1 /* Data references and dependences detectors.
2    Copyright (C) 2003-2021 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
23 
24 #include "graphds.h"
25 #include "tree-chrec.h"
26 #include "opt-problem.h"
27 
28 /*
29   innermost_loop_behavior describes the evolution of the address of the memory
30   reference in the innermost enclosing loop.  The address is expressed as
31   BASE + STEP * # of iteration, and base is further decomposed as the base
32   pointer (BASE_ADDRESS),  loop invariant offset (OFFSET) and
33   constant offset (INIT).  Examples, in loop nest
34 
35   for (i = 0; i < 100; i++)
36     for (j = 3; j < 100; j++)
37 
38                        Example 1                      Example 2
39       data-ref         a[j].b[i][j]                   *(p + x + 16B + 4B * j)
40 
41 
42   innermost_loop_behavior
43       base_address     &a                             p
44       offset           i * D_i			      x
45       init             3 * D_j + offsetof (b)         28
46       step             D_j                            4
47 
48   */
49 struct innermost_loop_behavior
50 {
51   tree base_address;
52   tree offset;
53   tree init;
54   tree step;
55 
56   /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes
57      from an alignment boundary of BASE_ALIGNMENT bytes.  For example,
58      if we had:
59 
60        struct S __attribute__((aligned(16))) { ... };
61 
62        char *ptr;
63        ... *(struct S *) (ptr - 4) ...;
64 
65      the information would be:
66 
67        base_address:      ptr
68        base_aligment:      16
69        base_misalignment:   4
70        init:               -4
71 
72      where init cancels the base misalignment.  If instead we had a
73      reference to a particular field:
74 
75        struct S __attribute__((aligned(16))) { ... int f; ... };
76 
77        char *ptr;
78        ... ((struct S *) (ptr - 4))->f ...;
79 
80      the information would be:
81 
82        base_address:      ptr
83        base_aligment:      16
84        base_misalignment:   4
85        init:               -4 + offsetof (S, f)
86 
87      where base_address + init might also be misaligned, and by a different
88      amount from base_address.  */
89   unsigned int base_alignment;
90   unsigned int base_misalignment;
91 
92   /* The largest power of two that divides OFFSET, capped to a suitably
93      high value if the offset is zero.  This is a byte rather than a bit
94      quantity.  */
95   unsigned int offset_alignment;
96 
97   /* Likewise for STEP.  */
98   unsigned int step_alignment;
99 };
100 
101 /* Describes the evolutions of indices of the memory reference.  The indices
102    are indices of the ARRAY_REFs, indexes in artificial dimensions
103    added for member selection of records and the operands of MEM_REFs.
104    BASE_OBJECT is the part of the reference that is loop-invariant
105    (note that this reference does not have to cover the whole object
106    being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
107    not recommended to use BASE_OBJECT in any code generation).
108    For the examples above,
109 
110    base_object:        a                              *(p + x + 4B * j_0)
111    indices:            {j_0, +, 1}_2                  {16, +, 4}_2
112 		       4
113 		       {i_0, +, 1}_1
114 		       {j_0, +, 1}_2
115 */
116 
117 struct indices
118 {
119   /* The object.  */
120   tree base_object;
121 
122   /* A list of chrecs.  Access functions of the indices.  */
123   vec<tree> access_fns;
124 
125   /* Whether BASE_OBJECT is an access representing the whole object
126      or whether the access could not be constrained.  */
127   bool unconstrained_base;
128 };
129 
130 struct dr_alias
131 {
132   /* The alias information that should be used for new pointers to this
133      location.  */
134   struct ptr_info_def *ptr_info;
135 };
136 
137 /* An integer vector.  A vector formally consists of an element of a vector
138    space. A vector space is a set that is closed under vector addition
139    and scalar multiplication.  In this vector space, an element is a list of
140    integers.  */
141 typedef HOST_WIDE_INT lambda_int;
142 typedef lambda_int *lambda_vector;
143 
144 /* An integer matrix.  A matrix consists of m vectors of length n (IE
145    all vectors are the same length).  */
146 typedef lambda_vector *lambda_matrix;
147 
148 
149 
150 struct data_reference
151 {
152   /* A pointer to the statement that contains this DR.  */
153   gimple *stmt;
154 
155   /* A pointer to the memory reference.  */
156   tree ref;
157 
158   /* Auxiliary info specific to a pass.  */
159   void *aux;
160 
161   /* True when the data reference is in RHS of a stmt.  */
162   bool is_read;
163 
164   /* True when the data reference is conditional within STMT,
165      i.e. if it might not occur even when the statement is executed
166      and runs to completion.  */
167   bool is_conditional_in_stmt;
168 
169   /* Behavior of the memory reference in the innermost loop.  */
170   struct innermost_loop_behavior innermost;
171 
172   /* Subscripts of this data reference.  */
173   struct indices indices;
174 
175   /* Alias information for the data reference.  */
176   struct dr_alias alias;
177 };
178 
179 #define DR_STMT(DR)                (DR)->stmt
180 #define DR_REF(DR)                 (DR)->ref
181 #define DR_BASE_OBJECT(DR)         (DR)->indices.base_object
182 #define DR_UNCONSTRAINED_BASE(DR)  (DR)->indices.unconstrained_base
183 #define DR_ACCESS_FNS(DR)	   (DR)->indices.access_fns
184 #define DR_ACCESS_FN(DR, I)        DR_ACCESS_FNS (DR)[I]
185 #define DR_NUM_DIMENSIONS(DR)      DR_ACCESS_FNS (DR).length ()
186 #define DR_IS_READ(DR)             (DR)->is_read
187 #define DR_IS_WRITE(DR)            (!DR_IS_READ (DR))
188 #define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt
189 #define DR_BASE_ADDRESS(DR)        (DR)->innermost.base_address
190 #define DR_OFFSET(DR)              (DR)->innermost.offset
191 #define DR_INIT(DR)                (DR)->innermost.init
192 #define DR_STEP(DR)                (DR)->innermost.step
193 #define DR_PTR_INFO(DR)            (DR)->alias.ptr_info
194 #define DR_BASE_ALIGNMENT(DR)      (DR)->innermost.base_alignment
195 #define DR_BASE_MISALIGNMENT(DR)   (DR)->innermost.base_misalignment
196 #define DR_OFFSET_ALIGNMENT(DR)    (DR)->innermost.offset_alignment
197 #define DR_STEP_ALIGNMENT(DR)      (DR)->innermost.step_alignment
198 #define DR_INNERMOST(DR)           (DR)->innermost
199 
200 typedef struct data_reference *data_reference_p;
201 
202 /* This struct is used to store the information of a data reference,
203    including the data ref itself and the segment length for aliasing
204    checks.  This is used to merge alias checks.  */
205 
206 class dr_with_seg_len
207 {
208 public:
dr_with_seg_len(data_reference_p d,tree len,unsigned HOST_WIDE_INT size,unsigned int a)209   dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size,
210 		   unsigned int a)
211     : dr (d), seg_len (len), access_size (size), align (a) {}
212 
213   data_reference_p dr;
214   /* The offset of the last access that needs to be checked minus
215      the offset of the first.  */
216   tree seg_len;
217   /* A value that, when added to abs (SEG_LEN), gives the total number of
218      bytes in the segment.  */
219   poly_uint64 access_size;
220   /* The minimum common alignment of DR's start address, SEG_LEN and
221      ACCESS_SIZE.  */
222   unsigned int align;
223 };
224 
225 /* Flags that describe a potential alias between two dr_with_seg_lens.
226    In general, each pair of dr_with_seg_lens represents a composite of
227    multiple access pairs P, so testing flags like DR_IS_READ on the DRs
228    does not give meaningful information.
229 
230    DR_ALIAS_RAW:
231 	There is a pair in P for which the second reference is a read
232 	and the first is a write.
233 
234    DR_ALIAS_WAR:
235 	There is a pair in P for which the second reference is a write
236 	and the first is a read.
237 
238    DR_ALIAS_WAW:
239 	There is a pair in P for which both references are writes.
240 
241    DR_ALIAS_ARBITRARY:
242 	Either
243 	(a) it isn't possible to classify one pair in P as RAW, WAW or WAR; or
244 	(b) there is a pair in P that breaks the ordering assumption below.
245 
246 	This flag overrides the RAW, WAR and WAW flags above.
247 
248    DR_ALIAS_UNSWAPPED:
249    DR_ALIAS_SWAPPED:
250 	Temporary flags that indicate whether there is a pair P whose
251 	DRs have or haven't been swapped around.
252 
253    DR_ALIAS_MIXED_STEPS:
254 	The DR_STEP for one of the data references in the pair does not
255 	accurately describe that reference for all members of P.  (Note
256 	that the flag does not say anything about whether the DR_STEPs
257 	of the two references in the pair are the same.)
258 
259    The ordering assumption mentioned above is that for every pair
260    (DR_A, DR_B) in P:
261 
262    (1) The original code accesses n elements for DR_A and n elements for DR_B,
263        interleaved as follows:
264 
265 	 one access of size DR_A.access_size at DR_A.dr
266 	 one access of size DR_B.access_size at DR_B.dr
267 	 one access of size DR_A.access_size at DR_A.dr + STEP_A
268 	 one access of size DR_B.access_size at DR_B.dr + STEP_B
269 	 one access of size DR_A.access_size at DR_A.dr + STEP_A * 2
270 	 one access of size DR_B.access_size at DR_B.dr + STEP_B * 2
271 	 ...
272 
273    (2) The new code accesses the same data in exactly two chunks:
274 
275 	 one group of accesses spanning |DR_A.seg_len| + DR_A.access_size
276 	 one group of accesses spanning |DR_B.seg_len| + DR_B.access_size
277 
278    A pair might break this assumption if the DR_A and DR_B accesses
279    in the original or the new code are mingled in some way.  For example,
280    if DR_A.access_size represents the effect of two individual writes
281    to nearby locations, the pair breaks the assumption if those writes
282    occur either side of the access for DR_B.
283 
284    Note that DR_ALIAS_ARBITRARY describes whether the ordering assumption
285    fails to hold for any individual pair in P.  If the assumption *does*
286    hold for every pair in P, it doesn't matter whether it holds for the
287    composite pair or not.  In other words, P should represent the complete
288    set of pairs that the composite pair is testing, so only the ordering
289    of two accesses in the same member of P matters.  */
290 const unsigned int DR_ALIAS_RAW = 1U << 0;
291 const unsigned int DR_ALIAS_WAR = 1U << 1;
292 const unsigned int DR_ALIAS_WAW = 1U << 2;
293 const unsigned int DR_ALIAS_ARBITRARY = 1U << 3;
294 const unsigned int DR_ALIAS_SWAPPED = 1U << 4;
295 const unsigned int DR_ALIAS_UNSWAPPED = 1U << 5;
296 const unsigned int DR_ALIAS_MIXED_STEPS = 1U << 6;
297 
298 /* This struct contains two dr_with_seg_len objects with aliasing data
299    refs.  Two comparisons are generated from them.  */
300 
301 class dr_with_seg_len_pair_t
302 {
303 public:
304   /* WELL_ORDERED indicates that the ordering assumption described above
305      DR_ALIAS_ARBITRARY holds.  REORDERED indicates that it doesn't.  */
306   enum sequencing { WELL_ORDERED, REORDERED };
307 
308   dr_with_seg_len_pair_t (const dr_with_seg_len &,
309 			  const dr_with_seg_len &, sequencing);
310 
311   dr_with_seg_len first;
312   dr_with_seg_len second;
313   unsigned int flags;
314 };
315 
316 inline dr_with_seg_len_pair_t::
dr_with_seg_len_pair_t(const dr_with_seg_len & d1,const dr_with_seg_len & d2,sequencing seq)317 dr_with_seg_len_pair_t (const dr_with_seg_len &d1, const dr_with_seg_len &d2,
318 			sequencing seq)
319   : first (d1), second (d2), flags (0)
320 {
321   if (DR_IS_READ (d1.dr) && DR_IS_WRITE (d2.dr))
322     flags |= DR_ALIAS_WAR;
323   else if (DR_IS_WRITE (d1.dr) && DR_IS_READ (d2.dr))
324     flags |= DR_ALIAS_RAW;
325   else if (DR_IS_WRITE (d1.dr) && DR_IS_WRITE (d2.dr))
326     flags |= DR_ALIAS_WAW;
327   else
328     gcc_unreachable ();
329   if (seq == REORDERED)
330     flags |= DR_ALIAS_ARBITRARY;
331 }
332 
333 enum data_dependence_direction {
334   dir_positive,
335   dir_negative,
336   dir_equal,
337   dir_positive_or_negative,
338   dir_positive_or_equal,
339   dir_negative_or_equal,
340   dir_star,
341   dir_independent
342 };
343 
344 /* The description of the grid of iterations that overlap.  At most
345    two loops are considered at the same time just now, hence at most
346    two functions are needed.  For each of the functions, we store
347    the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
348    where x, y, ... are variables.  */
349 
350 #define MAX_DIM 2
351 
352 /* Special values of N.  */
353 #define NO_DEPENDENCE 0
354 #define NOT_KNOWN (MAX_DIM + 1)
355 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
356 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
357 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
358 
359 typedef vec<tree> affine_fn;
360 
361 struct conflict_function
362 {
363   unsigned n;
364   affine_fn fns[MAX_DIM];
365 };
366 
367 /* What is a subscript?  Given two array accesses a subscript is the
368    tuple composed of the access functions for a given dimension.
369    Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
370    subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
371    are stored in the data_dependence_relation structure under the form
372    of an array of subscripts.  */
373 
374 struct subscript
375 {
376   /* The access functions of the two references.  */
377   tree access_fn[2];
378 
379   /* A description of the iterations for which the elements are
380      accessed twice.  */
381   conflict_function *conflicting_iterations_in_a;
382   conflict_function *conflicting_iterations_in_b;
383 
384   /* This field stores the information about the iteration domain
385      validity of the dependence relation.  */
386   tree last_conflict;
387 
388   /* Distance from the iteration that access a conflicting element in
389      A to the iteration that access this same conflicting element in
390      B.  The distance is a tree scalar expression, i.e. a constant or a
391      symbolic expression, but certainly not a chrec function.  */
392   tree distance;
393 };
394 
395 typedef struct subscript *subscript_p;
396 
397 #define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
398 #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
399 #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
400 #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
401 #define SUB_DISTANCE(SUB) (SUB)->distance
402 
403 /* A data_dependence_relation represents a relation between two
404    data_references A and B.  */
405 
406 struct data_dependence_relation
407 {
408 
409   struct data_reference *a;
410   struct data_reference *b;
411 
412   /* A "yes/no/maybe" field for the dependence relation:
413 
414      - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
415        relation between A and B, and the description of this relation
416        is given in the SUBSCRIPTS array,
417 
418      - when "ARE_DEPENDENT == chrec_known", there is no dependence and
419        SUBSCRIPTS is empty,
420 
421      - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
422        but the analyzer cannot be more specific.  */
423   tree are_dependent;
424 
425   /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are
426      independent when the runtime addresses of OBJECT_A and OBJECT_B
427      are different.  The addresses of both objects are invariant in the
428      loop nest.  */
429   tree object_a;
430   tree object_b;
431 
432   /* For each subscript in the dependence test, there is an element in
433      this array.  This is the attribute that labels the edge A->B of
434      the data_dependence_relation.  */
435   vec<subscript_p> subscripts;
436 
437   /* The analyzed loop nest.  */
438   vec<loop_p> loop_nest;
439 
440   /* The classic direction vector.  */
441   vec<lambda_vector> dir_vects;
442 
443   /* The classic distance vector.  */
444   vec<lambda_vector> dist_vects;
445 
446   /* Is the dependence reversed with respect to the lexicographic order?  */
447   bool reversed_p;
448 
449   /* When the dependence relation is affine, it can be represented by
450      a distance vector.  */
451   bool affine_p;
452 
453   /* Set to true when the dependence relation is on the same data
454      access.  */
455   bool self_reference_p;
456 
457   /* True if the dependence described is conservatively correct rather
458      than exact, and if it is still possible for the accesses to be
459      conditionally independent.  For example, the a and b references in:
460 
461        struct s *a, *b;
462        for (int i = 0; i < n; ++i)
463          a->f[i] += b->f[i];
464 
465      conservatively have a distance vector of (0), for the case in which
466      a == b, but the accesses are independent if a != b.  Similarly,
467      the a and b references in:
468 
469        struct s *a, *b;
470        for (int i = 0; i < n; ++i)
471          a[0].f[i] += b[i].f[i];
472 
473      conservatively have a distance vector of (0), but they are indepenent
474      when a != b + i.  In contrast, the references in:
475 
476        struct s *a;
477        for (int i = 0; i < n; ++i)
478          a->f[i] += a->f[i];
479 
480      have the same distance vector of (0), but the accesses can never be
481      independent.  */
482   bool could_be_independent_p;
483 };
484 
485 typedef struct data_dependence_relation *ddr_p;
486 
487 #define DDR_A(DDR) (DDR)->a
488 #define DDR_B(DDR) (DDR)->b
489 #define DDR_AFFINE_P(DDR) (DDR)->affine_p
490 #define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
491 #define DDR_OBJECT_A(DDR) (DDR)->object_a
492 #define DDR_OBJECT_B(DDR) (DDR)->object_b
493 #define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
494 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
495 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
496 
497 #define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
498 /* The size of the direction/distance vectors: the number of loops in
499    the loop nest.  */
500 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
501 #define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
502 
503 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
504 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
505 #define DDR_NUM_DIST_VECTS(DDR) \
506   (DDR_DIST_VECTS (DDR).length ())
507 #define DDR_NUM_DIR_VECTS(DDR) \
508   (DDR_DIR_VECTS (DDR).length ())
509 #define DDR_DIR_VECT(DDR, I) \
510   DDR_DIR_VECTS (DDR)[I]
511 #define DDR_DIST_VECT(DDR, I) \
512   DDR_DIST_VECTS (DDR)[I]
513 #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
514 #define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
515 
516 
517 opt_result dr_analyze_innermost (innermost_loop_behavior *, tree,
518 				 class loop *, const gimple *);
519 extern bool compute_data_dependences_for_loop (class loop *, bool,
520 					       vec<loop_p> *,
521 					       vec<data_reference_p> *,
522 					       vec<ddr_p> *);
523 extern void debug_ddrs (vec<ddr_p> );
524 extern void dump_data_reference (FILE *, struct data_reference *);
525 extern void debug (data_reference &ref);
526 extern void debug (data_reference *ptr);
527 extern void debug_data_reference (struct data_reference *);
528 extern void debug_data_references (vec<data_reference_p> );
529 extern void debug (vec<data_reference_p> &ref);
530 extern void debug (vec<data_reference_p> *ptr);
531 extern void debug_data_dependence_relation (struct data_dependence_relation *);
532 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
533 extern void debug (vec<ddr_p> &ref);
534 extern void debug (vec<ddr_p> *ptr);
535 extern void debug_data_dependence_relations (vec<ddr_p> );
536 extern void free_dependence_relation (struct data_dependence_relation *);
537 extern void free_dependence_relations (vec<ddr_p> );
538 extern void free_data_ref (data_reference_p);
539 extern void free_data_refs (vec<data_reference_p> );
540 extern opt_result find_data_references_in_stmt (class loop *, gimple *,
541 						vec<data_reference_p> *);
542 extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *,
543 						   vec<data_reference_p> *);
544 tree find_data_references_in_loop (class loop *, vec<data_reference_p> *);
545 bool loop_nest_has_data_refs (loop_p loop);
546 struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool,
547 					bool);
548 extern bool find_loop_nest (class loop *, vec<loop_p> *);
549 extern struct data_dependence_relation *initialize_data_dependence_relation
550      (struct data_reference *, struct data_reference *, vec<loop_p>);
551 extern void compute_affine_dependence (struct data_dependence_relation *,
552 				       loop_p);
553 extern void compute_self_dependence (struct data_dependence_relation *);
554 extern bool compute_all_dependences (vec<data_reference_p> ,
555 				     vec<ddr_p> *,
556 				     vec<loop_p>, bool);
557 extern tree find_data_references_in_bb (class loop *, basic_block,
558                                         vec<data_reference_p> *);
559 extern unsigned int dr_alignment (innermost_loop_behavior *);
560 extern tree get_base_for_alignment (tree, unsigned int *);
561 
562 /* Return the alignment in bytes that DR is guaranteed to have at all
563    times.  */
564 
565 inline unsigned int
dr_alignment(data_reference * dr)566 dr_alignment (data_reference *dr)
567 {
568   return dr_alignment (&DR_INNERMOST (dr));
569 }
570 
571 extern bool dr_may_alias_p (const struct data_reference *,
572 			    const struct data_reference *, class loop *);
573 extern bool dr_equal_offsets_p (struct data_reference *,
574                                 struct data_reference *);
575 
576 extern opt_result runtime_alias_check_p (ddr_p, class loop *, bool);
577 extern int data_ref_compare_tree (tree, tree);
578 extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
579 					   poly_uint64);
580 extern void create_runtime_alias_checks (class loop *,
581 					 vec<dr_with_seg_len_pair_t> *, tree*);
582 extern tree dr_direction_indicator (struct data_reference *);
583 extern tree dr_zero_step_indicator (struct data_reference *);
584 extern bool dr_known_forward_stride_p (struct data_reference *);
585 
586 /* Return true when the base objects of data references A and B are
587    the same memory object.  */
588 
589 static inline bool
same_data_refs_base_objects(data_reference_p a,data_reference_p b)590 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
591 {
592   return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
593     && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
594 }
595 
596 /* Return true when the data references A and B are accessing the same
597    memory object with the same access functions.  */
598 
599 static inline bool
same_data_refs(data_reference_p a,data_reference_p b)600 same_data_refs (data_reference_p a, data_reference_p b)
601 {
602   unsigned int i;
603 
604   /* The references are exactly the same.  */
605   if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
606     return true;
607 
608   if (!same_data_refs_base_objects (a, b))
609     return false;
610 
611   for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
612     if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
613       return false;
614 
615   return true;
616 }
617 
618 /* Returns true when all the dependences are computable.  */
619 
620 inline bool
known_dependences_p(vec<ddr_p> dependence_relations)621 known_dependences_p (vec<ddr_p> dependence_relations)
622 {
623   ddr_p ddr;
624   unsigned int i;
625 
626   FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
627     if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
628       return false;
629 
630   return true;
631 }
632 
633 /* Returns the dependence level for a vector DIST of size LENGTH.
634    LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
635    to the sequence of statements, not carried by any loop.  */
636 
637 static inline unsigned
dependence_level(lambda_vector dist_vect,int length)638 dependence_level (lambda_vector dist_vect, int length)
639 {
640   int i;
641 
642   for (i = 0; i < length; i++)
643     if (dist_vect[i] != 0)
644       return i + 1;
645 
646   return 0;
647 }
648 
649 /* Return the dependence level for the DDR relation.  */
650 
651 static inline unsigned
ddr_dependence_level(ddr_p ddr)652 ddr_dependence_level (ddr_p ddr)
653 {
654   unsigned vector;
655   unsigned level = 0;
656 
657   if (DDR_DIST_VECTS (ddr).exists ())
658     level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
659 
660   for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
661     level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
662 					  DDR_NB_LOOPS (ddr)));
663   return level;
664 }
665 
666 /* Return the index of the variable VAR in the LOOP_NEST array.  */
667 
668 static inline int
index_in_loop_nest(int var,vec<loop_p> loop_nest)669 index_in_loop_nest (int var, vec<loop_p> loop_nest)
670 {
671   class loop *loopi;
672   int var_index;
673 
674   for (var_index = 0; loop_nest.iterate (var_index, &loopi); var_index++)
675     if (loopi->num == var)
676       return var_index;
677 
678   gcc_unreachable ();
679 }
680 
681 /* Returns true when the data reference DR the form "A[i] = ..."
682    with a stride equal to its unit type size.  */
683 
684 static inline bool
adjacent_dr_p(struct data_reference * dr)685 adjacent_dr_p (struct data_reference *dr)
686 {
687   /* If this is a bitfield store bail out.  */
688   if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
689       && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
690     return false;
691 
692   if (!DR_STEP (dr)
693       || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
694     return false;
695 
696   return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
697 					 DR_STEP (dr)),
698 			     TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
699 }
700 
701 void split_constant_offset (tree , tree *, tree *);
702 
703 /* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
704 
705 static inline lambda_int
lambda_vector_gcd(lambda_vector vector,int size)706 lambda_vector_gcd (lambda_vector vector, int size)
707 {
708   int i;
709   lambda_int gcd1 = 0;
710 
711   if (size > 0)
712     {
713       gcd1 = vector[0];
714       for (i = 1; i < size; i++)
715 	gcd1 = gcd (gcd1, vector[i]);
716     }
717   return gcd1;
718 }
719 
720 /* Allocate a new vector of given SIZE.  */
721 
722 static inline lambda_vector
lambda_vector_new(int size)723 lambda_vector_new (int size)
724 {
725   /* ???  We shouldn't abuse the GC allocator here.  */
726   return ggc_cleared_vec_alloc<lambda_int> (size);
727 }
728 
729 /* Clear out vector VEC1 of length SIZE.  */
730 
731 static inline void
lambda_vector_clear(lambda_vector vec1,int size)732 lambda_vector_clear (lambda_vector vec1, int size)
733 {
734   memset (vec1, 0, size * sizeof (*vec1));
735 }
736 
737 /* Returns true when the vector V is lexicographically positive, in
738    other words, when the first nonzero element is positive.  */
739 
740 static inline bool
lambda_vector_lexico_pos(lambda_vector v,unsigned n)741 lambda_vector_lexico_pos (lambda_vector v,
742 			  unsigned n)
743 {
744   unsigned i;
745   for (i = 0; i < n; i++)
746     {
747       if (v[i] == 0)
748 	continue;
749       if (v[i] < 0)
750 	return false;
751       if (v[i] > 0)
752 	return true;
753     }
754   return true;
755 }
756 
757 /* Return true if vector VEC1 of length SIZE is the zero vector.  */
758 
759 static inline bool
lambda_vector_zerop(lambda_vector vec1,int size)760 lambda_vector_zerop (lambda_vector vec1, int size)
761 {
762   int i;
763   for (i = 0; i < size; i++)
764     if (vec1[i] != 0)
765       return false;
766   return true;
767 }
768 
769 /* Allocate a matrix of M rows x  N cols.  */
770 
771 static inline lambda_matrix
lambda_matrix_new(int m,int n,struct obstack * lambda_obstack)772 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
773 {
774   lambda_matrix mat;
775   int i;
776 
777   mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
778 
779   for (i = 0; i < m; i++)
780     mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n);
781 
782   return mat;
783 }
784 
785 #endif  /* GCC_TREE_DATA_REF_H  */
786