1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2   This file is consumed by genmatch which produces gimple-match.c
3   and generic-match.c from it.
4
5   Copyright (C) 2014-2021 Free Software Foundation, Inc.
6   Contributed by Richard Biener <rguenther@suse.de>
7   and Prathamesh Kulkarni  <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3.  If not see
23<http://www.gnu.org/licenses/>.  */
24
25
26/* Generic tree predicates we inherit.  */
27(define_predicates
28   integer_onep integer_zerop integer_all_onesp integer_minus_onep
29   integer_each_onep integer_truep integer_nonzerop
30   real_zerop real_onep real_minus_onep
31   zerop
32   initializer_each_zero_or_onep
33   CONSTANT_CLASS_P
34   tree_expr_nonnegative_p
35   tree_expr_nonzero_p
36   integer_valued_real_p
37   integer_pow2p
38   uniform_integer_cst_p
39   HONOR_NANS
40   uniform_vector_p
41   expand_vec_cmp_expr_p
42   bitmask_inv_cst_vector_p)
43
44/* Operator lists.  */
45(define_operator_list tcc_comparison
46  lt   le   eq ne ge   gt   unordered ordered   unlt unle ungt unge uneq ltgt)
47(define_operator_list inverted_tcc_comparison
48  ge   gt   ne eq lt   le   ordered   unordered ge   gt   le   lt   ltgt uneq)
49(define_operator_list inverted_tcc_comparison_with_nans
50  unge ungt ne eq unlt unle ordered   unordered ge   gt   le   lt   ltgt uneq)
51(define_operator_list swapped_tcc_comparison
52  gt   ge   eq ne le   lt   unordered ordered   ungt unge unlt unle uneq ltgt)
53(define_operator_list simple_comparison         lt   le   eq ne ge   gt)
54(define_operator_list swapped_simple_comparison gt   ge   eq ne le   lt)
55
56#include "cfn-operators.pd"
57
58/* Define operand lists for math rounding functions {,i,l,ll}FN,
59   where the versions prefixed with "i" return an int, those prefixed with
60   "l" return a long and those prefixed with "ll" return a long long.
61
62   Also define operand lists:
63
64     X<FN>F for all float functions, in the order i, l, ll
65     X<FN> for all double functions, in the same order
66     X<FN>L for all long double functions, in the same order.  */
67#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
68  (define_operator_list X##FN##F BUILT_IN_I##FN##F \
69				 BUILT_IN_L##FN##F \
70				 BUILT_IN_LL##FN##F) \
71  (define_operator_list X##FN BUILT_IN_I##FN \
72			      BUILT_IN_L##FN \
73			      BUILT_IN_LL##FN) \
74  (define_operator_list X##FN##L BUILT_IN_I##FN##L \
75				 BUILT_IN_L##FN##L \
76				 BUILT_IN_LL##FN##L)
77
78DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
79DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
80DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
81DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
82
83/* Unary operations and their associated IFN_COND_* function.  */
84(define_operator_list UNCOND_UNARY
85  negate)
86(define_operator_list COND_UNARY
87  IFN_COND_NEG)
88
89/* Binary operations and their associated IFN_COND_* function.  */
90(define_operator_list UNCOND_BINARY
91  plus minus
92  mult trunc_div trunc_mod rdiv
93  min max
94  IFN_FMIN IFN_FMAX
95  bit_and bit_ior bit_xor
96  lshift rshift)
97(define_operator_list COND_BINARY
98  IFN_COND_ADD IFN_COND_SUB
99  IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
100  IFN_COND_MIN IFN_COND_MAX
101  IFN_COND_FMIN IFN_COND_FMAX
102  IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
103  IFN_COND_SHL IFN_COND_SHR)
104
105/* Same for ternary operations.  */
106(define_operator_list UNCOND_TERNARY
107  IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
108(define_operator_list COND_TERNARY
109  IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
110
111/* __atomic_fetch_or_*, __atomic_fetch_xor_*, __atomic_xor_fetch_*  */
112(define_operator_list ATOMIC_FETCH_OR_XOR_N
113  BUILT_IN_ATOMIC_FETCH_OR_1 BUILT_IN_ATOMIC_FETCH_OR_2
114  BUILT_IN_ATOMIC_FETCH_OR_4 BUILT_IN_ATOMIC_FETCH_OR_8
115  BUILT_IN_ATOMIC_FETCH_OR_16
116  BUILT_IN_ATOMIC_FETCH_XOR_1 BUILT_IN_ATOMIC_FETCH_XOR_2
117  BUILT_IN_ATOMIC_FETCH_XOR_4 BUILT_IN_ATOMIC_FETCH_XOR_8
118  BUILT_IN_ATOMIC_FETCH_XOR_16
119  BUILT_IN_ATOMIC_XOR_FETCH_1 BUILT_IN_ATOMIC_XOR_FETCH_2
120  BUILT_IN_ATOMIC_XOR_FETCH_4 BUILT_IN_ATOMIC_XOR_FETCH_8
121  BUILT_IN_ATOMIC_XOR_FETCH_16)
122/* __sync_fetch_and_or_*, __sync_fetch_and_xor_*, __sync_xor_and_fetch_*  */
123(define_operator_list SYNC_FETCH_OR_XOR_N
124  BUILT_IN_SYNC_FETCH_AND_OR_1 BUILT_IN_SYNC_FETCH_AND_OR_2
125  BUILT_IN_SYNC_FETCH_AND_OR_4 BUILT_IN_SYNC_FETCH_AND_OR_8
126  BUILT_IN_SYNC_FETCH_AND_OR_16
127  BUILT_IN_SYNC_FETCH_AND_XOR_1 BUILT_IN_SYNC_FETCH_AND_XOR_2
128  BUILT_IN_SYNC_FETCH_AND_XOR_4 BUILT_IN_SYNC_FETCH_AND_XOR_8
129  BUILT_IN_SYNC_FETCH_AND_XOR_16
130  BUILT_IN_SYNC_XOR_AND_FETCH_1 BUILT_IN_SYNC_XOR_AND_FETCH_2
131  BUILT_IN_SYNC_XOR_AND_FETCH_4 BUILT_IN_SYNC_XOR_AND_FETCH_8
132  BUILT_IN_SYNC_XOR_AND_FETCH_16)
133/* __atomic_fetch_and_*.  */
134(define_operator_list ATOMIC_FETCH_AND_N
135  BUILT_IN_ATOMIC_FETCH_AND_1 BUILT_IN_ATOMIC_FETCH_AND_2
136  BUILT_IN_ATOMIC_FETCH_AND_4 BUILT_IN_ATOMIC_FETCH_AND_8
137  BUILT_IN_ATOMIC_FETCH_AND_16)
138/* __sync_fetch_and_and_*.  */
139(define_operator_list SYNC_FETCH_AND_AND_N
140  BUILT_IN_SYNC_FETCH_AND_AND_1 BUILT_IN_SYNC_FETCH_AND_AND_2
141  BUILT_IN_SYNC_FETCH_AND_AND_4 BUILT_IN_SYNC_FETCH_AND_AND_8
142  BUILT_IN_SYNC_FETCH_AND_AND_16)
143
144/* With nop_convert? combine convert? and view_convert? in one pattern
145   plus conditionalize on tree_nop_conversion_p conversions.  */
146(match (nop_convert @0)
147 (convert @0)
148 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
149(match (nop_convert @0)
150 (view_convert @0)
151 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
152      && known_eq (TYPE_VECTOR_SUBPARTS (type),
153		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
154      && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
155
156/* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
157   ABSU_EXPR returns unsigned absolute value of the operand and the operand
158   of the ABSU_EXPR will have the corresponding signed type.  */
159(simplify (abs (convert @0))
160 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
161      && !TYPE_UNSIGNED (TREE_TYPE (@0))
162      && element_precision (type) > element_precision (TREE_TYPE (@0)))
163  (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
164   (convert (absu:utype @0)))))
165
166#if GIMPLE
167/* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X).  */
168(simplify
169 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
170 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
171      && !TYPE_UNSIGNED (TREE_TYPE (@0))
172      && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
173  (abs @0)))
174#endif
175
176/* Simplifications of operations with one constant operand and
177   simplifications to constants or single values.  */
178
179(for op (plus pointer_plus minus bit_ior bit_xor)
180  (simplify
181    (op @0 integer_zerop)
182    (non_lvalue @0)))
183
184/* 0 +p index -> (type)index */
185(simplify
186 (pointer_plus integer_zerop @1)
187 (non_lvalue (convert @1)))
188
189/* ptr - 0 -> (type)ptr */
190(simplify
191 (pointer_diff @0 integer_zerop)
192 (convert @0))
193
194/* See if ARG1 is zero and X + ARG1 reduces to X.
195   Likewise if the operands are reversed.  */
196(simplify
197 (plus:c @0 real_zerop@1)
198 (if (fold_real_zero_addition_p (type, @0, @1, 0))
199  (non_lvalue @0)))
200
201/* See if ARG1 is zero and X - ARG1 reduces to X.  */
202(simplify
203 (minus @0 real_zerop@1)
204 (if (fold_real_zero_addition_p (type, @0, @1, 1))
205  (non_lvalue @0)))
206
207/* Even if the fold_real_zero_addition_p can't simplify X + 0.0
208   into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
209   or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
210   if not -frounding-math.  For sNaNs the first operation would raise
211   exceptions but turn the result into qNan, so the second operation
212   would not raise it.   */
213(for inner_op (plus minus)
214 (for outer_op (plus minus)
215  (simplify
216   (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
217    (if (real_zerop (@1)
218	 && real_zerop (@2)
219	 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
220     (with { bool inner_plus = ((inner_op == PLUS_EXPR)
221				^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
222	     bool outer_plus
223	       = ((outer_op == PLUS_EXPR)
224		  ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
225      (if (outer_plus && !inner_plus)
226       (outer_op @0 @2)
227       @3))))))
228
229/* Simplify x - x.
230   This is unsafe for certain floats even in non-IEEE formats.
231   In IEEE, it is unsafe because it does wrong for NaNs.
232   Also note that operand_equal_p is always false if an operand
233   is volatile.  */
234(simplify
235 (minus @0 @0)
236 (if (!FLOAT_TYPE_P (type)
237      || (!tree_expr_maybe_nan_p (@0)
238	  && !tree_expr_maybe_infinite_p (@0)))
239  { build_zero_cst (type); }))
240(simplify
241 (pointer_diff @@0 @0)
242 { build_zero_cst (type); })
243
244(simplify
245 (mult @0 integer_zerop@1)
246 @1)
247
248/* -x == x -> x == 0 */
249(for cmp (eq ne)
250 (simplify
251  (cmp:c @0 (negate @0))
252   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
253        && !TYPE_OVERFLOW_WRAPS (TREE_TYPE(@0)))
254    (cmp @0 { build_zero_cst (TREE_TYPE(@0)); }))))
255
256/* Maybe fold x * 0 to 0.  The expressions aren't the same
257   when x is NaN, since x * 0 is also NaN.  Nor are they the
258   same in modes with signed zeros, since multiplying a
259   negative value by 0 gives -0, not +0.  */
260(simplify
261 (mult @0 real_zerop@1)
262 (if (!tree_expr_maybe_nan_p (@0)
263      && !tree_expr_maybe_real_minus_zero_p (@0)
264      && !tree_expr_maybe_real_minus_zero_p (@1))
265  @1))
266
267/* In IEEE floating point, x*1 is not equivalent to x for snans.
268   Likewise for complex arithmetic with signed zeros.  */
269(simplify
270 (mult @0 real_onep)
271 (if (!tree_expr_maybe_signaling_nan_p (@0)
272      && (!HONOR_SIGNED_ZEROS (type)
273          || !COMPLEX_FLOAT_TYPE_P (type)))
274  (non_lvalue @0)))
275
276/* Transform x * -1.0 into -x.  */
277(simplify
278 (mult @0 real_minus_onep)
279  (if (!tree_expr_maybe_signaling_nan_p (@0)
280       && (!HONOR_SIGNED_ZEROS (type)
281           || !COMPLEX_FLOAT_TYPE_P (type)))
282   (negate @0)))
283
284/* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
285(simplify
286 (mult SSA_NAME@1 SSA_NAME@2)
287  (if (INTEGRAL_TYPE_P (type)
288       && get_nonzero_bits (@1) == 1
289       && get_nonzero_bits (@2) == 1)
290   (bit_and @1 @2)))
291
292/* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
293   unless the target has native support for the former but not the latter.  */
294(simplify
295 (mult @0 VECTOR_CST@1)
296 (if (initializer_each_zero_or_onep (@1)
297      && !HONOR_SNANS (type)
298      && !HONOR_SIGNED_ZEROS (type))
299  (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
300   (if (itype
301	&& (!VECTOR_MODE_P (TYPE_MODE (type))
302	    || (VECTOR_MODE_P (TYPE_MODE (itype))
303		&& optab_handler (and_optab,
304				  TYPE_MODE (itype)) != CODE_FOR_nothing)))
305    (view_convert (bit_and:itype (view_convert @0)
306				 (ne @1 { build_zero_cst (type); })))))))
307
308(for cmp (gt ge lt le)
309     outp (convert convert negate negate)
310     outn (negate negate convert convert)
311 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
312 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
313 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
314 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
315 (simplify
316  (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
317  (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
318   (outp (abs @0))))
319 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
320 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
321 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
322 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
323 (simplify
324  (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
325  (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
326   (outn (abs @0)))))
327
328/* Transform X * copysign (1.0, X) into abs(X). */
329(simplify
330 (mult:c @0 (COPYSIGN_ALL real_onep @0))
331 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
332  (abs @0)))
333
334/* Transform X * copysign (1.0, -X) into -abs(X). */
335(simplify
336 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
337 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
338  (negate (abs @0))))
339
340/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
341(simplify
342 (COPYSIGN_ALL REAL_CST@0 @1)
343 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
344  (COPYSIGN_ALL (negate @0) @1)))
345
346/* X * 1, X / 1 -> X.  */
347(for op (mult trunc_div ceil_div floor_div round_div exact_div)
348  (simplify
349    (op @0 integer_onep)
350    (non_lvalue @0)))
351
352/* (A / (1 << B)) -> (A >> B).
353   Only for unsigned A.  For signed A, this would not preserve rounding
354   toward zero.
355   For example: (-1 / ( 1 << B)) !=  -1 >> B.
356   Also also widening conversions, like:
357   (A / (unsigned long long) (1U << B)) -> (A >> B)
358   or
359   (A / (unsigned long long) (1 << B)) -> (A >> B).
360   If the left shift is signed, it can be done only if the upper bits
361   of A starting from shift's type sign bit are zero, as
362   (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
363   so it is valid only if A >> 31 is zero.  */
364(simplify
365 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
366 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
367      && (!VECTOR_TYPE_P (type)
368	  || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
369	  || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
370      && (useless_type_conversion_p (type, TREE_TYPE (@1))
371	  || (element_precision (type) >= element_precision (TREE_TYPE (@1))
372	      && (TYPE_UNSIGNED (TREE_TYPE (@1))
373		  || (element_precision (type)
374		      == element_precision (TREE_TYPE (@1)))
375		  || (INTEGRAL_TYPE_P (type)
376		      && (tree_nonzero_bits (@0)
377			  & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
378				      true,
379				      element_precision (type))) == 0)))))
380   (if (!VECTOR_TYPE_P (type)
381	&& useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
382	&& element_precision (TREE_TYPE (@3)) < element_precision (type))
383    (convert (rshift @3 @2))
384    (rshift @0 @2))))
385
386/* Preserve explicit divisions by 0: the C++ front-end wants to detect
387   undefined behavior in constexpr evaluation, and assuming that the division
388   traps enables better optimizations than these anyway.  */
389(for div (trunc_div ceil_div floor_div round_div exact_div)
390 /* 0 / X is always zero.  */
391 (simplify
392  (div integer_zerop@0 @1)
393  /* But not for 0 / 0 so that we can get the proper warnings and errors.  */
394  (if (!integer_zerop (@1))
395   @0))
396 /* X / -1 is -X.  */
397 (simplify
398  (div @0 integer_minus_onep@1)
399  (if (!TYPE_UNSIGNED (type))
400   (negate @0)))
401 /* X / bool_range_Y is X.  */
402 (simplify
403  (div @0 SSA_NAME@1)
404  (if (INTEGRAL_TYPE_P (type) && ssa_name_has_boolean_range (@1))
405   @0))
406 /* X / X is one.  */
407 (simplify
408  (div @0 @0)
409  /* But not for 0 / 0 so that we can get the proper warnings and errors.
410     And not for _Fract types where we can't build 1.  */
411  (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
412   { build_one_cst (type); }))
413 /* X / abs (X) is X < 0 ? -1 : 1.  */
414 (simplify
415   (div:C @0 (abs @0))
416   (if (INTEGRAL_TYPE_P (type)
417	&& TYPE_OVERFLOW_UNDEFINED (type))
418    (cond (lt @0 { build_zero_cst (type); })
419          { build_minus_one_cst (type); } { build_one_cst (type); })))
420 /* X / -X is -1.  */
421 (simplify
422   (div:C @0 (negate @0))
423   (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
424	&& TYPE_OVERFLOW_UNDEFINED (type))
425    { build_minus_one_cst (type); })))
426
427/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
428   TRUNC_DIV_EXPR.  Rewrite into the latter in this case.  */
429(simplify
430 (floor_div @0 @1)
431 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
432      && TYPE_UNSIGNED (type))
433  (trunc_div @0 @1)))
434
435/* Combine two successive divisions.  Note that combining ceil_div
436   and floor_div is trickier and combining round_div even more so.  */
437(for div (trunc_div exact_div)
438 (simplify
439  (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
440  (with {
441    wi::overflow_type overflow;
442    wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
443			    TYPE_SIGN (type), &overflow);
444   }
445   (if (div == EXACT_DIV_EXPR
446	|| optimize_successive_divisions_p (@2, @3))
447    (if (!overflow)
448     (div @0 { wide_int_to_tree (type, mul); })
449     (if (TYPE_UNSIGNED (type)
450	  || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
451      { build_zero_cst (type); }))))))
452
453/* Combine successive multiplications.  Similar to above, but handling
454   overflow is different.  */
455(simplify
456 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
457 (with {
458   wi::overflow_type overflow;
459   wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
460			   TYPE_SIGN (type), &overflow);
461  }
462  /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
463     otherwise undefined overflow implies that @0 must be zero.  */
464  (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
465   (mult @0 { wide_int_to_tree (type, mul); }))))
466
467/* Optimize A / A to 1.0 if we don't care about
468   NaNs or Infinities.  */
469(simplify
470 (rdiv @0 @0)
471 (if (FLOAT_TYPE_P (type)
472      && ! HONOR_NANS (type)
473      && ! HONOR_INFINITIES (type))
474  { build_one_cst (type); }))
475
476/* Optimize -A / A to -1.0 if we don't care about
477   NaNs or Infinities.  */
478(simplify
479 (rdiv:C @0 (negate @0))
480 (if (FLOAT_TYPE_P (type)
481      && ! HONOR_NANS (type)
482      && ! HONOR_INFINITIES (type))
483  { build_minus_one_cst (type); }))
484
485/* PR71078: x / abs(x) -> copysign (1.0, x) */
486(simplify
487 (rdiv:C (convert? @0) (convert? (abs @0)))
488  (if (SCALAR_FLOAT_TYPE_P (type)
489       && ! HONOR_NANS (type)
490       && ! HONOR_INFINITIES (type))
491   (switch
492    (if (types_match (type, float_type_node))
493     (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
494    (if (types_match (type, double_type_node))
495     (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
496    (if (types_match (type, long_double_type_node))
497     (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
498
499/* In IEEE floating point, x/1 is not equivalent to x for snans.  */
500(simplify
501 (rdiv @0 real_onep)
502 (if (!tree_expr_maybe_signaling_nan_p (@0))
503  (non_lvalue @0)))
504
505/* In IEEE floating point, x/-1 is not equivalent to -x for snans.  */
506(simplify
507 (rdiv @0 real_minus_onep)
508 (if (!tree_expr_maybe_signaling_nan_p (@0))
509  (negate @0)))
510
511(if (flag_reciprocal_math)
512 /* Convert (A/B)/C to A/(B*C). */
513 (simplify
514  (rdiv (rdiv:s @0 @1) @2)
515  (rdiv @0 (mult @1 @2)))
516
517 /* Canonicalize x / (C1 * y) to (x * C2) / y.  */
518 (simplify
519  (rdiv @0 (mult:s @1 REAL_CST@2))
520  (with
521   { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
522   (if (tem)
523    (rdiv (mult @0 { tem; } ) @1))))
524
525 /* Convert A/(B/C) to (A/B)*C  */
526 (simplify
527  (rdiv @0 (rdiv:s @1 @2))
528   (mult (rdiv @0 @1) @2)))
529
530/* Simplify x / (- y) to -x / y.  */
531(simplify
532 (rdiv @0 (negate @1))
533 (rdiv (negate @0) @1))
534
535(if (flag_unsafe_math_optimizations)
536 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
537    Since C / x may underflow to zero, do this only for unsafe math.  */
538 (for op (lt le gt ge)
539      neg_op (gt ge lt le)
540  (simplify
541   (op (rdiv REAL_CST@0 @1) real_zerop@2)
542   (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
543    (switch
544     (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
545      (op @1 @2))
546     /* For C < 0, use the inverted operator.  */
547     (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
548      (neg_op @1 @2)))))))
549
550/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
551(for div (trunc_div ceil_div floor_div round_div exact_div)
552 (simplify
553  (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
554  (if (integer_pow2p (@2)
555       && tree_int_cst_sgn (@2) > 0
556       && tree_nop_conversion_p (type, TREE_TYPE (@0))
557       && wi::to_wide (@2) + wi::to_wide (@1) == 0)
558   (rshift (convert @0)
559	   { build_int_cst (integer_type_node,
560			    wi::exact_log2 (wi::to_wide (@2))); }))))
561
562/* If ARG1 is a constant, we can convert this to a multiply by the
563   reciprocal.  This does not have the same rounding properties,
564   so only do this if -freciprocal-math.  We can actually
565   always safely do it if ARG1 is a power of two, but it's hard to
566   tell if it is or not in a portable manner.  */
567(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
568 (simplify
569  (rdiv @0 cst@1)
570  (if (optimize)
571   (if (flag_reciprocal_math
572	&& !real_zerop (@1))
573    (with
574     { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
575     (if (tem)
576      (mult @0 { tem; } )))
577    (if (cst != COMPLEX_CST)
578     (with { tree inverse = exact_inverse (type, @1); }
579      (if (inverse)
580       (mult @0 { inverse; } ))))))))
581
582(for mod (ceil_mod floor_mod round_mod trunc_mod)
583 /* 0 % X is always zero.  */
584 (simplify
585  (mod integer_zerop@0 @1)
586  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
587  (if (!integer_zerop (@1))
588   @0))
589 /* X % 1 is always zero.  */
590 (simplify
591  (mod @0 integer_onep)
592  { build_zero_cst (type); })
593 /* X % -1 is zero.  */
594 (simplify
595  (mod @0 integer_minus_onep@1)
596  (if (!TYPE_UNSIGNED (type))
597   { build_zero_cst (type); }))
598 /* X % X is zero.  */
599 (simplify
600  (mod @0 @0)
601  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
602  (if (!integer_zerop (@0))
603   { build_zero_cst (type); }))
604 /* (X % Y) % Y is just X % Y.  */
605 (simplify
606  (mod (mod@2 @0 @1) @1)
607  @2)
608 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2.  */
609 (simplify
610  (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
611  (if (ANY_INTEGRAL_TYPE_P (type)
612       && TYPE_OVERFLOW_UNDEFINED (type)
613       && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
614			     TYPE_SIGN (type)))
615   { build_zero_cst (type); }))
616 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
617    modulo and comparison, since it is simpler and equivalent.  */
618 (for cmp (eq ne)
619  (simplify
620   (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
621   (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
622    (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
623     (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
624
625/* X % -C is the same as X % C.  */
626(simplify
627 (trunc_mod @0 INTEGER_CST@1)
628  (if (TYPE_SIGN (type) == SIGNED
629       && !TREE_OVERFLOW (@1)
630       && wi::neg_p (wi::to_wide (@1))
631       && !TYPE_OVERFLOW_TRAPS (type)
632       /* Avoid this transformation if C is INT_MIN, i.e. C == -C.  */
633       && !sign_bit_p (@1, @1))
634   (trunc_mod @0 (negate @1))))
635
636/* X % -Y is the same as X % Y.  */
637(simplify
638 (trunc_mod @0 (convert? (negate @1)))
639 (if (INTEGRAL_TYPE_P (type)
640      && !TYPE_UNSIGNED (type)
641      && !TYPE_OVERFLOW_TRAPS (type)
642      && tree_nop_conversion_p (type, TREE_TYPE (@1))
643      /* Avoid this transformation if X might be INT_MIN or
644	 Y might be -1, because we would then change valid
645	 INT_MIN % -(-1) into invalid INT_MIN % -1.  */
646      && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
647	  || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
648							(TREE_TYPE (@1))))))
649  (trunc_mod @0 (convert @1))))
650
651/* X - (X / Y) * Y is the same as X % Y.  */
652(simplify
653 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
654 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
655  (convert (trunc_mod @0 @1))))
656
657/* x * (1 + y / x) - y -> x - y % x */
658(simplify
659 (minus (mult:cs @0 (plus:s (trunc_div:s @1 @0) integer_onep)) @1)
660 (if (INTEGRAL_TYPE_P (type))
661  (minus @0 (trunc_mod @1 @0))))
662
663/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
664   i.e. "X % C" into "X & (C - 1)", if X and C are positive.
665   Also optimize A % (C << N)  where C is a power of 2,
666   to A & ((C << N) - 1).
667   Also optimize "A shift (B % C)", if C is a power of 2, to
668   "A shift (B & (C - 1))".  SHIFT operation include "<<" and ">>"
669   and assume (B % C) is nonnegative as shifts negative values would
670   be UB.  */
671(match (power_of_two_cand @1)
672 INTEGER_CST@1)
673(match (power_of_two_cand @1)
674 (lshift INTEGER_CST@1 @2))
675(for mod (trunc_mod floor_mod)
676 (for shift (lshift rshift)
677  (simplify
678   (shift @0 (mod @1 (power_of_two_cand@2 @3)))
679   (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
680    (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
681						      1); }))))))
682 (simplify
683  (mod @0 (convert? (power_of_two_cand@1 @2)))
684  (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
685       /* Allow any integral conversions of the divisor, except
686	  conversion from narrower signed to wider unsigned type
687	  where if @1 would be negative power of two, the divisor
688	  would not be a power of two.  */
689       && INTEGRAL_TYPE_P (type)
690       && INTEGRAL_TYPE_P (TREE_TYPE (@1))
691       && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
692	   || TYPE_UNSIGNED (TREE_TYPE (@1))
693	   || !TYPE_UNSIGNED (type))
694       && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
695   (with { tree utype = TREE_TYPE (@1);
696	   if (!TYPE_OVERFLOW_WRAPS (utype))
697	     utype = unsigned_type_for (utype); }
698    (bit_and @0 (convert (minus (convert:utype @1)
699				{ build_one_cst (utype); })))))))
700
701/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF.  */
702(simplify
703 (trunc_div (mult @0 integer_pow2p@1) @1)
704 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
705  (bit_and @0 { wide_int_to_tree
706		(type, wi::mask (TYPE_PRECISION (type)
707				 - wi::exact_log2 (wi::to_wide (@1)),
708				 false, TYPE_PRECISION (type))); })))
709
710/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1.  */
711(simplify
712 (mult (trunc_div @0 integer_pow2p@1) @1)
713 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
714  (bit_and @0 (negate @1))))
715
716/* Simplify (t * 2) / 2) -> t.  */
717(for div (trunc_div ceil_div floor_div round_div exact_div)
718 (simplify
719  (div (mult:c @0 @1) @1)
720  (if (ANY_INTEGRAL_TYPE_P (type))
721   (if (TYPE_OVERFLOW_UNDEFINED (type))
722    @0
723#if GIMPLE
724    (with
725     {
726       bool overflowed = true;
727       value_range vr0, vr1;
728       if (INTEGRAL_TYPE_P (type)
729	   && get_global_range_query ()->range_of_expr (vr0, @0)
730	   && get_global_range_query ()->range_of_expr (vr1, @1)
731	   && vr0.kind () == VR_RANGE
732	   && vr1.kind () == VR_RANGE)
733	 {
734	   wide_int wmin0 = vr0.lower_bound ();
735	   wide_int wmax0 = vr0.upper_bound ();
736	   wide_int wmin1 = vr1.lower_bound ();
737	   wide_int wmax1 = vr1.upper_bound ();
738	   /* If the multiplication can't overflow/wrap around, then
739	      it can be optimized too.  */
740	   wi::overflow_type min_ovf, max_ovf;
741	   wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf);
742	   wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf);
743	   if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
744	     {
745	       wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf);
746	       wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf);
747	       if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
748		 overflowed = false;
749	     }
750	 }
751     }
752    (if (!overflowed)
753     @0))
754#endif
755   ))))
756
757(for op (negate abs)
758 /* Simplify cos(-x) and cos(|x|) -> cos(x).  Similarly for cosh.  */
759 (for coss (COS COSH)
760  (simplify
761   (coss (op @0))
762    (coss @0)))
763 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer.  */
764 (for pows (POW)
765  (simplify
766   (pows (op @0) REAL_CST@1)
767   (with { HOST_WIDE_INT n; }
768    (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
769     (pows @0 @1)))))
770 /* Likewise for powi.  */
771 (for pows (POWI)
772  (simplify
773   (pows (op @0) INTEGER_CST@1)
774   (if ((wi::to_wide (@1) & 1) == 0)
775    (pows @0 @1))))
776 /* Strip negate and abs from both operands of hypot.  */
777 (for hypots (HYPOT)
778  (simplify
779   (hypots (op @0) @1)
780   (hypots @0 @1))
781  (simplify
782   (hypots @0 (op @1))
783   (hypots @0 @1)))
784 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y).  */
785 (for copysigns (COPYSIGN_ALL)
786  (simplify
787   (copysigns (op @0) @1)
788   (copysigns @0 @1))))
789
790/* abs(x)*abs(x) -> x*x.  Should be valid for all types.  */
791(simplify
792 (mult (abs@1 @0) @1)
793 (mult @0 @0))
794
795/* Convert absu(x)*absu(x) -> x*x.  */
796(simplify
797 (mult (absu@1 @0) @1)
798 (mult (convert@2 @0) @2))
799
800/* cos(copysign(x, y)) -> cos(x).  Similarly for cosh.  */
801(for coss (COS COSH)
802     copysigns (COPYSIGN)
803 (simplify
804  (coss (copysigns @0 @1))
805   (coss @0)))
806
807/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer.  */
808(for pows (POW)
809     copysigns (COPYSIGN)
810 (simplify
811  (pows (copysigns @0 @2) REAL_CST@1)
812  (with { HOST_WIDE_INT n; }
813   (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
814    (pows @0 @1)))))
815/* Likewise for powi.  */
816(for pows (POWI)
817     copysigns (COPYSIGN)
818 (simplify
819  (pows (copysigns @0 @2) INTEGER_CST@1)
820  (if ((wi::to_wide (@1) & 1) == 0)
821   (pows @0 @1))))
822
823(for hypots (HYPOT)
824     copysigns (COPYSIGN)
825 /* hypot(copysign(x, y), z) -> hypot(x, z).  */
826 (simplify
827  (hypots (copysigns @0 @1) @2)
828  (hypots @0 @2))
829 /* hypot(x, copysign(y, z)) -> hypot(x, y).  */
830 (simplify
831  (hypots @0 (copysigns @1 @2))
832  (hypots @0 @1)))
833
834/* copysign(x, CST) -> [-]abs (x).  */
835(for copysigns (COPYSIGN_ALL)
836 (simplify
837  (copysigns @0 REAL_CST@1)
838  (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
839   (negate (abs @0))
840   (abs @0))))
841
842/* copysign(copysign(x, y), z) -> copysign(x, z).  */
843(for copysigns (COPYSIGN_ALL)
844 (simplify
845  (copysigns (copysigns @0 @1) @2)
846  (copysigns @0 @2)))
847
848/* copysign(x,y)*copysign(x,y) -> x*x.  */
849(for copysigns (COPYSIGN_ALL)
850 (simplify
851  (mult (copysigns@2 @0 @1) @2)
852  (mult @0 @0)))
853
854/* ccos(-x) -> ccos(x).  Similarly for ccosh.  */
855(for ccoss (CCOS CCOSH)
856 (simplify
857  (ccoss (negate @0))
858   (ccoss @0)))
859
860/* cabs(-x) and cos(conj(x)) -> cabs(x).  */
861(for ops (conj negate)
862 (for cabss (CABS)
863  (simplify
864   (cabss (ops @0))
865   (cabss @0))))
866
867/* Fold (a * (1 << b)) into (a << b)  */
868(simplify
869 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
870  (if (! FLOAT_TYPE_P (type)
871       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
872   (lshift @0 @2)))
873
874/* Fold (1 << (C - x)) where C = precision(type) - 1
875   into ((1 << C) >> x). */
876(simplify
877 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
878  (if (INTEGRAL_TYPE_P (type)
879       && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
880       && single_use (@1))
881   (if (TYPE_UNSIGNED (type))
882     (rshift (lshift @0 @2) @3)
883   (with
884    { tree utype = unsigned_type_for (type); }
885    (convert (rshift (lshift (convert:utype @0) @2) @3))))))
886
887/* Fold ((type)(a<0)) << SIGNBITOFA into ((type)a) & signbit. */
888(simplify
889 (lshift (convert (lt @0 integer_zerop@1)) INTEGER_CST@2)
890 (if (TYPE_SIGN (TREE_TYPE (@0)) == SIGNED
891      && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)) - 1))
892  (with { wide_int wone = wi::one (TYPE_PRECISION (type)); }
893   (bit_and (convert @0)
894            { wide_int_to_tree (type,
895				wi::lshift (wone, wi::to_wide (@2))); }))))
896
897/* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1.  */
898(for cst (INTEGER_CST VECTOR_CST)
899 (simplify
900  (rshift (negate:s @0) cst@1)
901   (if (!TYPE_UNSIGNED (type)
902        && TYPE_OVERFLOW_UNDEFINED (type))
903    (with { tree stype = TREE_TYPE (@1);
904	    tree bt = truth_type_for (type);
905	    tree zeros = build_zero_cst (type);
906	    tree cst = NULL_TREE; }
907     (switch
908      /* Handle scalar case.  */
909      (if (INTEGRAL_TYPE_P (type)
910	   /* If we apply the rule to the scalar type before vectorization
911	      we will enforce the result of the comparison being a bool
912	      which will require an extra AND on the result that will be
913	      indistinguishable from when the user did actually want 0
914	      or 1 as the result so it can't be removed.  */
915	   && canonicalize_math_after_vectorization_p ()
916	   && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1))
917       (negate (convert (gt @0 { zeros; }))))
918      /* Handle vector case.  */
919      (if (VECTOR_INTEGER_TYPE_P (type)
920	   /* First check whether the target has the same mode for vector
921	      comparison results as it's operands do.  */
922	   && TYPE_MODE (bt) == TYPE_MODE (type)
923	   /* Then check to see if the target is able to expand the comparison
924	      with the given type later on, otherwise we may ICE.  */
925	   && expand_vec_cmp_expr_p (type, bt, GT_EXPR)
926	   && (cst = uniform_integer_cst_p (@1)) != NULL
927	   && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1))
928       (view_convert (gt:bt @0 { zeros; }))))))))
929
930/* Fold (C1/X)*C2 into (C1*C2)/X.  */
931(simplify
932 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
933  (if (flag_associative_math
934       && single_use (@3))
935   (with
936    { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
937    (if (tem)
938     (rdiv { tem; } @1)))))
939
940/* Simplify ~X & X as zero.  */
941(simplify
942 (bit_and:c (convert? @0) (convert? (bit_not @0)))
943  { build_zero_cst (type); })
944
945/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b);  */
946(simplify
947  (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
948  (if (TYPE_UNSIGNED (type))
949    (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
950
951(for bitop (bit_and bit_ior)
952     cmp (eq ne)
953 /* PR35691: Transform
954    (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
955    (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0.  */
956 (simplify
957  (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
958   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
959	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
960	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
961    (cmp (bit_ior @0 (convert @1)) @2)))
962 /* Transform:
963    (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
964    (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1.  */
965 (simplify
966  (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
967   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
968	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
969	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
970    (cmp (bit_and @0 (convert @1)) @2))))
971
972/* Fold (A & ~B) - (A & B) into (A ^ B) - B.  */
973(simplify
974 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
975  (minus (bit_xor @0 @1) @1))
976(simplify
977 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
978 (if (~wi::to_wide (@2) == wi::to_wide (@1))
979  (minus (bit_xor @0 @1) @1)))
980
981/* Fold (A & B) - (A & ~B) into B - (A ^ B).  */
982(simplify
983 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
984  (minus @1 (bit_xor @0 @1)))
985
986/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y.  */
987(for op (bit_ior bit_xor plus)
988 (simplify
989  (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
990   (bit_xor @0 @1))
991 (simplify
992  (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
993  (if (~wi::to_wide (@2) == wi::to_wide (@1))
994   (bit_xor @0 @1))))
995
996/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
997(simplify
998  (bit_ior:c (bit_xor:c @0 @1) @0)
999  (bit_ior @0 @1))
1000
1001/* (a & ~b) | (a ^ b)  -->  a ^ b  */
1002(simplify
1003 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
1004 @2)
1005
1006/* (a & ~b) ^ ~a  -->  ~(a & b)  */
1007(simplify
1008 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
1009 (bit_not (bit_and @0 @1)))
1010
1011/* (~a & b) ^ a  -->   (a | b)   */
1012(simplify
1013 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
1014 (bit_ior @0 @1))
1015
1016/* (a | b) & ~(a ^ b)  -->  a & b  */
1017(simplify
1018 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
1019 (bit_and @0 @1))
1020
1021/* a | ~(a ^ b)  -->  a | ~b  */
1022(simplify
1023 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
1024 (bit_ior @0 (bit_not @1)))
1025
1026/* (a | b) | (a &^ b)  -->  a | b  */
1027(for op (bit_and bit_xor)
1028 (simplify
1029  (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
1030  @2))
1031
1032/* (a & b) | ~(a ^ b)  -->  ~(a ^ b)  */
1033(simplify
1034 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
1035 @2)
1036
1037/* ~(~a & b)  -->  a | ~b  */
1038(simplify
1039 (bit_not (bit_and:cs (bit_not @0) @1))
1040 (bit_ior @0 (bit_not @1)))
1041
1042/* ~(~a | b) --> a & ~b */
1043(simplify
1044 (bit_not (bit_ior:cs (bit_not @0) @1))
1045 (bit_and @0 (bit_not @1)))
1046
1047/* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
1048(simplify
1049 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
1050 (bit_and @3 (bit_not @2)))
1051
1052/* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
1053(simplify
1054 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
1055 (bit_ior @3 @2))
1056
1057#if GIMPLE
1058/* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified.  */
1059(simplify
1060 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
1061  (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
1062
1063/* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified.  */
1064(simplify
1065 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
1066  (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
1067
1068/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0.  */
1069(simplify
1070 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
1071 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1072      && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1073  (bit_xor @0 @1)))
1074#endif
1075
1076/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1077   ((A & N) + B) & M -> (A + B) & M
1078   Similarly if (N & M) == 0,
1079   ((A | N) + B) & M -> (A + B) & M
1080   and for - instead of + (or unary - instead of +)
1081   and/or ^ instead of |.
1082   If B is constant and (B & M) == 0, fold into A & M.  */
1083(for op (plus minus)
1084 (for bitop (bit_and bit_ior bit_xor)
1085  (simplify
1086   (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
1087    (with
1088     { tree pmop[2];
1089       tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
1090				       @3, @4, @1, ERROR_MARK, NULL_TREE,
1091				       NULL_TREE, pmop); }
1092     (if (utype)
1093      (convert (bit_and (op (convert:utype { pmop[0]; })
1094			    (convert:utype { pmop[1]; }))
1095			(convert:utype @2))))))
1096  (simplify
1097   (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
1098    (with
1099     { tree pmop[2];
1100       tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1101				       NULL_TREE, NULL_TREE, @1, bitop, @3,
1102				       @4, pmop); }
1103     (if (utype)
1104      (convert (bit_and (op (convert:utype { pmop[0]; })
1105			    (convert:utype { pmop[1]; }))
1106			(convert:utype @2)))))))
1107 (simplify
1108  (bit_and (op:s @0 @1) INTEGER_CST@2)
1109   (with
1110    { tree pmop[2];
1111      tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1112				      NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1113				      NULL_TREE, NULL_TREE, pmop); }
1114    (if (utype)
1115     (convert (bit_and (op (convert:utype { pmop[0]; })
1116			   (convert:utype { pmop[1]; }))
1117		       (convert:utype @2)))))))
1118(for bitop (bit_and bit_ior bit_xor)
1119 (simplify
1120  (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1121   (with
1122    { tree pmop[2];
1123      tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1124				      bitop, @2, @3, NULL_TREE, ERROR_MARK,
1125				      NULL_TREE, NULL_TREE, pmop); }
1126    (if (utype)
1127     (convert (bit_and (negate (convert:utype { pmop[0]; }))
1128		       (convert:utype @1)))))))
1129
1130/* X % Y is smaller than Y.  */
1131(for cmp (lt ge)
1132 (simplify
1133  (cmp (trunc_mod @0 @1) @1)
1134  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1135   { constant_boolean_node (cmp == LT_EXPR, type); })))
1136(for cmp (gt le)
1137 (simplify
1138  (cmp @1 (trunc_mod @0 @1))
1139  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1140   { constant_boolean_node (cmp == GT_EXPR, type); })))
1141
1142/* x | ~0 -> ~0  */
1143(simplify
1144 (bit_ior @0 integer_all_onesp@1)
1145 @1)
1146
1147/* x | 0 -> x  */
1148(simplify
1149 (bit_ior @0 integer_zerop)
1150 @0)
1151
1152/* x & 0 -> 0  */
1153(simplify
1154 (bit_and @0 integer_zerop@1)
1155 @1)
1156
1157/* ~x | x -> -1 */
1158/* ~x ^ x -> -1 */
1159/* ~x + x -> -1 */
1160(for op (bit_ior bit_xor plus)
1161 (simplify
1162  (op:c (convert? @0) (convert? (bit_not @0)))
1163  (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
1164
1165/* x ^ x -> 0 */
1166(simplify
1167  (bit_xor @0 @0)
1168  { build_zero_cst (type); })
1169
1170/* Canonicalize X ^ ~0 to ~X.  */
1171(simplify
1172  (bit_xor @0 integer_all_onesp@1)
1173  (bit_not @0))
1174
1175/* x & ~0 -> x  */
1176(simplify
1177 (bit_and @0 integer_all_onesp)
1178  (non_lvalue @0))
1179
1180/* x & x -> x,  x | x -> x  */
1181(for bitop (bit_and bit_ior)
1182 (simplify
1183  (bitop @0 @0)
1184  (non_lvalue @0)))
1185
1186/* x & C -> x if we know that x & ~C == 0.  */
1187#if GIMPLE
1188(simplify
1189 (bit_and SSA_NAME@0 INTEGER_CST@1)
1190 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1191      && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1192  @0))
1193#endif
1194
1195/* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y.  */
1196(simplify
1197 (bit_not (minus (bit_not @0) @1))
1198 (plus @0 @1))
1199(simplify
1200 (bit_not (plus:c (bit_not @0) @1))
1201 (minus @0 @1))
1202
1203/* ~(X - Y) -> ~X + Y.  */
1204(simplify
1205 (bit_not (minus:s @0 @1))
1206 (plus (bit_not @0) @1))
1207(simplify
1208 (bit_not (plus:s @0 INTEGER_CST@1))
1209 (if ((INTEGRAL_TYPE_P (type)
1210       && TYPE_UNSIGNED (type))
1211      || (!TYPE_OVERFLOW_SANITIZED (type)
1212	  && may_negate_without_overflow_p (@1)))
1213  (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1214
1215#if GIMPLE
1216/* ~X + Y -> (Y - X) - 1.  */
1217(simplify
1218 (plus:c (bit_not @0) @1)
1219  (if (ANY_INTEGRAL_TYPE_P (type)
1220       && TYPE_OVERFLOW_WRAPS (type)
1221       /* -1 - X is folded to ~X, so we'd recurse endlessly.  */
1222       && !integer_all_onesp (@1))
1223   (plus (minus @1 @0) { build_minus_one_cst (type); })
1224   (if (INTEGRAL_TYPE_P (type)
1225	&& TREE_CODE (@1) == INTEGER_CST
1226	&& wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1227					      SIGNED))
1228    (minus (plus @1 { build_minus_one_cst (type); }) @0))))
1229
1230/* ~(X >> Y) -> ~X >> Y if ~X can be simplified.  */
1231(simplify
1232 (bit_not (rshift:s @0 @1))
1233  (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1234   (rshift (bit_not! @0) @1)
1235   /* For logical right shifts, this is possible only if @0 doesn't
1236      have MSB set and the logical right shift is changed into
1237      arithmetic shift.  */
1238   (if (!wi::neg_p (tree_nonzero_bits (@0)))
1239    (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1240     (convert (rshift (bit_not! (convert:stype @0)) @1))))))
1241#endif
1242
1243/* x + (x & 1) -> (x + 1) & ~1 */
1244(simplify
1245 (plus:c @0 (bit_and:s @0 integer_onep@1))
1246 (bit_and (plus @0 @1) (bit_not @1)))
1247
1248/* x & ~(x & y) -> x & ~y */
1249/* x | ~(x | y) -> x | ~y  */
1250(for bitop (bit_and bit_ior)
1251 (simplify
1252  (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1253  (bitop @0 (bit_not @1))))
1254
1255/* (~x & y) | ~(x | y) -> ~x */
1256(simplify
1257 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1258 @2)
1259
1260/* (x | y) ^ (x | ~y) -> ~x */
1261(simplify
1262 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1263 (bit_not @0))
1264
1265/* (x & y) | ~(x | y) -> ~(x ^ y) */
1266(simplify
1267 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1268 (bit_not (bit_xor @0 @1)))
1269
1270/* (~x | y) ^ (x ^ y) -> x | ~y */
1271(simplify
1272 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1273 (bit_ior @0 (bit_not @1)))
1274
1275/* (x ^ y) | ~(x | y) -> ~(x & y) */
1276(simplify
1277 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1278 (bit_not (bit_and @0 @1)))
1279
1280/* (x | y) & ~x -> y & ~x */
1281/* (x & y) | ~x -> y | ~x */
1282(for bitop (bit_and bit_ior)
1283     rbitop (bit_ior bit_and)
1284 (simplify
1285  (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1286  (bitop @1 @2)))
1287
1288/* (x & y) ^ (x | y) -> x ^ y */
1289(simplify
1290 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1291 (bit_xor @0 @1))
1292
1293/* (x ^ y) ^ (x | y) -> x & y */
1294(simplify
1295 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1296 (bit_and @0 @1))
1297
1298/* (x & y) + (x ^ y) -> x | y */
1299/* (x & y) | (x ^ y) -> x | y */
1300/* (x & y) ^ (x ^ y) -> x | y */
1301(for op (plus bit_ior bit_xor)
1302 (simplify
1303  (op:c (bit_and @0 @1) (bit_xor @0 @1))
1304  (bit_ior @0 @1)))
1305
1306/* (x & y) + (x | y) -> x + y */
1307(simplify
1308 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1309 (plus @0 @1))
1310
1311/* (x + y) - (x | y) -> x & y */
1312(simplify
1313 (minus (plus @0 @1) (bit_ior @0 @1))
1314 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1315      && !TYPE_SATURATING (type))
1316  (bit_and @0 @1)))
1317
1318/* (x + y) - (x & y) -> x | y */
1319(simplify
1320 (minus (plus @0 @1) (bit_and @0 @1))
1321 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1322      && !TYPE_SATURATING (type))
1323  (bit_ior @0 @1)))
1324
1325/* (x | y) - y -> (x & ~y) */
1326(simplify
1327 (minus (bit_ior:cs @0 @1) @1)
1328 (bit_and @0 (bit_not @1)))
1329
1330/* (x | y) - (x ^ y) -> x & y */
1331(simplify
1332 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1333 (bit_and @0 @1))
1334
1335/* (x | y) - (x & y) -> x ^ y */
1336(simplify
1337 (minus (bit_ior @0 @1) (bit_and @0 @1))
1338 (bit_xor @0 @1))
1339
1340/* (x | y) & ~(x & y) -> x ^ y */
1341(simplify
1342 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1343 (bit_xor @0 @1))
1344
1345/* (x | y) & (~x ^ y) -> x & y */
1346(simplify
1347 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1348 (bit_and @0 @1))
1349
1350/* (~x | y) & (x | ~y) -> ~(x ^ y) */
1351(simplify
1352 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1353 (bit_not (bit_xor @0 @1)))
1354
1355/* (~x | y) ^ (x | ~y) -> x ^ y */
1356(simplify
1357 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1358 (bit_xor @0 @1))
1359
1360/* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1361(simplify
1362 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1363                              (nop_convert2? (bit_ior @0 @1))))
1364       integer_all_onesp)
1365 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1366      && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1367      && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1368      && !TYPE_SATURATING (TREE_TYPE (@2)))
1369 (bit_not (convert (bit_xor @0 @1)))))
1370(simplify
1371 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1372                               integer_all_onesp))
1373       (nop_convert3? (bit_ior @0 @1)))
1374 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1375      && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1376      && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1377      && !TYPE_SATURATING (TREE_TYPE (@2)))
1378 (bit_not (convert (bit_xor @0 @1)))))
1379(simplify
1380 (minus (nop_convert1? (bit_and @0 @1))
1381       (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1382                               integer_onep)))
1383 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1384      && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1385      && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1386      && !TYPE_SATURATING (TREE_TYPE (@2)))
1387 (bit_not (convert (bit_xor @0 @1)))))
1388
1389/* ~x & ~y -> ~(x | y)
1390   ~x | ~y -> ~(x & y) */
1391(for op (bit_and bit_ior)
1392     rop (bit_ior bit_and)
1393 (simplify
1394  (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1395  (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1396       && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1397   (bit_not (rop (convert @0) (convert @1))))))
1398
1399/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1400   with a constant, and the two constants have no bits in common,
1401   we should treat this as a BIT_IOR_EXPR since this may produce more
1402   simplifications.  */
1403(for op (bit_xor plus)
1404 (simplify
1405  (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1406      (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1407  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1408       && tree_nop_conversion_p (type, TREE_TYPE (@2))
1409       && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1410   (bit_ior (convert @4) (convert @5)))))
1411
1412/* (X | Y) ^ X -> Y & ~ X*/
1413(simplify
1414 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1415 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1416  (convert (bit_and @1 (bit_not @0)))))
1417
1418/* Convert ~X ^ ~Y to X ^ Y.  */
1419(simplify
1420 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1421 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1422      && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1423  (bit_xor (convert @0) (convert @1))))
1424
1425/* Convert ~X ^ C to X ^ ~C.  */
1426(simplify
1427 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1428 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1429  (bit_xor (convert @0) (bit_not @1))))
1430
1431/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y.  */
1432(for opo (bit_and bit_xor)
1433     opi (bit_xor bit_and)
1434 (simplify
1435  (opo:c (opi:cs @0 @1) @1)
1436  (bit_and (bit_not @0) @1)))
1437
1438/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1439   operands are another bit-wise operation with a common input.  If so,
1440   distribute the bit operations to save an operation and possibly two if
1441   constants are involved.  For example, convert
1442     (A | B) & (A | C) into A | (B & C)
1443   Further simplification will occur if B and C are constants.  */
1444(for op (bit_and bit_ior bit_xor)
1445     rop (bit_ior bit_and bit_and)
1446 (simplify
1447  (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1448  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1449       && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1450   (rop (convert @0) (op (convert @1) (convert @2))))))
1451
1452/* Some simple reassociation for bit operations, also handled in reassoc.  */
1453/* (X & Y) & Y -> X & Y
1454   (X | Y) | Y -> X | Y  */
1455(for op (bit_and bit_ior)
1456 (simplify
1457  (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1458  @2))
1459/* (X ^ Y) ^ Y -> X  */
1460(simplify
1461 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1462 (convert @0))
1463/* (X & Y) & (X & Z) -> (X & Y) & Z
1464   (X | Y) | (X | Z) -> (X | Y) | Z  */
1465(for op (bit_and bit_ior)
1466 (simplify
1467  (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1468  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1469       && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1470   (if (single_use (@5) && single_use (@6))
1471    (op @3 (convert @2))
1472    (if (single_use (@3) && single_use (@4))
1473     (op (convert @1) @5))))))
1474/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z  */
1475(simplify
1476 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1477 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1478      && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1479  (bit_xor (convert @1) (convert @2))))
1480
1481/* Convert abs (abs (X)) into abs (X).
1482   also absu (absu (X)) into absu (X).  */
1483(simplify
1484 (abs (abs@1 @0))
1485 @1)
1486
1487(simplify
1488 (absu (convert@2 (absu@1 @0)))
1489 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1490  @1))
1491
1492/* Convert abs[u] (-X) -> abs[u] (X).  */
1493(simplify
1494 (abs (negate @0))
1495 (abs @0))
1496
1497(simplify
1498 (absu (negate @0))
1499 (absu @0))
1500
1501/* Convert abs[u] (X)  where X is nonnegative -> (X).  */
1502(simplify
1503 (abs tree_expr_nonnegative_p@0)
1504 @0)
1505
1506(simplify
1507 (absu tree_expr_nonnegative_p@0)
1508 (convert @0))
1509
1510/* Simplify (-(X < 0) | 1) * X into abs (X) or absu(X).  */
1511(simplify
1512 (mult:c (nop_convert1?
1513	  (bit_ior (nop_convert2? (negate (convert? (lt @0 integer_zerop))))
1514		    integer_onep))
1515	 (nop_convert3? @0))
1516 (if (INTEGRAL_TYPE_P (type)
1517      && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1518      && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1519  (if (TYPE_UNSIGNED (type))
1520   (absu @0)
1521   (abs @0)
1522  )
1523 )
1524)
1525
1526/* A few cases of fold-const.c negate_expr_p predicate.  */
1527(match negate_expr_p
1528 INTEGER_CST
1529 (if ((INTEGRAL_TYPE_P (type)
1530       && TYPE_UNSIGNED (type))
1531      || (!TYPE_OVERFLOW_SANITIZED (type)
1532	  && may_negate_without_overflow_p (t)))))
1533(match negate_expr_p
1534 FIXED_CST)
1535(match negate_expr_p
1536 (negate @0)
1537 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1538(match negate_expr_p
1539 REAL_CST
1540 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1541/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1542   ways.  */
1543(match negate_expr_p
1544 VECTOR_CST
1545 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1546(match negate_expr_p
1547 (minus @0 @1)
1548 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1549      || (FLOAT_TYPE_P (type)
1550	  && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1551	  && !HONOR_SIGNED_ZEROS (type)))))
1552
1553/* (-A) * (-B) -> A * B  */
1554(simplify
1555 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1556  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1557       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1558   (mult (convert @0) (convert (negate @1)))))
1559
1560/* -(A + B) -> (-B) - A.  */
1561(simplify
1562 (negate (plus:c @0 negate_expr_p@1))
1563 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
1564      && !HONOR_SIGNED_ZEROS (type))
1565  (minus (negate @1) @0)))
1566
1567/* -(A - B) -> B - A.  */
1568(simplify
1569 (negate (minus @0 @1))
1570 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1571      || (FLOAT_TYPE_P (type)
1572	  && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1573	  && !HONOR_SIGNED_ZEROS (type)))
1574  (minus @1 @0)))
1575(simplify
1576 (negate (pointer_diff @0 @1))
1577 (if (TYPE_OVERFLOW_UNDEFINED (type))
1578  (pointer_diff @1 @0)))
1579
1580/* A - B -> A + (-B) if B is easily negatable.  */
1581(simplify
1582 (minus @0 negate_expr_p@1)
1583 (if (!FIXED_POINT_TYPE_P (type))
1584 (plus @0 (negate @1))))
1585
1586/* Other simplifications of negation (c.f. fold_negate_expr_1).  */
1587(simplify
1588 (negate (mult:c@0 @1 negate_expr_p@2))
1589 (if (! TYPE_UNSIGNED (type)
1590      && ! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1591      && single_use (@0))
1592  (mult @1 (negate @2))))
1593
1594(simplify
1595 (negate (rdiv@0 @1 negate_expr_p@2))
1596 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1597      && single_use (@0))
1598  (rdiv @1 (negate @2))))
1599
1600(simplify
1601 (negate (rdiv@0 negate_expr_p@1 @2))
1602 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1603      && single_use (@0))
1604  (rdiv (negate @1) @2)))
1605
1606/* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1).  */
1607(simplify
1608 (negate (convert? (rshift @0 INTEGER_CST@1)))
1609 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1610      && wi::to_wide (@1) == element_precision (type) - 1)
1611  (with { tree stype = TREE_TYPE (@0);
1612	  tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype)
1613					     : unsigned_type_for (stype); }
1614   (if (VECTOR_TYPE_P (type))
1615    (view_convert (rshift (view_convert:ntype @0) @1))
1616    (convert (rshift (convert:ntype @0) @1))))))
1617
1618/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1619   when profitable.
1620   For bitwise binary operations apply operand conversions to the
1621   binary operation result instead of to the operands.  This allows
1622   to combine successive conversions and bitwise binary operations.
1623   We combine the above two cases by using a conditional convert.  */
1624(for bitop (bit_and bit_ior bit_xor)
1625 (simplify
1626  (bitop (convert@2 @0) (convert?@3 @1))
1627  (if (((TREE_CODE (@1) == INTEGER_CST
1628	 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1629	 && (int_fits_type_p (@1, TREE_TYPE (@0))
1630	     || tree_nop_conversion_p (TREE_TYPE (@0), type)))
1631	|| types_match (@0, @1))
1632       /* ???  This transform conflicts with fold-const.c doing
1633	  Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1634	  constants (if x has signed type, the sign bit cannot be set
1635	  in c).  This folds extension into the BIT_AND_EXPR.
1636	  Restrict it to GIMPLE to avoid endless recursions.  */
1637       && (bitop != BIT_AND_EXPR || GIMPLE)
1638       && (/* That's a good idea if the conversion widens the operand, thus
1639	      after hoisting the conversion the operation will be narrower.
1640	      It is also a good if the conversion is a nop as moves the
1641	      conversion to one side; allowing for combining of the conversions.  */
1642	   TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1643	   /* The conversion check for being a nop can only be done at the gimple
1644	      level as fold_binary has some re-association code which can conflict
1645	      with this if there is a "constant" which is not a full INTEGER_CST.  */
1646	   || (GIMPLE && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
1647	   /* It's also a good idea if the conversion is to a non-integer
1648	      mode.  */
1649	   || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1650	   /* Or if the precision of TO is not the same as the precision
1651	      of its mode.  */
1652	   || !type_has_mode_precision_p (type)
1653	   /* In GIMPLE, getting rid of 2 conversions for one new results
1654	      in smaller IL.  */
1655	   || (GIMPLE
1656	       && TREE_CODE (@1) != INTEGER_CST
1657	       && tree_nop_conversion_p (type, TREE_TYPE (@0))
1658	       && single_use (@2)
1659	       && single_use (@3))))
1660   (convert (bitop @0 (convert @1)))))
1661 /* In GIMPLE, getting rid of 2 conversions for one new results
1662    in smaller IL.  */
1663 (simplify
1664  (convert (bitop:cs@2 (nop_convert:s @0) @1))
1665  (if (GIMPLE
1666       && TREE_CODE (@1) != INTEGER_CST
1667       && tree_nop_conversion_p (type, TREE_TYPE (@2))
1668       && types_match (type, @0))
1669   (bitop @0 (convert @1)))))
1670
1671(for bitop (bit_and bit_ior)
1672     rbitop (bit_ior bit_and)
1673  /* (x | y) & x -> x */
1674  /* (x & y) | x -> x */
1675 (simplify
1676  (bitop:c (rbitop:c @0 @1) @0)
1677  @0)
1678 /* (~x | y) & x -> x & y */
1679 /* (~x & y) | x -> x | y */
1680 (simplify
1681  (bitop:c (rbitop:c (bit_not @0) @1) @0)
1682  (bitop @0 @1)))
1683
1684/* ((x | y) & z) | x -> (z & y) | x */
1685(simplify
1686  (bit_ior:c (bit_and:cs (bit_ior:cs @0 @1) @2) @0)
1687  (bit_ior (bit_and @2 @1) @0))
1688
1689/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1690(simplify
1691  (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1692  (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1693
1694/* Combine successive equal operations with constants.  */
1695(for bitop (bit_and bit_ior bit_xor)
1696 (simplify
1697  (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1698  (if (!CONSTANT_CLASS_P (@0))
1699   /* This is the canonical form regardless of whether (bitop @1 @2) can be
1700      folded to a constant.  */
1701   (bitop @0 (bitop @1 @2))
1702   /* In this case we have three constants and (bitop @0 @1) doesn't fold
1703      to a constant.  This can happen if @0 or @1 is a POLY_INT_CST and if
1704      the values involved are such that the operation can't be decided at
1705      compile time.  Try folding one of @0 or @1 with @2 to see whether
1706      that combination can be decided at compile time.
1707
1708      Keep the existing form if both folds fail, to avoid endless
1709      oscillation.  */
1710   (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1711    (if (cst1)
1712     (bitop @1 { cst1; })
1713     (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1714      (if (cst2)
1715       (bitop @0 { cst2; }))))))))
1716
1717/* Try simple folding for X op !X, and X op X with the help
1718   of the truth_valued_p and logical_inverted_value predicates.  */
1719(match truth_valued_p
1720 @0
1721 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1722(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1723 (match truth_valued_p
1724  (op @0 @1)))
1725(match truth_valued_p
1726  (truth_not @0))
1727
1728(match (logical_inverted_value @0)
1729 (truth_not @0))
1730(match (logical_inverted_value @0)
1731 (bit_not truth_valued_p@0))
1732(match (logical_inverted_value @0)
1733 (eq @0 integer_zerop))
1734(match (logical_inverted_value @0)
1735 (ne truth_valued_p@0 integer_truep))
1736(match (logical_inverted_value @0)
1737 (bit_xor truth_valued_p@0 integer_truep))
1738
1739/* X & !X -> 0.  */
1740(simplify
1741 (bit_and:c @0 (logical_inverted_value @0))
1742 { build_zero_cst (type); })
1743/* X | !X and X ^ !X -> 1, , if X is truth-valued.  */
1744(for op (bit_ior bit_xor)
1745 (simplify
1746  (op:c truth_valued_p@0 (logical_inverted_value @0))
1747  { constant_boolean_node (true, type); }))
1748/* X ==/!= !X is false/true.  */
1749(for op (eq ne)
1750 (simplify
1751  (op:c truth_valued_p@0 (logical_inverted_value @0))
1752  { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1753
1754/* ~~x -> x */
1755(simplify
1756  (bit_not (bit_not @0))
1757  @0)
1758
1759/* Convert ~ (-A) to A - 1.  */
1760(simplify
1761 (bit_not (convert? (negate @0)))
1762 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1763      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1764  (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1765
1766/* Convert - (~A) to A + 1.  */
1767(simplify
1768 (negate (nop_convert? (bit_not @0)))
1769 (plus (view_convert @0) { build_each_one_cst (type); }))
1770
1771/* Convert ~ (A - 1) or ~ (A + -1) to -A.  */
1772(simplify
1773 (bit_not (convert? (minus @0 integer_each_onep)))
1774 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1775      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1776  (convert (negate @0))))
1777(simplify
1778 (bit_not (convert? (plus @0 integer_all_onesp)))
1779 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1780      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1781  (convert (negate @0))))
1782
1783/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify.  */
1784(simplify
1785 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1786 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1787  (convert (bit_xor @0 (bit_not @1)))))
1788(simplify
1789 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1790 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1791  (convert (bit_xor @0 @1))))
1792
1793/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical.  */
1794(simplify
1795 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1796 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1797  (bit_not (bit_xor (view_convert @0) @1))))
1798
1799/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1800(simplify
1801 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1802 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1803
1804/* Fold A - (A & B) into ~B & A.  */
1805(simplify
1806 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1807 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1808      && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1809  (convert (bit_and (bit_not @1) @0))))
1810
1811/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0  */
1812(if (!canonicalize_math_p ())
1813 (for cmp (gt lt ge le)
1814  (simplify
1815   (mult (convert (cmp @0 @1)) @2)
1816   (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1817
1818/* For integral types with undefined overflow and C != 0 fold
1819   x * C EQ/NE y * C into x EQ/NE y.  */
1820(for cmp (eq ne)
1821 (simplify
1822  (cmp (mult:c @0 @1) (mult:c @2 @1))
1823  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1824       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1825       && tree_expr_nonzero_p (@1))
1826   (cmp @0 @2))))
1827
1828/* For integral types with wrapping overflow and C odd fold
1829   x * C EQ/NE y * C into x EQ/NE y.  */
1830(for cmp (eq ne)
1831 (simplify
1832  (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1833  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1834       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1835       && (TREE_INT_CST_LOW (@1) & 1) != 0)
1836   (cmp @0 @2))))
1837
1838/* For integral types with undefined overflow and C != 0 fold
1839   x * C RELOP y * C into:
1840
1841   x RELOP y for nonnegative C
1842   y RELOP x for negative C  */
1843(for cmp (lt gt le ge)
1844 (simplify
1845  (cmp (mult:c @0 @1) (mult:c @2 @1))
1846  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1847       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1848   (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1849    (cmp @0 @2)
1850   (if (TREE_CODE (@1) == INTEGER_CST
1851	&& wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1852    (cmp @2 @0))))))
1853
1854/* (X - 1U) <= INT_MAX-1U into (int) X > 0.  */
1855(for cmp (le gt)
1856     icmp (gt le)
1857 (simplify
1858  (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1859   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1860	&& TYPE_UNSIGNED (TREE_TYPE (@0))
1861	&& TYPE_PRECISION (TREE_TYPE (@0)) > 1
1862	&& (wi::to_wide (@2)
1863	    == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1864    (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1865     (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1866
1867/* X / 4 < Y / 4 iff X < Y when the division is known to be exact.  */
1868(for cmp (simple_comparison)
1869 (simplify
1870  (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1871  (if (element_precision (@3) >= element_precision (@0)
1872       && types_match (@0, @1))
1873   (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1874    (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1875     (cmp @1 @0)
1876     (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1877      (with
1878       {
1879	tree utype = unsigned_type_for (TREE_TYPE (@0));
1880       }
1881       (cmp (convert:utype @1) (convert:utype @0)))))
1882    (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1883     (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1884      (cmp @0 @1)
1885      (with
1886       {
1887	tree utype = unsigned_type_for (TREE_TYPE (@0));
1888       }
1889       (cmp (convert:utype @0) (convert:utype @1)))))))))
1890
1891/* X / C1 op C2 into a simple range test.  */
1892(for cmp (simple_comparison)
1893 (simplify
1894  (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1895  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1896       && integer_nonzerop (@1)
1897       && !TREE_OVERFLOW (@1)
1898       && !TREE_OVERFLOW (@2))
1899   (with { tree lo, hi; bool neg_overflow;
1900	   enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1901						   &neg_overflow); }
1902    (switch
1903     (if (code == LT_EXPR || code == GE_EXPR)
1904       (if (TREE_OVERFLOW (lo))
1905	{ build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1906	(if (code == LT_EXPR)
1907	 (lt @0 { lo; })
1908	 (ge @0 { lo; }))))
1909     (if (code == LE_EXPR || code == GT_EXPR)
1910       (if (TREE_OVERFLOW (hi))
1911	{ build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1912	(if (code == LE_EXPR)
1913	 (le @0 { hi; })
1914	 (gt @0 { hi; }))))
1915     (if (!lo && !hi)
1916      { build_int_cst (type, code == NE_EXPR); })
1917     (if (code == EQ_EXPR && !hi)
1918      (ge @0 { lo; }))
1919     (if (code == EQ_EXPR && !lo)
1920      (le @0 { hi; }))
1921     (if (code == NE_EXPR && !hi)
1922      (lt @0 { lo; }))
1923     (if (code == NE_EXPR && !lo)
1924      (gt @0 { hi; }))
1925     (if (GENERIC)
1926      { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1927			   lo, hi); })
1928     (with
1929      {
1930	tree etype = range_check_type (TREE_TYPE (@0));
1931	if (etype)
1932	  {
1933	    hi = fold_convert (etype, hi);
1934	    lo = fold_convert (etype, lo);
1935	    hi = const_binop (MINUS_EXPR, etype, hi, lo);
1936	  }
1937      }
1938      (if (etype && hi && !TREE_OVERFLOW (hi))
1939       (if (code == EQ_EXPR)
1940	(le (minus (convert:etype @0) { lo; }) { hi; })
1941	(gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1942
1943/* X + Z < Y + Z is the same as X < Y when there is no overflow.  */
1944(for op (lt le ge gt)
1945 (simplify
1946  (op (plus:c @0 @2) (plus:c @1 @2))
1947  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1948       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1949   (op @0 @1))))
1950/* For equality and subtraction, this is also true with wrapping overflow.  */
1951(for op (eq ne minus)
1952 (simplify
1953  (op (plus:c @0 @2) (plus:c @1 @2))
1954  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1955       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1956	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1957   (op @0 @1))))
1958
1959/* X - Z < Y - Z is the same as X < Y when there is no overflow.  */
1960(for op (lt le ge gt)
1961 (simplify
1962  (op (minus @0 @2) (minus @1 @2))
1963  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1964       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1965   (op @0 @1))))
1966/* For equality and subtraction, this is also true with wrapping overflow.  */
1967(for op (eq ne minus)
1968 (simplify
1969  (op (minus @0 @2) (minus @1 @2))
1970  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1971       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1972	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1973   (op @0 @1))))
1974/* And for pointers...  */
1975(for op (simple_comparison)
1976 (simplify
1977  (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1978  (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1979   (op @0 @1))))
1980(simplify
1981 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1982 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1983      && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1984  (pointer_diff @0 @1)))
1985
1986/* Z - X < Z - Y is the same as Y < X when there is no overflow.  */
1987(for op (lt le ge gt)
1988 (simplify
1989  (op (minus @2 @0) (minus @2 @1))
1990  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1991       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1992   (op @1 @0))))
1993/* For equality and subtraction, this is also true with wrapping overflow.  */
1994(for op (eq ne minus)
1995 (simplify
1996  (op (minus @2 @0) (minus @2 @1))
1997  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1998       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1999	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2000   (op @1 @0))))
2001/* And for pointers...  */
2002(for op (simple_comparison)
2003 (simplify
2004  (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2005  (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2006   (op @1 @0))))
2007(simplify
2008 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2009 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2010      && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2011  (pointer_diff @1 @0)))
2012
2013/* X + Y < Y is the same as X < 0 when there is no overflow.  */
2014(for op (lt le gt ge)
2015 (simplify
2016  (op:c (plus:c@2 @0 @1) @1)
2017  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2018       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2019       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2020       && (CONSTANT_CLASS_P (@0) || single_use (@2)))
2021   (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
2022/* For equality, this is also true with wrapping overflow.  */
2023(for op (eq ne)
2024 (simplify
2025  (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
2026  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2027       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2028	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2029       && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
2030       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
2031       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
2032   (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
2033 (simplify
2034  (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
2035  (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
2036       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2037       && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
2038   (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2039
2040/* X - Y < X is the same as Y > 0 when there is no overflow.
2041   For equality, this is also true with wrapping overflow.  */
2042(for op (simple_comparison)
2043 (simplify
2044  (op:c @0 (minus@2 @0 @1))
2045  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2046       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2047	   || ((op == EQ_EXPR || op == NE_EXPR)
2048	       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2049       && (CONSTANT_CLASS_P (@1) || single_use (@2)))
2050   (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2051
2052/* Transform:
2053   (X / Y) == 0 -> X < Y if X, Y are unsigned.
2054   (X / Y) != 0 -> X >= Y, if X, Y are unsigned.  */
2055(for cmp (eq ne)
2056     ocmp (lt ge)
2057 (simplify
2058  (cmp (trunc_div @0 @1) integer_zerop)
2059  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2060       /* Complex ==/!= is allowed, but not </>=.  */
2061       && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
2062       && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
2063   (ocmp @0 @1))))
2064
2065/* X == C - X can never be true if C is odd.  */
2066(for cmp (eq ne)
2067 (simplify
2068  (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
2069  (if (TREE_INT_CST_LOW (@1) & 1)
2070   { constant_boolean_node (cmp == NE_EXPR, type); })))
2071
2072/* Arguments on which one can call get_nonzero_bits to get the bits
2073   possibly set.  */
2074(match with_possible_nonzero_bits
2075 INTEGER_CST@0)
2076(match with_possible_nonzero_bits
2077 SSA_NAME@0
2078 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
2079/* Slightly extended version, do not make it recursive to keep it cheap.  */
2080(match (with_possible_nonzero_bits2 @0)
2081 with_possible_nonzero_bits@0)
2082(match (with_possible_nonzero_bits2 @0)
2083 (bit_and:c with_possible_nonzero_bits@0 @2))
2084
2085/* Same for bits that are known to be set, but we do not have
2086   an equivalent to get_nonzero_bits yet.  */
2087(match (with_certain_nonzero_bits2 @0)
2088 INTEGER_CST@0)
2089(match (with_certain_nonzero_bits2 @0)
2090 (bit_ior @1 INTEGER_CST@0))
2091
2092/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0.  */
2093(for cmp (eq ne)
2094 (simplify
2095  (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
2096  (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
2097   { constant_boolean_node (cmp == NE_EXPR, type); })))
2098
2099/* ((X inner_op C0) outer_op C1)
2100   With X being a tree where value_range has reasoned certain bits to always be
2101   zero throughout its computed value range,
2102   inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
2103   where zero_mask has 1's for all bits that are sure to be 0 in
2104   and 0's otherwise.
2105   if (inner_op == '^') C0 &= ~C1;
2106   if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
2107   if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
2108*/
2109(for inner_op (bit_ior bit_xor)
2110     outer_op (bit_xor bit_ior)
2111(simplify
2112 (outer_op
2113  (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
2114 (with
2115  {
2116    bool fail = false;
2117    wide_int zero_mask_not;
2118    wide_int C0;
2119    wide_int cst_emit;
2120
2121    if (TREE_CODE (@2) == SSA_NAME)
2122      zero_mask_not = get_nonzero_bits (@2);
2123    else
2124      fail = true;
2125
2126    if (inner_op == BIT_XOR_EXPR)
2127      {
2128	C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
2129	cst_emit = C0 | wi::to_wide (@1);
2130      }
2131    else
2132      {
2133	C0 = wi::to_wide (@0);
2134	cst_emit = C0 ^ wi::to_wide (@1);
2135      }
2136  }
2137  (if (!fail && (C0 & zero_mask_not) == 0)
2138   (outer_op @2 { wide_int_to_tree (type, cst_emit); })
2139   (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
2140    (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
2141
2142/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)).  */
2143(simplify
2144  (pointer_plus (pointer_plus:s @0 @1) @3)
2145  (pointer_plus @0 (plus @1 @3)))
2146
2147/* Pattern match
2148     tem1 = (long) ptr1;
2149     tem2 = (long) ptr2;
2150     tem3 = tem2 - tem1;
2151     tem4 = (unsigned long) tem3;
2152     tem5 = ptr1 + tem4;
2153   and produce
2154     tem5 = ptr2;  */
2155(simplify
2156  (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2157  /* Conditionally look through a sign-changing conversion.  */
2158  (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2159       && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2160	    || (GENERIC && type == TREE_TYPE (@1))))
2161   @1))
2162(simplify
2163  (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2164  (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2165   (convert @1)))
2166
2167/* Pattern match
2168     tem = (sizetype) ptr;
2169     tem = tem & algn;
2170     tem = -tem;
2171     ... = ptr p+ tem;
2172   and produce the simpler and easier to analyze with respect to alignment
2173     ... = ptr & ~algn;  */
2174(simplify
2175  (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
2176  (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
2177   (bit_and @0 { algn; })))
2178
2179/* Try folding difference of addresses.  */
2180(simplify
2181 (minus (convert ADDR_EXPR@0) (convert @1))
2182 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2183  (with { poly_int64 diff; }
2184   (if (ptr_difference_const (@0, @1, &diff))
2185    { build_int_cst_type (type, diff); }))))
2186(simplify
2187 (minus (convert @0) (convert ADDR_EXPR@1))
2188 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2189  (with { poly_int64 diff; }
2190   (if (ptr_difference_const (@0, @1, &diff))
2191    { build_int_cst_type (type, diff); }))))
2192(simplify
2193 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
2194 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2195      && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2196  (with { poly_int64 diff; }
2197   (if (ptr_difference_const (@0, @1, &diff))
2198    { build_int_cst_type (type, diff); }))))
2199(simplify
2200 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
2201 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2202      && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2203  (with { poly_int64 diff; }
2204   (if (ptr_difference_const (@0, @1, &diff))
2205    { build_int_cst_type (type, diff); }))))
2206
2207/* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */
2208(simplify
2209 (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2210 (with { poly_int64 diff; }
2211   (if (ptr_difference_const (@0, @2, &diff))
2212    (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3))))))
2213
2214/* (&a+b) !=/== (&a[1] + c) ->  sizeof(a[0]) + b !=/== c */
2215(for neeq (ne eq)
2216 (simplify
2217  (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2218   (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);}
2219    (if (ptr_difference_const (@0, @2, &diff))
2220     (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3)))))
2221
2222/* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst].  */
2223(simplify
2224 (convert (pointer_diff @0 INTEGER_CST@1))
2225 (if (POINTER_TYPE_P (type))
2226  { build_fold_addr_expr_with_type
2227      (build2 (MEM_REF, char_type_node, @0,
2228	       wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2229	       type); }))
2230
2231/* If arg0 is derived from the address of an object or function, we may
2232   be able to fold this expression using the object or function's
2233   alignment.  */
2234(simplify
2235 (bit_and (convert? @0) INTEGER_CST@1)
2236 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2237      && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2238  (with
2239   {
2240     unsigned int align;
2241     unsigned HOST_WIDE_INT bitpos;
2242     get_pointer_alignment_1 (@0, &align, &bitpos);
2243   }
2244   (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2245    { wide_int_to_tree (type, (wi::to_wide (@1)
2246			       & (bitpos / BITS_PER_UNIT))); }))))
2247
2248(match min_value
2249 INTEGER_CST
2250 (if (INTEGRAL_TYPE_P (type)
2251      && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
2252
2253(match max_value
2254 INTEGER_CST
2255 (if (INTEGRAL_TYPE_P (type)
2256      && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
2257
2258/* x >  y  &&  x != XXX_MIN  -->  x > y
2259   x >  y  &&  x == XXX_MIN  -->  false . */
2260(for eqne (eq ne)
2261 (simplify
2262  (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2263   (switch
2264    (if (eqne == EQ_EXPR)
2265     { constant_boolean_node (false, type); })
2266    (if (eqne == NE_EXPR)
2267     @2)
2268    )))
2269
2270/* x <  y  &&  x != XXX_MAX  -->  x < y
2271   x <  y  &&  x == XXX_MAX  -->  false.  */
2272(for eqne (eq ne)
2273 (simplify
2274  (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2275   (switch
2276    (if (eqne == EQ_EXPR)
2277     { constant_boolean_node (false, type); })
2278    (if (eqne == NE_EXPR)
2279     @2)
2280    )))
2281
2282/* x <=  y  &&  x == XXX_MIN  -->  x == XXX_MIN.  */
2283(simplify
2284 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2285  @2)
2286
2287/* x >=  y  &&  x == XXX_MAX  -->  x == XXX_MAX.  */
2288(simplify
2289 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2290  @2)
2291
2292/* x >  y  ||  x != XXX_MIN   -->  x != XXX_MIN.  */
2293(simplify
2294 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2295  @2)
2296
2297/* x <=  y  ||  x != XXX_MIN   -->  true.  */
2298(simplify
2299 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2300  { constant_boolean_node (true, type); })
2301
2302/* x <=  y  ||  x == XXX_MIN   -->  x <= y.  */
2303(simplify
2304 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2305  @2)
2306
2307/* x <  y  ||  x != XXX_MAX   -->  x != XXX_MAX.  */
2308(simplify
2309 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2310  @2)
2311
2312/* x >=  y  ||  x != XXX_MAX   -->  true
2313   x >=  y  ||  x == XXX_MAX   -->  x >= y.  */
2314(for eqne (eq ne)
2315 (simplify
2316  (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2317   (switch
2318    (if (eqne == EQ_EXPR)
2319     @2)
2320    (if (eqne == NE_EXPR)
2321     { constant_boolean_node (true, type); }))))
2322
2323/* y == XXX_MIN || x < y --> x <= y - 1 */
2324(simplify
2325 (bit_ior:c (eq:s @1 min_value) (lt:s @0 @1))
2326  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2327       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2328  (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2329
2330/* y != XXX_MIN && x >= y --> x > y - 1 */
2331(simplify
2332 (bit_and:c (ne:s @1 min_value) (ge:s @0 @1))
2333  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2334       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2335  (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2336
2337/* Convert (X == CST1) && (X OP2 CST2) to a known value
2338   based on CST1 OP2 CST2.  Similarly for (X != CST1).  */
2339
2340(for code1 (eq ne)
2341 (for code2 (eq ne lt gt le ge)
2342  (simplify
2343   (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2344    (with
2345     {
2346      int cmp = tree_int_cst_compare (@1, @2);
2347      bool val;
2348      switch (code2)
2349	 {
2350	case EQ_EXPR: val = (cmp == 0); break;
2351	case NE_EXPR: val = (cmp != 0); break;
2352	case LT_EXPR: val = (cmp < 0); break;
2353	case GT_EXPR: val = (cmp > 0); break;
2354	case LE_EXPR: val = (cmp <= 0); break;
2355	case GE_EXPR: val = (cmp >= 0); break;
2356	default: gcc_unreachable ();
2357	}
2358     }
2359     (switch
2360      (if (code1 == EQ_EXPR && val) @3)
2361      (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2362      (if (code1 == NE_EXPR && !val) @4))))))
2363
2364/* Convert (X OP1 CST1) && (X OP2 CST2).  */
2365
2366(for code1 (lt le gt ge)
2367 (for code2 (lt le gt ge)
2368  (simplify
2369  (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2370   (with
2371    {
2372     int cmp = tree_int_cst_compare (@1, @2);
2373    }
2374    (switch
2375     /* Choose the more restrictive of two < or <= comparisons.  */
2376     (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2377	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2378      (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2379       @3
2380       @4))
2381     /* Likewise chose the more restrictive of two > or >= comparisons.  */
2382     (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2383	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2384      (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2385       @3
2386       @4))
2387     /* Check for singleton ranges.  */
2388     (if (cmp == 0
2389	  && ((code1 == LE_EXPR && code2 == GE_EXPR)
2390	    || (code1 == GE_EXPR && code2 == LE_EXPR)))
2391      (eq @0 @1))
2392     /* Check for disjoint ranges.  */
2393     (if (cmp <= 0
2394	  && (code1 == LT_EXPR || code1 == LE_EXPR)
2395	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2396      { constant_boolean_node (false, type); })
2397     (if (cmp >= 0
2398	  && (code1 == GT_EXPR || code1 == GE_EXPR)
2399	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2400      { constant_boolean_node (false, type); })
2401     )))))
2402
2403/* Convert (X == CST1) || (X OP2 CST2) to a known value
2404   based on CST1 OP2 CST2.  Similarly for (X != CST1).  */
2405
2406(for code1 (eq ne)
2407 (for code2 (eq ne lt gt le ge)
2408  (simplify
2409   (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2410    (with
2411     {
2412      int cmp = tree_int_cst_compare (@1, @2);
2413      bool val;
2414      switch (code2)
2415	{
2416	case EQ_EXPR: val = (cmp == 0); break;
2417	case NE_EXPR: val = (cmp != 0); break;
2418	case LT_EXPR: val = (cmp < 0); break;
2419	case GT_EXPR: val = (cmp > 0); break;
2420	case LE_EXPR: val = (cmp <= 0); break;
2421	case GE_EXPR: val = (cmp >= 0); break;
2422	default: gcc_unreachable ();
2423	}
2424     }
2425     (switch
2426      (if (code1 == EQ_EXPR && val) @4)
2427      (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2428      (if (code1 == NE_EXPR && !val) @3))))))
2429
2430/* Convert (X OP1 CST1) || (X OP2 CST2).  */
2431
2432(for code1 (lt le gt ge)
2433 (for code2 (lt le gt ge)
2434  (simplify
2435  (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2436   (with
2437    {
2438     int cmp = tree_int_cst_compare (@1, @2);
2439    }
2440    (switch
2441     /* Choose the more restrictive of two < or <= comparisons.  */
2442     (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2443	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2444      (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2445       @4
2446       @3))
2447     /* Likewise chose the more restrictive of two > or >= comparisons.  */
2448     (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2449	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2450      (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2451       @4
2452       @3))
2453     /* Check for singleton ranges.  */
2454     (if (cmp == 0
2455	  && ((code1 == LT_EXPR && code2 == GT_EXPR)
2456	      || (code1 == GT_EXPR && code2 == LT_EXPR)))
2457      (ne @0 @2))
2458     /* Check for disjoint ranges.  */
2459     (if (cmp >= 0
2460	  && (code1 == LT_EXPR || code1 == LE_EXPR)
2461	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2462      { constant_boolean_node (true, type); })
2463     (if (cmp <= 0
2464	  && (code1 == GT_EXPR || code1 == GE_EXPR)
2465	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2466      { constant_boolean_node (true, type); })
2467     )))))
2468
2469/* We can't reassociate at all for saturating types.  */
2470(if (!TYPE_SATURATING (type))
2471
2472 /* Contract negates.  */
2473 /* A + (-B) -> A - B */
2474 (simplify
2475  (plus:c @0 (convert? (negate @1)))
2476  /* Apply STRIP_NOPS on the negate.  */
2477  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2478       && !TYPE_OVERFLOW_SANITIZED (type))
2479   (with
2480    {
2481     tree t1 = type;
2482     if (INTEGRAL_TYPE_P (type)
2483	 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2484       t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2485    }
2486    (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2487 /* A - (-B) -> A + B */
2488 (simplify
2489  (minus @0 (convert? (negate @1)))
2490  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2491       && !TYPE_OVERFLOW_SANITIZED (type))
2492   (with
2493    {
2494     tree t1 = type;
2495     if (INTEGRAL_TYPE_P (type)
2496	 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2497       t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2498    }
2499    (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2500 /* -(T)(-A) -> (T)A
2501    Sign-extension is ok except for INT_MIN, which thankfully cannot
2502    happen without overflow.  */
2503 (simplify
2504  (negate (convert (negate @1)))
2505  (if (INTEGRAL_TYPE_P (type)
2506       && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2507	   || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2508	       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2509       && !TYPE_OVERFLOW_SANITIZED (type)
2510       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2511   (convert @1)))
2512 (simplify
2513  (negate (convert negate_expr_p@1))
2514  (if (SCALAR_FLOAT_TYPE_P (type)
2515       && ((DECIMAL_FLOAT_TYPE_P (type)
2516	    == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2517	    && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2518	   || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2519   (convert (negate @1))))
2520 (simplify
2521  (negate (nop_convert? (negate @1)))
2522  (if (!TYPE_OVERFLOW_SANITIZED (type)
2523       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2524   (view_convert @1)))
2525
2526 /* We can't reassociate floating-point unless -fassociative-math
2527    or fixed-point plus or minus because of saturation to +-Inf.  */
2528 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2529      && !FIXED_POINT_TYPE_P (type))
2530
2531  /* Match patterns that allow contracting a plus-minus pair
2532     irrespective of overflow issues.  */
2533  /* (A +- B) - A       ->  +- B */
2534  /* (A +- B) -+ B      ->  A */
2535  /* A - (A +- B)       -> -+ B */
2536  /* A +- (B -+ A)      ->  +- B */
2537  (simplify
2538   (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2539   (view_convert @1))
2540  (simplify
2541   (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2542   (if (!ANY_INTEGRAL_TYPE_P (type)
2543	|| TYPE_OVERFLOW_WRAPS (type))
2544   (negate (view_convert @1))
2545   (view_convert (negate @1))))
2546  (simplify
2547   (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2548   (view_convert @0))
2549  (simplify
2550   (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2551    (if (!ANY_INTEGRAL_TYPE_P (type)
2552	 || TYPE_OVERFLOW_WRAPS (type))
2553     (negate (view_convert @1))
2554     (view_convert (negate @1))))
2555  (simplify
2556   (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2557   (view_convert @1))
2558  /* (A +- B) + (C - A)   -> C +- B */
2559  /* (A +  B) - (A - C)   -> B + C */
2560  /* More cases are handled with comparisons.  */
2561  (simplify
2562   (plus:c (plus:c @0 @1) (minus @2 @0))
2563   (plus @2 @1))
2564  (simplify
2565   (plus:c (minus @0 @1) (minus @2 @0))
2566   (minus @2 @1))
2567  (simplify
2568   (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2569   (if (TYPE_OVERFLOW_UNDEFINED (type)
2570	&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2571    (pointer_diff @2 @1)))
2572  (simplify
2573   (minus (plus:c @0 @1) (minus @0 @2))
2574   (plus @1 @2))
2575
2576  /* (A +- CST1) +- CST2 -> A + CST3
2577     Use view_convert because it is safe for vectors and equivalent for
2578     scalars.  */
2579  (for outer_op (plus minus)
2580   (for inner_op (plus minus)
2581	neg_inner_op (minus plus)
2582    (simplify
2583     (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2584	       CONSTANT_CLASS_P@2)
2585     /* If one of the types wraps, use that one.  */
2586     (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2587      /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2588	 forever if something doesn't simplify into a constant.  */
2589      (if (!CONSTANT_CLASS_P (@0))
2590       (if (outer_op == PLUS_EXPR)
2591	(plus (view_convert @0) (inner_op @2 (view_convert @1)))
2592	(minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2593      (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2594	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2595       (if (outer_op == PLUS_EXPR)
2596	(view_convert (plus @0 (inner_op (view_convert @2) @1)))
2597	(view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2598       /* If the constant operation overflows we cannot do the transform
2599	  directly as we would introduce undefined overflow, for example
2600	  with (a - 1) + INT_MIN.  */
2601       (if (types_match (type, @0))
2602	(with { tree cst = const_binop (outer_op == inner_op
2603					? PLUS_EXPR : MINUS_EXPR,
2604					type, @1, @2); }
2605	 (if (cst && !TREE_OVERFLOW (cst))
2606	  (inner_op @0 { cst; } )
2607	  /* X+INT_MAX+1 is X-INT_MIN.  */
2608	  (if (INTEGRAL_TYPE_P (type) && cst
2609	       && wi::to_wide (cst) == wi::min_value (type))
2610	   (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2611	   /* Last resort, use some unsigned type.  */
2612	   (with { tree utype = unsigned_type_for (type); }
2613	    (if (utype)
2614	     (view_convert (inner_op
2615			    (view_convert:utype @0)
2616			    (view_convert:utype
2617			     { drop_tree_overflow (cst); }))))))))))))))
2618
2619  /* (CST1 - A) +- CST2 -> CST3 - A  */
2620  (for outer_op (plus minus)
2621   (simplify
2622    (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2623    /* If one of the types wraps, use that one.  */
2624    (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2625     /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2626	forever if something doesn't simplify into a constant.  */
2627     (if (!CONSTANT_CLASS_P (@0))
2628      (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2629     (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2630	  || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2631      (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2632      (if (types_match (type, @0))
2633       (with { tree cst = const_binop (outer_op, type, @1, @2); }
2634	(if (cst && !TREE_OVERFLOW (cst))
2635	 (minus { cst; } @0))))))))
2636
2637  /* CST1 - (CST2 - A) -> CST3 + A
2638     Use view_convert because it is safe for vectors and equivalent for
2639     scalars.  */
2640  (simplify
2641   (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2642   /* If one of the types wraps, use that one.  */
2643   (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2644    /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2645      forever if something doesn't simplify into a constant.  */
2646    (if (!CONSTANT_CLASS_P (@0))
2647     (plus (view_convert @0) (minus @1 (view_convert @2))))
2648    (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2649	 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2650     (view_convert (plus @0 (minus (view_convert @1) @2)))
2651     (if (types_match (type, @0))
2652      (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2653       (if (cst && !TREE_OVERFLOW (cst))
2654	(plus { cst; } @0)))))))
2655
2656/* ((T)(A)) + CST -> (T)(A + CST)  */
2657#if GIMPLE
2658  (simplify
2659   (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
2660    (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2661         && TREE_CODE (type) == INTEGER_TYPE
2662         && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2663         && int_fits_type_p (@1, TREE_TYPE (@0)))
2664     /* Perform binary operation inside the cast if the constant fits
2665        and (A + CST)'s range does not overflow.  */
2666     (with
2667      {
2668	wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2669			  max_ovf = wi::OVF_OVERFLOW;
2670        tree inner_type = TREE_TYPE (@0);
2671
2672	wide_int w1
2673	  = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2674			    TYPE_SIGN (inner_type));
2675
2676	value_range vr;
2677	if (get_global_range_query ()->range_of_expr (vr, @0)
2678	    && vr.kind () == VR_RANGE)
2679          {
2680	    wide_int wmin0 = vr.lower_bound ();
2681	    wide_int wmax0 = vr.upper_bound ();
2682            wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2683            wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2684          }
2685      }
2686     (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2687      (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2688     )))
2689#endif
2690
2691/* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2  */
2692#if GIMPLE
2693  (for op (plus minus)
2694   (simplify
2695    (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2696     (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2697	  && TREE_CODE (type) == INTEGER_TYPE
2698	  && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2699	  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2700	  && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2701	  && TYPE_OVERFLOW_WRAPS (type))
2702       (plus (convert @0) (op @2 (convert @1))))))
2703#endif
2704
2705/* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
2706   to a simple value.  */
2707#if GIMPLE
2708  (for op (plus minus)
2709   (simplify
2710    (op (convert @0) (convert @1))
2711     (if (INTEGRAL_TYPE_P (type)
2712	  && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2713	  && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2714	  && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
2715	  && !TYPE_OVERFLOW_TRAPS (type)
2716	  && !TYPE_OVERFLOW_SANITIZED (type))
2717      (convert (op! @0 @1)))))
2718#endif
2719
2720  /* ~A + A -> -1 */
2721  (simplify
2722   (plus:c (bit_not @0) @0)
2723   (if (!TYPE_OVERFLOW_TRAPS (type))
2724    { build_all_ones_cst (type); }))
2725
2726  /* ~A + 1 -> -A */
2727  (simplify
2728   (plus (convert? (bit_not @0)) integer_each_onep)
2729   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2730    (negate (convert @0))))
2731
2732  /* -A - 1 -> ~A */
2733  (simplify
2734   (minus (convert? (negate @0)) integer_each_onep)
2735   (if (!TYPE_OVERFLOW_TRAPS (type)
2736	&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
2737    (bit_not (convert @0))))
2738
2739  /* -1 - A -> ~A */
2740  (simplify
2741   (minus integer_all_onesp @0)
2742   (bit_not @0))
2743
2744  /* (T)(P + A) - (T)P -> (T) A */
2745  (simplify
2746   (minus (convert (plus:c @@0 @1))
2747    (convert? @0))
2748   (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2749	/* For integer types, if A has a smaller type
2750	   than T the result depends on the possible
2751	   overflow in P + A.
2752	   E.g. T=size_t, A=(unsigned)429497295, P>0.
2753	   However, if an overflow in P + A would cause
2754	   undefined behavior, we can assume that there
2755	   is no overflow.  */
2756	|| (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2757	    && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2758    (convert @1)))
2759  (simplify
2760   (minus (convert (pointer_plus @@0 @1))
2761    (convert @0))
2762   (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2763	/* For pointer types, if the conversion of A to the
2764	   final type requires a sign- or zero-extension,
2765	   then we have to punt - it is not defined which
2766	   one is correct.  */
2767	|| (POINTER_TYPE_P (TREE_TYPE (@0))
2768	    && TREE_CODE (@1) == INTEGER_CST
2769	    && tree_int_cst_sign_bit (@1) == 0))
2770    (convert @1)))
2771   (simplify
2772    (pointer_diff (pointer_plus @@0 @1) @0)
2773    /* The second argument of pointer_plus must be interpreted as signed, and
2774       thus sign-extended if necessary.  */
2775    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2776     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2777	second arg is unsigned even when we need to consider it as signed,
2778	we don't want to diagnose overflow here.  */
2779     (convert (view_convert:stype @1))))
2780
2781  /* (T)P - (T)(P + A) -> -(T) A */
2782  (simplify
2783   (minus (convert? @0)
2784    (convert (plus:c @@0 @1)))
2785   (if (INTEGRAL_TYPE_P (type)
2786	&& TYPE_OVERFLOW_UNDEFINED (type)
2787	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2788    (with { tree utype = unsigned_type_for (type); }
2789     (convert (negate (convert:utype @1))))
2790    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2791	 /* For integer types, if A has a smaller type
2792	    than T the result depends on the possible
2793	    overflow in P + A.
2794	    E.g. T=size_t, A=(unsigned)429497295, P>0.
2795	    However, if an overflow in P + A would cause
2796	    undefined behavior, we can assume that there
2797	    is no overflow.  */
2798	 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2799	     && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2800     (negate (convert @1)))))
2801  (simplify
2802   (minus (convert @0)
2803    (convert (pointer_plus @@0 @1)))
2804   (if (INTEGRAL_TYPE_P (type)
2805	&& TYPE_OVERFLOW_UNDEFINED (type)
2806	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2807    (with { tree utype = unsigned_type_for (type); }
2808     (convert (negate (convert:utype @1))))
2809    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2810	 /* For pointer types, if the conversion of A to the
2811	    final type requires a sign- or zero-extension,
2812	    then we have to punt - it is not defined which
2813	    one is correct.  */
2814	 || (POINTER_TYPE_P (TREE_TYPE (@0))
2815	     && TREE_CODE (@1) == INTEGER_CST
2816	     && tree_int_cst_sign_bit (@1) == 0))
2817     (negate (convert @1)))))
2818   (simplify
2819    (pointer_diff @0 (pointer_plus @@0 @1))
2820    /* The second argument of pointer_plus must be interpreted as signed, and
2821       thus sign-extended if necessary.  */
2822    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2823     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2824	second arg is unsigned even when we need to consider it as signed,
2825	we don't want to diagnose overflow here.  */
2826     (negate (convert (view_convert:stype @1)))))
2827
2828  /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2829  (simplify
2830   (minus (convert (plus:c @@0 @1))
2831    (convert (plus:c @0 @2)))
2832   (if (INTEGRAL_TYPE_P (type)
2833	&& TYPE_OVERFLOW_UNDEFINED (type)
2834	&& element_precision (type) <= element_precision (TREE_TYPE (@1))
2835	&& element_precision (type) <= element_precision (TREE_TYPE (@2)))
2836    (with { tree utype = unsigned_type_for (type); }
2837     (convert (minus (convert:utype @1) (convert:utype @2))))
2838    (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2839	  == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2840	 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2841	     /* For integer types, if A has a smaller type
2842		than T the result depends on the possible
2843		overflow in P + A.
2844		E.g. T=size_t, A=(unsigned)429497295, P>0.
2845		However, if an overflow in P + A would cause
2846		undefined behavior, we can assume that there
2847		is no overflow.  */
2848	     || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2849		 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2850		 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2851		 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2852     (minus (convert @1) (convert @2)))))
2853  (simplify
2854   (minus (convert (pointer_plus @@0 @1))
2855    (convert (pointer_plus @0 @2)))
2856   (if (INTEGRAL_TYPE_P (type)
2857	&& TYPE_OVERFLOW_UNDEFINED (type)
2858	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2859    (with { tree utype = unsigned_type_for (type); }
2860     (convert (minus (convert:utype @1) (convert:utype @2))))
2861    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2862	 /* For pointer types, if the conversion of A to the
2863	    final type requires a sign- or zero-extension,
2864	    then we have to punt - it is not defined which
2865	    one is correct.  */
2866	 || (POINTER_TYPE_P (TREE_TYPE (@0))
2867	     && TREE_CODE (@1) == INTEGER_CST
2868	     && tree_int_cst_sign_bit (@1) == 0
2869	     && TREE_CODE (@2) == INTEGER_CST
2870	     && tree_int_cst_sign_bit (@2) == 0))
2871     (minus (convert @1) (convert @2)))))
2872   (simplify
2873    (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
2874     (pointer_diff @0 @1))
2875   (simplify
2876    (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2877    /* The second argument of pointer_plus must be interpreted as signed, and
2878       thus sign-extended if necessary.  */
2879    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2880     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2881	second arg is unsigned even when we need to consider it as signed,
2882	we don't want to diagnose overflow here.  */
2883     (minus (convert (view_convert:stype @1))
2884	    (convert (view_convert:stype @2)))))))
2885
2886/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2887    Modeled after fold_plusminus_mult_expr.  */
2888(if (!TYPE_SATURATING (type)
2889     && (!FLOAT_TYPE_P (type) || flag_associative_math))
2890 (for plusminus (plus minus)
2891  (simplify
2892   (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2893   (if (!ANY_INTEGRAL_TYPE_P (type)
2894	|| TYPE_OVERFLOW_WRAPS (type)
2895	|| (INTEGRAL_TYPE_P (type)
2896	    && tree_expr_nonzero_p (@0)
2897	    && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2898    (if (single_use (@3) || single_use (@4))
2899     /* If @1 +- @2 is constant require a hard single-use on either
2900	original operand (but not on both).  */
2901     (mult (plusminus @1 @2) @0)
2902#if GIMPLE
2903     (mult! (plusminus @1 @2) @0)
2904#endif
2905  )))
2906  /* We cannot generate constant 1 for fract.  */
2907  (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2908   (simplify
2909    (plusminus @0 (mult:c@3 @0 @2))
2910    (if ((!ANY_INTEGRAL_TYPE_P (type)
2911	  || TYPE_OVERFLOW_WRAPS (type)
2912	  /* For @0 + @0*@2 this transformation would introduce UB
2913	     (where there was none before) for @0 in [-1,0] and @2 max.
2914	     For @0 - @0*@2 this transformation would introduce UB
2915	     for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1.  */
2916	  || (INTEGRAL_TYPE_P (type)
2917	      && ((tree_expr_nonzero_p (@0)
2918		   && expr_not_equal_to (@0,
2919				wi::minus_one (TYPE_PRECISION (type))))
2920		  || (plusminus == PLUS_EXPR
2921		      ? expr_not_equal_to (@2,
2922			    wi::max_value (TYPE_PRECISION (type), SIGNED))
2923		      /* Let's ignore the @0 -1 and @2 min case.  */
2924		      : (expr_not_equal_to (@2,
2925			    wi::min_value (TYPE_PRECISION (type), SIGNED))
2926			 && expr_not_equal_to (@2,
2927				wi::min_value (TYPE_PRECISION (type), SIGNED)
2928				+ 1))))))
2929	 && single_use (@3))
2930     (mult (plusminus { build_one_cst (type); } @2) @0)))
2931   (simplify
2932    (plusminus (mult:c@3 @0 @2) @0)
2933    (if ((!ANY_INTEGRAL_TYPE_P (type)
2934	  || TYPE_OVERFLOW_WRAPS (type)
2935	  /* For @0*@2 + @0 this transformation would introduce UB
2936	     (where there was none before) for @0 in [-1,0] and @2 max.
2937	     For @0*@2 - @0 this transformation would introduce UB
2938	     for @0 0 and @2 min.  */
2939	  || (INTEGRAL_TYPE_P (type)
2940	      && ((tree_expr_nonzero_p (@0)
2941		   && (plusminus == MINUS_EXPR
2942		       || expr_not_equal_to (@0,
2943				wi::minus_one (TYPE_PRECISION (type)))))
2944		  || expr_not_equal_to (@2,
2945			(plusminus == PLUS_EXPR
2946			 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2947			 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2948	 && single_use (@3))
2949     (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2950
2951#if GIMPLE
2952/* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
2953   (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)).  */
2954(simplify
2955 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
2956  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2957       && tree_fits_uhwi_p (@1)
2958       && tree_to_uhwi (@1) < element_precision (type)
2959       && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2960	   || optab_handler (smul_optab,
2961			     TYPE_MODE (type)) != CODE_FOR_nothing))
2962   (with { tree t = type;
2963	   if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2964	   wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
2965					     element_precision (type));
2966	   w += 1;
2967	   tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2968					: t, w);
2969	   cst = build_uniform_cst (t, cst); }
2970    (convert (mult (convert:t @0) { cst; })))))
2971(simplify
2972 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
2973  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2974       && tree_fits_uhwi_p (@1)
2975       && tree_to_uhwi (@1) < element_precision (type)
2976       && tree_fits_uhwi_p (@2)
2977       && tree_to_uhwi (@2) < element_precision (type)
2978       && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2979	   || optab_handler (smul_optab,
2980			     TYPE_MODE (type)) != CODE_FOR_nothing))
2981   (with { tree t = type;
2982	   if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2983	   unsigned int prec = element_precision (type);
2984	   wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
2985	   w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
2986	   tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2987					: t, w);
2988	   cst = build_uniform_cst (t, cst); }
2989    (convert (mult (convert:t @0) { cst; })))))
2990#endif
2991
2992/* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when
2993   tree_nonzero_bits allows IOR and XOR to be treated like PLUS.
2994   Likewise, handle (X<<C3) and X as legitimate variants of X*C.  */
2995(for op (bit_ior bit_xor)
2996 (simplify
2997  (op (mult:s@0 @1 INTEGER_CST@2)
2998      (mult:s@3 @1 INTEGER_CST@4))
2999  (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3000       && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3001   (mult @1
3002	 { wide_int_to_tree (type, wi::to_wide (@2) + wi::to_wide (@4)); })))
3003 (simplify
3004  (op:c (mult:s@0 @1 INTEGER_CST@2)
3005	(lshift:s@3 @1 INTEGER_CST@4))
3006  (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3007       && tree_int_cst_sgn (@4) > 0
3008       && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3009   (with { wide_int wone = wi::one (TYPE_PRECISION (type));
3010	   wide_int c = wi::add (wi::to_wide (@2),
3011				 wi::lshift (wone, wi::to_wide (@4))); }
3012    (mult @1 { wide_int_to_tree (type, c); }))))
3013 (simplify
3014  (op:c (mult:s@0 @1 INTEGER_CST@2)
3015	@1)
3016  (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3017       && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3018   (mult @1
3019	 { wide_int_to_tree (type,
3020			     wi::add (wi::to_wide (@2), 1)); })))
3021 (simplify
3022  (op (lshift:s@0 @1 INTEGER_CST@2)
3023      (lshift:s@3 @1 INTEGER_CST@4))
3024  (if (INTEGRAL_TYPE_P (type)
3025       && tree_int_cst_sgn (@2) > 0
3026       && tree_int_cst_sgn (@4) > 0
3027       && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3028   (with { tree t = type;
3029	   if (!TYPE_OVERFLOW_WRAPS (t))
3030	     t = unsigned_type_for (t);
3031	   wide_int wone = wi::one (TYPE_PRECISION (t));
3032	   wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)),
3033				 wi::lshift (wone, wi::to_wide (@4))); }
3034    (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); })))))
3035 (simplify
3036  (op:c (lshift:s@0 @1 INTEGER_CST@2)
3037	@1)
3038  (if (INTEGRAL_TYPE_P (type)
3039       && tree_int_cst_sgn (@2) > 0
3040       && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3041   (with { tree t = type;
3042	   if (!TYPE_OVERFLOW_WRAPS (t))
3043	     t = unsigned_type_for (t);
3044	   wide_int wone = wi::one (TYPE_PRECISION (t));
3045	   wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); }
3046    (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); }))))))
3047
3048/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax().  */
3049
3050(for minmax (min max FMIN_ALL FMAX_ALL)
3051 (simplify
3052  (minmax @0 @0)
3053  @0))
3054/* min(max(x,y),y) -> y.  */
3055(simplify
3056 (min:c (max:c @0 @1) @1)
3057 @1)
3058/* max(min(x,y),y) -> y.  */
3059(simplify
3060 (max:c (min:c @0 @1) @1)
3061 @1)
3062/* max(a,-a) -> abs(a).  */
3063(simplify
3064 (max:c @0 (negate @0))
3065 (if (TREE_CODE (type) != COMPLEX_TYPE
3066      && (! ANY_INTEGRAL_TYPE_P (type)
3067	  || TYPE_OVERFLOW_UNDEFINED (type)))
3068  (abs @0)))
3069/* min(a,-a) -> -abs(a).  */
3070(simplify
3071 (min:c @0 (negate @0))
3072 (if (TREE_CODE (type) != COMPLEX_TYPE
3073      && (! ANY_INTEGRAL_TYPE_P (type)
3074	  || TYPE_OVERFLOW_UNDEFINED (type)))
3075  (negate (abs @0))))
3076(simplify
3077 (min @0 @1)
3078 (switch
3079  (if (INTEGRAL_TYPE_P (type)
3080       && TYPE_MIN_VALUE (type)
3081       && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3082   @1)
3083  (if (INTEGRAL_TYPE_P (type)
3084       && TYPE_MAX_VALUE (type)
3085       && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3086   @0)))
3087(simplify
3088 (max @0 @1)
3089 (switch
3090  (if (INTEGRAL_TYPE_P (type)
3091       && TYPE_MAX_VALUE (type)
3092       && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3093   @1)
3094  (if (INTEGRAL_TYPE_P (type)
3095       && TYPE_MIN_VALUE (type)
3096       && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3097   @0)))
3098
3099/* max (a, a + CST) -> a + CST where CST is positive.  */
3100/* max (a, a + CST) -> a where CST is negative.  */
3101(simplify
3102 (max:c @0 (plus@2 @0 INTEGER_CST@1))
3103  (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3104   (if (tree_int_cst_sgn (@1) > 0)
3105    @2
3106    @0)))
3107
3108/* min (a, a + CST) -> a where CST is positive.  */
3109/* min (a, a + CST) -> a + CST where CST is negative. */
3110(simplify
3111 (min:c @0 (plus@2 @0 INTEGER_CST@1))
3112  (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3113   (if (tree_int_cst_sgn (@1) > 0)
3114    @0
3115    @2)))
3116
3117/* Simplify min (&var[off0], &var[off1]) etc. depending on whether
3118   the addresses are known to be less, equal or greater.  */
3119(for minmax (min max)
3120     cmp (lt gt)
3121 (simplify
3122  (minmax (convert1?@2 addr@0) (convert2?@3 addr@1))
3123  (with
3124   {
3125     poly_int64 off0, off1;
3126     tree base0, base1;
3127     int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
3128				  off0, off1, GENERIC);
3129   }
3130   (if (equal == 1)
3131    (if (minmax == MIN_EXPR)
3132     (if (known_le (off0, off1))
3133      @2
3134      (if (known_gt (off0, off1))
3135       @3))
3136     (if (known_ge (off0, off1))
3137      @2
3138      (if (known_lt (off0, off1))
3139       @3)))))))
3140
3141/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
3142   and the outer convert demotes the expression back to x's type.  */
3143(for minmax (min max)
3144 (simplify
3145  (convert (minmax@0 (convert @1) INTEGER_CST@2))
3146  (if (INTEGRAL_TYPE_P (type)
3147       && types_match (@1, type) && int_fits_type_p (@2, type)
3148       && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
3149       && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
3150   (minmax @1 (convert @2)))))
3151
3152(for minmax (FMIN_ALL FMAX_ALL)
3153 /* If either argument is NaN, return the other one.  Avoid the
3154    transformation if we get (and honor) a signalling NaN.  */
3155 (simplify
3156  (minmax:c @0 REAL_CST@1)
3157  (if (real_isnan (TREE_REAL_CST_PTR (@1))
3158       && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
3159   @0)))
3160/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR.  C99 requires these
3161   functions to return the numeric arg if the other one is NaN.
3162   MIN and MAX don't honor that, so only transform if -ffinite-math-only
3163   is set.  C99 doesn't require -0.0 to be handled, so we don't have to
3164   worry about it either.  */
3165(if (flag_finite_math_only)
3166 (simplify
3167  (FMIN_ALL @0 @1)
3168  (min @0 @1))
3169 (simplify
3170  (FMAX_ALL @0 @1)
3171  (max @0 @1)))
3172/* min (-A, -B) -> -max (A, B)  */
3173(for minmax (min max FMIN_ALL FMAX_ALL)
3174     maxmin (max min FMAX_ALL FMIN_ALL)
3175 (simplify
3176  (minmax (negate:s@2 @0) (negate:s@3 @1))
3177  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3178       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3179           && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3180   (negate (maxmin @0 @1)))))
3181/* MIN (~X, ~Y) -> ~MAX (X, Y)
3182   MAX (~X, ~Y) -> ~MIN (X, Y)  */
3183(for minmax (min max)
3184 maxmin (max min)
3185 (simplify
3186  (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
3187  (bit_not (maxmin @0 @1))))
3188
3189/* MIN (X, Y) == X -> X <= Y  */
3190(for minmax (min min max max)
3191     cmp    (eq  ne  eq  ne )
3192     out    (le  gt  ge  lt )
3193 (simplify
3194  (cmp:c (minmax:c @0 @1) @0)
3195  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3196   (out @0 @1))))
3197/* MIN (X, 5) == 0 -> X == 0
3198   MIN (X, 5) == 7 -> false  */
3199(for cmp (eq ne)
3200 (simplify
3201  (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
3202  (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3203		 TYPE_SIGN (TREE_TYPE (@0))))
3204   { constant_boolean_node (cmp == NE_EXPR, type); }
3205   (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3206		  TYPE_SIGN (TREE_TYPE (@0))))
3207    (cmp @0 @2)))))
3208(for cmp (eq ne)
3209 (simplify
3210  (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
3211  (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3212		 TYPE_SIGN (TREE_TYPE (@0))))
3213   { constant_boolean_node (cmp == NE_EXPR, type); }
3214   (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3215		  TYPE_SIGN (TREE_TYPE (@0))))
3216    (cmp @0 @2)))))
3217/* MIN (X, C1) < C2 -> X < C2 || C1 < C2  */
3218(for minmax (min     min     max     max     min     min     max     max    )
3219     cmp    (lt      le      gt      ge      gt      ge      lt      le     )
3220     comb   (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
3221 (simplify
3222  (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
3223  (comb (cmp @0 @2) (cmp @1 @2))))
3224
3225/* X <= MAX(X, Y) -> true
3226   X > MAX(X, Y) -> false
3227   X >= MIN(X, Y) -> true
3228   X < MIN(X, Y) -> false */
3229(for minmax (min     min     max     max     )
3230     cmp    (ge      lt      le      gt      )
3231 (simplify
3232  (cmp @0 (minmax:c @0 @1))
3233  { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
3234
3235/* Undo fancy way of writing max/min or other ?: expressions,
3236   like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
3237   People normally use ?: and that is what we actually try to optimize.  */
3238(for cmp (simple_comparison)
3239 (simplify
3240  (minus @0 (bit_and:c (minus @0 @1)
3241		       (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3242  (if (INTEGRAL_TYPE_P (type)
3243       && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3244       && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3245       && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3246       && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3247	   || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3248       && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3249   (cond (cmp @2 @3) @1 @0)))
3250 (simplify
3251  (plus:c @0 (bit_and:c (minus @1 @0)
3252			(convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3253  (if (INTEGRAL_TYPE_P (type)
3254       && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3255       && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3256       && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3257       && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3258	   || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3259       && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3260   (cond (cmp @2 @3) @1 @0)))
3261 /* Similarly with ^ instead of - though in that case with :c.  */
3262 (simplify
3263  (bit_xor:c @0 (bit_and:c (bit_xor:c @0 @1)
3264			   (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3265  (if (INTEGRAL_TYPE_P (type)
3266       && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3267       && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3268       && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3269       && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3270	   || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3271       && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3272   (cond (cmp @2 @3) @1 @0))))
3273
3274/* Simplifications of shift and rotates.  */
3275
3276(for rotate (lrotate rrotate)
3277 (simplify
3278  (rotate integer_all_onesp@0 @1)
3279  @0))
3280
3281/* Optimize -1 >> x for arithmetic right shifts.  */
3282(simplify
3283 (rshift integer_all_onesp@0 @1)
3284 (if (!TYPE_UNSIGNED (type))
3285  @0))
3286
3287/* Optimize (x >> c) << c into x & (-1<<c).  */
3288(simplify
3289 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
3290 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
3291  /* It doesn't matter if the right shift is arithmetic or logical.  */
3292  (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
3293
3294(simplify
3295 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
3296 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
3297      /* Allow intermediate conversion to integral type with whatever sign, as
3298	 long as the low TYPE_PRECISION (type)
3299	 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved.  */
3300      && INTEGRAL_TYPE_P (type)
3301      && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3302      && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3303      && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3304      && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
3305	  || wi::geu_p (wi::to_wide (@1),
3306			TYPE_PRECISION (type)
3307			- TYPE_PRECISION (TREE_TYPE (@2)))))
3308  (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
3309
3310/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
3311   types.  */
3312(simplify
3313 (rshift (lshift @0 INTEGER_CST@1) @1)
3314 (if (TYPE_UNSIGNED (type)
3315      && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
3316  (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
3317
3318/* Optimize x >> x into 0 */
3319(simplify
3320 (rshift @0 @0)
3321  { build_zero_cst (type); })
3322
3323(for shiftrotate (lrotate rrotate lshift rshift)
3324 (simplify
3325  (shiftrotate @0 integer_zerop)
3326  (non_lvalue @0))
3327 (simplify
3328  (shiftrotate integer_zerop@0 @1)
3329  @0)
3330 /* Prefer vector1 << scalar to vector1 << vector2
3331    if vector2 is uniform.  */
3332 (for vec (VECTOR_CST CONSTRUCTOR)
3333  (simplify
3334   (shiftrotate @0 vec@1)
3335   (with { tree tem = uniform_vector_p (@1); }
3336    (if (tem)
3337     (shiftrotate @0 { tem; }))))))
3338
3339/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
3340   Y is 0.  Similarly for X >> Y.  */
3341#if GIMPLE
3342(for shift (lshift rshift)
3343 (simplify
3344  (shift @0 SSA_NAME@1)
3345   (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3346    (with {
3347      int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
3348      int prec = TYPE_PRECISION (TREE_TYPE (@1));
3349     }
3350     (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
3351      @0)))))
3352#endif
3353
3354/* Rewrite an LROTATE_EXPR by a constant into an
3355   RROTATE_EXPR by a new constant.  */
3356(simplify
3357 (lrotate @0 INTEGER_CST@1)
3358 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
3359			    build_int_cst (TREE_TYPE (@1),
3360					   element_precision (type)), @1); }))
3361
3362/* Turn (a OP c1) OP c2 into a OP (c1+c2).  */
3363(for op (lrotate rrotate rshift lshift)
3364 (simplify
3365  (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
3366  (with { unsigned int prec = element_precision (type); }
3367   (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
3368        && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
3369        && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
3370	&& wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
3371    (with { unsigned int low = (tree_to_uhwi (@1)
3372				+ tree_to_uhwi (@2)); }
3373     /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
3374        being well defined.  */
3375     (if (low >= prec)
3376      (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
3377       (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
3378       (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
3379        { build_zero_cst (type); }
3380        (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
3381      (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
3382
3383
3384/* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd.  */
3385(simplify
3386 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
3387  (if ((wi::to_wide (@1) & 1) != 0)
3388   (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
3389   { build_zero_cst (type); }))
3390
3391/* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
3392   either to false if D is smaller (unsigned comparison) than C, or to
3393   x == log2 (D) - log2 (C).  Similarly for right shifts.  */
3394(for cmp (ne eq)
3395     icmp (eq ne)
3396 (simplify
3397  (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3398   (with { int c1 = wi::clz (wi::to_wide (@1));
3399	   int c2 = wi::clz (wi::to_wide (@2)); }
3400    (if (c1 < c2)
3401     { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3402     (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
3403 (simplify
3404  (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3405   (if (tree_int_cst_sgn (@1) > 0)
3406    (with { int c1 = wi::clz (wi::to_wide (@1));
3407	    int c2 = wi::clz (wi::to_wide (@2)); }
3408     (if (c1 > c2)
3409      { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3410      (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))))
3411
3412/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3413   (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3414   if CST2 != 0.  */
3415(for cmp (ne eq)
3416 (simplify
3417  (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
3418  (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
3419   (if (cand < 0
3420	|| (!integer_zerop (@2)
3421	    && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
3422    { constant_boolean_node (cmp == NE_EXPR, type); }
3423    (if (!integer_zerop (@2)
3424	 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
3425     (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
3426
3427/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3428        (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3429   if the new mask might be further optimized.  */
3430(for shift (lshift rshift)
3431 (simplify
3432  (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3433           INTEGER_CST@2)
3434   (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3435	&& TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3436	&& tree_fits_uhwi_p (@1)
3437	&& tree_to_uhwi (@1) > 0
3438	&& tree_to_uhwi (@1) < TYPE_PRECISION (type))
3439    (with
3440     {
3441       unsigned int shiftc = tree_to_uhwi (@1);
3442       unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3443       unsigned HOST_WIDE_INT newmask, zerobits = 0;
3444       tree shift_type = TREE_TYPE (@3);
3445       unsigned int prec;
3446
3447       if (shift == LSHIFT_EXPR)
3448	 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3449       else if (shift == RSHIFT_EXPR
3450		&& type_has_mode_precision_p (shift_type))
3451	 {
3452	   prec = TYPE_PRECISION (TREE_TYPE (@3));
3453	   tree arg00 = @0;
3454	   /* See if more bits can be proven as zero because of
3455	      zero extension.  */
3456	   if (@3 != @0
3457	       && TYPE_UNSIGNED (TREE_TYPE (@0)))
3458	     {
3459	       tree inner_type = TREE_TYPE (@0);
3460	       if (type_has_mode_precision_p (inner_type)
3461		   && TYPE_PRECISION (inner_type) < prec)
3462		 {
3463		   prec = TYPE_PRECISION (inner_type);
3464		   /* See if we can shorten the right shift.  */
3465		   if (shiftc < prec)
3466		     shift_type = inner_type;
3467		   /* Otherwise X >> C1 is all zeros, so we'll optimize
3468		      it into (X, 0) later on by making sure zerobits
3469		      is all ones.  */
3470		 }
3471	     }
3472	   zerobits = HOST_WIDE_INT_M1U;
3473	   if (shiftc < prec)
3474	     {
3475	       zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3476	       zerobits <<= prec - shiftc;
3477	     }
3478	   /* For arithmetic shift if sign bit could be set, zerobits
3479	      can contain actually sign bits, so no transformation is
3480	      possible, unless MASK masks them all away.  In that
3481	      case the shift needs to be converted into logical shift.  */
3482	   if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3483	       && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3484	     {
3485	       if ((mask & zerobits) == 0)
3486		 shift_type = unsigned_type_for (TREE_TYPE (@3));
3487	       else
3488		 zerobits = 0;
3489	     }
3490	 }
3491     }
3492     /* ((X << 16) & 0xff00) is (X, 0).  */
3493     (if ((mask & zerobits) == mask)
3494      { build_int_cst (type, 0); }
3495      (with { newmask = mask | zerobits; }
3496       (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3497        (with
3498	 {
3499	   /* Only do the transformation if NEWMASK is some integer
3500	      mode's mask.  */
3501	   for (prec = BITS_PER_UNIT;
3502	        prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3503	     if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3504	       break;
3505	 }
3506	 (if (prec < HOST_BITS_PER_WIDE_INT
3507	      || newmask == HOST_WIDE_INT_M1U)
3508	  (with
3509	   { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3510	   (if (!tree_int_cst_equal (newmaskt, @2))
3511	    (if (shift_type != TREE_TYPE (@3))
3512	     (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3513	     (bit_and @4 { newmaskt; })))))))))))))
3514
3515/* ((1 << n) & M) != 0  -> n == log2 (M) */
3516(for cmp (ne eq)
3517       icmp (eq ne)
3518 (simplify
3519  (cmp
3520   (bit_and
3521    (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop)
3522  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3523   (icmp @0 { wide_int_to_tree (TREE_TYPE (@0),
3524				wi::exact_log2 (wi::to_wide (@1))); }))))
3525
3526/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3527   (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1).  */
3528(for shift (lshift rshift)
3529 (for bit_op (bit_and bit_xor bit_ior)
3530  (simplify
3531   (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3532   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3533    (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3534     (if (mask)
3535      (bit_op (shift (convert @0) @1) { mask; })))))))
3536
3537/* ~(~X >> Y) -> X >> Y (for arithmetic shift).  */
3538(simplify
3539 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3540  (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3541       && (element_precision (TREE_TYPE (@0))
3542	   <= element_precision (TREE_TYPE (@1))
3543	   || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3544   (with
3545    { tree shift_type = TREE_TYPE (@0); }
3546     (convert (rshift (convert:shift_type @1) @2)))))
3547
3548/* ~(~X >>r Y) -> X >>r Y
3549   ~(~X <<r Y) -> X <<r Y */
3550(for rotate (lrotate rrotate)
3551 (simplify
3552  (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3553   (if ((element_precision (TREE_TYPE (@0))
3554	 <= element_precision (TREE_TYPE (@1))
3555	 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3556        && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3557	    || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3558    (with
3559     { tree rotate_type = TREE_TYPE (@0); }
3560      (convert (rotate (convert:rotate_type @1) @2))))))
3561
3562(for cmp (eq ne)
3563 (for rotate (lrotate rrotate)
3564      invrot (rrotate lrotate)
3565  /* (X >>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */
3566  (simplify
3567   (cmp (rotate @1 @0) (rotate @2 @0))
3568   (cmp @1 @2))
3569  /* (X >>r C1) cmp C2 may simplify to X cmp C3. */
3570  (simplify
3571   (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2)
3572   (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); }))
3573  /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C.  */
3574  (simplify
3575   (cmp (rotate @0 @1) INTEGER_CST@2)
3576    (if (integer_zerop (@2) || integer_all_onesp (@2))
3577     (cmp @0 @2)))))
3578
3579/* Both signed and unsigned lshift produce the same result, so use
3580   the form that minimizes the number of conversions.  Postpone this
3581   transformation until after shifts by zero have been folded.  */
3582(simplify
3583 (convert (lshift:s@0 (convert:s@1 @2) INTEGER_CST@3))
3584 (if (INTEGRAL_TYPE_P (type)
3585      && tree_nop_conversion_p (type, TREE_TYPE (@0))
3586      && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3587      && TYPE_PRECISION (TREE_TYPE (@2)) <= TYPE_PRECISION (type)
3588      && !integer_zerop (@3))
3589  (lshift (convert @2) @3)))
3590
3591/* Simplifications of conversions.  */
3592
3593/* Basic strip-useless-type-conversions / strip_nops.  */
3594(for cvt (convert view_convert float fix_trunc)
3595 (simplify
3596  (cvt @0)
3597  (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3598       || (GENERIC && type == TREE_TYPE (@0)))
3599   @0)))
3600
3601/* Contract view-conversions.  */
3602(simplify
3603  (view_convert (view_convert @0))
3604  (view_convert @0))
3605
3606/* For integral conversions with the same precision or pointer
3607   conversions use a NOP_EXPR instead.  */
3608(simplify
3609  (view_convert @0)
3610  (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3611       && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3612       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3613   (convert @0)))
3614
3615/* Strip inner integral conversions that do not change precision or size, or
3616   zero-extend while keeping the same size (for bool-to-char).  */
3617(simplify
3618  (view_convert (convert@0 @1))
3619  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3620       && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3621       && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3622       && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3623	   || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3624	       && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3625   (view_convert @1)))
3626
3627/* Simplify a view-converted empty constructor.  */
3628(simplify
3629  (view_convert CONSTRUCTOR@0)
3630  (if (TREE_CODE (@0) != SSA_NAME
3631       && CONSTRUCTOR_NELTS (@0) == 0)
3632   { build_zero_cst (type); }))
3633
3634/* Re-association barriers around constants and other re-association
3635   barriers can be removed.  */
3636(simplify
3637 (paren CONSTANT_CLASS_P@0)
3638 @0)
3639(simplify
3640 (paren (paren@1 @0))
3641 @1)
3642
3643/* Handle cases of two conversions in a row.  */
3644(for ocvt (convert float fix_trunc)
3645 (for icvt (convert float)
3646  (simplify
3647   (ocvt (icvt@1 @0))
3648   (with
3649    {
3650      tree inside_type = TREE_TYPE (@0);
3651      tree inter_type = TREE_TYPE (@1);
3652      int inside_int = INTEGRAL_TYPE_P (inside_type);
3653      int inside_ptr = POINTER_TYPE_P (inside_type);
3654      int inside_float = FLOAT_TYPE_P (inside_type);
3655      int inside_vec = VECTOR_TYPE_P (inside_type);
3656      unsigned int inside_prec = TYPE_PRECISION (inside_type);
3657      int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3658      int inter_int = INTEGRAL_TYPE_P (inter_type);
3659      int inter_ptr = POINTER_TYPE_P (inter_type);
3660      int inter_float = FLOAT_TYPE_P (inter_type);
3661      int inter_vec = VECTOR_TYPE_P (inter_type);
3662      unsigned int inter_prec = TYPE_PRECISION (inter_type);
3663      int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3664      int final_int = INTEGRAL_TYPE_P (type);
3665      int final_ptr = POINTER_TYPE_P (type);
3666      int final_float = FLOAT_TYPE_P (type);
3667      int final_vec = VECTOR_TYPE_P (type);
3668      unsigned int final_prec = TYPE_PRECISION (type);
3669      int final_unsignedp = TYPE_UNSIGNED (type);
3670    }
3671   (switch
3672    /* In addition to the cases of two conversions in a row
3673       handled below, if we are converting something to its own
3674       type via an object of identical or wider precision, neither
3675       conversion is needed.  */
3676    (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3677	  || (GENERIC
3678	      && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3679	 && (((inter_int || inter_ptr) && final_int)
3680	     || (inter_float && final_float))
3681	 && inter_prec >= final_prec)
3682     (ocvt @0))
3683
3684    /* Likewise, if the intermediate and initial types are either both
3685       float or both integer, we don't need the middle conversion if the
3686       former is wider than the latter and doesn't change the signedness
3687       (for integers).  Avoid this if the final type is a pointer since
3688       then we sometimes need the middle conversion.  */
3689    (if (((inter_int && inside_int) || (inter_float && inside_float))
3690	 && (final_int || final_float)
3691	 && inter_prec >= inside_prec
3692	 && (inter_float || inter_unsignedp == inside_unsignedp))
3693     (ocvt @0))
3694
3695    /* If we have a sign-extension of a zero-extended value, we can
3696       replace that by a single zero-extension.  Likewise if the
3697       final conversion does not change precision we can drop the
3698       intermediate conversion.  */
3699    (if (inside_int && inter_int && final_int
3700	 && ((inside_prec < inter_prec && inter_prec < final_prec
3701	      && inside_unsignedp && !inter_unsignedp)
3702	     || final_prec == inter_prec))
3703     (ocvt @0))
3704
3705    /* Two conversions in a row are not needed unless:
3706	- some conversion is floating-point (overstrict for now), or
3707	- some conversion is a vector (overstrict for now), or
3708	- the intermediate type is narrower than both initial and
3709	  final, or
3710	- the intermediate type and innermost type differ in signedness,
3711	  and the outermost type is wider than the intermediate, or
3712	- the initial type is a pointer type and the precisions of the
3713	  intermediate and final types differ, or
3714	- the final type is a pointer type and the precisions of the
3715	  initial and intermediate types differ.  */
3716    (if (! inside_float && ! inter_float && ! final_float
3717	 && ! inside_vec && ! inter_vec && ! final_vec
3718	 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3719	 && ! (inside_int && inter_int
3720	       && inter_unsignedp != inside_unsignedp
3721	       && inter_prec < final_prec)
3722	 && ((inter_unsignedp && inter_prec > inside_prec)
3723	     == (final_unsignedp && final_prec > inter_prec))
3724	 && ! (inside_ptr && inter_prec != final_prec)
3725	 && ! (final_ptr && inside_prec != inter_prec))
3726     (ocvt @0))
3727
3728    /* A truncation to an unsigned type (a zero-extension) should be
3729       canonicalized as bitwise and of a mask.  */
3730    (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion.  */
3731	 && final_int && inter_int && inside_int
3732	 && final_prec == inside_prec
3733	 && final_prec > inter_prec
3734	 && inter_unsignedp)
3735     (convert (bit_and @0 { wide_int_to_tree
3736	                      (inside_type,
3737			       wi::mask (inter_prec, false,
3738					 TYPE_PRECISION (inside_type))); })))
3739
3740    /* If we are converting an integer to a floating-point that can
3741       represent it exactly and back to an integer, we can skip the
3742       floating-point conversion.  */
3743    (if (GIMPLE /* PR66211 */
3744	 && inside_int && inter_float && final_int &&
3745	 (unsigned) significand_size (TYPE_MODE (inter_type))
3746	 >= inside_prec - !inside_unsignedp)
3747     (convert @0)))))))
3748
3749/* (float_type)(integer_type) x -> trunc (x) if the type of x matches
3750   float_type.  Only do the transformation if we do not need to preserve
3751   trapping behaviour, so require !flag_trapping_math. */
3752#if GIMPLE
3753(simplify
3754   (float (fix_trunc @0))
3755   (if (!flag_trapping_math
3756	&& types_match (type, TREE_TYPE (@0))
3757	&& direct_internal_fn_supported_p (IFN_TRUNC, type,
3758					  OPTIMIZE_FOR_BOTH))
3759      (IFN_TRUNC @0)))
3760#endif
3761
3762/* If we have a narrowing conversion to an integral type that is fed by a
3763   BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3764   masks off bits outside the final type (and nothing else).  */
3765(simplify
3766  (convert (bit_and @0 INTEGER_CST@1))
3767  (if (INTEGRAL_TYPE_P (type)
3768       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3769       && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3770       && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3771						    TYPE_PRECISION (type)), 0))
3772   (convert @0)))
3773
3774
3775/* (X /[ex] A) * A -> X.  */
3776(simplify
3777  (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3778  (convert @0))
3779
3780/* Simplify (A / B) * B + (A % B) -> A.  */
3781(for div (trunc_div ceil_div floor_div round_div)
3782     mod (trunc_mod ceil_mod floor_mod round_mod)
3783  (simplify
3784   (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3785   @0))
3786
3787/* ((X /[ex] A) +- B) * A  -->  X +- A * B.  */
3788(for op (plus minus)
3789 (simplify
3790  (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3791  (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3792       && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3793   (with
3794     {
3795       wi::overflow_type overflow;
3796       wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3797			       TYPE_SIGN (type), &overflow);
3798     }
3799     (if (types_match (type, TREE_TYPE (@2))
3800 	 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3801      (op @0 { wide_int_to_tree (type, mul); })
3802      (with { tree utype = unsigned_type_for (type); }
3803       (convert (op (convert:utype @0)
3804		    (mult (convert:utype @1) (convert:utype @2))))))))))
3805
3806/* Canonicalization of binary operations.  */
3807
3808/* Convert X + -C into X - C.  */
3809(simplify
3810 (plus @0 REAL_CST@1)
3811 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3812  (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3813   (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3814    (minus @0 { tem; })))))
3815
3816/* Convert x+x into x*2.  */
3817(simplify
3818 (plus @0 @0)
3819 (if (SCALAR_FLOAT_TYPE_P (type))
3820  (mult @0 { build_real (type, dconst2); })
3821  (if (INTEGRAL_TYPE_P (type))
3822   (mult @0 { build_int_cst (type, 2); }))))
3823
3824/* 0 - X  ->  -X.  */
3825(simplify
3826 (minus integer_zerop @1)
3827 (negate @1))
3828(simplify
3829 (pointer_diff integer_zerop @1)
3830 (negate (convert @1)))
3831
3832/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
3833   ARG0 is zero and X + ARG0 reduces to X, since that would mean
3834   (-ARG1 + ARG0) reduces to -ARG1.  */
3835(simplify
3836 (minus real_zerop@0 @1)
3837 (if (fold_real_zero_addition_p (type, @1, @0, 0))
3838  (negate @1)))
3839
3840/* Transform x * -1 into -x.  */
3841(simplify
3842 (mult @0 integer_minus_onep)
3843 (negate @0))
3844
3845/* Reassociate (X * CST) * Y to (X * Y) * CST.  This does not introduce
3846   signed overflow for CST != 0 && CST != -1.  */
3847(simplify
3848 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3849 (if (TREE_CODE (@2) != INTEGER_CST
3850      && single_use (@3)
3851      && !integer_zerop (@1) && !integer_minus_onep (@1))
3852  (mult (mult @0 @2) @1)))
3853
3854/* True if we can easily extract the real and imaginary parts of a complex
3855   number.  */
3856(match compositional_complex
3857 (convert? (complex @0 @1)))
3858
3859/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations.  */
3860(simplify
3861 (complex (realpart @0) (imagpart @0))
3862 @0)
3863(simplify
3864 (realpart (complex @0 @1))
3865 @0)
3866(simplify
3867 (imagpart (complex @0 @1))
3868 @1)
3869
3870/* Sometimes we only care about half of a complex expression.  */
3871(simplify
3872 (realpart (convert?:s (conj:s @0)))
3873 (convert (realpart @0)))
3874(simplify
3875 (imagpart (convert?:s (conj:s @0)))
3876 (convert (negate (imagpart @0))))
3877(for part (realpart imagpart)
3878 (for op (plus minus)
3879  (simplify
3880   (part (convert?:s@2 (op:s @0 @1)))
3881   (convert (op (part @0) (part @1))))))
3882(simplify
3883 (realpart (convert?:s (CEXPI:s @0)))
3884 (convert (COS @0)))
3885(simplify
3886 (imagpart (convert?:s (CEXPI:s @0)))
3887 (convert (SIN @0)))
3888
3889/* conj(conj(x)) -> x  */
3890(simplify
3891 (conj (convert? (conj @0)))
3892 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3893  (convert @0)))
3894
3895/* conj({x,y}) -> {x,-y}  */
3896(simplify
3897 (conj (convert?:s (complex:s @0 @1)))
3898 (with { tree itype = TREE_TYPE (type); }
3899  (complex (convert:itype @0) (negate (convert:itype @1)))))
3900
3901/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c.  */
3902(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
3903	    BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
3904 (simplify
3905  (bswap (bswap @0))
3906  @0)
3907 (simplify
3908  (bswap (bit_not (bswap @0)))
3909  (bit_not @0))
3910 (for bitop (bit_xor bit_ior bit_and)
3911  (simplify
3912   (bswap (bitop:c (bswap @0) @1))
3913   (bitop @0 (bswap @1))))
3914 (for cmp (eq ne)
3915  (simplify
3916   (cmp (bswap@2 @0) (bswap @1))
3917   (with { tree ctype = TREE_TYPE (@2); }
3918    (cmp (convert:ctype @0) (convert:ctype @1))))
3919  (simplify
3920   (cmp (bswap @0) INTEGER_CST@1)
3921   (with { tree ctype = TREE_TYPE (@1); }
3922    (cmp (convert:ctype @0) (bswap @1)))))
3923 /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2.  */
3924 (simplify
3925  (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2))
3926	   INTEGER_CST@3)
3927   (if (BITS_PER_UNIT == 8
3928	&& tree_fits_uhwi_p (@2)
3929	&& tree_fits_uhwi_p (@3))
3930    (with
3931     {
3932      unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4));
3933      unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2);
3934      unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3);
3935      unsigned HOST_WIDE_INT lo = bits & 7;
3936      unsigned HOST_WIDE_INT hi = bits - lo;
3937     }
3938     (if (bits < prec
3939	  && mask < (256u>>lo)
3940	  && bits < TYPE_PRECISION (TREE_TYPE(@0)))
3941      (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; }
3942       (if (ns == 0)
3943	(bit_and (convert @1) @3)
3944	(with
3945	 {
3946	  tree utype = unsigned_type_for (TREE_TYPE (@1));
3947	  tree nst = build_int_cst (integer_type_node, ns);
3948	 }
3949	 (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3))))))))
3950 /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2.  */
3951 (simplify
3952  (rshift (convert? (bswap@2 @0)) INTEGER_CST@1)
3953   (if (BITS_PER_UNIT == 8
3954	&& CHAR_TYPE_SIZE == 8
3955	&& tree_fits_uhwi_p (@1))
3956    (with
3957     {
3958      unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
3959      unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1);
3960      /* If the bswap was extended before the original shift, this
3961	 byte (shift) has the sign of the extension, not the sign of
3962	 the original shift.  */
3963      tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type;
3964     }
3965     /* Special case: logical right shift of sign-extended bswap.
3966	(unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */
3967     (if (TYPE_PRECISION (type) > prec
3968	  && !TYPE_UNSIGNED (TREE_TYPE (@2))
3969	  && TYPE_UNSIGNED (type)
3970	  && bits < prec && bits + 8 >= prec)
3971      (with { tree nst = build_int_cst (integer_type_node, prec - 8); }
3972       (rshift (convert (lshift:st (convert:st @0) {nst;})) @1))
3973      (if (bits + 8 == prec)
3974       (if (TYPE_UNSIGNED (st))
3975	(convert (convert:unsigned_char_type_node @0))
3976	(convert (convert:signed_char_type_node @0)))
3977       (if (bits < prec && bits + 8 > prec)
3978	(with
3979	 {
3980	  tree nst = build_int_cst (integer_type_node, bits & 7);
3981	  tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node
3982				       : signed_char_type_node;
3983	 }
3984	 (convert (rshift:bt (convert:bt @0) {nst;})))))))))
3985 /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1.  */
3986 (simplify
3987  (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1)
3988   (if (BITS_PER_UNIT == 8
3989	&& tree_fits_uhwi_p (@1)
3990	&& tree_to_uhwi (@1) < 256)
3991    (with
3992     {
3993      unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
3994      tree utype = unsigned_type_for (TREE_TYPE (@0));
3995      tree nst = build_int_cst (integer_type_node, prec - 8);
3996     }
3997     (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1)))))
3998
3999
4000/* Combine COND_EXPRs and VEC_COND_EXPRs.  */
4001
4002/* Simplify constant conditions.
4003   Only optimize constant conditions when the selected branch
4004   has the same type as the COND_EXPR.  This avoids optimizing
4005   away "c ? x : throw", where the throw has a void type.
4006   Note that we cannot throw away the fold-const.c variant nor
4007   this one as we depend on doing this transform before possibly
4008   A ? B : B -> B triggers and the fold-const.c one can optimize
4009   0 ? A : B to B even if A has side-effects.  Something
4010   genmatch cannot handle.  */
4011(simplify
4012 (cond INTEGER_CST@0 @1 @2)
4013 (if (integer_zerop (@0))
4014  (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
4015   @2)
4016  (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
4017   @1)))
4018(simplify
4019 (vec_cond VECTOR_CST@0 @1 @2)
4020 (if (integer_all_onesp (@0))
4021  @1
4022  (if (integer_zerop (@0))
4023   @2)))
4024
4025#if GIMPLE
4026/* Sink unary operations to branches, but only if we do fold both.  */
4027(for op (negate bit_not abs absu)
4028 (simplify
4029  (op (vec_cond:s @0 @1 @2))
4030  (vec_cond @0 (op! @1) (op! @2))))
4031
4032/* Sink binary operation to branches, but only if we can fold it.  */
4033(for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
4034	 lshift rshift rdiv trunc_div ceil_div floor_div round_div
4035	 trunc_mod ceil_mod floor_mod round_mod min max)
4036/* (c ? a : b) op (c ? d : e)  -->  c ? (a op d) : (b op e) */
4037 (simplify
4038  (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
4039  (vec_cond @0 (op! @1 @3) (op! @2 @4)))
4040
4041/* (c ? a : b) op d  -->  c ? (a op d) : (b op d) */
4042 (simplify
4043  (op (vec_cond:s @0 @1 @2) @3)
4044  (vec_cond @0 (op! @1 @3) (op! @2 @3)))
4045 (simplify
4046  (op @3 (vec_cond:s @0 @1 @2))
4047  (vec_cond @0 (op! @3 @1) (op! @3 @2))))
4048#endif
4049
4050#if GIMPLE
4051(match (nop_atomic_bit_test_and_p @0 @1 @4)
4052 (bit_and (convert?@4 (ATOMIC_FETCH_OR_XOR_N @2 INTEGER_CST@0 @3))
4053	   INTEGER_CST@1)
4054 (with {
4055	 int ibit = tree_log2 (@0);
4056	 int ibit2 = tree_log2 (@1);
4057       }
4058  (if (ibit == ibit2
4059      && ibit >= 0
4060      && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4061
4062(match (nop_atomic_bit_test_and_p @0 @1 @3)
4063 (bit_and (convert?@3 (SYNC_FETCH_OR_XOR_N @2 INTEGER_CST@0))
4064	  INTEGER_CST@1)
4065 (with {
4066	 int ibit = tree_log2 (@0);
4067	 int ibit2 = tree_log2 (@1);
4068       }
4069  (if (ibit == ibit2
4070      && ibit >= 0
4071      && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4072
4073(match (nop_atomic_bit_test_and_p @0 @0 @4)
4074 (bit_and:c
4075  (convert1?@4
4076   (ATOMIC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@5 @6)) @3))
4077  (convert2? @0))
4078 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4079
4080(match (nop_atomic_bit_test_and_p @0 @0 @4)
4081 (bit_and:c
4082  (convert1?@4
4083   (SYNC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@3 @5))))
4084  (convert2? @0))
4085 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4086
4087(match (nop_atomic_bit_test_and_p @0 @1 @3)
4088 (bit_and@4 (convert?@3 (ATOMIC_FETCH_AND_N @2 INTEGER_CST@0 @5))
4089	    INTEGER_CST@1)
4090 (with {
4091	 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4092					      TYPE_PRECISION(type)));
4093	 int ibit2 = tree_log2 (@1);
4094       }
4095  (if (ibit == ibit2
4096      && ibit >= 0
4097      && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4098
4099(match (nop_atomic_bit_test_and_p @0 @1 @3)
4100 (bit_and@4
4101  (convert?@3 (SYNC_FETCH_AND_AND_N @2 INTEGER_CST@0))
4102  INTEGER_CST@1)
4103 (with {
4104	 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4105					      TYPE_PRECISION(type)));
4106	 int ibit2 = tree_log2 (@1);
4107       }
4108  (if (ibit == ibit2
4109      && ibit >= 0
4110      && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4111
4112(match (nop_atomic_bit_test_and_p @4 @0 @3)
4113 (bit_and:c
4114  (convert1?@3
4115   (ATOMIC_FETCH_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))) @5))
4116  (convert2? @0))
4117 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4118
4119(match (nop_atomic_bit_test_and_p @4 @0 @3)
4120 (bit_and:c
4121  (convert1?@3
4122   (SYNC_FETCH_AND_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7)))))
4123  (convert2? @0))
4124  (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4125
4126#endif
4127
4128/* (v ? w : 0) ? a : b is just (v & w) ? a : b
4129   Currently disabled after pass lvec because ARM understands
4130   VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR.  */
4131(simplify
4132 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
4133 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4134  (vec_cond (bit_and @0 @3) @1 @2)))
4135(simplify
4136 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
4137 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4138  (vec_cond (bit_ior @0 @3) @1 @2)))
4139(simplify
4140 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
4141 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4142  (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
4143(simplify
4144 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
4145 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4146  (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
4147
4148/* c1 ? c2 ? a : b : b  -->  (c1 & c2) ? a : b  */
4149(simplify
4150 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
4151 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4152  (vec_cond (bit_and @0 @1) @2 @3)))
4153(simplify
4154 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
4155 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4156  (vec_cond (bit_ior @0 @1) @2 @3)))
4157(simplify
4158 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
4159 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4160  (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
4161(simplify
4162 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
4163 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4164  (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
4165
4166/* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
4167   types are compatible.  */
4168(simplify
4169 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
4170 (if (VECTOR_BOOLEAN_TYPE_P (type)
4171      && types_match (type, TREE_TYPE (@0)))
4172  (if (integer_zerop (@1) && integer_all_onesp (@2))
4173   (bit_not @0)
4174   (if (integer_all_onesp (@1) && integer_zerop (@2))
4175    @0))))
4176
4177/* A few simplifications of "a ? CST1 : CST2". */
4178/* NOTE: Only do this on gimple as the if-chain-to-switch
4179   optimization depends on the gimple to have if statements in it. */
4180#if GIMPLE
4181(simplify
4182 (cond @0 INTEGER_CST@1 INTEGER_CST@2)
4183 (switch
4184  (if (integer_zerop (@2))
4185   (switch
4186    /* a ? 1 : 0 -> a if 0 and 1 are integral types. */
4187    (if (integer_onep (@1))
4188     (convert (convert:boolean_type_node @0)))
4189    /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */
4190    (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1))
4191     (with {
4192       tree shift = build_int_cst (integer_type_node, tree_log2 (@1));
4193      }
4194      (lshift (convert (convert:boolean_type_node @0)) { shift; })))
4195    /* a ? -1 : 0 -> -a.  No need to check the TYPE_PRECISION not being 1
4196       here as the powerof2cst case above will handle that case correctly.  */
4197    (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1))
4198     (negate (convert (convert:boolean_type_node @0))))))
4199  (if (integer_zerop (@1))
4200   (with {
4201      tree booltrue = constant_boolean_node (true, boolean_type_node);
4202    }
4203    (switch
4204     /* a ? 0 : 1 -> !a. */
4205     (if (integer_onep (@2))
4206      (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } )))
4207     /* a ? powerof2cst : 0 -> (!a) << (log2(powerof2cst)) */
4208     (if (INTEGRAL_TYPE_P (type) &&  integer_pow2p (@2))
4209      (with {
4210	tree shift = build_int_cst (integer_type_node, tree_log2 (@2));
4211       }
4212       (lshift (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))
4213        { shift; })))
4214     /* a ? -1 : 0 -> -(!a).  No need to check the TYPE_PRECISION not being 1
4215       here as the powerof2cst case above will handle that case correctly.  */
4216     (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2))
4217      (negate (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))))
4218    )
4219   )
4220  )
4221 )
4222)
4223#endif
4224
4225/* Simplification moved from fold_cond_expr_with_comparison.  It may also
4226   be extended.  */
4227/* This pattern implements two kinds simplification:
4228
4229   Case 1)
4230   (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
4231     1) Conversions are type widening from smaller type.
4232     2) Const c1 equals to c2 after canonicalizing comparison.
4233     3) Comparison has tree code LT, LE, GT or GE.
4234   This specific pattern is needed when (cmp (convert x) c) may not
4235   be simplified by comparison patterns because of multiple uses of
4236   x.  It also makes sense here because simplifying across multiple
4237   referred var is always benefitial for complicated cases.
4238
4239   Case 2)
4240   (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2).  */
4241(for cmp (lt le gt ge eq)
4242 (simplify
4243  (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
4244  (with
4245   {
4246     tree from_type = TREE_TYPE (@1);
4247     tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
4248     enum tree_code code = ERROR_MARK;
4249
4250     if (INTEGRAL_TYPE_P (from_type)
4251	 && int_fits_type_p (@2, from_type)
4252	 && (types_match (c1_type, from_type)
4253	     || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
4254		 && (TYPE_UNSIGNED (from_type)
4255		     || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
4256	 && (types_match (c2_type, from_type)
4257	     || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
4258		 && (TYPE_UNSIGNED (from_type)
4259		     || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
4260       {
4261	 if (cmp != EQ_EXPR)
4262	   {
4263	     if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
4264	       {
4265		 /* X <= Y - 1 equals to X < Y.  */
4266		 if (cmp == LE_EXPR)
4267		   code = LT_EXPR;
4268		 /* X > Y - 1 equals to X >= Y.  */
4269		 if (cmp == GT_EXPR)
4270		   code = GE_EXPR;
4271	       }
4272	     if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
4273	       {
4274		 /* X < Y + 1 equals to X <= Y.  */
4275		 if (cmp == LT_EXPR)
4276		   code = LE_EXPR;
4277		 /* X >= Y + 1 equals to X > Y.  */
4278		 if (cmp == GE_EXPR)
4279		   code = GT_EXPR;
4280	       }
4281	     if (code != ERROR_MARK
4282		 || wi::to_widest (@2) == wi::to_widest (@3))
4283	       {
4284		 if (cmp == LT_EXPR || cmp == LE_EXPR)
4285		   code = MIN_EXPR;
4286		 if (cmp == GT_EXPR || cmp == GE_EXPR)
4287		   code = MAX_EXPR;
4288	       }
4289	   }
4290	 /* Can do A == C1 ? A : C2  ->  A == C1 ? C1 : C2?  */
4291	 else if (int_fits_type_p (@3, from_type))
4292	   code = EQ_EXPR;
4293       }
4294   }
4295   (if (code == MAX_EXPR)
4296    (convert (max @1 (convert @2)))
4297    (if (code == MIN_EXPR)
4298     (convert (min @1 (convert @2)))
4299     (if (code == EQ_EXPR)
4300      (convert (cond (eq @1 (convert @3))
4301		     (convert:from_type @3) (convert:from_type @2)))))))))
4302
4303/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
4304
4305     1) OP is PLUS or MINUS.
4306     2) CMP is LT, LE, GT or GE.
4307     3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
4308
4309   This pattern also handles special cases like:
4310
4311     A) Operand x is a unsigned to signed type conversion and c1 is
4312	integer zero.  In this case,
4313	  (signed type)x  < 0  <=>  x  > MAX_VAL(signed type)
4314	  (signed type)x >= 0  <=>  x <= MAX_VAL(signed type)
4315     B) Const c1 may not equal to (C3 op' C2).  In this case we also
4316	check equality for (c1+1) and (c1-1) by adjusting comparison
4317	code.
4318
4319   TODO: Though signed type is handled by this pattern, it cannot be
4320   simplified at the moment because C standard requires additional
4321   type promotion.  In order to match&simplify it here, the IR needs
4322   to be cleaned up by other optimizers, i.e, VRP.  */
4323(for op (plus minus)
4324 (for cmp (lt le gt ge)
4325  (simplify
4326   (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
4327   (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
4328    (if (types_match (from_type, to_type)
4329	 /* Check if it is special case A).  */
4330	 || (TYPE_UNSIGNED (from_type)
4331	     && !TYPE_UNSIGNED (to_type)
4332	     && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
4333	     && integer_zerop (@1)
4334	     && (cmp == LT_EXPR || cmp == GE_EXPR)))
4335     (with
4336      {
4337	wi::overflow_type overflow = wi::OVF_NONE;
4338	enum tree_code code, cmp_code = cmp;
4339	wide_int real_c1;
4340	wide_int c1 = wi::to_wide (@1);
4341	wide_int c2 = wi::to_wide (@2);
4342	wide_int c3 = wi::to_wide (@3);
4343	signop sgn = TYPE_SIGN (from_type);
4344
4345	/* Handle special case A), given x of unsigned type:
4346	    ((signed type)x  < 0) <=> (x  > MAX_VAL(signed type))
4347	    ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type))  */
4348	if (!types_match (from_type, to_type))
4349	  {
4350	    if (cmp_code == LT_EXPR)
4351	      cmp_code = GT_EXPR;
4352	    if (cmp_code == GE_EXPR)
4353	      cmp_code = LE_EXPR;
4354	    c1 = wi::max_value (to_type);
4355	  }
4356	/* To simplify this pattern, we require c3 = (c1 op c2).  Here we
4357	   compute (c3 op' c2) and check if it equals to c1 with op' being
4358	   the inverted operator of op.  Make sure overflow doesn't happen
4359	   if it is undefined.  */
4360	if (op == PLUS_EXPR)
4361	  real_c1 = wi::sub (c3, c2, sgn, &overflow);
4362	else
4363	  real_c1 = wi::add (c3, c2, sgn, &overflow);
4364
4365	code = cmp_code;
4366	if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
4367	  {
4368	    /* Check if c1 equals to real_c1.  Boundary condition is handled
4369	       by adjusting comparison operation if necessary.  */
4370	    if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
4371		&& !overflow)
4372	      {
4373		/* X <= Y - 1 equals to X < Y.  */
4374		if (cmp_code == LE_EXPR)
4375		  code = LT_EXPR;
4376		/* X > Y - 1 equals to X >= Y.  */
4377		if (cmp_code == GT_EXPR)
4378		  code = GE_EXPR;
4379	      }
4380	    if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
4381		&& !overflow)
4382	      {
4383		/* X < Y + 1 equals to X <= Y.  */
4384		if (cmp_code == LT_EXPR)
4385		  code = LE_EXPR;
4386		/* X >= Y + 1 equals to X > Y.  */
4387		if (cmp_code == GE_EXPR)
4388		  code = GT_EXPR;
4389	      }
4390	    if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
4391	      {
4392		if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
4393		  code = MIN_EXPR;
4394		if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
4395		  code = MAX_EXPR;
4396	      }
4397	  }
4398      }
4399      (if (code == MAX_EXPR)
4400       (op (max @X { wide_int_to_tree (from_type, real_c1); })
4401	   { wide_int_to_tree (from_type, c2); })
4402       (if (code == MIN_EXPR)
4403	(op (min @X { wide_int_to_tree (from_type, real_c1); })
4404	    { wide_int_to_tree (from_type, c2); })))))))))
4405
4406/* X != C1 ? -X : C2 simplifies to -X when -C1 == C2.  */
4407(simplify
4408 (cond (ne @0 INTEGER_CST@1) (negate@3 @0) INTEGER_CST@2)
4409 (if (!TYPE_SATURATING (type)
4410      && (TYPE_OVERFLOW_WRAPS (type)
4411	  || !wi::only_sign_bit_p (wi::to_wide (@1)))
4412      && wi::eq_p (wi::neg (wi::to_wide (@1)), wi::to_wide (@2)))
4413  @3))
4414
4415/* X != C1 ? ~X : C2 simplifies to ~X when ~C1 == C2.  */
4416(simplify
4417 (cond (ne @0 INTEGER_CST@1) (bit_not@3 @0) INTEGER_CST@2)
4418 (if (wi::eq_p (wi::bit_not (wi::to_wide (@1)), wi::to_wide (@2)))
4419  @3))
4420
4421/* (X + 1) > Y ? -X : 1 simplifies to X >= Y ? -X : 1 when
4422   X is unsigned, as when X + 1 overflows, X is -1, so -X == 1.  */
4423(simplify
4424 (cond (gt (plus @0 integer_onep) @1) (negate @0) integer_onep@2)
4425 (if (TYPE_UNSIGNED (type))
4426  (cond (ge @0 @1) (negate @0) @2)))
4427
4428(for cnd (cond vec_cond)
4429 /* A ? B : (A ? X : C) -> A ? B : C.  */
4430 (simplify
4431  (cnd @0 (cnd @0 @1 @2) @3)
4432  (cnd @0 @1 @3))
4433 (simplify
4434  (cnd @0 @1 (cnd @0 @2 @3))
4435  (cnd @0 @1 @3))
4436 /* A ? B : (!A ? C : X) -> A ? B : C.  */
4437 /* ???  This matches embedded conditions open-coded because genmatch
4438    would generate matching code for conditions in separate stmts only.
4439    The following is still important to merge then and else arm cases
4440    from if-conversion.  */
4441 (simplify
4442  (cnd @0 @1 (cnd @2 @3 @4))
4443  (if (inverse_conditions_p (@0, @2))
4444   (cnd @0 @1 @3)))
4445 (simplify
4446  (cnd @0 (cnd @1 @2 @3) @4)
4447  (if (inverse_conditions_p (@0, @1))
4448   (cnd @0 @3 @4)))
4449
4450 /* A ? B : B -> B.  */
4451 (simplify
4452  (cnd @0 @1 @1)
4453  @1)
4454
4455 /* !A ? B : C -> A ? C : B.  */
4456 (simplify
4457  (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
4458  (cnd @0 @2 @1)))
4459
4460/* abs/negative simplifications moved from fold_cond_expr_with_comparison,
4461   Need to handle (A - B) case as fold_cond_expr_with_comparison does.
4462   Need to handle UN* comparisons.
4463
4464   None of these transformations work for modes with signed
4465   zeros.  If A is +/-0, the first two transformations will
4466   change the sign of the result (from +0 to -0, or vice
4467   versa).  The last four will fix the sign of the result,
4468   even though the original expressions could be positive or
4469   negative, depending on the sign of A.
4470
4471   Note that all these transformations are correct if A is
4472   NaN, since the two alternatives (A and -A) are also NaNs.  */
4473
4474(for cnd (cond vec_cond)
4475 /* A == 0 ? A : -A    same as -A */
4476 (for cmp (eq uneq)
4477  (simplify
4478   (cnd (cmp @0 zerop) @0 (negate@1 @0))
4479    (if (!HONOR_SIGNED_ZEROS (type))
4480     @1))
4481  (simplify
4482   (cnd (cmp @0 zerop) integer_zerop (negate@1 @0))
4483    (if (!HONOR_SIGNED_ZEROS (type))
4484     @1))
4485 )
4486 /* A != 0 ? A : -A    same as A */
4487 (for cmp (ne ltgt)
4488  (simplify
4489   (cnd (cmp @0 zerop) @0 (negate @0))
4490    (if (!HONOR_SIGNED_ZEROS (type))
4491     @0))
4492  (simplify
4493   (cnd (cmp @0 zerop) @0 integer_zerop)
4494    (if (!HONOR_SIGNED_ZEROS (type))
4495     @0))
4496 )
4497 /* A >=/> 0 ? A : -A    same as abs (A) */
4498 (for cmp (ge gt)
4499  (simplify
4500   (cnd (cmp @0 zerop) @0 (negate @0))
4501    (if (!HONOR_SIGNED_ZEROS (type)
4502	 && !TYPE_UNSIGNED (type))
4503     (abs @0))))
4504 /* A <=/< 0 ? A : -A    same as -abs (A) */
4505 (for cmp (le lt)
4506  (simplify
4507   (cnd (cmp @0 zerop) @0 (negate @0))
4508    (if (!HONOR_SIGNED_ZEROS (type)
4509	 && !TYPE_UNSIGNED (type))
4510     (if (ANY_INTEGRAL_TYPE_P (type)
4511	  && !TYPE_OVERFLOW_WRAPS (type))
4512      (with {
4513	tree utype = unsigned_type_for (type);
4514       }
4515       (convert (negate (absu:utype @0))))
4516       (negate (abs @0)))))
4517 )
4518)
4519
4520/* -(type)!A -> (type)A - 1.  */
4521(simplify
4522 (negate (convert?:s (logical_inverted_value:s @0)))
4523 (if (INTEGRAL_TYPE_P (type)
4524      && TREE_CODE (type) != BOOLEAN_TYPE
4525      && TYPE_PRECISION (type) > 1
4526      && TREE_CODE (@0) == SSA_NAME
4527      && ssa_name_has_boolean_range (@0))
4528  (plus (convert:type @0) { build_all_ones_cst (type); })))
4529
4530/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
4531   return all -1 or all 0 results.  */
4532/* ??? We could instead convert all instances of the vec_cond to negate,
4533   but that isn't necessarily a win on its own.  */
4534(simplify
4535 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4536 (if (VECTOR_TYPE_P (type)
4537      && known_eq (TYPE_VECTOR_SUBPARTS (type),
4538		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4539      && (TYPE_MODE (TREE_TYPE (type))
4540          == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4541  (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4542
4543/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0).  */
4544(simplify
4545 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4546 (if (VECTOR_TYPE_P (type)
4547      && known_eq (TYPE_VECTOR_SUBPARTS (type),
4548		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4549      && (TYPE_MODE (TREE_TYPE (type))
4550          == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4551  (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4552
4553
4554/* Simplifications of comparisons.  */
4555
4556/* See if we can reduce the magnitude of a constant involved in a
4557   comparison by changing the comparison code.  This is a canonicalization
4558   formerly done by maybe_canonicalize_comparison_1.  */
4559(for cmp  (le gt)
4560     acmp (lt ge)
4561 (simplify
4562  (cmp @0 uniform_integer_cst_p@1)
4563  (with { tree cst = uniform_integer_cst_p (@1); }
4564   (if (tree_int_cst_sgn (cst) == -1)
4565     (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4566				   wide_int_to_tree (TREE_TYPE (cst),
4567						     wi::to_wide (cst)
4568						     + 1)); })))))
4569(for cmp  (ge lt)
4570     acmp (gt le)
4571 (simplify
4572  (cmp @0 uniform_integer_cst_p@1)
4573  (with { tree cst = uniform_integer_cst_p (@1); }
4574   (if (tree_int_cst_sgn (cst) == 1)
4575    (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4576				  wide_int_to_tree (TREE_TYPE (cst),
4577				  wi::to_wide (cst) - 1)); })))))
4578
4579/* We can simplify a logical negation of a comparison to the
4580   inverted comparison.  As we cannot compute an expression
4581   operator using invert_tree_comparison we have to simulate
4582   that with expression code iteration.  */
4583(for cmp (tcc_comparison)
4584     icmp (inverted_tcc_comparison)
4585     ncmp (inverted_tcc_comparison_with_nans)
4586 /* Ideally we'd like to combine the following two patterns
4587    and handle some more cases by using
4588      (logical_inverted_value (cmp @0 @1))
4589    here but for that genmatch would need to "inline" that.
4590    For now implement what forward_propagate_comparison did.  */
4591 (simplify
4592  (bit_not (cmp @0 @1))
4593  (if (VECTOR_TYPE_P (type)
4594       || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
4595   /* Comparison inversion may be impossible for trapping math,
4596      invert_tree_comparison will tell us.  But we can't use
4597      a computed operator in the replacement tree thus we have
4598      to play the trick below.  */
4599   (with { enum tree_code ic = invert_tree_comparison
4600             (cmp, HONOR_NANS (@0)); }
4601    (if (ic == icmp)
4602     (icmp @0 @1)
4603     (if (ic == ncmp)
4604      (ncmp @0 @1))))))
4605 (simplify
4606  (bit_xor (cmp @0 @1) integer_truep)
4607  (with { enum tree_code ic = invert_tree_comparison
4608            (cmp, HONOR_NANS (@0)); }
4609   (if (ic == icmp)
4610    (icmp @0 @1)
4611    (if (ic == ncmp)
4612     (ncmp @0 @1))))))
4613
4614/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
4615   ??? The transformation is valid for the other operators if overflow
4616   is undefined for the type, but performing it here badly interacts
4617   with the transformation in fold_cond_expr_with_comparison which
4618   attempts to synthetize ABS_EXPR.  */
4619(for cmp (eq ne)
4620 (for sub (minus pointer_diff)
4621  (simplify
4622   (cmp (sub@2 @0 @1) integer_zerop)
4623   (if (single_use (@2))
4624    (cmp @0 @1)))))
4625
4626/* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
4627   (x >= 0) ^ (y >= 0) to (x ^ y) < 0.  */
4628(for cmp (lt ge)
4629 (simplify
4630  (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
4631   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4632	&& !TYPE_UNSIGNED (TREE_TYPE (@0))
4633	&& types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4634    (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
4635/* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
4636   (x >= 0) ^ (y < 0) to (x ^ y) >= 0.  */
4637(simplify
4638 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
4639  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4640       && !TYPE_UNSIGNED (TREE_TYPE (@0))
4641       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4642   (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4643
4644/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
4645   signed arithmetic case.  That form is created by the compiler
4646   often enough for folding it to be of value.  One example is in
4647   computing loop trip counts after Operator Strength Reduction.  */
4648(for cmp (simple_comparison)
4649     scmp (swapped_simple_comparison)
4650 (simplify
4651  (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
4652  /* Handle unfolded multiplication by zero.  */
4653  (if (integer_zerop (@1))
4654   (cmp @1 @2)
4655   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4656	&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4657	&& single_use (@3))
4658    /* If @1 is negative we swap the sense of the comparison.  */
4659    (if (tree_int_cst_sgn (@1) < 0)
4660     (scmp @0 @2)
4661     (cmp @0 @2))))))
4662
4663/* For integral types with undefined overflow fold
4664   x * C1 == C2 into x == C2 / C1 or false.
4665   If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
4666   Z / 2^n Z.  */
4667(for cmp (eq ne)
4668 (simplify
4669  (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
4670  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4671       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4672       && wi::to_wide (@1) != 0)
4673   (with { widest_int quot; }
4674    (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
4675			    TYPE_SIGN (TREE_TYPE (@0)), &quot))
4676     (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
4677     { constant_boolean_node (cmp == NE_EXPR, type); }))
4678   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4679	&& TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4680	&& (wi::bit_and (wi::to_wide (@1), 1) == 1))
4681    (cmp @0
4682     {
4683       tree itype = TREE_TYPE (@0);
4684       int p = TYPE_PRECISION (itype);
4685       wide_int m = wi::one (p + 1) << p;
4686       wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
4687       wide_int i = wide_int::from (wi::mod_inv (a, m),
4688				    p, TYPE_SIGN (itype));
4689       wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
4690     })))))
4691
4692/* Simplify comparison of something with itself.  For IEEE
4693   floating-point, we can only do some of these simplifications.  */
4694(for cmp (eq ge le)
4695 (simplify
4696  (cmp @0 @0)
4697  (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
4698       || ! HONOR_NANS (@0))
4699   { constant_boolean_node (true, type); }
4700   (if (cmp != EQ_EXPR
4701	/* With -ftrapping-math conversion to EQ loses an exception.  */
4702	&& (! FLOAT_TYPE_P (TREE_TYPE (@0))
4703	    || ! flag_trapping_math))
4704    (eq @0 @0)))))
4705(for cmp (ne gt lt)
4706 (simplify
4707  (cmp @0 @0)
4708  (if (cmp != NE_EXPR
4709       || ! FLOAT_TYPE_P (TREE_TYPE (@0))
4710       || ! HONOR_NANS (@0))
4711   { constant_boolean_node (false, type); })))
4712(for cmp (unle unge uneq)
4713 (simplify
4714  (cmp @0 @0)
4715  { constant_boolean_node (true, type); }))
4716(for cmp (unlt ungt)
4717 (simplify
4718  (cmp @0 @0)
4719  (unordered @0 @0)))
4720(simplify
4721 (ltgt @0 @0)
4722 (if (!flag_trapping_math)
4723  { constant_boolean_node (false, type); }))
4724
4725/* x == ~x -> false */
4726/* x != ~x -> true */
4727(for cmp (eq ne)
4728 (simplify
4729  (cmp:c @0 (bit_not @0))
4730  { constant_boolean_node (cmp == NE_EXPR, type); }))
4731
4732/* Fold ~X op ~Y as Y op X.  */
4733(for cmp (simple_comparison)
4734 (simplify
4735  (cmp (bit_not@2 @0) (bit_not@3 @1))
4736  (if (single_use (@2) && single_use (@3))
4737   (cmp @1 @0))))
4738
4739/* Fold ~X op C as X op' ~C, where op' is the swapped comparison.  */
4740(for cmp (simple_comparison)
4741     scmp (swapped_simple_comparison)
4742 (simplify
4743  (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
4744  (if (single_use (@2)
4745       && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
4746   (scmp @0 (bit_not @1)))))
4747
4748(for cmp (simple_comparison)
4749 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2.  */
4750 (simplify
4751  (cmp (convert@2 @0) (convert? @1))
4752  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4753       && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4754	   == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4755       && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4756	   == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
4757   (with
4758    {
4759      tree type1 = TREE_TYPE (@1);
4760      if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
4761        {
4762	  REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
4763	  if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
4764	      && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
4765	    type1 = float_type_node;
4766	  if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
4767	      && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
4768	    type1 = double_type_node;
4769        }
4770      tree newtype
4771        = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
4772	   ? TREE_TYPE (@0) : type1);
4773    }
4774    (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
4775     (cmp (convert:newtype @0) (convert:newtype @1))))))
4776
4777 (simplify
4778  (cmp @0 REAL_CST@1)
4779  /* IEEE doesn't distinguish +0 and -0 in comparisons.  */
4780  (switch
4781   /* a CMP (-0) -> a CMP 0  */
4782   (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
4783    (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
4784   /* (-0) CMP b -> 0 CMP b.  */
4785   (if (TREE_CODE (@0) == REAL_CST
4786	&& REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0)))
4787    (cmp { build_real (TREE_TYPE (@0), dconst0); } @1))
4788   /* x != NaN is always true, other ops are always false.  */
4789   (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4790	&& !tree_expr_signaling_nan_p (@1)
4791	&& !tree_expr_maybe_signaling_nan_p (@0))
4792    { constant_boolean_node (cmp == NE_EXPR, type); })
4793   /* NaN != y is always true, other ops are always false.  */
4794   (if (TREE_CODE (@0) == REAL_CST
4795	&& REAL_VALUE_ISNAN (TREE_REAL_CST (@0))
4796        && !tree_expr_signaling_nan_p (@0)
4797        && !tree_expr_signaling_nan_p (@1))
4798    { constant_boolean_node (cmp == NE_EXPR, type); })
4799   /* Fold comparisons against infinity.  */
4800   (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
4801	&& MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
4802    (with
4803     {
4804       REAL_VALUE_TYPE max;
4805       enum tree_code code = cmp;
4806       bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
4807       if (neg)
4808         code = swap_tree_comparison (code);
4809     }
4810     (switch
4811      /* x > +Inf is always false, if we ignore NaNs or exceptions.  */
4812      (if (code == GT_EXPR
4813	   && !(HONOR_NANS (@0) && flag_trapping_math))
4814       { constant_boolean_node (false, type); })
4815      (if (code == LE_EXPR)
4816       /* x <= +Inf is always true, if we don't care about NaNs.  */
4817       (if (! HONOR_NANS (@0))
4818	{ constant_boolean_node (true, type); }
4819	/* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
4820	   an "invalid" exception.  */
4821	(if (!flag_trapping_math)
4822	 (eq @0 @0))))
4823      /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
4824	 for == this introduces an exception for x a NaN.  */
4825      (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
4826	   || code == GE_EXPR)
4827       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4828	(if (neg)
4829	 (lt @0 { build_real (TREE_TYPE (@0), max); })
4830	 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
4831      /* x < +Inf is always equal to x <= DBL_MAX.  */
4832      (if (code == LT_EXPR)
4833       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4834	(if (neg)
4835	 (ge @0 { build_real (TREE_TYPE (@0), max); })
4836	 (le @0 { build_real (TREE_TYPE (@0), max); }))))
4837      /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
4838	 an exception for x a NaN so use an unordered comparison.  */
4839      (if (code == NE_EXPR)
4840       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4841	(if (! HONOR_NANS (@0))
4842	 (if (neg)
4843	  (ge @0 { build_real (TREE_TYPE (@0), max); })
4844	  (le @0 { build_real (TREE_TYPE (@0), max); }))
4845	 (if (neg)
4846	  (unge @0 { build_real (TREE_TYPE (@0), max); })
4847	  (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
4848
4849 /* If this is a comparison of a real constant with a PLUS_EXPR
4850    or a MINUS_EXPR of a real constant, we can convert it into a
4851    comparison with a revised real constant as long as no overflow
4852    occurs when unsafe_math_optimizations are enabled.  */
4853 (if (flag_unsafe_math_optimizations)
4854  (for op (plus minus)
4855   (simplify
4856    (cmp (op @0 REAL_CST@1) REAL_CST@2)
4857    (with
4858     {
4859       tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
4860			       TREE_TYPE (@1), @2, @1);
4861     }
4862     (if (tem && !TREE_OVERFLOW (tem))
4863      (cmp @0 { tem; }))))))
4864
4865 /* Likewise, we can simplify a comparison of a real constant with
4866    a MINUS_EXPR whose first operand is also a real constant, i.e.
4867    (c1 - x) < c2 becomes x > c1-c2.  Reordering is allowed on
4868    floating-point types only if -fassociative-math is set.  */
4869 (if (flag_associative_math)
4870  (simplify
4871   (cmp (minus REAL_CST@0 @1) REAL_CST@2)
4872   (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
4873    (if (tem && !TREE_OVERFLOW (tem))
4874     (cmp { tem; } @1)))))
4875
4876 /* Fold comparisons against built-in math functions.  */
4877 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
4878  (for sq (SQRT)
4879   (simplify
4880    (cmp (sq @0) REAL_CST@1)
4881    (switch
4882     (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4883      (switch
4884       /* sqrt(x) < y is always false, if y is negative.  */
4885       (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
4886	{ constant_boolean_node (false, type); })
4887       /* sqrt(x) > y is always true, if y is negative and we
4888	  don't care about NaNs, i.e. negative values of x.  */
4889       (if (cmp == NE_EXPR || !HONOR_NANS (@0))
4890	{ constant_boolean_node (true, type); })
4891       /* sqrt(x) > y is the same as x >= 0, if y is negative.  */
4892       (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
4893     (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
4894      (switch
4895       /* sqrt(x) < 0 is always false.  */
4896       (if (cmp == LT_EXPR)
4897	{ constant_boolean_node (false, type); })
4898       /* sqrt(x) >= 0 is always true if we don't care about NaNs.  */
4899       (if (cmp == GE_EXPR && !HONOR_NANS (@0))
4900	{ constant_boolean_node (true, type); })
4901       /* sqrt(x) <= 0 -> x == 0.  */
4902       (if (cmp == LE_EXPR)
4903	(eq @0 @1))
4904       /* Otherwise sqrt(x) cmp 0 -> x cmp 0.  Here cmp can be >=, >,
4905          == or !=.  In the last case:
4906
4907	    (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
4908
4909	  if x is negative or NaN.  Due to -funsafe-math-optimizations,
4910	  the results for other x follow from natural arithmetic.  */
4911       (cmp @0 @1)))
4912     (if ((cmp == LT_EXPR
4913	   || cmp == LE_EXPR
4914	   || cmp == GT_EXPR
4915	   || cmp == GE_EXPR)
4916	  && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4917	  /* Give up for -frounding-math.  */
4918	  && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
4919      (with
4920       {
4921	 REAL_VALUE_TYPE c2;
4922	 enum tree_code ncmp = cmp;
4923	 const real_format *fmt
4924	   = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
4925	 real_arithmetic (&c2, MULT_EXPR,
4926			  &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
4927	 real_convert (&c2, fmt, &c2);
4928	 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
4929	    then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR.  */
4930	 if (!REAL_VALUE_ISINF (c2))
4931	   {
4932	     tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4933					build_real (TREE_TYPE (@0), c2));
4934	     if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4935	       ncmp = ERROR_MARK;
4936	     else if ((cmp == LT_EXPR || cmp == GE_EXPR)
4937		      && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
4938	       ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
4939	     else if ((cmp == LE_EXPR || cmp == GT_EXPR)
4940		      && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
4941	       ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
4942	     else
4943	       {
4944		 /* With rounding to even, sqrt of up to 3 different values
4945		    gives the same normal result, so in some cases c2 needs
4946		    to be adjusted.  */
4947		 REAL_VALUE_TYPE c2alt, tow;
4948		 if (cmp == LT_EXPR || cmp == GE_EXPR)
4949		   tow = dconst0;
4950		 else
4951		   real_inf (&tow);
4952		 real_nextafter (&c2alt, fmt, &c2, &tow);
4953		 real_convert (&c2alt, fmt, &c2alt);
4954		 if (REAL_VALUE_ISINF (c2alt))
4955		   ncmp = ERROR_MARK;
4956		 else
4957		   {
4958		     c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4959					   build_real (TREE_TYPE (@0), c2alt));
4960		     if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4961		       ncmp = ERROR_MARK;
4962		     else if (real_equal (&TREE_REAL_CST (c3),
4963					  &TREE_REAL_CST (@1)))
4964		       c2 = c2alt;
4965		   }
4966	       }
4967	   }
4968       }
4969       (if (cmp == GT_EXPR || cmp == GE_EXPR)
4970	(if (REAL_VALUE_ISINF (c2))
4971	 /* sqrt(x) > y is x == +Inf, when y is very large.  */
4972	 (if (HONOR_INFINITIES (@0))
4973	  (eq @0 { build_real (TREE_TYPE (@0), c2); })
4974	  { constant_boolean_node (false, type); })
4975	 /* sqrt(x) > c is the same as x > c*c.  */
4976	 (if (ncmp != ERROR_MARK)
4977	  (if (ncmp == GE_EXPR)
4978	   (ge @0 { build_real (TREE_TYPE (@0), c2); })
4979	   (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
4980	/* else if (cmp == LT_EXPR || cmp == LE_EXPR)  */
4981	(if (REAL_VALUE_ISINF (c2))
4982	 (switch
4983	  /* sqrt(x) < y is always true, when y is a very large
4984	     value and we don't care about NaNs or Infinities.  */
4985	  (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
4986	   { constant_boolean_node (true, type); })
4987	  /* sqrt(x) < y is x != +Inf when y is very large and we
4988	     don't care about NaNs.  */
4989	  (if (! HONOR_NANS (@0))
4990	   (ne @0 { build_real (TREE_TYPE (@0), c2); }))
4991	  /* sqrt(x) < y is x >= 0 when y is very large and we
4992	     don't care about Infinities.  */
4993	  (if (! HONOR_INFINITIES (@0))
4994	   (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
4995	  /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large.  */
4996	  (if (GENERIC)
4997	   (truth_andif
4998	    (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4999	    (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
5000	 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs.  */
5001	 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
5002	  (if (ncmp == LT_EXPR)
5003	   (lt @0 { build_real (TREE_TYPE (@0), c2); })
5004	   (le @0 { build_real (TREE_TYPE (@0), c2); }))
5005	  /* sqrt(x) < c is the same as x >= 0 && x < c*c.  */
5006	  (if (ncmp != ERROR_MARK && GENERIC)
5007	   (if (ncmp == LT_EXPR)
5008	    (truth_andif
5009	     (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5010	     (lt @0 { build_real (TREE_TYPE (@0), c2); }))
5011	    (truth_andif
5012	     (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5013	     (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
5014   /* Transform sqrt(x) cmp sqrt(y) -> x cmp y.  */
5015   (simplify
5016    (cmp (sq @0) (sq @1))
5017      (if (! HONOR_NANS (@0))
5018	(cmp @0 @1))))))
5019
5020/* Optimize various special cases of (FTYPE) N CMP (FTYPE) M.  */
5021(for cmp  (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
5022     icmp (lt le eq ne ge gt unordered ordered lt   le   gt   ge   eq   ne)
5023 (simplify
5024  (cmp (float@0 @1) (float @2))
5025   (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
5026	&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
5027    (with
5028     {
5029       format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
5030       tree type1 = TREE_TYPE (@1);
5031       bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
5032       tree type2 = TREE_TYPE (@2);
5033       bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
5034     }
5035     (if (fmt.can_represent_integral_type_p (type1)
5036	  && fmt.can_represent_integral_type_p (type2))
5037      (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
5038       { constant_boolean_node (cmp == ORDERED_EXPR, type); }
5039       (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
5040            && type1_signed_p >= type2_signed_p)
5041        (icmp @1 (convert @2))
5042        (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
5043             && type1_signed_p <= type2_signed_p)
5044         (icmp (convert:type2 @1) @2)
5045         (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
5046              && type1_signed_p == type2_signed_p)
5047	  (icmp @1 @2))))))))))
5048
5049/* Optimize various special cases of (FTYPE) N CMP CST.  */
5050(for cmp  (lt le eq ne ge gt)
5051     icmp (le le eq ne ge ge)
5052 (simplify
5053  (cmp (float @0) REAL_CST@1)
5054   (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
5055	&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
5056    (with
5057     {
5058       tree itype = TREE_TYPE (@0);
5059       format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
5060       const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
5061       /* Be careful to preserve any potential exceptions due to
5062	  NaNs.  qNaNs are ok in == or != context.
5063	  TODO: relax under -fno-trapping-math or
5064	  -fno-signaling-nans.  */
5065       bool exception_p
5066         = real_isnan (cst) && (cst->signalling
5067				|| (cmp != EQ_EXPR && cmp != NE_EXPR));
5068     }
5069     /* TODO: allow non-fitting itype and SNaNs when
5070	-fno-trapping-math.  */
5071     (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
5072      (with
5073       {
5074	 signop isign = TYPE_SIGN (itype);
5075	 REAL_VALUE_TYPE imin, imax;
5076	 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
5077	 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
5078
5079	 REAL_VALUE_TYPE icst;
5080	 if (cmp == GT_EXPR || cmp == GE_EXPR)
5081	   real_ceil (&icst, fmt, cst);
5082	 else if (cmp == LT_EXPR || cmp == LE_EXPR)
5083	   real_floor (&icst, fmt, cst);
5084	 else
5085	   real_trunc (&icst, fmt, cst);
5086
5087	 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
5088
5089	 bool overflow_p = false;
5090	 wide_int icst_val
5091	   = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
5092       }
5093       (switch
5094	/* Optimize cases when CST is outside of ITYPE's range.  */
5095	(if (real_compare (LT_EXPR, cst, &imin))
5096	 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
5097				  type); })
5098	(if (real_compare (GT_EXPR, cst, &imax))
5099	 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
5100				  type); })
5101	/* Remove cast if CST is an integer representable by ITYPE.  */
5102	(if (cst_int_p)
5103	 (cmp @0 { gcc_assert (!overflow_p);
5104		   wide_int_to_tree (itype, icst_val); })
5105	)
5106	/* When CST is fractional, optimize
5107	    (FTYPE) N == CST -> 0
5108	    (FTYPE) N != CST -> 1.  */
5109	(if (cmp == EQ_EXPR || cmp == NE_EXPR)
5110	 { constant_boolean_node (cmp == NE_EXPR, type); })
5111	/* Otherwise replace with sensible integer constant.  */
5112	(with
5113	 {
5114	   gcc_checking_assert (!overflow_p);
5115	 }
5116	 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
5117
5118/* Fold A /[ex] B CMP C to A CMP B * C.  */
5119(for cmp (eq ne)
5120 (simplify
5121  (cmp (exact_div @0 @1) INTEGER_CST@2)
5122  (if (!integer_zerop (@1))
5123   (if (wi::to_wide (@2) == 0)
5124    (cmp @0 @2)
5125    (if (TREE_CODE (@1) == INTEGER_CST)
5126     (with
5127      {
5128	wi::overflow_type ovf;
5129	wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5130				 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5131      }
5132      (if (ovf)
5133       { constant_boolean_node (cmp == NE_EXPR, type); }
5134       (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
5135(for cmp (lt le gt ge)
5136 (simplify
5137  (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
5138  (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5139   (with
5140    {
5141      wi::overflow_type ovf;
5142      wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5143			       TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5144    }
5145    (if (ovf)
5146     { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
5147					TYPE_SIGN (TREE_TYPE (@2)))
5148			      != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
5149     (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
5150
5151/* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
5152
5153   For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
5154   For large C (more than min/B+2^size), this is also true, with the
5155   multiplication computed modulo 2^size.
5156   For intermediate C, this just tests the sign of A.  */
5157(for cmp  (lt le gt ge)
5158     cmp2 (ge ge lt lt)
5159 (simplify
5160  (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
5161  (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
5162       && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
5163       && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5164   (with
5165    {
5166      tree utype = TREE_TYPE (@2);
5167      wide_int denom = wi::to_wide (@1);
5168      wide_int right = wi::to_wide (@2);
5169      wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
5170      wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
5171      bool small = wi::leu_p (right, smax);
5172      bool large = wi::geu_p (right, smin);
5173    }
5174    (if (small || large)
5175     (cmp (convert:utype @0) (mult @2 (convert @1)))
5176     (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
5177
5178/* Unordered tests if either argument is a NaN.  */
5179(simplify
5180 (bit_ior (unordered @0 @0) (unordered @1 @1))
5181 (if (types_match (@0, @1))
5182  (unordered @0 @1)))
5183(simplify
5184 (bit_and (ordered @0 @0) (ordered @1 @1))
5185 (if (types_match (@0, @1))
5186  (ordered @0 @1)))
5187(simplify
5188 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
5189 @2)
5190(simplify
5191 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
5192 @2)
5193
5194/* Simple range test simplifications.  */
5195/* A < B || A >= B -> true.  */
5196(for test1 (lt le le le ne ge)
5197     test2 (ge gt ge ne eq ne)
5198 (simplify
5199  (bit_ior:c (test1 @0 @1) (test2 @0 @1))
5200  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5201       || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5202   { constant_boolean_node (true, type); })))
5203/* A < B && A >= B -> false.  */
5204(for test1 (lt lt lt le ne eq)
5205     test2 (ge gt eq gt eq gt)
5206 (simplify
5207  (bit_and:c (test1 @0 @1) (test2 @0 @1))
5208  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5209       || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5210   { constant_boolean_node (false, type); })))
5211
5212/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
5213   A & (2**N - 1) >  2**K - 1 -> A & (2**N - 2**K) != 0
5214
5215   Note that comparisons
5216     A & (2**N - 1) <  2**K   -> A & (2**N - 2**K) == 0
5217     A & (2**N - 1) >= 2**K   -> A & (2**N - 2**K) != 0
5218   will be canonicalized to above so there's no need to
5219   consider them here.
5220 */
5221
5222(for cmp (le gt)
5223     eqcmp (eq ne)
5224 (simplify
5225  (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
5226  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
5227   (with
5228    {
5229     tree ty = TREE_TYPE (@0);
5230     unsigned prec = TYPE_PRECISION (ty);
5231     wide_int mask = wi::to_wide (@2, prec);
5232     wide_int rhs = wi::to_wide (@3, prec);
5233     signop sgn = TYPE_SIGN (ty);
5234    }
5235    (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
5236	 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
5237      (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
5238	     { build_zero_cst (ty); }))))))
5239
5240/* -A CMP -B -> B CMP A.  */
5241(for cmp (tcc_comparison)
5242     scmp (swapped_tcc_comparison)
5243 (simplify
5244  (cmp (negate @0) (negate @1))
5245  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5246       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5247	   && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5248   (scmp @0 @1)))
5249 (simplify
5250  (cmp (negate @0) CONSTANT_CLASS_P@1)
5251  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5252       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5253	   && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5254   (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
5255    (if (tem && !TREE_OVERFLOW (tem))
5256     (scmp @0 { tem; }))))))
5257
5258/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0.  */
5259(for op (eq ne)
5260 (simplify
5261  (op (abs @0) zerop@1)
5262  (op @0 @1)))
5263
5264/* From fold_sign_changed_comparison and fold_widened_comparison.
5265   FIXME: the lack of symmetry is disturbing.  */
5266(for cmp (simple_comparison)
5267 (simplify
5268  (cmp (convert@0 @00) (convert?@1 @10))
5269  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5270       /* Disable this optimization if we're casting a function pointer
5271	  type on targets that require function pointer canonicalization.  */
5272       && !(targetm.have_canonicalize_funcptr_for_compare ()
5273	    && ((POINTER_TYPE_P (TREE_TYPE (@00))
5274		 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
5275		|| (POINTER_TYPE_P (TREE_TYPE (@10))
5276		    && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
5277       && single_use (@0))
5278   (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
5279	&& (TREE_CODE (@10) == INTEGER_CST
5280	    || @1 != @10)
5281	&& (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
5282	    || cmp == NE_EXPR
5283	    || cmp == EQ_EXPR)
5284	&& !POINTER_TYPE_P (TREE_TYPE (@00)))
5285    /* ???  The special-casing of INTEGER_CST conversion was in the original
5286       code and here to avoid a spurious overflow flag on the resulting
5287       constant which fold_convert produces.  */
5288    (if (TREE_CODE (@1) == INTEGER_CST)
5289     (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
5290				TREE_OVERFLOW (@1)); })
5291     (cmp @00 (convert @1)))
5292
5293    (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
5294     /* If possible, express the comparison in the shorter mode.  */
5295     (if ((cmp == EQ_EXPR || cmp == NE_EXPR
5296	   || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
5297	   || (!TYPE_UNSIGNED (TREE_TYPE (@0))
5298	       && TYPE_UNSIGNED (TREE_TYPE (@00))))
5299	  && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
5300	      || ((TYPE_PRECISION (TREE_TYPE (@00))
5301		   >= TYPE_PRECISION (TREE_TYPE (@10)))
5302		  && (TYPE_UNSIGNED (TREE_TYPE (@00))
5303		      == TYPE_UNSIGNED (TREE_TYPE (@10))))
5304	      || (TREE_CODE (@10) == INTEGER_CST
5305		  && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5306		  && int_fits_type_p (@10, TREE_TYPE (@00)))))
5307      (cmp @00 (convert @10))
5308      (if (TREE_CODE (@10) == INTEGER_CST
5309	   && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5310	   && !int_fits_type_p (@10, TREE_TYPE (@00)))
5311       (with
5312	{
5313	  tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5314	  tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5315	  bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
5316	  bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
5317	}
5318	(if (above || below)
5319	 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5320	  { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
5321	  (if (cmp == LT_EXPR || cmp == LE_EXPR)
5322	   { constant_boolean_node (above ? true : false, type); }
5323	   (if (cmp == GT_EXPR || cmp == GE_EXPR)
5324	    { constant_boolean_node (above ? false : true, type); }))))))))))))
5325
5326(for cmp (eq ne)
5327 (simplify
5328  /* SSA names are canonicalized to 2nd place.  */
5329  (cmp addr@0 SSA_NAME@1)
5330  (with
5331   { poly_int64 off; tree base; }
5332   /* A local variable can never be pointed to by
5333      the default SSA name of an incoming parameter.  */
5334   (if (SSA_NAME_IS_DEFAULT_DEF (@1)
5335	&& TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
5336	&& (base = get_base_address (TREE_OPERAND (@0, 0)))
5337	&& TREE_CODE (base) == VAR_DECL
5338	&& auto_var_in_fn_p (base, current_function_decl))
5339    (if (cmp == NE_EXPR)
5340     { constant_boolean_node (true, type); }
5341     { constant_boolean_node (false, type); })
5342    /* If the address is based on @1 decide using the offset.  */
5343    (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
5344	 && TREE_CODE (base) == MEM_REF
5345	 && TREE_OPERAND (base, 0) == @1)
5346     (with { off += mem_ref_offset (base).force_shwi (); }
5347      (if (known_ne (off, 0))
5348       { constant_boolean_node (cmp == NE_EXPR, type); }
5349       (if (known_eq (off, 0))
5350        { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
5351
5352/* Equality compare simplifications from fold_binary  */
5353(for cmp (eq ne)
5354
5355 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
5356    Similarly for NE_EXPR.  */
5357 (simplify
5358  (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
5359  (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
5360       && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
5361   { constant_boolean_node (cmp == NE_EXPR, type); }))
5362
5363 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y.  */
5364 (simplify
5365  (cmp (bit_xor @0 @1) integer_zerop)
5366  (cmp @0 @1))
5367
5368 /* (X ^ Y) == Y becomes X == 0.
5369    Likewise (X ^ Y) == X becomes Y == 0.  */
5370 (simplify
5371  (cmp:c (bit_xor:c @0 @1) @0)
5372  (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
5373
5374#if GIMPLE
5375 /* (X & Y) == X becomes (X & ~Y) == 0.  */
5376 (simplify
5377  (cmp:c (bit_and:c @0 @1) @0)
5378  (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5379 (simplify
5380  (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0))
5381  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5382       && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5383       && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5384       && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0))
5385       && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2))
5386       && !wi::neg_p (wi::to_wide (@1)))
5387   (cmp (bit_and @0 (convert (bit_not @1)))
5388	{ build_zero_cst (TREE_TYPE (@0)); })))
5389
5390 /* (X | Y) == Y becomes (X & ~Y) == 0.  */
5391 (simplify
5392  (cmp:c (bit_ior:c @0 @1) @1)
5393  (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5394#endif
5395
5396 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2).  */
5397 (simplify
5398  (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
5399  (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
5400   (cmp @0 (bit_xor @1 (convert @2)))))
5401
5402 (simplify
5403  (cmp (convert? addr@0) integer_zerop)
5404  (if (tree_single_nonzero_warnv_p (@0, NULL))
5405   { constant_boolean_node (cmp == NE_EXPR, type); }))
5406
5407 /* (X & C) op (Y & C) into (X ^ Y) & C op 0.  */
5408 (simplify
5409  (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
5410  (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
5411
5412/* (X < 0) != (Y < 0) into (X ^ Y) < 0.
5413   (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
5414   (X < 0) == (Y < 0) into (X ^ Y) >= 0.
5415   (X >= 0) == (Y >= 0) into (X ^ Y) >= 0.  */
5416(for cmp (eq ne)
5417     ncmp (ge lt)
5418 (for sgncmp (ge lt)
5419  (simplify
5420   (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
5421   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5422	&& !TYPE_UNSIGNED (TREE_TYPE (@0))
5423	&& types_match (@0, @1))
5424    (ncmp (bit_xor @0 @1) @2)))))
5425/* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
5426   (X < 0) != (Y >= 0) into (X ^ Y) >= 0.  */
5427(for cmp (eq ne)
5428     ncmp (lt ge)
5429 (simplify
5430  (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
5431   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5432	&& !TYPE_UNSIGNED (TREE_TYPE (@0))
5433	&& types_match (@0, @1))
5434    (ncmp (bit_xor @0 @1) @2))))
5435
5436/* If we have (A & C) == C where C is a power of 2, convert this into
5437   (A & C) != 0.  Similarly for NE_EXPR.  */
5438(for cmp (eq ne)
5439     icmp (ne eq)
5440 (simplify
5441  (cmp (bit_and@2 @0 integer_pow2p@1) @1)
5442  (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
5443
5444(for cmp (ge lt)
5445/* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */
5446/* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */
5447 (simplify
5448  (cond (cmp @0 integer_zerop) (bit_not @1) @1)
5449   (if (INTEGRAL_TYPE_P (type)
5450	&& INTEGRAL_TYPE_P (TREE_TYPE (@0))
5451        && !TYPE_UNSIGNED (TREE_TYPE (@0))
5452        && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5453    (with
5454     {
5455       tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5456     }
5457    (if (cmp == LT_EXPR)
5458     (bit_xor (convert (rshift @0 {shifter;})) @1)
5459     (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))
5460/* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */
5461/* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */
5462 (simplify
5463  (cond (cmp @0 integer_zerop) @1 (bit_not @1))
5464   (if (INTEGRAL_TYPE_P (type)
5465	&& INTEGRAL_TYPE_P (TREE_TYPE (@0))
5466        && !TYPE_UNSIGNED (TREE_TYPE (@0))
5467        && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5468    (with
5469     {
5470       tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5471     }
5472    (if (cmp == GE_EXPR)
5473     (bit_xor (convert (rshift @0 {shifter;})) @1)
5474     (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))))
5475
5476/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
5477   convert this into a shift followed by ANDing with D.  */
5478(simplify
5479 (cond
5480  (ne (bit_and @0 integer_pow2p@1) integer_zerop)
5481  INTEGER_CST@2 integer_zerop)
5482 (if (!POINTER_TYPE_P (type) && integer_pow2p (@2))
5483  (with {
5484     int shift = (wi::exact_log2 (wi::to_wide (@2))
5485		  - wi::exact_log2 (wi::to_wide (@1)));
5486   }
5487   (if (shift > 0)
5488    (bit_and
5489     (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
5490    (bit_and
5491     (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
5492     @2)))))
5493
5494/* If we have (A & C) != 0 where C is the sign bit of A, convert
5495   this into A < 0.  Similarly for (A & C) == 0 into A >= 0.  */
5496(for cmp (eq ne)
5497     ncmp (ge lt)
5498 (simplify
5499  (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
5500  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5501       && type_has_mode_precision_p (TREE_TYPE (@0))
5502       && element_precision (@2) >= element_precision (@0)
5503       && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
5504   (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
5505    (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
5506
5507/* If we have A < 0 ? C : 0 where C is a power of 2, convert
5508   this into a right shift or sign extension followed by ANDing with C.  */
5509(simplify
5510 (cond
5511  (lt @0 integer_zerop)
5512  INTEGER_CST@1 integer_zerop)
5513 (if (integer_pow2p (@1)
5514      && !TYPE_UNSIGNED (TREE_TYPE (@0)))
5515  (with {
5516    int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
5517   }
5518   (if (shift >= 0)
5519    (bit_and
5520     (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
5521     @1)
5522    /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
5523       sign extension followed by AND with C will achieve the effect.  */
5524    (bit_and (convert @0) @1)))))
5525
5526/* When the addresses are not directly of decls compare base and offset.
5527   This implements some remaining parts of fold_comparison address
5528   comparisons but still no complete part of it.  Still it is good
5529   enough to make fold_stmt not regress when not dispatching to fold_binary.  */
5530(for cmp (simple_comparison)
5531 (simplify
5532  (cmp (convert1?@2 addr@0) (convert2? addr@1))
5533  (with
5534   {
5535     poly_int64 off0, off1;
5536     tree base0, base1;
5537     int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
5538				  off0, off1, GENERIC);
5539   }
5540   (if (equal == 1)
5541    (switch
5542     (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5543      { constant_boolean_node (known_eq (off0, off1), type); })
5544     (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5545      { constant_boolean_node (known_ne (off0, off1), type); })
5546     (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
5547      { constant_boolean_node (known_lt (off0, off1), type); })
5548     (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
5549      { constant_boolean_node (known_le (off0, off1), type); })
5550     (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
5551      { constant_boolean_node (known_ge (off0, off1), type); })
5552     (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
5553      { constant_boolean_node (known_gt (off0, off1), type); }))
5554    (if (equal == 0)
5555     (switch
5556      (if (cmp == EQ_EXPR)
5557       { constant_boolean_node (false, type); })
5558      (if (cmp == NE_EXPR)
5559       { constant_boolean_node (true, type); })))))))
5560
5561/* Simplify pointer equality compares using PTA.  */
5562(for neeq (ne eq)
5563 (simplify
5564  (neeq @0 @1)
5565  (if (POINTER_TYPE_P (TREE_TYPE (@0))
5566       && ptrs_compare_unequal (@0, @1))
5567   { constant_boolean_node (neeq != EQ_EXPR, type); })))
5568
5569/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
5570   and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
5571   Disable the transform if either operand is pointer to function.
5572   This broke pr22051-2.c for arm where function pointer
5573   canonicalizaion is not wanted.  */
5574
5575(for cmp (ne eq)
5576 (simplify
5577  (cmp (convert @0) INTEGER_CST@1)
5578  (if (((POINTER_TYPE_P (TREE_TYPE (@0))
5579	 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
5580	 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5581	 /* Don't perform this optimization in GENERIC if @0 has reference
5582	    type when sanitizing.  See PR101210.  */
5583	 && !(GENERIC
5584	      && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
5585	      && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
5586	|| (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5587	    && POINTER_TYPE_P (TREE_TYPE (@1))
5588	    && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
5589       && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
5590   (cmp @0 (convert @1)))))
5591
5592/* Non-equality compare simplifications from fold_binary  */
5593(for cmp (lt gt le ge)
5594 /* Comparisons with the highest or lowest possible integer of
5595    the specified precision will have known values.  */
5596 (simplify
5597  (cmp (convert?@2 @0) uniform_integer_cst_p@1)
5598  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
5599	|| POINTER_TYPE_P (TREE_TYPE (@1))
5600	|| VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
5601       && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
5602   (with
5603    {
5604      tree cst = uniform_integer_cst_p (@1);
5605      tree arg1_type = TREE_TYPE (cst);
5606      unsigned int prec = TYPE_PRECISION (arg1_type);
5607      wide_int max = wi::max_value (arg1_type);
5608      wide_int signed_max = wi::max_value (prec, SIGNED);
5609      wide_int min = wi::min_value (arg1_type);
5610    }
5611    (switch
5612     (if (wi::to_wide (cst) == max)
5613      (switch
5614       (if (cmp == GT_EXPR)
5615	{ constant_boolean_node (false, type); })
5616       (if (cmp == GE_EXPR)
5617	(eq @2 @1))
5618       (if (cmp == LE_EXPR)
5619	{ constant_boolean_node (true, type); })
5620       (if (cmp == LT_EXPR)
5621	(ne @2 @1))))
5622     (if (wi::to_wide (cst) == min)
5623      (switch
5624       (if (cmp == LT_EXPR)
5625        { constant_boolean_node (false, type); })
5626       (if (cmp == LE_EXPR)
5627        (eq @2 @1))
5628       (if (cmp == GE_EXPR)
5629        { constant_boolean_node (true, type); })
5630       (if (cmp == GT_EXPR)
5631        (ne @2 @1))))
5632     (if (wi::to_wide (cst) == max - 1)
5633      (switch
5634       (if (cmp == GT_EXPR)
5635	(eq @2 { build_uniform_cst (TREE_TYPE (@1),
5636				    wide_int_to_tree (TREE_TYPE (cst),
5637						      wi::to_wide (cst)
5638						      + 1)); }))
5639       (if (cmp == LE_EXPR)
5640	(ne @2 { build_uniform_cst (TREE_TYPE (@1),
5641				    wide_int_to_tree (TREE_TYPE (cst),
5642						      wi::to_wide (cst)
5643						      + 1)); }))))
5644     (if (wi::to_wide (cst) == min + 1)
5645      (switch
5646       (if (cmp == GE_EXPR)
5647        (ne @2 { build_uniform_cst (TREE_TYPE (@1),
5648				    wide_int_to_tree (TREE_TYPE (cst),
5649						      wi::to_wide (cst)
5650						      - 1)); }))
5651       (if (cmp == LT_EXPR)
5652        (eq @2 { build_uniform_cst (TREE_TYPE (@1),
5653				    wide_int_to_tree (TREE_TYPE (cst),
5654						      wi::to_wide (cst)
5655						      - 1)); }))))
5656     (if (wi::to_wide (cst) == signed_max
5657	  && TYPE_UNSIGNED (arg1_type)
5658	  /* We will flip the signedness of the comparison operator
5659	     associated with the mode of @1, so the sign bit is
5660	     specified by this mode.  Check that @1 is the signed
5661	     max associated with this sign bit.  */
5662	  && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
5663	  /* signed_type does not work on pointer types.  */
5664	  && INTEGRAL_TYPE_P (arg1_type))
5665      /* The following case also applies to X < signed_max+1
5666	 and X >= signed_max+1 because previous transformations.  */
5667      (if (cmp == LE_EXPR || cmp == GT_EXPR)
5668       (with { tree st = signed_type_for (TREE_TYPE (@1)); }
5669       	(switch
5670	 (if (cst == @1 && cmp == LE_EXPR)
5671	  (ge (convert:st @0) { build_zero_cst (st); }))
5672	 (if (cst == @1 && cmp == GT_EXPR)
5673	  (lt (convert:st @0) { build_zero_cst (st); }))
5674	 (if (cmp == LE_EXPR)
5675	  (ge (view_convert:st @0) { build_zero_cst (st); }))
5676	 (if (cmp == GT_EXPR)
5677	  (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
5678
5679(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
5680 /* If the second operand is NaN, the result is constant.  */
5681 (simplify
5682  (cmp @0 REAL_CST@1)
5683  (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5684       && (cmp != LTGT_EXPR || ! flag_trapping_math))
5685   { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
5686			    ? false : true, type); })))
5687
5688/* Fold UNORDERED if either operand must be NaN, or neither can be.  */
5689(simplify
5690  (unordered @0 @1)
5691  (switch
5692    (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5693	{ constant_boolean_node (true, type); })
5694    (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5695	{ constant_boolean_node (false, type); })))
5696
5697/* Fold ORDERED if either operand must be NaN, or neither can be.  */
5698(simplify
5699  (ordered @0 @1)
5700  (switch
5701    (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5702	{ constant_boolean_node (false, type); })
5703    (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5704	{ constant_boolean_node (true, type); })))
5705
5706/* bool_var != 0 becomes bool_var.  */
5707(simplify
5708 (ne @0 integer_zerop)
5709 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5710      && types_match (type, TREE_TYPE (@0)))
5711  (non_lvalue @0)))
5712/* bool_var == 1 becomes bool_var.  */
5713(simplify
5714 (eq @0 integer_onep)
5715 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5716      && types_match (type, TREE_TYPE (@0)))
5717  (non_lvalue @0)))
5718/* Do not handle
5719   bool_var == 0 becomes !bool_var or
5720   bool_var != 1 becomes !bool_var
5721   here because that only is good in assignment context as long
5722   as we require a tcc_comparison in GIMPLE_CONDs where we'd
5723   replace if (x == 0) with tem = ~x; if (tem != 0) which is
5724   clearly less optimal and which we'll transform again in forwprop.  */
5725
5726/* Transform comparisons of the form (X & Y) CMP 0 to X CMP2 Z
5727   where ~Y + 1 == pow2 and Z = ~Y.  */
5728(for cst (VECTOR_CST INTEGER_CST)
5729 (for cmp (eq ne)
5730      icmp (le gt)
5731  (simplify
5732   (cmp (bit_and:c@2 @0 cst@1) integer_zerop)
5733    (with { tree csts = bitmask_inv_cst_vector_p (@1); }
5734     (if (csts && (VECTOR_TYPE_P (TREE_TYPE (@1)) || single_use (@2)))
5735      (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
5736       (icmp @0 { csts; })
5737       (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5738	 (icmp (convert:utype @0) { csts; }))))))))
5739
5740/* When one argument is a constant, overflow detection can be simplified.
5741   Currently restricted to single use so as not to interfere too much with
5742   ADD_OVERFLOW detection in tree-ssa-math-opts.c.
5743   CONVERT?(CONVERT?(A) + CST) CMP A  ->  A CMP' CST' */
5744(for cmp (lt le ge gt)
5745     out (gt gt le le)
5746 (simplify
5747  (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
5748  (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
5749       && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
5750       && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
5751       && wi::to_wide (@1) != 0
5752       && single_use (@2))
5753   (with {
5754     unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
5755     signop sign = TYPE_SIGN (TREE_TYPE (@0));
5756    }
5757    (out @0 { wide_int_to_tree (TREE_TYPE (@0),
5758			        wi::max_value (prec, sign)
5759				- wi::to_wide (@1)); })))))
5760
5761/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
5762   However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
5763   expects the long form, so we restrict the transformation for now.  */
5764(for cmp (gt le)
5765 (simplify
5766  (cmp:c (minus@2 @0 @1) @0)
5767  (if (single_use (@2)
5768       && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5769       && TYPE_UNSIGNED (TREE_TYPE (@0)))
5770   (cmp @1 @0))))
5771
5772/* Optimize A - B + -1 >= A into B >= A for unsigned comparisons.  */
5773(for cmp (ge lt)
5774 (simplify
5775  (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
5776   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5777	&& TYPE_UNSIGNED (TREE_TYPE (@0)))
5778    (cmp @1 @0))))
5779
5780/* Testing for overflow is unnecessary if we already know the result.  */
5781/* A - B > A  */
5782(for cmp (gt le)
5783     out (ne eq)
5784 (simplify
5785  (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
5786  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5787       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5788   (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5789/* A + B < A  */
5790(for cmp (lt ge)
5791     out (ne eq)
5792 (simplify
5793  (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
5794  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5795       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5796   (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5797
5798/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
5799   Simplify it to __builtin_mul_overflow (A, B, <unused>).  */
5800(for cmp (lt ge)
5801     out (ne eq)
5802 (simplify
5803  (cmp:c (trunc_div:s integer_all_onesp @1) @0)
5804  (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
5805   (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5806    (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5807
5808/* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
5809   is at least twice as wide as type of A and B, simplify to
5810   __builtin_mul_overflow (A, B, <unused>).  */
5811(for cmp (eq ne)
5812 (simplify
5813  (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
5814       integer_zerop)
5815  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5816       && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5817       && TYPE_UNSIGNED (TREE_TYPE (@0))
5818       && (TYPE_PRECISION (TREE_TYPE (@3))
5819	   >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
5820       && tree_fits_uhwi_p (@2)
5821       && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
5822       && types_match (@0, @1)
5823       && type_has_mode_precision_p (TREE_TYPE (@0))
5824       && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
5825	   != CODE_FOR_nothing))
5826   (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5827    (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5828
5829/* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW.  */
5830(for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW)
5831 (simplify
5832  (ovf (convert@2 @0) @1)
5833  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5834       && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5835       && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5836       && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
5837   (ovf @0 @1)))
5838 (simplify
5839  (ovf @1 (convert@2 @0))
5840  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5841       && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5842       && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5843       && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
5844   (ovf @1 @0))))
5845
5846/* Simplification of math builtins.  These rules must all be optimizations
5847   as well as IL simplifications.  If there is a possibility that the new
5848   form could be a pessimization, the rule should go in the canonicalization
5849   section that follows this one.
5850
5851   Rules can generally go in this section if they satisfy one of
5852   the following:
5853
5854   - the rule describes an identity
5855
5856   - the rule replaces calls with something as simple as addition or
5857     multiplication
5858
5859   - the rule contains unary calls only and simplifies the surrounding
5860     arithmetic.  (The idea here is to exclude non-unary calls in which
5861     one operand is constant and in which the call is known to be cheap
5862     when the operand has that value.)  */
5863
5864(if (flag_unsafe_math_optimizations)
5865 /* Simplify sqrt(x) * sqrt(x) -> x.  */
5866 (simplify
5867  (mult (SQRT_ALL@1 @0) @1)
5868  (if (!tree_expr_maybe_signaling_nan_p (@0))
5869   @0))
5870
5871 (for op (plus minus)
5872  /* Simplify (A / C) +- (B / C) -> (A +- B) / C.  */
5873  (simplify
5874   (op (rdiv @0 @1)
5875       (rdiv @2 @1))
5876   (rdiv (op @0 @2) @1)))
5877
5878 (for cmp (lt le gt ge)
5879      neg_cmp (gt ge lt le)
5880  /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0.  */
5881  (simplify
5882   (cmp (mult @0 REAL_CST@1) REAL_CST@2)
5883   (with
5884    { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
5885    (if (tem
5886	 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
5887	      || (real_zerop (tem) && !real_zerop (@1))))
5888     (switch
5889      (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
5890       (cmp @0 { tem; }))
5891      (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
5892       (neg_cmp @0 { tem; })))))))
5893
5894 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y).  */
5895 (for root (SQRT CBRT)
5896  (simplify
5897   (mult (root:s @0) (root:s @1))
5898    (root (mult @0 @1))))
5899
5900 /* Simplify expN(x) * expN(y) -> expN(x+y). */
5901 (for exps (EXP EXP2 EXP10 POW10)
5902  (simplify
5903   (mult (exps:s @0) (exps:s @1))
5904    (exps (plus @0 @1))))
5905
5906 /* Simplify a/root(b/c) into a*root(c/b).  */
5907 (for root (SQRT CBRT)
5908  (simplify
5909   (rdiv @0 (root:s (rdiv:s @1 @2)))
5910    (mult @0 (root (rdiv @2 @1)))))
5911
5912 /* Simplify x/expN(y) into x*expN(-y).  */
5913 (for exps (EXP EXP2 EXP10 POW10)
5914  (simplify
5915   (rdiv @0 (exps:s @1))
5916    (mult @0 (exps (negate @1)))))
5917
5918 (for logs (LOG LOG2 LOG10 LOG10)
5919      exps (EXP EXP2 EXP10 POW10)
5920  /* logN(expN(x)) -> x.  */
5921  (simplify
5922   (logs (exps @0))
5923   @0)
5924  /* expN(logN(x)) -> x.  */
5925  (simplify
5926   (exps (logs @0))
5927   @0))
5928
5929 /* Optimize logN(func()) for various exponential functions.  We
5930    want to determine the value "x" and the power "exponent" in
5931    order to transform logN(x**exponent) into exponent*logN(x).  */
5932 (for logs (LOG  LOG   LOG   LOG2 LOG2  LOG2  LOG10 LOG10)
5933      exps (EXP2 EXP10 POW10 EXP  EXP10 POW10 EXP   EXP2)
5934  (simplify
5935   (logs (exps @0))
5936   (if (SCALAR_FLOAT_TYPE_P (type))
5937    (with {
5938      tree x;
5939      switch (exps)
5940	{
5941	CASE_CFN_EXP:
5942	  /* Prepare to do logN(exp(exponent)) -> exponent*logN(e).  */
5943	  x = build_real_truncate (type, dconst_e ());
5944	  break;
5945	CASE_CFN_EXP2:
5946	  /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2).  */
5947	  x = build_real (type, dconst2);
5948	  break;
5949	CASE_CFN_EXP10:
5950	CASE_CFN_POW10:
5951	  /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10).  */
5952	  {
5953	    REAL_VALUE_TYPE dconst10;
5954	    real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
5955	    x = build_real (type, dconst10);
5956	  }
5957	  break;
5958	default:
5959	  gcc_unreachable ();
5960	}
5961      }
5962     (mult (logs { x; }) @0)))))
5963
5964 (for logs (LOG LOG
5965            LOG2 LOG2
5966	    LOG10 LOG10)
5967      exps (SQRT CBRT)
5968  (simplify
5969   (logs (exps @0))
5970   (if (SCALAR_FLOAT_TYPE_P (type))
5971    (with {
5972      tree x;
5973      switch (exps)
5974	{
5975	CASE_CFN_SQRT:
5976	  /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x).  */
5977	  x = build_real (type, dconsthalf);
5978	  break;
5979	CASE_CFN_CBRT:
5980	  /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x).  */
5981	  x = build_real_truncate (type, dconst_third ());
5982	  break;
5983	default:
5984	  gcc_unreachable ();
5985	}
5986      }
5987     (mult { x; } (logs @0))))))
5988
5989 /* logN(pow(x,exponent)) -> exponent*logN(x).  */
5990 (for logs (LOG LOG2 LOG10)
5991      pows (POW)
5992  (simplify
5993   (logs (pows @0 @1))
5994   (mult @1 (logs @0))))
5995
5996 /* pow(C,x) -> exp(log(C)*x) if C > 0,
5997    or if C is a positive power of 2,
5998    pow(C,x) -> exp2(log2(C)*x).  */
5999#if GIMPLE
6000 (for pows (POW)
6001      exps (EXP)
6002      logs (LOG)
6003      exp2s (EXP2)
6004      log2s (LOG2)
6005  (simplify
6006   (pows REAL_CST@0 @1)
6007   (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6008	&& real_isfinite (TREE_REAL_CST_PTR (@0))
6009	/* As libmvec doesn't have a vectorized exp2, defer optimizing
6010	   the use_exp2 case until after vectorization.  It seems actually
6011	   beneficial for all constants to postpone this until later,
6012	   because exp(log(C)*x), while faster, will have worse precision
6013	   and if x folds into a constant too, that is unnecessary
6014	   pessimization.  */
6015	&& canonicalize_math_after_vectorization_p ())
6016    (with {
6017       const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
6018       bool use_exp2 = false;
6019       if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
6020	   && value->cl == rvc_normal)
6021	 {
6022	   REAL_VALUE_TYPE frac_rvt = *value;
6023	   SET_REAL_EXP (&frac_rvt, 1);
6024	   if (real_equal (&frac_rvt, &dconst1))
6025	     use_exp2 = true;
6026	 }
6027     }
6028     (if (!use_exp2)
6029      (if (optimize_pow_to_exp (@0, @1))
6030       (exps (mult (logs @0) @1)))
6031      (exp2s (mult (log2s @0) @1)))))))
6032#endif
6033
6034 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0.  */
6035 (for pows (POW)
6036      exps (EXP EXP2 EXP10 POW10)
6037      logs (LOG LOG2 LOG10 LOG10)
6038  (simplify
6039   (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
6040   (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6041	&& real_isfinite (TREE_REAL_CST_PTR (@0)))
6042    (exps (plus (mult (logs @0) @1) @2)))))
6043
6044 (for sqrts (SQRT)
6045      cbrts (CBRT)
6046      pows (POW)
6047      exps (EXP EXP2 EXP10 POW10)
6048  /* sqrt(expN(x)) -> expN(x*0.5).  */
6049  (simplify
6050   (sqrts (exps @0))
6051   (exps (mult @0 { build_real (type, dconsthalf); })))
6052  /* cbrt(expN(x)) -> expN(x/3).  */
6053  (simplify
6054   (cbrts (exps @0))
6055   (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
6056  /* pow(expN(x), y) -> expN(x*y).  */
6057  (simplify
6058   (pows (exps @0) @1)
6059   (exps (mult @0 @1))))
6060
6061 /* tan(atan(x)) -> x.  */
6062 (for tans (TAN)
6063      atans (ATAN)
6064  (simplify
6065   (tans (atans @0))
6066   @0)))
6067
6068 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
6069 (for sins (SIN)
6070      atans (ATAN)
6071      sqrts (SQRT)
6072      copysigns (COPYSIGN)
6073  (simplify
6074   (sins (atans:s @0))
6075   (with
6076     {
6077      REAL_VALUE_TYPE r_cst;
6078      build_sinatan_real (&r_cst, type);
6079      tree t_cst = build_real (type, r_cst);
6080      tree t_one = build_one_cst (type);
6081     }
6082    (if (SCALAR_FLOAT_TYPE_P (type))
6083     (cond (lt (abs @0) { t_cst; })
6084      (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
6085      (copysigns { t_one; } @0))))))
6086
6087/* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
6088 (for coss (COS)
6089      atans (ATAN)
6090      sqrts (SQRT)
6091      copysigns (COPYSIGN)
6092  (simplify
6093   (coss (atans:s @0))
6094   (with
6095     {
6096      REAL_VALUE_TYPE r_cst;
6097      build_sinatan_real (&r_cst, type);
6098      tree t_cst = build_real (type, r_cst);
6099      tree t_one = build_one_cst (type);
6100      tree t_zero = build_zero_cst (type);
6101     }
6102    (if (SCALAR_FLOAT_TYPE_P (type))
6103     (cond (lt (abs @0) { t_cst; })
6104      (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
6105      (copysigns { t_zero; } @0))))))
6106
6107 (if (!flag_errno_math)
6108  /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
6109  (for sinhs (SINH)
6110       atanhs (ATANH)
6111       sqrts (SQRT)
6112   (simplify
6113    (sinhs (atanhs:s @0))
6114    (with { tree t_one = build_one_cst (type); }
6115    (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
6116
6117  /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
6118  (for coshs (COSH)
6119       atanhs (ATANH)
6120       sqrts (SQRT)
6121   (simplify
6122    (coshs (atanhs:s @0))
6123    (with { tree t_one = build_one_cst (type); }
6124    (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
6125
6126/* cabs(x+0i) or cabs(0+xi) -> abs(x).  */
6127(simplify
6128 (CABS (complex:C @0 real_zerop@1))
6129 (abs @0))
6130
6131/* trunc(trunc(x)) -> trunc(x), etc.  */
6132(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6133 (simplify
6134  (fns (fns @0))
6135  (fns @0)))
6136/* f(x) -> x if x is integer valued and f does nothing for such values.  */
6137(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6138 (simplify
6139  (fns integer_valued_real_p@0)
6140  @0))
6141
6142/* hypot(x,0) and hypot(0,x) -> abs(x).  */
6143(simplify
6144 (HYPOT:c @0 real_zerop@1)
6145 (abs @0))
6146
6147/* pow(1,x) -> 1.  */
6148(simplify
6149 (POW real_onep@0 @1)
6150 @0)
6151
6152(simplify
6153 /* copysign(x,x) -> x.  */
6154 (COPYSIGN_ALL @0 @0)
6155 @0)
6156
6157(simplify
6158 /* copysign(x,-x) -> -x.  */
6159 (COPYSIGN_ALL @0 (negate@1 @0))
6160 @1)
6161
6162(simplify
6163 /* copysign(x,y) -> fabs(x) if y is nonnegative.  */
6164 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
6165 (abs @0))
6166
6167(for scale (LDEXP SCALBN SCALBLN)
6168 /* ldexp(0, x) -> 0.  */
6169 (simplify
6170  (scale real_zerop@0 @1)
6171  @0)
6172 /* ldexp(x, 0) -> x.  */
6173 (simplify
6174  (scale @0 integer_zerop@1)
6175  @0)
6176 /* ldexp(x, y) -> x if x is +-Inf or NaN.  */
6177 (simplify
6178  (scale REAL_CST@0 @1)
6179  (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
6180   @0)))
6181
6182/* Canonicalization of sequences of math builtins.  These rules represent
6183   IL simplifications but are not necessarily optimizations.
6184
6185   The sincos pass is responsible for picking "optimal" implementations
6186   of math builtins, which may be more complicated and can sometimes go
6187   the other way, e.g. converting pow into a sequence of sqrts.
6188   We only want to do these canonicalizations before the pass has run.  */
6189
6190(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
6191 /* Simplify tan(x) * cos(x) -> sin(x). */
6192 (simplify
6193  (mult:c (TAN:s @0) (COS:s @0))
6194   (SIN @0))
6195
6196 /* Simplify x * pow(x,c) -> pow(x,c+1). */
6197 (simplify
6198  (mult:c @0 (POW:s @0 REAL_CST@1))
6199  (if (!TREE_OVERFLOW (@1))
6200   (POW @0 (plus @1 { build_one_cst (type); }))))
6201
6202 /* Simplify sin(x) / cos(x) -> tan(x). */
6203 (simplify
6204  (rdiv (SIN:s @0) (COS:s @0))
6205   (TAN @0))
6206
6207 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
6208 (simplify
6209  (rdiv (SINH:s @0) (COSH:s @0))
6210   (TANH @0))
6211
6212 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
6213 (simplify
6214   (rdiv (TANH:s @0) (SINH:s @0))
6215   (rdiv {build_one_cst (type);} (COSH @0)))
6216
6217 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
6218 (simplify
6219  (rdiv (COS:s @0) (SIN:s @0))
6220   (rdiv { build_one_cst (type); } (TAN @0)))
6221
6222 /* Simplify sin(x) / tan(x) -> cos(x). */
6223 (simplify
6224  (rdiv (SIN:s @0) (TAN:s @0))
6225  (if (! HONOR_NANS (@0)
6226       && ! HONOR_INFINITIES (@0))
6227   (COS @0)))
6228
6229 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
6230 (simplify
6231  (rdiv (TAN:s @0) (SIN:s @0))
6232  (if (! HONOR_NANS (@0)
6233       && ! HONOR_INFINITIES (@0))
6234   (rdiv { build_one_cst (type); } (COS @0))))
6235
6236 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
6237 (simplify
6238  (mult (POW:s @0 @1) (POW:s @0 @2))
6239   (POW @0 (plus @1 @2)))
6240
6241 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
6242 (simplify
6243  (mult (POW:s @0 @1) (POW:s @2 @1))
6244   (POW (mult @0 @2) @1))
6245
6246 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
6247 (simplify
6248  (mult (POWI:s @0 @1) (POWI:s @2 @1))
6249   (POWI (mult @0 @2) @1))
6250
6251 /* Simplify pow(x,c) / x -> pow(x,c-1). */
6252 (simplify
6253  (rdiv (POW:s @0 REAL_CST@1) @0)
6254  (if (!TREE_OVERFLOW (@1))
6255   (POW @0 (minus @1 { build_one_cst (type); }))))
6256
6257 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
6258 (simplify
6259  (rdiv @0 (POW:s @1 @2))
6260   (mult @0 (POW @1 (negate @2))))
6261
6262 (for sqrts (SQRT)
6263      cbrts (CBRT)
6264      pows (POW)
6265  /* sqrt(sqrt(x)) -> pow(x,1/4).  */
6266  (simplify
6267   (sqrts (sqrts @0))
6268   (pows @0 { build_real (type, dconst_quarter ()); }))
6269  /* sqrt(cbrt(x)) -> pow(x,1/6).  */
6270  (simplify
6271   (sqrts (cbrts @0))
6272   (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6273  /* cbrt(sqrt(x)) -> pow(x,1/6).  */
6274  (simplify
6275   (cbrts (sqrts @0))
6276   (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6277  /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative.  */
6278  (simplify
6279   (cbrts (cbrts tree_expr_nonnegative_p@0))
6280   (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
6281  /* sqrt(pow(x,y)) -> pow(|x|,y*0.5).  */
6282  (simplify
6283   (sqrts (pows @0 @1))
6284   (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
6285  /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative.  */
6286  (simplify
6287   (cbrts (pows tree_expr_nonnegative_p@0 @1))
6288   (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6289  /* pow(sqrt(x),y) -> pow(x,y*0.5).  */
6290  (simplify
6291   (pows (sqrts @0) @1)
6292   (pows @0 (mult @1 { build_real (type, dconsthalf); })))
6293  /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative.  */
6294  (simplify
6295   (pows (cbrts tree_expr_nonnegative_p@0) @1)
6296   (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6297  /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative.  */
6298  (simplify
6299   (pows (pows tree_expr_nonnegative_p@0 @1) @2)
6300   (pows @0 (mult @1 @2))))
6301
6302 /* cabs(x+xi) -> fabs(x)*sqrt(2).  */
6303 (simplify
6304  (CABS (complex @0 @0))
6305  (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6306
6307 /* hypot(x,x) -> fabs(x)*sqrt(2).  */
6308 (simplify
6309  (HYPOT @0 @0)
6310  (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6311
6312 /* cexp(x+yi) -> exp(x)*cexpi(y).  */
6313 (for cexps (CEXP)
6314      exps (EXP)
6315      cexpis (CEXPI)
6316  (simplify
6317   (cexps compositional_complex@0)
6318   (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
6319    (complex
6320     (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
6321     (mult @1 (imagpart @2)))))))
6322
6323(if (canonicalize_math_p ())
6324 /* floor(x) -> trunc(x) if x is nonnegative.  */
6325 (for floors (FLOOR_ALL)
6326      truncs (TRUNC_ALL)
6327  (simplify
6328   (floors tree_expr_nonnegative_p@0)
6329   (truncs @0))))
6330
6331(match double_value_p
6332 @0
6333 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
6334(for froms (BUILT_IN_TRUNCL
6335	    BUILT_IN_FLOORL
6336	    BUILT_IN_CEILL
6337	    BUILT_IN_ROUNDL
6338	    BUILT_IN_NEARBYINTL
6339	    BUILT_IN_RINTL)
6340     tos (BUILT_IN_TRUNC
6341	  BUILT_IN_FLOOR
6342	  BUILT_IN_CEIL
6343	  BUILT_IN_ROUND
6344	  BUILT_IN_NEARBYINT
6345	  BUILT_IN_RINT)
6346 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double.  */
6347 (if (optimize && canonicalize_math_p ())
6348  (simplify
6349   (froms (convert double_value_p@0))
6350   (convert (tos @0)))))
6351
6352(match float_value_p
6353 @0
6354 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
6355(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
6356	    BUILT_IN_FLOORL BUILT_IN_FLOOR
6357	    BUILT_IN_CEILL BUILT_IN_CEIL
6358	    BUILT_IN_ROUNDL BUILT_IN_ROUND
6359	    BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
6360	    BUILT_IN_RINTL BUILT_IN_RINT)
6361     tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
6362	  BUILT_IN_FLOORF BUILT_IN_FLOORF
6363	  BUILT_IN_CEILF BUILT_IN_CEILF
6364	  BUILT_IN_ROUNDF BUILT_IN_ROUNDF
6365	  BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
6366	  BUILT_IN_RINTF BUILT_IN_RINTF)
6367 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
6368    if x is a float.  */
6369 (if (optimize && canonicalize_math_p ()
6370      && targetm.libc_has_function (function_c99_misc, NULL_TREE))
6371  (simplify
6372   (froms (convert float_value_p@0))
6373   (convert (tos @0)))))
6374
6375#if GIMPLE
6376(match float16_value_p
6377 @0
6378 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node)))
6379(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF
6380	    BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF
6381	    BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF
6382	    BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF
6383	    BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF
6384	    BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF
6385	    BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF
6386	    BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF)
6387     tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC
6388	  IFN_FLOOR IFN_FLOOR IFN_FLOOR
6389	  IFN_CEIL IFN_CEIL IFN_CEIL
6390	  IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN
6391	  IFN_ROUND IFN_ROUND IFN_ROUND
6392	  IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT
6393	  IFN_RINT IFN_RINT IFN_RINT
6394	  IFN_SQRT IFN_SQRT IFN_SQRT)
6395 /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc.,
6396    if x is a _Float16.  */
6397 (simplify
6398   (convert (froms (convert float16_value_p@0)))
6399     (if (optimize
6400	  && types_match (type, TREE_TYPE (@0))
6401	  && direct_internal_fn_supported_p (as_internal_fn (tos),
6402					     type, OPTIMIZE_FOR_BOTH))
6403       (tos @0))))
6404
6405/* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y),
6406   x,y is float value, similar for _Float16/double.  */
6407(for copysigns (COPYSIGN_ALL)
6408 (simplify
6409  (convert (copysigns (convert@2 @0) (convert @1)))
6410   (if (optimize
6411       && !HONOR_SNANS (@2)
6412       && types_match (type, TREE_TYPE (@0))
6413       && types_match (type, TREE_TYPE (@1))
6414       && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2))
6415       && direct_internal_fn_supported_p (IFN_COPYSIGN,
6416					  type, OPTIMIZE_FOR_BOTH))
6417    (IFN_COPYSIGN @0 @1))))
6418
6419(for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL)
6420     tos (IFN_FMA IFN_FMA IFN_FMA)
6421 (simplify
6422  (convert (froms (convert@3 @0) (convert @1) (convert @2)))
6423   (if (flag_unsafe_math_optimizations
6424       && optimize
6425       && FLOAT_TYPE_P (type)
6426       && FLOAT_TYPE_P (TREE_TYPE (@3))
6427       && types_match (type, TREE_TYPE (@0))
6428       && types_match (type, TREE_TYPE (@1))
6429       && types_match (type, TREE_TYPE (@2))
6430       && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3))
6431       && direct_internal_fn_supported_p (as_internal_fn (tos),
6432					  type, OPTIMIZE_FOR_BOTH))
6433    (tos @0 @1 @2))))
6434
6435(for maxmin (max min)
6436 (simplify
6437  (convert (maxmin (convert@2 @0) (convert @1)))
6438   (if (optimize
6439       && FLOAT_TYPE_P (type)
6440       && FLOAT_TYPE_P (TREE_TYPE (@2))
6441       && types_match (type, TREE_TYPE (@0))
6442       && types_match (type, TREE_TYPE (@1))
6443       && element_precision (type) < element_precision (TREE_TYPE (@2)))
6444    (maxmin @0 @1))))
6445#endif
6446
6447(for froms (XFLOORL XCEILL XROUNDL XRINTL)
6448     tos (XFLOOR XCEIL XROUND XRINT)
6449 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double.  */
6450 (if (optimize && canonicalize_math_p ())
6451  (simplify
6452   (froms (convert double_value_p@0))
6453   (tos @0))))
6454
6455(for froms (XFLOORL XCEILL XROUNDL XRINTL
6456	    XFLOOR XCEIL XROUND XRINT)
6457     tos (XFLOORF XCEILF XROUNDF XRINTF)
6458 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
6459    if x is a float.  */
6460 (if (optimize && canonicalize_math_p ())
6461  (simplify
6462   (froms (convert float_value_p@0))
6463   (tos @0))))
6464
6465(if (canonicalize_math_p ())
6466 /* xfloor(x) -> fix_trunc(x) if x is nonnegative.  */
6467 (for floors (IFLOOR LFLOOR LLFLOOR)
6468  (simplify
6469   (floors tree_expr_nonnegative_p@0)
6470   (fix_trunc @0))))
6471
6472(if (canonicalize_math_p ())
6473 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued.  */
6474 (for fns (IFLOOR LFLOOR LLFLOOR
6475	   ICEIL LCEIL LLCEIL
6476	   IROUND LROUND LLROUND)
6477  (simplify
6478   (fns integer_valued_real_p@0)
6479   (fix_trunc @0)))
6480 (if (!flag_errno_math)
6481  /* xrint(x) -> fix_trunc(x), etc., if x is integer valued.  */
6482  (for rints (IRINT LRINT LLRINT)
6483   (simplify
6484    (rints integer_valued_real_p@0)
6485    (fix_trunc @0)))))
6486
6487(if (canonicalize_math_p ())
6488 (for ifn (IFLOOR ICEIL IROUND IRINT)
6489      lfn (LFLOOR LCEIL LROUND LRINT)
6490      llfn (LLFLOOR LLCEIL LLROUND LLRINT)
6491  /* Canonicalize iround (x) to lround (x) on ILP32 targets where
6492     sizeof (int) == sizeof (long).  */
6493  (if (TYPE_PRECISION (integer_type_node)
6494       == TYPE_PRECISION (long_integer_type_node))
6495   (simplify
6496    (ifn @0)
6497    (lfn:long_integer_type_node @0)))
6498  /* Canonicalize llround (x) to lround (x) on LP64 targets where
6499     sizeof (long long) == sizeof (long).  */
6500  (if (TYPE_PRECISION (long_long_integer_type_node)
6501       == TYPE_PRECISION (long_integer_type_node))
6502   (simplify
6503    (llfn @0)
6504    (lfn:long_integer_type_node @0)))))
6505
6506/* cproj(x) -> x if we're ignoring infinities.  */
6507(simplify
6508 (CPROJ @0)
6509 (if (!HONOR_INFINITIES (type))
6510   @0))
6511
6512/* If the real part is inf and the imag part is known to be
6513   nonnegative, return (inf + 0i).  */
6514(simplify
6515 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
6516 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
6517  { build_complex_inf (type, false); }))
6518
6519/* If the imag part is inf, return (inf+I*copysign(0,imag)).  */
6520(simplify
6521 (CPROJ (complex @0 REAL_CST@1))
6522 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
6523  { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
6524
6525(for pows (POW)
6526     sqrts (SQRT)
6527     cbrts (CBRT)
6528 (simplify
6529  (pows @0 REAL_CST@1)
6530  (with {
6531    const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
6532    REAL_VALUE_TYPE tmp;
6533   }
6534   (switch
6535    /* pow(x,0) -> 1.  */
6536    (if (real_equal (value, &dconst0))
6537     { build_real (type, dconst1); })
6538    /* pow(x,1) -> x.  */
6539    (if (real_equal (value, &dconst1))
6540     @0)
6541    /* pow(x,-1) -> 1/x.  */
6542    (if (real_equal (value, &dconstm1))
6543     (rdiv { build_real (type, dconst1); } @0))
6544    /* pow(x,0.5) -> sqrt(x).  */
6545    (if (flag_unsafe_math_optimizations
6546	 && canonicalize_math_p ()
6547	 && real_equal (value, &dconsthalf))
6548     (sqrts @0))
6549    /* pow(x,1/3) -> cbrt(x).  */
6550    (if (flag_unsafe_math_optimizations
6551	 && canonicalize_math_p ()
6552	 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
6553	     real_equal (value, &tmp)))
6554     (cbrts @0))))))
6555
6556/* powi(1,x) -> 1.  */
6557(simplify
6558 (POWI real_onep@0 @1)
6559 @0)
6560
6561(simplify
6562 (POWI @0 INTEGER_CST@1)
6563 (switch
6564  /* powi(x,0) -> 1.  */
6565  (if (wi::to_wide (@1) == 0)
6566   { build_real (type, dconst1); })
6567  /* powi(x,1) -> x.  */
6568  (if (wi::to_wide (@1) == 1)
6569   @0)
6570  /* powi(x,-1) -> 1/x.  */
6571  (if (wi::to_wide (@1) == -1)
6572   (rdiv { build_real (type, dconst1); } @0))))
6573
6574/* Narrowing of arithmetic and logical operations.
6575
6576   These are conceptually similar to the transformations performed for
6577   the C/C++ front-ends by shorten_binary_op and shorten_compare.  Long
6578   term we want to move all that code out of the front-ends into here.  */
6579
6580/* Convert (outertype)((innertype0)a+(innertype1)b)
6581   into ((newtype)a+(newtype)b) where newtype
6582   is the widest mode from all of these.  */
6583(for op (plus minus mult rdiv)
6584 (simplify
6585   (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
6586   /* If we have a narrowing conversion of an arithmetic operation where
6587      both operands are widening conversions from the same type as the outer
6588      narrowing conversion.  Then convert the innermost operands to a
6589      suitable unsigned type (to avoid introducing undefined behavior),
6590      perform the operation and convert the result to the desired type.  */
6591   (if (INTEGRAL_TYPE_P (type)
6592	&& op != MULT_EXPR
6593	&& op != RDIV_EXPR
6594	/* We check for type compatibility between @0 and @1 below,
6595	   so there's no need to check that @2/@4 are integral types.  */
6596	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
6597	&& INTEGRAL_TYPE_P (TREE_TYPE (@3))
6598	/* The precision of the type of each operand must match the
6599	   precision of the mode of each operand, similarly for the
6600	   result.  */
6601	&& type_has_mode_precision_p (TREE_TYPE (@1))
6602	&& type_has_mode_precision_p (TREE_TYPE (@2))
6603	&& type_has_mode_precision_p (type)
6604	/* The inner conversion must be a widening conversion.  */
6605	&& TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
6606	&& types_match (@1, type)
6607	&& (types_match (@1, @2)
6608	    /* Or the second operand is const integer or converted const
6609	       integer from valueize.  */
6610	    || poly_int_tree_p (@4)))
6611     (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
6612       (op @1 (convert @2))
6613       (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
6614	(convert (op (convert:utype @1)
6615		     (convert:utype @2)))))
6616     (if (FLOAT_TYPE_P (type)
6617	  && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
6618	       == DECIMAL_FLOAT_TYPE_P (type))
6619      (with { tree arg0 = strip_float_extensions (@1);
6620	      tree arg1 = strip_float_extensions (@2);
6621	      tree itype = TREE_TYPE (@0);
6622	      tree ty1 = TREE_TYPE (arg0);
6623	      tree ty2 = TREE_TYPE (arg1);
6624	      enum tree_code code = TREE_CODE (itype); }
6625	(if (FLOAT_TYPE_P (ty1)
6626	     && FLOAT_TYPE_P (ty2))
6627	 (with { tree newtype = type;
6628		 if (TYPE_MODE (ty1) == SDmode
6629		     || TYPE_MODE (ty2) == SDmode
6630		     || TYPE_MODE (type) == SDmode)
6631		   newtype = dfloat32_type_node;
6632		 if (TYPE_MODE (ty1) == DDmode
6633		     || TYPE_MODE (ty2) == DDmode
6634		     || TYPE_MODE (type) == DDmode)
6635		   newtype = dfloat64_type_node;
6636		 if (TYPE_MODE (ty1) == TDmode
6637		     || TYPE_MODE (ty2) == TDmode
6638		     || TYPE_MODE (type) == TDmode)
6639		   newtype = dfloat128_type_node; }
6640	  (if ((newtype == dfloat32_type_node
6641		|| newtype == dfloat64_type_node
6642		|| newtype == dfloat128_type_node)
6643	      && newtype == type
6644	      && types_match (newtype, type))
6645	    (op (convert:newtype @1) (convert:newtype @2))
6646	    (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
6647		      newtype = ty1;
6648		    if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
6649		      newtype = ty2; }
6650	       /* Sometimes this transformation is safe (cannot
6651		  change results through affecting double rounding
6652		  cases) and sometimes it is not.  If NEWTYPE is
6653		  wider than TYPE, e.g. (float)((long double)double
6654		  + (long double)double) converted to
6655		  (float)(double + double), the transformation is
6656		  unsafe regardless of the details of the types
6657		  involved; double rounding can arise if the result
6658		  of NEWTYPE arithmetic is a NEWTYPE value half way
6659		  between two representable TYPE values but the
6660		  exact value is sufficiently different (in the
6661		  right direction) for this difference to be
6662		  visible in ITYPE arithmetic.  If NEWTYPE is the
6663		  same as TYPE, however, the transformation may be
6664		  safe depending on the types involved: it is safe
6665		  if the ITYPE has strictly more than twice as many
6666		  mantissa bits as TYPE, can represent infinities
6667		  and NaNs if the TYPE can, and has sufficient
6668		  exponent range for the product or ratio of two
6669		  values representable in the TYPE to be within the
6670		  range of normal values of ITYPE.  */
6671	      (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
6672		   && (flag_unsafe_math_optimizations
6673		       || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
6674			   && real_can_shorten_arithmetic (TYPE_MODE (itype),
6675							   TYPE_MODE (type))
6676			   && !excess_precision_type (newtype)))
6677		   && !types_match (itype, newtype))
6678		 (convert:type (op (convert:newtype @1)
6679				   (convert:newtype @2)))
6680	 )))) )
6681   ))
6682)))
6683
6684/* This is another case of narrowing, specifically when there's an outer
6685   BIT_AND_EXPR which masks off bits outside the type of the innermost
6686   operands.   Like the previous case we have to convert the operands
6687   to unsigned types to avoid introducing undefined behavior for the
6688   arithmetic operation.  */
6689(for op (minus plus)
6690 (simplify
6691  (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
6692  (if (INTEGRAL_TYPE_P (type)
6693       /* We check for type compatibility between @0 and @1 below,
6694	  so there's no need to check that @1/@3 are integral types.  */
6695       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
6696       && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6697       /* The precision of the type of each operand must match the
6698	  precision of the mode of each operand, similarly for the
6699	  result.  */
6700       && type_has_mode_precision_p (TREE_TYPE (@0))
6701       && type_has_mode_precision_p (TREE_TYPE (@1))
6702       && type_has_mode_precision_p (type)
6703       /* The inner conversion must be a widening conversion.  */
6704       && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6705       && types_match (@0, @1)
6706       && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
6707	   <= TYPE_PRECISION (TREE_TYPE (@0)))
6708       && (wi::to_wide (@4)
6709	   & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
6710		       true, TYPE_PRECISION (type))) == 0)
6711   (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
6712    (with { tree ntype = TREE_TYPE (@0); }
6713     (convert (bit_and (op @0 @1) (convert:ntype @4))))
6714    (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6715     (convert (bit_and (op (convert:utype @0) (convert:utype @1))
6716	       (convert:utype @4))))))))
6717
6718/* Transform (@0 < @1 and @0 < @2) to use min,
6719   (@0 > @1 and @0 > @2) to use max */
6720(for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
6721     op    (lt      le      gt      ge      lt      le      gt      ge     )
6722     ext   (min     min     max     max     max     max     min     min    )
6723 (simplify
6724  (logic (op:cs @0 @1) (op:cs @0 @2))
6725  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6726       && TREE_CODE (@0) != INTEGER_CST)
6727   (op @0 (ext @1 @2)))))
6728
6729(simplify
6730 /* signbit(x) -> 0 if x is nonnegative.  */
6731 (SIGNBIT tree_expr_nonnegative_p@0)
6732 { integer_zero_node; })
6733
6734(simplify
6735 /* signbit(x) -> x<0 if x doesn't have signed zeros.  */
6736 (SIGNBIT @0)
6737 (if (!HONOR_SIGNED_ZEROS (@0))
6738  (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
6739
6740/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1.  */
6741(for cmp (eq ne)
6742 (for op (plus minus)
6743      rop (minus plus)
6744  (simplify
6745   (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
6746   (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
6747	&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
6748	&& !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
6749	&& !TYPE_SATURATING (TREE_TYPE (@0)))
6750    (with { tree res = int_const_binop (rop, @2, @1); }
6751     (if (TREE_OVERFLOW (res)
6752	  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
6753      { constant_boolean_node (cmp == NE_EXPR, type); }
6754      (if (single_use (@3))
6755       (cmp @0 { TREE_OVERFLOW (res)
6756		 ? drop_tree_overflow (res) : res; }))))))))
6757(for cmp (lt le gt ge)
6758 (for op (plus minus)
6759      rop (minus plus)
6760  (simplify
6761   (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
6762   (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
6763	&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
6764    (with { tree res = int_const_binop (rop, @2, @1); }
6765     (if (TREE_OVERFLOW (res))
6766      {
6767	fold_overflow_warning (("assuming signed overflow does not occur "
6768				"when simplifying conditional to constant"),
6769			       WARN_STRICT_OVERFLOW_CONDITIONAL);
6770        bool less = cmp == LE_EXPR || cmp == LT_EXPR;
6771	/* wi::ges_p (@2, 0) should be sufficient for a signed type.  */
6772	bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
6773				  TYPE_SIGN (TREE_TYPE (@1)))
6774			!= (op == MINUS_EXPR);
6775	constant_boolean_node (less == ovf_high, type);
6776      }
6777      (if (single_use (@3))
6778       (with
6779	{
6780	  fold_overflow_warning (("assuming signed overflow does not occur "
6781				  "when changing X +- C1 cmp C2 to "
6782				  "X cmp C2 -+ C1"),
6783				 WARN_STRICT_OVERFLOW_COMPARISON);
6784	}
6785	(cmp @0 { res; })))))))))
6786
6787/* Canonicalizations of BIT_FIELD_REFs.  */
6788
6789(simplify
6790 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
6791 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
6792
6793(simplify
6794 (BIT_FIELD_REF (view_convert @0) @1 @2)
6795 (BIT_FIELD_REF @0 @1 @2))
6796
6797(simplify
6798 (BIT_FIELD_REF @0 @1 integer_zerop)
6799 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
6800  (view_convert @0)))
6801
6802(simplify
6803 (BIT_FIELD_REF @0 @1 @2)
6804 (switch
6805  (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
6806       && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6807   (switch
6808    (if (integer_zerop (@2))
6809     (view_convert (realpart @0)))
6810    (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6811     (view_convert (imagpart @0)))))
6812  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6813       && INTEGRAL_TYPE_P (type)
6814       /* On GIMPLE this should only apply to register arguments.  */
6815       && (! GIMPLE || is_gimple_reg (@0))
6816       /* A bit-field-ref that referenced the full argument can be stripped.  */
6817       && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
6818	    && integer_zerop (@2))
6819	   /* Low-parts can be reduced to integral conversions.
6820	      ???  The following doesn't work for PDP endian.  */
6821	   || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
6822	       /* But only do this after vectorization.  */
6823	       && canonicalize_math_after_vectorization_p ()
6824	       /* Don't even think about BITS_BIG_ENDIAN.  */
6825	       && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
6826	       && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
6827	       && compare_tree_int (@2, (BYTES_BIG_ENDIAN
6828					 ? (TYPE_PRECISION (TREE_TYPE (@0))
6829					    - TYPE_PRECISION (type))
6830					 : 0)) == 0)))
6831   (convert @0))))
6832
6833/* Simplify vector extracts.  */
6834
6835(simplify
6836 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
6837 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
6838      && tree_fits_uhwi_p (TYPE_SIZE (type))
6839      && ((tree_to_uhwi (TYPE_SIZE (type))
6840	   == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6841          || (VECTOR_TYPE_P (type)
6842	      && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))
6843		  == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))))))
6844  (with
6845   {
6846     tree ctor = (TREE_CODE (@0) == SSA_NAME
6847		  ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
6848     tree eltype = TREE_TYPE (TREE_TYPE (ctor));
6849     unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
6850     unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
6851     unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
6852   }
6853   (if (n != 0
6854	&& (idx % width) == 0
6855	&& (n % width) == 0
6856	&& known_le ((idx + n) / width,
6857		     TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
6858    (with
6859     {
6860       idx = idx / width;
6861       n = n / width;
6862       /* Constructor elements can be subvectors.  */
6863       poly_uint64 k = 1;
6864       if (CONSTRUCTOR_NELTS (ctor) != 0)
6865         {
6866           tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
6867	   if (TREE_CODE (cons_elem) == VECTOR_TYPE)
6868	     k = TYPE_VECTOR_SUBPARTS (cons_elem);
6869	 }
6870       unsigned HOST_WIDE_INT elt, count, const_k;
6871     }
6872     (switch
6873      /* We keep an exact subset of the constructor elements.  */
6874      (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
6875       (if (CONSTRUCTOR_NELTS (ctor) == 0)
6876        { build_zero_cst (type); }
6877	(if (count == 1)
6878	 (if (elt < CONSTRUCTOR_NELTS (ctor))
6879	  (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
6880	  { build_zero_cst (type); })
6881	 /* We don't want to emit new CTORs unless the old one goes away.
6882	    ???  Eventually allow this if the CTOR ends up constant or
6883	    uniform.  */
6884	 (if (single_use (@0))
6885	  (with
6886	    {
6887	      vec<constructor_elt, va_gc> *vals;
6888	      vec_alloc (vals, count);
6889	      bool constant_p = true;
6890	      tree res;
6891	      for (unsigned i = 0;
6892		   i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
6893		{
6894		  tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value;
6895		  CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e);
6896		  if (!CONSTANT_CLASS_P (e))
6897		    constant_p = false;
6898		}
6899	      tree evtype = (types_match (TREE_TYPE (type),
6900					  TREE_TYPE (TREE_TYPE (ctor)))
6901			     ? type
6902			     : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)),
6903						  count));
6904	      res = (constant_p ? build_vector_from_ctor (evtype, vals)
6905		     : build_constructor (evtype, vals));
6906	    }
6907	    (view_convert { res; }))))))
6908      /* The bitfield references a single constructor element.  */
6909      (if (k.is_constant (&const_k)
6910	   && idx + n <= (idx / const_k + 1) * const_k)
6911       (switch
6912	(if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
6913	 { build_zero_cst (type); })
6914	(if (n == const_k)
6915	 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
6916	(BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
6917		       @1 { bitsize_int ((idx % const_k) * width); })))))))))
6918
6919/* Simplify a bit extraction from a bit insertion for the cases with
6920   the inserted element fully covering the extraction or the insertion
6921   not touching the extraction.  */
6922(simplify
6923 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
6924 (with
6925  {
6926    unsigned HOST_WIDE_INT isize;
6927    if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
6928      isize = TYPE_PRECISION (TREE_TYPE (@1));
6929    else
6930      isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
6931  }
6932  (switch
6933   (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
6934	&& wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
6935		      wi::to_wide (@ipos) + isize))
6936    (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
6937                                                 wi::to_wide (@rpos)
6938						 - wi::to_wide (@ipos)); }))
6939   (if (wi::geu_p (wi::to_wide (@ipos),
6940		   wi::to_wide (@rpos) + wi::to_wide (@rsize))
6941	|| wi::geu_p (wi::to_wide (@rpos),
6942		      wi::to_wide (@ipos) + isize))
6943    (BIT_FIELD_REF @0 @rsize @rpos)))))
6944
6945(if (canonicalize_math_after_vectorization_p ())
6946 (for fmas (FMA)
6947  (simplify
6948   (fmas:c (negate @0) @1 @2)
6949   (IFN_FNMA @0 @1 @2))
6950  (simplify
6951   (fmas @0 @1 (negate @2))
6952   (IFN_FMS @0 @1 @2))
6953  (simplify
6954   (fmas:c (negate @0) @1 (negate @2))
6955   (IFN_FNMS @0 @1 @2))
6956  (simplify
6957   (negate (fmas@3 @0 @1 @2))
6958   (if (single_use (@3))
6959    (IFN_FNMS @0 @1 @2))))
6960
6961 (simplify
6962  (IFN_FMS:c (negate @0) @1 @2)
6963  (IFN_FNMS @0 @1 @2))
6964 (simplify
6965  (IFN_FMS @0 @1 (negate @2))
6966  (IFN_FMA @0 @1 @2))
6967 (simplify
6968  (IFN_FMS:c (negate @0) @1 (negate @2))
6969  (IFN_FNMA @0 @1 @2))
6970 (simplify
6971  (negate (IFN_FMS@3 @0 @1 @2))
6972   (if (single_use (@3))
6973    (IFN_FNMA @0 @1 @2)))
6974
6975 (simplify
6976  (IFN_FNMA:c (negate @0) @1 @2)
6977  (IFN_FMA @0 @1 @2))
6978 (simplify
6979  (IFN_FNMA @0 @1 (negate @2))
6980  (IFN_FNMS @0 @1 @2))
6981 (simplify
6982  (IFN_FNMA:c (negate @0) @1 (negate @2))
6983  (IFN_FMS @0 @1 @2))
6984 (simplify
6985  (negate (IFN_FNMA@3 @0 @1 @2))
6986  (if (single_use (@3))
6987   (IFN_FMS @0 @1 @2)))
6988
6989 (simplify
6990  (IFN_FNMS:c (negate @0) @1 @2)
6991  (IFN_FMS @0 @1 @2))
6992 (simplify
6993  (IFN_FNMS @0 @1 (negate @2))
6994  (IFN_FNMA @0 @1 @2))
6995 (simplify
6996  (IFN_FNMS:c (negate @0) @1 (negate @2))
6997  (IFN_FMA @0 @1 @2))
6998 (simplify
6999  (negate (IFN_FNMS@3 @0 @1 @2))
7000  (if (single_use (@3))
7001   (IFN_FMA @0 @1 @2))))
7002
7003/* CLZ simplifications.  */
7004(for clz (CLZ)
7005 (for op (eq ne)
7006      cmp (lt ge)
7007  (simplify
7008   (op (clz:s@2 @0) INTEGER_CST@1)
7009   (if (integer_zerop (@1) && single_use (@2))
7010    /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0.  */
7011    (with { tree type0 = TREE_TYPE (@0);
7012	    tree stype = signed_type_for (type0);
7013	    HOST_WIDE_INT val = 0;
7014	    /* Punt on hypothetical weird targets.  */
7015	    if (clz == CFN_CLZ
7016		&& CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7017					      val) == 2
7018		&& val == 0)
7019	      stype = NULL_TREE;
7020	  }
7021     (if (stype)
7022      (cmp (convert:stype @0) { build_zero_cst (stype); })))
7023    /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1.  */
7024    (with { bool ok = true;
7025	    HOST_WIDE_INT val = 0;
7026	    tree type0 = TREE_TYPE (@0);
7027	    /* Punt on hypothetical weird targets.  */
7028	    if (clz == CFN_CLZ
7029		&& CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7030					      val) == 2
7031		&& val == TYPE_PRECISION (type0) - 1)
7032	      ok = false;
7033	  }
7034     (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1))
7035      (op @0 { build_one_cst (type0); })))))))
7036
7037/* CTZ simplifications.  */
7038(for ctz (CTZ)
7039 (for op (ge gt le lt)
7040      cmp (eq eq ne ne)
7041  (simplify
7042   /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0.  */
7043   (op (ctz:s @0) INTEGER_CST@1)
7044    (with { bool ok = true;
7045	    HOST_WIDE_INT val = 0;
7046	    if (!tree_fits_shwi_p (@1))
7047	      ok = false;
7048	    else
7049	      {
7050		val = tree_to_shwi (@1);
7051		/* Canonicalize to >= or <.  */
7052		if (op == GT_EXPR || op == LE_EXPR)
7053		  {
7054		    if (val == HOST_WIDE_INT_MAX)
7055		      ok = false;
7056		    else
7057		      val++;
7058		  }
7059	      }
7060	    bool zero_res = false;
7061	    HOST_WIDE_INT zero_val = 0;
7062	    tree type0 = TREE_TYPE (@0);
7063	    int prec = TYPE_PRECISION (type0);
7064	    if (ctz == CFN_CTZ
7065		&& CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7066					      zero_val) == 2)
7067	      zero_res = true;
7068	  }
7069     (if (val <= 0)
7070      (if (ok && (!zero_res || zero_val >= val))
7071       { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); })
7072      (if (val >= prec)
7073       (if (ok && (!zero_res || zero_val < val))
7074	{ constant_boolean_node (cmp == EQ_EXPR ? false : true, type); })
7075       (if (ok && (!zero_res || zero_val < 0 || zero_val >= prec))
7076	(cmp (bit_and @0 { wide_int_to_tree (type0,
7077					     wi::mask (val, false, prec)); })
7078	     { build_zero_cst (type0); })))))))
7079 (for op (eq ne)
7080  (simplify
7081   /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C).  */
7082   (op (ctz:s @0) INTEGER_CST@1)
7083    (with { bool zero_res = false;
7084	    HOST_WIDE_INT zero_val = 0;
7085	    tree type0 = TREE_TYPE (@0);
7086	    int prec = TYPE_PRECISION (type0);
7087	    if (ctz == CFN_CTZ
7088		&& CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7089					      zero_val) == 2)
7090	      zero_res = true;
7091	  }
7092     (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
7093      (if (!zero_res || zero_val != wi::to_widest (@1))
7094       { constant_boolean_node (op == EQ_EXPR ? false : true, type); })
7095      (if (!zero_res || zero_val < 0 || zero_val >= prec)
7096       (op (bit_and @0 { wide_int_to_tree (type0,
7097					   wi::mask (tree_to_uhwi (@1) + 1,
7098						     false, prec)); })
7099	   { wide_int_to_tree (type0,
7100			       wi::shifted_mask (tree_to_uhwi (@1), 1,
7101						 false, prec)); })))))))
7102
7103/* POPCOUNT simplifications.  */
7104/* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero.  */
7105(simplify
7106  (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
7107  (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
7108    (POPCOUNT (bit_ior @0 @1))))
7109
7110/* popcount(X) == 0 is X == 0, and related (in)equalities.  */
7111(for popcount (POPCOUNT)
7112  (for cmp (le eq ne gt)
7113       rep (eq eq ne ne)
7114    (simplify
7115      (cmp (popcount @0) integer_zerop)
7116      (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
7117
7118/* Canonicalize POPCOUNT(x)&1 as PARITY(X).  */
7119(simplify
7120  (bit_and (POPCOUNT @0) integer_onep)
7121  (PARITY @0))
7122
7123/* PARITY simplifications.  */
7124/* parity(~X) is parity(X).  */
7125(simplify
7126  (PARITY (bit_not @0))
7127  (PARITY @0))
7128
7129/* parity(X)^parity(Y) is parity(X^Y).  */
7130(simplify
7131  (bit_xor (PARITY:s @0) (PARITY:s @1))
7132  (PARITY (bit_xor @0 @1)))
7133
7134/* Common POPCOUNT/PARITY simplifications.  */
7135/* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2.  Same for parity(X&C1).  */
7136(for pfun (POPCOUNT PARITY)
7137  (simplify
7138    (pfun @0)
7139    (with { wide_int nz = tree_nonzero_bits (@0); }
7140      (switch
7141	(if (nz == 1)
7142	  (convert @0))
7143	(if (wi::popcount (nz) == 1)
7144	  (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7145	    (convert (rshift:utype (convert:utype @0)
7146				   { build_int_cst (integer_type_node,
7147						    wi::ctz (nz)); }))))))))
7148
7149#if GIMPLE
7150/* 64- and 32-bits branchless implementations of popcount are detected:
7151
7152   int popcount64c (uint64_t x)
7153   {
7154     x -= (x >> 1) & 0x5555555555555555ULL;
7155     x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
7156     x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
7157     return (x * 0x0101010101010101ULL) >> 56;
7158   }
7159
7160   int popcount32c (uint32_t x)
7161   {
7162     x -= (x >> 1) & 0x55555555;
7163     x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
7164     x = (x + (x >> 4)) & 0x0f0f0f0f;
7165     return (x * 0x01010101) >> 24;
7166   }  */
7167(simplify
7168 (rshift
7169  (mult
7170   (bit_and
7171    (plus:c
7172     (rshift @8 INTEGER_CST@5)
7173      (plus:c@8
7174       (bit_and @6 INTEGER_CST@7)
7175	(bit_and
7176	 (rshift
7177	  (minus@6 @0
7178	   (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
7179	  INTEGER_CST@10)
7180	 INTEGER_CST@9)))
7181    INTEGER_CST@3)
7182   INTEGER_CST@2)
7183  INTEGER_CST@1)
7184  /* Check constants and optab.  */
7185  (with { unsigned prec = TYPE_PRECISION (type);
7186	  int shift = (64 - prec) & 63;
7187	  unsigned HOST_WIDE_INT c1
7188	    = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
7189	  unsigned HOST_WIDE_INT c2
7190	    = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
7191	  unsigned HOST_WIDE_INT c3
7192	    = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
7193	  unsigned HOST_WIDE_INT c4
7194	    = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
7195   }
7196   (if (prec >= 16
7197	&& prec <= 64
7198	&& pow2p_hwi (prec)
7199	&& TYPE_UNSIGNED (type)
7200	&& integer_onep (@4)
7201	&& wi::to_widest (@10) == 2
7202	&& wi::to_widest (@5) == 4
7203	&& wi::to_widest (@1) == prec - 8
7204	&& tree_to_uhwi (@2) == c1
7205	&& tree_to_uhwi (@3) == c2
7206	&& tree_to_uhwi (@9) == c3
7207	&& tree_to_uhwi (@7) == c3
7208	&& tree_to_uhwi (@11) == c4)
7209    (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type,
7210					 OPTIMIZE_FOR_BOTH))
7211     (convert (IFN_POPCOUNT:type @0))
7212     /* Try to do popcount in two halves.  PREC must be at least
7213	five bits for this to work without extension before adding.  */
7214     (with {
7215       tree half_type = NULL_TREE;
7216       opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1);
7217       int half_prec = 8;
7218       if (m.exists ()
7219	   && m.require () != TYPE_MODE (type))
7220	 {
7221	   half_prec = GET_MODE_PRECISION (as_a <scalar_int_mode> (m));
7222	   half_type = build_nonstandard_integer_type (half_prec, 1);
7223	 }
7224       gcc_assert (half_prec > 2);
7225      }
7226      (if (half_type != NULL_TREE
7227	   && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type,
7228					      OPTIMIZE_FOR_BOTH))
7229       (convert (plus
7230	 (IFN_POPCOUNT:half_type (convert @0))
7231	 (IFN_POPCOUNT:half_type (convert (rshift @0
7232	    { build_int_cst (integer_type_node, half_prec); } )))))))))))
7233
7234/* __builtin_ffs needs to deal on many targets with the possible zero
7235   argument.  If we know the argument is always non-zero, __builtin_ctz + 1
7236   should lead to better code.  */
7237(simplify
7238 (FFS tree_expr_nonzero_p@0)
7239 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7240      && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
7241					 OPTIMIZE_FOR_SPEED))
7242  (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7243   (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
7244#endif
7245
7246(for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
7247	  BUILT_IN_FFSIMAX)
7248 /* __builtin_ffs (X) == 0 -> X == 0.
7249    __builtin_ffs (X) == 6 -> (X & 63) == 32.  */
7250 (for cmp (eq ne)
7251  (simplify
7252   (cmp (ffs@2 @0) INTEGER_CST@1)
7253    (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7254     (switch
7255      (if (integer_zerop (@1))
7256       (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
7257      (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
7258       { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
7259      (if (single_use (@2))
7260       (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
7261					    wi::mask (tree_to_uhwi (@1),
7262						      false, prec)); })
7263	    { wide_int_to_tree (TREE_TYPE (@0),
7264				wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
7265						  false, prec)); }))))))
7266
7267 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0.  */
7268 (for cmp (gt le)
7269      cmp2 (ne eq)
7270      cmp3 (eq ne)
7271      bit_op (bit_and bit_ior)
7272  (simplify
7273   (cmp (ffs@2 @0) INTEGER_CST@1)
7274    (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7275     (switch
7276      (if (integer_zerop (@1))
7277       (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
7278      (if (tree_int_cst_sgn (@1) < 0)
7279       { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
7280      (if (wi::to_widest (@1) >= prec)
7281       { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
7282      (if (wi::to_widest (@1) == prec - 1)
7283       (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
7284				    wi::shifted_mask (prec - 1, 1,
7285						      false, prec)); }))
7286      (if (single_use (@2))
7287       (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
7288	       (cmp3 (bit_and @0
7289			      { wide_int_to_tree (TREE_TYPE (@0),
7290						  wi::mask (tree_to_uhwi (@1),
7291						  false, prec)); })
7292		     { build_zero_cst (TREE_TYPE (@0)); }))))))))
7293
7294#if GIMPLE
7295
7296/* Simplify:
7297     a = op a1
7298     r = cond ? a : b
7299     --> r = .COND_FN (cond, a, b)
7300and,
7301    a = op a1
7302    r = cond ? b : a
7303    --> r = .COND_FN (~cond, b, a).  */
7304
7305(for uncond_op (UNCOND_UNARY)
7306     cond_op (COND_UNARY)
7307 (simplify
7308  (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2)
7309   (with { tree op_type = TREE_TYPE (@3); }
7310    (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7311        && is_truth_type_for (op_type, TREE_TYPE (@0)))
7312     (cond_op @0 @1 @2))))
7313 (simplify
7314  (vec_cond @0 @1 (view_convert? (uncond_op@3 @2)))
7315   (with { tree op_type = TREE_TYPE (@3); }
7316    (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7317        && is_truth_type_for (op_type, TREE_TYPE (@0)))
7318     (cond_op (bit_not @0) @2 @1)))))
7319
7320/* Simplify:
7321
7322     a = a1 op a2
7323     r = c ? a : b;
7324
7325   to:
7326
7327     r = c ? a1 op a2 : b;
7328
7329   if the target can do it in one go.  This makes the operation conditional
7330   on c, so could drop potentially-trapping arithmetic, but that's a valid
7331   simplification if the result of the operation isn't needed.
7332
7333   Avoid speculatively generating a stand-alone vector comparison
7334   on targets that might not support them.  Any target implementing
7335   conditional internal functions must support the same comparisons
7336   inside and outside a VEC_COND_EXPR.  */
7337
7338(for uncond_op (UNCOND_BINARY)
7339     cond_op (COND_BINARY)
7340 (simplify
7341  (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
7342  (with { tree op_type = TREE_TYPE (@4); }
7343   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7344	&& is_truth_type_for (op_type, TREE_TYPE (@0)))
7345    (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
7346 (simplify
7347  (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
7348  (with { tree op_type = TREE_TYPE (@4); }
7349   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7350	&& is_truth_type_for (op_type, TREE_TYPE (@0)))
7351    (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
7352
7353/* Same for ternary operations.  */
7354(for uncond_op (UNCOND_TERNARY)
7355     cond_op (COND_TERNARY)
7356 (simplify
7357  (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
7358  (with { tree op_type = TREE_TYPE (@5); }
7359   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7360	&& is_truth_type_for (op_type, TREE_TYPE (@0)))
7361    (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
7362 (simplify
7363  (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
7364  (with { tree op_type = TREE_TYPE (@5); }
7365   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7366	&& is_truth_type_for (op_type, TREE_TYPE (@0)))
7367    (view_convert (cond_op (bit_not @0) @2 @3 @4
7368		  (view_convert:op_type @1)))))))
7369#endif
7370
7371/* Detect cases in which a VEC_COND_EXPR effectively replaces the
7372   "else" value of an IFN_COND_*.  */
7373(for cond_op (COND_BINARY)
7374 (simplify
7375  (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
7376  (with { tree op_type = TREE_TYPE (@3); }
7377   (if (element_precision (type) == element_precision (op_type))
7378    (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
7379 (simplify
7380  (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
7381  (with { tree op_type = TREE_TYPE (@5); }
7382   (if (inverse_conditions_p (@0, @2)
7383        && element_precision (type) == element_precision (op_type))
7384    (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
7385
7386/* Same for ternary operations.  */
7387(for cond_op (COND_TERNARY)
7388 (simplify
7389  (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
7390  (with { tree op_type = TREE_TYPE (@4); }
7391   (if (element_precision (type) == element_precision (op_type))
7392    (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
7393 (simplify
7394  (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
7395  (with { tree op_type = TREE_TYPE (@6); }
7396   (if (inverse_conditions_p (@0, @2)
7397        && element_precision (type) == element_precision (op_type))
7398    (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
7399
7400/* Detect simplication for a conditional reduction where
7401
7402   a = mask1 ? b : 0
7403   c = mask2 ? d + a : d
7404
7405   is turned into
7406
7407   c = mask1 && mask2 ? d + b : d.  */
7408(simplify
7409  (IFN_COND_ADD @0 @1 (vec_cond @2 @3 integer_zerop) @1)
7410   (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1))
7411
7412/* For pointers @0 and @2 and nonnegative constant offset @1, look for
7413   expressions like:
7414
7415   A: (@0 + @1 < @2) | (@2 + @1 < @0)
7416   B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
7417
7418   If pointers are known not to wrap, B checks whether @1 bytes starting
7419   at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
7420   bytes.  A is more efficiently tested as:
7421
7422   A: (sizetype) (@0 + @1 - @2) > @1 * 2
7423
7424   The equivalent expression for B is given by replacing @1 with @1 - 1:
7425
7426   B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
7427
7428   @0 and @2 can be swapped in both expressions without changing the result.
7429
7430   The folds rely on sizetype's being unsigned (which is always true)
7431   and on its being the same width as the pointer (which we have to check).
7432
7433   The fold replaces two pointer_plus expressions, two comparisons and
7434   an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
7435   the best case it's a saving of two operations.  The A fold retains one
7436   of the original pointer_pluses, so is a win even if both pointer_pluses
7437   are used elsewhere.  The B fold is a wash if both pointer_pluses are
7438   used elsewhere, since all we end up doing is replacing a comparison with
7439   a pointer_plus.  We do still apply the fold under those circumstances
7440   though, in case applying it to other conditions eventually makes one of the
7441   pointer_pluses dead.  */
7442(for ior (truth_orif truth_or bit_ior)
7443 (for cmp (le lt)
7444  (simplify
7445   (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
7446	(cmp:cs (pointer_plus@4 @2 @1) @0))
7447   (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
7448	&& TYPE_OVERFLOW_WRAPS (sizetype)
7449	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
7450    /* Calculate the rhs constant.  */
7451    (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
7452	    offset_int rhs = off * 2; }
7453     /* Always fails for negative values.  */
7454     (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
7455      /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
7456	 pick a canonical order.  This increases the chances of using the
7457	 same pointer_plus in multiple checks.  */
7458      (with { bool swap_p = tree_swap_operands_p (@0, @2);
7459	      tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
7460       (if (cmp == LT_EXPR)
7461	(gt (convert:sizetype
7462	     (pointer_diff:ssizetype { swap_p ? @4 : @3; }
7463				     { swap_p ? @0 : @2; }))
7464	    { rhs_tree; })
7465	(gt (convert:sizetype
7466	     (pointer_diff:ssizetype
7467	      (pointer_plus { swap_p ? @2 : @0; }
7468			    { wide_int_to_tree (sizetype, off); })
7469	      { swap_p ? @0 : @2; }))
7470	    { rhs_tree; })))))))))
7471
7472/* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
7473   element of @1.  */
7474(for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
7475 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
7476  (with { int i = single_nonzero_element (@1); }
7477   (if (i >= 0)
7478    (with { tree elt = vector_cst_elt (@1, i);
7479	    tree elt_type = TREE_TYPE (elt);
7480	    unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
7481	    tree size = bitsize_int (elt_bits);
7482	    tree pos = bitsize_int (elt_bits * i); }
7483     (view_convert
7484      (bit_and:elt_type
7485       (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
7486       { elt; })))))))
7487
7488(simplify
7489 (vec_perm @0 @1 VECTOR_CST@2)
7490 (with
7491  {
7492    tree op0 = @0, op1 = @1, op2 = @2;
7493
7494    /* Build a vector of integers from the tree mask.  */
7495    vec_perm_builder builder;
7496    if (!tree_to_vec_perm_builder (&builder, op2))
7497      return NULL_TREE;
7498
7499    /* Create a vec_perm_indices for the integer vector.  */
7500    poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
7501    bool single_arg = (op0 == op1);
7502    vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
7503  }
7504  (if (sel.series_p (0, 1, 0, 1))
7505   { op0; }
7506   (if (sel.series_p (0, 1, nelts, 1))
7507    { op1; }
7508    (with
7509     {
7510       if (!single_arg)
7511         {
7512	   if (sel.all_from_input_p (0))
7513	     op1 = op0;
7514	   else if (sel.all_from_input_p (1))
7515	     {
7516	       op0 = op1;
7517	       sel.rotate_inputs (1);
7518	     }
7519	   else if (known_ge (poly_uint64 (sel[0]), nelts))
7520	     {
7521	       std::swap (op0, op1);
7522	       sel.rotate_inputs (1);
7523	     }
7524         }
7525       gassign *def;
7526       tree cop0 = op0, cop1 = op1;
7527       if (TREE_CODE (op0) == SSA_NAME
7528           && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
7529	   && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7530	 cop0 = gimple_assign_rhs1 (def);
7531       if (TREE_CODE (op1) == SSA_NAME
7532           && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
7533	   && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7534	 cop1 = gimple_assign_rhs1 (def);
7535
7536       tree t;
7537    }
7538    (if ((TREE_CODE (cop0) == VECTOR_CST
7539	  || TREE_CODE (cop0) == CONSTRUCTOR)
7540	 && (TREE_CODE (cop1) == VECTOR_CST
7541	     || TREE_CODE (cop1) == CONSTRUCTOR)
7542	 && (t = fold_vec_perm (type, cop0, cop1, sel)))
7543     { t; }
7544     (with
7545      {
7546	bool changed = (op0 == op1 && !single_arg);
7547	tree ins = NULL_TREE;
7548	unsigned at = 0;
7549
7550	/* See if the permutation is performing a single element
7551	   insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
7552	   in that case.  But only if the vector mode is supported,
7553	   otherwise this is invalid GIMPLE.  */
7554        if (TYPE_MODE (type) != BLKmode
7555	    && (TREE_CODE (cop0) == VECTOR_CST
7556		|| TREE_CODE (cop0) == CONSTRUCTOR
7557		|| TREE_CODE (cop1) == VECTOR_CST
7558		|| TREE_CODE (cop1) == CONSTRUCTOR))
7559          {
7560	    bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
7561	    if (insert_first_p)
7562	      {
7563	        /* After canonicalizing the first elt to come from the
7564		   first vector we only can insert the first elt from
7565		   the first vector.  */
7566	        at = 0;
7567		if ((ins = fold_read_from_vector (cop0, sel[0])))
7568		  op0 = op1;
7569	      }
7570	    /* The above can fail for two-element vectors which always
7571	       appear to insert the first element, so try inserting
7572	       into the second lane as well.  For more than two
7573	       elements that's wasted time.  */
7574	    if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
7575	      {
7576	        unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
7577		for (at = 0; at < encoded_nelts; ++at)
7578		  if (maybe_ne (sel[at], at))
7579		    break;
7580		if (at < encoded_nelts
7581		    && (known_eq (at + 1, nelts)
7582			|| sel.series_p (at + 1, 1, at + 1, 1)))
7583		  {
7584		    if (known_lt (poly_uint64 (sel[at]), nelts))
7585		      ins = fold_read_from_vector (cop0, sel[at]);
7586		    else
7587		      ins = fold_read_from_vector (cop1, sel[at] - nelts);
7588		  }
7589	      }
7590	  }
7591
7592	/* Generate a canonical form of the selector.  */
7593	if (!ins && sel.encoding () != builder)
7594	  {
7595	    /* Some targets are deficient and fail to expand a single
7596	       argument permutation while still allowing an equivalent
7597	       2-argument version.  */
7598	    tree oldop2 = op2;
7599	    if (sel.ninputs () == 2
7600	       || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
7601	      op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
7602	    else
7603	      {
7604	        vec_perm_indices sel2 (builder, 2, nelts);
7605	        if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
7606	          op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
7607	        else
7608	          /* Not directly supported with either encoding,
7609		     so use the preferred form.  */
7610		  op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
7611	      }
7612	    if (!operand_equal_p (op2, oldop2, 0))
7613	      changed = true;
7614	  }
7615      }
7616      (if (ins)
7617       (bit_insert { op0; } { ins; }
7618         { bitsize_int (at * vector_element_bits (type)); })
7619       (if (changed)
7620        (vec_perm { op0; } { op1; } { op2; }))))))))))
7621
7622/* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element.  */
7623
7624(match vec_same_elem_p
7625 @0
7626 (if (uniform_vector_p (@0))))
7627
7628(match vec_same_elem_p
7629 (vec_duplicate @0))
7630
7631(simplify
7632 (vec_perm vec_same_elem_p@0 @0 @1)
7633 @0)
7634
7635/* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
7636   The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
7637   constant which when multiplied by a power of 2 contains a unique value
7638   in the top 5 or 6 bits.  This is then indexed into a table which maps it
7639   to the number of trailing zeroes.  */
7640(match (ctz_table_index @1 @2 @3)
7641  (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))
7642