1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ A G G R                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2021, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;        use Aspects;
27with Atree;          use Atree;
28with Checks;         use Checks;
29with Einfo;          use Einfo;
30with Einfo.Entities; use Einfo.Entities;
31with Einfo.Utils;    use Einfo.Utils;
32with Elists;         use Elists;
33with Errout;         use Errout;
34with Expander;       use Expander;
35with Exp_Ch6;        use Exp_Ch6;
36with Exp_Tss;        use Exp_Tss;
37with Exp_Util;       use Exp_Util;
38with Freeze;         use Freeze;
39with Itypes;         use Itypes;
40with Lib;            use Lib;
41with Lib.Xref;       use Lib.Xref;
42with Namet;          use Namet;
43with Namet.Sp;       use Namet.Sp;
44with Nmake;          use Nmake;
45with Nlists;         use Nlists;
46with Opt;            use Opt;
47with Restrict;       use Restrict;
48with Rident;         use Rident;
49with Sem;            use Sem;
50with Sem_Aux;        use Sem_Aux;
51with Sem_Case;       use Sem_Case;
52with Sem_Cat;        use Sem_Cat;
53with Sem_Ch3;        use Sem_Ch3;
54with Sem_Ch5;        use Sem_Ch5;
55with Sem_Ch8;        use Sem_Ch8;
56with Sem_Ch13;       use Sem_Ch13;
57with Sem_Dim;        use Sem_Dim;
58with Sem_Eval;       use Sem_Eval;
59with Sem_Res;        use Sem_Res;
60with Sem_Util;       use Sem_Util;
61with Sem_Type;       use Sem_Type;
62with Sem_Warn;       use Sem_Warn;
63with Sinfo;          use Sinfo;
64with Sinfo.Nodes;    use Sinfo.Nodes;
65with Sinfo.Utils;    use Sinfo.Utils;
66with Snames;         use Snames;
67with Stringt;        use Stringt;
68with Stand;          use Stand;
69with Style;          use Style;
70with Targparm;       use Targparm;
71with Tbuild;         use Tbuild;
72with Ttypes;         use Ttypes;
73with Uintp;          use Uintp;
74
75package body Sem_Aggr is
76
77   type Case_Bounds is record
78      Lo : Node_Id;
79      --  Low bound of choice. Once we sort the Case_Table, then entries
80      --  will be in order of ascending Choice_Lo values.
81
82      Hi : Node_Id;
83      --  High Bound of choice. The sort does not pay any attention to the
84      --  high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
85
86      Highest : Uint;
87      --  If there are duplicates or missing entries, then in the sorted
88      --  table, this records the highest value among Choice_Hi values
89      --  seen so far, including this entry.
90
91      Choice : Node_Id;
92      --  The node of the choice
93   end record;
94
95   type Case_Table_Type is array (Pos range <>) of Case_Bounds;
96   --  Table type used by Check_Case_Choices procedure
97
98   -----------------------
99   -- Local Subprograms --
100   -----------------------
101
102   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
103   --  Sort the Case Table using the Lower Bound of each Choice as the key. A
104   --  simple insertion sort is used since the choices in a case statement will
105   --  usually be in near sorted order.
106
107   procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
108   --  Ada 2005 (AI-231): Check bad usage of null for a component for which
109   --  null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
110   --  the array case (the component type of the array will be used) or an
111   --  E_Component/E_Discriminant entity in the record case, in which case the
112   --  type of the component will be used for the test. If Typ is any other
113   --  kind of entity, the call is ignored. Expr is the component node in the
114   --  aggregate which is known to have a null value. A warning message will be
115   --  issued if the component is null excluding.
116   --
117   --  It would be better to pass the proper type for Typ ???
118
119   procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
120   --  Check that Expr is either not limited or else is one of the cases of
121   --  expressions allowed for a limited component association (namely, an
122   --  aggregate, function call, or <> notation). Report error for violations.
123   --  Expression is also OK in an instance or inlining context, because we
124   --  have already preanalyzed and it is known to be type correct.
125
126   ------------------------------------------------------
127   -- Subprograms used for RECORD AGGREGATE Processing --
128   ------------------------------------------------------
129
130   procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
131   --  This procedure performs all the semantic checks required for record
132   --  aggregates. Note that for aggregates analysis and resolution go
133   --  hand in hand. Aggregate analysis has been delayed up to here and
134   --  it is done while resolving the aggregate.
135   --
136   --    N is the N_Aggregate node.
137   --    Typ is the record type for the aggregate resolution
138   --
139   --  While performing the semantic checks, this procedure builds a new
140   --  Component_Association_List where each record field appears alone in a
141   --  Component_Choice_List along with its corresponding expression. The
142   --  record fields in the Component_Association_List appear in the same order
143   --  in which they appear in the record type Typ.
144   --
145   --  Once this new Component_Association_List is built and all the semantic
146   --  checks performed, the original aggregate subtree is replaced with the
147   --  new named record aggregate just built. This new record aggregate has no
148   --  positional associations, so its Expressions field is set to No_List.
149   --  Note that subtree substitution is performed with Rewrite so as to be
150   --  able to retrieve the original aggregate.
151   --
152   --  The aggregate subtree manipulation performed by Resolve_Record_Aggregate
153   --  yields the aggregate format expected by Gigi. Typically, this kind of
154   --  tree manipulations are done in the expander. However, because the
155   --  semantic checks that need to be performed on record aggregates really go
156   --  hand in hand with the record aggregate normalization, the aggregate
157   --  subtree transformation is performed during resolution rather than
158   --  expansion. Had we decided otherwise we would have had to duplicate most
159   --  of the code in the expansion procedure Expand_Record_Aggregate. Note,
160   --  however, that all the expansion concerning aggregates for tagged records
161   --  is done in Expand_Record_Aggregate.
162   --
163   --  The algorithm of Resolve_Record_Aggregate proceeds as follows:
164   --
165   --  1. Make sure that the record type against which the record aggregate
166   --     has to be resolved is not abstract. Furthermore if the type is a
167   --     null aggregate make sure the input aggregate N is also null.
168   --
169   --  2. Verify that the structure of the aggregate is that of a record
170   --     aggregate. Specifically, look for component associations and ensure
171   --     that each choice list only has identifiers or the N_Others_Choice
172   --     node. Also make sure that if present, the N_Others_Choice occurs
173   --     last and by itself.
174   --
175   --  3. If Typ contains discriminants, the values for each discriminant is
176   --     looked for. If the record type Typ has variants, we check that the
177   --     expressions corresponding to each discriminant ruling the (possibly
178   --     nested) variant parts of Typ, are static. This allows us to determine
179   --     the variant parts to which the rest of the aggregate must conform.
180   --     The names of discriminants with their values are saved in a new
181   --     association list, New_Assoc_List which is later augmented with the
182   --     names and values of the remaining components in the record type.
183   --
184   --     During this phase we also make sure that every discriminant is
185   --     assigned exactly one value. Note that when several values for a given
186   --     discriminant are found, semantic processing continues looking for
187   --     further errors. In this case it's the first discriminant value found
188   --     which we will be recorded.
189   --
190   --     IMPORTANT NOTE: For derived tagged types this procedure expects
191   --     First_Discriminant and Next_Discriminant to give the correct list
192   --     of discriminants, in the correct order.
193   --
194   --  4. After all the discriminant values have been gathered, we can set the
195   --     Etype of the record aggregate. If Typ contains no discriminants this
196   --     is straightforward: the Etype of N is just Typ, otherwise a new
197   --     implicit constrained subtype of Typ is built to be the Etype of N.
198   --
199   --  5. Gather the remaining record components according to the discriminant
200   --     values. This involves recursively traversing the record type
201   --     structure to see what variants are selected by the given discriminant
202   --     values. This processing is a little more convoluted if Typ is a
203   --     derived tagged types since we need to retrieve the record structure
204   --     of all the ancestors of Typ.
205   --
206   --  6. After gathering the record components we look for their values in the
207   --     record aggregate and emit appropriate error messages should we not
208   --     find such values or should they be duplicated.
209   --
210   --  7. We then make sure no illegal component names appear in the record
211   --     aggregate and make sure that the type of the record components
212   --     appearing in a same choice list is the same. Finally we ensure that
213   --     the others choice, if present, is used to provide the value of at
214   --     least a record component.
215   --
216   --  8. The original aggregate node is replaced with the new named aggregate
217   --     built in steps 3 through 6, as explained earlier.
218   --
219   --  Given the complexity of record aggregate resolution, the primary goal of
220   --  this routine is clarity and simplicity rather than execution and storage
221   --  efficiency. If there are only positional components in the aggregate the
222   --  running time is linear. If there are associations the running time is
223   --  still linear as long as the order of the associations is not too far off
224   --  the order of the components in the record type. If this is not the case
225   --  the running time is at worst quadratic in the size of the association
226   --  list.
227
228   procedure Check_Misspelled_Component
229     (Elements  : Elist_Id;
230      Component : Node_Id);
231   --  Give possible misspelling diagnostic if Component is likely to be a
232   --  misspelling of one of the components of the Assoc_List. This is called
233   --  by Resolve_Aggr_Expr after producing an invalid component error message.
234
235   -----------------------------------------------------
236   -- Subprograms used for ARRAY AGGREGATE Processing --
237   -----------------------------------------------------
238
239   function Resolve_Array_Aggregate
240     (N              : Node_Id;
241      Index          : Node_Id;
242      Index_Constr   : Node_Id;
243      Component_Typ  : Entity_Id;
244      Others_Allowed : Boolean) return Boolean;
245   --  This procedure performs the semantic checks for an array aggregate.
246   --  True is returned if the aggregate resolution succeeds.
247   --
248   --  The procedure works by recursively checking each nested aggregate.
249   --  Specifically, after checking a sub-aggregate nested at the i-th level
250   --  we recursively check all the subaggregates at the i+1-st level (if any).
251   --  Note that aggregates analysis and resolution go hand in hand.
252   --  Aggregate analysis has been delayed up to here and it is done while
253   --  resolving the aggregate.
254   --
255   --    N is the current N_Aggregate node to be checked.
256   --
257   --    Index is the index node corresponding to the array sub-aggregate that
258   --    we are currently checking (RM 4.3.3 (8)). Its Etype is the
259   --    corresponding index type (or subtype).
260   --
261   --    Index_Constr is the node giving the applicable index constraint if
262   --    any (RM 4.3.3 (10)). It "is a constraint provided by certain
263   --    contexts [...] that can be used to determine the bounds of the array
264   --    value specified by the aggregate". If Others_Allowed below is False
265   --    there is no applicable index constraint and this node is set to Index.
266   --
267   --    Component_Typ is the array component type.
268   --
269   --    Others_Allowed indicates whether an others choice is allowed
270   --    in the context where the top-level aggregate appeared.
271   --
272   --  The algorithm of Resolve_Array_Aggregate proceeds as follows:
273   --
274   --  1. Make sure that the others choice, if present, is by itself and
275   --     appears last in the sub-aggregate. Check that we do not have
276   --     positional and named components in the array sub-aggregate (unless
277   --     the named association is an others choice). Finally if an others
278   --     choice is present, make sure it is allowed in the aggregate context.
279   --
280   --  2. If the array sub-aggregate contains discrete_choices:
281   --
282   --     (A) Verify their validity. Specifically verify that:
283   --
284   --        (a) If a null range is present it must be the only possible
285   --            choice in the array aggregate.
286   --
287   --        (b) Ditto for a non static range.
288   --
289   --        (c) Ditto for a non static expression.
290   --
291   --        In addition this step analyzes and resolves each discrete_choice,
292   --        making sure that its type is the type of the corresponding Index.
293   --        If we are not at the lowest array aggregate level (in the case of
294   --        multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
295   --        recursively on each component expression. Otherwise, resolve the
296   --        bottom level component expressions against the expected component
297   --        type ONLY IF the component corresponds to a single discrete choice
298   --        which is not an others choice (to see why read the DELAYED
299   --        COMPONENT RESOLUTION below).
300   --
301   --     (B) Determine the bounds of the sub-aggregate and lowest and
302   --         highest choice values.
303   --
304   --  3. For positional aggregates:
305   --
306   --     (A) Loop over the component expressions either recursively invoking
307   --         Resolve_Array_Aggregate on each of these for multi-dimensional
308   --         array aggregates or resolving the bottom level component
309   --         expressions against the expected component type.
310   --
311   --     (B) Determine the bounds of the positional sub-aggregates.
312   --
313   --  4. Try to determine statically whether the evaluation of the array
314   --     sub-aggregate raises Constraint_Error. If yes emit proper
315   --     warnings. The precise checks are the following:
316   --
317   --     (A) Check that the index range defined by aggregate bounds is
318   --         compatible with corresponding index subtype.
319   --         We also check against the base type. In fact it could be that
320   --         Low/High bounds of the base type are static whereas those of
321   --         the index subtype are not. Thus if we can statically catch
322   --         a problem with respect to the base type we are guaranteed
323   --         that the same problem will arise with the index subtype
324   --
325   --     (B) If we are dealing with a named aggregate containing an others
326   --         choice and at least one discrete choice then make sure the range
327   --         specified by the discrete choices does not overflow the
328   --         aggregate bounds. We also check against the index type and base
329   --         type bounds for the same reasons given in (A).
330   --
331   --     (C) If we are dealing with a positional aggregate with an others
332   --         choice make sure the number of positional elements specified
333   --         does not overflow the aggregate bounds. We also check against
334   --         the index type and base type bounds as mentioned in (A).
335   --
336   --     Finally construct an N_Range node giving the sub-aggregate bounds.
337   --     Set the Aggregate_Bounds field of the sub-aggregate to be this
338   --     N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
339   --     to build the appropriate aggregate subtype. Aggregate_Bounds
340   --     information is needed during expansion.
341   --
342   --  DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
343   --  expressions in an array aggregate may call Duplicate_Subexpr or some
344   --  other routine that inserts code just outside the outermost aggregate.
345   --  If the array aggregate contains discrete choices or an others choice,
346   --  this may be wrong. Consider for instance the following example.
347   --
348   --    type Rec is record
349   --       V : Integer := 0;
350   --    end record;
351   --
352   --    type Acc_Rec is access Rec;
353   --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
354   --
355   --  Then the transformation of "new Rec" that occurs during resolution
356   --  entails the following code modifications
357   --
358   --    P7b : constant Acc_Rec := new Rec;
359   --    RecIP (P7b.all);
360   --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
361   --
362   --  This code transformation is clearly wrong, since we need to call
363   --  "new Rec" for each of the 3 array elements. To avoid this problem we
364   --  delay resolution of the components of non positional array aggregates
365   --  to the expansion phase. As an optimization, if the discrete choice
366   --  specifies a single value we do not delay resolution.
367
368   function Array_Aggr_Subtype (N : Node_Id; Typ : Entity_Id) return Entity_Id;
369   --  This routine returns the type or subtype of an array aggregate.
370   --
371   --    N is the array aggregate node whose type we return.
372   --
373   --    Typ is the context type in which N occurs.
374   --
375   --  This routine creates an implicit array subtype whose bounds are
376   --  those defined by the aggregate. When this routine is invoked
377   --  Resolve_Array_Aggregate has already processed aggregate N. Thus the
378   --  Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
379   --  sub-aggregate bounds. When building the aggregate itype, this function
380   --  traverses the array aggregate N collecting such Aggregate_Bounds and
381   --  constructs the proper array aggregate itype.
382   --
383   --  Note that in the case of multidimensional aggregates each inner
384   --  sub-aggregate corresponding to a given array dimension, may provide a
385   --  different bounds. If it is possible to determine statically that
386   --  some sub-aggregates corresponding to the same index do not have the
387   --  same bounds, then a warning is emitted. If such check is not possible
388   --  statically (because some sub-aggregate bounds are dynamic expressions)
389   --  then this job is left to the expander. In all cases the particular
390   --  bounds that this function will chose for a given dimension is the first
391   --  N_Range node for a sub-aggregate corresponding to that dimension.
392   --
393   --  Note that the Raises_Constraint_Error flag of an array aggregate
394   --  whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
395   --  is set in Resolve_Array_Aggregate but the aggregate is not
396   --  immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
397   --  first construct the proper itype for the aggregate (Gigi needs
398   --  this). After constructing the proper itype we will eventually replace
399   --  the top-level aggregate with a raise CE (done in Resolve_Aggregate).
400   --  Of course in cases such as:
401   --
402   --     type Arr is array (integer range <>) of Integer;
403   --     A : Arr := (positive range -1 .. 2 => 0);
404   --
405   --  The bounds of the aggregate itype are cooked up to look reasonable
406   --  (in this particular case the bounds will be 1 .. 2).
407
408   procedure Make_String_Into_Aggregate (N : Node_Id);
409   --  A string literal can appear in a context in which a one dimensional
410   --  array of characters is expected. This procedure simply rewrites the
411   --  string as an aggregate, prior to resolution.
412
413   ---------------------------------
414   --  Delta aggregate processing --
415   ---------------------------------
416
417   procedure Resolve_Delta_Array_Aggregate  (N : Node_Id; Typ : Entity_Id);
418   procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
419
420   ------------------------
421   -- Array_Aggr_Subtype --
422   ------------------------
423
424   function Array_Aggr_Subtype
425     (N   : Node_Id;
426      Typ : Entity_Id) return Entity_Id
427   is
428      Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
429      --  Number of aggregate index dimensions
430
431      Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
432      --  Constrained N_Range of each index dimension in our aggregate itype
433
434      Aggr_Low  : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
435      Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
436      --  Low and High bounds for each index dimension in our aggregate itype
437
438      Is_Fully_Positional : Boolean := True;
439
440      procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
441      --  N is an array (sub-)aggregate. Dim is the dimension corresponding
442      --  to (sub-)aggregate N. This procedure collects and removes the side
443      --  effects of the constrained N_Range nodes corresponding to each index
444      --  dimension of our aggregate itype. These N_Range nodes are collected
445      --  in Aggr_Range above.
446      --
447      --  Likewise collect in Aggr_Low & Aggr_High above the low and high
448      --  bounds of each index dimension. If, when collecting, two bounds
449      --  corresponding to the same dimension are static and found to differ,
450      --  then emit a warning, and mark N as raising Constraint_Error.
451
452      -------------------------
453      -- Collect_Aggr_Bounds --
454      -------------------------
455
456      procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
457         This_Range : constant Node_Id := Aggregate_Bounds (N);
458         --  The aggregate range node of this specific sub-aggregate
459
460         This_Low  : constant Node_Id := Low_Bound  (Aggregate_Bounds (N));
461         This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
462         --  The aggregate bounds of this specific sub-aggregate
463
464         Assoc : Node_Id;
465         Expr  : Node_Id;
466
467      begin
468         Remove_Side_Effects (This_Low,  Variable_Ref => True);
469         Remove_Side_Effects (This_High, Variable_Ref => True);
470
471         --  Collect the first N_Range for a given dimension that you find.
472         --  For a given dimension they must be all equal anyway.
473
474         if No (Aggr_Range (Dim)) then
475            Aggr_Low (Dim)   := This_Low;
476            Aggr_High (Dim)  := This_High;
477            Aggr_Range (Dim) := This_Range;
478
479         else
480            if Compile_Time_Known_Value (This_Low) then
481               if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
482                  Aggr_Low (Dim) := This_Low;
483
484               elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
485                  Set_Raises_Constraint_Error (N);
486                  Error_Msg_Warn := SPARK_Mode /= On;
487                  Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
488                  Error_Msg_N ("\Constraint_Error [<<", N);
489               end if;
490            end if;
491
492            if Compile_Time_Known_Value (This_High) then
493               if not Compile_Time_Known_Value (Aggr_High (Dim)) then
494                  Aggr_High (Dim) := This_High;
495
496               elsif
497                 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
498               then
499                  Set_Raises_Constraint_Error (N);
500                  Error_Msg_Warn := SPARK_Mode /= On;
501                  Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
502                  Error_Msg_N ("\Constraint_Error [<<", N);
503               end if;
504            end if;
505         end if;
506
507         if Dim < Aggr_Dimension then
508
509            --  Process positional components
510
511            if Present (Expressions (N)) then
512               Expr := First (Expressions (N));
513               while Present (Expr) loop
514                  Collect_Aggr_Bounds (Expr, Dim + 1);
515                  Next (Expr);
516               end loop;
517            end if;
518
519            --  Process component associations
520
521            if Present (Component_Associations (N)) then
522               Is_Fully_Positional := False;
523
524               Assoc := First (Component_Associations (N));
525               while Present (Assoc) loop
526                  Expr := Expression (Assoc);
527                  Collect_Aggr_Bounds (Expr, Dim + 1);
528                  Next (Assoc);
529               end loop;
530            end if;
531         end if;
532      end Collect_Aggr_Bounds;
533
534      --  Array_Aggr_Subtype variables
535
536      Itype : Entity_Id;
537      --  The final itype of the overall aggregate
538
539      Index_Constraints : constant List_Id := New_List;
540      --  The list of index constraints of the aggregate itype
541
542   --  Start of processing for Array_Aggr_Subtype
543
544   begin
545      --  Make sure that the list of index constraints is properly attached to
546      --  the tree, and then collect the aggregate bounds.
547
548      --  If no aggregaate bounds have been set, this is an aggregate with
549      --  iterator specifications and a dynamic size to be determined by
550      --  first pass of expanded code.
551
552      if No (Aggregate_Bounds (N)) then
553         return Typ;
554      end if;
555
556      Set_Parent (Index_Constraints, N);
557      Collect_Aggr_Bounds (N, 1);
558
559      --  Build the list of constrained indexes of our aggregate itype
560
561      for J in 1 .. Aggr_Dimension loop
562         Create_Index : declare
563            Index_Base : constant Entity_Id :=
564                           Base_Type (Etype (Aggr_Range (J)));
565            Index_Typ  : Entity_Id;
566
567         begin
568            --  Construct the Index subtype, and associate it with the range
569            --  construct that generates it.
570
571            Index_Typ :=
572              Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
573
574            Set_Etype (Index_Typ, Index_Base);
575
576            if Is_Character_Type (Index_Base) then
577               Set_Is_Character_Type (Index_Typ);
578            end if;
579
580            Set_Size_Info      (Index_Typ,                (Index_Base));
581            Set_RM_Size        (Index_Typ, RM_Size        (Index_Base));
582            Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
583            Set_Scalar_Range   (Index_Typ, Aggr_Range (J));
584
585            if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
586               Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
587            end if;
588
589            Set_Etype (Aggr_Range (J), Index_Typ);
590
591            Append (Aggr_Range (J), To => Index_Constraints);
592         end Create_Index;
593      end loop;
594
595      --  Now build the Itype
596
597      Itype := Create_Itype (E_Array_Subtype, N);
598
599      Set_First_Rep_Item         (Itype, First_Rep_Item        (Typ));
600      Set_Convention             (Itype, Convention            (Typ));
601      Set_Depends_On_Private     (Itype, Has_Private_Component (Typ));
602      Set_Etype                  (Itype, Base_Type             (Typ));
603      Set_Has_Alignment_Clause   (Itype, Has_Alignment_Clause  (Typ));
604      Set_Is_Aliased             (Itype, Is_Aliased            (Typ));
605      Set_Is_Independent         (Itype, Is_Independent        (Typ));
606      Set_Depends_On_Private     (Itype, Depends_On_Private    (Typ));
607
608      Copy_Suppress_Status (Index_Check,  Typ, Itype);
609      Copy_Suppress_Status (Length_Check, Typ, Itype);
610
611      Set_First_Index    (Itype, First (Index_Constraints));
612      Set_Is_Constrained (Itype, True);
613      Set_Is_Internal    (Itype, True);
614
615      if Has_Predicates (Typ) then
616         Set_Has_Predicates (Itype);
617
618         --  If the base type has a predicate, capture the predicated parent
619         --  or the existing predicate function for SPARK use.
620
621         if Present (Predicate_Function (Typ)) then
622            Set_Predicate_Function (Itype, Predicate_Function (Typ));
623
624         elsif Is_Itype (Typ) then
625            Set_Predicated_Parent (Itype, Predicated_Parent (Typ));
626
627         else
628            Set_Predicated_Parent (Itype, Typ);
629         end if;
630      end if;
631
632      --  A simple optimization: purely positional aggregates of static
633      --  components should be passed to gigi unexpanded whenever possible, and
634      --  regardless of the staticness of the bounds themselves. Subsequent
635      --  checks in exp_aggr verify that type is not packed, etc.
636
637      Set_Size_Known_At_Compile_Time
638        (Itype,
639         Is_Fully_Positional
640           and then Comes_From_Source (N)
641           and then Size_Known_At_Compile_Time (Component_Type (Typ)));
642
643      --  We always need a freeze node for a packed array subtype, so that we
644      --  can build the Packed_Array_Impl_Type corresponding to the subtype. If
645      --  expansion is disabled, the packed array subtype is not built, and we
646      --  must not generate a freeze node for the type, or else it will appear
647      --  incomplete to gigi.
648
649      if Is_Packed (Itype)
650        and then not In_Spec_Expression
651        and then Expander_Active
652      then
653         Freeze_Itype (Itype, N);
654      end if;
655
656      return Itype;
657   end Array_Aggr_Subtype;
658
659   --------------------------------
660   -- Check_Misspelled_Component --
661   --------------------------------
662
663   procedure Check_Misspelled_Component
664     (Elements  : Elist_Id;
665      Component : Node_Id)
666   is
667      Max_Suggestions   : constant := 2;
668
669      Nr_Of_Suggestions : Natural := 0;
670      Suggestion_1      : Entity_Id := Empty;
671      Suggestion_2      : Entity_Id := Empty;
672      Component_Elmt    : Elmt_Id;
673
674   begin
675      --  All the components of List are matched against Component and a count
676      --  is maintained of possible misspellings. When at the end of the
677      --  analysis there are one or two (not more) possible misspellings,
678      --  these misspellings will be suggested as possible corrections.
679
680      Component_Elmt := First_Elmt (Elements);
681      while Nr_Of_Suggestions <= Max_Suggestions
682        and then Present (Component_Elmt)
683      loop
684         if Is_Bad_Spelling_Of
685              (Chars (Node (Component_Elmt)),
686               Chars (Component))
687         then
688            Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
689
690            case Nr_Of_Suggestions is
691               when 1      => Suggestion_1 := Node (Component_Elmt);
692               when 2      => Suggestion_2 := Node (Component_Elmt);
693               when others => null;
694            end case;
695         end if;
696
697         Next_Elmt (Component_Elmt);
698      end loop;
699
700      --  Report at most two suggestions
701
702      if Nr_Of_Suggestions = 1 then
703         Error_Msg_NE -- CODEFIX
704           ("\possible misspelling of&", Component, Suggestion_1);
705
706      elsif Nr_Of_Suggestions = 2 then
707         Error_Msg_Node_2 := Suggestion_2;
708         Error_Msg_NE -- CODEFIX
709           ("\possible misspelling of& or&", Component, Suggestion_1);
710      end if;
711   end Check_Misspelled_Component;
712
713   ----------------------------------------
714   -- Check_Expr_OK_In_Limited_Aggregate --
715   ----------------------------------------
716
717   procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
718   begin
719      if Is_Limited_Type (Etype (Expr))
720         and then Comes_From_Source (Expr)
721      then
722         if In_Instance_Body or else In_Inlined_Body then
723            null;
724
725         elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
726            Error_Msg_N
727              ("initialization not allowed for limited types", Expr);
728            Explain_Limited_Type (Etype (Expr), Expr);
729         end if;
730      end if;
731   end Check_Expr_OK_In_Limited_Aggregate;
732
733   -------------------------
734   -- Is_Others_Aggregate --
735   -------------------------
736
737   function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
738      Assoc : constant List_Id := Component_Associations (Aggr);
739
740   begin
741      return No (Expressions (Aggr))
742        and then Nkind (First (Choice_List (First (Assoc)))) = N_Others_Choice;
743   end Is_Others_Aggregate;
744
745   -------------------------
746   -- Is_Single_Aggregate --
747   -------------------------
748
749   function Is_Single_Aggregate (Aggr : Node_Id) return Boolean is
750      Assoc : constant List_Id := Component_Associations (Aggr);
751
752   begin
753      return No (Expressions (Aggr))
754        and then No (Next (First (Assoc)))
755        and then No (Next (First (Choice_List (First (Assoc)))));
756   end Is_Single_Aggregate;
757
758   --------------------------------
759   -- Make_String_Into_Aggregate --
760   --------------------------------
761
762   procedure Make_String_Into_Aggregate (N : Node_Id) is
763      Exprs  : constant List_Id    := New_List;
764      Loc    : constant Source_Ptr := Sloc (N);
765      Str    : constant String_Id  := Strval (N);
766      Strlen : constant Nat        := String_Length (Str);
767      C      : Char_Code;
768      C_Node : Node_Id;
769      New_N  : Node_Id;
770      P      : Source_Ptr;
771
772   begin
773      P := Loc + 1;
774      for J in  1 .. Strlen loop
775         C := Get_String_Char (Str, J);
776         Set_Character_Literal_Name (C);
777
778         C_Node :=
779           Make_Character_Literal (P,
780             Chars              => Name_Find,
781             Char_Literal_Value => UI_From_CC (C));
782         Set_Etype (C_Node, Any_Character);
783         Append_To (Exprs, C_Node);
784
785         P := P + 1;
786         --  Something special for wide strings???
787      end loop;
788
789      New_N := Make_Aggregate (Loc, Expressions => Exprs);
790      Set_Analyzed (New_N);
791      Set_Etype (New_N, Any_Composite);
792
793      Rewrite (N, New_N);
794   end Make_String_Into_Aggregate;
795
796   -----------------------
797   -- Resolve_Aggregate --
798   -----------------------
799
800   procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
801      Loc : constant Source_Ptr := Sloc (N);
802
803      Aggr_Subtyp : Entity_Id;
804      --  The actual aggregate subtype. This is not necessarily the same as Typ
805      --  which is the subtype of the context in which the aggregate was found.
806
807      Others_Box : Boolean := False;
808      --  Set to True if N represents a simple aggregate with only
809      --  (others => <>), not nested as part of another aggregate.
810
811      function Within_Aggregate (N : Node_Id) return Boolean;
812      --  Return True if N is part of an N_Aggregate
813
814      ----------------------
815      -- Within_Aggregate --
816      ----------------------
817
818      function Within_Aggregate (N : Node_Id) return Boolean is
819         P : Node_Id := Parent (N);
820      begin
821         while Present (P) loop
822            if Nkind (P) = N_Aggregate then
823               return True;
824            end if;
825
826            P := Parent (P);
827         end loop;
828
829         return False;
830      end Within_Aggregate;
831
832   --  Start of processing for Resolve_Aggregate
833
834   begin
835      --  Ignore junk empty aggregate resulting from parser error
836
837      if No (Expressions (N))
838        and then No (Component_Associations (N))
839        and then not Null_Record_Present (N)
840      then
841         return;
842      end if;
843
844      --  If the aggregate has box-initialized components, its type must be
845      --  frozen so that initialization procedures can properly be called
846      --  in the resolution that follows. The replacement of boxes with
847      --  initialization calls is properly an expansion activity but it must
848      --  be done during resolution.
849
850      if Expander_Active
851        and then Present (Component_Associations (N))
852      then
853         declare
854            Comp       : Node_Id;
855            First_Comp : Boolean := True;
856
857         begin
858            Comp := First (Component_Associations (N));
859            while Present (Comp) loop
860               if Box_Present (Comp) then
861                  if First_Comp
862                    and then No (Expressions (N))
863                    and then Nkind (First (Choices (Comp))) = N_Others_Choice
864                    and then not Within_Aggregate (N)
865                  then
866                     Others_Box := True;
867                  end if;
868
869                  Insert_Actions (N, Freeze_Entity (Typ, N));
870                  exit;
871               end if;
872
873               First_Comp := False;
874               Next (Comp);
875            end loop;
876         end;
877      end if;
878
879      --  Check for aggregates not allowed in configurable run-time mode.
880      --  We allow all cases of aggregates that do not come from source, since
881      --  these are all assumed to be small (e.g. bounds of a string literal).
882      --  We also allow aggregates of types we know to be small.
883
884      if not Support_Aggregates_On_Target
885        and then Comes_From_Source (N)
886        and then (not Known_Static_Esize (Typ)
887                   or else Esize (Typ) > System_Max_Integer_Size)
888      then
889         Error_Msg_CRT ("aggregate", N);
890      end if;
891
892      --  Ada 2005 (AI-287): Limited aggregates allowed
893
894      --  In an instance, ignore aggregate subcomponents that may be limited,
895      --  because they originate in view conflicts. If the original aggregate
896      --  is legal and the actuals are legal, the aggregate itself is legal.
897
898      if Is_Limited_Type (Typ)
899        and then Ada_Version < Ada_2005
900        and then not In_Instance
901      then
902         Error_Msg_N ("aggregate type cannot be limited", N);
903         Explain_Limited_Type (Typ, N);
904
905      elsif Is_Class_Wide_Type (Typ) then
906         Error_Msg_N ("type of aggregate cannot be class-wide", N);
907
908      elsif Typ = Any_String
909        or else Typ = Any_Composite
910      then
911         Error_Msg_N ("no unique type for aggregate", N);
912         Set_Etype (N, Any_Composite);
913
914      elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
915         Error_Msg_N ("null record forbidden in array aggregate", N);
916
917      elsif Present (Find_Aspect (Typ, Aspect_Aggregate))
918        and then Ekind (Typ) /= E_Record_Type
919        and then Ada_Version >= Ada_2022
920      then
921         --  Check for Ada 2022 and () aggregate.
922
923         if not Is_Homogeneous_Aggregate (N) then
924            Error_Msg_N ("container aggregate must use '['], not ()", N);
925         end if;
926
927         Resolve_Container_Aggregate (N, Typ);
928
929      elsif Is_Record_Type (Typ) then
930         Resolve_Record_Aggregate (N, Typ);
931
932      elsif Is_Array_Type (Typ) then
933
934         --  First a special test, for the case of a positional aggregate of
935         --  characters which can be replaced by a string literal.
936
937         --  Do not perform this transformation if this was a string literal
938         --  to start with, whose components needed constraint checks, or if
939         --  the component type is non-static, because it will require those
940         --  checks and be transformed back into an aggregate. If the index
941         --  type is not Integer the aggregate may represent a user-defined
942         --  string type but the context might need the original type so we
943         --  do not perform the transformation at this point.
944
945         if Number_Dimensions (Typ) = 1
946           and then Is_Standard_Character_Type (Component_Type (Typ))
947           and then No (Component_Associations (N))
948           and then not Is_Limited_Composite (Typ)
949           and then not Is_Private_Composite (Typ)
950           and then not Is_Bit_Packed_Array (Typ)
951           and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
952           and then Is_OK_Static_Subtype (Component_Type (Typ))
953           and then Base_Type (Etype (First_Index (Typ))) =
954                      Base_Type (Standard_Integer)
955         then
956            declare
957               Expr : Node_Id;
958
959            begin
960               Expr := First (Expressions (N));
961               while Present (Expr) loop
962                  exit when Nkind (Expr) /= N_Character_Literal;
963                  Next (Expr);
964               end loop;
965
966               if No (Expr) then
967                  Start_String;
968
969                  Expr := First (Expressions (N));
970                  while Present (Expr) loop
971                     Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
972                     Next (Expr);
973                  end loop;
974
975                  Rewrite (N, Make_String_Literal (Loc, End_String));
976
977                  Analyze_And_Resolve (N, Typ);
978                  return;
979               end if;
980            end;
981         end if;
982
983         --  Here if we have a real aggregate to deal with
984
985         Array_Aggregate : declare
986            Aggr_Resolved : Boolean;
987
988            Aggr_Typ : constant Entity_Id := Etype (Typ);
989            --  This is the unconstrained array type, which is the type against
990            --  which the aggregate is to be resolved. Typ itself is the array
991            --  type of the context which may not be the same subtype as the
992            --  subtype for the final aggregate.
993
994         begin
995            --  In the following we determine whether an OTHERS choice is
996            --  allowed inside the array aggregate. The test checks the context
997            --  in which the array aggregate occurs. If the context does not
998            --  permit it, or the aggregate type is unconstrained, an OTHERS
999            --  choice is not allowed (except that it is always allowed on the
1000            --  right-hand side of an assignment statement; in this case the
1001            --  constrainedness of the type doesn't matter, because an array
1002            --  object is always constrained).
1003
1004            --  If expansion is disabled (generic context, or semantics-only
1005            --  mode) actual subtypes cannot be constructed, and the type of an
1006            --  object may be its unconstrained nominal type. However, if the
1007            --  context is an assignment statement, OTHERS is allowed, because
1008            --  the target of the assignment will have a constrained subtype
1009            --  when fully compiled. Ditto if the context is an initialization
1010            --  procedure where a component may have a predicate function that
1011            --  carries the base type.
1012
1013            --  Note that there is no node for Explicit_Actual_Parameter.
1014            --  To test for this context we therefore have to test for node
1015            --  N_Parameter_Association which itself appears only if there is a
1016            --  formal parameter. Consequently we also need to test for
1017            --  N_Procedure_Call_Statement or N_Function_Call.
1018
1019            --  The context may be an N_Reference node, created by expansion.
1020            --  Legality of the others clause was established in the source,
1021            --  so the context is legal.
1022
1023            Set_Etype (N, Aggr_Typ);  --  May be overridden later on
1024
1025            if Nkind (Parent (N)) = N_Assignment_Statement
1026              or else Inside_Init_Proc
1027              or else (Is_Constrained (Typ)
1028                        and then Nkind (Parent (N)) in
1029                                   N_Parameter_Association
1030                                 | N_Function_Call
1031                                 | N_Procedure_Call_Statement
1032                                 | N_Generic_Association
1033                                 | N_Formal_Object_Declaration
1034                                 | N_Simple_Return_Statement
1035                                 | N_Object_Declaration
1036                                 | N_Component_Declaration
1037                                 | N_Parameter_Specification
1038                                 | N_Qualified_Expression
1039                                 | N_Reference
1040                                 | N_Aggregate
1041                                 | N_Extension_Aggregate
1042                                 | N_Component_Association
1043                                 | N_Case_Expression_Alternative
1044                                 | N_If_Expression
1045                                 | N_Expression_With_Actions)
1046            then
1047               Aggr_Resolved :=
1048                 Resolve_Array_Aggregate
1049                   (N,
1050                    Index          => First_Index (Aggr_Typ),
1051                    Index_Constr   => First_Index (Typ),
1052                    Component_Typ  => Component_Type (Typ),
1053                    Others_Allowed => True);
1054            else
1055               Aggr_Resolved :=
1056                 Resolve_Array_Aggregate
1057                   (N,
1058                    Index          => First_Index (Aggr_Typ),
1059                    Index_Constr   => First_Index (Aggr_Typ),
1060                    Component_Typ  => Component_Type (Typ),
1061                    Others_Allowed => False);
1062            end if;
1063
1064            if not Aggr_Resolved then
1065
1066               --  A parenthesized expression may have been intended as an
1067               --  aggregate, leading to a type error when analyzing the
1068               --  component. This can also happen for a nested component
1069               --  (see Analyze_Aggr_Expr).
1070
1071               if Paren_Count (N) > 0 then
1072                  Error_Msg_N
1073                    ("positional aggregate cannot have one component", N);
1074               end if;
1075
1076               Aggr_Subtyp := Any_Composite;
1077
1078            else
1079               Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1080            end if;
1081
1082            Set_Etype (N, Aggr_Subtyp);
1083         end Array_Aggregate;
1084
1085      elsif Is_Private_Type (Typ)
1086        and then Present (Full_View (Typ))
1087        and then (In_Inlined_Body or In_Instance_Body)
1088        and then Is_Composite_Type (Full_View (Typ))
1089      then
1090         Resolve (N, Full_View (Typ));
1091
1092      else
1093         Error_Msg_N ("illegal context for aggregate", N);
1094      end if;
1095
1096      --  If we can determine statically that the evaluation of the aggregate
1097      --  raises Constraint_Error, then replace the aggregate with an
1098      --  N_Raise_Constraint_Error node, but set the Etype to the right
1099      --  aggregate subtype. Gigi needs this.
1100
1101      if Raises_Constraint_Error (N) then
1102         Aggr_Subtyp := Etype (N);
1103         Rewrite (N,
1104           Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1105         Set_Raises_Constraint_Error (N);
1106         Set_Etype (N, Aggr_Subtyp);
1107         Set_Analyzed (N);
1108      end if;
1109
1110      if Warn_On_No_Value_Assigned
1111        and then Others_Box
1112        and then not Is_Fully_Initialized_Type (Etype (N))
1113      then
1114         Error_Msg_N ("?v?aggregate not fully initialized", N);
1115      end if;
1116
1117      Check_Function_Writable_Actuals (N);
1118   end Resolve_Aggregate;
1119
1120   -----------------------------
1121   -- Resolve_Array_Aggregate --
1122   -----------------------------
1123
1124   function Resolve_Array_Aggregate
1125     (N              : Node_Id;
1126      Index          : Node_Id;
1127      Index_Constr   : Node_Id;
1128      Component_Typ  : Entity_Id;
1129      Others_Allowed : Boolean) return Boolean
1130   is
1131      Loc : constant Source_Ptr := Sloc (N);
1132
1133      Failure : constant Boolean := False;
1134      Success : constant Boolean := True;
1135
1136      Index_Typ      : constant Entity_Id := Etype (Index);
1137      Index_Typ_Low  : constant Node_Id   := Type_Low_Bound  (Index_Typ);
1138      Index_Typ_High : constant Node_Id   := Type_High_Bound (Index_Typ);
1139      --  The type of the index corresponding to the array sub-aggregate along
1140      --  with its low and upper bounds.
1141
1142      Index_Base      : constant Entity_Id := Base_Type (Index_Typ);
1143      Index_Base_Low  : constant Node_Id   := Type_Low_Bound (Index_Base);
1144      Index_Base_High : constant Node_Id   := Type_High_Bound (Index_Base);
1145      --  Ditto for the base type
1146
1147      Others_Present : Boolean := False;
1148
1149      Nb_Choices : Nat := 0;
1150      --  Contains the overall number of named choices in this sub-aggregate
1151
1152      function Add (Val : Uint; To : Node_Id) return Node_Id;
1153      --  Creates a new expression node where Val is added to expression To.
1154      --  Tries to constant fold whenever possible. To must be an already
1155      --  analyzed expression.
1156
1157      procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1158      --  Checks that AH (the upper bound of an array aggregate) is less than
1159      --  or equal to BH (the upper bound of the index base type). If the check
1160      --  fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1161      --  set, and AH is replaced with a duplicate of BH.
1162
1163      procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1164      --  Checks that range AL .. AH is compatible with range L .. H. Emits a
1165      --  warning if not and sets the Raises_Constraint_Error flag in N.
1166
1167      procedure Check_Length (L, H : Node_Id; Len : Uint);
1168      --  Checks that range L .. H contains at least Len elements. Emits a
1169      --  warning if not and sets the Raises_Constraint_Error flag in N.
1170
1171      function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1172      --  Returns True if range L .. H is dynamic or null
1173
1174      procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1175      --  Given expression node From, this routine sets OK to False if it
1176      --  cannot statically evaluate From. Otherwise it stores this static
1177      --  value into Value.
1178
1179      function Resolve_Aggr_Expr
1180        (Expr        : Node_Id;
1181         Single_Elmt : Boolean) return Boolean;
1182      --  Resolves aggregate expression Expr. Returns False if resolution
1183      --  fails. If Single_Elmt is set to False, the expression Expr may be
1184      --  used to initialize several array aggregate elements (this can happen
1185      --  for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1186      --  In this event we do not resolve Expr unless expansion is disabled.
1187      --  To know why, see the DELAYED COMPONENT RESOLUTION note above.
1188      --
1189      --  NOTE: In the case of "... => <>", we pass the in the
1190      --  N_Component_Association node as Expr, since there is no Expression in
1191      --  that case, and we need a Sloc for the error message.
1192
1193      procedure Resolve_Iterated_Component_Association
1194        (N         : Node_Id;
1195         Index_Typ : Entity_Id);
1196      --  For AI12-061
1197
1198      ---------
1199      -- Add --
1200      ---------
1201
1202      function Add (Val : Uint; To : Node_Id) return Node_Id is
1203         Expr_Pos : Node_Id;
1204         Expr     : Node_Id;
1205         To_Pos   : Node_Id;
1206
1207      begin
1208         if Raises_Constraint_Error (To) then
1209            return To;
1210         end if;
1211
1212         --  First test if we can do constant folding
1213
1214         if Compile_Time_Known_Value (To)
1215           or else Nkind (To) = N_Integer_Literal
1216         then
1217            Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1218            Set_Is_Static_Expression (Expr_Pos);
1219            Set_Etype (Expr_Pos, Etype (To));
1220            Set_Analyzed (Expr_Pos, Analyzed (To));
1221
1222            if not Is_Enumeration_Type (Index_Typ) then
1223               Expr := Expr_Pos;
1224
1225            --  If we are dealing with enumeration return
1226            --     Index_Typ'Val (Expr_Pos)
1227
1228            else
1229               Expr :=
1230                 Make_Attribute_Reference
1231                   (Loc,
1232                    Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1233                    Attribute_Name => Name_Val,
1234                    Expressions    => New_List (Expr_Pos));
1235            end if;
1236
1237            return Expr;
1238         end if;
1239
1240         --  If we are here no constant folding possible
1241
1242         if not Is_Enumeration_Type (Index_Base) then
1243            Expr :=
1244              Make_Op_Add (Loc,
1245                Left_Opnd  => Duplicate_Subexpr (To),
1246                Right_Opnd => Make_Integer_Literal (Loc, Val));
1247
1248         --  If we are dealing with enumeration return
1249         --    Index_Typ'Val (Index_Typ'Pos (To) + Val)
1250
1251         else
1252            To_Pos :=
1253              Make_Attribute_Reference
1254                (Loc,
1255                 Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1256                 Attribute_Name => Name_Pos,
1257                 Expressions    => New_List (Duplicate_Subexpr (To)));
1258
1259            Expr_Pos :=
1260              Make_Op_Add (Loc,
1261                Left_Opnd  => To_Pos,
1262                Right_Opnd => Make_Integer_Literal (Loc, Val));
1263
1264            Expr :=
1265              Make_Attribute_Reference
1266                (Loc,
1267                 Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1268                 Attribute_Name => Name_Val,
1269                 Expressions    => New_List (Expr_Pos));
1270
1271            --  If the index type has a non standard representation, the
1272            --  attributes 'Val and 'Pos expand into function calls and the
1273            --  resulting expression is considered non-safe for reevaluation
1274            --  by the backend. Relocate it into a constant temporary in order
1275            --  to make it safe for reevaluation.
1276
1277            if Has_Non_Standard_Rep (Etype (N)) then
1278               declare
1279                  Def_Id : Entity_Id;
1280
1281               begin
1282                  Def_Id := Make_Temporary (Loc, 'R', Expr);
1283                  Set_Etype (Def_Id, Index_Typ);
1284                  Insert_Action (N,
1285                    Make_Object_Declaration (Loc,
1286                      Defining_Identifier => Def_Id,
1287                      Object_Definition   =>
1288                        New_Occurrence_Of (Index_Typ, Loc),
1289                      Constant_Present    => True,
1290                      Expression          => Relocate_Node (Expr)));
1291
1292                  Expr := New_Occurrence_Of (Def_Id, Loc);
1293               end;
1294            end if;
1295         end if;
1296
1297         return Expr;
1298      end Add;
1299
1300      -----------------
1301      -- Check_Bound --
1302      -----------------
1303
1304      procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1305         Val_BH : Uint;
1306         Val_AH : Uint;
1307
1308         OK_BH : Boolean;
1309         OK_AH : Boolean;
1310
1311      begin
1312         Get (Value => Val_BH, From => BH, OK => OK_BH);
1313         Get (Value => Val_AH, From => AH, OK => OK_AH);
1314
1315         if OK_BH and then OK_AH and then Val_BH < Val_AH then
1316            Set_Raises_Constraint_Error (N);
1317            Error_Msg_Warn := SPARK_Mode /= On;
1318            Error_Msg_N ("upper bound out of range<<", AH);
1319            Error_Msg_N ("\Constraint_Error [<<", AH);
1320
1321            --  You need to set AH to BH or else in the case of enumerations
1322            --  indexes we will not be able to resolve the aggregate bounds.
1323
1324            AH := Duplicate_Subexpr (BH);
1325         end if;
1326      end Check_Bound;
1327
1328      ------------------
1329      -- Check_Bounds --
1330      ------------------
1331
1332      procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1333         Val_L  : Uint;
1334         Val_H  : Uint;
1335         Val_AL : Uint;
1336         Val_AH : Uint;
1337
1338         OK_L : Boolean;
1339         OK_H : Boolean;
1340
1341         OK_AL : Boolean;
1342         OK_AH  : Boolean;
1343         pragma Warnings (Off, OK_AL);
1344         pragma Warnings (Off, OK_AH);
1345
1346      begin
1347         if Raises_Constraint_Error (N)
1348           or else Dynamic_Or_Null_Range (AL, AH)
1349         then
1350            return;
1351         end if;
1352
1353         Get (Value => Val_L, From => L, OK => OK_L);
1354         Get (Value => Val_H, From => H, OK => OK_H);
1355
1356         Get (Value => Val_AL, From => AL, OK => OK_AL);
1357         Get (Value => Val_AH, From => AH, OK => OK_AH);
1358
1359         if OK_L and then Val_L > Val_AL then
1360            Set_Raises_Constraint_Error (N);
1361            Error_Msg_Warn := SPARK_Mode /= On;
1362            Error_Msg_N ("lower bound of aggregate out of range<<", N);
1363            Error_Msg_N ("\Constraint_Error [<<", N);
1364         end if;
1365
1366         if OK_H and then Val_H < Val_AH then
1367            Set_Raises_Constraint_Error (N);
1368            Error_Msg_Warn := SPARK_Mode /= On;
1369            Error_Msg_N ("upper bound of aggregate out of range<<", N);
1370            Error_Msg_N ("\Constraint_Error [<<", N);
1371         end if;
1372      end Check_Bounds;
1373
1374      ------------------
1375      -- Check_Length --
1376      ------------------
1377
1378      procedure Check_Length (L, H : Node_Id; Len : Uint) is
1379         Val_L  : Uint;
1380         Val_H  : Uint;
1381
1382         OK_L  : Boolean;
1383         OK_H  : Boolean;
1384
1385         Range_Len : Uint;
1386
1387      begin
1388         if Raises_Constraint_Error (N) then
1389            return;
1390         end if;
1391
1392         Get (Value => Val_L, From => L, OK => OK_L);
1393         Get (Value => Val_H, From => H, OK => OK_H);
1394
1395         if not OK_L or else not OK_H then
1396            return;
1397         end if;
1398
1399         --  If null range length is zero
1400
1401         if Val_L > Val_H then
1402            Range_Len := Uint_0;
1403         else
1404            Range_Len := Val_H - Val_L + 1;
1405         end if;
1406
1407         if Range_Len < Len then
1408            Set_Raises_Constraint_Error (N);
1409            Error_Msg_Warn := SPARK_Mode /= On;
1410            Error_Msg_N ("too many elements<<", N);
1411            Error_Msg_N ("\Constraint_Error [<<", N);
1412         end if;
1413      end Check_Length;
1414
1415      ---------------------------
1416      -- Dynamic_Or_Null_Range --
1417      ---------------------------
1418
1419      function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1420         Val_L : Uint;
1421         Val_H : Uint;
1422
1423         OK_L  : Boolean;
1424         OK_H  : Boolean;
1425
1426      begin
1427         Get (Value => Val_L, From => L, OK => OK_L);
1428         Get (Value => Val_H, From => H, OK => OK_H);
1429
1430         return not OK_L or else not OK_H
1431           or else not Is_OK_Static_Expression (L)
1432           or else not Is_OK_Static_Expression (H)
1433           or else Val_L > Val_H;
1434      end Dynamic_Or_Null_Range;
1435
1436      ---------
1437      -- Get --
1438      ---------
1439
1440      procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1441      begin
1442         OK := True;
1443
1444         if Compile_Time_Known_Value (From) then
1445            Value := Expr_Value (From);
1446
1447         --  If expression From is something like Some_Type'Val (10) then
1448         --  Value = 10.
1449
1450         elsif Nkind (From) = N_Attribute_Reference
1451           and then Attribute_Name (From) = Name_Val
1452           and then Compile_Time_Known_Value (First (Expressions (From)))
1453         then
1454            Value := Expr_Value (First (Expressions (From)));
1455         else
1456            Value := Uint_0;
1457            OK := False;
1458         end if;
1459      end Get;
1460
1461      -----------------------
1462      -- Resolve_Aggr_Expr --
1463      -----------------------
1464
1465      function Resolve_Aggr_Expr
1466        (Expr        : Node_Id;
1467         Single_Elmt : Boolean) return Boolean
1468      is
1469         Nxt_Ind        : constant Node_Id := Next_Index (Index);
1470         Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1471         --  Index is the current index corresponding to the expression
1472
1473         Resolution_OK : Boolean := True;
1474         --  Set to False if resolution of the expression failed
1475
1476      begin
1477         --  Defend against previous errors
1478
1479         if Nkind (Expr) = N_Error
1480           or else Error_Posted (Expr)
1481         then
1482            return True;
1483         end if;
1484
1485         --  If the array type against which we are resolving the aggregate
1486         --  has several dimensions, the expressions nested inside the
1487         --  aggregate must be further aggregates (or strings).
1488
1489         if Present (Nxt_Ind) then
1490            if Nkind (Expr) /= N_Aggregate then
1491
1492               --  A string literal can appear where a one-dimensional array
1493               --  of characters is expected. If the literal looks like an
1494               --  operator, it is still an operator symbol, which will be
1495               --  transformed into a string when analyzed.
1496
1497               if Is_Character_Type (Component_Typ)
1498                 and then No (Next_Index (Nxt_Ind))
1499                 and then Nkind (Expr) in N_String_Literal | N_Operator_Symbol
1500               then
1501                  --  A string literal used in a multidimensional array
1502                  --  aggregate in place of the final one-dimensional
1503                  --  aggregate must not be enclosed in parentheses.
1504
1505                  if Paren_Count (Expr) /= 0 then
1506                     Error_Msg_N ("no parenthesis allowed here", Expr);
1507                  end if;
1508
1509                  Make_String_Into_Aggregate (Expr);
1510
1511               else
1512                  Error_Msg_N ("nested array aggregate expected", Expr);
1513
1514                  --  If the expression is parenthesized, this may be
1515                  --  a missing component association for a 1-aggregate.
1516
1517                  if Paren_Count (Expr) > 0 then
1518                     Error_Msg_N
1519                       ("\if single-component aggregate is intended, "
1520                        & "write e.g. (1 ='> ...)", Expr);
1521                  end if;
1522
1523                  return Failure;
1524               end if;
1525            end if;
1526
1527            --  If it's "... => <>", nothing to resolve
1528
1529            if Nkind (Expr) = N_Component_Association then
1530               pragma Assert (Box_Present (Expr));
1531               return Success;
1532            end if;
1533
1534            --  Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1535            --  Required to check the null-exclusion attribute (if present).
1536            --  This value may be overridden later on.
1537
1538            Set_Etype (Expr, Etype (N));
1539
1540            Resolution_OK := Resolve_Array_Aggregate
1541              (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1542
1543         else
1544            --  If it's "... => <>", nothing to resolve
1545
1546            if Nkind (Expr) = N_Component_Association then
1547               pragma Assert (Box_Present (Expr));
1548               return Success;
1549            end if;
1550
1551            --  Do not resolve the expressions of discrete or others choices
1552            --  unless the expression covers a single component, or the
1553            --  expander is inactive.
1554
1555            --  In SPARK mode, expressions that can perform side effects will
1556            --  be recognized by the gnat2why back-end, and the whole
1557            --  subprogram will be ignored. So semantic analysis can be
1558            --  performed safely.
1559
1560            if Single_Elmt
1561              or else not Expander_Active
1562              or else In_Spec_Expression
1563            then
1564               Analyze_And_Resolve (Expr, Component_Typ);
1565               Check_Expr_OK_In_Limited_Aggregate (Expr);
1566               Check_Non_Static_Context (Expr);
1567               Aggregate_Constraint_Checks (Expr, Component_Typ);
1568               Check_Unset_Reference (Expr);
1569            end if;
1570         end if;
1571
1572         --  If an aggregate component has a type with predicates, an explicit
1573         --  predicate check must be applied, as for an assignment statement,
1574         --  because the aggregate might not be expanded into individual
1575         --  component assignments. If the expression covers several components
1576         --  the analysis and the predicate check take place later.
1577
1578         if Has_Predicates (Component_Typ)
1579           and then Analyzed (Expr)
1580         then
1581            Apply_Predicate_Check (Expr, Component_Typ);
1582         end if;
1583
1584         if Raises_Constraint_Error (Expr)
1585           and then Nkind (Parent (Expr)) /= N_Component_Association
1586         then
1587            Set_Raises_Constraint_Error (N);
1588         end if;
1589
1590         --  If the expression has been marked as requiring a range check,
1591         --  then generate it here. It's a bit odd to be generating such
1592         --  checks in the analyzer, but harmless since Generate_Range_Check
1593         --  does nothing (other than making sure Do_Range_Check is set) if
1594         --  the expander is not active.
1595
1596         if Do_Range_Check (Expr) then
1597            Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1598         end if;
1599
1600         return Resolution_OK;
1601      end Resolve_Aggr_Expr;
1602
1603      --------------------------------------------
1604      -- Resolve_Iterated_Component_Association --
1605      --------------------------------------------
1606
1607      procedure Resolve_Iterated_Component_Association
1608        (N         : Node_Id;
1609         Index_Typ : Entity_Id)
1610      is
1611         Loc : constant Source_Ptr := Sloc (N);
1612         Id  : constant Entity_Id  := Defining_Identifier (N);
1613
1614         Id_Typ : Entity_Id := Any_Type;
1615
1616         -----------------------
1617         -- Remove_References --
1618         -----------------------
1619
1620         function Remove_Ref (N : Node_Id) return Traverse_Result;
1621         --  Remove references to the entity Id after analysis, so it can be
1622         --  properly reanalyzed after construct is expanded into a loop.
1623
1624         function Remove_Ref (N : Node_Id) return Traverse_Result is
1625         begin
1626            if Nkind (N) = N_Identifier
1627               and then Present (Entity (N))
1628               and then Entity (N) = Id
1629            then
1630               Set_Entity (N, Empty);
1631               Set_Etype (N, Empty);
1632            end if;
1633            Set_Analyzed (N, False);
1634            return OK;
1635         end Remove_Ref;
1636
1637         procedure Remove_References is new Traverse_Proc (Remove_Ref);
1638
1639         --  Local variables
1640
1641         Choice : Node_Id;
1642         Dummy  : Boolean;
1643         Ent    : Entity_Id;
1644         Expr   : Node_Id;
1645
1646      --  Start of processing for Resolve_Iterated_Component_Association
1647
1648      begin
1649         Error_Msg_Ada_2022_Feature ("iterated component", Loc);
1650
1651         if Present (Iterator_Specification (N)) then
1652            Analyze (Name (Iterator_Specification (N)));
1653
1654            --  We assume that the domain of iteration cannot be overloaded.
1655
1656            declare
1657               Domain : constant Node_Id := Name (Iterator_Specification (N));
1658               D_Type : constant Entity_Id := Etype (Domain);
1659               Elt    : Entity_Id;
1660            begin
1661               if Is_Array_Type (D_Type) then
1662                  Id_Typ := Component_Type (D_Type);
1663
1664               else
1665                  if Has_Aspect (D_Type, Aspect_Iterable) then
1666                     Elt :=
1667                       Get_Iterable_Type_Primitive (D_Type, Name_Element);
1668                     if No (Elt) then
1669                        Error_Msg_N
1670                          ("missing Element primitive for iteration", Domain);
1671                     else
1672                        Id_Typ := Etype (Elt);
1673                     end if;
1674                  else
1675                     Error_Msg_N ("cannot iterate over", Domain);
1676                  end if;
1677               end if;
1678            end;
1679
1680         else
1681            Id_Typ := Index_Typ;
1682            Choice := First (Discrete_Choices (N));
1683
1684            while Present (Choice) loop
1685               if Nkind (Choice) = N_Others_Choice then
1686                  Others_Present := True;
1687
1688               else
1689                  Analyze (Choice);
1690
1691                  --  Choice can be a subtype name, a range, or an expression
1692
1693                  if Is_Entity_Name (Choice)
1694                    and then Is_Type (Entity (Choice))
1695                    and then
1696                      Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
1697                  then
1698                     null;
1699
1700                  else
1701                     Analyze_And_Resolve (Choice, Index_Typ);
1702                  end if;
1703               end if;
1704
1705               Next (Choice);
1706            end loop;
1707         end if;
1708
1709         --  Create a scope in which to introduce an index, which is usually
1710         --  visible in the expression for the component, and needed for its
1711         --  analysis.
1712
1713         Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1714         Set_Etype  (Ent, Standard_Void_Type);
1715         Set_Parent (Ent, Parent (N));
1716         Push_Scope (Ent);
1717
1718         --  Insert and decorate the index variable in the current scope.
1719         --  The expression has to be analyzed once the index variable is
1720         --  directly visible.
1721
1722         Enter_Name (Id);
1723         Set_Etype (Id, Id_Typ);
1724         Mutate_Ekind (Id, E_Variable);
1725         Set_Scope (Id, Ent);
1726
1727         --  Analyze  expression without expansion, to verify legality.
1728         --  When generating code, we then remove references to the index
1729         --  variable, because the expression will be analyzed anew after
1730         --  rewritting as a loop with a new index variable; when not
1731         --  generating code we leave the analyzed expression as it is.
1732
1733         Expr := Expression (N);
1734
1735         Expander_Mode_Save_And_Set (False);
1736         Dummy := Resolve_Aggr_Expr (Expr, Single_Elmt => False);
1737         Expander_Mode_Restore;
1738
1739         if Operating_Mode /= Check_Semantics then
1740            Remove_References (Expr);
1741         end if;
1742
1743         --  An iterated_component_association may appear in a nested
1744         --  aggregate for a multidimensional structure: preserve the bounds
1745         --  computed for the expression, as well as the anonymous array
1746         --  type generated for it; both are needed during array expansion.
1747
1748         if Nkind (Expr) = N_Aggregate then
1749            Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
1750            Set_Etype (Expression (N), Etype (Expr));
1751         end if;
1752
1753         End_Scope;
1754      end Resolve_Iterated_Component_Association;
1755
1756      --  Local variables
1757
1758      Assoc   : Node_Id;
1759      Choice  : Node_Id;
1760      Expr    : Node_Id;
1761      Discard : Node_Id;
1762
1763      Aggr_Low  : Node_Id := Empty;
1764      Aggr_High : Node_Id := Empty;
1765      --  The actual low and high bounds of this sub-aggregate
1766
1767      Case_Table_Size : Nat;
1768      --  Contains the size of the case table needed to sort aggregate choices
1769
1770      Choices_Low  : Node_Id := Empty;
1771      Choices_High : Node_Id := Empty;
1772      --  The lowest and highest discrete choices values for a named aggregate
1773
1774      Delete_Choice : Boolean;
1775      --  Used when replacing a subtype choice with predicate by a list
1776
1777      Has_Iterator_Specifications : Boolean := False;
1778      --  Flag to indicate that all named associations are iterated component
1779      --  associations with iterator specifications, in which case the
1780      --  expansion will create two loops: one to evaluate the size and one
1781      --  to generate the elements (4.3.3 (20.2/5)).
1782
1783      Nb_Elements : Uint := Uint_0;
1784      --  The number of elements in a positional aggregate
1785
1786      Nb_Discrete_Choices : Nat := 0;
1787      --  The overall number of discrete choices (not counting others choice)
1788
1789   --  Start of processing for Resolve_Array_Aggregate
1790
1791   begin
1792      --  Ignore junk empty aggregate resulting from parser error
1793
1794      if No (Expressions (N))
1795        and then No (Component_Associations (N))
1796        and then not Null_Record_Present (N)
1797      then
1798         return False;
1799      end if;
1800
1801      --  Disable the warning for GNAT Mode to allow for easier transition.
1802
1803      if Ada_Version >= Ada_2022
1804        and then Warn_On_Obsolescent_Feature
1805        and then not GNAT_Mode
1806        and then not Is_Homogeneous_Aggregate (N)
1807        and then not Is_Enum_Array_Aggregate (N)
1808        and then Is_Parenthesis_Aggregate (N)
1809        and then Nkind (Parent (N)) /= N_Qualified_Expression
1810        and then Comes_From_Source (N)
1811      then
1812         Error_Msg_N
1813           ("?j?array aggregate using () is an" &
1814              " obsolescent syntax, use '['] instead", N);
1815      end if;
1816
1817      --  STEP 1: make sure the aggregate is correctly formatted
1818
1819      if Present (Component_Associations (N)) then
1820
1821         --  Verify that all or none of the component associations
1822         --  include an iterator specification.
1823
1824         Assoc := First (Component_Associations (N));
1825         if Nkind (Assoc) = N_Iterated_Component_Association
1826           and then Present (Iterator_Specification (Assoc))
1827         then
1828            --  All other component associations must have an iterator spec.
1829
1830            Next (Assoc);
1831            while Present (Assoc) loop
1832               if Nkind (Assoc) /= N_Iterated_Component_Association
1833                 or else No (Iterator_Specification (Assoc))
1834               then
1835                  Error_Msg_N ("mixed iterated component association"
1836                   & " (RM 4.4.3 (17.1/5))",
1837                      Assoc);
1838                  return False;
1839               end if;
1840
1841               Next (Assoc);
1842            end loop;
1843
1844            Has_Iterator_Specifications := True;
1845
1846         else
1847            --  or none of them do.
1848
1849            Next (Assoc);
1850            while Present (Assoc) loop
1851               if Nkind (Assoc) = N_Iterated_Component_Association
1852                 and then Present (Iterator_Specification (Assoc))
1853               then
1854                  Error_Msg_N ("mixed iterated component association"
1855                    & " (RM 4.4.3 (17.1/5))",
1856                      Assoc);
1857                  return False;
1858               end if;
1859
1860               Next (Assoc);
1861            end loop;
1862
1863            while Present (Assoc) loop
1864               Next (Assoc);
1865            end loop;
1866         end if;
1867
1868         Assoc := First (Component_Associations (N));
1869         while Present (Assoc) loop
1870            if Nkind (Assoc) = N_Iterated_Component_Association then
1871               Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1872            end if;
1873
1874            Choice := First (Choice_List (Assoc));
1875            Delete_Choice := False;
1876            while Present (Choice) loop
1877               if Nkind (Choice) = N_Others_Choice then
1878                  Others_Present := True;
1879
1880                  if Choice /= First (Choice_List (Assoc))
1881                    or else Present (Next (Choice))
1882                  then
1883                     Error_Msg_N
1884                       ("OTHERS must appear alone in a choice list", Choice);
1885                     return Failure;
1886                  end if;
1887
1888                  if Present (Next (Assoc)) then
1889                     Error_Msg_N
1890                       ("OTHERS must appear last in an aggregate", Choice);
1891                     return Failure;
1892                  end if;
1893
1894                  if Ada_Version = Ada_83
1895                    and then Assoc /= First (Component_Associations (N))
1896                    and then Nkind (Parent (N)) in
1897                               N_Assignment_Statement | N_Object_Declaration
1898                  then
1899                     Error_Msg_N
1900                       ("(Ada 83) illegal context for OTHERS choice", N);
1901                  end if;
1902
1903               elsif Is_Entity_Name (Choice) then
1904                  Analyze (Choice);
1905
1906                  declare
1907                     E      : constant Entity_Id := Entity (Choice);
1908                     New_Cs : List_Id;
1909                     P      : Node_Id;
1910                     C      : Node_Id;
1911
1912                  begin
1913                     if Is_Type (E) and then Has_Predicates (E) then
1914                        Freeze_Before (N, E);
1915
1916                        if Has_Dynamic_Predicate_Aspect (E) then
1917                           Error_Msg_NE
1918                             ("subtype& has dynamic predicate, not allowed "
1919                              & "in aggregate choice", Choice, E);
1920
1921                        elsif not Is_OK_Static_Subtype (E) then
1922                           Error_Msg_NE
1923                             ("non-static subtype& has predicate, not allowed "
1924                              & "in aggregate choice", Choice, E);
1925                        end if;
1926
1927                        --  If the subtype has a static predicate, replace the
1928                        --  original choice with the list of individual values
1929                        --  covered by the predicate.
1930                        --  This should be deferred to expansion time ???
1931
1932                        if Present (Static_Discrete_Predicate (E)) then
1933                           Delete_Choice := True;
1934
1935                           New_Cs := New_List;
1936                           P := First (Static_Discrete_Predicate (E));
1937                           while Present (P) loop
1938                              C := New_Copy (P);
1939                              Set_Sloc (C, Sloc (Choice));
1940                              Append_To (New_Cs, C);
1941                              Next (P);
1942                           end loop;
1943
1944                           Insert_List_After (Choice, New_Cs);
1945                        end if;
1946                     end if;
1947                  end;
1948               end if;
1949
1950               Nb_Choices := Nb_Choices + 1;
1951
1952               declare
1953                  C : constant Node_Id := Choice;
1954
1955               begin
1956                  Next (Choice);
1957
1958                  if Delete_Choice then
1959                     Remove (C);
1960                     Nb_Choices := Nb_Choices - 1;
1961                     Delete_Choice := False;
1962                  end if;
1963               end;
1964            end loop;
1965
1966            Next (Assoc);
1967         end loop;
1968      end if;
1969
1970      --  At this point we know that the others choice, if present, is by
1971      --  itself and appears last in the aggregate. Check if we have mixed
1972      --  positional and discrete associations (other than the others choice).
1973
1974      if Present (Expressions (N))
1975        and then (Nb_Choices > 1
1976                   or else (Nb_Choices = 1 and then not Others_Present))
1977      then
1978         Error_Msg_N
1979           ("cannot mix named and positional associations in array aggregate",
1980            First (Choice_List (First (Component_Associations (N)))));
1981         return Failure;
1982      end if;
1983
1984      --  Test for the validity of an others choice if present
1985
1986      if Others_Present and then not Others_Allowed then
1987         declare
1988            Others_N : constant Node_Id :=
1989              First (Choice_List (First (Component_Associations (N))));
1990         begin
1991            Error_Msg_N ("OTHERS choice not allowed here", Others_N);
1992            Error_Msg_N ("\qualify the aggregate with a constrained subtype "
1993                         & "to provide bounds for it", Others_N);
1994            return Failure;
1995         end;
1996      end if;
1997
1998      --  Protect against cascaded errors
1999
2000      if Etype (Index_Typ) = Any_Type then
2001         return Failure;
2002      end if;
2003
2004      --  STEP 2: Process named components
2005
2006      if No (Expressions (N)) then
2007         if Others_Present then
2008            Case_Table_Size := Nb_Choices - 1;
2009         else
2010            Case_Table_Size := Nb_Choices;
2011         end if;
2012
2013         Step_2 : declare
2014            function Empty_Range (A : Node_Id) return Boolean;
2015            --  If an association covers an empty range, some warnings on the
2016            --  expression of the association can be disabled.
2017
2018            -----------------
2019            -- Empty_Range --
2020            -----------------
2021
2022            function Empty_Range (A : Node_Id) return Boolean is
2023               R : constant Node_Id := First (Choices (A));
2024            begin
2025               return No (Next (R))
2026                 and then Nkind (R) = N_Range
2027                 and then Compile_Time_Compare
2028                            (Low_Bound (R), High_Bound (R), False) = GT;
2029            end Empty_Range;
2030
2031            --  Local variables
2032
2033            Low  : Node_Id;
2034            High : Node_Id;
2035            --  Denote the lowest and highest values in an aggregate choice
2036
2037            S_Low  : Node_Id := Empty;
2038            S_High : Node_Id := Empty;
2039            --  if a choice in an aggregate is a subtype indication these
2040            --  denote the lowest and highest values of the subtype
2041
2042            Table : Case_Table_Type (1 .. Case_Table_Size);
2043            --  Used to sort all the different choice values
2044
2045            Single_Choice : Boolean;
2046            --  Set to true every time there is a single discrete choice in a
2047            --  discrete association
2048
2049            Prev_Nb_Discrete_Choices : Nat;
2050            --  Used to keep track of the number of discrete choices in the
2051            --  current association.
2052
2053            Errors_Posted_On_Choices : Boolean := False;
2054            --  Keeps track of whether any choices have semantic errors
2055
2056         --  Start of processing for Step_2
2057
2058         begin
2059            --  STEP 2 (A): Check discrete choices validity
2060            --  No need if this is an element iteration.
2061
2062            Assoc := First (Component_Associations (N));
2063            while Present (Assoc)
2064              and then Present (Choice_List (Assoc))
2065            loop
2066               Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
2067               Choice := First (Choice_List (Assoc));
2068
2069               loop
2070                  Analyze (Choice);
2071
2072                  if Nkind (Choice) = N_Others_Choice then
2073                     Single_Choice := False;
2074                     exit;
2075
2076                  --  Test for subtype mark without constraint
2077
2078                  elsif Is_Entity_Name (Choice) and then
2079                    Is_Type (Entity (Choice))
2080                  then
2081                     if Base_Type (Entity (Choice)) /= Index_Base then
2082                        Error_Msg_N
2083                          ("invalid subtype mark in aggregate choice",
2084                           Choice);
2085                        return Failure;
2086                     end if;
2087
2088                  --  Case of subtype indication
2089
2090                  elsif Nkind (Choice) = N_Subtype_Indication then
2091                     Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
2092
2093                     if Has_Dynamic_Predicate_Aspect
2094                       (Entity (Subtype_Mark (Choice)))
2095                     then
2096                        Error_Msg_NE
2097                          ("subtype& has dynamic predicate, "
2098                           & "not allowed in aggregate choice",
2099                           Choice, Entity (Subtype_Mark (Choice)));
2100                     end if;
2101
2102                     --  Does the subtype indication evaluation raise CE?
2103
2104                     Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
2105                     Get_Index_Bounds (Choice, Low, High);
2106                     Check_Bounds (S_Low, S_High, Low, High);
2107
2108                  --  Case of range or expression
2109
2110                  else
2111                     Resolve (Choice, Index_Base);
2112                     Check_Unset_Reference (Choice);
2113                     Check_Non_Static_Context (Choice);
2114
2115                     --  If semantic errors were posted on the choice, then
2116                     --  record that for possible early return from later
2117                     --  processing (see handling of enumeration choices).
2118
2119                     if Error_Posted (Choice) then
2120                        Errors_Posted_On_Choices := True;
2121                     end if;
2122
2123                     --  Do not range check a choice. This check is redundant
2124                     --  since this test is already done when we check that the
2125                     --  bounds of the array aggregate are within range.
2126
2127                     Set_Do_Range_Check (Choice, False);
2128                  end if;
2129
2130                  --  If we could not resolve the discrete choice stop here
2131
2132                  if Etype (Choice) = Any_Type then
2133                     return Failure;
2134
2135                  --  If the discrete choice raises CE get its original bounds
2136
2137                  elsif Nkind (Choice) = N_Raise_Constraint_Error then
2138                     Set_Raises_Constraint_Error (N);
2139                     Get_Index_Bounds (Original_Node (Choice), Low, High);
2140
2141                  --  Otherwise get its bounds as usual
2142
2143                  else
2144                     Get_Index_Bounds (Choice, Low, High);
2145                  end if;
2146
2147                  if (Dynamic_Or_Null_Range (Low, High)
2148                       or else (Nkind (Choice) = N_Subtype_Indication
2149                                 and then
2150                                   Dynamic_Or_Null_Range (S_Low, S_High)))
2151                    and then Nb_Choices /= 1
2152                  then
2153                     Error_Msg_N
2154                       ("dynamic or empty choice in aggregate "
2155                        & "must be the only choice", Choice);
2156                     return Failure;
2157                  end if;
2158
2159                  if not (All_Composite_Constraints_Static (Low)
2160                            and then All_Composite_Constraints_Static (High)
2161                            and then All_Composite_Constraints_Static (S_Low)
2162                            and then All_Composite_Constraints_Static (S_High))
2163                  then
2164                     Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2165                  end if;
2166
2167                  Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
2168                  Table (Nb_Discrete_Choices).Lo := Low;
2169                  Table (Nb_Discrete_Choices).Hi := High;
2170                  Table (Nb_Discrete_Choices).Choice := Choice;
2171
2172                  Next (Choice);
2173
2174                  if No (Choice) then
2175
2176                     --  Check if we have a single discrete choice and whether
2177                     --  this discrete choice specifies a single value.
2178
2179                     Single_Choice :=
2180                       (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2181                         and then (Low = High);
2182
2183                     exit;
2184                  end if;
2185               end loop;
2186
2187               --  Ada 2005 (AI-231)
2188
2189               if Ada_Version >= Ada_2005
2190                 and then Known_Null (Expression (Assoc))
2191                 and then not Empty_Range (Assoc)
2192               then
2193                  Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2194               end if;
2195
2196               --  Ada 2005 (AI-287): In case of default initialized component
2197               --  we delay the resolution to the expansion phase.
2198
2199               if Box_Present (Assoc) then
2200
2201                  --  Ada 2005 (AI-287): In case of default initialization of a
2202                  --  component the expander will generate calls to the
2203                  --  corresponding initialization subprogram. We need to call
2204                  --  Resolve_Aggr_Expr to check the rules about
2205                  --  dimensionality.
2206
2207                  if not Resolve_Aggr_Expr
2208                           (Assoc, Single_Elmt => Single_Choice)
2209                  then
2210                     return Failure;
2211                  end if;
2212
2213               --  ??? Checks for dynamically tagged expressions below will
2214               --  be only applied to iterated_component_association after
2215               --  expansion; in particular, errors might not be reported when
2216               --  -gnatc switch is used.
2217
2218               elsif Nkind (Assoc) = N_Iterated_Component_Association then
2219                  null;   --  handled above, in a loop context
2220
2221               elsif not Resolve_Aggr_Expr
2222                           (Expression (Assoc), Single_Elmt => Single_Choice)
2223               then
2224                  return Failure;
2225
2226               --  Check incorrect use of dynamically tagged expression
2227
2228               --  We differentiate here two cases because the expression may
2229               --  not be decorated. For example, the analysis and resolution
2230               --  of the expression associated with the others choice will be
2231               --  done later with the full aggregate. In such case we
2232               --  duplicate the expression tree to analyze the copy and
2233               --  perform the required check.
2234
2235               elsif not Present (Etype (Expression (Assoc))) then
2236                  declare
2237                     Save_Analysis : constant Boolean := Full_Analysis;
2238                     Expr          : constant Node_Id :=
2239                                       New_Copy_Tree (Expression (Assoc));
2240
2241                  begin
2242                     Expander_Mode_Save_And_Set (False);
2243                     Full_Analysis := False;
2244
2245                     --  Analyze the expression, making sure it is properly
2246                     --  attached to the tree before we do the analysis.
2247
2248                     Set_Parent (Expr, Parent (Expression (Assoc)));
2249                     Analyze (Expr);
2250
2251                     --  Compute its dimensions now, rather than at the end of
2252                     --  resolution, because in the case of multidimensional
2253                     --  aggregates subsequent expansion may lead to spurious
2254                     --  errors.
2255
2256                     Check_Expression_Dimensions (Expr, Component_Typ);
2257
2258                     --  If the expression is a literal, propagate this info
2259                     --  to the expression in the association, to enable some
2260                     --  optimizations downstream.
2261
2262                     if Is_Entity_Name (Expr)
2263                       and then Present (Entity (Expr))
2264                       and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2265                     then
2266                        Analyze_And_Resolve
2267                          (Expression (Assoc), Component_Typ);
2268                     end if;
2269
2270                     Full_Analysis := Save_Analysis;
2271                     Expander_Mode_Restore;
2272
2273                     if Is_Tagged_Type (Etype (Expr)) then
2274                        Check_Dynamically_Tagged_Expression
2275                          (Expr => Expr,
2276                           Typ  => Component_Type (Etype (N)),
2277                           Related_Nod => N);
2278                     end if;
2279                  end;
2280
2281               elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2282                  Check_Dynamically_Tagged_Expression
2283                    (Expr        => Expression (Assoc),
2284                     Typ         => Component_Type (Etype (N)),
2285                     Related_Nod => N);
2286               end if;
2287
2288               Next (Assoc);
2289            end loop;
2290
2291            --  If aggregate contains more than one choice then these must be
2292            --  static. Check for duplicate and missing values.
2293
2294            --  Note: there is duplicated code here wrt Check_Choice_Set in
2295            --  the body of Sem_Case, and it is possible we could just reuse
2296            --  that procedure. To be checked ???
2297
2298            if Nb_Discrete_Choices > 1 then
2299               Check_Choices : declare
2300                  Choice : Node_Id;
2301                  --  Location of choice for messages
2302
2303                  Hi_Val : Uint;
2304                  Lo_Val : Uint;
2305                  --  High end of one range and Low end of the next. Should be
2306                  --  contiguous if there is no hole in the list of values.
2307
2308                  Lo_Dup : Uint;
2309                  Hi_Dup : Uint;
2310                  --  End points of duplicated range
2311
2312                  Missing_Or_Duplicates : Boolean := False;
2313                  --  Set True if missing or duplicate choices found
2314
2315                  procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2316                  --  Output continuation message with a representation of the
2317                  --  bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2318                  --  choice node where the message is to be posted.
2319
2320                  ------------------------
2321                  -- Output_Bad_Choices --
2322                  ------------------------
2323
2324                  procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2325                  begin
2326                     --  Enumeration type case
2327
2328                     if Is_Enumeration_Type (Index_Typ) then
2329                        Error_Msg_Name_1 :=
2330                          Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2331                        Error_Msg_Name_2 :=
2332                          Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2333
2334                        if Lo = Hi then
2335                           Error_Msg_N ("\\  %!", C);
2336                        else
2337                           Error_Msg_N ("\\  % .. %!", C);
2338                        end if;
2339
2340                        --  Integer types case
2341
2342                     else
2343                        Error_Msg_Uint_1 := Lo;
2344                        Error_Msg_Uint_2 := Hi;
2345
2346                        if Lo = Hi then
2347                           Error_Msg_N ("\\  ^!", C);
2348                        else
2349                           Error_Msg_N ("\\  ^ .. ^!", C);
2350                        end if;
2351                     end if;
2352                  end Output_Bad_Choices;
2353
2354               --  Start of processing for Check_Choices
2355
2356               begin
2357                  Sort_Case_Table (Table);
2358
2359                  --  First we do a quick linear loop to find out if we have
2360                  --  any duplicates or missing entries (usually we have a
2361                  --  legal aggregate, so this will get us out quickly).
2362
2363                  for J in 1 .. Nb_Discrete_Choices - 1 loop
2364                     Hi_Val := Expr_Value (Table (J).Hi);
2365                     Lo_Val := Expr_Value (Table (J + 1).Lo);
2366
2367                     if Lo_Val <= Hi_Val
2368                       or else (Lo_Val > Hi_Val + 1
2369                                 and then not Others_Present)
2370                     then
2371                        Missing_Or_Duplicates := True;
2372                        exit;
2373                     end if;
2374                  end loop;
2375
2376                  --  If we have missing or duplicate entries, first fill in
2377                  --  the Highest entries to make life easier in the following
2378                  --  loops to detect bad entries.
2379
2380                  if Missing_Or_Duplicates then
2381                     Table (1).Highest := Expr_Value (Table (1).Hi);
2382
2383                     for J in 2 .. Nb_Discrete_Choices loop
2384                        Table (J).Highest :=
2385                          UI_Max
2386                            (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2387                     end loop;
2388
2389                     --  Loop through table entries to find duplicate indexes
2390
2391                     for J in 2 .. Nb_Discrete_Choices loop
2392                        Lo_Val := Expr_Value (Table (J).Lo);
2393                        Hi_Val := Expr_Value (Table (J).Hi);
2394
2395                        --  Case where we have duplicates (the lower bound of
2396                        --  this choice is less than or equal to the highest
2397                        --  high bound found so far).
2398
2399                        if Lo_Val <= Table (J - 1).Highest then
2400
2401                           --  We move backwards looking for duplicates. We can
2402                           --  abandon this loop as soon as we reach a choice
2403                           --  highest value that is less than Lo_Val.
2404
2405                           for K in reverse 1 .. J - 1 loop
2406                              exit when Table (K).Highest < Lo_Val;
2407
2408                              --  Here we may have duplicates between entries
2409                              --  for K and J. Get range of duplicates.
2410
2411                              Lo_Dup :=
2412                                UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2413                              Hi_Dup :=
2414                                UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2415
2416                              --  Nothing to do if duplicate range is null
2417
2418                              if Lo_Dup > Hi_Dup then
2419                                 null;
2420
2421                              --  Otherwise place proper message
2422
2423                              else
2424                                 --  We place message on later choice, with a
2425                                 --  line reference to the earlier choice.
2426
2427                                 if Sloc (Table (J).Choice) <
2428                                   Sloc (Table (K).Choice)
2429                                 then
2430                                    Choice := Table (K).Choice;
2431                                    Error_Msg_Sloc := Sloc (Table (J).Choice);
2432                                 else
2433                                    Choice := Table (J).Choice;
2434                                    Error_Msg_Sloc := Sloc (Table (K).Choice);
2435                                 end if;
2436
2437                                 if Lo_Dup = Hi_Dup then
2438                                    Error_Msg_N
2439                                      ("index value in array aggregate "
2440                                       & "duplicates the one given#!", Choice);
2441                                 else
2442                                    Error_Msg_N
2443                                      ("index values in array aggregate "
2444                                       & "duplicate those given#!", Choice);
2445                                 end if;
2446
2447                                 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2448                              end if;
2449                           end loop;
2450                        end if;
2451                     end loop;
2452
2453                     --  Loop through entries in table to find missing indexes.
2454                     --  Not needed if others, since missing impossible.
2455
2456                     if not Others_Present then
2457                        for J in 2 .. Nb_Discrete_Choices loop
2458                           Lo_Val := Expr_Value (Table (J).Lo);
2459                           Hi_Val := Table (J - 1).Highest;
2460
2461                           if Lo_Val > Hi_Val + 1 then
2462
2463                              declare
2464                                 Error_Node : Node_Id;
2465
2466                              begin
2467                                 --  If the choice is the bound of a range in
2468                                 --  a subtype indication, it is not in the
2469                                 --  source lists for the aggregate itself, so
2470                                 --  post the error on the aggregate. Otherwise
2471                                 --  post it on choice itself.
2472
2473                                 Choice := Table (J).Choice;
2474
2475                                 if Is_List_Member (Choice) then
2476                                    Error_Node := Choice;
2477                                 else
2478                                    Error_Node := N;
2479                                 end if;
2480
2481                                 if Hi_Val + 1 = Lo_Val - 1 then
2482                                    Error_Msg_N
2483                                      ("missing index value "
2484                                       & "in array aggregate!", Error_Node);
2485                                 else
2486                                    Error_Msg_N
2487                                      ("missing index values "
2488                                       & "in array aggregate!", Error_Node);
2489                                 end if;
2490
2491                                 Output_Bad_Choices
2492                                   (Hi_Val + 1, Lo_Val - 1, Error_Node);
2493                              end;
2494                           end if;
2495                        end loop;
2496                     end if;
2497
2498                     --  If either missing or duplicate values, return failure
2499
2500                     Set_Etype (N, Any_Composite);
2501                     return Failure;
2502                  end if;
2503               end Check_Choices;
2504            end if;
2505
2506            if Has_Iterator_Specifications then
2507               --  Bounds will be determined dynamically.
2508
2509               return Success;
2510            end if;
2511
2512            --  STEP 2 (B): Compute aggregate bounds and min/max choices values
2513
2514            if Nb_Discrete_Choices > 0 then
2515               Choices_Low  := Table (1).Lo;
2516               Choices_High := Table (Nb_Discrete_Choices).Hi;
2517            end if;
2518
2519            --  If Others is present, then bounds of aggregate come from the
2520            --  index constraint (not the choices in the aggregate itself).
2521
2522            if Others_Present then
2523               Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2524
2525               --  Abandon processing if either bound is already signalled as
2526               --  an error (prevents junk cascaded messages and blow ups).
2527
2528               if Nkind (Aggr_Low) = N_Error
2529                    or else
2530                  Nkind (Aggr_High) = N_Error
2531               then
2532                  return False;
2533               end if;
2534
2535            --  No others clause present
2536
2537            else
2538               --  Special processing if others allowed and not present. This
2539               --  means that the bounds of the aggregate come from the index
2540               --  constraint (and the length must match).
2541
2542               if Others_Allowed then
2543                  Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2544
2545                  --  Abandon processing if either bound is already signalled
2546                  --  as an error (stop junk cascaded messages and blow ups).
2547
2548                  if Nkind (Aggr_Low) = N_Error
2549                       or else
2550                     Nkind (Aggr_High) = N_Error
2551                  then
2552                     return False;
2553                  end if;
2554
2555                  --  If others allowed, and no others present, then the array
2556                  --  should cover all index values. If it does not, we will
2557                  --  get a length check warning, but there is two cases where
2558                  --  an additional warning is useful:
2559
2560                  --  If we have no positional components, and the length is
2561                  --  wrong (which we can tell by others being allowed with
2562                  --  missing components), and the index type is an enumeration
2563                  --  type, then issue appropriate warnings about these missing
2564                  --  components. They are only warnings, since the aggregate
2565                  --  is fine, it's just the wrong length. We skip this check
2566                  --  for standard character types (since there are no literals
2567                  --  and it is too much trouble to concoct them), and also if
2568                  --  any of the bounds have values that are not known at
2569                  --  compile time.
2570
2571                  --  Another case warranting a warning is when the length
2572                  --  is right, but as above we have an index type that is
2573                  --  an enumeration, and the bounds do not match. This is a
2574                  --  case where dubious sliding is allowed and we generate a
2575                  --  warning that the bounds do not match.
2576
2577                  if No (Expressions (N))
2578                    and then Nkind (Index) = N_Range
2579                    and then Is_Enumeration_Type (Etype (Index))
2580                    and then not Is_Standard_Character_Type (Etype (Index))
2581                    and then Compile_Time_Known_Value (Aggr_Low)
2582                    and then Compile_Time_Known_Value (Aggr_High)
2583                    and then Compile_Time_Known_Value (Choices_Low)
2584                    and then Compile_Time_Known_Value (Choices_High)
2585                  then
2586                     --  If any of the expressions or range bounds in choices
2587                     --  have semantic errors, then do not attempt further
2588                     --  resolution, to prevent cascaded errors.
2589
2590                     if Errors_Posted_On_Choices then
2591                        return Failure;
2592                     end if;
2593
2594                     declare
2595                        ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2596                        AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2597                        CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2598                        CHi : constant Node_Id := Expr_Value_E (Choices_High);
2599
2600                        Ent : Entity_Id;
2601
2602                     begin
2603                        --  Warning case 1, missing values at start/end. Only
2604                        --  do the check if the number of entries is too small.
2605
2606                        if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2607                              <
2608                           (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2609                        then
2610                           Error_Msg_N
2611                             ("missing index value(s) in array aggregate??",
2612                              N);
2613
2614                           --  Output missing value(s) at start
2615
2616                           if Chars (ALo) /= Chars (CLo) then
2617                              Ent := Prev (CLo);
2618
2619                              if Chars (ALo) = Chars (Ent) then
2620                                 Error_Msg_Name_1 := Chars (ALo);
2621                                 Error_Msg_N ("\  %??", N);
2622                              else
2623                                 Error_Msg_Name_1 := Chars (ALo);
2624                                 Error_Msg_Name_2 := Chars (Ent);
2625                                 Error_Msg_N ("\  % .. %??", N);
2626                              end if;
2627                           end if;
2628
2629                           --  Output missing value(s) at end
2630
2631                           if Chars (AHi) /= Chars (CHi) then
2632                              Ent := Next (CHi);
2633
2634                              if Chars (AHi) = Chars (Ent) then
2635                                 Error_Msg_Name_1 := Chars (Ent);
2636                                 Error_Msg_N ("\  %??", N);
2637                              else
2638                                 Error_Msg_Name_1 := Chars (Ent);
2639                                 Error_Msg_Name_2 := Chars (AHi);
2640                                 Error_Msg_N ("\  % .. %??", N);
2641                              end if;
2642                           end if;
2643
2644                        --  Warning case 2, dubious sliding. The First_Subtype
2645                        --  test distinguishes between a constrained type where
2646                        --  sliding is not allowed (so we will get a warning
2647                        --  later that Constraint_Error will be raised), and
2648                        --  the unconstrained case where sliding is permitted.
2649
2650                        elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2651                                 =
2652                              (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2653                          and then Chars (ALo) /= Chars (CLo)
2654                          and then
2655                            not Is_Constrained (First_Subtype (Etype (N)))
2656                        then
2657                           Error_Msg_N
2658                             ("bounds of aggregate do not match target??", N);
2659                        end if;
2660                     end;
2661                  end if;
2662               end if;
2663
2664               --  If no others, aggregate bounds come from aggregate
2665
2666               Aggr_Low  := Choices_Low;
2667               Aggr_High := Choices_High;
2668            end if;
2669         end Step_2;
2670
2671      --  STEP 3: Process positional components
2672
2673      else
2674         --  STEP 3 (A): Process positional elements
2675
2676         Expr := First (Expressions (N));
2677         Nb_Elements := Uint_0;
2678         while Present (Expr) loop
2679            Nb_Elements := Nb_Elements + 1;
2680
2681            --  Ada 2005 (AI-231)
2682
2683            if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2684               Check_Can_Never_Be_Null (Etype (N), Expr);
2685            end if;
2686
2687            if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2688               return Failure;
2689            end if;
2690
2691            --  Check incorrect use of dynamically tagged expression
2692
2693            if Is_Tagged_Type (Etype (Expr)) then
2694               Check_Dynamically_Tagged_Expression
2695                 (Expr => Expr,
2696                  Typ  => Component_Type (Etype (N)),
2697                  Related_Nod => N);
2698            end if;
2699
2700            Next (Expr);
2701         end loop;
2702
2703         if Others_Present then
2704            Assoc := Last (Component_Associations (N));
2705
2706            --  Ada 2005 (AI-231)
2707
2708            if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2709               Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2710            end if;
2711
2712            --  Ada 2005 (AI-287): In case of default initialized component,
2713            --  we delay the resolution to the expansion phase.
2714
2715            if Box_Present (Assoc) then
2716
2717               --  Ada 2005 (AI-287): In case of default initialization of a
2718               --  component the expander will generate calls to the
2719               --  corresponding initialization subprogram. We need to call
2720               --  Resolve_Aggr_Expr to check the rules about
2721               --  dimensionality.
2722
2723               if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2724                  return Failure;
2725               end if;
2726
2727            elsif not Resolve_Aggr_Expr (Expression (Assoc),
2728                                         Single_Elmt => False)
2729            then
2730               return Failure;
2731
2732            --  Check incorrect use of dynamically tagged expression. The
2733            --  expression of the others choice has not been resolved yet.
2734            --  In order to diagnose the semantic error we create a duplicate
2735            --  tree to analyze it and perform the check.
2736
2737            elsif Nkind (Assoc) /= N_Iterated_Component_Association then
2738               declare
2739                  Save_Analysis : constant Boolean := Full_Analysis;
2740                  Expr          : constant Node_Id :=
2741                                    New_Copy_Tree (Expression (Assoc));
2742
2743               begin
2744                  Expander_Mode_Save_And_Set (False);
2745                  Full_Analysis := False;
2746                  Analyze (Expr);
2747                  Full_Analysis := Save_Analysis;
2748                  Expander_Mode_Restore;
2749
2750                  if Is_Tagged_Type (Etype (Expr)) then
2751                     Check_Dynamically_Tagged_Expression
2752                       (Expr        => Expr,
2753                        Typ         => Component_Type (Etype (N)),
2754                        Related_Nod => N);
2755                  end if;
2756               end;
2757            end if;
2758         end if;
2759
2760         --  STEP 3 (B): Compute the aggregate bounds
2761
2762         if Others_Present then
2763            Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2764
2765         else
2766            if Others_Allowed then
2767               Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2768            else
2769               Aggr_Low := Index_Typ_Low;
2770            end if;
2771
2772            Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2773            Check_Bound (Index_Base_High, Aggr_High);
2774         end if;
2775      end if;
2776
2777      --  STEP 4: Perform static aggregate checks and save the bounds
2778
2779      --  Check (A)
2780
2781      Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2782      Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2783
2784      --  Check (B)
2785
2786      if Others_Present and then Nb_Discrete_Choices > 0 then
2787         Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2788         Check_Bounds (Index_Typ_Low, Index_Typ_High,
2789                       Choices_Low, Choices_High);
2790         Check_Bounds (Index_Base_Low, Index_Base_High,
2791                       Choices_Low, Choices_High);
2792
2793      --  Check (C)
2794
2795      elsif Others_Present and then Nb_Elements > 0 then
2796         Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2797         Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2798         Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2799      end if;
2800
2801      if Raises_Constraint_Error (Aggr_Low)
2802        or else Raises_Constraint_Error (Aggr_High)
2803      then
2804         Set_Raises_Constraint_Error (N);
2805      end if;
2806
2807      Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2808
2809      --  Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2810      --  since the addition node returned by Add is not yet analyzed. Attach
2811      --  to tree and analyze first. Reset analyzed flag to ensure it will get
2812      --  analyzed when it is a literal bound whose type must be properly set.
2813
2814      if Others_Present or else Nb_Discrete_Choices > 0 then
2815         Aggr_High := Duplicate_Subexpr (Aggr_High);
2816
2817         if Etype (Aggr_High) = Universal_Integer then
2818            Set_Analyzed (Aggr_High, False);
2819         end if;
2820      end if;
2821
2822      --  If the aggregate already has bounds attached to it, it means this is
2823      --  a positional aggregate created as an optimization by
2824      --  Exp_Aggr.Convert_To_Positional, so we don't want to change those
2825      --  bounds.
2826
2827      if Present (Aggregate_Bounds (N))
2828        and then not Others_Allowed
2829        and then not Comes_From_Source (N)
2830      then
2831         Aggr_Low  := Low_Bound  (Aggregate_Bounds (N));
2832         Aggr_High := High_Bound (Aggregate_Bounds (N));
2833      end if;
2834
2835      Set_Aggregate_Bounds
2836        (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2837
2838      --  The bounds may contain expressions that must be inserted upwards.
2839      --  Attach them fully to the tree. After analysis, remove side effects
2840      --  from upper bound, if still needed.
2841
2842      Set_Parent (Aggregate_Bounds (N), N);
2843      Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2844      Check_Unset_Reference (Aggregate_Bounds (N));
2845
2846      if not Others_Present and then Nb_Discrete_Choices = 0 then
2847         Set_High_Bound
2848           (Aggregate_Bounds (N),
2849            Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2850      end if;
2851
2852      --  Check the dimensions of each component in the array aggregate
2853
2854      Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2855
2856      return Success;
2857   end Resolve_Array_Aggregate;
2858
2859   ---------------------------------
2860   -- Resolve_Container_Aggregate --
2861   ---------------------------------
2862
2863   procedure Resolve_Container_Aggregate (N : Node_Id; Typ : Entity_Id) is
2864      procedure Resolve_Iterated_Association
2865       (Comp      : Node_Id;
2866        Key_Type  : Entity_Id;
2867        Elmt_Type : Entity_Id);
2868      --  Resolve choices and expression in an iterated component association
2869      --  or an iterated element association, which has a key_expression.
2870      --  This is similar but not identical to the handling of this construct
2871      --  in an array aggregate.
2872      --  For a named container, the type of each choice must be compatible
2873      --  with the key type. For a positional container, the choice must be
2874      --  a subtype indication or an iterator specification that determines
2875      --  an element type.
2876
2877      Asp   : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate);
2878
2879      Empty_Subp          : Node_Id := Empty;
2880      Add_Named_Subp      : Node_Id := Empty;
2881      Add_Unnamed_Subp    : Node_Id := Empty;
2882      New_Indexed_Subp    : Node_Id := Empty;
2883      Assign_Indexed_Subp : Node_Id := Empty;
2884
2885      ----------------------------------
2886      -- Resolve_Iterated_Association --
2887      ----------------------------------
2888
2889      procedure Resolve_Iterated_Association
2890       (Comp      : Node_Id;
2891        Key_Type  : Entity_Id;
2892        Elmt_Type : Entity_Id)
2893      is
2894         Loc      : constant Source_Ptr := Sloc (N);
2895         Choice   : Node_Id;
2896         Ent      : Entity_Id;
2897         Expr     : Node_Id;
2898         Key_Expr : Node_Id;
2899         Id       : Entity_Id;
2900         Id_Name  : Name_Id;
2901         Iter     : Node_Id;
2902         Typ      : Entity_Id := Empty;
2903
2904      begin
2905         Error_Msg_Ada_2022_Feature ("iterated component", Loc);
2906
2907         --  If this is an Iterated_Element_Association then either a
2908         --  an Iterator_Specification or a Loop_Parameter specification
2909         --  is present. In both cases a Key_Expression is present.
2910
2911         if Nkind (Comp) = N_Iterated_Element_Association then
2912            if Present (Loop_Parameter_Specification (Comp)) then
2913               Analyze_Loop_Parameter_Specification
2914                  (Loop_Parameter_Specification (Comp));
2915               Id_Name := Chars (Defining_Identifier
2916                            (Loop_Parameter_Specification (Comp)));
2917            else
2918               Iter := Copy_Separate_Tree (Iterator_Specification (Comp));
2919               Analyze (Iter);
2920               Typ := Etype (Defining_Identifier (Iter));
2921               Id_Name := Chars (Defining_Identifier
2922                            (Iterator_Specification (Comp)));
2923            end if;
2924
2925            --  Key expression must have the type of the key. We analyze
2926            --  a copy of the original expression, because it will be
2927            --  reanalyzed and copied as needed during expansion of the
2928            --  corresponding loop.
2929
2930            Key_Expr := Key_Expression (Comp);
2931            Analyze_And_Resolve (New_Copy_Tree (Key_Expr), Key_Type);
2932
2933         elsif Present (Iterator_Specification (Comp)) then
2934            Iter    := Copy_Separate_Tree (Iterator_Specification (Comp));
2935            Id_Name := Chars (Defining_Identifier (Comp));
2936            Analyze (Iter);
2937            Typ := Etype (Defining_Identifier (Iter));
2938
2939         else
2940            Choice := First (Discrete_Choices (Comp));
2941
2942            while Present (Choice) loop
2943               Analyze (Choice);
2944
2945               --  Choice can be a subtype name, a range, or an expression
2946
2947               if Is_Entity_Name (Choice)
2948                 and then Is_Type (Entity (Choice))
2949                 and then Base_Type (Entity (Choice)) = Base_Type (Key_Type)
2950               then
2951                  null;
2952
2953               elsif Present (Key_Type) then
2954                  Analyze_And_Resolve (Choice, Key_Type);
2955
2956               else
2957                  Typ := Etype (Choice);  --  assume unique for now
2958               end if;
2959
2960               Next (Choice);
2961            end loop;
2962
2963            Id_Name := Chars (Defining_Identifier (Comp));
2964         end if;
2965
2966         --  Create a scope in which to introduce an index, which is usually
2967         --  visible in the expression for the component, and needed for its
2968         --  analysis.
2969
2970         Id := Make_Defining_Identifier (Sloc (Comp), Id_Name);
2971         Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (Comp), 'L');
2972         Set_Etype  (Ent, Standard_Void_Type);
2973         Set_Parent (Ent, Parent (Comp));
2974         Push_Scope (Ent);
2975
2976         --  Insert and decorate the loop variable in the current scope.
2977         --  The expression has to be analyzed once the loop variable is
2978         --  directly visible. Mark the variable as referenced to prevent
2979         --  spurious warnings, given that subsequent uses of its name in the
2980         --  expression will reference the internal (synonym) loop variable.
2981
2982         Enter_Name (Id);
2983
2984         if No (Key_Type) then
2985            pragma Assert (Present (Typ));
2986            Set_Etype (Id, Typ);
2987         else
2988            Set_Etype (Id, Key_Type);
2989         end if;
2990
2991         Mutate_Ekind (Id, E_Variable);
2992         Set_Scope (Id, Ent);
2993         Set_Referenced (Id);
2994
2995         --  Analyze a copy of the expression, to verify legality. We use
2996         --  a copy because the expression will be analyzed anew when the
2997         --  enclosing aggregate is expanded, and the construct is rewritten
2998         --  as a loop with a new index variable.
2999
3000         Expr := New_Copy_Tree (Expression (Comp));
3001         Preanalyze_And_Resolve (Expr, Elmt_Type);
3002         End_Scope;
3003
3004      end Resolve_Iterated_Association;
3005
3006   begin
3007      pragma Assert (Nkind (Asp) = N_Aggregate);
3008
3009      Set_Etype (N, Typ);
3010      Parse_Aspect_Aggregate (Asp,
3011        Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
3012        New_Indexed_Subp, Assign_Indexed_Subp);
3013
3014      if Present (Add_Unnamed_Subp)
3015        and then No (New_Indexed_Subp)
3016      then
3017         declare
3018            Elmt_Type : constant Entity_Id :=
3019              Etype (Next_Formal
3020                (First_Formal (Entity (Add_Unnamed_Subp))));
3021            Comp : Node_Id;
3022
3023         begin
3024            if Present (Expressions (N)) then
3025               --  positional aggregate
3026
3027               Comp := First (Expressions (N));
3028               while Present (Comp) loop
3029                  Analyze_And_Resolve (Comp, Elmt_Type);
3030                  Next (Comp);
3031               end loop;
3032            end if;
3033
3034            --  Empty aggregate, to be replaced by Empty during
3035            --  expansion, or iterated component association.
3036
3037            if Present (Component_Associations (N)) then
3038               declare
3039                  Comp : Node_Id := First (Component_Associations (N));
3040               begin
3041                  while Present (Comp) loop
3042                     if Nkind (Comp) /=
3043                       N_Iterated_Component_Association
3044                     then
3045                        Error_Msg_N ("illegal component association "
3046                          & "for unnamed container aggregate", Comp);
3047                        return;
3048                     else
3049                        Resolve_Iterated_Association
3050                          (Comp, Empty, Elmt_Type);
3051                     end if;
3052
3053                     Next (Comp);
3054                  end loop;
3055               end;
3056            end if;
3057         end;
3058
3059      elsif  Present (Add_Named_Subp) then
3060         declare
3061            --  Retrieves types of container, key, and element from the
3062            --  specified insertion procedure.
3063
3064            Container : constant Entity_Id :=
3065              First_Formal (Entity (Add_Named_Subp));
3066            Key_Type  : constant Entity_Id := Etype (Next_Formal (Container));
3067            Elmt_Type : constant Entity_Id :=
3068                                 Etype (Next_Formal (Next_Formal (Container)));
3069            Comp   : Node_Id;
3070            Choice : Node_Id;
3071
3072         begin
3073            Comp := First (Component_Associations (N));
3074            while Present (Comp) loop
3075               if Nkind (Comp) = N_Component_Association then
3076                  Choice := First (Choices (Comp));
3077
3078                  while Present (Choice) loop
3079                     Analyze_And_Resolve (Choice, Key_Type);
3080                     if not Is_Static_Expression (Choice) then
3081                        Error_Msg_N ("choice must be static", Choice);
3082                     end if;
3083
3084                     Next (Choice);
3085                  end loop;
3086
3087                  Analyze_And_Resolve (Expression (Comp), Elmt_Type);
3088
3089               elsif Nkind (Comp) in
3090                 N_Iterated_Component_Association |
3091                 N_Iterated_Element_Association
3092               then
3093                  Resolve_Iterated_Association
3094                    (Comp, Key_Type, Elmt_Type);
3095               end if;
3096
3097               Next (Comp);
3098            end loop;
3099         end;
3100
3101      else
3102         --  Indexed Aggregate. Positional or indexed component
3103         --  can be present, but not both. Choices must be static
3104         --  values or ranges with static bounds.
3105
3106         declare
3107            Container : constant Entity_Id :=
3108              First_Formal (Entity (Assign_Indexed_Subp));
3109            Index_Type : constant Entity_Id := Etype (Next_Formal (Container));
3110            Comp_Type  : constant Entity_Id :=
3111                                 Etype (Next_Formal (Next_Formal (Container)));
3112            Comp        : Node_Id;
3113            Choice      : Node_Id;
3114            Num_Choices : Nat := 0;
3115
3116            Hi_Val : Uint;
3117            Lo_Val : Uint;
3118         begin
3119            if Present (Expressions (N)) then
3120               Comp := First (Expressions (N));
3121               while Present (Comp) loop
3122                  Analyze_And_Resolve (Comp, Comp_Type);
3123                  Next (Comp);
3124               end loop;
3125            end if;
3126
3127            if Present (Component_Associations (N)) then
3128               if Present (Expressions (N)) then
3129                  Error_Msg_N ("container aggregate cannot be "
3130                    & "both positional and named", N);
3131                  return;
3132               end if;
3133
3134               Comp := First (Component_Associations (N));
3135
3136               while Present (Comp) loop
3137                  if Nkind (Comp) = N_Component_Association then
3138                     Choice := First (Choices (Comp));
3139
3140                     while Present (Choice) loop
3141                        Analyze_And_Resolve (Choice, Index_Type);
3142                        Num_Choices := Num_Choices + 1;
3143                        Next (Choice);
3144                     end loop;
3145
3146                     Analyze_And_Resolve (Expression (Comp), Comp_Type);
3147
3148                  elsif Nkind (Comp) in
3149                    N_Iterated_Component_Association |
3150                    N_Iterated_Element_Association
3151                  then
3152                     Resolve_Iterated_Association
3153                       (Comp, Index_Type, Comp_Type);
3154                     Num_Choices := Num_Choices + 1;
3155                  end if;
3156
3157                  Next (Comp);
3158               end loop;
3159
3160               --  The component associations in an indexed aggregate
3161               --  must denote a contiguous set of static values. We
3162               --  build a table of values/ranges and sort it, as is done
3163               --  elsewhere for case statements and array aggregates.
3164               --  If the aggregate has a single iterated association it
3165               --  is allowed to be nonstatic and there is nothing to check.
3166
3167               if Num_Choices > 1 then
3168                  declare
3169                     Table     : Case_Table_Type (1 .. Num_Choices);
3170                     No_Choice : Pos := 1;
3171                     Lo, Hi    : Node_Id;
3172
3173                  --  Traverse aggregate to determine size of needed table.
3174                  --  Verify that bounds are static and that loops have no
3175                  --  filters or key expressions.
3176
3177                  begin
3178                     Comp := First (Component_Associations (N));
3179                     while Present (Comp) loop
3180                        if Nkind (Comp) = N_Iterated_Element_Association then
3181                           if Present
3182                             (Loop_Parameter_Specification (Comp))
3183                           then
3184                              if Present (Iterator_Filter
3185                                (Loop_Parameter_Specification (Comp)))
3186                              then
3187                                 Error_Msg_N
3188                                   ("iterator filter not allowed " &
3189                                     "in indexed aggregate", Comp);
3190                                 return;
3191
3192                              elsif Present (Key_Expression
3193                                (Loop_Parameter_Specification (Comp)))
3194                              then
3195                                 Error_Msg_N
3196                                   ("key expression not allowed " &
3197                                     "in indexed aggregate", Comp);
3198                                 return;
3199                              end if;
3200                           end if;
3201                        else
3202                           Choice := First (Choices (Comp));
3203
3204                           while Present (Choice) loop
3205                              Get_Index_Bounds (Choice, Lo, Hi);
3206                              Table (No_Choice).Choice := Choice;
3207                              Table (No_Choice).Lo := Lo;
3208                              Table (No_Choice).Hi := Hi;
3209
3210                              --  Verify staticness of value or range
3211
3212                              if not Is_Static_Expression (Lo)
3213                                or else not Is_Static_Expression (Hi)
3214                              then
3215                                 Error_Msg_N
3216                                   ("nonstatic expression for index " &
3217                                     "for indexed aggregate", Choice);
3218                                 return;
3219                              end if;
3220
3221                              No_Choice := No_Choice + 1;
3222                              Next (Choice);
3223                           end loop;
3224                        end if;
3225
3226                        Next (Comp);
3227                     end loop;
3228
3229                     Sort_Case_Table (Table);
3230
3231                     for J in 1 .. Num_Choices - 1 loop
3232                        Hi_Val := Expr_Value (Table (J).Hi);
3233                        Lo_Val := Expr_Value (Table (J + 1).Lo);
3234
3235                        if Lo_Val = Hi_Val then
3236                           Error_Msg_N
3237                             ("duplicate index in indexed aggregate",
3238                               Table (J + 1).Choice);
3239                           exit;
3240
3241                        elsif Lo_Val < Hi_Val then
3242                           Error_Msg_N
3243                             ("overlapping indices in indexed aggregate",
3244                               Table (J + 1).Choice);
3245                           exit;
3246
3247                        elsif Lo_Val > Hi_Val + 1 then
3248                           Error_Msg_N
3249                             ("missing index values", Table (J + 1).Choice);
3250                           exit;
3251                        end if;
3252                     end loop;
3253                  end;
3254               end if;
3255            end if;
3256         end;
3257      end if;
3258   end Resolve_Container_Aggregate;
3259
3260   -----------------------------
3261   -- Resolve_Delta_Aggregate --
3262   -----------------------------
3263
3264   procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
3265      Base : constant Node_Id := Expression (N);
3266
3267   begin
3268      Error_Msg_Ada_2022_Feature ("delta aggregate", Sloc (N));
3269
3270      if not Is_Composite_Type (Typ) then
3271         Error_Msg_N ("not a composite type", N);
3272      end if;
3273
3274      Analyze_And_Resolve (Base, Typ);
3275
3276      if Is_Array_Type (Typ) then
3277         Resolve_Delta_Array_Aggregate (N, Typ);
3278      else
3279         Resolve_Delta_Record_Aggregate (N, Typ);
3280      end if;
3281
3282      Set_Etype (N, Typ);
3283   end Resolve_Delta_Aggregate;
3284
3285   -----------------------------------
3286   -- Resolve_Delta_Array_Aggregate --
3287   -----------------------------------
3288
3289   procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
3290      Deltas     : constant List_Id   := Component_Associations (N);
3291      Index_Type : constant Entity_Id := Etype (First_Index (Typ));
3292
3293      Assoc  : Node_Id;
3294      Choice : Node_Id;
3295      Expr   : Node_Id;
3296
3297   begin
3298      Assoc := First (Deltas);
3299      while Present (Assoc) loop
3300         if Nkind (Assoc) = N_Iterated_Component_Association then
3301            Choice := First (Choice_List (Assoc));
3302            while Present (Choice) loop
3303               if Nkind (Choice) = N_Others_Choice then
3304                  Error_Msg_N
3305                    ("OTHERS not allowed in delta aggregate", Choice);
3306
3307               elsif Nkind (Choice) = N_Subtype_Indication then
3308                  Resolve_Discrete_Subtype_Indication
3309                    (Choice, Base_Type (Index_Type));
3310
3311               else
3312                  Analyze_And_Resolve (Choice, Index_Type);
3313               end if;
3314
3315               Next (Choice);
3316            end loop;
3317
3318            declare
3319               Id  : constant Entity_Id := Defining_Identifier (Assoc);
3320               Ent : constant Entity_Id :=
3321                       New_Internal_Entity
3322                         (E_Loop, Current_Scope, Sloc (Assoc), 'L');
3323
3324            begin
3325               Set_Etype  (Ent, Standard_Void_Type);
3326               Set_Parent (Ent, Assoc);
3327               Push_Scope (Ent);
3328
3329               if No (Scope (Id)) then
3330                  Set_Etype (Id, Index_Type);
3331                  Mutate_Ekind (Id, E_Variable);
3332                  Set_Scope (Id, Ent);
3333               end if;
3334               Enter_Name (Id);
3335
3336               --  Resolve a copy of the expression, after setting
3337               --  its parent properly to preserve its context.
3338
3339               Expr := New_Copy_Tree (Expression (Assoc));
3340               Set_Parent (Expr, Assoc);
3341               Analyze_And_Resolve (Expr, Component_Type (Typ));
3342               End_Scope;
3343            end;
3344
3345         else
3346            Choice := First (Choice_List (Assoc));
3347            while Present (Choice) loop
3348               Analyze (Choice);
3349
3350               if Nkind (Choice) = N_Others_Choice then
3351                  Error_Msg_N
3352                    ("OTHERS not allowed in delta aggregate", Choice);
3353
3354               elsif Is_Entity_Name (Choice)
3355                 and then Is_Type (Entity (Choice))
3356               then
3357                  --  Choice covers a range of values
3358
3359                  if Base_Type (Entity (Choice)) /=
3360                     Base_Type (Index_Type)
3361                  then
3362                     Error_Msg_NE
3363                       ("choice does not match index type of &",
3364                        Choice, Typ);
3365                  end if;
3366
3367               elsif Nkind (Choice) = N_Subtype_Indication then
3368                  Resolve_Discrete_Subtype_Indication
3369                    (Choice, Base_Type (Index_Type));
3370
3371               else
3372                  Resolve (Choice, Index_Type);
3373               end if;
3374
3375               Next (Choice);
3376            end loop;
3377
3378            Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
3379         end if;
3380
3381         Next (Assoc);
3382      end loop;
3383   end Resolve_Delta_Array_Aggregate;
3384
3385   ------------------------------------
3386   -- Resolve_Delta_Record_Aggregate --
3387   ------------------------------------
3388
3389   procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3390
3391      --  Variables used to verify that discriminant-dependent components
3392      --  appear in the same variant.
3393
3394      Comp_Ref : Entity_Id := Empty; -- init to avoid warning
3395      Variant  : Node_Id;
3396
3397      procedure Check_Variant (Id : Entity_Id);
3398      --  If a given component of the delta aggregate appears in a variant
3399      --  part, verify that it is within the same variant as that of previous
3400      --  specified variant components of the delta.
3401
3402      function Get_Component (Nam : Node_Id) return Entity_Id;
3403      --  Locate component with a given name and return it. If none found then
3404      --  report error and return Empty.
3405
3406      function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
3407      --  Determine whether variant V1 is within variant V2
3408
3409      function Variant_Depth (N : Node_Id) return Natural;
3410      --  Determine the distance of a variant to the enclosing type declaration
3411
3412      --------------------
3413      --  Check_Variant --
3414      --------------------
3415
3416      procedure Check_Variant (Id : Entity_Id) is
3417         Comp         : Entity_Id;
3418         Comp_Variant : Node_Id;
3419
3420      begin
3421         if not Has_Discriminants (Typ) then
3422            return;
3423         end if;
3424
3425         Comp := First_Entity (Typ);
3426         while Present (Comp) loop
3427            exit when Chars (Comp) = Chars (Id);
3428            Next_Component (Comp);
3429         end loop;
3430
3431         --  Find the variant, if any, whose component list includes the
3432         --  component declaration.
3433
3434         Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
3435         if Nkind (Comp_Variant) = N_Variant then
3436            if No (Variant) then
3437               Variant  := Comp_Variant;
3438               Comp_Ref := Comp;
3439
3440            elsif Variant /= Comp_Variant then
3441               declare
3442                  D1 : constant Integer := Variant_Depth (Variant);
3443                  D2 : constant Integer := Variant_Depth (Comp_Variant);
3444
3445               begin
3446                  if D1 = D2
3447                    or else
3448                      (D1 > D2 and then not Nested_In (Variant, Comp_Variant))
3449                    or else
3450                      (D2 > D1 and then not Nested_In (Comp_Variant, Variant))
3451                  then
3452                     pragma Assert (Present (Comp_Ref));
3453                     Error_Msg_Node_2 := Comp_Ref;
3454                     Error_Msg_NE
3455                       ("& and & appear in different variants", Id, Comp);
3456
3457                  --  Otherwise retain the deeper variant for subsequent tests
3458
3459                  elsif D2 > D1 then
3460                     Variant := Comp_Variant;
3461                  end if;
3462               end;
3463            end if;
3464         end if;
3465      end Check_Variant;
3466
3467      -------------------
3468      -- Get_Component --
3469      -------------------
3470
3471      function Get_Component (Nam : Node_Id) return Entity_Id is
3472         Comp : Entity_Id;
3473
3474      begin
3475         Comp := First_Entity (Typ);
3476         while Present (Comp) loop
3477            if Chars (Comp) = Chars (Nam) then
3478               if Ekind (Comp) = E_Discriminant then
3479                  Error_Msg_N ("delta cannot apply to discriminant", Nam);
3480               end if;
3481
3482               return Comp;
3483            end if;
3484
3485            Next_Entity (Comp);
3486         end loop;
3487
3488         Error_Msg_NE ("type& has no component with this name", Nam, Typ);
3489         return Empty;
3490      end Get_Component;
3491
3492      ---------------
3493      -- Nested_In --
3494      ---------------
3495
3496      function Nested_In (V1, V2 : Node_Id) return Boolean is
3497         Par : Node_Id;
3498
3499      begin
3500         Par := Parent (V1);
3501         while Nkind (Par) /= N_Full_Type_Declaration loop
3502            if Par = V2 then
3503               return True;
3504            end if;
3505
3506            Par := Parent (Par);
3507         end loop;
3508
3509         return False;
3510      end Nested_In;
3511
3512      -------------------
3513      -- Variant_Depth --
3514      -------------------
3515
3516      function Variant_Depth (N : Node_Id) return Natural is
3517         Depth : Natural;
3518         Par   : Node_Id;
3519
3520      begin
3521         Depth := 0;
3522         Par   := Parent (N);
3523         while Nkind (Par) /= N_Full_Type_Declaration loop
3524            Depth := Depth + 1;
3525            Par   := Parent (Par);
3526         end loop;
3527
3528         return Depth;
3529      end Variant_Depth;
3530
3531      --  Local variables
3532
3533      Deltas : constant List_Id := Component_Associations (N);
3534
3535      Assoc     : Node_Id;
3536      Choice    : Node_Id;
3537      Comp      : Entity_Id;
3538      Comp_Type : Entity_Id := Empty; -- init to avoid warning
3539
3540   --  Start of processing for Resolve_Delta_Record_Aggregate
3541
3542   begin
3543      Variant := Empty;
3544
3545      Assoc := First (Deltas);
3546      while Present (Assoc) loop
3547         Choice := First (Choice_List (Assoc));
3548         while Present (Choice) loop
3549            Comp := Get_Component (Choice);
3550
3551            if Present (Comp) then
3552               Check_Variant (Choice);
3553
3554               Comp_Type := Etype (Comp);
3555
3556               --  Decorate the component reference by setting its entity and
3557               --  type, as otherwise backends like GNATprove would have to
3558               --  rediscover this information by themselves.
3559
3560               Set_Entity (Choice, Comp);
3561               Set_Etype  (Choice, Comp_Type);
3562            else
3563               Comp_Type := Any_Type;
3564            end if;
3565
3566            Next (Choice);
3567         end loop;
3568
3569         pragma Assert (Present (Comp_Type));
3570
3571         --  A record_component_association in record_delta_aggregate shall not
3572         --  use the box compound delimiter <> rather than an expression; see
3573         --  RM 4.3.1(17.3/5).
3574
3575         pragma Assert (Present (Expression (Assoc)) xor Box_Present (Assoc));
3576
3577         if Box_Present (Assoc) then
3578            Error_Msg_N
3579              ("'<'> in record delta aggregate is not allowed", Assoc);
3580         else
3581            Analyze_And_Resolve (Expression (Assoc), Comp_Type);
3582         end if;
3583         Next (Assoc);
3584      end loop;
3585   end Resolve_Delta_Record_Aggregate;
3586
3587   ---------------------------------
3588   -- Resolve_Extension_Aggregate --
3589   ---------------------------------
3590
3591   --  There are two cases to consider:
3592
3593   --  a) If the ancestor part is a type mark, the components needed are the
3594   --  difference between the components of the expected type and the
3595   --  components of the given type mark.
3596
3597   --  b) If the ancestor part is an expression, it must be unambiguous, and
3598   --  once we have its type we can also compute the needed components as in
3599   --  the previous case. In both cases, if the ancestor type is not the
3600   --  immediate ancestor, we have to build this ancestor recursively.
3601
3602   --  In both cases, discriminants of the ancestor type do not play a role in
3603   --  the resolution of the needed components, because inherited discriminants
3604   --  cannot be used in a type extension. As a result we can compute
3605   --  independently the list of components of the ancestor type and of the
3606   --  expected type.
3607
3608   procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
3609      A      : constant Node_Id := Ancestor_Part (N);
3610      A_Type : Entity_Id;
3611      I      : Interp_Index;
3612      It     : Interp;
3613
3614      function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
3615      --  If the type is limited, verify that the ancestor part is a legal
3616      --  expression (aggregate or function call, including 'Input)) that does
3617      --  not require a copy, as specified in 7.5(2).
3618
3619      function Valid_Ancestor_Type return Boolean;
3620      --  Verify that the type of the ancestor part is a non-private ancestor
3621      --  of the expected type, which must be a type extension.
3622
3623      procedure Transform_BIP_Assignment (Typ : Entity_Id);
3624      --  For an extension aggregate whose ancestor part is a build-in-place
3625      --  call returning a nonlimited type, this is used to transform the
3626      --  assignment to the ancestor part to use a temp.
3627
3628      ----------------------------
3629      -- Valid_Limited_Ancestor --
3630      ----------------------------
3631
3632      function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
3633      begin
3634         if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
3635            return True;
3636
3637         --  The ancestor must be a call or an aggregate, but a call may
3638         --  have been expanded into a temporary, so check original node.
3639
3640         elsif Nkind (Anc) in N_Aggregate
3641                            | N_Extension_Aggregate
3642                            | N_Function_Call
3643         then
3644            return True;
3645
3646         elsif Nkind (Original_Node (Anc)) = N_Function_Call then
3647            return True;
3648
3649         elsif Nkind (Anc) = N_Attribute_Reference
3650           and then Attribute_Name (Anc) = Name_Input
3651         then
3652            return True;
3653
3654         elsif Nkind (Anc) = N_Qualified_Expression then
3655            return Valid_Limited_Ancestor (Expression (Anc));
3656
3657         elsif Nkind (Anc) = N_Raise_Expression then
3658            return True;
3659
3660         else
3661            return False;
3662         end if;
3663      end Valid_Limited_Ancestor;
3664
3665      -------------------------
3666      -- Valid_Ancestor_Type --
3667      -------------------------
3668
3669      function Valid_Ancestor_Type return Boolean is
3670         Imm_Type : Entity_Id;
3671
3672      begin
3673         Imm_Type := Base_Type (Typ);
3674         while Is_Derived_Type (Imm_Type) loop
3675            if Etype (Imm_Type) = Base_Type (A_Type) then
3676               return True;
3677
3678            --  The base type of the parent type may appear as a private
3679            --  extension if it is declared as such in a parent unit of the
3680            --  current one. For consistency of the subsequent analysis use
3681            --  the partial view for the ancestor part.
3682
3683            elsif Is_Private_Type (Etype (Imm_Type))
3684              and then Present (Full_View (Etype (Imm_Type)))
3685              and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
3686            then
3687               A_Type := Etype (Imm_Type);
3688               return True;
3689
3690            --  The parent type may be a private extension. The aggregate is
3691            --  legal if the type of the aggregate is an extension of it that
3692            --  is not a private extension.
3693
3694            elsif Is_Private_Type (A_Type)
3695              and then not Is_Private_Type (Imm_Type)
3696              and then Present (Full_View (A_Type))
3697              and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
3698            then
3699               return True;
3700
3701            --  The parent type may be a raise expression (which is legal in
3702            --  any expression context).
3703
3704            elsif A_Type = Raise_Type then
3705               A_Type := Etype (Imm_Type);
3706               return True;
3707
3708            else
3709               Imm_Type := Etype (Base_Type (Imm_Type));
3710            end if;
3711         end loop;
3712
3713         --  If previous loop did not find a proper ancestor, report error
3714
3715         Error_Msg_NE ("expect ancestor type of &", A, Typ);
3716         return False;
3717      end Valid_Ancestor_Type;
3718
3719      ------------------------------
3720      -- Transform_BIP_Assignment --
3721      ------------------------------
3722
3723      procedure Transform_BIP_Assignment (Typ : Entity_Id) is
3724         Loc      : constant Source_Ptr := Sloc (N);
3725         Def_Id   : constant Entity_Id  := Make_Temporary (Loc, 'Y', A);
3726         Obj_Decl : constant Node_Id    :=
3727                      Make_Object_Declaration (Loc,
3728                        Defining_Identifier => Def_Id,
3729                        Constant_Present    => True,
3730                        Object_Definition   => New_Occurrence_Of (Typ, Loc),
3731                        Expression          => A,
3732                        Has_Init_Expression => True);
3733      begin
3734         Set_Etype (Def_Id, Typ);
3735         Set_Ancestor_Part (N, New_Occurrence_Of (Def_Id, Loc));
3736         Insert_Action (N, Obj_Decl);
3737      end Transform_BIP_Assignment;
3738
3739   --  Start of processing for Resolve_Extension_Aggregate
3740
3741   begin
3742      --  Analyze the ancestor part and account for the case where it is a
3743      --  parameterless function call.
3744
3745      Analyze (A);
3746      Check_Parameterless_Call (A);
3747
3748      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3749
3750         --  AI05-0115: If the ancestor part is a subtype mark, the ancestor
3751         --  must not have unknown discriminants. To catch cases where the
3752         --  aggregate occurs at a place where the full view of the ancestor
3753         --  type is visible and doesn't have unknown discriminants, but the
3754         --  aggregate type was derived from a partial view that has unknown
3755         --  discriminants, we check whether the aggregate type has unknown
3756         --  discriminants (unknown discriminants were inherited), along
3757         --  with checking that the partial view of the ancestor has unknown
3758         --  discriminants. (It might be sufficient to replace the entire
3759         --  condition with Has_Unknown_Discriminants (Typ), but that might
3760         --  miss some cases, not clear, and causes error changes in some tests
3761         --  such as class-wide cases, that aren't clearly improvements. ???)
3762
3763         if Has_Unknown_Discriminants (Entity (A))
3764           or else (Has_Unknown_Discriminants (Typ)
3765                      and then Partial_View_Has_Unknown_Discr (Entity (A)))
3766         then
3767            Error_Msg_NE
3768              ("aggregate not available for type& whose ancestor "
3769                 & "has unknown discriminants", N, Typ);
3770         end if;
3771      end if;
3772
3773      if not Is_Tagged_Type (Typ) then
3774         Error_Msg_N ("type of extension aggregate must be tagged", N);
3775         return;
3776
3777      elsif Is_Limited_Type (Typ) then
3778
3779         --  Ada 2005 (AI-287): Limited aggregates are allowed
3780
3781         if Ada_Version < Ada_2005 then
3782            Error_Msg_N ("aggregate type cannot be limited", N);
3783            Explain_Limited_Type (Typ, N);
3784            return;
3785
3786         elsif Valid_Limited_Ancestor (A) then
3787            null;
3788
3789         else
3790            Error_Msg_N
3791              ("limited ancestor part must be aggregate or function call", A);
3792         end if;
3793
3794      elsif Is_Class_Wide_Type (Typ) then
3795         Error_Msg_N ("aggregate cannot be of a class-wide type", N);
3796         return;
3797      end if;
3798
3799      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3800         A_Type := Get_Full_View (Entity (A));
3801
3802         if Valid_Ancestor_Type then
3803            Set_Entity (A, A_Type);
3804            Set_Etype  (A, A_Type);
3805
3806            Validate_Ancestor_Part (N);
3807            Resolve_Record_Aggregate (N, Typ);
3808         end if;
3809
3810      elsif Nkind (A) /= N_Aggregate then
3811         if Is_Overloaded (A) then
3812            A_Type := Any_Type;
3813
3814            Get_First_Interp (A, I, It);
3815            while Present (It.Typ) loop
3816
3817               --  Consider limited interpretations if Ada 2005 or higher
3818
3819               if Is_Tagged_Type (It.Typ)
3820                 and then (Ada_Version >= Ada_2005
3821                            or else not Is_Limited_Type (It.Typ))
3822               then
3823                  if A_Type /= Any_Type then
3824                     Error_Msg_N ("cannot resolve expression", A);
3825                     return;
3826                  else
3827                     A_Type := It.Typ;
3828                  end if;
3829               end if;
3830
3831               Get_Next_Interp (I, It);
3832            end loop;
3833
3834            if A_Type = Any_Type then
3835               if Ada_Version >= Ada_2005 then
3836                  Error_Msg_N
3837                    ("ancestor part must be of a tagged type", A);
3838               else
3839                  Error_Msg_N
3840                    ("ancestor part must be of a nonlimited tagged type", A);
3841               end if;
3842
3843               return;
3844            end if;
3845
3846         else
3847            A_Type := Etype (A);
3848         end if;
3849
3850         if Valid_Ancestor_Type then
3851            Resolve (A, A_Type);
3852            Check_Unset_Reference (A);
3853            Check_Non_Static_Context (A);
3854
3855            --  The aggregate is illegal if the ancestor expression is a call
3856            --  to a function with a limited unconstrained result, unless the
3857            --  type of the aggregate is a null extension. This restriction
3858            --  was added in AI05-67 to simplify implementation.
3859
3860            if Nkind (A) = N_Function_Call
3861              and then Is_Limited_Type (A_Type)
3862              and then not Is_Null_Extension (Typ)
3863              and then not Is_Constrained (A_Type)
3864            then
3865               Error_Msg_N
3866                 ("type of limited ancestor part must be constrained", A);
3867
3868            --  Reject the use of CPP constructors that leave objects partially
3869            --  initialized. For example:
3870
3871            --    type CPP_Root is tagged limited record ...
3872            --    pragma Import (CPP, CPP_Root);
3873
3874            --    type CPP_DT is new CPP_Root and Iface ...
3875            --    pragma Import (CPP, CPP_DT);
3876
3877            --    type Ada_DT is new CPP_DT with ...
3878
3879            --    Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3880
3881            --  Using the constructor of CPP_Root the slots of the dispatch
3882            --  table of CPP_DT cannot be set, and the secondary tag of
3883            --  CPP_DT is unknown.
3884
3885            elsif Nkind (A) = N_Function_Call
3886              and then Is_CPP_Constructor_Call (A)
3887              and then Enclosing_CPP_Parent (Typ) /= A_Type
3888            then
3889               Error_Msg_NE
3890                 ("??must use 'C'P'P constructor for type &", A,
3891                  Enclosing_CPP_Parent (Typ));
3892
3893               --  The following call is not needed if the previous warning
3894               --  is promoted to an error.
3895
3896               Resolve_Record_Aggregate (N, Typ);
3897
3898            elsif Is_Class_Wide_Type (Etype (A))
3899              and then Nkind (Original_Node (A)) = N_Function_Call
3900            then
3901               --  If the ancestor part is a dispatching call, it appears
3902               --  statically to be a legal ancestor, but it yields any member
3903               --  of the class, and it is not possible to determine whether
3904               --  it is an ancestor of the extension aggregate (much less
3905               --  which ancestor). It is not possible to determine the
3906               --  components of the extension part.
3907
3908               --  This check implements AI-306, which in fact was motivated by
3909               --  an AdaCore query to the ARG after this test was added.
3910
3911               Error_Msg_N ("ancestor part must be statically tagged", A);
3912            else
3913               --  We are using the build-in-place protocol, but we can't build
3914               --  in place, because we need to call the function before
3915               --  allocating the aggregate. Could do better for null
3916               --  extensions, and maybe for nondiscriminated types.
3917               --  This is wrong for limited, but those were wrong already.
3918
3919               if not Is_Limited_View (A_Type)
3920                 and then Is_Build_In_Place_Function_Call (A)
3921               then
3922                  Transform_BIP_Assignment (A_Type);
3923               end if;
3924
3925               Resolve_Record_Aggregate (N, Typ);
3926            end if;
3927         end if;
3928
3929      else
3930         Error_Msg_N ("no unique type for this aggregate", A);
3931      end if;
3932
3933      Check_Function_Writable_Actuals (N);
3934   end Resolve_Extension_Aggregate;
3935
3936   ------------------------------
3937   -- Resolve_Record_Aggregate --
3938   ------------------------------
3939
3940   procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3941      New_Assoc_List : constant List_Id := New_List;
3942      --  New_Assoc_List is the newly built list of N_Component_Association
3943      --  nodes.
3944
3945      Others_Etype : Entity_Id := Empty;
3946      --  This variable is used to save the Etype of the last record component
3947      --  that takes its value from the others choice. Its purpose is:
3948      --
3949      --    (a) make sure the others choice is useful
3950      --
3951      --    (b) make sure the type of all the components whose value is
3952      --        subsumed by the others choice are the same.
3953      --
3954      --  This variable is updated as a side effect of function Get_Value.
3955
3956      Box_Node               : Node_Id := Empty;
3957      Is_Box_Present         : Boolean := False;
3958      Is_Box_Init_By_Default : Boolean := False;
3959      Others_Box             : Natural := 0;
3960      --  Ada 2005 (AI-287): Variables used in case of default initialization
3961      --  to provide a functionality similar to Others_Etype. Box_Present
3962      --  indicates that the component takes its default initialization;
3963      --  Others_Box counts the number of components of the current aggregate
3964      --  (which may be a sub-aggregate of a larger one) that are default-
3965      --  initialized. A value of One indicates that an others_box is present.
3966      --  Any larger value indicates that the others_box is not redundant.
3967      --  These variables, similar to Others_Etype, are also updated as a side
3968      --  effect of function Get_Value. Box_Node is used to place a warning on
3969      --  a redundant others_box.
3970
3971      procedure Add_Association
3972        (Component      : Entity_Id;
3973         Expr           : Node_Id;
3974         Assoc_List     : List_Id;
3975         Is_Box_Present : Boolean := False);
3976      --  Builds a new N_Component_Association node which associates Component
3977      --  to expression Expr and adds it to the association list being built,
3978      --  either New_Assoc_List, or the association being built for an inner
3979      --  aggregate.
3980
3981      procedure Add_Discriminant_Values
3982        (New_Aggr   : Node_Id;
3983         Assoc_List : List_Id);
3984      --  The constraint to a component may be given by a discriminant of the
3985      --  enclosing type, in which case we have to retrieve its value, which is
3986      --  part of the enclosing aggregate. Assoc_List provides the discriminant
3987      --  associations of the current type or of some enclosing record.
3988
3989      function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3990      --  If aggregate N is a regular aggregate this routine will return True.
3991      --  Otherwise, if N is an extension aggregate, then Input_Discr denotes
3992      --  a discriminant whose value may already have been specified by N's
3993      --  ancestor part. This routine checks whether this is indeed the case
3994      --  and if so returns False, signaling that no value for Input_Discr
3995      --  should appear in N's aggregate part. Also, in this case, the routine
3996      --  appends to New_Assoc_List the discriminant value specified in the
3997      --  ancestor part.
3998      --
3999      --  If the aggregate is in a context with expansion delayed, it will be
4000      --  reanalyzed. The inherited discriminant values must not be reinserted
4001      --  in the component list to prevent spurious errors, but they must be
4002      --  present on first analysis to build the proper subtype indications.
4003      --  The flag Inherited_Discriminant is used to prevent the re-insertion.
4004
4005      function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
4006      --  AI05-0115: Find earlier ancestor in the derivation chain that is
4007      --  derived from private view Typ. Whether the aggregate is legal depends
4008      --  on the current visibility of the type as well as that of the parent
4009      --  of the ancestor.
4010
4011      function Get_Value
4012        (Compon                 : Entity_Id;
4013         From                   : List_Id;
4014         Consider_Others_Choice : Boolean := False) return Node_Id;
4015      --  Given a record component stored in parameter Compon, this function
4016      --  returns its value as it appears in the list From, which is a list
4017      --  of N_Component_Association nodes.
4018      --
4019      --  If no component association has a choice for the searched component,
4020      --  the value provided by the others choice is returned, if there is one,
4021      --  and Consider_Others_Choice is set to true. Otherwise Empty is
4022      --  returned. If there is more than one component association giving a
4023      --  value for the searched record component, an error message is emitted
4024      --  and the first found value is returned.
4025      --
4026      --  If Consider_Others_Choice is set and the returned expression comes
4027      --  from the others choice, then Others_Etype is set as a side effect.
4028      --  An error message is emitted if the components taking their value from
4029      --  the others choice do not have same type.
4030
4031      procedure Propagate_Discriminants
4032        (Aggr       : Node_Id;
4033         Assoc_List : List_Id);
4034      --  Nested components may themselves be discriminated types constrained
4035      --  by outer discriminants, whose values must be captured before the
4036      --  aggregate is expanded into assignments.
4037
4038      procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
4039      --  Analyzes and resolves expression Expr against the Etype of the
4040      --  Component. This routine also applies all appropriate checks to Expr.
4041      --  It finally saves a Expr in the newly created association list that
4042      --  will be attached to the final record aggregate. Note that if the
4043      --  Parent pointer of Expr is not set then Expr was produced with a
4044      --  New_Copy_Tree or some such.
4045
4046      procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
4047      --  Rewrite a range node Rge when its bounds refer to non-stored
4048      --  discriminants from Root_Type, to replace them with the stored
4049      --  discriminant values. This is required in GNATprove mode, and is
4050      --  adopted in all modes to avoid special-casing GNATprove mode.
4051
4052      ---------------------
4053      -- Add_Association --
4054      ---------------------
4055
4056      procedure Add_Association
4057        (Component      : Entity_Id;
4058         Expr           : Node_Id;
4059         Assoc_List     : List_Id;
4060         Is_Box_Present : Boolean := False)
4061      is
4062         Choice_List : constant List_Id := New_List;
4063         Loc         : Source_Ptr;
4064
4065      begin
4066         --  If this is a box association the expression is missing, so use the
4067         --  Sloc of the aggregate itself for the new association.
4068
4069         pragma Assert (Present (Expr) xor Is_Box_Present);
4070
4071         if Present (Expr) then
4072            Loc := Sloc (Expr);
4073         else
4074            Loc := Sloc (N);
4075         end if;
4076
4077         Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
4078
4079         Append_To (Assoc_List,
4080           Make_Component_Association (Loc,
4081             Choices     => Choice_List,
4082             Expression  => Expr,
4083             Box_Present => Is_Box_Present));
4084
4085         --  If this association has a box for a component that is initialized
4086         --  by default, then set flag on the new association to indicate that
4087         --  the original association was for such a box-initialized component.
4088
4089         if Is_Box_Init_By_Default then
4090            Set_Was_Default_Init_Box_Association (Last (Assoc_List));
4091         end if;
4092      end Add_Association;
4093
4094      -----------------------------
4095      -- Add_Discriminant_Values --
4096      -----------------------------
4097
4098      procedure Add_Discriminant_Values
4099        (New_Aggr   : Node_Id;
4100         Assoc_List : List_Id)
4101      is
4102         Assoc      : Node_Id;
4103         Discr      : Entity_Id;
4104         Discr_Elmt : Elmt_Id;
4105         Discr_Val  : Node_Id;
4106         Val        : Entity_Id;
4107
4108      begin
4109         Discr      := First_Discriminant (Etype (New_Aggr));
4110         Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
4111         while Present (Discr_Elmt) loop
4112            Discr_Val := Node (Discr_Elmt);
4113
4114            --  If the constraint is given by a discriminant then it is a
4115            --  discriminant of an enclosing record, and its value has already
4116            --  been placed in the association list.
4117
4118            if Is_Entity_Name (Discr_Val)
4119              and then Ekind (Entity (Discr_Val)) = E_Discriminant
4120            then
4121               Val := Entity (Discr_Val);
4122
4123               Assoc := First (Assoc_List);
4124               while Present (Assoc) loop
4125                  if Present (Entity (First (Choices (Assoc))))
4126                    and then Entity (First (Choices (Assoc))) = Val
4127                  then
4128                     Discr_Val := Expression (Assoc);
4129                     exit;
4130                  end if;
4131
4132                  Next (Assoc);
4133               end loop;
4134            end if;
4135
4136            Add_Association
4137              (Discr, New_Copy_Tree (Discr_Val),
4138               Component_Associations (New_Aggr));
4139
4140            --  If the discriminant constraint is a current instance, mark the
4141            --  current aggregate so that the self-reference can be expanded
4142            --  later. The constraint may refer to the subtype of aggregate, so
4143            --  use base type for comparison.
4144
4145            if Nkind (Discr_Val) = N_Attribute_Reference
4146              and then Is_Entity_Name (Prefix (Discr_Val))
4147              and then Is_Type (Entity (Prefix (Discr_Val)))
4148              and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
4149            then
4150               Set_Has_Self_Reference (N);
4151            end if;
4152
4153            Next_Elmt (Discr_Elmt);
4154            Next_Discriminant (Discr);
4155         end loop;
4156      end Add_Discriminant_Values;
4157
4158      --------------------------
4159      -- Discriminant_Present --
4160      --------------------------
4161
4162      function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
4163         Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
4164
4165         Ancestor_Is_Subtyp : Boolean;
4166
4167         Loc : Source_Ptr;
4168
4169         Ancestor     : Node_Id;
4170         Ancestor_Typ : Entity_Id;
4171         Comp_Assoc   : Node_Id;
4172         Discr        : Entity_Id;
4173         Discr_Expr   : Node_Id;
4174         Discr_Val    : Elmt_Id := No_Elmt;
4175         Orig_Discr   : Entity_Id;
4176
4177      begin
4178         if Regular_Aggr then
4179            return True;
4180         end if;
4181
4182         --  Check whether inherited discriminant values have already been
4183         --  inserted in the aggregate. This will be the case if we are
4184         --  re-analyzing an aggregate whose expansion was delayed.
4185
4186         if Present (Component_Associations (N)) then
4187            Comp_Assoc := First (Component_Associations (N));
4188            while Present (Comp_Assoc) loop
4189               if Inherited_Discriminant (Comp_Assoc) then
4190                  return True;
4191               end if;
4192
4193               Next (Comp_Assoc);
4194            end loop;
4195         end if;
4196
4197         Ancestor     := Ancestor_Part (N);
4198         Ancestor_Typ := Etype (Ancestor);
4199         Loc          := Sloc (Ancestor);
4200
4201         --  For a private type with unknown discriminants, use the underlying
4202         --  record view if it is available.
4203
4204         if Has_Unknown_Discriminants (Ancestor_Typ)
4205           and then Present (Full_View (Ancestor_Typ))
4206           and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
4207         then
4208            Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
4209         end if;
4210
4211         Ancestor_Is_Subtyp :=
4212           Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
4213
4214         --  If the ancestor part has no discriminants clearly N's aggregate
4215         --  part must provide a value for Discr.
4216
4217         if not Has_Discriminants (Ancestor_Typ) then
4218            return True;
4219
4220         --  If the ancestor part is an unconstrained subtype mark then the
4221         --  Discr must be present in N's aggregate part.
4222
4223         elsif Ancestor_Is_Subtyp
4224           and then not Is_Constrained (Entity (Ancestor))
4225         then
4226            return True;
4227         end if;
4228
4229         --  Now look to see if Discr was specified in the ancestor part
4230
4231         if Ancestor_Is_Subtyp then
4232            Discr_Val :=
4233              First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
4234         end if;
4235
4236         Orig_Discr := Original_Record_Component (Input_Discr);
4237
4238         Discr := First_Discriminant (Ancestor_Typ);
4239         while Present (Discr) loop
4240
4241            --  If Ancestor has already specified Disc value then insert its
4242            --  value in the final aggregate.
4243
4244            if Original_Record_Component (Discr) = Orig_Discr then
4245               if Ancestor_Is_Subtyp then
4246                  Discr_Expr := New_Copy_Tree (Node (Discr_Val));
4247               else
4248                  Discr_Expr :=
4249                    Make_Selected_Component (Loc,
4250                      Prefix        => Duplicate_Subexpr (Ancestor),
4251                      Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
4252               end if;
4253
4254               Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
4255               Set_Inherited_Discriminant (Last (New_Assoc_List));
4256               return False;
4257            end if;
4258
4259            Next_Discriminant (Discr);
4260
4261            if Ancestor_Is_Subtyp then
4262               Next_Elmt (Discr_Val);
4263            end if;
4264         end loop;
4265
4266         return True;
4267      end Discriminant_Present;
4268
4269      ---------------------------
4270      -- Find_Private_Ancestor --
4271      ---------------------------
4272
4273      function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
4274         Par : Entity_Id;
4275
4276      begin
4277         Par := Typ;
4278         loop
4279            if Has_Private_Ancestor (Par)
4280              and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
4281            then
4282               return Par;
4283
4284            elsif not Is_Derived_Type (Par) then
4285               return Empty;
4286
4287            else
4288               Par := Etype (Base_Type (Par));
4289            end if;
4290         end loop;
4291      end Find_Private_Ancestor;
4292
4293      ---------------
4294      -- Get_Value --
4295      ---------------
4296
4297      function Get_Value
4298        (Compon                 : Entity_Id;
4299         From                   : List_Id;
4300         Consider_Others_Choice : Boolean := False) return Node_Id
4301      is
4302         Typ           : constant Entity_Id := Etype (Compon);
4303         Assoc         : Node_Id;
4304         Expr          : Node_Id := Empty;
4305         Selector_Name : Node_Id;
4306
4307      begin
4308         Is_Box_Present := False;
4309         Is_Box_Init_By_Default := False;
4310
4311         if No (From) then
4312            return Empty;
4313         end if;
4314
4315         Assoc := First (From);
4316         while Present (Assoc) loop
4317            Selector_Name := First (Choices (Assoc));
4318            while Present (Selector_Name) loop
4319               if Nkind (Selector_Name) = N_Others_Choice then
4320                  if Consider_Others_Choice and then No (Expr) then
4321
4322                     --  We need to duplicate the expression for each
4323                     --  successive component covered by the others choice.
4324                     --  This is redundant if the others_choice covers only
4325                     --  one component (small optimization possible???), but
4326                     --  indispensable otherwise, because each one must be
4327                     --  expanded individually to preserve side effects.
4328
4329                     --  Ada 2005 (AI-287): In case of default initialization
4330                     --  of components, we duplicate the corresponding default
4331                     --  expression (from the record type declaration). The
4332                     --  copy must carry the sloc of the association (not the
4333                     --  original expression) to prevent spurious elaboration
4334                     --  checks when the default includes function calls.
4335
4336                     if Box_Present (Assoc) then
4337                        Others_Box     := Others_Box + 1;
4338                        Is_Box_Present := True;
4339
4340                        if Expander_Active then
4341                           return
4342                             New_Copy_Tree_And_Copy_Dimensions
4343                               (Expression (Parent (Compon)),
4344                                New_Sloc => Sloc (Assoc));
4345                        else
4346                           return Expression (Parent (Compon));
4347                        end if;
4348
4349                     else
4350                        if Present (Others_Etype)
4351                          and then Base_Type (Others_Etype) /= Base_Type (Typ)
4352                        then
4353                           --  If the components are of an anonymous access
4354                           --  type they are distinct, but this is legal in
4355                           --  Ada 2012 as long as designated types match.
4356
4357                           if (Ekind (Typ) = E_Anonymous_Access_Type
4358                                or else Ekind (Typ) =
4359                                            E_Anonymous_Access_Subprogram_Type)
4360                             and then Designated_Type (Typ) =
4361                                            Designated_Type (Others_Etype)
4362                           then
4363                              null;
4364                           else
4365                              Error_Msg_N
4366                                ("components in OTHERS choice must have same "
4367                                 & "type", Selector_Name);
4368                           end if;
4369                        end if;
4370
4371                        Others_Etype := Typ;
4372
4373                        --  Copy the expression so that it is resolved
4374                        --  independently for each component, This is needed
4375                        --  for accessibility checks on components of anonymous
4376                        --  access types, even in compile_only mode.
4377
4378                        if not Inside_A_Generic then
4379                           return
4380                             New_Copy_Tree_And_Copy_Dimensions
4381                               (Expression (Assoc));
4382                        else
4383                           return Expression (Assoc);
4384                        end if;
4385                     end if;
4386                  end if;
4387
4388               elsif Chars (Compon) = Chars (Selector_Name) then
4389                  if No (Expr) then
4390
4391                     --  Ada 2005 (AI-231)
4392
4393                     if Ada_Version >= Ada_2005
4394                       and then Known_Null (Expression (Assoc))
4395                     then
4396                        Check_Can_Never_Be_Null (Compon, Expression (Assoc));
4397                     end if;
4398
4399                     --  We need to duplicate the expression when several
4400                     --  components are grouped together with a "|" choice.
4401                     --  For instance "filed1 | filed2 => Expr"
4402
4403                     --  Ada 2005 (AI-287)
4404
4405                     if Box_Present (Assoc) then
4406                        Is_Box_Present := True;
4407
4408                        --  Duplicate the default expression of the component
4409                        --  from the record type declaration, so a new copy
4410                        --  can be attached to the association.
4411
4412                        --  Note that we always copy the default expression,
4413                        --  even when the association has a single choice, in
4414                        --  order to create a proper association for the
4415                        --  expanded aggregate.
4416
4417                        --  Component may have no default, in which case the
4418                        --  expression is empty and the component is default-
4419                        --  initialized, but an association for the component
4420                        --  exists, and it is not covered by an others clause.
4421
4422                        --  Scalar and private types have no initialization
4423                        --  procedure, so they remain uninitialized. If the
4424                        --  target of the aggregate is a constant this
4425                        --  deserves a warning.
4426
4427                        if No (Expression (Parent (Compon)))
4428                          and then not Has_Non_Null_Base_Init_Proc (Typ)
4429                          and then not Has_Aspect (Typ, Aspect_Default_Value)
4430                          and then not Is_Concurrent_Type (Typ)
4431                          and then Nkind (Parent (N)) = N_Object_Declaration
4432                          and then Constant_Present (Parent (N))
4433                        then
4434                           Error_Msg_Node_2 := Typ;
4435                           Error_Msg_NE
4436                             ("component&? of type& is uninitialized",
4437                              Assoc, Selector_Name);
4438
4439                           --  An additional reminder if the component type
4440                           --  is a generic formal.
4441
4442                           if Is_Generic_Type (Base_Type (Typ)) then
4443                              Error_Msg_NE
4444                                ("\instance should provide actual type with "
4445                                 & "initialization for&", Assoc, Typ);
4446                           end if;
4447                        end if;
4448
4449                        return
4450                          New_Copy_Tree_And_Copy_Dimensions
4451                            (Expression (Parent (Compon)));
4452
4453                     else
4454                        if Present (Next (Selector_Name)) then
4455                           Expr := New_Copy_Tree_And_Copy_Dimensions
4456                                     (Expression (Assoc));
4457                        else
4458                           Expr := Expression (Assoc);
4459                        end if;
4460                     end if;
4461
4462                     Generate_Reference (Compon, Selector_Name, 'm');
4463
4464                  else
4465                     Error_Msg_NE
4466                       ("more than one value supplied for &",
4467                        Selector_Name, Compon);
4468
4469                  end if;
4470               end if;
4471
4472               Next (Selector_Name);
4473            end loop;
4474
4475            Next (Assoc);
4476         end loop;
4477
4478         return Expr;
4479      end Get_Value;
4480
4481      -----------------------------
4482      -- Propagate_Discriminants --
4483      -----------------------------
4484
4485      procedure Propagate_Discriminants
4486        (Aggr       : Node_Id;
4487         Assoc_List : List_Id)
4488      is
4489         Loc : constant Source_Ptr := Sloc (N);
4490
4491         procedure Process_Component (Comp : Entity_Id);
4492         --  Add one component with a box association to the inner aggregate,
4493         --  and recurse if component is itself composite.
4494
4495         -----------------------
4496         -- Process_Component --
4497         -----------------------
4498
4499         procedure Process_Component (Comp : Entity_Id) is
4500            T        : constant Entity_Id := Etype (Comp);
4501            New_Aggr : Node_Id;
4502
4503         begin
4504            if Is_Record_Type (T) and then Has_Discriminants (T) then
4505               New_Aggr := Make_Aggregate (Loc, No_List, New_List);
4506               Set_Etype (New_Aggr, T);
4507
4508               Add_Association
4509                 (Comp, New_Aggr, Component_Associations (Aggr));
4510
4511               --  Collect discriminant values and recurse
4512
4513               Add_Discriminant_Values (New_Aggr, Assoc_List);
4514               Propagate_Discriminants (New_Aggr, Assoc_List);
4515
4516               Build_Constrained_Itype
4517                 (New_Aggr, T, Component_Associations (New_Aggr));
4518            else
4519               Add_Association
4520                 (Comp, Empty, Component_Associations (Aggr),
4521                  Is_Box_Present => True);
4522            end if;
4523         end Process_Component;
4524
4525         --  Local variables
4526
4527         Aggr_Type  : constant Entity_Id := Base_Type (Etype (Aggr));
4528         Components : constant Elist_Id  := New_Elmt_List;
4529         Def_Node   : constant Node_Id   :=
4530                       Type_Definition (Declaration_Node (Aggr_Type));
4531
4532         Comp      : Node_Id;
4533         Comp_Elmt : Elmt_Id;
4534         Errors    : Boolean;
4535
4536      --  Start of processing for Propagate_Discriminants
4537
4538      begin
4539         --  The component type may be a variant type. Collect the components
4540         --  that are ruled by the known values of the discriminants. Their
4541         --  values have already been inserted into the component list of the
4542         --  current aggregate.
4543
4544         if Nkind (Def_Node) = N_Record_Definition
4545           and then Present (Component_List (Def_Node))
4546           and then Present (Variant_Part (Component_List (Def_Node)))
4547         then
4548            Gather_Components (Aggr_Type,
4549              Component_List (Def_Node),
4550              Governed_By   => Component_Associations (Aggr),
4551              Into          => Components,
4552              Report_Errors => Errors);
4553
4554            Comp_Elmt := First_Elmt (Components);
4555            while Present (Comp_Elmt) loop
4556               if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
4557                  Process_Component (Node (Comp_Elmt));
4558               end if;
4559
4560               Next_Elmt (Comp_Elmt);
4561            end loop;
4562
4563            --  No variant part, iterate over all components
4564
4565         else
4566            Comp := First_Component (Etype (Aggr));
4567            while Present (Comp) loop
4568               Process_Component (Comp);
4569               Next_Component (Comp);
4570            end loop;
4571         end if;
4572      end Propagate_Discriminants;
4573
4574      -----------------------
4575      -- Resolve_Aggr_Expr --
4576      -----------------------
4577
4578      procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
4579         function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
4580         --  If the expression is an aggregate (possibly qualified) then its
4581         --  expansion is delayed until the enclosing aggregate is expanded
4582         --  into assignments. In that case, do not generate checks on the
4583         --  expression, because they will be generated later, and will other-
4584         --  wise force a copy (to remove side effects) that would leave a
4585         --  dynamic-sized aggregate in the code, something that gigi cannot
4586         --  handle.
4587
4588         ---------------------------
4589         -- Has_Expansion_Delayed --
4590         ---------------------------
4591
4592         function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
4593         begin
4594            return
4595               (Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
4596                 and then Present (Etype (Expr))
4597                 and then Is_Record_Type (Etype (Expr))
4598                 and then Expansion_Delayed (Expr))
4599              or else
4600                (Nkind (Expr) = N_Qualified_Expression
4601                  and then Has_Expansion_Delayed (Expression (Expr)));
4602         end Has_Expansion_Delayed;
4603
4604         --  Local variables
4605
4606         Expr_Type : Entity_Id := Empty;
4607         New_C     : Entity_Id := Component;
4608         New_Expr  : Node_Id;
4609
4610         Relocate : Boolean;
4611         --  Set to True if the resolved Expr node needs to be relocated when
4612         --  attached to the newly created association list. This node need not
4613         --  be relocated if its parent pointer is not set. In fact in this
4614         --  case Expr is the output of a New_Copy_Tree call. If Relocate is
4615         --  True then we have analyzed the expression node in the original
4616         --  aggregate and hence it needs to be relocated when moved over to
4617         --  the new association list.
4618
4619      --  Start of processing for Resolve_Aggr_Expr
4620
4621      begin
4622         --  If the type of the component is elementary or the type of the
4623         --  aggregate does not contain discriminants, use the type of the
4624         --  component to resolve Expr.
4625
4626         if Is_Elementary_Type (Etype (Component))
4627           or else not Has_Discriminants (Etype (N))
4628         then
4629            Expr_Type := Etype (Component);
4630
4631         --  Otherwise we have to pick up the new type of the component from
4632         --  the new constrained subtype of the aggregate. In fact components
4633         --  which are of a composite type might be constrained by a
4634         --  discriminant, and we want to resolve Expr against the subtype were
4635         --  all discriminant occurrences are replaced with their actual value.
4636
4637         else
4638            New_C := First_Component (Etype (N));
4639            while Present (New_C) loop
4640               if Chars (New_C) = Chars (Component) then
4641                  Expr_Type := Etype (New_C);
4642                  exit;
4643               end if;
4644
4645               Next_Component (New_C);
4646            end loop;
4647
4648            pragma Assert (Present (Expr_Type));
4649
4650            --  For each range in an array type where a discriminant has been
4651            --  replaced with the constraint, check that this range is within
4652            --  the range of the base type. This checks is done in the init
4653            --  proc for regular objects, but has to be done here for
4654            --  aggregates since no init proc is called for them.
4655
4656            if Is_Array_Type (Expr_Type) then
4657               declare
4658                  Index : Node_Id;
4659                  --  Range of the current constrained index in the array
4660
4661                  Orig_Index : Node_Id := First_Index (Etype (Component));
4662                  --  Range corresponding to the range Index above in the
4663                  --  original unconstrained record type. The bounds of this
4664                  --  range may be governed by discriminants.
4665
4666                  Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
4667                  --  Range corresponding to the range Index above for the
4668                  --  unconstrained array type. This range is needed to apply
4669                  --  range checks.
4670
4671               begin
4672                  Index := First_Index (Expr_Type);
4673                  while Present (Index) loop
4674                     if Depends_On_Discriminant (Orig_Index) then
4675                        Apply_Range_Check (Index, Etype (Unconstr_Index));
4676                     end if;
4677
4678                     Next_Index (Index);
4679                     Next_Index (Orig_Index);
4680                     Next_Index (Unconstr_Index);
4681                  end loop;
4682               end;
4683            end if;
4684         end if;
4685
4686         --  If the Parent pointer of Expr is not set, Expr is an expression
4687         --  duplicated by New_Tree_Copy (this happens for record aggregates
4688         --  that look like (Field1 | Filed2 => Expr) or (others => Expr)).
4689         --  Such a duplicated expression must be attached to the tree
4690         --  before analysis and resolution to enforce the rule that a tree
4691         --  fragment should never be analyzed or resolved unless it is
4692         --  attached to the current compilation unit.
4693
4694         if No (Parent (Expr)) then
4695            Set_Parent (Expr, N);
4696            Relocate := False;
4697         else
4698            Relocate := True;
4699         end if;
4700
4701         Analyze_And_Resolve (Expr, Expr_Type);
4702         Check_Expr_OK_In_Limited_Aggregate (Expr);
4703         Check_Non_Static_Context (Expr);
4704         Check_Unset_Reference (Expr);
4705
4706         --  Check wrong use of class-wide types
4707
4708         if Is_Class_Wide_Type (Etype (Expr)) then
4709            Error_Msg_N ("dynamically tagged expression not allowed", Expr);
4710         end if;
4711
4712         if not Has_Expansion_Delayed (Expr) then
4713            Aggregate_Constraint_Checks (Expr, Expr_Type);
4714         end if;
4715
4716         --  If an aggregate component has a type with predicates, an explicit
4717         --  predicate check must be applied, as for an assignment statement,
4718         --  because the aggregate might not be expanded into individual
4719         --  component assignments.
4720
4721         if Has_Predicates (Expr_Type)
4722           and then Analyzed (Expr)
4723         then
4724            Apply_Predicate_Check (Expr, Expr_Type);
4725         end if;
4726
4727         if Raises_Constraint_Error (Expr) then
4728            Set_Raises_Constraint_Error (N);
4729         end if;
4730
4731         --  If the expression has been marked as requiring a range check, then
4732         --  generate it here. It's a bit odd to be generating such checks in
4733         --  the analyzer, but harmless since Generate_Range_Check does nothing
4734         --  (other than making sure Do_Range_Check is set) if the expander is
4735         --  not active.
4736
4737         if Do_Range_Check (Expr) then
4738            Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
4739         end if;
4740
4741         --  Add association Component => Expr if the caller requests it
4742
4743         if Relocate then
4744            New_Expr := Relocate_Node (Expr);
4745
4746            --  Since New_Expr is not gonna be analyzed later on, we need to
4747            --  propagate here the dimensions form Expr to New_Expr.
4748
4749            Copy_Dimensions (Expr, New_Expr);
4750
4751         else
4752            New_Expr := Expr;
4753         end if;
4754
4755         Add_Association (New_C, New_Expr, New_Assoc_List);
4756      end Resolve_Aggr_Expr;
4757
4758      -------------------
4759      -- Rewrite_Range --
4760      -------------------
4761
4762      procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
4763         procedure Rewrite_Bound
4764           (Bound     : Node_Id;
4765            Disc      : Entity_Id;
4766            Expr_Disc : Node_Id);
4767         --  Rewrite a bound of the range Bound, when it is equal to the
4768         --  non-stored discriminant Disc, into the stored discriminant
4769         --  value Expr_Disc.
4770
4771         -------------------
4772         -- Rewrite_Bound --
4773         -------------------
4774
4775         procedure Rewrite_Bound
4776           (Bound     : Node_Id;
4777            Disc      : Entity_Id;
4778            Expr_Disc : Node_Id)
4779         is
4780         begin
4781            if Nkind (Bound) /= N_Identifier then
4782               return;
4783            end if;
4784
4785            --  We expect either the discriminant or the discriminal
4786
4787            if Entity (Bound) = Disc
4788              or else (Ekind (Entity (Bound)) = E_In_Parameter
4789                        and then Discriminal_Link (Entity (Bound)) = Disc)
4790            then
4791               Rewrite (Bound, New_Copy_Tree (Expr_Disc));
4792            end if;
4793         end Rewrite_Bound;
4794
4795         --  Local variables
4796
4797         Low, High : Node_Id;
4798         Disc      : Entity_Id;
4799         Expr_Disc : Elmt_Id;
4800
4801      --  Start of processing for Rewrite_Range
4802
4803      begin
4804         if Has_Discriminants (Root_Type) and then Nkind (Rge) = N_Range then
4805            Low := Low_Bound (Rge);
4806            High := High_Bound (Rge);
4807
4808            Disc      := First_Discriminant (Root_Type);
4809            Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
4810            while Present (Disc) loop
4811               Rewrite_Bound (Low, Disc, Node (Expr_Disc));
4812               Rewrite_Bound (High, Disc, Node (Expr_Disc));
4813               Next_Discriminant (Disc);
4814               Next_Elmt (Expr_Disc);
4815            end loop;
4816         end if;
4817      end Rewrite_Range;
4818
4819      --  Local variables
4820
4821      Components : constant Elist_Id := New_Elmt_List;
4822      --  Components is the list of the record components whose value must be
4823      --  provided in the aggregate. This list does include discriminants.
4824
4825      Component       : Entity_Id;
4826      Component_Elmt  : Elmt_Id;
4827      Expr            : Node_Id;
4828      Positional_Expr : Node_Id;
4829
4830   --  Start of processing for Resolve_Record_Aggregate
4831
4832   begin
4833      --  A record aggregate is restricted in SPARK:
4834
4835      --    Each named association can have only a single choice.
4836      --    OTHERS cannot be used.
4837      --    Positional and named associations cannot be mixed.
4838
4839      if Present (Component_Associations (N))
4840        and then Present (First (Component_Associations (N)))
4841      then
4842         declare
4843            Assoc : Node_Id;
4844
4845         begin
4846            Assoc := First (Component_Associations (N));
4847            while Present (Assoc) loop
4848               if Nkind (Assoc) = N_Iterated_Component_Association then
4849                  Error_Msg_N
4850                    ("iterated component association can only appear in an "
4851                     & "array aggregate", N);
4852                  raise Unrecoverable_Error;
4853               end if;
4854
4855               Next (Assoc);
4856            end loop;
4857         end;
4858      end if;
4859
4860      --  We may end up calling Duplicate_Subexpr on expressions that are
4861      --  attached to New_Assoc_List. For this reason we need to attach it
4862      --  to the tree by setting its parent pointer to N. This parent point
4863      --  will change in STEP 8 below.
4864
4865      Set_Parent (New_Assoc_List, N);
4866
4867      --  STEP 1: abstract type and null record verification
4868
4869      if Is_Abstract_Type (Typ) then
4870         Error_Msg_N ("type of aggregate cannot be abstract",  N);
4871      end if;
4872
4873      if No (First_Entity (Typ)) and then Null_Record_Present (N) then
4874         Set_Etype (N, Typ);
4875         return;
4876
4877      elsif Present (First_Entity (Typ))
4878        and then Null_Record_Present (N)
4879        and then not Is_Tagged_Type (Typ)
4880      then
4881         Error_Msg_N ("record aggregate cannot be null", N);
4882         return;
4883
4884      --  If the type has no components, then the aggregate should either
4885      --  have "null record", or in Ada 2005 it could instead have a single
4886      --  component association given by "others => <>". For Ada 95 we flag an
4887      --  error at this point, but for Ada 2005 we proceed with checking the
4888      --  associations below, which will catch the case where it's not an
4889      --  aggregate with "others => <>". Note that the legality of a <>
4890      --  aggregate for a null record type was established by AI05-016.
4891
4892      elsif No (First_Entity (Typ))
4893         and then Ada_Version < Ada_2005
4894      then
4895         Error_Msg_N ("record aggregate must be null", N);
4896         return;
4897      end if;
4898
4899      --  STEP 2: Verify aggregate structure
4900
4901      Step_2 : declare
4902         Assoc         : Node_Id;
4903         Bad_Aggregate : Boolean := False;
4904         Selector_Name : Node_Id;
4905
4906      begin
4907         if Present (Component_Associations (N)) then
4908            Assoc := First (Component_Associations (N));
4909         else
4910            Assoc := Empty;
4911         end if;
4912
4913         while Present (Assoc) loop
4914            Selector_Name := First (Choices (Assoc));
4915            while Present (Selector_Name) loop
4916               if Nkind (Selector_Name) = N_Identifier then
4917                  null;
4918
4919               elsif Nkind (Selector_Name) = N_Others_Choice then
4920                  if Selector_Name /= First (Choices (Assoc))
4921                    or else Present (Next (Selector_Name))
4922                  then
4923                     Error_Msg_N
4924                       ("OTHERS must appear alone in a choice list",
4925                        Selector_Name);
4926                     return;
4927
4928                  elsif Present (Next (Assoc)) then
4929                     Error_Msg_N
4930                       ("OTHERS must appear last in an aggregate",
4931                        Selector_Name);
4932                     return;
4933
4934                  --  (Ada 2005): If this is an association with a box,
4935                  --  indicate that the association need not represent
4936                  --  any component.
4937
4938                  elsif Box_Present (Assoc) then
4939                     Others_Box := 1;
4940                     Box_Node   := Assoc;
4941                  end if;
4942
4943               else
4944                  Error_Msg_N
4945                    ("selector name should be identifier or OTHERS",
4946                     Selector_Name);
4947                  Bad_Aggregate := True;
4948               end if;
4949
4950               Next (Selector_Name);
4951            end loop;
4952
4953            Next (Assoc);
4954         end loop;
4955
4956         if Bad_Aggregate then
4957            return;
4958         end if;
4959      end Step_2;
4960
4961      --  STEP 3: Find discriminant Values
4962
4963      Step_3 : declare
4964         Discrim               : Entity_Id;
4965         Missing_Discriminants : Boolean := False;
4966
4967      begin
4968         if Present (Expressions (N)) then
4969            Positional_Expr := First (Expressions (N));
4970         else
4971            Positional_Expr := Empty;
4972         end if;
4973
4974         --  AI05-0115: if the ancestor part is a subtype mark, the ancestor
4975         --  must not have unknown discriminants.
4976         --  ??? We are not checking any subtype mark here and this code is not
4977         --  exercised by any test, so it's likely wrong (in particular
4978         --  we should not use Root_Type here but the subtype mark, if any),
4979         --  and possibly not needed.
4980
4981         if Is_Derived_Type (Typ)
4982           and then Has_Unknown_Discriminants (Root_Type (Typ))
4983           and then Nkind (N) /= N_Extension_Aggregate
4984         then
4985            Error_Msg_NE
4986              ("aggregate not available for type& whose ancestor "
4987               & "has unknown discriminants", N, Typ);
4988         end if;
4989
4990         if Has_Unknown_Discriminants (Typ)
4991           and then Present (Underlying_Record_View (Typ))
4992         then
4993            Discrim := First_Discriminant (Underlying_Record_View (Typ));
4994         elsif Has_Discriminants (Typ) then
4995            Discrim := First_Discriminant (Typ);
4996         else
4997            Discrim := Empty;
4998         end if;
4999
5000         --  First find the discriminant values in the positional components
5001
5002         while Present (Discrim) and then Present (Positional_Expr) loop
5003            if Discriminant_Present (Discrim) then
5004               Resolve_Aggr_Expr (Positional_Expr, Discrim);
5005
5006               --  Ada 2005 (AI-231)
5007
5008               if Ada_Version >= Ada_2005
5009                 and then Known_Null (Positional_Expr)
5010               then
5011                  Check_Can_Never_Be_Null (Discrim, Positional_Expr);
5012               end if;
5013
5014               Next (Positional_Expr);
5015            end if;
5016
5017            if Present (Get_Value (Discrim, Component_Associations (N))) then
5018               Error_Msg_NE
5019                 ("more than one value supplied for discriminant&",
5020                  N, Discrim);
5021            end if;
5022
5023            Next_Discriminant (Discrim);
5024         end loop;
5025
5026         --  Find remaining discriminant values if any among named components
5027
5028         while Present (Discrim) loop
5029            Expr := Get_Value (Discrim, Component_Associations (N), True);
5030
5031            if not Discriminant_Present (Discrim) then
5032               if Present (Expr) then
5033                  Error_Msg_NE
5034                    ("more than one value supplied for discriminant &",
5035                     N, Discrim);
5036               end if;
5037
5038            elsif No (Expr) then
5039               Error_Msg_NE
5040                 ("no value supplied for discriminant &", N, Discrim);
5041               Missing_Discriminants := True;
5042
5043            else
5044               Resolve_Aggr_Expr (Expr, Discrim);
5045            end if;
5046
5047            Next_Discriminant (Discrim);
5048         end loop;
5049
5050         if Missing_Discriminants then
5051            return;
5052         end if;
5053
5054         --  At this point and until the beginning of STEP 6, New_Assoc_List
5055         --  contains only the discriminants and their values.
5056
5057      end Step_3;
5058
5059      --  STEP 4: Set the Etype of the record aggregate
5060
5061      if Has_Discriminants (Typ)
5062        or else (Has_Unknown_Discriminants (Typ)
5063                  and then Present (Underlying_Record_View (Typ)))
5064      then
5065         Build_Constrained_Itype (N, Typ, New_Assoc_List);
5066      else
5067         Set_Etype (N, Typ);
5068      end if;
5069
5070      --  STEP 5: Get remaining components according to discriminant values
5071
5072      Step_5 : declare
5073         Dnode           : Node_Id;
5074         Errors_Found    : Boolean := False;
5075         Record_Def      : Node_Id;
5076         Parent_Typ      : Entity_Id;
5077         Parent_Typ_List : Elist_Id;
5078         Parent_Elmt     : Elmt_Id;
5079         Root_Typ        : Entity_Id;
5080
5081      begin
5082         if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
5083            Parent_Typ_List := New_Elmt_List;
5084
5085            --  If this is an extension aggregate, the component list must
5086            --  include all components that are not in the given ancestor type.
5087            --  Otherwise, the component list must include components of all
5088            --  ancestors, starting with the root.
5089
5090            if Nkind (N) = N_Extension_Aggregate then
5091               Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
5092
5093            else
5094               --  AI05-0115: check legality of aggregate for type with a
5095               --  private ancestor.
5096
5097               Root_Typ := Root_Type (Typ);
5098               if Has_Private_Ancestor (Typ) then
5099                  declare
5100                     Ancestor      : constant Entity_Id :=
5101                                       Find_Private_Ancestor (Typ);
5102                     Ancestor_Unit : constant Entity_Id :=
5103                                       Cunit_Entity
5104                                         (Get_Source_Unit (Ancestor));
5105                     Parent_Unit   : constant Entity_Id :=
5106                                       Cunit_Entity (Get_Source_Unit
5107                                         (Base_Type (Etype (Ancestor))));
5108                  begin
5109                     --  Check whether we are in a scope that has full view
5110                     --  over the private ancestor and its parent. This can
5111                     --  only happen if the derivation takes place in a child
5112                     --  unit of the unit that declares the parent, and we are
5113                     --  in the private part or body of that child unit, else
5114                     --  the aggregate is illegal.
5115
5116                     if Is_Child_Unit (Ancestor_Unit)
5117                       and then Scope (Ancestor_Unit) = Parent_Unit
5118                       and then In_Open_Scopes (Scope (Ancestor))
5119                       and then
5120                        (In_Private_Part (Scope (Ancestor))
5121                          or else In_Package_Body (Scope (Ancestor)))
5122                     then
5123                        null;
5124
5125                     else
5126                        Error_Msg_NE
5127                          ("type of aggregate has private ancestor&!",
5128                           N, Root_Typ);
5129                        Error_Msg_N ("must use extension aggregate!", N);
5130                        return;
5131                     end if;
5132                  end;
5133               end if;
5134
5135               Dnode := Declaration_Node (Base_Type (Root_Typ));
5136
5137               --  If we don't get a full declaration, then we have some error
5138               --  which will get signalled later so skip this part. Otherwise
5139               --  gather components of root that apply to the aggregate type.
5140               --  We use the base type in case there is an applicable stored
5141               --  constraint that renames the discriminants of the root.
5142
5143               if Nkind (Dnode) = N_Full_Type_Declaration then
5144                  Record_Def := Type_Definition (Dnode);
5145                  Gather_Components
5146                    (Base_Type (Typ),
5147                     Component_List (Record_Def),
5148                     Governed_By   => New_Assoc_List,
5149                     Into          => Components,
5150                     Report_Errors => Errors_Found);
5151
5152                  if Errors_Found then
5153                     Error_Msg_N
5154                       ("discriminant controlling variant part is not static",
5155                        N);
5156                     return;
5157                  end if;
5158               end if;
5159            end if;
5160
5161            Parent_Typ := Base_Type (Typ);
5162            while Parent_Typ /= Root_Typ loop
5163               Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
5164               Parent_Typ := Etype (Parent_Typ);
5165
5166               --  Check whether a private parent requires the use of
5167               --  an extension aggregate. This test does not apply in
5168               --  an instantiation: if the generic unit is legal so is
5169               --  the instance.
5170
5171               if Nkind (Parent (Base_Type (Parent_Typ))) =
5172                                        N_Private_Type_Declaration
5173                 or else Nkind (Parent (Base_Type (Parent_Typ))) =
5174                                        N_Private_Extension_Declaration
5175               then
5176                  if Nkind (N) /= N_Extension_Aggregate
5177                    and then not In_Instance
5178                  then
5179                     Error_Msg_NE
5180                       ("type of aggregate has private ancestor&!",
5181                        N, Parent_Typ);
5182                     Error_Msg_N  ("must use extension aggregate!", N);
5183                     return;
5184
5185                  elsif Parent_Typ /= Root_Typ then
5186                     Error_Msg_NE
5187                       ("ancestor part of aggregate must be private type&",
5188                         Ancestor_Part (N), Parent_Typ);
5189                     return;
5190                  end if;
5191
5192               --  The current view of ancestor part may be a private type,
5193               --  while the context type is always non-private.
5194
5195               elsif Is_Private_Type (Root_Typ)
5196                 and then Present (Full_View (Root_Typ))
5197                 and then Nkind (N) = N_Extension_Aggregate
5198               then
5199                  exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
5200               end if;
5201            end loop;
5202
5203            --  Now collect components from all other ancestors, beginning
5204            --  with the current type. If the type has unknown discriminants
5205            --  use the component list of the Underlying_Record_View, which
5206            --  needs to be used for the subsequent expansion of the aggregate
5207            --  into assignments.
5208
5209            Parent_Elmt := First_Elmt (Parent_Typ_List);
5210            while Present (Parent_Elmt) loop
5211               Parent_Typ := Node (Parent_Elmt);
5212
5213               if Has_Unknown_Discriminants (Parent_Typ)
5214                 and then Present (Underlying_Record_View (Typ))
5215               then
5216                  Parent_Typ := Underlying_Record_View (Parent_Typ);
5217               end if;
5218
5219               Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
5220               Gather_Components (Empty,
5221                 Component_List (Record_Extension_Part (Record_Def)),
5222                 Governed_By   => New_Assoc_List,
5223                 Into          => Components,
5224                 Report_Errors => Errors_Found);
5225
5226               Next_Elmt (Parent_Elmt);
5227            end loop;
5228
5229         --  Typ is not a derived tagged type
5230
5231         else
5232            Record_Def := Type_Definition (Parent (Base_Type (Typ)));
5233
5234            if Null_Present (Record_Def) then
5235               null;
5236
5237            elsif not Has_Unknown_Discriminants (Typ) then
5238               Gather_Components
5239                 (Base_Type (Typ),
5240                  Component_List (Record_Def),
5241                  Governed_By   => New_Assoc_List,
5242                  Into          => Components,
5243                  Report_Errors => Errors_Found);
5244
5245            else
5246               Gather_Components
5247                 (Base_Type (Underlying_Record_View (Typ)),
5248                  Component_List (Record_Def),
5249                  Governed_By   => New_Assoc_List,
5250                  Into          => Components,
5251                  Report_Errors => Errors_Found);
5252            end if;
5253         end if;
5254
5255         if Errors_Found then
5256            return;
5257         end if;
5258      end Step_5;
5259
5260      --  STEP 6: Find component Values
5261
5262      Component := Empty;
5263      Component_Elmt := First_Elmt (Components);
5264
5265      --  First scan the remaining positional associations in the aggregate.
5266      --  Remember that at this point Positional_Expr contains the current
5267      --  positional association if any is left after looking for discriminant
5268      --  values in step 3.
5269
5270      while Present (Positional_Expr) and then Present (Component_Elmt) loop
5271         Component := Node (Component_Elmt);
5272         Resolve_Aggr_Expr (Positional_Expr, Component);
5273
5274         --  Ada 2005 (AI-231)
5275
5276         if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
5277            Check_Can_Never_Be_Null (Component, Positional_Expr);
5278         end if;
5279
5280         if Present (Get_Value (Component, Component_Associations (N))) then
5281            Error_Msg_NE
5282              ("more than one value supplied for component &", N, Component);
5283         end if;
5284
5285         Next (Positional_Expr);
5286         Next_Elmt (Component_Elmt);
5287      end loop;
5288
5289      if Present (Positional_Expr) then
5290         Error_Msg_N
5291           ("too many components for record aggregate", Positional_Expr);
5292      end if;
5293
5294      --  Now scan for the named arguments of the aggregate
5295
5296      while Present (Component_Elmt) loop
5297         Component := Node (Component_Elmt);
5298         Expr := Get_Value (Component, Component_Associations (N), True);
5299
5300         --  Note: The previous call to Get_Value sets the value of the
5301         --  variable Is_Box_Present.
5302
5303         --  Ada 2005 (AI-287): Handle components with default initialization.
5304         --  Note: This feature was originally added to Ada 2005 for limited
5305         --  but it was finally allowed with any type.
5306
5307         if Is_Box_Present then
5308            Check_Box_Component : declare
5309               Ctyp : constant Entity_Id := Etype (Component);
5310
5311            begin
5312               --  Initially assume that the box is for a default-initialized
5313               --  component and reset to False in cases where that's not true.
5314
5315               Is_Box_Init_By_Default := True;
5316
5317               --  If there is a default expression for the aggregate, copy
5318               --  it into a new association. This copy must modify the scopes
5319               --  of internal types that may be attached to the expression
5320               --  (e.g. index subtypes of arrays) because in general the type
5321               --  declaration and the aggregate appear in different scopes,
5322               --  and the backend requires the scope of the type to match the
5323               --  point at which it is elaborated.
5324
5325               --  If the component has an initialization procedure (IP) we
5326               --  pass the component to the expander, which will generate
5327               --  the call to such IP.
5328
5329               --  If the component has discriminants, their values must
5330               --  be taken from their subtype. This is indispensable for
5331               --  constraints that are given by the current instance of an
5332               --  enclosing type, to allow the expansion of the aggregate to
5333               --  replace the reference to the current instance by the target
5334               --  object of the aggregate.
5335
5336               if Is_Case_Choice_Pattern (N) then
5337
5338                  --  Do not transform box component values in a case-choice
5339                  --  aggregate.
5340
5341                  Add_Association
5342                   (Component      => Component,
5343                    Expr           => Empty,
5344                    Assoc_List     => New_Assoc_List,
5345                    Is_Box_Present => True);
5346
5347               elsif Present (Parent (Component))
5348                 and then Nkind (Parent (Component)) = N_Component_Declaration
5349                 and then Present (Expression (Parent (Component)))
5350               then
5351                  --  If component declaration has an initialization expression
5352                  --  then this is not a case of default initialization.
5353
5354                  Is_Box_Init_By_Default := False;
5355
5356                  Expr :=
5357                    New_Copy_Tree_And_Copy_Dimensions
5358                      (Expression (Parent (Component)),
5359                       New_Scope => Current_Scope,
5360                       New_Sloc  => Sloc (N));
5361
5362                  --  As the type of the copied default expression may refer
5363                  --  to discriminants of the record type declaration, these
5364                  --  non-stored discriminants need to be rewritten into stored
5365                  --  discriminant values for the aggregate. This is required
5366                  --  in GNATprove mode, and is adopted in all modes to avoid
5367                  --  special-casing GNATprove mode.
5368
5369                  if Is_Array_Type (Etype (Expr)) then
5370                     declare
5371                        Rec_Typ : constant Entity_Id := Scope (Component);
5372                        --  Root record type whose discriminants may be used as
5373                        --  bounds in range nodes.
5374
5375                        Assoc  : Node_Id;
5376                        Choice : Node_Id;
5377                        Index  : Node_Id;
5378
5379                     begin
5380                        --  Rewrite the range nodes occurring in the indexes
5381                        --  and their types.
5382
5383                        Index := First_Index (Etype (Expr));
5384                        while Present (Index) loop
5385                           Rewrite_Range (Rec_Typ, Index);
5386                           Rewrite_Range
5387                             (Rec_Typ, Scalar_Range (Etype (Index)));
5388
5389                           Next_Index (Index);
5390                        end loop;
5391
5392                        --  Rewrite the range nodes occurring as aggregate
5393                        --  bounds and component associations.
5394
5395                        if Nkind (Expr) = N_Aggregate then
5396                           if Present (Aggregate_Bounds (Expr)) then
5397                              Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
5398                           end if;
5399
5400                           if Present (Component_Associations (Expr)) then
5401                              Assoc := First (Component_Associations (Expr));
5402                              while Present (Assoc) loop
5403                                 Choice := First (Choices (Assoc));
5404                                 while Present (Choice) loop
5405                                    Rewrite_Range (Rec_Typ, Choice);
5406
5407                                    Next (Choice);
5408                                 end loop;
5409
5410                                 Next (Assoc);
5411                              end loop;
5412                           end if;
5413                        end if;
5414                     end;
5415                  end if;
5416
5417                  Add_Association
5418                    (Component  => Component,
5419                     Expr       => Expr,
5420                     Assoc_List => New_Assoc_List);
5421                  Set_Has_Self_Reference (N);
5422
5423               elsif Needs_Simple_Initialization (Ctyp) then
5424                  Add_Association
5425                    (Component      => Component,
5426                     Expr           => Empty,
5427                     Assoc_List     => New_Assoc_List,
5428                     Is_Box_Present => True);
5429
5430               elsif Has_Non_Null_Base_Init_Proc (Ctyp)
5431                 or else not Expander_Active
5432               then
5433                  if Is_Record_Type (Ctyp)
5434                    and then Has_Discriminants (Ctyp)
5435                    and then not Is_Private_Type (Ctyp)
5436                  then
5437                     --  We build a partially initialized aggregate with the
5438                     --  values of the discriminants and box initialization
5439                     --  for the rest, if other components are present.
5440
5441                     --  The type of the aggregate is the known subtype of
5442                     --  the component. The capture of discriminants must be
5443                     --  recursive because subcomponents may be constrained
5444                     --  (transitively) by discriminants of enclosing types.
5445                     --  For a private type with discriminants, a call to the
5446                     --  initialization procedure will be generated, and no
5447                     --  subaggregate is needed.
5448
5449                     Capture_Discriminants : declare
5450                        Loc  : constant Source_Ptr := Sloc (N);
5451                        Expr : Node_Id;
5452
5453                     begin
5454                        Expr := Make_Aggregate (Loc, No_List, New_List);
5455                        Set_Etype (Expr, Ctyp);
5456
5457                        --  If the enclosing type has discriminants, they have
5458                        --  been collected in the aggregate earlier, and they
5459                        --  may appear as constraints of subcomponents.
5460
5461                        --  Similarly if this component has discriminants, they
5462                        --  might in turn be propagated to their components.
5463
5464                        if Has_Discriminants (Typ) then
5465                           Add_Discriminant_Values (Expr, New_Assoc_List);
5466                           Propagate_Discriminants (Expr, New_Assoc_List);
5467
5468                        elsif Has_Discriminants (Ctyp) then
5469                           Add_Discriminant_Values
5470                             (Expr, Component_Associations (Expr));
5471                           Propagate_Discriminants
5472                             (Expr, Component_Associations (Expr));
5473
5474                           Build_Constrained_Itype
5475                             (Expr, Ctyp, Component_Associations (Expr));
5476
5477                        else
5478                           declare
5479                              Comp : Entity_Id;
5480
5481                           begin
5482                              --  If the type has additional components, create
5483                              --  an OTHERS box association for them.
5484
5485                              Comp := First_Component (Ctyp);
5486                              while Present (Comp) loop
5487                                 if Ekind (Comp) = E_Component then
5488                                    if not Is_Record_Type (Etype (Comp)) then
5489                                       Append_To
5490                                         (Component_Associations (Expr),
5491                                          Make_Component_Association (Loc,
5492                                            Choices     =>
5493                                              New_List (
5494                                                Make_Others_Choice (Loc)),
5495                                            Expression  => Empty,
5496                                            Box_Present => True));
5497                                    end if;
5498
5499                                    exit;
5500                                 end if;
5501
5502                                 Next_Component (Comp);
5503                              end loop;
5504                           end;
5505                        end if;
5506
5507                        Add_Association
5508                          (Component  => Component,
5509                           Expr       => Expr,
5510                           Assoc_List => New_Assoc_List);
5511                     end Capture_Discriminants;
5512
5513                  --  Otherwise the component type is not a record, or it has
5514                  --  not discriminants, or it is private.
5515
5516                  else
5517                     Add_Association
5518                       (Component      => Component,
5519                        Expr           => Empty,
5520                        Assoc_List     => New_Assoc_List,
5521                        Is_Box_Present => True);
5522                  end if;
5523
5524               --  Otherwise we only need to resolve the expression if the
5525               --  component has partially initialized values (required to
5526               --  expand the corresponding assignments and run-time checks).
5527
5528               elsif Present (Expr)
5529                 and then Is_Partially_Initialized_Type (Ctyp)
5530               then
5531                  Resolve_Aggr_Expr (Expr, Component);
5532               end if;
5533            end Check_Box_Component;
5534
5535         elsif No (Expr) then
5536
5537            --  Ignore hidden components associated with the position of the
5538            --  interface tags: these are initialized dynamically.
5539
5540            if not Present (Related_Type (Component)) then
5541               Error_Msg_NE
5542                 ("no value supplied for component &!", N, Component);
5543            end if;
5544
5545         else
5546            Resolve_Aggr_Expr (Expr, Component);
5547         end if;
5548
5549         Next_Elmt (Component_Elmt);
5550      end loop;
5551
5552      --  STEP 7: check for invalid components + check type in choice list
5553
5554      Step_7 : declare
5555         Assoc     : Node_Id;
5556         New_Assoc : Node_Id;
5557
5558         Selectr : Node_Id;
5559         --  Selector name
5560
5561         Typech : Entity_Id;
5562         --  Type of first component in choice list
5563
5564      begin
5565         if Present (Component_Associations (N)) then
5566            Assoc := First (Component_Associations (N));
5567         else
5568            Assoc := Empty;
5569         end if;
5570
5571         Verification : while Present (Assoc) loop
5572            Selectr := First (Choices (Assoc));
5573            Typech := Empty;
5574
5575            if Nkind (Selectr) = N_Others_Choice then
5576
5577               --  Ada 2005 (AI-287): others choice may have expression or box
5578
5579               if No (Others_Etype) and then Others_Box = 0 then
5580                  Error_Msg_N
5581                    ("OTHERS must represent at least one component", Selectr);
5582
5583               elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
5584                  Error_Msg_N ("OTHERS choice is redundant?", Box_Node);
5585                  Error_Msg_N
5586                    ("\previous choices cover all components?", Box_Node);
5587               end if;
5588
5589               exit Verification;
5590            end if;
5591
5592            while Present (Selectr) loop
5593               New_Assoc := First (New_Assoc_List);
5594               while Present (New_Assoc) loop
5595                  Component := First (Choices (New_Assoc));
5596
5597                  if Chars (Selectr) = Chars (Component) then
5598                     if Style_Check then
5599                        Check_Identifier (Selectr, Entity (Component));
5600                     end if;
5601
5602                     exit;
5603                  end if;
5604
5605                  Next (New_Assoc);
5606               end loop;
5607
5608               --  If no association, this is not a legal component of the type
5609               --  in question, unless its association is provided with a box.
5610
5611               if No (New_Assoc) then
5612                  if Box_Present (Parent (Selectr)) then
5613
5614                     --  This may still be a bogus component with a box. Scan
5615                     --  list of components to verify that a component with
5616                     --  that name exists.
5617
5618                     declare
5619                        C : Entity_Id;
5620
5621                     begin
5622                        C := First_Component (Typ);
5623                        while Present (C) loop
5624                           if Chars (C) = Chars (Selectr) then
5625
5626                              --  If the context is an extension aggregate,
5627                              --  the component must not be inherited from
5628                              --  the ancestor part of the aggregate.
5629
5630                              if Nkind (N) /= N_Extension_Aggregate
5631                                or else
5632                                  Scope (Original_Record_Component (C)) /=
5633                                    Etype (Ancestor_Part (N))
5634                              then
5635                                 exit;
5636                              end if;
5637                           end if;
5638
5639                           Next_Component (C);
5640                        end loop;
5641
5642                        if No (C) then
5643                           Error_Msg_Node_2 := Typ;
5644                           Error_Msg_N ("& is not a component of}", Selectr);
5645                        end if;
5646                     end;
5647
5648                  elsif Chars (Selectr) /= Name_uTag
5649                    and then Chars (Selectr) /= Name_uParent
5650                  then
5651                     if not Has_Discriminants (Typ) then
5652                        Error_Msg_Node_2 := Typ;
5653                        Error_Msg_N ("& is not a component of}", Selectr);
5654                     else
5655                        Error_Msg_N
5656                          ("& is not a component of the aggregate subtype",
5657                            Selectr);
5658                     end if;
5659
5660                     Check_Misspelled_Component (Components, Selectr);
5661                  end if;
5662
5663               elsif No (Typech) then
5664                  Typech := Base_Type (Etype (Component));
5665
5666               --  AI05-0199: In Ada 2012, several components of anonymous
5667               --  access types can appear in a choice list, as long as the
5668               --  designated types match.
5669
5670               elsif Typech /= Base_Type (Etype (Component)) then
5671                  if Ada_Version >= Ada_2012
5672                    and then Ekind (Typech) = E_Anonymous_Access_Type
5673                    and then
5674                       Ekind (Etype (Component)) = E_Anonymous_Access_Type
5675                    and then Base_Type (Designated_Type (Typech)) =
5676                             Base_Type (Designated_Type (Etype (Component)))
5677                    and then
5678                      Subtypes_Statically_Match (Typech, (Etype (Component)))
5679                  then
5680                     null;
5681
5682                  elsif not Box_Present (Parent (Selectr)) then
5683                     Error_Msg_N
5684                       ("components in choice list must have same type",
5685                        Selectr);
5686                  end if;
5687               end if;
5688
5689               Next (Selectr);
5690            end loop;
5691
5692            Next (Assoc);
5693         end loop Verification;
5694      end Step_7;
5695
5696      --  STEP 8: replace the original aggregate
5697
5698      Step_8 : declare
5699         New_Aggregate : constant Node_Id := New_Copy (N);
5700
5701      begin
5702         Set_Expressions            (New_Aggregate, No_List);
5703         Set_Etype                  (New_Aggregate, Etype (N));
5704         Set_Component_Associations (New_Aggregate, New_Assoc_List);
5705         Set_Check_Actuals          (New_Aggregate, Check_Actuals (N));
5706
5707         Rewrite (N, New_Aggregate);
5708      end Step_8;
5709
5710      --  Check the dimensions of the components in the record aggregate
5711
5712      Analyze_Dimension_Extension_Or_Record_Aggregate (N);
5713   end Resolve_Record_Aggregate;
5714
5715   -----------------------------
5716   -- Check_Can_Never_Be_Null --
5717   -----------------------------
5718
5719   procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
5720      Comp_Typ : Entity_Id;
5721
5722   begin
5723      pragma Assert
5724        (Ada_Version >= Ada_2005
5725          and then Present (Expr)
5726          and then Known_Null (Expr));
5727
5728      case Ekind (Typ) is
5729         when E_Array_Type  =>
5730            Comp_Typ := Component_Type (Typ);
5731
5732         when E_Component
5733            | E_Discriminant
5734         =>
5735            Comp_Typ := Etype (Typ);
5736
5737         when others =>
5738            return;
5739      end case;
5740
5741      if Can_Never_Be_Null (Comp_Typ) then
5742
5743         --  Here we know we have a constraint error. Note that we do not use
5744         --  Apply_Compile_Time_Constraint_Error here to the Expr, which might
5745         --  seem the more natural approach. That's because in some cases the
5746         --  components are rewritten, and the replacement would be missed.
5747         --  We do not mark the whole aggregate as raising a constraint error,
5748         --  because the association may be a null array range.
5749
5750         Error_Msg_N
5751           ("(Ada 2005) NULL not allowed in null-excluding component??", Expr);
5752         Error_Msg_N
5753           ("\Constraint_Error will be raised at run time??", Expr);
5754
5755         Rewrite (Expr,
5756           Make_Raise_Constraint_Error
5757             (Sloc (Expr), Reason => CE_Access_Check_Failed));
5758         Set_Etype    (Expr, Comp_Typ);
5759         Set_Analyzed (Expr);
5760      end if;
5761   end Check_Can_Never_Be_Null;
5762
5763   ---------------------
5764   -- Sort_Case_Table --
5765   ---------------------
5766
5767   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
5768      U : constant Int := Case_Table'Last;
5769      K : Int;
5770      J : Int;
5771      T : Case_Bounds;
5772
5773   begin
5774      K := 1;
5775      while K < U loop
5776         T := Case_Table (K + 1);
5777
5778         J := K + 1;
5779         while J > 1
5780           and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
5781         loop
5782            Case_Table (J) := Case_Table (J - 1);
5783            J := J - 1;
5784         end loop;
5785
5786         Case_Table (J) := T;
5787         K := K + 1;
5788      end loop;
5789   end Sort_Case_Table;
5790
5791end Sem_Aggr;
5792