1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package fmt
6
7import (
8	"strconv"
9	"unicode/utf8"
10)
11
12const (
13	ldigits = "0123456789abcdefx"
14	udigits = "0123456789ABCDEFX"
15)
16
17const (
18	signed   = true
19	unsigned = false
20)
21
22// flags placed in a separate struct for easy clearing.
23type fmtFlags struct {
24	widPresent  bool
25	precPresent bool
26	minus       bool
27	plus        bool
28	sharp       bool
29	space       bool
30	zero        bool
31
32	// For the formats %+v %#v, we set the plusV/sharpV flags
33	// and clear the plus/sharp flags since %+v and %#v are in effect
34	// different, flagless formats set at the top level.
35	plusV  bool
36	sharpV bool
37}
38
39// A fmt is the raw formatter used by Printf etc.
40// It prints into a buffer that must be set up separately.
41type fmt struct {
42	buf *buffer
43
44	fmtFlags
45
46	wid  int // width
47	prec int // precision
48
49	// intbuf is large enough to store %b of an int64 with a sign and
50	// avoids padding at the end of the struct on 32 bit architectures.
51	intbuf [68]byte
52}
53
54func (f *fmt) clearflags() {
55	f.fmtFlags = fmtFlags{}
56}
57
58func (f *fmt) init(buf *buffer) {
59	f.buf = buf
60	f.clearflags()
61}
62
63// writePadding generates n bytes of padding.
64func (f *fmt) writePadding(n int) {
65	if n <= 0 { // No padding bytes needed.
66		return
67	}
68	buf := *f.buf
69	oldLen := len(buf)
70	newLen := oldLen + n
71	// Make enough room for padding.
72	if newLen > cap(buf) {
73		buf = make(buffer, cap(buf)*2+n)
74		copy(buf, *f.buf)
75	}
76	// Decide which byte the padding should be filled with.
77	padByte := byte(' ')
78	if f.zero {
79		padByte = byte('0')
80	}
81	// Fill padding with padByte.
82	padding := buf[oldLen:newLen]
83	for i := range padding {
84		padding[i] = padByte
85	}
86	*f.buf = buf[:newLen]
87}
88
89// pad appends b to f.buf, padded on left (!f.minus) or right (f.minus).
90func (f *fmt) pad(b []byte) {
91	if !f.widPresent || f.wid == 0 {
92		f.buf.write(b)
93		return
94	}
95	width := f.wid - utf8.RuneCount(b)
96	if !f.minus {
97		// left padding
98		f.writePadding(width)
99		f.buf.write(b)
100	} else {
101		// right padding
102		f.buf.write(b)
103		f.writePadding(width)
104	}
105}
106
107// padString appends s to f.buf, padded on left (!f.minus) or right (f.minus).
108func (f *fmt) padString(s string) {
109	if !f.widPresent || f.wid == 0 {
110		f.buf.writeString(s)
111		return
112	}
113	width := f.wid - utf8.RuneCountInString(s)
114	if !f.minus {
115		// left padding
116		f.writePadding(width)
117		f.buf.writeString(s)
118	} else {
119		// right padding
120		f.buf.writeString(s)
121		f.writePadding(width)
122	}
123}
124
125// fmtBoolean formats a boolean.
126func (f *fmt) fmtBoolean(v bool) {
127	if v {
128		f.padString("true")
129	} else {
130		f.padString("false")
131	}
132}
133
134// fmtUnicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'".
135func (f *fmt) fmtUnicode(u uint64) {
136	buf := f.intbuf[0:]
137
138	// With default precision set the maximum needed buf length is 18
139	// for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") which fits
140	// into the already allocated intbuf with a capacity of 68 bytes.
141	prec := 4
142	if f.precPresent && f.prec > 4 {
143		prec = f.prec
144		// Compute space needed for "U+" , number, " '", character, "'".
145		width := 2 + prec + 2 + utf8.UTFMax + 1
146		if width > len(buf) {
147			buf = make([]byte, width)
148		}
149	}
150
151	// Format into buf, ending at buf[i]. Formatting numbers is easier right-to-left.
152	i := len(buf)
153
154	// For %#U we want to add a space and a quoted character at the end of the buffer.
155	if f.sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) {
156		i--
157		buf[i] = '\''
158		i -= utf8.RuneLen(rune(u))
159		utf8.EncodeRune(buf[i:], rune(u))
160		i--
161		buf[i] = '\''
162		i--
163		buf[i] = ' '
164	}
165	// Format the Unicode code point u as a hexadecimal number.
166	for u >= 16 {
167		i--
168		buf[i] = udigits[u&0xF]
169		prec--
170		u >>= 4
171	}
172	i--
173	buf[i] = udigits[u]
174	prec--
175	// Add zeros in front of the number until requested precision is reached.
176	for prec > 0 {
177		i--
178		buf[i] = '0'
179		prec--
180	}
181	// Add a leading "U+".
182	i--
183	buf[i] = '+'
184	i--
185	buf[i] = 'U'
186
187	oldZero := f.zero
188	f.zero = false
189	f.pad(buf[i:])
190	f.zero = oldZero
191}
192
193// fmtInteger formats signed and unsigned integers.
194func (f *fmt) fmtInteger(u uint64, base int, isSigned bool, verb rune, digits string) {
195	negative := isSigned && int64(u) < 0
196	if negative {
197		u = -u
198	}
199
200	buf := f.intbuf[0:]
201	// The already allocated f.intbuf with a capacity of 68 bytes
202	// is large enough for integer formatting when no precision or width is set.
203	if f.widPresent || f.precPresent {
204		// Account 3 extra bytes for possible addition of a sign and "0x".
205		width := 3 + f.wid + f.prec // wid and prec are always positive.
206		if width > len(buf) {
207			// We're going to need a bigger boat.
208			buf = make([]byte, width)
209		}
210	}
211
212	// Two ways to ask for extra leading zero digits: %.3d or %03d.
213	// If both are specified the f.zero flag is ignored and
214	// padding with spaces is used instead.
215	prec := 0
216	if f.precPresent {
217		prec = f.prec
218		// Precision of 0 and value of 0 means "print nothing" but padding.
219		if prec == 0 && u == 0 {
220			oldZero := f.zero
221			f.zero = false
222			f.writePadding(f.wid)
223			f.zero = oldZero
224			return
225		}
226	} else if f.zero && f.widPresent {
227		prec = f.wid
228		if negative || f.plus || f.space {
229			prec-- // leave room for sign
230		}
231	}
232
233	// Because printing is easier right-to-left: format u into buf, ending at buf[i].
234	// We could make things marginally faster by splitting the 32-bit case out
235	// into a separate block but it's not worth the duplication, so u has 64 bits.
236	i := len(buf)
237	// Use constants for the division and modulo for more efficient code.
238	// Switch cases ordered by popularity.
239	switch base {
240	case 10:
241		for u >= 10 {
242			i--
243			next := u / 10
244			buf[i] = byte('0' + u - next*10)
245			u = next
246		}
247	case 16:
248		for u >= 16 {
249			i--
250			buf[i] = digits[u&0xF]
251			u >>= 4
252		}
253	case 8:
254		for u >= 8 {
255			i--
256			buf[i] = byte('0' + u&7)
257			u >>= 3
258		}
259	case 2:
260		for u >= 2 {
261			i--
262			buf[i] = byte('0' + u&1)
263			u >>= 1
264		}
265	default:
266		panic("fmt: unknown base; can't happen")
267	}
268	i--
269	buf[i] = digits[u]
270	for i > 0 && prec > len(buf)-i {
271		i--
272		buf[i] = '0'
273	}
274
275	// Various prefixes: 0x, -, etc.
276	if f.sharp {
277		switch base {
278		case 2:
279			// Add a leading 0b.
280			i--
281			buf[i] = 'b'
282			i--
283			buf[i] = '0'
284		case 8:
285			if buf[i] != '0' {
286				i--
287				buf[i] = '0'
288			}
289		case 16:
290			// Add a leading 0x or 0X.
291			i--
292			buf[i] = digits[16]
293			i--
294			buf[i] = '0'
295		}
296	}
297	if verb == 'O' {
298		i--
299		buf[i] = 'o'
300		i--
301		buf[i] = '0'
302	}
303
304	if negative {
305		i--
306		buf[i] = '-'
307	} else if f.plus {
308		i--
309		buf[i] = '+'
310	} else if f.space {
311		i--
312		buf[i] = ' '
313	}
314
315	// Left padding with zeros has already been handled like precision earlier
316	// or the f.zero flag is ignored due to an explicitly set precision.
317	oldZero := f.zero
318	f.zero = false
319	f.pad(buf[i:])
320	f.zero = oldZero
321}
322
323// truncate truncates the string s to the specified precision, if present.
324func (f *fmt) truncateString(s string) string {
325	if f.precPresent {
326		n := f.prec
327		for i := range s {
328			n--
329			if n < 0 {
330				return s[:i]
331			}
332		}
333	}
334	return s
335}
336
337// truncate truncates the byte slice b as a string of the specified precision, if present.
338func (f *fmt) truncate(b []byte) []byte {
339	if f.precPresent {
340		n := f.prec
341		for i := 0; i < len(b); {
342			n--
343			if n < 0 {
344				return b[:i]
345			}
346			wid := 1
347			if b[i] >= utf8.RuneSelf {
348				_, wid = utf8.DecodeRune(b[i:])
349			}
350			i += wid
351		}
352	}
353	return b
354}
355
356// fmtS formats a string.
357func (f *fmt) fmtS(s string) {
358	s = f.truncateString(s)
359	f.padString(s)
360}
361
362// fmtBs formats the byte slice b as if it was formatted as string with fmtS.
363func (f *fmt) fmtBs(b []byte) {
364	b = f.truncate(b)
365	f.pad(b)
366}
367
368// fmtSbx formats a string or byte slice as a hexadecimal encoding of its bytes.
369func (f *fmt) fmtSbx(s string, b []byte, digits string) {
370	length := len(b)
371	if b == nil {
372		// No byte slice present. Assume string s should be encoded.
373		length = len(s)
374	}
375	// Set length to not process more bytes than the precision demands.
376	if f.precPresent && f.prec < length {
377		length = f.prec
378	}
379	// Compute width of the encoding taking into account the f.sharp and f.space flag.
380	width := 2 * length
381	if width > 0 {
382		if f.space {
383			// Each element encoded by two hexadecimals will get a leading 0x or 0X.
384			if f.sharp {
385				width *= 2
386			}
387			// Elements will be separated by a space.
388			width += length - 1
389		} else if f.sharp {
390			// Only a leading 0x or 0X will be added for the whole string.
391			width += 2
392		}
393	} else { // The byte slice or string that should be encoded is empty.
394		if f.widPresent {
395			f.writePadding(f.wid)
396		}
397		return
398	}
399	// Handle padding to the left.
400	if f.widPresent && f.wid > width && !f.minus {
401		f.writePadding(f.wid - width)
402	}
403	// Write the encoding directly into the output buffer.
404	buf := *f.buf
405	if f.sharp {
406		// Add leading 0x or 0X.
407		buf = append(buf, '0', digits[16])
408	}
409	var c byte
410	for i := 0; i < length; i++ {
411		if f.space && i > 0 {
412			// Separate elements with a space.
413			buf = append(buf, ' ')
414			if f.sharp {
415				// Add leading 0x or 0X for each element.
416				buf = append(buf, '0', digits[16])
417			}
418		}
419		if b != nil {
420			c = b[i] // Take a byte from the input byte slice.
421		} else {
422			c = s[i] // Take a byte from the input string.
423		}
424		// Encode each byte as two hexadecimal digits.
425		buf = append(buf, digits[c>>4], digits[c&0xF])
426	}
427	*f.buf = buf
428	// Handle padding to the right.
429	if f.widPresent && f.wid > width && f.minus {
430		f.writePadding(f.wid - width)
431	}
432}
433
434// fmtSx formats a string as a hexadecimal encoding of its bytes.
435func (f *fmt) fmtSx(s, digits string) {
436	f.fmtSbx(s, nil, digits)
437}
438
439// fmtBx formats a byte slice as a hexadecimal encoding of its bytes.
440func (f *fmt) fmtBx(b []byte, digits string) {
441	f.fmtSbx("", b, digits)
442}
443
444// fmtQ formats a string as a double-quoted, escaped Go string constant.
445// If f.sharp is set a raw (backquoted) string may be returned instead
446// if the string does not contain any control characters other than tab.
447func (f *fmt) fmtQ(s string) {
448	s = f.truncateString(s)
449	if f.sharp && strconv.CanBackquote(s) {
450		f.padString("`" + s + "`")
451		return
452	}
453	buf := f.intbuf[:0]
454	if f.plus {
455		f.pad(strconv.AppendQuoteToASCII(buf, s))
456	} else {
457		f.pad(strconv.AppendQuote(buf, s))
458	}
459}
460
461// fmtC formats an integer as a Unicode character.
462// If the character is not valid Unicode, it will print '\ufffd'.
463func (f *fmt) fmtC(c uint64) {
464	r := rune(c)
465	if c > utf8.MaxRune {
466		r = utf8.RuneError
467	}
468	buf := f.intbuf[:0]
469	w := utf8.EncodeRune(buf[:utf8.UTFMax], r)
470	f.pad(buf[:w])
471}
472
473// fmtQc formats an integer as a single-quoted, escaped Go character constant.
474// If the character is not valid Unicode, it will print '\ufffd'.
475func (f *fmt) fmtQc(c uint64) {
476	r := rune(c)
477	if c > utf8.MaxRune {
478		r = utf8.RuneError
479	}
480	buf := f.intbuf[:0]
481	if f.plus {
482		f.pad(strconv.AppendQuoteRuneToASCII(buf, r))
483	} else {
484		f.pad(strconv.AppendQuoteRune(buf, r))
485	}
486}
487
488// fmtFloat formats a float64. It assumes that verb is a valid format specifier
489// for strconv.AppendFloat and therefore fits into a byte.
490func (f *fmt) fmtFloat(v float64, size int, verb rune, prec int) {
491	// Explicit precision in format specifier overrules default precision.
492	if f.precPresent {
493		prec = f.prec
494	}
495	// Format number, reserving space for leading + sign if needed.
496	num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size)
497	if num[1] == '-' || num[1] == '+' {
498		num = num[1:]
499	} else {
500		num[0] = '+'
501	}
502	// f.space means to add a leading space instead of a "+" sign unless
503	// the sign is explicitly asked for by f.plus.
504	if f.space && num[0] == '+' && !f.plus {
505		num[0] = ' '
506	}
507	// Special handling for infinities and NaN,
508	// which don't look like a number so shouldn't be padded with zeros.
509	if num[1] == 'I' || num[1] == 'N' {
510		oldZero := f.zero
511		f.zero = false
512		// Remove sign before NaN if not asked for.
513		if num[1] == 'N' && !f.space && !f.plus {
514			num = num[1:]
515		}
516		f.pad(num)
517		f.zero = oldZero
518		return
519	}
520	// The sharp flag forces printing a decimal point for non-binary formats
521	// and retains trailing zeros, which we may need to restore.
522	if f.sharp && verb != 'b' {
523		digits := 0
524		switch verb {
525		case 'v', 'g', 'G', 'x':
526			digits = prec
527			// If no precision is set explicitly use a precision of 6.
528			if digits == -1 {
529				digits = 6
530			}
531		}
532
533		// Buffer pre-allocated with enough room for
534		// exponent notations of the form "e+123" or "p-1023".
535		var tailBuf [6]byte
536		tail := tailBuf[:0]
537
538		hasDecimalPoint := false
539		sawNonzeroDigit := false
540		// Starting from i = 1 to skip sign at num[0].
541		for i := 1; i < len(num); i++ {
542			switch num[i] {
543			case '.':
544				hasDecimalPoint = true
545			case 'p', 'P':
546				tail = append(tail, num[i:]...)
547				num = num[:i]
548			case 'e', 'E':
549				if verb != 'x' && verb != 'X' {
550					tail = append(tail, num[i:]...)
551					num = num[:i]
552					break
553				}
554				fallthrough
555			default:
556				if num[i] != '0' {
557					sawNonzeroDigit = true
558				}
559				// Count significant digits after the first non-zero digit.
560				if sawNonzeroDigit {
561					digits--
562				}
563			}
564		}
565		if !hasDecimalPoint {
566			// Leading digit 0 should contribute once to digits.
567			if len(num) == 2 && num[1] == '0' {
568				digits--
569			}
570			num = append(num, '.')
571		}
572		for digits > 0 {
573			num = append(num, '0')
574			digits--
575		}
576		num = append(num, tail...)
577	}
578	// We want a sign if asked for and if the sign is not positive.
579	if f.plus || num[0] != '+' {
580		// If we're zero padding to the left we want the sign before the leading zeros.
581		// Achieve this by writing the sign out and then padding the unsigned number.
582		if f.zero && f.widPresent && f.wid > len(num) {
583			f.buf.writeByte(num[0])
584			f.writePadding(f.wid - len(num))
585			f.buf.write(num[1:])
586			return
587		}
588		f.pad(num)
589		return
590	}
591	// No sign to show and the number is positive; just print the unsigned number.
592	f.pad(num[1:])
593}
594