1// <shared_mutex> -*- C++ -*-
2
3// Copyright (C) 2013-2021 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/shared_mutex
26 *  This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_SHARED_MUTEX
30#define _GLIBCXX_SHARED_MUTEX 1
31
32#pragma GCC system_header
33
34#if __cplusplus >= 201402L
35
36#include <chrono>
37#include <bits/functexcept.h>
38#include <bits/move.h>        // move, __exchange
39#include <bits/std_mutex.h>   // defer_lock_t
40
41#if ! (_GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK)
42# include <condition_variable>
43#endif
44
45namespace std _GLIBCXX_VISIBILITY(default)
46{
47_GLIBCXX_BEGIN_NAMESPACE_VERSION
48
49  /**
50   * @addtogroup mutexes
51   * @{
52   */
53
54#ifdef _GLIBCXX_HAS_GTHREADS
55
56#if __cplusplus >= 201703L
57#define __cpp_lib_shared_mutex 201505L
58  class shared_mutex;
59#endif
60
61#define __cpp_lib_shared_timed_mutex 201402L
62  class shared_timed_mutex;
63
64  /// @cond undocumented
65
66#if _GLIBCXX_USE_PTHREAD_RWLOCK_T
67#ifdef __gthrw
68#define _GLIBCXX_GTHRW(name) \
69  __gthrw(pthread_ ## name); \
70  static inline int \
71  __glibcxx_ ## name (pthread_rwlock_t *__rwlock) \
72  { \
73    if (__gthread_active_p ()) \
74      return __gthrw_(pthread_ ## name) (__rwlock); \
75    else \
76      return 0; \
77  }
78  _GLIBCXX_GTHRW(rwlock_rdlock)
79  _GLIBCXX_GTHRW(rwlock_tryrdlock)
80  _GLIBCXX_GTHRW(rwlock_wrlock)
81  _GLIBCXX_GTHRW(rwlock_trywrlock)
82  _GLIBCXX_GTHRW(rwlock_unlock)
83# ifndef PTHREAD_RWLOCK_INITIALIZER
84  _GLIBCXX_GTHRW(rwlock_destroy)
85  __gthrw(pthread_rwlock_init);
86  static inline int
87  __glibcxx_rwlock_init (pthread_rwlock_t *__rwlock)
88  {
89    if (__gthread_active_p ())
90      return __gthrw_(pthread_rwlock_init) (__rwlock, NULL);
91    else
92      return 0;
93  }
94# endif
95# if _GTHREAD_USE_MUTEX_TIMEDLOCK
96   __gthrw(pthread_rwlock_timedrdlock);
97  static inline int
98  __glibcxx_rwlock_timedrdlock (pthread_rwlock_t *__rwlock,
99				const timespec *__ts)
100  {
101    if (__gthread_active_p ())
102      return __gthrw_(pthread_rwlock_timedrdlock) (__rwlock, __ts);
103    else
104      return 0;
105  }
106   __gthrw(pthread_rwlock_timedwrlock);
107  static inline int
108  __glibcxx_rwlock_timedwrlock (pthread_rwlock_t *__rwlock,
109				const timespec *__ts)
110  {
111    if (__gthread_active_p ())
112      return __gthrw_(pthread_rwlock_timedwrlock) (__rwlock, __ts);
113    else
114      return 0;
115  }
116# endif
117#else
118  static inline int
119  __glibcxx_rwlock_rdlock (pthread_rwlock_t *__rwlock)
120  { return pthread_rwlock_rdlock (__rwlock); }
121  static inline int
122  __glibcxx_rwlock_tryrdlock (pthread_rwlock_t *__rwlock)
123  { return pthread_rwlock_tryrdlock (__rwlock); }
124  static inline int
125  __glibcxx_rwlock_wrlock (pthread_rwlock_t *__rwlock)
126  { return pthread_rwlock_wrlock (__rwlock); }
127  static inline int
128  __glibcxx_rwlock_trywrlock (pthread_rwlock_t *__rwlock)
129  { return pthread_rwlock_trywrlock (__rwlock); }
130  static inline int
131  __glibcxx_rwlock_unlock (pthread_rwlock_t *__rwlock)
132  { return pthread_rwlock_unlock (__rwlock); }
133  static inline int
134  __glibcxx_rwlock_destroy(pthread_rwlock_t *__rwlock)
135  { return pthread_rwlock_destroy (__rwlock); }
136  static inline int
137  __glibcxx_rwlock_init(pthread_rwlock_t *__rwlock)
138  { return pthread_rwlock_init (__rwlock, NULL); }
139# if _GTHREAD_USE_MUTEX_TIMEDLOCK
140  static inline int
141  __glibcxx_rwlock_timedrdlock (pthread_rwlock_t *__rwlock,
142				const timespec *__ts)
143  { return pthread_rwlock_timedrdlock (__rwlock, __ts); }
144  static inline int
145  __glibcxx_rwlock_timedwrlock (pthread_rwlock_t *__rwlock,
146				const timespec *__ts)
147  { return pthread_rwlock_timedwrlock (__rwlock, __ts); }
148# endif
149#endif
150
151  /// A shared mutex type implemented using pthread_rwlock_t.
152  class __shared_mutex_pthread
153  {
154    friend class shared_timed_mutex;
155
156#ifdef PTHREAD_RWLOCK_INITIALIZER
157    pthread_rwlock_t	_M_rwlock = PTHREAD_RWLOCK_INITIALIZER;
158
159  public:
160    __shared_mutex_pthread() = default;
161    ~__shared_mutex_pthread() = default;
162#else
163    pthread_rwlock_t	_M_rwlock;
164
165  public:
166    __shared_mutex_pthread()
167    {
168      int __ret = __glibcxx_rwlock_init(&_M_rwlock);
169      if (__ret == ENOMEM)
170	__throw_bad_alloc();
171      else if (__ret == EAGAIN)
172	__throw_system_error(int(errc::resource_unavailable_try_again));
173      else if (__ret == EPERM)
174	__throw_system_error(int(errc::operation_not_permitted));
175      // Errors not handled: EBUSY, EINVAL
176      __glibcxx_assert(__ret == 0);
177    }
178
179    ~__shared_mutex_pthread()
180    {
181      int __ret __attribute((__unused__)) = __glibcxx_rwlock_destroy(&_M_rwlock);
182      // Errors not handled: EBUSY, EINVAL
183      __glibcxx_assert(__ret == 0);
184    }
185#endif
186
187    __shared_mutex_pthread(const __shared_mutex_pthread&) = delete;
188    __shared_mutex_pthread& operator=(const __shared_mutex_pthread&) = delete;
189
190    void
191    lock()
192    {
193      int __ret = __glibcxx_rwlock_wrlock(&_M_rwlock);
194      if (__ret == EDEADLK)
195	__throw_system_error(int(errc::resource_deadlock_would_occur));
196      // Errors not handled: EINVAL
197      __glibcxx_assert(__ret == 0);
198    }
199
200    bool
201    try_lock()
202    {
203      int __ret = __glibcxx_rwlock_trywrlock(&_M_rwlock);
204      if (__ret == EBUSY) return false;
205      // Errors not handled: EINVAL
206      __glibcxx_assert(__ret == 0);
207      return true;
208    }
209
210    void
211    unlock()
212    {
213      int __ret __attribute((__unused__)) = __glibcxx_rwlock_unlock(&_M_rwlock);
214      // Errors not handled: EPERM, EBUSY, EINVAL
215      __glibcxx_assert(__ret == 0);
216    }
217
218    // Shared ownership
219
220    void
221    lock_shared()
222    {
223      int __ret;
224      // We retry if we exceeded the maximum number of read locks supported by
225      // the POSIX implementation; this can result in busy-waiting, but this
226      // is okay based on the current specification of forward progress
227      // guarantees by the standard.
228      do
229	__ret = __glibcxx_rwlock_rdlock(&_M_rwlock);
230      while (__ret == EAGAIN);
231      if (__ret == EDEADLK)
232	__throw_system_error(int(errc::resource_deadlock_would_occur));
233      // Errors not handled: EINVAL
234      __glibcxx_assert(__ret == 0);
235    }
236
237    bool
238    try_lock_shared()
239    {
240      int __ret = __glibcxx_rwlock_tryrdlock(&_M_rwlock);
241      // If the maximum number of read locks has been exceeded, we just fail
242      // to acquire the lock.  Unlike for lock(), we are not allowed to throw
243      // an exception.
244      if (__ret == EBUSY || __ret == EAGAIN) return false;
245      // Errors not handled: EINVAL
246      __glibcxx_assert(__ret == 0);
247      return true;
248    }
249
250    void
251    unlock_shared()
252    {
253      unlock();
254    }
255
256    void* native_handle() { return &_M_rwlock; }
257  };
258#endif
259
260#if ! (_GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK)
261  /// A shared mutex type implemented using std::condition_variable.
262  class __shared_mutex_cv
263  {
264    friend class shared_timed_mutex;
265
266    // Based on Howard Hinnant's reference implementation from N2406.
267
268    // The high bit of _M_state is the write-entered flag which is set to
269    // indicate a writer has taken the lock or is queuing to take the lock.
270    // The remaining bits are the count of reader locks.
271    //
272    // To take a reader lock, block on gate1 while the write-entered flag is
273    // set or the maximum number of reader locks is held, then increment the
274    // reader lock count.
275    // To release, decrement the count, then if the write-entered flag is set
276    // and the count is zero then signal gate2 to wake a queued writer,
277    // otherwise if the maximum number of reader locks was held signal gate1
278    // to wake a reader.
279    //
280    // To take a writer lock, block on gate1 while the write-entered flag is
281    // set, then set the write-entered flag to start queueing, then block on
282    // gate2 while the number of reader locks is non-zero.
283    // To release, unset the write-entered flag and signal gate1 to wake all
284    // blocked readers and writers.
285    //
286    // This means that when no reader locks are held readers and writers get
287    // equal priority. When one or more reader locks is held a writer gets
288    // priority and no more reader locks can be taken while the writer is
289    // queued.
290
291    // Only locked when accessing _M_state or waiting on condition variables.
292    mutex		_M_mut;
293    // Used to block while write-entered is set or reader count at maximum.
294    condition_variable	_M_gate1;
295    // Used to block queued writers while reader count is non-zero.
296    condition_variable	_M_gate2;
297    // The write-entered flag and reader count.
298    unsigned		_M_state;
299
300    static constexpr unsigned _S_write_entered
301      = 1U << (sizeof(unsigned)*__CHAR_BIT__ - 1);
302    static constexpr unsigned _S_max_readers = ~_S_write_entered;
303
304    // Test whether the write-entered flag is set. _M_mut must be locked.
305    bool _M_write_entered() const { return _M_state & _S_write_entered; }
306
307    // The number of reader locks currently held. _M_mut must be locked.
308    unsigned _M_readers() const { return _M_state & _S_max_readers; }
309
310  public:
311    __shared_mutex_cv() : _M_state(0) {}
312
313    ~__shared_mutex_cv()
314    {
315      __glibcxx_assert( _M_state == 0 );
316    }
317
318    __shared_mutex_cv(const __shared_mutex_cv&) = delete;
319    __shared_mutex_cv& operator=(const __shared_mutex_cv&) = delete;
320
321    // Exclusive ownership
322
323    void
324    lock()
325    {
326      unique_lock<mutex> __lk(_M_mut);
327      // Wait until we can set the write-entered flag.
328      _M_gate1.wait(__lk, [=]{ return !_M_write_entered(); });
329      _M_state |= _S_write_entered;
330      // Then wait until there are no more readers.
331      _M_gate2.wait(__lk, [=]{ return _M_readers() == 0; });
332    }
333
334    bool
335    try_lock()
336    {
337      unique_lock<mutex> __lk(_M_mut, try_to_lock);
338      if (__lk.owns_lock() && _M_state == 0)
339	{
340	  _M_state = _S_write_entered;
341	  return true;
342	}
343      return false;
344    }
345
346    void
347    unlock()
348    {
349      lock_guard<mutex> __lk(_M_mut);
350      __glibcxx_assert( _M_write_entered() );
351      _M_state = 0;
352      // call notify_all() while mutex is held so that another thread can't
353      // lock and unlock the mutex then destroy *this before we make the call.
354      _M_gate1.notify_all();
355    }
356
357    // Shared ownership
358
359    void
360    lock_shared()
361    {
362      unique_lock<mutex> __lk(_M_mut);
363      _M_gate1.wait(__lk, [=]{ return _M_state < _S_max_readers; });
364      ++_M_state;
365    }
366
367    bool
368    try_lock_shared()
369    {
370      unique_lock<mutex> __lk(_M_mut, try_to_lock);
371      if (!__lk.owns_lock())
372	return false;
373      if (_M_state < _S_max_readers)
374	{
375	  ++_M_state;
376	  return true;
377	}
378      return false;
379    }
380
381    void
382    unlock_shared()
383    {
384      lock_guard<mutex> __lk(_M_mut);
385      __glibcxx_assert( _M_readers() > 0 );
386      auto __prev = _M_state--;
387      if (_M_write_entered())
388	{
389	  // Wake the queued writer if there are no more readers.
390	  if (_M_readers() == 0)
391	    _M_gate2.notify_one();
392	  // No need to notify gate1 because we give priority to the queued
393	  // writer, and that writer will eventually notify gate1 after it
394	  // clears the write-entered flag.
395	}
396      else
397	{
398	  // Wake any thread that was blocked on reader overflow.
399	  if (__prev == _S_max_readers)
400	    _M_gate1.notify_one();
401	}
402    }
403  };
404#endif
405  /// @endcond
406
407#if __cplusplus >= 201703L
408  /// The standard shared mutex type.
409  class shared_mutex
410  {
411  public:
412    shared_mutex() = default;
413    ~shared_mutex() = default;
414
415    shared_mutex(const shared_mutex&) = delete;
416    shared_mutex& operator=(const shared_mutex&) = delete;
417
418    // Exclusive ownership
419
420    void lock() { _M_impl.lock(); }
421    bool try_lock() { return _M_impl.try_lock(); }
422    void unlock() { _M_impl.unlock(); }
423
424    // Shared ownership
425
426    void lock_shared() { _M_impl.lock_shared(); }
427    bool try_lock_shared() { return _M_impl.try_lock_shared(); }
428    void unlock_shared() { _M_impl.unlock_shared(); }
429
430#if _GLIBCXX_USE_PTHREAD_RWLOCK_T
431    typedef void* native_handle_type;
432    native_handle_type native_handle() { return _M_impl.native_handle(); }
433
434  private:
435    __shared_mutex_pthread _M_impl;
436#else
437  private:
438    __shared_mutex_cv _M_impl;
439#endif
440  };
441#endif // C++17
442
443  /// @cond undocumented
444#if _GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK
445  using __shared_timed_mutex_base = __shared_mutex_pthread;
446#else
447  using __shared_timed_mutex_base = __shared_mutex_cv;
448#endif
449  /// @endcond
450
451  /// The standard shared timed mutex type.
452  class shared_timed_mutex
453  : private __shared_timed_mutex_base
454  {
455    using _Base = __shared_timed_mutex_base;
456
457    // Must use the same clock as condition_variable for __shared_mutex_cv.
458#ifdef _GLIBCXX_USE_PTHREAD_RWLOCK_CLOCKLOCK
459    using __clock_t = chrono::steady_clock;
460#else
461    using __clock_t = chrono::system_clock;
462#endif
463
464  public:
465    shared_timed_mutex() = default;
466    ~shared_timed_mutex() = default;
467
468    shared_timed_mutex(const shared_timed_mutex&) = delete;
469    shared_timed_mutex& operator=(const shared_timed_mutex&) = delete;
470
471    // Exclusive ownership
472
473    void lock() { _Base::lock(); }
474    bool try_lock() { return _Base::try_lock(); }
475    void unlock() { _Base::unlock(); }
476
477    template<typename _Rep, typename _Period>
478      bool
479      try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
480      {
481	auto __rt = chrono::duration_cast<__clock_t::duration>(__rtime);
482	if (ratio_greater<__clock_t::period, _Period>())
483	  ++__rt;
484	return try_lock_until(__clock_t::now() + __rt);
485      }
486
487    // Shared ownership
488
489    void lock_shared() { _Base::lock_shared(); }
490    bool try_lock_shared() { return _Base::try_lock_shared(); }
491    void unlock_shared() { _Base::unlock_shared(); }
492
493    template<typename _Rep, typename _Period>
494      bool
495      try_lock_shared_for(const chrono::duration<_Rep, _Period>& __rtime)
496      {
497	auto __rt = chrono::duration_cast<__clock_t::duration>(__rtime);
498	if (ratio_greater<__clock_t::period, _Period>())
499	  ++__rt;
500	return try_lock_shared_until(__clock_t::now() + __rt);
501      }
502
503#if _GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK
504
505    // Exclusive ownership
506
507    template<typename _Duration>
508      bool
509      try_lock_until(const chrono::time_point<chrono::system_clock,
510		     _Duration>& __atime)
511      {
512	auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
513	auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
514
515	__gthread_time_t __ts =
516	  {
517	    static_cast<std::time_t>(__s.time_since_epoch().count()),
518	    static_cast<long>(__ns.count())
519	  };
520
521	int __ret = __glibcxx_rwlock_timedwrlock(&_M_rwlock, &__ts);
522	// On self-deadlock, we just fail to acquire the lock.  Technically,
523	// the program violated the precondition.
524	if (__ret == ETIMEDOUT || __ret == EDEADLK)
525	  return false;
526	// Errors not handled: EINVAL
527	__glibcxx_assert(__ret == 0);
528	return true;
529      }
530
531#ifdef _GLIBCXX_USE_PTHREAD_RWLOCK_CLOCKLOCK
532    template<typename _Duration>
533      bool
534      try_lock_until(const chrono::time_point<chrono::steady_clock,
535		   _Duration>& __atime)
536      {
537	auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
538	auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
539
540	__gthread_time_t __ts =
541	  {
542	    static_cast<std::time_t>(__s.time_since_epoch().count()),
543	    static_cast<long>(__ns.count())
544	  };
545
546	int __ret = pthread_rwlock_clockwrlock(&_M_rwlock, CLOCK_MONOTONIC,
547					       &__ts);
548	// On self-deadlock, we just fail to acquire the lock.  Technically,
549	// the program violated the precondition.
550	if (__ret == ETIMEDOUT || __ret == EDEADLK)
551	  return false;
552	// Errors not handled: EINVAL
553	__glibcxx_assert(__ret == 0);
554	return true;
555      }
556#endif
557
558    template<typename _Clock, typename _Duration>
559      bool
560      try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
561      {
562#if __cplusplus > 201703L
563	static_assert(chrono::is_clock_v<_Clock>);
564#endif
565	// The user-supplied clock may not tick at the same rate as
566	// steady_clock, so we must loop in order to guarantee that
567	// the timeout has expired before returning false.
568	typename _Clock::time_point __now = _Clock::now();
569	do {
570	    auto __rtime = __atime - __now;
571	    if (try_lock_for(__rtime))
572	      return true;
573	    __now = _Clock::now();
574	} while (__atime > __now);
575	return false;
576      }
577
578    // Shared ownership
579
580    template<typename _Duration>
581      bool
582      try_lock_shared_until(const chrono::time_point<chrono::system_clock,
583			    _Duration>& __atime)
584      {
585	auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
586	auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
587
588	__gthread_time_t __ts =
589	  {
590	    static_cast<std::time_t>(__s.time_since_epoch().count()),
591	    static_cast<long>(__ns.count())
592	  };
593
594	int __ret;
595	// Unlike for lock(), we are not allowed to throw an exception so if
596	// the maximum number of read locks has been exceeded, or we would
597	// deadlock, we just try to acquire the lock again (and will time out
598	// eventually).
599	// In cases where we would exceed the maximum number of read locks
600	// throughout the whole time until the timeout, we will fail to
601	// acquire the lock even if it would be logically free; however, this
602	// is allowed by the standard, and we made a "strong effort"
603	// (see C++14 30.4.1.4p26).
604	// For cases where the implementation detects a deadlock we
605	// intentionally block and timeout so that an early return isn't
606	// mistaken for a spurious failure, which might help users realise
607	// there is a deadlock.
608	do
609	  __ret = __glibcxx_rwlock_timedrdlock(&_M_rwlock, &__ts);
610	while (__ret == EAGAIN || __ret == EDEADLK);
611	if (__ret == ETIMEDOUT)
612	  return false;
613	// Errors not handled: EINVAL
614	__glibcxx_assert(__ret == 0);
615	return true;
616      }
617
618#ifdef _GLIBCXX_USE_PTHREAD_RWLOCK_CLOCKLOCK
619    template<typename _Duration>
620      bool
621      try_lock_shared_until(const chrono::time_point<chrono::steady_clock,
622			    _Duration>& __atime)
623      {
624	auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
625	auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
626
627	__gthread_time_t __ts =
628	  {
629	    static_cast<std::time_t>(__s.time_since_epoch().count()),
630	    static_cast<long>(__ns.count())
631	  };
632
633	int __ret = pthread_rwlock_clockrdlock(&_M_rwlock, CLOCK_MONOTONIC,
634					       &__ts);
635	// On self-deadlock, we just fail to acquire the lock.  Technically,
636	// the program violated the precondition.
637	if (__ret == ETIMEDOUT || __ret == EDEADLK)
638	  return false;
639	// Errors not handled: EINVAL
640	__glibcxx_assert(__ret == 0);
641	return true;
642      }
643#endif
644
645    template<typename _Clock, typename _Duration>
646      bool
647      try_lock_shared_until(const chrono::time_point<_Clock,
648						     _Duration>& __atime)
649      {
650#if __cplusplus > 201703L
651	static_assert(chrono::is_clock_v<_Clock>);
652#endif
653	// The user-supplied clock may not tick at the same rate as
654	// steady_clock, so we must loop in order to guarantee that
655	// the timeout has expired before returning false.
656	typename _Clock::time_point __now = _Clock::now();
657	do {
658	    auto __rtime = __atime - __now;
659	    if (try_lock_shared_for(__rtime))
660	      return true;
661	    __now = _Clock::now();
662	} while (__atime > __now);
663	return false;
664      }
665
666#else // ! (_GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK)
667
668    // Exclusive ownership
669
670    template<typename _Clock, typename _Duration>
671      bool
672      try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
673      {
674	unique_lock<mutex> __lk(_M_mut);
675	if (!_M_gate1.wait_until(__lk, __abs_time,
676				 [=]{ return !_M_write_entered(); }))
677	  {
678	    return false;
679	  }
680	_M_state |= _S_write_entered;
681	if (!_M_gate2.wait_until(__lk, __abs_time,
682				 [=]{ return _M_readers() == 0; }))
683	  {
684	    _M_state ^= _S_write_entered;
685	    // Wake all threads blocked while the write-entered flag was set.
686	    _M_gate1.notify_all();
687	    return false;
688	  }
689	return true;
690      }
691
692    // Shared ownership
693
694    template <typename _Clock, typename _Duration>
695      bool
696      try_lock_shared_until(const chrono::time_point<_Clock,
697						     _Duration>& __abs_time)
698      {
699	unique_lock<mutex> __lk(_M_mut);
700	if (!_M_gate1.wait_until(__lk, __abs_time,
701				 [=]{ return _M_state < _S_max_readers; }))
702	  {
703	    return false;
704	  }
705	++_M_state;
706	return true;
707      }
708
709#endif // _GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK
710  };
711#endif // _GLIBCXX_HAS_GTHREADS
712
713  /// shared_lock
714  template<typename _Mutex>
715    class shared_lock
716    {
717    public:
718      typedef _Mutex mutex_type;
719
720      // Shared locking
721
722      shared_lock() noexcept : _M_pm(nullptr), _M_owns(false) { }
723
724      explicit
725      shared_lock(mutex_type& __m)
726      : _M_pm(std::__addressof(__m)), _M_owns(true)
727      { __m.lock_shared(); }
728
729      shared_lock(mutex_type& __m, defer_lock_t) noexcept
730      : _M_pm(std::__addressof(__m)), _M_owns(false) { }
731
732      shared_lock(mutex_type& __m, try_to_lock_t)
733      : _M_pm(std::__addressof(__m)), _M_owns(__m.try_lock_shared()) { }
734
735      shared_lock(mutex_type& __m, adopt_lock_t)
736      : _M_pm(std::__addressof(__m)), _M_owns(true) { }
737
738      template<typename _Clock, typename _Duration>
739	shared_lock(mutex_type& __m,
740		    const chrono::time_point<_Clock, _Duration>& __abs_time)
741      : _M_pm(std::__addressof(__m)),
742	_M_owns(__m.try_lock_shared_until(__abs_time)) { }
743
744      template<typename _Rep, typename _Period>
745	shared_lock(mutex_type& __m,
746		    const chrono::duration<_Rep, _Period>& __rel_time)
747      : _M_pm(std::__addressof(__m)),
748	_M_owns(__m.try_lock_shared_for(__rel_time)) { }
749
750      ~shared_lock()
751      {
752	if (_M_owns)
753	  _M_pm->unlock_shared();
754      }
755
756      shared_lock(shared_lock const&) = delete;
757      shared_lock& operator=(shared_lock const&) = delete;
758
759      shared_lock(shared_lock&& __sl) noexcept : shared_lock()
760      { swap(__sl); }
761
762      shared_lock&
763      operator=(shared_lock&& __sl) noexcept
764      {
765	shared_lock(std::move(__sl)).swap(*this);
766	return *this;
767      }
768
769      void
770      lock()
771      {
772	_M_lockable();
773	_M_pm->lock_shared();
774	_M_owns = true;
775      }
776
777      bool
778      try_lock()
779      {
780	_M_lockable();
781	return _M_owns = _M_pm->try_lock_shared();
782      }
783
784      template<typename _Rep, typename _Period>
785	bool
786	try_lock_for(const chrono::duration<_Rep, _Period>& __rel_time)
787	{
788	  _M_lockable();
789	  return _M_owns = _M_pm->try_lock_shared_for(__rel_time);
790	}
791
792      template<typename _Clock, typename _Duration>
793	bool
794	try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
795	{
796	  _M_lockable();
797	  return _M_owns = _M_pm->try_lock_shared_until(__abs_time);
798	}
799
800      void
801      unlock()
802      {
803	if (!_M_owns)
804	  __throw_system_error(int(errc::resource_deadlock_would_occur));
805	_M_pm->unlock_shared();
806	_M_owns = false;
807      }
808
809      // Setters
810
811      void
812      swap(shared_lock& __u) noexcept
813      {
814	std::swap(_M_pm, __u._M_pm);
815	std::swap(_M_owns, __u._M_owns);
816      }
817
818      mutex_type*
819      release() noexcept
820      {
821	_M_owns = false;
822	return std::__exchange(_M_pm, nullptr);
823      }
824
825      // Getters
826
827      bool owns_lock() const noexcept { return _M_owns; }
828
829      explicit operator bool() const noexcept { return _M_owns; }
830
831      mutex_type* mutex() const noexcept { return _M_pm; }
832
833    private:
834      void
835      _M_lockable() const
836      {
837	if (_M_pm == nullptr)
838	  __throw_system_error(int(errc::operation_not_permitted));
839	if (_M_owns)
840	  __throw_system_error(int(errc::resource_deadlock_would_occur));
841      }
842
843      mutex_type*	_M_pm;
844      bool		_M_owns;
845    };
846
847  /// Swap specialization for shared_lock
848  /// @relates shared_mutex
849  template<typename _Mutex>
850    void
851    swap(shared_lock<_Mutex>& __x, shared_lock<_Mutex>& __y) noexcept
852    { __x.swap(__y); }
853
854  /// @} group mutexes
855_GLIBCXX_END_NAMESPACE_VERSION
856} // namespace
857
858#endif // C++14
859
860#endif // _GLIBCXX_SHARED_MUTEX
861