1 /* Generic routines for manipulating SSA_NAME expressions
2    Copyright (C) 2003-2021 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "tree-pass.h"
27 #include "ssa.h"
28 #include "gimple-iterator.h"
29 #include "stor-layout.h"
30 #include "tree-into-ssa.h"
31 #include "tree-ssa.h"
32 #include "cfgloop.h"
33 #include "tree-scalar-evolution.h"
34 
35 /* Rewriting a function into SSA form can create a huge number of SSA_NAMEs,
36    many of which may be thrown away shortly after their creation if jumps
37    were threaded through PHI nodes.
38 
39    While our garbage collection mechanisms will handle this situation, it
40    is extremely wasteful to create nodes and throw them away, especially
41    when the nodes can be reused.
42 
43    For PR 8361, we can significantly reduce the number of nodes allocated
44    and thus the total amount of memory allocated by managing SSA_NAMEs a
45    little.  This additionally helps reduce the amount of work done by the
46    garbage collector.  Similar results have been seen on a wider variety
47    of tests (such as the compiler itself).
48 
49    Right now we maintain our free list on a per-function basis.  It may
50    or may not make sense to maintain the free list for the duration of
51    a compilation unit.
52 
53    External code should rely solely upon HIGHEST_SSA_VERSION and the
54    externally defined functions.  External code should not know about
55    the details of the free list management.
56 
57    External code should also not assume the version number on nodes is
58    monotonically increasing.  We reuse the version number when we
59    reuse an SSA_NAME expression.  This helps keep arrays and bitmaps
60    more compact.  */
61 
62 
63 /* Version numbers with special meanings.  We start allocating new version
64    numbers after the special ones.  */
65 #define UNUSED_NAME_VERSION 0
66 
67 unsigned int ssa_name_nodes_reused;
68 unsigned int ssa_name_nodes_created;
69 
70 #define FREE_SSANAMES(fun) (fun)->gimple_df->free_ssanames
71 #define FREE_SSANAMES_QUEUE(fun) (fun)->gimple_df->free_ssanames_queue
72 
73 
74 /* Initialize management of SSA_NAMEs to default SIZE.  If SIZE is
75    zero use default.  */
76 
77 void
init_ssanames(struct function * fn,int size)78 init_ssanames (struct function *fn, int size)
79 {
80   if (!size)
81     vec_alloc (SSANAMES (fn), 50);
82   else
83     vec_safe_reserve (SSANAMES (fn), size, true);
84 
85   /* Version 0 is special, so reserve the first slot in the table.  Though
86      currently unused, we may use version 0 in alias analysis as part of
87      the heuristics used to group aliases when the alias sets are too
88      large.
89 
90      We use vec::quick_push here because we know that SSA_NAMES has at
91      least 50 elements reserved in it.  */
92   SSANAMES (fn)->quick_push (NULL_TREE);
93   FREE_SSANAMES (fn) = NULL;
94   FREE_SSANAMES_QUEUE (fn) = NULL;
95 
96   fn->gimple_df->ssa_renaming_needed = 0;
97   fn->gimple_df->rename_vops = 0;
98 }
99 
100 /* Finalize management of SSA_NAMEs.  */
101 
102 void
fini_ssanames(struct function * fn)103 fini_ssanames (struct function *fn)
104 {
105   unsigned i;
106   tree name;
107   /* Some SSA names leak into global tree data structures so we can't simply
108      ggc_free them.  But make sure to clear references to stmts since we now
109      ggc_free the CFG itself.  */
110   FOR_EACH_VEC_SAFE_ELT (SSANAMES (fn), i, name)
111     if (name)
112       SSA_NAME_DEF_STMT (name) = NULL;
113   vec_free (SSANAMES (fn));
114   vec_free (FREE_SSANAMES (fn));
115   vec_free (FREE_SSANAMES_QUEUE (fn));
116 }
117 
118 /* Dump some simple statistics regarding the re-use of SSA_NAME nodes.  */
119 
120 void
ssanames_print_statistics(void)121 ssanames_print_statistics (void)
122 {
123   fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes allocated:",
124 	   SIZE_AMOUNT (ssa_name_nodes_created));
125   fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes reused:",
126 	   SIZE_AMOUNT (ssa_name_nodes_reused));
127 }
128 
129 /* Verify the state of the SSA_NAME lists.
130 
131    There must be no duplicates on the free list.
132    Every name on the free list must be marked as on the free list.
133    Any name on the free list must not appear in the IL.
134    No names can be leaked.  */
135 
136 DEBUG_FUNCTION void
verify_ssaname_freelists(struct function * fun)137 verify_ssaname_freelists (struct function *fun)
138 {
139   if (!gimple_in_ssa_p (fun))
140     return;
141 
142   auto_bitmap names_in_il;
143 
144   /* Walk the entire IL noting every SSA_NAME we see.  */
145   basic_block bb;
146   FOR_EACH_BB_FN (bb, fun)
147     {
148       tree t;
149       /* First note the result and arguments of PHI nodes.  */
150       for (gphi_iterator gsi = gsi_start_phis (bb);
151 	   !gsi_end_p (gsi);
152 	   gsi_next (&gsi))
153 	{
154 	  gphi *phi = gsi.phi ();
155 	  t = gimple_phi_result (phi);
156 	  bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
157 
158 	  for (unsigned int i = 0; i < gimple_phi_num_args (phi); i++)
159 	    {
160 	      t = gimple_phi_arg_def (phi, i);
161 	      if (TREE_CODE (t) == SSA_NAME)
162 		bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
163 	    }
164 	}
165 
166       /* Then note the operands of each statement.  */
167       for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
168 	   !gsi_end_p (gsi);
169 	   gsi_next (&gsi))
170 	{
171 	  ssa_op_iter iter;
172 	  gimple *stmt = gsi_stmt (gsi);
173 	  FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, SSA_OP_ALL_OPERANDS)
174 	    bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
175 	}
176     }
177 
178   /* Now walk the free list noting what we find there and verifying
179      there are no duplicates.  */
180   auto_bitmap names_in_freelists;
181   if (FREE_SSANAMES (fun))
182     {
183       for (unsigned int i = 0; i < FREE_SSANAMES (fun)->length (); i++)
184 	{
185 	  tree t = (*FREE_SSANAMES (fun))[i];
186 
187 	  /* Verify that the name is marked as being in the free list.  */
188 	  gcc_assert (SSA_NAME_IN_FREE_LIST (t));
189 
190 	  /* Verify the name has not already appeared in the free list and
191 	     note it in the list of names found in the free list.  */
192 	  gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t)));
193 	  bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t));
194 	}
195     }
196 
197   /* Similarly for the names in the pending free list.  */
198   if (FREE_SSANAMES_QUEUE (fun))
199     {
200       for (unsigned int i = 0; i < FREE_SSANAMES_QUEUE (fun)->length (); i++)
201 	{
202 	  tree t = (*FREE_SSANAMES_QUEUE (fun))[i];
203 
204 	  /* Verify that the name is marked as being in the free list.  */
205 	  gcc_assert (SSA_NAME_IN_FREE_LIST (t));
206 
207 	  /* Verify the name has not already appeared in the free list and
208 	     note it in the list of names found in the free list.  */
209 	  gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t)));
210 	  bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t));
211 	}
212     }
213 
214   /* If any name appears in both the IL and the freelists, then
215      something horrible has happened.  */
216   bool intersect_p = bitmap_intersect_p (names_in_il, names_in_freelists);
217   gcc_assert (!intersect_p);
218 
219   /* Names can be queued up for release if there is an ssa update
220      pending.  Pretend we saw them in the IL.  */
221   if (names_to_release)
222     bitmap_ior_into (names_in_il, names_to_release);
223 
224   /* Function splitting can "lose" SSA_NAMEs in an effort to ensure that
225      debug/non-debug compilations have the same SSA_NAMEs.  So for each
226      lost SSA_NAME, see if it's likely one from that wart.  These will always
227      be marked as default definitions.  So we loosely assume that anything
228      marked as a default definition isn't leaked by pretending they are
229      in the IL.  */
230   for (unsigned int i = UNUSED_NAME_VERSION + 1; i < num_ssa_names; i++)
231     if (ssa_name (i) && SSA_NAME_IS_DEFAULT_DEF (ssa_name (i)))
232       bitmap_set_bit (names_in_il, i);
233 
234   unsigned int i;
235   bitmap_iterator bi;
236   auto_bitmap all_names;
237   bitmap_set_range (all_names, UNUSED_NAME_VERSION + 1, num_ssa_names - 1);
238   bitmap_ior_into (names_in_il, names_in_freelists);
239 
240   /* Any name not mentioned in the IL and not in the feelists
241      has been leaked.  */
242   EXECUTE_IF_AND_COMPL_IN_BITMAP(all_names, names_in_il,
243 				 UNUSED_NAME_VERSION + 1, i, bi)
244     gcc_assert (!ssa_name (i));
245 }
246 
247 /* Move all SSA_NAMEs from FREE_SSA_NAMES_QUEUE to FREE_SSA_NAMES.
248 
249    We do not, but should have a mode to verify the state of the SSA_NAMEs
250    lists.  In particular at this point every name must be in the IL,
251    on the free list or in the queue.  Anything else is an error.  */
252 
253 void
flush_ssaname_freelist(void)254 flush_ssaname_freelist (void)
255 {
256   /* If there were any SSA names released reset the SCEV cache.  */
257   if (! vec_safe_is_empty (FREE_SSANAMES_QUEUE (cfun)))
258     scev_reset_htab ();
259   vec_safe_splice (FREE_SSANAMES (cfun), FREE_SSANAMES_QUEUE (cfun));
260   vec_safe_truncate (FREE_SSANAMES_QUEUE (cfun), 0);
261 }
262 
263 /* Initialize SSA_NAME_IMM_USE_NODE of a SSA NAME.  */
264 
265 void
init_ssa_name_imm_use(tree name)266 init_ssa_name_imm_use (tree name)
267 {
268   use_operand_p imm;
269   imm = &(SSA_NAME_IMM_USE_NODE (name));
270   imm->use = NULL;
271   imm->prev = imm;
272   imm->next = imm;
273   imm->loc.ssa_name = name;
274 }
275 
276 /* Return an SSA_NAME node for variable VAR defined in statement STMT
277    in function FN.  STMT may be an empty statement for artificial
278    references (e.g., default definitions created when a variable is
279    used without a preceding definition).  If VERISON is not zero then
280    allocate the SSA name with that version.  */
281 
282 tree
make_ssa_name_fn(struct function * fn,tree var,gimple * stmt,unsigned int version)283 make_ssa_name_fn (struct function *fn, tree var, gimple *stmt,
284 		  unsigned int version)
285 {
286   tree t;
287   gcc_assert (VAR_P (var)
288 	      || TREE_CODE (var) == PARM_DECL
289 	      || TREE_CODE (var) == RESULT_DECL
290 	      || (TYPE_P (var) && is_gimple_reg_type (var)));
291 
292   /* Get the specified SSA name version.  */
293   if (version != 0)
294     {
295       t = make_node (SSA_NAME);
296       SSA_NAME_VERSION (t) = version;
297       if (version >= SSANAMES (fn)->length ())
298 	vec_safe_grow_cleared (SSANAMES (fn), version + 1, true);
299       gcc_assert ((*SSANAMES (fn))[version] == NULL);
300       (*SSANAMES (fn))[version] = t;
301       ssa_name_nodes_created++;
302     }
303   /* If our free list has an element, then use it.  */
304   else if (!vec_safe_is_empty (FREE_SSANAMES (fn)))
305     {
306       t = FREE_SSANAMES (fn)->pop ();
307       ssa_name_nodes_reused++;
308 
309       /* The node was cleared out when we put it on the free list, so
310 	 there is no need to do so again here.  */
311       gcc_assert ((*SSANAMES (fn))[SSA_NAME_VERSION (t)] == NULL);
312       (*SSANAMES (fn))[SSA_NAME_VERSION (t)] = t;
313     }
314   else
315     {
316       t = make_node (SSA_NAME);
317       SSA_NAME_VERSION (t) = SSANAMES (fn)->length ();
318       vec_safe_push (SSANAMES (fn), t);
319       ssa_name_nodes_created++;
320     }
321 
322   if (TYPE_P (var))
323     {
324       TREE_TYPE (t) = TYPE_MAIN_VARIANT (var);
325       SET_SSA_NAME_VAR_OR_IDENTIFIER (t, NULL_TREE);
326     }
327   else
328     {
329       TREE_TYPE (t) = TREE_TYPE (var);
330       SET_SSA_NAME_VAR_OR_IDENTIFIER (t, var);
331     }
332   SSA_NAME_DEF_STMT (t) = stmt;
333   if (POINTER_TYPE_P (TREE_TYPE (t)))
334     SSA_NAME_PTR_INFO (t) = NULL;
335   else
336     SSA_NAME_RANGE_INFO (t) = NULL;
337 
338   SSA_NAME_IN_FREE_LIST (t) = 0;
339   SSA_NAME_IS_DEFAULT_DEF (t) = 0;
340   init_ssa_name_imm_use (t);
341 
342   return t;
343 }
344 
345 /* Helper function for set_range_info.
346 
347    Store range information RANGE_TYPE, MIN, and MAX to tree ssa_name
348    NAME.  */
349 
350 void
set_range_info_raw(tree name,enum value_range_kind range_type,const wide_int_ref & min,const wide_int_ref & max)351 set_range_info_raw (tree name, enum value_range_kind range_type,
352 		    const wide_int_ref &min, const wide_int_ref &max)
353 {
354   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
355   gcc_assert (range_type == VR_RANGE || range_type == VR_ANTI_RANGE);
356   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
357   unsigned int precision = TYPE_PRECISION (TREE_TYPE (name));
358 
359   /* Allocate if not available.  */
360   if (ri == NULL)
361     {
362       size_t size = (sizeof (range_info_def)
363 		     + trailing_wide_ints <3>::extra_size (precision));
364       ri = static_cast<range_info_def *> (ggc_internal_alloc (size));
365       ri->ints.set_precision (precision);
366       SSA_NAME_RANGE_INFO (name) = ri;
367       ri->set_nonzero_bits (wi::shwi (-1, precision));
368     }
369 
370   /* Record the range type.  */
371   if (SSA_NAME_RANGE_TYPE (name) != range_type)
372     SSA_NAME_ANTI_RANGE_P (name) = (range_type == VR_ANTI_RANGE);
373 
374   /* Set the values.  */
375   ri->set_min (min);
376   ri->set_max (max);
377 
378   /* If it is a range, try to improve nonzero_bits from the min/max.  */
379   if (range_type == VR_RANGE)
380     {
381       wide_int xorv = ri->get_min () ^ ri->get_max ();
382       if (xorv != 0)
383 	xorv = wi::mask (precision - wi::clz (xorv), false, precision);
384       ri->set_nonzero_bits (ri->get_nonzero_bits () & (ri->get_min () | xorv));
385     }
386 }
387 
388 /* Store range information RANGE_TYPE, MIN, and MAX to tree ssa_name
389    NAME while making sure we don't store useless range info.  */
390 
391 void
set_range_info(tree name,enum value_range_kind range_type,const wide_int_ref & min,const wide_int_ref & max)392 set_range_info (tree name, enum value_range_kind range_type,
393 		const wide_int_ref &min, const wide_int_ref &max)
394 {
395   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
396 
397   /* A range of the entire domain is really no range at all.  */
398   tree type = TREE_TYPE (name);
399   if (min == wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type))
400       && max == wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
401     {
402       range_info_def *ri = SSA_NAME_RANGE_INFO (name);
403       if (ri == NULL)
404 	return;
405       if (ri->get_nonzero_bits () == -1)
406 	{
407 	  ggc_free (ri);
408 	  SSA_NAME_RANGE_INFO (name) = NULL;
409 	  return;
410 	}
411     }
412 
413   set_range_info_raw (name, range_type, min, max);
414 }
415 
416 /* Store range information for NAME from a value_range.  */
417 
418 void
set_range_info(tree name,const value_range & vr)419 set_range_info (tree name, const value_range &vr)
420 {
421   wide_int min = wi::to_wide (vr.min ());
422   wide_int max = wi::to_wide (vr.max ());
423   set_range_info (name, vr.kind (), min, max);
424 }
425 
426 /* Gets range information MIN, MAX and returns enum value_range_kind
427    corresponding to tree ssa_name NAME.  enum value_range_kind returned
428    is used to determine if MIN and MAX are valid values.  */
429 
430 enum value_range_kind
get_range_info(const_tree expr,wide_int * min,wide_int * max)431 get_range_info (const_tree expr, wide_int *min, wide_int *max)
432 {
433   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (expr)));
434   gcc_assert (min && max);
435   if (TREE_CODE (expr) == INTEGER_CST)
436     {
437       *min = wi::to_wide (expr);
438       *max = *min;
439       return VR_RANGE;
440     }
441   if (TREE_CODE (expr) != SSA_NAME)
442     return VR_VARYING;
443 
444   range_info_def *ri = SSA_NAME_RANGE_INFO (expr);
445 
446   /* Return VR_VARYING for SSA_NAMEs with NULL RANGE_INFO or SSA_NAMEs
447      with integral types width > 2 * HOST_BITS_PER_WIDE_INT precision.  */
448   if (!ri || (GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (expr)))
449 	      > 2 * HOST_BITS_PER_WIDE_INT))
450     return VR_VARYING;
451 
452   *min = ri->get_min ();
453   *max = ri->get_max ();
454   return SSA_NAME_RANGE_TYPE (expr);
455 }
456 
457 /* Gets range information corresponding to ssa_name NAME and stores it
458    in a value_range VR.  Returns the value_range_kind.  */
459 
460 enum value_range_kind
get_range_info(const_tree name,irange & vr)461 get_range_info (const_tree name, irange &vr)
462 {
463   tree min, max;
464   wide_int wmin, wmax;
465   enum value_range_kind kind = get_range_info (name, &wmin, &wmax);
466 
467   if (kind == VR_VARYING)
468     vr.set_varying (TREE_TYPE (name));
469   else if (kind == VR_UNDEFINED)
470     vr.set_undefined ();
471   else
472     {
473       min = wide_int_to_tree (TREE_TYPE (name), wmin);
474       max = wide_int_to_tree (TREE_TYPE (name), wmax);
475       vr.set (min, max, kind);
476     }
477   return kind;
478 }
479 
480 /* Set nonnull attribute to pointer NAME.  */
481 
482 void
set_ptr_nonnull(tree name)483 set_ptr_nonnull (tree name)
484 {
485   gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
486   struct ptr_info_def *pi = get_ptr_info (name);
487   pi->pt.null = 0;
488 }
489 
490 /* Return nonnull attribute of pointer NAME.  */
491 bool
get_ptr_nonnull(const_tree name)492 get_ptr_nonnull (const_tree name)
493 {
494   gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
495   struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
496   if (pi == NULL)
497     return false;
498   /* TODO Now pt->null is conservatively set to true in PTA
499      analysis. vrp is the only pass (including ipa-vrp)
500      that clears pt.null via set_ptr_nonull when it knows
501      for sure. PTA will preserves the pt.null value set by VRP.
502 
503      When PTA analysis is improved, pt.anything, pt.nonlocal
504      and pt.escaped may also has to be considered before
505      deciding that pointer cannot point to NULL.  */
506   return !pi->pt.null;
507 }
508 
509 /* Change non-zero bits bitmask of NAME.  */
510 
511 void
set_nonzero_bits(tree name,const wide_int_ref & mask)512 set_nonzero_bits (tree name, const wide_int_ref &mask)
513 {
514   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
515   if (SSA_NAME_RANGE_INFO (name) == NULL)
516     {
517       if (mask == -1)
518 	return;
519       set_range_info_raw (name, VR_RANGE,
520 			  wi::to_wide (TYPE_MIN_VALUE (TREE_TYPE (name))),
521 			  wi::to_wide (TYPE_MAX_VALUE (TREE_TYPE (name))));
522     }
523   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
524   ri->set_nonzero_bits (mask);
525 }
526 
527 /* Return a widest_int with potentially non-zero bits in SSA_NAME
528    NAME, the constant for INTEGER_CST, or -1 if unknown.  */
529 
530 wide_int
get_nonzero_bits(const_tree name)531 get_nonzero_bits (const_tree name)
532 {
533   if (TREE_CODE (name) == INTEGER_CST)
534     return wi::to_wide (name);
535 
536   /* Use element_precision instead of TYPE_PRECISION so complex and
537      vector types get a non-zero precision.  */
538   unsigned int precision = element_precision (TREE_TYPE (name));
539   if (POINTER_TYPE_P (TREE_TYPE (name)))
540     {
541       struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
542       if (pi && pi->align)
543 	return wi::shwi (-(HOST_WIDE_INT) pi->align
544 			 | (HOST_WIDE_INT) pi->misalign, precision);
545       return wi::shwi (-1, precision);
546     }
547 
548   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
549   if (!ri)
550     return wi::shwi (-1, precision);
551 
552   return ri->get_nonzero_bits ();
553 }
554 
555 /* Return TRUE is OP, an SSA_NAME has a range of values [0..1], false
556    otherwise.
557 
558    This can be because it is a boolean type, any unsigned integral
559    type with a single bit of precision, or has known range of [0..1]
560    via VRP analysis.  */
561 
562 bool
ssa_name_has_boolean_range(tree op)563 ssa_name_has_boolean_range (tree op)
564 {
565   gcc_assert (TREE_CODE (op) == SSA_NAME);
566 
567   /* Boolean types always have a range [0..1].  */
568   if (TREE_CODE (TREE_TYPE (op)) == BOOLEAN_TYPE)
569     return true;
570 
571   /* An integral type with a single bit of precision.  */
572   if (INTEGRAL_TYPE_P (TREE_TYPE (op))
573       && TYPE_UNSIGNED (TREE_TYPE (op))
574       && TYPE_PRECISION (TREE_TYPE (op)) == 1)
575     return true;
576 
577   /* An integral type with more precision, but the object
578      only takes on values [0..1] as determined by VRP
579      analysis.  */
580   if (INTEGRAL_TYPE_P (TREE_TYPE (op))
581       && (TYPE_PRECISION (TREE_TYPE (op)) > 1)
582       && wi::eq_p (get_nonzero_bits (op), 1))
583     return true;
584 
585   return false;
586 }
587 
588 /* We no longer need the SSA_NAME expression VAR, release it so that
589    it may be reused.
590 
591    Note it is assumed that no calls to make_ssa_name will be made
592    until all uses of the ssa name are released and that the only
593    use of the SSA_NAME expression is to check its SSA_NAME_VAR.  All
594    other fields must be assumed clobbered.  */
595 
596 void
release_ssa_name_fn(struct function * fn,tree var)597 release_ssa_name_fn (struct function *fn, tree var)
598 {
599   if (!var)
600     return;
601 
602   /* Never release the default definition for a symbol.  It's a
603      special SSA name that should always exist once it's created.  */
604   if (SSA_NAME_IS_DEFAULT_DEF (var))
605     return;
606 
607   /* If VAR has been registered for SSA updating, don't remove it.
608      After update_ssa has run, the name will be released.  */
609   if (name_registered_for_update_p (var))
610     {
611       release_ssa_name_after_update_ssa (var);
612       return;
613     }
614 
615   /* release_ssa_name can be called multiple times on a single SSA_NAME.
616      However, it should only end up on our free list one time.   We
617      keep a status bit in the SSA_NAME node itself to indicate it has
618      been put on the free list.
619 
620      Note that once on the freelist you cannot reference the SSA_NAME's
621      defining statement.  */
622   if (! SSA_NAME_IN_FREE_LIST (var))
623     {
624       int saved_ssa_name_version = SSA_NAME_VERSION (var);
625       use_operand_p imm = &(SSA_NAME_IMM_USE_NODE (var));
626 
627       if (MAY_HAVE_DEBUG_BIND_STMTS)
628 	insert_debug_temp_for_var_def (NULL, var);
629 
630       if (flag_checking)
631 	verify_imm_links (stderr, var);
632       while (imm->next != imm)
633 	delink_imm_use (imm->next);
634 
635       (*SSANAMES (fn))[SSA_NAME_VERSION (var)] = NULL_TREE;
636       memset (var, 0, tree_size (var));
637 
638       imm->prev = imm;
639       imm->next = imm;
640       imm->loc.ssa_name = var;
641 
642       /* First put back the right tree node so that the tree checking
643 	 macros do not complain.  */
644       TREE_SET_CODE (var, SSA_NAME);
645 
646       /* Restore the version number.  */
647       SSA_NAME_VERSION (var) = saved_ssa_name_version;
648 
649       /* Note this SSA_NAME is now in the first list.  */
650       SSA_NAME_IN_FREE_LIST (var) = 1;
651 
652       /* Put in a non-NULL TREE_TYPE so dumping code will not ICE
653          if it happens to come along a released SSA name and tries
654 	 to inspect its type.  */
655       TREE_TYPE (var) = error_mark_node;
656 
657       /* And finally queue it so that it will be put on the free list.  */
658       vec_safe_push (FREE_SSANAMES_QUEUE (fn), var);
659     }
660 }
661 
662 /* If the alignment of the pointer described by PI is known, return true and
663    store the alignment and the deviation from it into *ALIGNP and *MISALIGNP
664    respectively.  Otherwise return false.  */
665 
666 bool
get_ptr_info_alignment(struct ptr_info_def * pi,unsigned int * alignp,unsigned int * misalignp)667 get_ptr_info_alignment (struct ptr_info_def *pi, unsigned int *alignp,
668 			unsigned int *misalignp)
669 {
670   if (pi->align)
671     {
672       *alignp = pi->align;
673       *misalignp = pi->misalign;
674       return true;
675     }
676   else
677     return false;
678 }
679 
680 /* State that the pointer described by PI has unknown alignment.  */
681 
682 void
mark_ptr_info_alignment_unknown(struct ptr_info_def * pi)683 mark_ptr_info_alignment_unknown (struct ptr_info_def *pi)
684 {
685   pi->align = 0;
686   pi->misalign = 0;
687 }
688 
689 /* Store the power-of-two byte alignment and the deviation from that
690    alignment of pointer described by PI to ALIOGN and MISALIGN
691    respectively.  */
692 
693 void
set_ptr_info_alignment(struct ptr_info_def * pi,unsigned int align,unsigned int misalign)694 set_ptr_info_alignment (struct ptr_info_def *pi, unsigned int align,
695 			    unsigned int misalign)
696 {
697   gcc_checking_assert (align != 0);
698   gcc_assert ((align & (align - 1)) == 0);
699   gcc_assert ((misalign & ~(align - 1)) == 0);
700 
701   pi->align = align;
702   pi->misalign = misalign;
703 }
704 
705 /* If pointer described by PI has known alignment, increase its known
706    misalignment by INCREMENT modulo its current alignment.  */
707 
708 void
adjust_ptr_info_misalignment(struct ptr_info_def * pi,poly_uint64 increment)709 adjust_ptr_info_misalignment (struct ptr_info_def *pi, poly_uint64 increment)
710 {
711   if (pi->align != 0)
712     {
713       increment += pi->misalign;
714       if (!known_misalignment (increment, pi->align, &pi->misalign))
715 	{
716 	  pi->align = known_alignment (increment);
717 	  pi->misalign = 0;
718 	}
719     }
720 }
721 
722 /* Return the alias information associated with pointer T.  It creates a
723    new instance if none existed.  */
724 
725 struct ptr_info_def *
get_ptr_info(tree t)726 get_ptr_info (tree t)
727 {
728   struct ptr_info_def *pi;
729 
730   gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));
731 
732   pi = SSA_NAME_PTR_INFO (t);
733   if (pi == NULL)
734     {
735       pi = ggc_cleared_alloc<ptr_info_def> ();
736       pt_solution_reset (&pi->pt);
737       mark_ptr_info_alignment_unknown (pi);
738       SSA_NAME_PTR_INFO (t) = pi;
739     }
740 
741   return pi;
742 }
743 
744 
745 /* Creates a new SSA name using the template NAME tobe defined by
746    statement STMT in function FN.  */
747 
748 tree
copy_ssa_name_fn(struct function * fn,tree name,gimple * stmt)749 copy_ssa_name_fn (struct function *fn, tree name, gimple *stmt)
750 {
751   tree new_name;
752 
753   if (SSA_NAME_VAR (name))
754     new_name = make_ssa_name_fn (fn, SSA_NAME_VAR (name), stmt);
755   else
756     {
757       new_name = make_ssa_name_fn (fn, TREE_TYPE (name), stmt);
758       SET_SSA_NAME_VAR_OR_IDENTIFIER (new_name, SSA_NAME_IDENTIFIER (name));
759     }
760 
761   return new_name;
762 }
763 
764 
765 /* Creates a duplicate of the ptr_info_def at PTR_INFO for use by
766    the SSA name NAME.  */
767 
768 void
duplicate_ssa_name_ptr_info(tree name,struct ptr_info_def * ptr_info)769 duplicate_ssa_name_ptr_info (tree name, struct ptr_info_def *ptr_info)
770 {
771   struct ptr_info_def *new_ptr_info;
772 
773   gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
774   gcc_assert (!SSA_NAME_PTR_INFO (name));
775 
776   if (!ptr_info)
777     return;
778 
779   new_ptr_info = ggc_alloc<ptr_info_def> ();
780   *new_ptr_info = *ptr_info;
781 
782   SSA_NAME_PTR_INFO (name) = new_ptr_info;
783 }
784 
785 /* Creates a duplicate of the range_info_def at RANGE_INFO of type
786    RANGE_TYPE for use by the SSA name NAME.  */
787 void
duplicate_ssa_name_range_info(tree name,enum value_range_kind range_type,struct range_info_def * range_info)788 duplicate_ssa_name_range_info (tree name, enum value_range_kind range_type,
789 			       struct range_info_def *range_info)
790 {
791   struct range_info_def *new_range_info;
792 
793   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
794   gcc_assert (!SSA_NAME_RANGE_INFO (name));
795 
796   if (!range_info)
797     return;
798 
799   unsigned int precision = TYPE_PRECISION (TREE_TYPE (name));
800   size_t size = (sizeof (range_info_def)
801 		 + trailing_wide_ints <3>::extra_size (precision));
802   new_range_info = static_cast<range_info_def *> (ggc_internal_alloc (size));
803   memcpy (new_range_info, range_info, size);
804 
805   gcc_assert (range_type == VR_RANGE || range_type == VR_ANTI_RANGE);
806   SSA_NAME_ANTI_RANGE_P (name) = (range_type == VR_ANTI_RANGE);
807   SSA_NAME_RANGE_INFO (name) = new_range_info;
808 }
809 
810 
811 
812 /* Creates a duplicate of a ssa name NAME tobe defined by statement STMT
813    in function FN.  */
814 
815 tree
duplicate_ssa_name_fn(struct function * fn,tree name,gimple * stmt)816 duplicate_ssa_name_fn (struct function *fn, tree name, gimple *stmt)
817 {
818   tree new_name = copy_ssa_name_fn (fn, name, stmt);
819   if (POINTER_TYPE_P (TREE_TYPE (name)))
820     {
821       struct ptr_info_def *old_ptr_info = SSA_NAME_PTR_INFO (name);
822 
823       if (old_ptr_info)
824 	duplicate_ssa_name_ptr_info (new_name, old_ptr_info);
825     }
826   else
827     {
828       struct range_info_def *old_range_info = SSA_NAME_RANGE_INFO (name);
829 
830       if (old_range_info)
831 	duplicate_ssa_name_range_info (new_name, SSA_NAME_RANGE_TYPE (name),
832 				       old_range_info);
833     }
834 
835   return new_name;
836 }
837 
838 
839 /* Reset all flow sensitive data on NAME such as range-info, nonzero
840    bits and alignment.  */
841 
842 void
reset_flow_sensitive_info(tree name)843 reset_flow_sensitive_info (tree name)
844 {
845   if (POINTER_TYPE_P (TREE_TYPE (name)))
846     {
847       /* points-to info is not flow-sensitive.  */
848       if (SSA_NAME_PTR_INFO (name))
849 	{
850 	  /* [E]VRP can derive context sensitive alignment info and
851 	     non-nullness properties.  We must reset both.  */
852 	  mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
853 	  SSA_NAME_PTR_INFO (name)->pt.null = 1;
854 	}
855     }
856   else
857     SSA_NAME_RANGE_INFO (name) = NULL;
858 }
859 
860 /* Clear all flow sensitive data from all statements and PHI definitions
861    in BB.  */
862 
863 void
reset_flow_sensitive_info_in_bb(basic_block bb)864 reset_flow_sensitive_info_in_bb (basic_block bb)
865 {
866   for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
867        gsi_next (&gsi))
868     {
869       gimple *stmt = gsi_stmt (gsi);
870       ssa_op_iter i;
871       tree op;
872       FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
873 	reset_flow_sensitive_info (op);
874     }
875 
876   for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
877        gsi_next (&gsi))
878     {
879       tree phi_def = gimple_phi_result (gsi.phi ());
880       reset_flow_sensitive_info (phi_def);
881     }
882 }
883 
884 /* Release all the SSA_NAMEs created by STMT.  */
885 
886 void
release_defs(gimple * stmt)887 release_defs (gimple *stmt)
888 {
889   tree def;
890   ssa_op_iter iter;
891 
892   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
893     if (TREE_CODE (def) == SSA_NAME)
894       release_ssa_name (def);
895 }
896 
897 
898 /* Replace the symbol associated with SSA_NAME with SYM.  */
899 
900 void
replace_ssa_name_symbol(tree ssa_name,tree sym)901 replace_ssa_name_symbol (tree ssa_name, tree sym)
902 {
903   SET_SSA_NAME_VAR_OR_IDENTIFIER (ssa_name, sym);
904   TREE_TYPE (ssa_name) = TREE_TYPE (sym);
905 }
906 
907 /* Release the vector of free SSA_NAMEs and compact the vector of SSA_NAMEs
908    that are live.  */
909 
910 static void
release_free_names_and_compact_live_names(function * fun)911 release_free_names_and_compact_live_names (function *fun)
912 {
913   unsigned i, j;
914   int n = vec_safe_length (FREE_SSANAMES (fun));
915 
916   /* Now release the freelist.  */
917   vec_free (FREE_SSANAMES (fun));
918 
919   /* And compact the SSA number space.  We make sure to not change the
920      relative order of SSA versions.  */
921   for (i = 1, j = 1; i < fun->gimple_df->ssa_names->length (); ++i)
922     {
923       tree name = ssa_name (i);
924       if (name)
925 	{
926 	  if (i != j)
927 	    {
928 	      SSA_NAME_VERSION (name) = j;
929 	      (*fun->gimple_df->ssa_names)[j] = name;
930 	    }
931 	  j++;
932 	}
933     }
934   fun->gimple_df->ssa_names->truncate (j);
935 
936   statistics_counter_event (fun, "SSA names released", n);
937   statistics_counter_event (fun, "SSA name holes removed", i - j);
938   if (dump_file)
939     fprintf (dump_file, "Released %i names, %.2f%%, removed %i holes\n",
940 	     n, n * 100.0 / num_ssa_names, i - j);
941 }
942 
943 /* Return SSA names that are unused to GGC memory and compact the SSA
944    version namespace.  This is used to keep footprint of compiler during
945    interprocedural optimization.  */
946 
947 namespace {
948 
949 const pass_data pass_data_release_ssa_names =
950 {
951   GIMPLE_PASS, /* type */
952   "release_ssa", /* name */
953   OPTGROUP_NONE, /* optinfo_flags */
954   TV_TREE_SSA_OTHER, /* tv_id */
955   PROP_ssa, /* properties_required */
956   0, /* properties_provided */
957   0, /* properties_destroyed */
958   TODO_remove_unused_locals, /* todo_flags_start */
959   0, /* todo_flags_finish */
960 };
961 
962 class pass_release_ssa_names : public gimple_opt_pass
963 {
964 public:
pass_release_ssa_names(gcc::context * ctxt)965   pass_release_ssa_names (gcc::context *ctxt)
966     : gimple_opt_pass (pass_data_release_ssa_names, ctxt)
967   {}
968 
969   /* opt_pass methods: */
970   virtual unsigned int execute (function *);
971 
972 }; // class pass_release_ssa_names
973 
974 unsigned int
execute(function * fun)975 pass_release_ssa_names::execute (function *fun)
976 {
977   release_free_names_and_compact_live_names (fun);
978   return 0;
979 }
980 
981 } // anon namespace
982 
983 gimple_opt_pass *
make_pass_release_ssa_names(gcc::context * ctxt)984 make_pass_release_ssa_names (gcc::context *ctxt)
985 {
986   return new pass_release_ssa_names (ctxt);
987 }
988