
5221   bitmap_clear (current_originators);
5222 
5223   b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5224                get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5225 
5226   /* We should be able to find the expression we've chosen for
5227      scheduling.  */
5228   gcc_assert (b);
5229 
5230   if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5231     stat_insns_needed_bookkeeping++;
5232 
5233   EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5234     {
5235       unsigned uid;
5236       bitmap_iterator bi;
5237 
5238       /* We allocate these bitmaps lazily.  */
5239       if (! INSN_ORIGINATORS_BY_UID (book_uid))
5240         INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5241 
5242       bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5243                    current_originators);
5244 
5245       /* Transitively add all originators' originators.  */
5246       EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5247        if (INSN_ORIGINATORS_BY_UID (uid))
5248 	 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5249 			  INSN_ORIGINATORS_BY_UID (uid));
5250     }
5251 
5252   return should_move;
5253 }
5254 
5255 
5256 /* Debug a DFA state as an array of bytes.  */
5257 static void
5258 debug_state (state_t state)
5259 {
5260   unsigned char *p;
5261   unsigned int i, size = dfa_state_size;
5262 
5263   sel_print ("state (%u):", size);
5264   for (i = 0, p = (unsigned char *) state; i < size; i++)
5265     sel_print (" %d", p[i]);
5266   sel_print ("\n");
5267 }
5268 
5269 /* Advance state on FENCE with INSN.  Return true if INSN is
5270    an ASM, and we should advance state once more.  */
5271 static bool
5272 advance_state_on_fence (fence_t fence, insn_t insn)
5273 {
5274   bool asm_p;
5275 
5276   if (recog_memoized (insn) >= 0)
5277     {
5278       int res;
5279       state_t temp_state = alloca (dfa_state_size);
5280 
5281       gcc_assert (!INSN_ASM_P (insn));
5282       asm_p = false;
5283 
5284       memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5285       res = state_transition (FENCE_STATE (fence), insn);
5286       gcc_assert (res < 0);
5287 
5288       if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5289         {
5290           FENCE_ISSUED_INSNS (fence)++;
5291 
5292           /* We should never issue more than issue_rate insns.  */
5293           if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5294             gcc_unreachable ();
5295         }
5296     }
5297   else
5298     {
5299       /* This could be an ASM insn which we'd like to schedule
5300          on the next cycle.  */
5301       asm_p = INSN_ASM_P (insn);
5302       if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5303         advance_one_cycle (fence);
5304     }
5305 
5306   if (sched_verbose >= 2)
5307     debug_state (FENCE_STATE (fence));
5308   if (!DEBUG_INSN_P (insn))
5309     FENCE_STARTS_CYCLE_P (fence) = 0;
5310   FENCE_ISSUE_MORE (fence) = can_issue_more;
5311   return asm_p;
5312 }
5313 
5314 /* Update FENCE on which INSN was scheduled and this INSN, too.  NEED_STALL
5315    is nonzero if we need to stall after issuing INSN.  */
5316 static void
5317 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5318 {
5319   bool asm_p;
5320 
5321   /* First, reflect that something is scheduled on this fence.  */
5322   asm_p = advance_state_on_fence (fence, insn);
5323   FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5324   vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5325   if (SCHED_GROUP_P (insn))
5326     {
5327       FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5328       SCHED_GROUP_P (insn) = 0;
5329     }
5330   else
5331     FENCE_SCHED_NEXT (fence) = NULL;
5332   if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5333     FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5334 
5335   /* Set instruction scheduling info.  This will be used in bundling,
5336      pipelining, tick computations etc.  */
5337   ++INSN_SCHED_TIMES (insn);
5338   EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5339   EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5340   INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5341   INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5342 
5343   /* This does not account for adjust_cost hooks, just add the biggest
5344      constant the hook may add to the latency.  TODO: make this
5345      a target dependent constant.  */
5346   INSN_READY_CYCLE (insn)
5347     = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5348                                  ? 1
5349                                  : maximal_insn_latency (insn) + 1);
5350 
5351   /* Change these fields last, as they're used above.  */
5352   FENCE_AFTER_STALL_P (fence) = 0;
5353   if (asm_p || need_stall)
5354     advance_one_cycle (fence);
5355 
5356   /* Indicate that we've scheduled something on this fence.  */
5357   FENCE_SCHEDULED_P (fence) = true;
5358   scheduled_something_on_previous_fence = true;
5359 
5360   /* Print debug information when insn's fields are updated.  */
5361   if (sched_verbose >= 2)
5362     {
5363       sel_print ("Scheduling insn: ");
5364       dump_insn_1 (insn, 1);
5365       sel_print ("\n");
5366     }
5367 }
5368 
5369 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5370    old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5371    return it.  */
5372 static blist_t *
5373 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5374                    blist_t *bnds_tailp)
5375 {
5376   succ_iterator si;
5377   insn_t succ;
5378 
5379   advance_deps_context (BND_DC (bnd), insn);
5380   FOR_EACH_SUCC_1 (succ, si, insn,
5381                    SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5382     {
5383       ilist_t ptr = ilist_copy (BND_PTR (bnd));
5384 
5385       ilist_add (&ptr, insn);
5386 
5387       if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5388 	  && is_ineligible_successor (succ, ptr))
5389 	{
5390 	  ilist_clear (&ptr);
5391 	  continue;
5392 	}
5393 
5394       if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5395 	{
5396 	  if (sched_verbose >= 9)
5397 	    sel_print ("Updating fence insn from %i to %i\n",
5398 		       INSN_UID (insn), INSN_UID (succ));
5399 	  FENCE_INSN (fence) = succ;
5400 	}
5401       blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5402       bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5403     }
5404 
5405   blist_remove (bndsp);
5406   return bnds_tailp;
5407 }
5408 
5409 /* Schedule EXPR_VLIW on BND.  Return the insn emitted.  */
5410 static insn_t
5411 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5412 {
5413   av_set_t expr_seq;
5414   expr_t c_expr = XALLOCA (expr_def);
5415   insn_t place_to_insert;
5416   insn_t insn;
5417   bool should_move;
5418 
5419   expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5420 
5421   /* In case of scheduling a jump skipping some other instructions,
5422      prepare CFG.  After this, jump is at the boundary and can be
5423      scheduled as usual insn by MOVE_OP.  */
5424   if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5425     {
5426       insn = EXPR_INSN_RTX (expr_vliw);
5427 
5428       /* Speculative jumps are not handled.  */
5429       if (insn != BND_TO (bnd)
5430           && !sel_insn_is_speculation_check (insn))
5431         move_cond_jump (insn, bnd);
5432     }
5433 
5434   /* Find a place for C_EXPR to schedule.  */
5435   place_to_insert = prepare_place_to_insert (bnd);
5436   should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5437   clear_expr (c_expr);
5438 
5439   /* Add the instruction.  The corner case to care about is when
5440      the expr_seq set has more than one expr, and we chose the one that
5441      is not equal to expr_vliw.  Then expr_vliw may be insn in stream, and
5442      we can't use it.  Generate the new vinsn.  */
5443   if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5444     {
5445       vinsn_t vinsn_new;
5446 
5447       vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5448       change_vinsn_in_expr (expr_vliw, vinsn_new);
5449       should_move = false;
5450     }
5451   if (should_move)
5452     insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5453   else
5454     insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5455                                       place_to_insert);
5456 
5457   /* Return the nops generated for preserving of data sets back
5458      into pool.  */
5459   if (INSN_NOP_P (place_to_insert))
5460     return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5461   remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5462 
5463   av_set_clear (&expr_seq);
5464 
5465   /* Save the expression scheduled so to reset target availability if we'll
5466      meet it later on the same fence.  */
5467   if (EXPR_WAS_RENAMED (expr_vliw))
5468     vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5469 
5470   /* Check that the recent movement didn't destroyed loop
5471      structure.  */
5472   gcc_assert (!pipelining_p
5473               || current_loop_nest == NULL
5474               || loop_latch_edge (current_loop_nest));
5475   return insn;
5476 }
5477 
5478 /* Stall for N cycles on FENCE.  */
5479 static void
5480 stall_for_cycles (fence_t fence, int n)
5481 {
5482   int could_more;
5483 
5484   could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5485   while (n--)
5486     advance_one_cycle (fence);
5487   if (could_more)
5488     FENCE_AFTER_STALL_P (fence) = 1;
5489 }
5490 
5491 /* Gather a parallel group of insns at FENCE and assign their seqno
5492    to SEQNO.  All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5493    list for later recalculation of seqnos.  */
5494 static void
5495 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5496 {
5497   blist_t bnds = NULL, *bnds_tailp;
5498   av_set_t av_vliw = NULL;
5499   insn_t insn = FENCE_INSN (fence);
5500 
5501   if (sched_verbose >= 2)
5502     sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5503                INSN_UID (insn), FENCE_CYCLE (fence));
5504 
5505   blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5506   bnds_tailp = &BLIST_NEXT (bnds);
5507   set_target_context (FENCE_TC (fence));
5508   can_issue_more = FENCE_ISSUE_MORE (fence);
5509   target_bb = INSN_BB (insn);
5510 
5511   /* Do while we can add any operation to the current group.  */
5512   do
5513     {
5514       blist_t *bnds_tailp1, *bndsp;
5515       expr_t expr_vliw;
5516       int need_stall = false;
5517       int was_stall = 0, scheduled_insns = 0;
5518       int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5519       int max_stall = pipelining_p ? 1 : 3;
5520       bool last_insn_was_debug = false;
5521       bool was_debug_bb_end_p = false;
5522 
5523       compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5524       remove_insns_that_need_bookkeeping (fence, &av_vliw);
5525       remove_insns_for_debug (bnds, &av_vliw);
5526 
5527       /* Return early if we have nothing to schedule.  */
5528       if (av_vliw == NULL)
5529         break;
5530 
5531       /* Choose the best expression and, if needed, destination register
5532 	 for it.  */
5533       do
5534         {
5535           expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5536           if (! expr_vliw && need_stall)
5537             {
5538               /* All expressions required a stall.  Do not recompute av sets
5539                  as we'll get the same answer (modulo the insns between
5540                  the fence and its boundary, which will not be available for
5541                  pipelining).
5542 		 If we are going to stall for too long, break to recompute av
5543 		 sets and bring more insns for pipelining.  */
5544               was_stall++;
5545 	      if (need_stall <= 3)
5546 		stall_for_cycles (fence, need_stall);
5547 	      else
5548 		{
5549 		  stall_for_cycles (fence, 1);
5550 		  break;
5551 		}
5552             }
5553         }
5554       while (! expr_vliw && need_stall);
5555 
5556       /* Now either we've selected expr_vliw or we have nothing to schedule.  */
5557       if (!expr_vliw)
5558         {
5559 	  av_set_clear (&av_vliw);
5560           break;
5561         }
5562 
5563       bndsp = &bnds;
5564       bnds_tailp1 = bnds_tailp;
5565 
5566       do
5567 	/* This code will be executed only once until we'd have several
5568            boundaries per fence.  */
5569         {
5570 	  bnd_t bnd = BLIST_BND (*bndsp);
5571 
5572 	  if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5573 	    {
5574 	      bndsp = &BLIST_NEXT (*bndsp);
5575 	      continue;
5576 	    }
5577 
5578           insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5579 	  last_insn_was_debug = DEBUG_INSN_P (insn);
5580 	  if (last_insn_was_debug)
5581 	    was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5582           update_fence_and_insn (fence, insn, need_stall);
5583           bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5584 
5585 	  /* Add insn to the list of scheduled on this cycle instructions.  */
5586 	  ilist_add (*scheduled_insns_tailpp, insn);
5587 	  *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5588         }
5589       while (*bndsp != *bnds_tailp1);
5590 
5591       av_set_clear (&av_vliw);
5592       if (!last_insn_was_debug)
5593 	scheduled_insns++;
5594 
5595       /* We currently support information about candidate blocks only for
5596 	 one 'target_bb' block.  Hence we can't schedule after jump insn,
5597 	 as this will bring two boundaries and, hence, necessity to handle
5598 	 information for two or more blocks concurrently.  */
5599       if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5600           || (was_stall
5601               && (was_stall >= max_stall
5602                   || scheduled_insns >= max_insns)))
5603         break;
5604     }
5605   while (bnds);
5606 
5607   gcc_assert (!FENCE_BNDS (fence));
5608 
5609   /* Update boundaries of the FENCE.  */
5610   while (bnds)
5611     {
5612       ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5613 
5614       if (ptr)
5615 	{
5616 	  insn = ILIST_INSN (ptr);
5617 
5618 	  if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5619 	    ilist_add (&FENCE_BNDS (fence), insn);
5620 	}
5621 
5622       blist_remove (&bnds);
5623     }
5624 
5625   /* Update target context on the fence.  */
5626   reset_target_context (FENCE_TC (fence), false);
5627 }
5628 
5629 /* All exprs in ORIG_OPS must have the same destination register or memory.
5630    Return that destination.  */
5631 static rtx
5632 get_dest_from_orig_ops (av_set_t orig_ops)
5633 {
5634   rtx dest = NULL_RTX;
5635   av_set_iterator av_it;
5636   expr_t expr;
5637   bool first_p = true;
5638 
5639   FOR_EACH_EXPR (expr, av_it, orig_ops)
5640     {
5641       rtx x = EXPR_LHS (expr);
5642 
5643       if (first_p)
5644 	{
5645 	  first_p = false;
5646 	  dest = x;
5647 	}
5648       else
5649 	gcc_assert (dest == x
5650 		    || (dest != NULL_RTX && x != NULL_RTX
5651 			&& rtx_equal_p (dest, x)));
5652     }
5653 
5654   return dest;
5655 }
5656 
5657 /* Update data sets for the bookkeeping block and record those expressions
5658    which become no longer available after inserting this bookkeeping.  */
5659 static void
5660 update_and_record_unavailable_insns (basic_block book_block)
5661 {
5662   av_set_iterator i;
5663   av_set_t old_av_set = NULL;
5664   expr_t cur_expr;
5665   rtx_insn *bb_end = sel_bb_end (book_block);
5666 
5667   /* First, get correct liveness in the bookkeeping block.  The problem is
5668      the range between the bookeeping insn and the end of block.  */
5669   update_liveness_on_insn (bb_end);
5670   if (control_flow_insn_p (bb_end))
5671     update_liveness_on_insn (PREV_INSN (bb_end));
5672 
5673   /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5674      fence above, where we may choose to schedule an insn which is
5675      actually blocked from moving up with the bookkeeping we create here.  */
5676   if (AV_SET_VALID_P (sel_bb_head (book_block)))
5677     {
5678       old_av_set = av_set_copy (BB_AV_SET (book_block));
5679       update_data_sets (sel_bb_head (book_block));
5680 
5681       /* Traverse all the expressions in the old av_set and check whether
5682 	 CUR_EXPR is in new AV_SET.  */
5683       FOR_EACH_EXPR (cur_expr, i, old_av_set)
5684         {
5685           expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5686 					   EXPR_VINSN (cur_expr));
5687 
5688           if (! new_expr
5689               /* In this case, we can just turn off the E_T_A bit, but we can't
5690                  represent this information with the current vector.  */
5691               || EXPR_TARGET_AVAILABLE (new_expr)
5692 		 != EXPR_TARGET_AVAILABLE (cur_expr))
5693 	    /* Unfortunately, the below code could be also fired up on
5694 	       separable insns, e.g. when moving insns through the new
5695 	       speculation check as in PR 53701.  */
5696             vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5697         }
5698 
5699       av_set_clear (&old_av_set);
5700     }
5701 }
5702 
5703 /* The main effect of this function is that sparams->c_expr is merged
5704    with (or copied to) lparams->c_expr_merged.  If there's only one successor,
5705    we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5706    lparams->c_expr_merged is copied back to sparams->c_expr after all
5707    successors has been traversed.  lparams->c_expr_local is an expr allocated
5708    on stack in the caller function, and is used if there is more than one
5709    successor.
5710 
5711    SUCC is one of the SUCCS_NORMAL successors of INSN,
5712    MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5713    LPARAMS and STATIC_PARAMS contain the parameters described above.  */
5714 static void
5715 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5716                      insn_t succ ATTRIBUTE_UNUSED,
5717 		     int moveop_drv_call_res,
5718 		     cmpd_local_params_p lparams, void *static_params)
5719 {
5720   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5721 
5722   /* Nothing to do, if original expr wasn't found below.  */
5723   if (moveop_drv_call_res != 1)
5724     return;
5725 
5726   /* If this is a first successor.  */
5727   if (!lparams->c_expr_merged)
5728     {
5729       lparams->c_expr_merged = sparams->c_expr;
5730       sparams->c_expr = lparams->c_expr_local;
5731     }
5732   else
5733     {
5734       /* We must merge all found expressions to get reasonable
5735 	 EXPR_SPEC_DONE_DS for the resulting insn.  If we don't
5736 	 do so then we can first find the expr with epsilon
5737 	 speculation success probability and only then with the
5738 	 good probability.  As a result the insn will get epsilon
5739 	 probability and will never be scheduled because of
5740 	 weakness_cutoff in find_best_expr.
5741 
5742 	 We call merge_expr_data here instead of merge_expr
5743 	 because due to speculation C_EXPR and X may have the
5744 	 same insns with different speculation types.  And as of
5745 	 now such insns are considered non-equal.
5746 
5747 	 However, EXPR_SCHED_TIMES is different -- we must get
5748 	 SCHED_TIMES from a real insn, not a bookkeeping copy.
5749 	 We force this here.  Instead, we may consider merging
5750 	 SCHED_TIMES to the maximum instead of minimum in the
5751 	 below function.  */
5752       int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5753 
5754       merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5755       if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5756 	EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5757 
5758       clear_expr (sparams->c_expr);
5759     }
5760 }
5761 
5762 /*  Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5763 
5764    SUCC is one of the SUCCS_NORMAL successors of INSN,
5765    MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5766      if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5767    STATIC_PARAMS contain USED_REGS set.  */
5768 static void
5769 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5770 		 int moveop_drv_call_res,
5771 		 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5772 		 void *static_params)
5773 {
5774   regset succ_live;
5775   fur_static_params_p sparams = (fur_static_params_p) static_params;
5776 
5777   /* Here we compute live regsets only for branches that do not lie
5778      on the code motion paths.  These branches correspond to value
5779      MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5780      for such branches code_motion_path_driver is not called.  */
5781   if (moveop_drv_call_res != 0)
5782     return;
5783 
5784   /* Mark all registers that do not meet the following condition:
5785      (3) not live on the other path of any conditional branch
5786      that is passed by the operation, in case original
5787      operations are not present on both paths of the
5788      conditional branch.  */
5789   succ_live = compute_live (succ);
5790   IOR_REG_SET (sparams->used_regs, succ_live);
5791 }
5792 
5793 /* This function is called after the last successor.  Copies LP->C_EXPR_MERGED
5794    into SP->CEXPR.  */
5795 static void
5796 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5797 {
5798   moveop_static_params_p sp = (moveop_static_params_p) sparams;
5799 
5800   sp->c_expr = lp->c_expr_merged;
5801 }
5802 
5803 /* Track bookkeeping copies created, insns scheduled, and blocks for
5804    rescheduling when INSN is found by move_op.  */
5805 static void
5806 track_scheduled_insns_and_blocks (rtx_insn *insn)
5807 {
5808   /* Even if this insn can be a copy that will be removed during current move_op,
5809      we still need to count it as an originator.  */
5810   bitmap_set_bit (current_originators, INSN_UID (insn));
5811 
5812   if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5813     {
5814       /* Note that original block needs to be rescheduled, as we pulled an
5815 	 instruction out of it.  */
5816       if (INSN_SCHED_TIMES (insn) > 0)
5817 	bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5818       else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5819 	num_insns_scheduled++;
5820     }
5821 
5822   /* For instructions we must immediately remove insn from the
5823      stream, so subsequent update_data_sets () won't include this
5824      insn into av_set.
5825      For expr we must make insn look like "INSN_REG (insn) := c_expr".  */
5826   if (INSN_UID (insn) > max_uid_before_move_op)
5827     stat_bookkeeping_copies--;
5828 }
5829 
5830 /* Emit a register-register copy for INSN if needed.  Return true if
5831    emitted one.  PARAMS is the move_op static parameters.  */
5832 static bool
5833 maybe_emit_renaming_copy (rtx_insn *insn,
5834                           moveop_static_params_p params)
5835 {
5836   bool insn_emitted  = false;
5837   rtx cur_reg;
5838 
5839   /* Bail out early when expression cannot be renamed at all.  */
5840   if (!EXPR_SEPARABLE_P (params->c_expr))
5841     return false;
5842 
5843   cur_reg = expr_dest_reg (params->c_expr);
5844   gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5845 
5846   /* If original operation has expr and the register chosen for
5847      that expr is not original operation's dest reg, substitute
5848      operation's right hand side with the register chosen.  */
5849   if (REGNO (params->dest) != REGNO (cur_reg))
5850     {
5851       insn_t reg_move_insn, reg_move_insn_rtx;
5852 
5853       reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5854                                                     params->dest);
5855       reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5856                                                    INSN_EXPR (insn),
5857                                                    INSN_SEQNO (insn),
5858                                                    insn);
5859       EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5860       replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5861 
5862       insn_emitted = true;
5863       params->was_renamed = true;
5864     }
5865 
5866   return insn_emitted;
5867 }
5868 
5869 /* Emit a speculative check for INSN speculated as EXPR if needed.
5870    Return true if we've  emitted one.  PARAMS is the move_op static
5871    parameters.  */
5872 static bool
5873 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5874                               moveop_static_params_p params)
5875 {
5876   bool insn_emitted = false;
5877   insn_t x;
5878   ds_t check_ds;
5879 
5880   check_ds = get_spec_check_type_for_insn (insn, expr);
5881   if (check_ds != 0)
5882     {
5883       /* A speculation check should be inserted.  */
5884       x = create_speculation_check (params->c_expr, check_ds, insn);
5885       insn_emitted = true;
5886     }
5887   else
5888     {
5889       EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5890       x = insn;
5891     }
5892 
5893   gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5894               && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5895   return insn_emitted;
5896 }
5897 
5898 /* Handle transformations that leave an insn in place of original
5899    insn such as renaming/speculation.  Return true if one of such
5900    transformations actually happened, and we have emitted this insn.  */
5901 static bool
5902 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5903                                  moveop_static_params_p params)
5904 {
5905   bool insn_emitted = false;
5906 
5907   insn_emitted = maybe_emit_renaming_copy (insn, params);
5908   insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5909 
5910   return insn_emitted;
5911 }
5912 
5913 /* If INSN is the only insn in the basic block (not counting JUMP,
5914    which may be a jump to next insn, and DEBUG_INSNs), we want to
5915    leave a NOP there till the return to fill_insns.  */
5916 
5917 static bool
5918 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5919 {
5920   insn_t bb_head, bb_end, bb_next, in_next;
5921   basic_block bb = BLOCK_FOR_INSN (insn);
5922 
5923   bb_head = sel_bb_head (bb);
5924   bb_end = sel_bb_end (bb);
5925 
5926   if (bb_head == bb_end)
5927     return true;
5928 
5929   while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5930     bb_head = NEXT_INSN (bb_head);
5931 
5932   if (bb_head == bb_end)
5933     return true;
5934 
5935   while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5936     bb_end = PREV_INSN (bb_end);
5937 
5938   if (bb_head == bb_end)
5939     return true;
5940 
5941   bb_next = NEXT_INSN (bb_head);
5942   while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5943     bb_next = NEXT_INSN (bb_next);
5944 
5945   if (bb_next == bb_end && JUMP_P (bb_end))
5946     return true;
5947 
5948   in_next = NEXT_INSN (insn);
5949   while (DEBUG_INSN_P (in_next))
5950     in_next = NEXT_INSN (in_next);
5951 
5952   if (IN_CURRENT_FENCE_P (in_next))
5953     return true;
5954 
5955   return false;
5956 }
5957 
5958 /* Remove INSN from stream.  When ONLY_DISCONNECT is true, its data
5959    is not removed but reused when INSN is re-emitted.  */
5960 static void
5961 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5962 {
5963   /* If there's only one insn in the BB, make sure that a nop is
5964      inserted into it, so the basic block won't disappear when we'll
5965      delete INSN below with sel_remove_insn. It should also survive
5966      till the return to fill_insns.  */
5967   if (need_nop_to_preserve_insn_bb (insn))
5968     {
5969       insn_t nop = get_nop_from_pool (insn);
5970       gcc_assert (INSN_NOP_P (nop));
5971       vec_temp_moveop_nops.safe_push (nop);
5972     }
5973 
5974   sel_remove_insn (insn, only_disconnect, false);
5975 }
5976 
5977 /* This function is called when original expr is found.
5978    INSN - current insn traversed, EXPR - the corresponding expr found.
5979    LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5980    is static parameters of move_op.  */
5981 static void
5982 move_op_orig_expr_found (insn_t insn, expr_t expr,
5983                          cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5984                          void *static_params)
5985 {
5986   bool only_disconnect;
5987   moveop_static_params_p params = (moveop_static_params_p) static_params;
5988 
5989   copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5990   track_scheduled_insns_and_blocks (insn);
5991   handle_emitting_transformations (insn, expr, params);
5992   only_disconnect = params->uid == INSN_UID (insn);
5993 
5994   /* Mark that we've disconnected an insn.  */
5995   if (only_disconnect)
5996     params->uid = -1;
5997   remove_insn_from_stream (insn, only_disconnect);
5998 }
5999 
6000 /* The function is called when original expr is found.
6001    INSN - current insn traversed, EXPR - the corresponding expr found,
6002    crossed_call_abis and original_insns in STATIC_PARAMS are updated.  */
6003 static void
6004 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6005                      cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6006                      void *static_params)
6007 {
6008   fur_static_params_p params = (fur_static_params_p) static_params;
6009   regset tmp;
6010 
6011   if (CALL_P (insn))
6012     params->crossed_call_abis |= 1 << insn_callee_abi (insn).id ();
6013 
6014   def_list_add (params->original_insns, insn, params->crossed_call_abis);
6015 
6016   /* Mark the registers that do not meet the following condition:
6017     (2) not among the live registers of the point
6018 	immediately following the first original operation on
6019 	a given downward path, except for the original target
6020 	register of the operation.  */
6021   tmp = get_clear_regset_from_pool ();
6022   compute_live_below_insn (insn, tmp);
6023   AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6024   AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6025   IOR_REG_SET (params->used_regs, tmp);
6026   return_regset_to_pool (tmp);
6027 
6028   /* (*1) We need to add to USED_REGS registers that are read by
6029      INSN's lhs. This may lead to choosing wrong src register.
6030      E.g. (scheduling const expr enabled):
6031 
6032 	429: ax=0x0	<- Can't use AX for this expr (0x0)
6033 	433: dx=[bp-0x18]
6034 	427: [ax+dx+0x1]=ax
6035 	  REG_DEAD: ax
6036 	168: di=dx
6037 	  REG_DEAD: dx
6038      */
6039   /* FIXME: see comment above and enable MEM_P
6040      in vinsn_separable_p.  */
6041   gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6042 	      || !MEM_P (INSN_LHS (insn)));
6043 }
6044 
6045 /* This function is called on the ascending pass, before returning from
6046    current basic block.  */
6047 static void
6048 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6049                        void *static_params)
6050 {
6051   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6052   basic_block book_block = NULL;
6053 
6054   /* When we have removed the boundary insn for scheduling, which also
6055      happened to be the end insn in its bb, we don't need to update sets.  */
6056   if (!lparams->removed_last_insn
6057       && lparams->e1
6058       && sel_bb_head_p (insn))
6059     {
6060       /* We should generate bookkeeping code only if we are not at the
6061          top level of the move_op.  */
6062       if (sel_num_cfg_preds_gt_1 (insn))
6063         book_block = generate_bookkeeping_insn (sparams->c_expr,
6064                                                 lparams->e1, lparams->e2);
6065       /* Update data sets for the current insn.  */
6066       update_data_sets (insn);
6067     }
6068 
6069   /* If bookkeeping code was inserted, we need to update av sets of basic
6070      block that received bookkeeping.  After generation of bookkeeping insn,
6071      bookkeeping block does not contain valid av set because we are not following
6072      the original algorithm in every detail with regards to e.g. renaming
6073      simple reg-reg copies.  Consider example:
6074 
6075      bookkeeping block           scheduling fence
6076      \            /
6077       \    join  /
6078        ----------
6079        |        |
6080        ----------
6081       /           \
6082      /             \
6083      r1 := r2          r1 := r3
6084 
6085      We try to schedule insn "r1 := r3" on the current
6086      scheduling fence.  Also, note that av set of bookkeeping block
6087      contain both insns "r1 := r2" and "r1 := r3".  When the insn has
6088      been scheduled, the CFG is as follows:
6089 
6090      r1 := r3               r1 := r3
6091      bookkeeping block           scheduling fence
6092      \            /
6093       \    join  /
6094        ----------
6095        |        |
6096        ----------
6097       /          \
6098      /            \
6099      r1 := r2
6100 
6101      Here, insn "r1 := r3" was scheduled at the current scheduling point
6102      and bookkeeping code was generated at the bookeeping block.  This
6103      way insn "r1 := r2" is no longer available as a whole instruction
6104      (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6105      This situation is handled by calling update_data_sets.
6106 
6107      Since update_data_sets is called only on the bookkeeping block, and
6108      it also may have predecessors with av_sets, containing instructions that
6109      are no longer available, we save all such expressions that become
6110      unavailable during data sets update on the bookkeeping block in
6111      VEC_BOOKKEEPING_BLOCKED_VINSNS.  Later we avoid selecting such
6112      expressions for scheduling.  This allows us to avoid recomputation of
6113      av_sets outside the code motion path.  */
6114 
6115   if (book_block)
6116     update_and_record_unavailable_insns (book_block);
6117 
6118   /* If INSN was previously marked for deletion, it's time to do it.  */
6119   if (lparams->removed_last_insn)
6120     insn = PREV_INSN (insn);
6121 
6122   /* Do not tidy control flow at the topmost moveop, as we can erroneously
6123      kill a block with a single nop in which the insn should be emitted.  */
6124   if (lparams->e1)
6125     tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6126 }
6127 
6128 /* This function is called on the ascending pass, before returning from the
6129    current basic block.  */
6130 static void
6131 fur_at_first_insn (insn_t insn,
6132                    cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6133                    void *static_params ATTRIBUTE_UNUSED)
6134 {
6135   gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6136 	      || AV_LEVEL (insn) == -1);
6137 }
6138 
6139 /* Called on the backward stage of recursion to call moveup_expr for insn
6140    and sparams->c_expr.  */
6141 static void
6142 move_op_ascend (insn_t insn, void *static_params)
6143 {
6144   enum MOVEUP_EXPR_CODE res;
6145   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6146 
6147   if (! INSN_NOP_P (insn))
6148     {
6149       res = moveup_expr_cached (sparams->c_expr, insn, false);
6150       gcc_assert (res != MOVEUP_EXPR_NULL);
6151     }
6152 
6153   /* Update liveness for this insn as it was invalidated.  */
6154   update_liveness_on_insn (insn);
6155 }
6156 
6157 /* This function is called on enter to the basic block.
6158    Returns TRUE if this block already have been visited and
6159    code_motion_path_driver should return 1, FALSE otherwise.  */
6160 static int
6161 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6162 	      void *static_params, bool visited_p)
6163 {
6164   fur_static_params_p sparams = (fur_static_params_p) static_params;
6165 
6166   if (visited_p)
6167     {
6168       /* If we have found something below this block, there should be at
6169 	 least one insn in ORIGINAL_INSNS.  */
6170       gcc_assert (*sparams->original_insns);
6171 
6172       /* Adjust CROSSED_CALL_ABIS, since we may have come to this block along
6173 	 different path.  */
6174       DEF_LIST_DEF (*sparams->original_insns)->crossed_call_abis
6175 	|= sparams->crossed_call_abis;
6176     }
6177   else
6178     local_params->old_original_insns = *sparams->original_insns;
6179 
6180   return 1;
6181 }
6182 
6183 /* Same as above but for move_op.   */
6184 static int
6185 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6186                   cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6187                   void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6188 {
6189   if (visited_p)
6190     return -1;
6191   return 1;
6192 }
6193 
6194 /* This function is called while descending current basic block if current
6195    insn is not the original EXPR we're searching for.
6196 
6197    Return value: FALSE, if code_motion_path_driver should perform a local
6198 			cleanup and return 0 itself;
6199 		 TRUE, if code_motion_path_driver should continue.  */
6200 static bool
6201 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6202 			    void *static_params)
6203 {
6204   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6205 
6206   sparams->failed_insn = insn;
6207 
6208   /* If we're scheduling separate expr, in order to generate correct code
6209      we need to stop the search at bookkeeping code generated with the
6210      same destination register or memory.  */
6211   if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6212     return false;
6213   return true;
6214 }
6215 
6216 /* This function is called while descending current basic block if current
6217    insn is not the original EXPR we're searching for.
6218 
6219    Return value: TRUE (code_motion_path_driver should continue).  */
6220 static bool
6221 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6222 {
6223   bool mutexed;
6224   expr_t r;
6225   av_set_iterator avi;
6226   fur_static_params_p sparams = (fur_static_params_p) static_params;
6227 
6228   if (CALL_P (insn))
6229     sparams->crossed_call_abis |= 1 << insn_callee_abi (insn).id ();
6230   else if (DEBUG_INSN_P (insn))
6231     return true;
6232 
6233   /* If current insn we are looking at cannot be executed together
6234      with original insn, then we can skip it safely.
6235 
6236      Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6237 	      INSN = (!p6) r14 = r14 + 1;
6238 
6239      Here we can schedule ORIG_OP with lhs = r14, though only
6240      looking at the set of used and set registers of INSN we must
6241      forbid it.  So, add set/used in INSN registers to the
6242      untouchable set only if there is an insn in ORIG_OPS that can
6243      affect INSN.  */
6244   mutexed = true;
6245   FOR_EACH_EXPR (r, avi, orig_ops)
6246     if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6247       {
6248 	mutexed = false;
6249 	break;
6250       }
6251 
6252   /* Mark all registers that do not meet the following condition:
6253      (1) Not set or read on any path from xi to an instance of the
6254 	 original operation.  */
6255   if (!mutexed)
6256     {
6257       IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6258       IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6259       IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6260     }
6261 
6262   return true;
6263 }
6264 
6265 /* Hooks and data to perform move_op operations with code_motion_path_driver.  */
6266 struct code_motion_path_driver_info_def move_op_hooks = {
6267   move_op_on_enter,
6268   move_op_orig_expr_found,
6269   move_op_orig_expr_not_found,
6270   move_op_merge_succs,
6271   move_op_after_merge_succs,
6272   move_op_ascend,
6273   move_op_at_first_insn,
6274   SUCCS_NORMAL,
6275   "move_op"
6276 };
6277 
6278 /* Hooks and data to perform find_used_regs operations
6279    with code_motion_path_driver.  */
6280 struct code_motion_path_driver_info_def fur_hooks = {
6281   fur_on_enter,
6282   fur_orig_expr_found,
6283   fur_orig_expr_not_found,
6284   fur_merge_succs,
6285   NULL, /* fur_after_merge_succs */
6286   NULL, /* fur_ascend */
6287   fur_at_first_insn,
6288   SUCCS_ALL,
6289   "find_used_regs"
6290 };
6291 
6292 /* Traverse all successors of INSN.  For each successor that is SUCCS_NORMAL
6293    code_motion_path_driver is called recursively.  Original operation
6294    was found at least on one path that is starting with one of INSN's
6295    successors (this fact is asserted).  ORIG_OPS is expressions we're looking
6296    for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6297    of either move_op or find_used_regs depending on the caller.
6298 
6299    Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6300    know for sure at this point.  */
6301 static int
6302 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6303                                 ilist_t path, void *static_params)
6304 {
6305   int res = 0;
6306   succ_iterator succ_i;
6307   insn_t succ;
6308   basic_block bb;
6309   int old_index;
6310   unsigned old_succs;
6311 
6312   struct cmpd_local_params lparams;
6313   expr_def _x;
6314 
6315   lparams.c_expr_local = &_x;
6316   lparams.c_expr_merged = NULL;
6317 
6318   /* We need to process only NORMAL succs for move_op, and collect live
6319      registers from ALL branches (including those leading out of the
6320      region) for find_used_regs.
6321 
6322      In move_op, there can be a case when insn's bb number has changed
6323      due to created bookkeeping.  This happens very rare, as we need to
6324      move expression from the beginning to the end of the same block.
6325      Rescan successors in this case.  */
6326 
6327  rescan:
6328   bb = BLOCK_FOR_INSN (insn);
6329   old_index = bb->index;
6330   old_succs = EDGE_COUNT (bb->succs);
6331 
6332   FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6333     {
6334       int b;
6335 
6336       lparams.e1 = succ_i.e1;
6337       lparams.e2 = succ_i.e2;
6338 
6339       /* Go deep into recursion only for NORMAL edges (non-backedges within the
6340 	 current region).  */
6341       if (succ_i.current_flags == SUCCS_NORMAL)
6342 	b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6343 				     static_params);
6344       else
6345 	b = 0;
6346 
6347       /* Merge c_expres found or unify live register sets from different
6348 	 successors.  */
6349       code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6350 						 static_params);
6351       if (b == 1)
6352         res = b;
6353       else if (b == -1 && res != 1)
6354         res = b;
6355 
6356       /* We have simplified the control flow below this point.  In this case,
6357          the iterator becomes invalid.  We need to try again.
6358 	 If we have removed the insn itself, it could be only an
6359 	 unconditional jump.  Thus, do not rescan but break immediately --
6360 	 we have already visited the only successor block.  */
6361       if (!BLOCK_FOR_INSN (insn))
6362 	{
6363 	  if (sched_verbose >= 6)
6364 	    sel_print ("Not doing rescan: already visited the only successor"
6365 		       " of block %d\n", old_index);
6366 	  break;
6367 	}
6368       if (BLOCK_FOR_INSN (insn)->index != old_index
6369           || EDGE_COUNT (bb->succs) != old_succs)
6370         {
6371 	  if (sched_verbose >= 6)
6372 	    sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6373 		       INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6374           insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6375           goto rescan;
6376         }
6377     }
6378 
6379   /* Here, RES==1 if original expr was found at least for one of the
6380      successors.  After the loop, RES may happen to have zero value
6381      only if at some point the expr searched is present in av_set, but is
6382      not found below.  In most cases, this situation is an error.
6383      The exception is when the original operation is blocked by
6384      bookkeeping generated for another fence or for another path in current
6385      move_op.  */
6386   gcc_checking_assert (res == 1
6387 		       || (res == 0
6388 			    && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6389 		       || res == -1);
6390 
6391   /* Merge data, clean up, etc.  */
6392   if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6393     code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6394 
6395   return res;
6396 }
6397 
6398 
6399 /* Perform a cleanup when the driver is about to terminate.  ORIG_OPS_P
6400    is the pointer to the av set with expressions we were looking for,
6401    PATH_P is the pointer to the traversed path.  */
6402 static inline void
6403 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6404 {
6405   ilist_remove (path_p);
6406   av_set_clear (orig_ops_p);
6407 }
6408 
6409 /* The driver function that implements move_op or find_used_regs
6410    functionality dependent whether code_motion_path_driver_INFO is set to
6411    &MOVE_OP_HOOKS or &FUR_HOOKS.  This function implements the common parts
6412    of code (CFG traversal etc) that are shared among both functions.  INSN
6413    is the insn we're starting the search from, ORIG_OPS are the expressions
6414    we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6415    parameters of the driver, and STATIC_PARAMS are static parameters of
6416    the caller.
6417 
6418    Returns whether original instructions were found.  Note that top-level
6419    code_motion_path_driver always returns true.  */
6420 static int
6421 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6422 			 cmpd_local_params_p local_params_in,
6423 			 void *static_params)
6424 {
6425   expr_t expr = NULL;
6426   basic_block bb = BLOCK_FOR_INSN (insn);
6427   insn_t first_insn, original_insn, bb_tail, before_first;
6428   bool removed_last_insn = false;
6429 
6430   if (sched_verbose >= 6)
6431     {
6432       sel_print ("%s (", code_motion_path_driver_info->routine_name);
6433       dump_insn (insn);
6434       sel_print (",");
6435       dump_av_set (orig_ops);
6436       sel_print (")\n");
6437     }
6438 
6439   gcc_assert (orig_ops);
6440 
6441   /* If no original operations exist below this insn, return immediately.  */
6442   if (is_ineligible_successor (insn, path))
6443     {
6444       if (sched_verbose >= 6)
6445         sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6446       return false;
6447     }
6448 
6449   /* The block can have invalid av set, in which case it was created earlier
6450      during move_op.  Return immediately.  */
6451   if (sel_bb_head_p (insn))
6452     {
6453       if (! AV_SET_VALID_P (insn))
6454         {
6455           if (sched_verbose >= 6)
6456             sel_print ("Returned from block %d as it had invalid av set\n",
6457                        bb->index);
6458           return false;
6459         }
6460 
6461       if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6462         {
6463           /* We have already found an original operation on this branch, do not
6464              go any further and just return TRUE here.  If we don't stop here,
6465              function can have exponential behavior even on the small code
6466              with many different paths (e.g. with data speculation and
6467              recovery blocks).  */
6468           if (sched_verbose >= 6)
6469             sel_print ("Block %d already visited in this traversal\n", bb->index);
6470           if (code_motion_path_driver_info->on_enter)
6471             return code_motion_path_driver_info->on_enter (insn,
6472                                                            local_params_in,
6473                                                            static_params,
6474                                                            true);
6475         }
6476     }
6477 
6478   if (code_motion_path_driver_info->on_enter)
6479     code_motion_path_driver_info->on_enter (insn, local_params_in,
6480                                             static_params, false);
6481   orig_ops = av_set_copy (orig_ops);
6482 
6483   /* Filter the orig_ops set.  */
6484   if (AV_SET_VALID_P (insn))
6485     av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6486 
6487   /* If no more original ops, return immediately.  */
6488   if (!orig_ops)
6489     {
6490       if (sched_verbose >= 6)
6491         sel_print ("No intersection with av set of block %d\n", bb->index);
6492       return false;
6493     }
6494 
6495   /* For non-speculative insns we have to leave only one form of the
6496      original operation, because if we don't, we may end up with
6497      different C_EXPRes and, consequently, with bookkeepings for different
6498      expression forms along the same code motion path.  That may lead to
6499      generation of incorrect code.  So for each code motion we stick to
6500      the single form of the instruction,  except for speculative insns
6501      which we need to keep in different forms with all speculation
6502      types.  */
6503   av_set_leave_one_nonspec (&orig_ops);
6504 
6505   /* It is not possible that all ORIG_OPS are filtered out.  */
6506   gcc_assert (orig_ops);
6507 
6508   /* It is enough to place only heads and tails of visited basic blocks into
6509      the PATH.  */
6510   ilist_add (&path, insn);
6511   first_insn = original_insn = insn;
6512   bb_tail = sel_bb_end (bb);
6513 
6514   /* Descend the basic block in search of the original expr; this part
6515      corresponds to the part of the original move_op procedure executed
6516      before the recursive call.  */
6517   for (;;)
6518     {
6519       /* Look at the insn and decide if it could be an ancestor of currently
6520 	 scheduling operation.  If it is so, then the insn "dest = op" could
6521 	 either be replaced with "dest = reg", because REG now holds the result
6522 	 of OP, or just removed, if we've scheduled the insn as a whole.
6523 
6524 	 If this insn doesn't contain currently scheduling OP, then proceed
6525 	 with searching and look at its successors.  Operations we're searching
6526 	 for could have changed when moving up through this insn via
6527 	 substituting.  In this case, perform unsubstitution on them first.
6528 
6529 	 When traversing the DAG below this insn is finished, insert
6530 	 bookkeeping code, if the insn is a joint point, and remove
6531 	 leftovers.  */
6532 
6533       expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6534       if (expr)
6535 	{
6536 	  insn_t last_insn = PREV_INSN (insn);
6537 
6538 	  /* We have found the original operation.   */
6539           if (sched_verbose >= 6)
6540             sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6541 
6542 	  code_motion_path_driver_info->orig_expr_found
6543             (insn, expr, local_params_in, static_params);
6544 
6545 	  /* Step back, so on the way back we'll start traversing from the
6546 	     previous insn (or we'll see that it's bb_note and skip that
6547 	     loop).  */
6548           if (insn == first_insn)
6549             {
6550               first_insn = NEXT_INSN (last_insn);
6551               removed_last_insn = sel_bb_end_p (last_insn);
6552             }
6553 	  insn = last_insn;
6554 	  break;
6555 	}
6556       else
6557 	{
6558 	  /* We haven't found the original expr, continue descending the basic
6559 	     block.  */
6560 	  if (code_motion_path_driver_info->orig_expr_not_found
6561               (insn, orig_ops, static_params))
6562 	    {
6563 	      /* Av set ops could have been changed when moving through this
6564 	         insn.  To find them below it, we have to un-substitute them.  */
6565 	      undo_transformations (&orig_ops, insn);
6566 	    }
6567 	  else
6568 	    {
6569 	      /* Clean up and return, if the hook tells us to do so.  It may
6570 		 happen if we've encountered the previously created
6571 		 bookkeeping.  */
6572 	      code_motion_path_driver_cleanup (&orig_ops, &path);
6573 	      return -1;
6574 	    }
6575 
6576 	  gcc_assert (orig_ops);
6577         }
6578 
6579       /* Stop at insn if we got to the end of BB.  */
6580       if (insn == bb_tail)
6581 	break;
6582 
6583       insn = NEXT_INSN (insn);
6584     }
6585 
6586   /* Here INSN either points to the insn before the original insn (may be
6587      bb_note, if original insn was a bb_head) or to the bb_end.  */
6588   if (!expr)
6589     {
6590       int res;
6591       rtx_insn *last_insn = PREV_INSN (insn);
6592       bool added_to_path;
6593 
6594       gcc_assert (insn == sel_bb_end (bb));
6595 
6596       /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6597 	 it's already in PATH then).  */
6598       if (insn != first_insn)
6599 	{
6600 	  ilist_add (&path, insn);
6601 	  added_to_path = true;
6602 	}
6603       else
6604         added_to_path = false;
6605 
6606       /* Process_successors should be able to find at least one
6607 	 successor for which code_motion_path_driver returns TRUE.  */
6608       res = code_motion_process_successors (insn, orig_ops,
6609                                             path, static_params);
6610 
6611       /* Jump in the end of basic block could have been removed or replaced
6612          during code_motion_process_successors, so recompute insn as the
6613          last insn in bb.  */
6614       if (NEXT_INSN (last_insn) != insn)
6615         {
6616           insn = sel_bb_end (bb);
6617           first_insn = sel_bb_head (bb);
6618 	  if (first_insn != original_insn)
6619 	    first_insn = original_insn;
6620         }
6621 
6622       /* Remove bb tail from path.  */
6623       if (added_to_path)
6624 	ilist_remove (&path);
6625 
6626       if (res != 1)
6627 	{
6628 	  /* This is the case when one of the original expr is no longer available
6629 	     due to bookkeeping created on this branch with the same register.
6630 	     In the original algorithm, which doesn't have update_data_sets call
6631 	     on a bookkeeping block, it would simply result in returning
6632 	     FALSE when we've encountered a previously generated bookkeeping
6633 	     insn in moveop_orig_expr_not_found.  */
6634 	  code_motion_path_driver_cleanup (&orig_ops, &path);
6635 	  return res;
6636 	}
6637     }
6638 
6639   /* Don't need it any more.  */
6640   av_set_clear (&orig_ops);
6641 
6642   /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6643      the beginning of the basic block.  */
6644   before_first = PREV_INSN (first_insn);
6645   while (insn != before_first)
6646     {
6647       if (code_motion_path_driver_info->ascend)
6648 	code_motion_path_driver_info->ascend (insn, static_params);
6649 
6650       insn = PREV_INSN (insn);
6651     }
6652 
6653   /* Now we're at the bb head.  */
6654   insn = first_insn;
6655   ilist_remove (&path);
6656   local_params_in->removed_last_insn = removed_last_insn;
6657   code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6658 
6659   /* This should be the very last operation as at bb head we could change
6660      the numbering by creating bookkeeping blocks.  */
6661   if (removed_last_insn)
6662     insn = PREV_INSN (insn);
6663 
6664   /* If we have simplified the control flow and removed the first jump insn,
6665      there's no point in marking this block in the visited blocks bitmap.  */
6666   if (BLOCK_FOR_INSN (insn))
6667     bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6668   return true;
6669 }
6670 
6671 /* Move up the operations from ORIG_OPS set traversing the dag starting
6672    from INSN.  PATH represents the edges traversed so far.
6673    DEST is the register chosen for scheduling the current expr.  Insert
6674    bookkeeping code in the join points.  EXPR_VLIW is the chosen expression,
6675    C_EXPR is how it looks like at the given cfg point.
6676    Set *SHOULD_MOVE to indicate whether we have only disconnected
6677    one of the insns found.
6678 
6679    Returns whether original instructions were found, which is asserted
6680    to be true in the caller.  */
6681 static bool
6682 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6683          rtx dest, expr_t c_expr, bool *should_move)
6684 {
6685   struct moveop_static_params sparams;
6686   struct cmpd_local_params lparams;
6687   int res;
6688 
6689   /* Init params for code_motion_path_driver.  */
6690   sparams.dest = dest;
6691   sparams.c_expr = c_expr;
6692   sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6693   sparams.failed_insn = NULL;
6694   sparams.was_renamed = false;
6695   lparams.e1 = NULL;
6696 
6697   /* We haven't visited any blocks yet.  */
6698   bitmap_clear (code_motion_visited_blocks);
6699 
6700   /* Set appropriate hooks and data.  */
6701   code_motion_path_driver_info = &move_op_hooks;
6702   res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6703 
6704   gcc_assert (res != -1);
6705 
6706   if (sparams.was_renamed)
6707     EXPR_WAS_RENAMED (expr_vliw) = true;
6708 
6709   *should_move = (sparams.uid == -1);
6710 
6711   return res;
6712 }
6713 
6714 
6715 /* Functions that work with regions.  */
6716 
6717 /* Current number of seqno used in init_seqno and init_seqno_1.  */
6718 static int cur_seqno;
6719 
6720 /* A helper for init_seqno.  Traverse the region starting from BB and
6721    compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6722    Clear visited blocks from BLOCKS_TO_RESCHEDULE.  */
6723 static void
6724 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6725 {
6726   int bbi = BLOCK_TO_BB (bb->index);
6727   insn_t insn;
6728   insn_t succ_insn;
6729   succ_iterator si;
6730 
6731   rtx_note *note = bb_note (bb);
6732   bitmap_set_bit (visited_bbs, bbi);
6733   if (blocks_to_reschedule)
6734     bitmap_clear_bit (blocks_to_reschedule, bb->index);
6735 
6736   FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6737 		   SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6738     {
6739       basic_block succ = BLOCK_FOR_INSN (succ_insn);
6740       int succ_bbi = BLOCK_TO_BB (succ->index);
6741 
6742       gcc_assert (in_current_region_p (succ));
6743 
6744       if (!bitmap_bit_p (visited_bbs, succ_bbi))
6745 	{
6746 	  gcc_assert (succ_bbi > bbi);
6747 
6748 	  init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6749 	}
6750       else if (blocks_to_reschedule)
6751         bitmap_set_bit (forced_ebb_heads, succ->index);
6752     }
6753 
6754   for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6755     INSN_SEQNO (insn) = cur_seqno--;
6756 }
6757 
6758 /* Initialize seqnos for the current region.  BLOCKS_TO_RESCHEDULE contains
6759    blocks on which we're rescheduling when pipelining, FROM is the block where
6760    traversing region begins (it may not be the head of the region when
6761    pipelining, but the head of the loop instead).
6762 
6763    Returns the maximal seqno found.  */
6764 static int
6765 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6766 {
6767   bitmap_iterator bi;
6768   unsigned bbi;
6769 
6770   auto_sbitmap visited_bbs (current_nr_blocks);
6771 
6772   if (blocks_to_reschedule)
6773     {
6774       bitmap_ones (visited_bbs);
6775       EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6776         {
6777 	  gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6778           bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6779 	}
6780     }
6781   else
6782     {
6783       bitmap_clear (visited_bbs);
6784       from = EBB_FIRST_BB (0);
6785     }
6786 
6787   cur_seqno = sched_max_luid - 1;
6788   init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6789 
6790   /* cur_seqno may be positive if the number of instructions is less than
6791      sched_max_luid - 1 (when rescheduling or if some instructions have been
6792      removed by the call to purge_empty_blocks in sel_sched_region_1).  */
6793   gcc_assert (cur_seqno >= 0);
6794 
6795   return sched_max_luid - 1;
6796 }
6797 
6798 /* Initialize scheduling parameters for current region.  */
6799 static void
6800 sel_setup_region_sched_flags (void)
6801 {
6802   enable_schedule_as_rhs_p = 1;
6803   bookkeeping_p = 1;
6804   pipelining_p = (bookkeeping_p
6805                   && (flag_sel_sched_pipelining != 0)
6806 		  && current_loop_nest != NULL
6807 		  && loop_has_exit_edges (current_loop_nest));
6808   max_insns_to_rename = param_selsched_insns_to_rename;
6809   max_ws = MAX_WS;
6810 }
6811 
6812 /* Return true if all basic blocks of current region are empty.  */
6813 static bool
6814 current_region_empty_p (void)
6815 {
6816   int i;
6817   for (i = 0; i < current_nr_blocks; i++)
6818     if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6819       return false;
6820 
6821   return true;
6822 }
6823 
6824 /* Prepare and verify loop nest for pipelining.  */
6825 static void
6826 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6827 {
6828   current_loop_nest = get_loop_nest_for_rgn (rgn);
6829 
6830   if (!current_loop_nest)
6831     return;
6832 
6833   /* If this loop has any saved loop preheaders from nested loops,
6834      add these basic blocks to the current region.  */
6835   sel_add_loop_preheaders (bbs);
6836 
6837   /* Check that we're starting with a valid information.  */
6838   gcc_assert (loop_latch_edge (current_loop_nest));
6839   gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6840 }
6841 
6842 /* Compute instruction priorities for current region.  */
6843 static void
6844 sel_compute_priorities (int rgn)
6845 {
6846   sched_rgn_compute_dependencies (rgn);
6847 
6848   /* Compute insn priorities in haifa style.  Then free haifa style
6849      dependencies that we've calculated for this.  */
6850   compute_priorities ();
6851 
6852   if (sched_verbose >= 5)
6853     debug_rgn_dependencies (0);
6854 
6855   free_rgn_deps ();
6856 }
6857 
6858 /* Init scheduling data for RGN.  Returns true when this region should not
6859    be scheduled.  */
6860 static bool
6861 sel_region_init (int rgn)
6862 {
6863   int i;
6864   bb_vec_t bbs;
6865 
6866   rgn_setup_region (rgn);
6867 
6868   /* Even if sched_is_disabled_for_current_region_p() is true, we still
6869      do region initialization here so the region can be bundled correctly,
6870      but we'll skip the scheduling in sel_sched_region ().  */
6871   if (current_region_empty_p ())
6872     return true;
6873 
6874   bbs.create (current_nr_blocks);
6875 
6876   for (i = 0; i < current_nr_blocks; i++)
6877     bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6878 
6879   sel_init_bbs (bbs);
6880 
6881   if (flag_sel_sched_pipelining)
6882     setup_current_loop_nest (rgn, &bbs);
6883 
6884   sel_setup_region_sched_flags ();
6885 
6886   /* Initialize luids and dependence analysis which both sel-sched and haifa
6887      need.  */
6888   sched_init_luids (bbs);
6889   sched_deps_init (false);
6890 
6891   /* Initialize haifa data.  */
6892   rgn_setup_sched_infos ();
6893   sel_set_sched_flags ();
6894   haifa_init_h_i_d (bbs);
6895 
6896   sel_compute_priorities (rgn);
6897   init_deps_global ();
6898 
6899   /* Main initialization.  */
6900   sel_setup_sched_infos ();
6901   sel_init_global_and_expr (bbs);
6902 
6903   bbs.release ();
6904 
6905   blocks_to_reschedule = BITMAP_ALLOC (NULL);
6906 
6907   /* Init correct liveness sets on each instruction of a single-block loop.
6908      This is the only situation when we can't update liveness when calling
6909      compute_live for the first insn of the loop.  */
6910   if (current_loop_nest)
6911     {
6912       int header =
6913 	(sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6914 	 ? 1
6915 	 : 0);
6916 
6917       if (current_nr_blocks == header + 1)
6918         update_liveness_on_insn
6919           (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6920     }
6921 
6922   /* Set hooks so that no newly generated insn will go out unnoticed.  */
6923   sel_register_cfg_hooks ();
6924 
6925   /* !!! We call target.sched.init () for the whole region, but we invoke
6926      targetm.sched.finish () for every ebb.  */
6927   if (targetm.sched.init)
6928     /* None of the arguments are actually used in any target.  */
6929     targetm.sched.init (sched_dump, sched_verbose, -1);
6930 
6931   first_emitted_uid = get_max_uid () + 1;
6932   preheader_removed = false;
6933 
6934   /* Reset register allocation ticks array.  */
6935   memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6936   reg_rename_this_tick = 0;
6937 
6938   forced_ebb_heads = BITMAP_ALLOC (NULL);
6939 
6940   setup_nop_vinsn ();
6941   current_copies = BITMAP_ALLOC (NULL);
6942   current_originators = BITMAP_ALLOC (NULL);
6943   code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6944 
6945   return false;
6946 }
6947 
6948 /* Simplify insns after the scheduling.  */
6949 static void
6950 simplify_changed_insns (void)
6951 {
6952   int i;
6953 
6954   for (i = 0; i < current_nr_blocks; i++)
6955     {
6956       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6957       rtx_insn *insn;
6958 
6959       FOR_BB_INSNS (bb, insn)
6960 	if (INSN_P (insn))
6961 	  {
6962 	    expr_t expr = INSN_EXPR (insn);
6963 
6964 	    if (EXPR_WAS_SUBSTITUTED (expr))
6965 	      validate_simplify_insn (insn);
6966 	  }
6967     }
6968 }
6969 
6970 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6971    this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6972    PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure.  */
6973 static void
6974 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6975 {
6976   rtx_insn *head, *tail;
6977   basic_block bb1 = bb;
6978   if (sched_verbose >= 2)
6979     sel_print ("Finishing schedule in bbs: ");
6980 
6981   do
6982     {
6983       bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6984 
6985       if (sched_verbose >= 2)
6986 	sel_print ("%d; ", bb1->index);
6987     }
6988   while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6989 
6990   if (sched_verbose >= 2)
6991     sel_print ("\n");
6992 
6993   get_ebb_head_tail (bb, bb1, &head, &tail);
6994 
6995   current_sched_info->head = head;
6996   current_sched_info->tail = tail;
6997   current_sched_info->prev_head = PREV_INSN (head);
6998   current_sched_info->next_tail = NEXT_INSN (tail);
6999 }
7000 
7001 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB.  */
7002 static void
7003 reset_sched_cycles_in_current_ebb (void)
7004 {
7005   int last_clock = 0;
7006   int haifa_last_clock = -1;
7007   int haifa_clock = 0;
7008   int issued_insns = 0;
7009   insn_t insn;
7010 
7011   if (targetm.sched.init)
7012     {
7013       /* None of the arguments are actually used in any target.
7014 	 NB: We should have md_reset () hook for cases like this.  */
7015       targetm.sched.init (sched_dump, sched_verbose, -1);
7016     }
7017 
7018   state_reset (curr_state);
7019   advance_state (curr_state);
7020 
7021   for (insn = current_sched_info->head;
7022        insn != current_sched_info->next_tail;
7023        insn = NEXT_INSN (insn))
7024     {
7025       int cost, haifa_cost;
7026       int sort_p;
7027       bool asm_p, real_insn, after_stall, all_issued;
7028       int clock;
7029 
7030       if (!INSN_P (insn))
7031 	continue;
7032 
7033       asm_p = false;
7034       real_insn = recog_memoized (insn) >= 0;
7035       clock = INSN_SCHED_CYCLE (insn);
7036 
7037       cost = clock - last_clock;
7038 
7039       /* Initialize HAIFA_COST.  */
7040       if (! real_insn)
7041 	{
7042 	  asm_p = INSN_ASM_P (insn);
7043 
7044 	  if (asm_p)
7045 	    /* This is asm insn which *had* to be scheduled first
7046 	       on the cycle.  */
7047 	    haifa_cost = 1;
7048 	  else
7049 	    /* This is a use/clobber insn.  It should not change
7050 	       cost.  */
7051 	    haifa_cost = 0;
7052 	}
7053       else
7054         haifa_cost = estimate_insn_cost (insn, curr_state);
7055 
7056       /* Stall for whatever cycles we've stalled before.  */
7057       after_stall = 0;
7058       if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7059         {
7060           haifa_cost = cost;
7061           after_stall = 1;
7062         }
7063       all_issued = issued_insns == issue_rate;
7064       if (haifa_cost == 0 && all_issued)
7065 	haifa_cost = 1;
7066       if (haifa_cost > 0)
7067 	{
7068 	  int i = 0;
7069 
7070 	  while (haifa_cost--)
7071 	    {
7072 	      advance_state (curr_state);
7073 	      issued_insns = 0;
7074               i++;
7075 
7076 	      if (sched_verbose >= 2)
7077                 {
7078                   sel_print ("advance_state (state_transition)\n");
7079                   debug_state (curr_state);
7080                 }
7081 
7082               /* The DFA may report that e.g. insn requires 2 cycles to be
7083                  issued, but on the next cycle it says that insn is ready
7084                  to go.  Check this here.  */
7085               if (!after_stall
7086                   && real_insn
7087                   && haifa_cost > 0
7088                   && estimate_insn_cost (insn, curr_state) == 0)
7089                 break;
7090 
7091               /* When the data dependency stall is longer than the DFA stall,
7092                  and when we have issued exactly issue_rate insns and stalled,
7093                  it could be that after this longer stall the insn will again
7094                  become unavailable  to the DFA restrictions.  Looks strange
7095                  but happens e.g. on x86-64.  So recheck DFA on the last
7096                  iteration.  */
7097               if ((after_stall || all_issued)
7098                   && real_insn
7099                   && haifa_cost == 0)
7100                 haifa_cost = estimate_insn_cost (insn, curr_state);
7101             }
7102 
7103 	  haifa_clock += i;
7104           if (sched_verbose >= 2)
7105             sel_print ("haifa clock: %d\n", haifa_clock);
7106 	}
7107       else
7108 	gcc_assert (haifa_cost == 0);
7109 
7110       if (sched_verbose >= 2)
7111 	sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7112 
7113       if (targetm.sched.dfa_new_cycle)
7114 	while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7115 					    haifa_last_clock, haifa_clock,
7116 					    &sort_p))
7117 	  {
7118 	    advance_state (curr_state);
7119 	    issued_insns = 0;
7120 	    haifa_clock++;
7121 	    if (sched_verbose >= 2)
7122               {
7123                 sel_print ("advance_state (dfa_new_cycle)\n");
7124                 debug_state (curr_state);
7125 		sel_print ("haifa clock: %d\n", haifa_clock + 1);
7126               }
7127           }
7128 
7129       if (real_insn)
7130 	{
7131 	  static state_t temp = NULL;
7132 
7133 	  if (!temp)
7134 	    temp = xmalloc (dfa_state_size);
7135 	  memcpy (temp, curr_state, dfa_state_size);
7136 
7137 	  cost = state_transition (curr_state, insn);
7138 	  if (memcmp (temp, curr_state, dfa_state_size))
7139 	    issued_insns++;
7140 
7141           if (sched_verbose >= 2)
7142 	    {
7143 	      sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7144 			 haifa_clock + 1);
7145               debug_state (curr_state);
7146 	    }
7147 	  gcc_assert (cost < 0);
7148 	}
7149 
7150       if (targetm.sched.variable_issue)
7151 	targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7152 
7153       INSN_SCHED_CYCLE (insn) = haifa_clock;
7154 
7155       last_clock = clock;
7156       haifa_last_clock = haifa_clock;
7157     }
7158 }
7159 
7160 /* Put TImode markers on insns starting a new issue group.  */
7161 static void
7162 put_TImodes (void)
7163 {
7164   int last_clock = -1;
7165   insn_t insn;
7166 
7167   for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7168        insn = NEXT_INSN (insn))
7169     {
7170       int cost, clock;
7171 
7172       if (!INSN_P (insn))
7173 	continue;
7174 
7175       clock = INSN_SCHED_CYCLE (insn);
7176       cost = (last_clock == -1) ? 1 : clock - last_clock;
7177 
7178       gcc_assert (cost >= 0);
7179 
7180       if (issue_rate > 1
7181 	  && GET_CODE (PATTERN (insn)) != USE
7182 	  && GET_CODE (PATTERN (insn)) != CLOBBER)
7183 	{
7184 	  if (reload_completed && cost > 0)
7185 	    PUT_MODE (insn, TImode);
7186 
7187 	  last_clock = clock;
7188 	}
7189 
7190       if (sched_verbose >= 2)
7191 	sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7192     }
7193 }
7194 
7195 /* Perform MD_FINISH on EBBs comprising current region.  When
7196    RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7197    to produce correct sched cycles on insns.  */
7198 static void
7199 sel_region_target_finish (bool reset_sched_cycles_p)
7200 {
7201   int i;
7202   bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7203 
7204   for (i = 0; i < current_nr_blocks; i++)
7205     {
7206       if (bitmap_bit_p (scheduled_blocks, i))
7207 	continue;
7208 
7209       /* While pipelining outer loops, skip bundling for loop
7210 	 preheaders.  Those will be rescheduled in the outer loop.  */
7211       if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7212 	continue;
7213 
7214       find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7215 
7216       if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7217 	continue;
7218 
7219       if (reset_sched_cycles_p)
7220 	reset_sched_cycles_in_current_ebb ();
7221 
7222       if (targetm.sched.init)
7223 	targetm.sched.init (sched_dump, sched_verbose, -1);
7224 
7225       put_TImodes ();
7226 
7227       if (targetm.sched.finish)
7228 	{
7229 	  targetm.sched.finish (sched_dump, sched_verbose);
7230 
7231 	  /* Extend luids so that insns generated by the target will
7232 	     get zero luid.  */
7233 	  sched_extend_luids ();
7234 	}
7235     }
7236 
7237   BITMAP_FREE (scheduled_blocks);
7238 }
7239 
7240 /* Free the scheduling data for the current region.  When RESET_SCHED_CYCLES_P
7241    is true, make an additional pass emulating scheduler to get correct insn
7242    cycles for md_finish calls.  */
7243 static void
7244 sel_region_finish (bool reset_sched_cycles_p)
7245 {
7246   simplify_changed_insns ();
7247   sched_finish_ready_list ();
7248   free_nop_pool ();
7249 
7250   /* Free the vectors.  */
7251   vec_av_set.release ();
7252   BITMAP_FREE (current_copies);
7253   BITMAP_FREE (current_originators);
7254   BITMAP_FREE (code_motion_visited_blocks);
7255   vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7256   vinsn_vec_free (vec_target_unavailable_vinsns);
7257 
7258   /* If LV_SET of the region head should be updated, do it now because
7259      there will be no other chance.  */
7260   {
7261     succ_iterator si;
7262     insn_t insn;
7263 
7264     FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7265                      SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7266       {
7267 	basic_block bb = BLOCK_FOR_INSN (insn);
7268 
7269 	if (!BB_LV_SET_VALID_P (bb))
7270 	  compute_live (insn);
7271       }
7272   }
7273 
7274   /* Emulate the Haifa scheduler for bundling.  */
7275   if (reload_completed)
7276     sel_region_target_finish (reset_sched_cycles_p);
7277 
7278   sel_finish_global_and_expr ();
7279 
7280   BITMAP_FREE (forced_ebb_heads);
7281 
7282   free_nop_vinsn ();
7283 
7284   finish_deps_global ();
7285   sched_finish_luids ();
7286   h_d_i_d.release ();
7287 
7288   sel_finish_bbs ();
7289   BITMAP_FREE (blocks_to_reschedule);
7290 
7291   sel_unregister_cfg_hooks ();
7292 
7293   max_issue_size = 0;
7294 }
7295 
7296 
7297 /* Functions that implement the scheduler driver.  */
7298 
7299 /* Schedule a parallel instruction group on each of FENCES.  MAX_SEQNO
7300    is the current maximum seqno.  SCHEDULED_INSNS_TAILPP is the list
7301    of insns scheduled -- these would be postprocessed later.  */
7302 static void
7303 schedule_on_fences (flist_t fences, int max_seqno,
7304                     ilist_t **scheduled_insns_tailpp)
7305 {
7306   flist_t old_fences = fences;
7307 
7308   if (sched_verbose >= 1)
7309     {
7310       sel_print ("\nScheduling on fences: ");
7311       dump_flist (fences);
7312       sel_print ("\n");
7313     }
7314 
7315   scheduled_something_on_previous_fence = false;
7316   for (; fences; fences = FLIST_NEXT (fences))
7317     {
7318       fence_t fence = NULL;
7319       int seqno = 0;
7320       flist_t fences2;
7321       bool first_p = true;
7322 
7323       /* Choose the next fence group to schedule.
7324          The fact that insn can be scheduled only once
7325          on the cycle is guaranteed by two properties:
7326          1. seqnos of parallel groups decrease with each iteration.
7327          2. If is_ineligible_successor () sees the larger seqno, it
7328          checks if candidate insn is_in_current_fence_p ().  */
7329       for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7330         {
7331           fence_t f = FLIST_FENCE (fences2);
7332 
7333           if (!FENCE_PROCESSED_P (f))
7334             {
7335               int i = INSN_SEQNO (FENCE_INSN (f));
7336 
7337               if (first_p || i > seqno)
7338                 {
7339                   seqno = i;
7340                   fence = f;
7341                   first_p = false;
7342                 }
7343               else
7344                 /* ??? Seqnos of different groups should be different.  */
7345                 gcc_assert (1 || i != seqno);
7346             }
7347         }
7348 
7349       gcc_assert (fence);
7350 
7351       /* As FENCE is nonnull, SEQNO is initialized.  */
7352       seqno -= max_seqno + 1;
7353       fill_insns (fence, seqno, scheduled_insns_tailpp);
7354       FENCE_PROCESSED_P (fence) = true;
7355     }
7356 
7357   /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7358      don't need to keep bookkeeping-invalidated and target-unavailable
7359      vinsns any more.  */
7360   vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7361   vinsn_vec_clear (&vec_target_unavailable_vinsns);
7362 }
7363 
7364 /* Calculate MIN_SEQNO and MAX_SEQNO.  */
7365 static void
7366 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7367 {
7368   *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7369 
7370   /* The first element is already processed.  */
7371   while ((fences = FLIST_NEXT (fences)))
7372     {
7373       int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7374 
7375       if (*min_seqno > seqno)
7376         *min_seqno = seqno;
7377       else if (*max_seqno < seqno)
7378         *max_seqno = seqno;
7379     }
7380 }
7381 
7382 /* Calculate new fences from FENCES.  Write the current time to PTIME.  */
7383 static flist_t
7384 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7385 {
7386   flist_t old_fences = fences;
7387   struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7388   int max_time = 0;
7389 
7390   flist_tail_init (new_fences);
7391   for (; fences; fences = FLIST_NEXT (fences))
7392     {
7393       fence_t fence = FLIST_FENCE (fences);
7394       insn_t insn;
7395 
7396       if (!FENCE_BNDS (fence))
7397         {
7398           /* This fence doesn't have any successors.  */
7399           if (!FENCE_SCHEDULED_P (fence))
7400             {
7401               /* Nothing was scheduled on this fence.  */
7402               int seqno;
7403 
7404               insn = FENCE_INSN (fence);
7405               seqno = INSN_SEQNO (insn);
7406               gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7407 
7408               if (sched_verbose >= 1)
7409                 sel_print ("Fence %d[%d] has not changed\n",
7410                            INSN_UID (insn),
7411                            BLOCK_NUM (insn));
7412               move_fence_to_fences (fences, new_fences);
7413             }
7414         }
7415       else
7416         extract_new_fences_from (fences, new_fences, orig_max_seqno);
7417       max_time = MAX (max_time, FENCE_CYCLE (fence));
7418     }
7419 
7420   flist_clear (&old_fences);
7421   *ptime = max_time;
7422   return FLIST_TAIL_HEAD (new_fences);
7423 }
7424 
7425 /* Update seqnos of insns given by PSCHEDULED_INSNS.  MIN_SEQNO and MAX_SEQNO
7426    are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7427    the highest seqno used in a region.  Return the updated highest seqno.  */
7428 static int
7429 update_seqnos_and_stage (int min_seqno, int max_seqno,
7430                          int highest_seqno_in_use,
7431                          ilist_t *pscheduled_insns)
7432 {
7433   int new_hs;
7434   ilist_iterator ii;
7435   insn_t insn;
7436 
7437   /* Actually, new_hs is the seqno of the instruction, that was
7438      scheduled first (i.e. it is the first one in SCHEDULED_INSNS).  */
7439   if (*pscheduled_insns)
7440     {
7441       new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7442                 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7443       gcc_assert (new_hs > highest_seqno_in_use);
7444     }
7445   else
7446     new_hs = highest_seqno_in_use;
7447 
7448   FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7449     {
7450       gcc_assert (INSN_SEQNO (insn) < 0);
7451       INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7452       gcc_assert (INSN_SEQNO (insn) <= new_hs);
7453 
7454       /* When not pipelining, purge unneeded insn info on the scheduled insns.
7455          For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7456          require > 1GB of memory e.g. on limit-fnargs.c.  */
7457       if (! pipelining_p)
7458         free_data_for_scheduled_insn (insn);
7459     }
7460 
7461   ilist_clear (pscheduled_insns);
7462   global_level++;
7463 
7464   return new_hs;
7465 }
7466 
7467 /* The main driver for scheduling a region.  This function is responsible
7468    for correct propagation of fences (i.e. scheduling points) and creating
7469    a group of parallel insns at each of them.  It also supports
7470    pipelining.  ORIG_MAX_SEQNO is the maximal seqno before this pass
7471    of scheduling.  */
7472 static void
7473 sel_sched_region_2 (int orig_max_seqno)
7474 {
7475   int highest_seqno_in_use = orig_max_seqno;
7476   int max_time = 0;
7477 
7478   stat_bookkeeping_copies = 0;
7479   stat_insns_needed_bookkeeping = 0;
7480   stat_renamed_scheduled = 0;
7481   stat_substitutions_total = 0;
7482   num_insns_scheduled = 0;
7483 
7484   while (fences)
7485     {
7486       int min_seqno, max_seqno;
7487       ilist_t scheduled_insns = NULL;
7488       ilist_t *scheduled_insns_tailp = &scheduled_insns;
7489 
7490       find_min_max_seqno (fences, &min_seqno, &max_seqno);
7491       schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7492       fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7493       highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7494                                                       highest_seqno_in_use,
7495                                                       &scheduled_insns);
7496     }
7497 
7498   if (sched_verbose >= 1)
7499     {
7500       sel_print ("Total scheduling time: %d cycles\n", max_time);
7501       sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7502 		 "bookkeeping, %d insns renamed, %d insns substituted\n",
7503 		 stat_bookkeeping_copies,
7504 		 stat_insns_needed_bookkeeping,
7505 		 stat_renamed_scheduled,
7506 		 stat_substitutions_total);
7507     }
7508 }
7509 
7510 /* Schedule a region.  When pipelining, search for possibly never scheduled
7511    bookkeeping code and schedule it.  Reschedule pipelined code without
7512    pipelining after.  */
7513 static void
7514 sel_sched_region_1 (void)
7515 {
7516   int orig_max_seqno;
7517 
7518   /* Remove empty blocks that might be in the region from the beginning.  */
7519   purge_empty_blocks ();
7520 
7521   orig_max_seqno = init_seqno (NULL, NULL);
7522   gcc_assert (orig_max_seqno >= 1);
7523 
7524   /* When pipelining outer loops, create fences on the loop header,
7525      not preheader.  */
7526   fences = NULL;
7527   if (current_loop_nest)
7528     init_fences (BB_END (EBB_FIRST_BB (0)));
7529   else
7530     init_fences (bb_note (EBB_FIRST_BB (0)));
7531   global_level = 1;
7532 
7533   sel_sched_region_2 (orig_max_seqno);
7534 
7535   gcc_assert (fences == NULL);
7536 
7537   if (pipelining_p)
7538     {
7539       int i;
7540       basic_block bb;
7541       struct flist_tail_def _new_fences;
7542       flist_tail_t new_fences = &_new_fences;
7543       bool do_p = true;
7544 
7545       pipelining_p = false;
7546       max_ws = MIN (max_ws, issue_rate * 3 / 2);
7547       bookkeeping_p = false;
7548       enable_schedule_as_rhs_p = false;
7549 
7550       /* Schedule newly created code, that has not been scheduled yet.  */
7551       do_p = true;
7552 
7553       while (do_p)
7554         {
7555           do_p = false;
7556 
7557           for (i = 0; i < current_nr_blocks; i++)
7558             {
7559               basic_block bb = EBB_FIRST_BB (i);
7560 
7561               if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7562                 {
7563                   if (! bb_ends_ebb_p (bb))
7564                     bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7565                   if (sel_bb_empty_p (bb))
7566                     {
7567                       bitmap_clear_bit (blocks_to_reschedule, bb->index);
7568                       continue;
7569                     }
7570                   clear_outdated_rtx_info (bb);
7571                   if (sel_insn_is_speculation_check (BB_END (bb))
7572                       && JUMP_P (BB_END (bb)))
7573                     bitmap_set_bit (blocks_to_reschedule,
7574                                     BRANCH_EDGE (bb)->dest->index);
7575                 }
7576               else if (! sel_bb_empty_p (bb)
7577                        && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7578                 bitmap_set_bit (blocks_to_reschedule, bb->index);
7579             }
7580 
7581           for (i = 0; i < current_nr_blocks; i++)
7582             {
7583               bb = EBB_FIRST_BB (i);
7584 
7585               /* While pipelining outer loops, skip bundling for loop
7586                  preheaders.  Those will be rescheduled in the outer
7587                  loop.  */
7588               if (sel_is_loop_preheader_p (bb))
7589                 {
7590                   clear_outdated_rtx_info (bb);
7591                   continue;
7592                 }
7593 
7594               if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7595                 {
7596                   flist_tail_init (new_fences);
7597 
7598                   orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7599 
7600                   /* Mark BB as head of the new ebb.  */
7601                   bitmap_set_bit (forced_ebb_heads, bb->index);
7602 
7603                   gcc_assert (fences == NULL);
7604 
7605                   init_fences (bb_note (bb));
7606 
7607                   sel_sched_region_2 (orig_max_seqno);
7608 
7609                   do_p = true;
7610                   break;
7611                 }
7612             }
7613         }
7614     }
7615 }
7616 
7617 /* Schedule the RGN region.  */
7618 void
7619 sel_sched_region (int rgn)
7620 {
7621   bool schedule_p;
7622   bool reset_sched_cycles_p;
7623 
7624   if (sel_region_init (rgn))
7625     return;
7626 
7627   if (sched_verbose >= 1)
7628     sel_print ("Scheduling region %d\n", rgn);
7629 
7630   schedule_p = (!sched_is_disabled_for_current_region_p ()
7631                 && dbg_cnt (sel_sched_region_cnt));
7632   reset_sched_cycles_p = pipelining_p;
7633   if (schedule_p)
7634     sel_sched_region_1 ();
7635   else
7636     {
7637       /* Schedule always selecting the next insn to make the correct data
7638 	 for bundling or other later passes.  */
7639       pipelining_p = false;
7640       reset_sched_cycles_p = false;
7641       force_next_insn = 1;
7642       sel_sched_region_1 ();
7643       force_next_insn = 0;
7644     }
7645   sel_region_finish (reset_sched_cycles_p);
7646 }
7647 
7648 /* Perform global init for the scheduler.  */
7649 static void
7650 sel_global_init (void)
7651 {
7652   /* Remove empty blocks: their presence can break assumptions elsewhere,
7653      e.g. the logic to invoke update_liveness_on_insn in sel_region_init.  */
7654   cleanup_cfg (0);
7655 
7656   calculate_dominance_info (CDI_DOMINATORS);
7657   alloc_sched_pools ();
7658 
7659   /* Setup the infos for sched_init.  */
7660   sel_setup_sched_infos ();
7661   setup_sched_dump ();
7662 
7663   sched_rgn_init (false);
7664   sched_init ();
7665 
7666   sched_init_bbs ();
7667   /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass.  */
7668   after_recovery = 0;
7669   can_issue_more = issue_rate;
7670 
7671   sched_extend_target ();
7672   sched_deps_init (true);
7673   setup_nop_and_exit_insns ();
7674   sel_extend_global_bb_info ();
7675   init_lv_sets ();
7676   init_hard_regs_data ();
7677 }
7678 
7679 /* Free the global data of the scheduler.  */
7680 static void
7681 sel_global_finish (void)
7682 {
7683   free_bb_note_pool ();
7684   free_lv_sets ();
7685   sel_finish_global_bb_info ();
7686 
7687   free_regset_pool ();
7688   free_nop_and_exit_insns ();
7689 
7690   sched_rgn_finish ();
7691   sched_deps_finish ();
7692   sched_finish ();
7693 
7694   if (current_loops)
7695     sel_finish_pipelining ();
7696 
7697   free_sched_pools ();
7698   free_dominance_info (CDI_DOMINATORS);
7699 }
7700 
7701 /* Return true when we need to skip selective scheduling.  Used for debugging.  */
7702 bool
7703 maybe_skip_selective_scheduling (void)
7704 {
7705   return ! dbg_cnt (sel_sched_cnt);
7706 }
7707 
7708 /* The entry point.  */
7709 void
7710 run_selective_scheduling (void)
7711 {
7712   int rgn;
7713 
7714   if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7715     return;
7716 
7717   sel_global_init ();
7718 
7719   for (rgn = 0; rgn < nr_regions; rgn++)
7720     sel_sched_region (rgn);
7721 
7722   sel_global_finish ();
7723 }
7724 
7725 #endif
7726