1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "cfgrtl.h"
31 #include "cfganal.h"
32 #include "cfgbuild.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "target.h"
37 #include "sched-int.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39
40 #ifdef INSN_SCHEDULING
41 #include "regset.h"
42 #include "cfgloop.h"
43 #include "sel-sched-ir.h"
44 /* We don't have to use it except for sel_print_insn. */
45 #include "sel-sched-dump.h"
46
47 /* A vector holding bb info for whole scheduling pass. */
48 vec<sel_global_bb_info_def> sel_global_bb_info;
49
50 /* A vector holding bb info. */
51 vec<sel_region_bb_info_def> sel_region_bb_info;
52
53 /* A pool for allocating all lists. */
54 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
55
56 /* This contains information about successors for compute_av_set. */
57 struct succs_info current_succs;
58
59 /* Data structure to describe interaction with the generic scheduler utils. */
60 static struct common_sched_info_def sel_common_sched_info;
61
62 /* The loop nest being pipelined. */
63 class loop *current_loop_nest;
64
65 /* LOOP_NESTS is a vector containing the corresponding loop nest for
66 each region. */
67 static vec<loop_p> loop_nests;
68
69 /* Saves blocks already in loop regions, indexed by bb->index. */
70 static sbitmap bbs_in_loop_rgns = NULL;
71
72 /* CFG hooks that are saved before changing create_basic_block hook. */
73 static struct cfg_hooks orig_cfg_hooks;
74
75
76 /* Array containing reverse topological index of function basic blocks,
77 indexed by BB->INDEX. */
78 static int *rev_top_order_index = NULL;
79
80 /* Length of the above array. */
81 static int rev_top_order_index_len = -1;
82
83 /* A regset pool structure. */
84 static struct
85 {
86 /* The stack to which regsets are returned. */
87 regset *v;
88
89 /* Its pointer. */
90 int n;
91
92 /* Its size. */
93 int s;
94
95 /* In VV we save all generated regsets so that, when destructing the
96 pool, we can compare it with V and check that every regset was returned
97 back to pool. */
98 regset *vv;
99
100 /* The pointer of VV stack. */
101 int nn;
102
103 /* Its size. */
104 int ss;
105
106 /* The difference between allocated and returned regsets. */
107 int diff;
108 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
109
110 /* This represents the nop pool. */
111 static struct
112 {
113 /* The vector which holds previously emitted nops. */
114 insn_t *v;
115
116 /* Its pointer. */
117 int n;
118
119 /* Its size. */
120 int s;
121 } nop_pool = { NULL, 0, 0 };
122
123 /* The pool for basic block notes. */
124 static vec<rtx_note *> bb_note_pool;
125
126 /* A NOP pattern used to emit placeholder insns. */
127 rtx nop_pattern = NULL_RTX;
128 /* A special instruction that resides in EXIT_BLOCK.
129 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
130 rtx_insn *exit_insn = NULL;
131
132 /* TRUE if while scheduling current region, which is loop, its preheader
133 was removed. */
134 bool preheader_removed = false;
135
136
137 /* Forward static declarations. */
138 static void fence_clear (fence_t);
139
140 static void deps_init_id (idata_t, insn_t, bool);
141 static void init_id_from_df (idata_t, insn_t, bool);
142 static expr_t set_insn_init (expr_t, vinsn_t, int);
143
144 static void cfg_preds (basic_block, insn_t **, int *);
145 static void prepare_insn_expr (insn_t, int);
146 static void free_history_vect (vec<expr_history_def> &);
147
148 static void move_bb_info (basic_block, basic_block);
149 static void remove_empty_bb (basic_block, bool);
150 static void sel_merge_blocks (basic_block, basic_block);
151 static void sel_remove_loop_preheader (void);
152 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
153
154 static bool insn_is_the_only_one_in_bb_p (insn_t);
155 static void create_initial_data_sets (basic_block);
156
157 static void free_av_set (basic_block);
158 static void invalidate_av_set (basic_block);
159 static void extend_insn_data (void);
160 static void sel_init_new_insn (insn_t, int, int = -1);
161 static void finish_insns (void);
162
163 /* Various list functions. */
164
165 /* Copy an instruction list L. */
166 ilist_t
ilist_copy(ilist_t l)167 ilist_copy (ilist_t l)
168 {
169 ilist_t head = NULL, *tailp = &head;
170
171 while (l)
172 {
173 ilist_add (tailp, ILIST_INSN (l));
174 tailp = &ILIST_NEXT (*tailp);
175 l = ILIST_NEXT (l);
176 }
177
178 return head;
179 }
180
181 /* Invert an instruction list L. */
182 ilist_t
ilist_invert(ilist_t l)183 ilist_invert (ilist_t l)
184 {
185 ilist_t res = NULL;
186
187 while (l)
188 {
189 ilist_add (&res, ILIST_INSN (l));
190 l = ILIST_NEXT (l);
191 }
192
193 return res;
194 }
195
196 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
197 void
blist_add(blist_t * lp,insn_t to,ilist_t ptr,deps_t dc)198 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
199 {
200 bnd_t bnd;
201
202 _list_add (lp);
203 bnd = BLIST_BND (*lp);
204
205 BND_TO (bnd) = to;
206 BND_PTR (bnd) = ptr;
207 BND_AV (bnd) = NULL;
208 BND_AV1 (bnd) = NULL;
209 BND_DC (bnd) = dc;
210 }
211
212 /* Remove the list note pointed to by LP. */
213 void
blist_remove(blist_t * lp)214 blist_remove (blist_t *lp)
215 {
216 bnd_t b = BLIST_BND (*lp);
217
218 av_set_clear (&BND_AV (b));
219 av_set_clear (&BND_AV1 (b));
220 ilist_clear (&BND_PTR (b));
221
222 _list_remove (lp);
223 }
224
225 /* Init a fence tail L. */
226 void
flist_tail_init(flist_tail_t l)227 flist_tail_init (flist_tail_t l)
228 {
229 FLIST_TAIL_HEAD (l) = NULL;
230 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
231 }
232
233 /* Try to find fence corresponding to INSN in L. */
234 fence_t
flist_lookup(flist_t l,insn_t insn)235 flist_lookup (flist_t l, insn_t insn)
236 {
237 while (l)
238 {
239 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
240 return FLIST_FENCE (l);
241
242 l = FLIST_NEXT (l);
243 }
244
245 return NULL;
246 }
247
248 /* Init the fields of F before running fill_insns. */
249 static void
init_fence_for_scheduling(fence_t f)250 init_fence_for_scheduling (fence_t f)
251 {
252 FENCE_BNDS (f) = NULL;
253 FENCE_PROCESSED_P (f) = false;
254 FENCE_SCHEDULED_P (f) = false;
255 }
256
257 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
258 static void
flist_add(flist_t * lp,insn_t insn,state_t state,deps_t dc,void * tc,insn_t last_scheduled_insn,vec<rtx_insn *,va_gc> * executing_insns,int * ready_ticks,int ready_ticks_size,insn_t sched_next,int cycle,int cycle_issued_insns,int issue_more,bool starts_cycle_p,bool after_stall_p)259 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
260 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
261 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
262 int cycle, int cycle_issued_insns, int issue_more,
263 bool starts_cycle_p, bool after_stall_p)
264 {
265 fence_t f;
266
267 _list_add (lp);
268 f = FLIST_FENCE (*lp);
269
270 FENCE_INSN (f) = insn;
271
272 gcc_assert (state != NULL);
273 FENCE_STATE (f) = state;
274
275 FENCE_CYCLE (f) = cycle;
276 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
277 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
278 FENCE_AFTER_STALL_P (f) = after_stall_p;
279
280 gcc_assert (dc != NULL);
281 FENCE_DC (f) = dc;
282
283 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
284 FENCE_TC (f) = tc;
285
286 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
287 FENCE_ISSUE_MORE (f) = issue_more;
288 FENCE_EXECUTING_INSNS (f) = executing_insns;
289 FENCE_READY_TICKS (f) = ready_ticks;
290 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
291 FENCE_SCHED_NEXT (f) = sched_next;
292
293 init_fence_for_scheduling (f);
294 }
295
296 /* Remove the head node of the list pointed to by LP. */
297 static void
flist_remove(flist_t * lp)298 flist_remove (flist_t *lp)
299 {
300 if (FENCE_INSN (FLIST_FENCE (*lp)))
301 fence_clear (FLIST_FENCE (*lp));
302 _list_remove (lp);
303 }
304
305 /* Clear the fence list pointed to by LP. */
306 void
flist_clear(flist_t * lp)307 flist_clear (flist_t *lp)
308 {
309 while (*lp)
310 flist_remove (lp);
311 }
312
313 /* Add ORIGINAL_INSN the def list DL honoring CROSSED_CALL_ABIS. */
314 void
def_list_add(def_list_t * dl,insn_t original_insn,unsigned int crossed_call_abis)315 def_list_add (def_list_t *dl, insn_t original_insn,
316 unsigned int crossed_call_abis)
317 {
318 def_t d;
319
320 _list_add (dl);
321 d = DEF_LIST_DEF (*dl);
322
323 d->orig_insn = original_insn;
324 d->crossed_call_abis = crossed_call_abis;
325 }
326
327
328 /* Functions to work with target contexts. */
329
330 /* Bulk target context. It is convenient for debugging purposes to ensure
331 that there are no uninitialized (null) target contexts. */
332 static tc_t bulk_tc = (tc_t) 1;
333
334 /* Target hooks wrappers. In the future we can provide some default
335 implementations for them. */
336
337 /* Allocate a store for the target context. */
338 static tc_t
alloc_target_context(void)339 alloc_target_context (void)
340 {
341 return (targetm.sched.alloc_sched_context
342 ? targetm.sched.alloc_sched_context () : bulk_tc);
343 }
344
345 /* Init target context TC.
346 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347 Overwise, copy current backend context to TC. */
348 static void
init_target_context(tc_t tc,bool clean_p)349 init_target_context (tc_t tc, bool clean_p)
350 {
351 if (targetm.sched.init_sched_context)
352 targetm.sched.init_sched_context (tc, clean_p);
353 }
354
355 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
356 int init_target_context (). */
357 tc_t
create_target_context(bool clean_p)358 create_target_context (bool clean_p)
359 {
360 tc_t tc = alloc_target_context ();
361
362 init_target_context (tc, clean_p);
363 return tc;
364 }
365
366 /* Copy TC to the current backend context. */
367 void
set_target_context(tc_t tc)368 set_target_context (tc_t tc)
369 {
370 if (targetm.sched.set_sched_context)
371 targetm.sched.set_sched_context (tc);
372 }
373
374 /* TC is about to be destroyed. Free any internal data. */
375 static void
clear_target_context(tc_t tc)376 clear_target_context (tc_t tc)
377 {
378 if (targetm.sched.clear_sched_context)
379 targetm.sched.clear_sched_context (tc);
380 }
381
382 /* Clear and free it. */
383 static void
delete_target_context(tc_t tc)384 delete_target_context (tc_t tc)
385 {
386 clear_target_context (tc);
387
388 if (targetm.sched.free_sched_context)
389 targetm.sched.free_sched_context (tc);
390 }
391
392 /* Make a copy of FROM in TO.
393 NB: May be this should be a hook. */
394 static void
copy_target_context(tc_t to,tc_t from)395 copy_target_context (tc_t to, tc_t from)
396 {
397 tc_t tmp = create_target_context (false);
398
399 set_target_context (from);
400 init_target_context (to, false);
401
402 set_target_context (tmp);
403 delete_target_context (tmp);
404 }
405
406 /* Create a copy of TC. */
407 static tc_t
create_copy_of_target_context(tc_t tc)408 create_copy_of_target_context (tc_t tc)
409 {
410 tc_t copy = alloc_target_context ();
411
412 copy_target_context (copy, tc);
413
414 return copy;
415 }
416
417 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
418 is the same as in init_target_context (). */
419 void
reset_target_context(tc_t tc,bool clean_p)420 reset_target_context (tc_t tc, bool clean_p)
421 {
422 clear_target_context (tc);
423 init_target_context (tc, clean_p);
424 }
425
426 /* Functions to work with dependence contexts.
427 Dc (aka deps context, aka deps_t, aka class deps_desc *) is short for dependence
428 context. It accumulates information about processed insns to decide if
429 current insn is dependent on the processed ones. */
430
431 /* Make a copy of FROM in TO. */
432 static void
copy_deps_context(deps_t to,deps_t from)433 copy_deps_context (deps_t to, deps_t from)
434 {
435 init_deps (to, false);
436 deps_join (to, from);
437 }
438
439 /* Allocate store for dep context. */
440 static deps_t
alloc_deps_context(void)441 alloc_deps_context (void)
442 {
443 return XNEW (class deps_desc);
444 }
445
446 /* Allocate and initialize dep context. */
447 static deps_t
create_deps_context(void)448 create_deps_context (void)
449 {
450 deps_t dc = alloc_deps_context ();
451
452 init_deps (dc, false);
453 return dc;
454 }
455
456 /* Create a copy of FROM. */
457 static deps_t
create_copy_of_deps_context(deps_t from)458 create_copy_of_deps_context (deps_t from)
459 {
460 deps_t to = alloc_deps_context ();
461
462 copy_deps_context (to, from);
463 return to;
464 }
465
466 /* Clean up internal data of DC. */
467 static void
clear_deps_context(deps_t dc)468 clear_deps_context (deps_t dc)
469 {
470 free_deps (dc);
471 }
472
473 /* Clear and free DC. */
474 static void
delete_deps_context(deps_t dc)475 delete_deps_context (deps_t dc)
476 {
477 clear_deps_context (dc);
478 free (dc);
479 }
480
481 /* Clear and init DC. */
482 static void
reset_deps_context(deps_t dc)483 reset_deps_context (deps_t dc)
484 {
485 clear_deps_context (dc);
486 init_deps (dc, false);
487 }
488
489 /* This structure describes the dependence analysis hooks for advancing
490 dependence context. */
491 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
492 {
493 NULL,
494
495 NULL, /* start_insn */
496 NULL, /* finish_insn */
497 NULL, /* start_lhs */
498 NULL, /* finish_lhs */
499 NULL, /* start_rhs */
500 NULL, /* finish_rhs */
501 haifa_note_reg_set,
502 haifa_note_reg_clobber,
503 haifa_note_reg_use,
504 NULL, /* note_mem_dep */
505 NULL, /* note_dep */
506
507 0, 0, 0
508 };
509
510 /* Process INSN and add its impact on DC. */
511 void
advance_deps_context(deps_t dc,insn_t insn)512 advance_deps_context (deps_t dc, insn_t insn)
513 {
514 sched_deps_info = &advance_deps_context_sched_deps_info;
515 deps_analyze_insn (dc, insn);
516 }
517
518
519 /* Functions to work with DFA states. */
520
521 /* Allocate store for a DFA state. */
522 static state_t
state_alloc(void)523 state_alloc (void)
524 {
525 return xmalloc (dfa_state_size);
526 }
527
528 /* Allocate and initialize DFA state. */
529 static state_t
state_create(void)530 state_create (void)
531 {
532 state_t state = state_alloc ();
533
534 state_reset (state);
535 advance_state (state);
536 return state;
537 }
538
539 /* Free DFA state. */
540 static void
state_free(state_t state)541 state_free (state_t state)
542 {
543 free (state);
544 }
545
546 /* Make a copy of FROM in TO. */
547 static void
state_copy(state_t to,state_t from)548 state_copy (state_t to, state_t from)
549 {
550 memcpy (to, from, dfa_state_size);
551 }
552
553 /* Create a copy of FROM. */
554 static state_t
state_create_copy(state_t from)555 state_create_copy (state_t from)
556 {
557 state_t to = state_alloc ();
558
559 state_copy (to, from);
560 return to;
561 }
562
563
564 /* Functions to work with fences. */
565
566 /* Clear the fence. */
567 static void
fence_clear(fence_t f)568 fence_clear (fence_t f)
569 {
570 state_t s = FENCE_STATE (f);
571 deps_t dc = FENCE_DC (f);
572 void *tc = FENCE_TC (f);
573
574 ilist_clear (&FENCE_BNDS (f));
575
576 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
577 || (s == NULL && dc == NULL && tc == NULL));
578
579 free (s);
580
581 if (dc != NULL)
582 delete_deps_context (dc);
583
584 if (tc != NULL)
585 delete_target_context (tc);
586 vec_free (FENCE_EXECUTING_INSNS (f));
587 free (FENCE_READY_TICKS (f));
588 FENCE_READY_TICKS (f) = NULL;
589 }
590
591 /* Init a list of fences with successors of OLD_FENCE. */
592 void
init_fences(insn_t old_fence)593 init_fences (insn_t old_fence)
594 {
595 insn_t succ;
596 succ_iterator si;
597 bool first = true;
598 int ready_ticks_size = get_max_uid () + 1;
599
600 FOR_EACH_SUCC_1 (succ, si, old_fence,
601 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
602 {
603
604 if (first)
605 first = false;
606 else
607 gcc_assert (flag_sel_sched_pipelining_outer_loops);
608
609 flist_add (&fences, succ,
610 state_create (),
611 create_deps_context () /* dc */,
612 create_target_context (true) /* tc */,
613 NULL /* last_scheduled_insn */,
614 NULL, /* executing_insns */
615 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
616 ready_ticks_size,
617 NULL /* sched_next */,
618 1 /* cycle */, 0 /* cycle_issued_insns */,
619 issue_rate, /* issue_more */
620 1 /* starts_cycle_p */, 0 /* after_stall_p */);
621 }
622 }
623
624 /* Merges two fences (filling fields of fence F with resulting values) by
625 following rules: 1) state, target context and last scheduled insn are
626 propagated from fallthrough edge if it is available;
627 2) deps context and cycle is propagated from more probable edge;
628 3) all other fields are set to corresponding constant values.
629
630 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
631 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
632 and AFTER_STALL_P are the corresponding fields of the second fence. */
633 static void
merge_fences(fence_t f,insn_t insn,state_t state,deps_t dc,void * tc,rtx_insn * last_scheduled_insn,vec<rtx_insn *,va_gc> * executing_insns,int * ready_ticks,int ready_ticks_size,rtx sched_next,int cycle,int issue_more,bool after_stall_p)634 merge_fences (fence_t f, insn_t insn,
635 state_t state, deps_t dc, void *tc,
636 rtx_insn *last_scheduled_insn,
637 vec<rtx_insn *, va_gc> *executing_insns,
638 int *ready_ticks, int ready_ticks_size,
639 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
640 {
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
645
646 /* Check if we can decide which path fences came.
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
655 {
656 state_reset (FENCE_STATE (f));
657 state_free (state);
658
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
661
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
664
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
667
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669 FENCE_ISSUE_MORE (f) = issue_rate;
670 vec_free (executing_insns);
671 free (ready_ticks);
672 if (FENCE_EXECUTING_INSNS (f))
673 FENCE_EXECUTING_INSNS (f)->block_remove (0,
674 FENCE_EXECUTING_INSNS (f)->length ());
675 if (FENCE_READY_TICKS (f))
676 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
677 }
678 else
679 {
680 edge edge_old = NULL, edge_new = NULL;
681 edge candidate;
682 succ_iterator si;
683 insn_t succ;
684
685 /* Find fallthrough edge. */
686 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
687 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
688
689 if (!candidate
690 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
691 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
692 {
693 /* No fallthrough edge leading to basic block of INSN. */
694 state_reset (FENCE_STATE (f));
695 state_free (state);
696
697 reset_target_context (FENCE_TC (f), true);
698 delete_target_context (tc);
699
700 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
701 FENCE_ISSUE_MORE (f) = issue_rate;
702 }
703 else
704 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
705 {
706 state_free (FENCE_STATE (f));
707 FENCE_STATE (f) = state;
708
709 delete_target_context (FENCE_TC (f));
710 FENCE_TC (f) = tc;
711
712 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
713 FENCE_ISSUE_MORE (f) = issue_more;
714 }
715 else
716 {
717 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
718 state_free (state);
719 delete_target_context (tc);
720
721 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
722 != BLOCK_FOR_INSN (last_scheduled_insn));
723 }
724
725 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
726 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
727 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
728 {
729 if (succ == insn)
730 {
731 /* No same successor allowed from several edges. */
732 gcc_assert (!edge_old);
733 edge_old = si.e1;
734 }
735 }
736 /* Find edge of second predecessor (last_scheduled_insn->insn). */
737 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
738 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
739 {
740 if (succ == insn)
741 {
742 /* No same successor allowed from several edges. */
743 gcc_assert (!edge_new);
744 edge_new = si.e1;
745 }
746 }
747
748 /* Check if we can choose most probable predecessor. */
749 if (edge_old == NULL || edge_new == NULL)
750 {
751 reset_deps_context (FENCE_DC (f));
752 delete_deps_context (dc);
753 vec_free (executing_insns);
754 free (ready_ticks);
755
756 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
757 if (FENCE_EXECUTING_INSNS (f))
758 FENCE_EXECUTING_INSNS (f)->block_remove (0,
759 FENCE_EXECUTING_INSNS (f)->length ());
760 if (FENCE_READY_TICKS (f))
761 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
762 }
763 else
764 if (edge_new->probability > edge_old->probability)
765 {
766 delete_deps_context (FENCE_DC (f));
767 FENCE_DC (f) = dc;
768 vec_free (FENCE_EXECUTING_INSNS (f));
769 FENCE_EXECUTING_INSNS (f) = executing_insns;
770 free (FENCE_READY_TICKS (f));
771 FENCE_READY_TICKS (f) = ready_ticks;
772 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
773 FENCE_CYCLE (f) = cycle;
774 }
775 else
776 {
777 /* Leave DC and CYCLE untouched. */
778 delete_deps_context (dc);
779 vec_free (executing_insns);
780 free (ready_ticks);
781 }
782 }
783
784 /* Fill remaining invariant fields. */
785 if (after_stall_p)
786 FENCE_AFTER_STALL_P (f) = 1;
787
788 FENCE_ISSUED_INSNS (f) = 0;
789 FENCE_STARTS_CYCLE_P (f) = 1;
790 FENCE_SCHED_NEXT (f) = NULL;
791 }
792
793 /* Add a new fence to NEW_FENCES list, initializing it from all
794 other parameters. */
795 static void
add_to_fences(flist_tail_t new_fences,insn_t insn,state_t state,deps_t dc,void * tc,rtx_insn * last_scheduled_insn,vec<rtx_insn *,va_gc> * executing_insns,int * ready_ticks,int ready_ticks_size,rtx_insn * sched_next,int cycle,int cycle_issued_insns,int issue_rate,bool starts_cycle_p,bool after_stall_p)796 add_to_fences (flist_tail_t new_fences, insn_t insn,
797 state_t state, deps_t dc, void *tc,
798 rtx_insn *last_scheduled_insn,
799 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
800 int ready_ticks_size, rtx_insn *sched_next, int cycle,
801 int cycle_issued_insns, int issue_rate,
802 bool starts_cycle_p, bool after_stall_p)
803 {
804 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
805
806 if (! f)
807 {
808 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
809 last_scheduled_insn, executing_insns, ready_ticks,
810 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
811 issue_rate, starts_cycle_p, after_stall_p);
812
813 FLIST_TAIL_TAILP (new_fences)
814 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
815 }
816 else
817 {
818 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
819 executing_insns, ready_ticks, ready_ticks_size,
820 sched_next, cycle, issue_rate, after_stall_p);
821 }
822 }
823
824 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
825 void
move_fence_to_fences(flist_t old_fences,flist_tail_t new_fences)826 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
827 {
828 fence_t f, old;
829 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
830
831 old = FLIST_FENCE (old_fences);
832 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
833 FENCE_INSN (FLIST_FENCE (old_fences)));
834 if (f)
835 {
836 merge_fences (f, old->insn, old->state, old->dc, old->tc,
837 old->last_scheduled_insn, old->executing_insns,
838 old->ready_ticks, old->ready_ticks_size,
839 old->sched_next, old->cycle, old->issue_more,
840 old->after_stall_p);
841 }
842 else
843 {
844 _list_add (tailp);
845 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
846 *FLIST_FENCE (*tailp) = *old;
847 init_fence_for_scheduling (FLIST_FENCE (*tailp));
848 }
849 FENCE_INSN (old) = NULL;
850 }
851
852 /* Add a new fence to NEW_FENCES list and initialize most of its data
853 as a clean one. */
854 void
add_clean_fence_to_fences(flist_tail_t new_fences,insn_t succ,fence_t fence)855 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
856 {
857 int ready_ticks_size = get_max_uid () + 1;
858
859 add_to_fences (new_fences,
860 succ, state_create (), create_deps_context (),
861 create_target_context (true),
862 NULL, NULL,
863 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
864 NULL, FENCE_CYCLE (fence) + 1,
865 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
866 }
867
868 /* Add a new fence to NEW_FENCES list and initialize all of its data
869 from FENCE and SUCC. */
870 void
add_dirty_fence_to_fences(flist_tail_t new_fences,insn_t succ,fence_t fence)871 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
872 {
873 int * new_ready_ticks
874 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
875
876 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
877 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
878 add_to_fences (new_fences,
879 succ, state_create_copy (FENCE_STATE (fence)),
880 create_copy_of_deps_context (FENCE_DC (fence)),
881 create_copy_of_target_context (FENCE_TC (fence)),
882 FENCE_LAST_SCHEDULED_INSN (fence),
883 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
884 new_ready_ticks,
885 FENCE_READY_TICKS_SIZE (fence),
886 FENCE_SCHED_NEXT (fence),
887 FENCE_CYCLE (fence),
888 FENCE_ISSUED_INSNS (fence),
889 FENCE_ISSUE_MORE (fence),
890 FENCE_STARTS_CYCLE_P (fence),
891 FENCE_AFTER_STALL_P (fence));
892 }
893
894
895 /* Functions to work with regset and nop pools. */
896
897 /* Returns the new regset from pool. It might have some of the bits set
898 from the previous usage. */
899 regset
get_regset_from_pool(void)900 get_regset_from_pool (void)
901 {
902 regset rs;
903
904 if (regset_pool.n != 0)
905 rs = regset_pool.v[--regset_pool.n];
906 else
907 /* We need to create the regset. */
908 {
909 rs = ALLOC_REG_SET (®_obstack);
910
911 if (regset_pool.nn == regset_pool.ss)
912 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
913 (regset_pool.ss = 2 * regset_pool.ss + 1));
914 regset_pool.vv[regset_pool.nn++] = rs;
915 }
916
917 regset_pool.diff++;
918
919 return rs;
920 }
921
922 /* Same as above, but returns the empty regset. */
923 regset
get_clear_regset_from_pool(void)924 get_clear_regset_from_pool (void)
925 {
926 regset rs = get_regset_from_pool ();
927
928 CLEAR_REG_SET (rs);
929 return rs;
930 }
931
932 /* Return regset RS to the pool for future use. */
933 void
return_regset_to_pool(regset rs)934 return_regset_to_pool (regset rs)
935 {
936 gcc_assert (rs);
937 regset_pool.diff--;
938
939 if (regset_pool.n == regset_pool.s)
940 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
941 (regset_pool.s = 2 * regset_pool.s + 1));
942 regset_pool.v[regset_pool.n++] = rs;
943 }
944
945 /* This is used as a qsort callback for sorting regset pool stacks.
946 X and XX are addresses of two regsets. They are never equal. */
947 static int
cmp_v_in_regset_pool(const void * x,const void * xx)948 cmp_v_in_regset_pool (const void *x, const void *xx)
949 {
950 uintptr_t r1 = (uintptr_t) *((const regset *) x);
951 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
952 if (r1 > r2)
953 return 1;
954 else if (r1 < r2)
955 return -1;
956 gcc_unreachable ();
957 }
958
959 /* Free the regset pool possibly checking for memory leaks. */
960 void
free_regset_pool(void)961 free_regset_pool (void)
962 {
963 if (flag_checking)
964 {
965 regset *v = regset_pool.v;
966 int i = 0;
967 int n = regset_pool.n;
968
969 regset *vv = regset_pool.vv;
970 int ii = 0;
971 int nn = regset_pool.nn;
972
973 int diff = 0;
974
975 gcc_assert (n <= nn);
976
977 /* Sort both vectors so it will be possible to compare them. */
978 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
979 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
980
981 while (ii < nn)
982 {
983 if (v[i] == vv[ii])
984 i++;
985 else
986 /* VV[II] was lost. */
987 diff++;
988
989 ii++;
990 }
991
992 gcc_assert (diff == regset_pool.diff);
993 }
994
995 /* If not true - we have a memory leak. */
996 gcc_assert (regset_pool.diff == 0);
997
998 while (regset_pool.n)
999 {
1000 --regset_pool.n;
1001 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1002 }
1003
1004 free (regset_pool.v);
1005 regset_pool.v = NULL;
1006 regset_pool.s = 0;
1007
1008 free (regset_pool.vv);
1009 regset_pool.vv = NULL;
1010 regset_pool.nn = 0;
1011 regset_pool.ss = 0;
1012
1013 regset_pool.diff = 0;
1014 }
1015
1016
1017 /* Functions to work with nop pools. NOP insns are used as temporary
1018 placeholders of the insns being scheduled to allow correct update of
1019 the data sets. When update is finished, NOPs are deleted. */
1020
1021 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1022 nops sel-sched generates. */
1023 static vinsn_t nop_vinsn = NULL;
1024
1025 /* Emit a nop before INSN, taking it from pool. */
1026 insn_t
get_nop_from_pool(insn_t insn)1027 get_nop_from_pool (insn_t insn)
1028 {
1029 rtx nop_pat;
1030 insn_t nop;
1031 bool old_p = nop_pool.n != 0;
1032 int flags;
1033
1034 if (old_p)
1035 nop_pat = nop_pool.v[--nop_pool.n];
1036 else
1037 nop_pat = nop_pattern;
1038
1039 nop = emit_insn_before (nop_pat, insn);
1040
1041 if (old_p)
1042 flags = INSN_INIT_TODO_SSID;
1043 else
1044 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1045
1046 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1047 sel_init_new_insn (nop, flags);
1048
1049 return nop;
1050 }
1051
1052 /* Remove NOP from the instruction stream and return it to the pool. */
1053 void
return_nop_to_pool(insn_t nop,bool full_tidying)1054 return_nop_to_pool (insn_t nop, bool full_tidying)
1055 {
1056 gcc_assert (INSN_IN_STREAM_P (nop));
1057 sel_remove_insn (nop, false, full_tidying);
1058
1059 /* We'll recycle this nop. */
1060 nop->set_undeleted ();
1061
1062 if (nop_pool.n == nop_pool.s)
1063 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1064 (nop_pool.s = 2 * nop_pool.s + 1));
1065 nop_pool.v[nop_pool.n++] = nop;
1066 }
1067
1068 /* Free the nop pool. */
1069 void
free_nop_pool(void)1070 free_nop_pool (void)
1071 {
1072 nop_pool.n = 0;
1073 nop_pool.s = 0;
1074 free (nop_pool.v);
1075 nop_pool.v = NULL;
1076 }
1077
1078
1079 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1080 The callback is given two rtxes XX and YY and writes the new rtxes
1081 to NX and NY in case some needs to be skipped. */
1082 static int
skip_unspecs_callback(const_rtx * xx,const_rtx * yy,rtx * nx,rtx * ny)1083 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1084 {
1085 const_rtx x = *xx;
1086 const_rtx y = *yy;
1087
1088 if (GET_CODE (x) == UNSPEC
1089 && (targetm.sched.skip_rtx_p == NULL
1090 || targetm.sched.skip_rtx_p (x)))
1091 {
1092 *nx = XVECEXP (x, 0, 0);
1093 *ny = CONST_CAST_RTX (y);
1094 return 1;
1095 }
1096
1097 if (GET_CODE (y) == UNSPEC
1098 && (targetm.sched.skip_rtx_p == NULL
1099 || targetm.sched.skip_rtx_p (y)))
1100 {
1101 *nx = CONST_CAST_RTX (x);
1102 *ny = XVECEXP (y, 0, 0);
1103 return 1;
1104 }
1105
1106 return 0;
1107 }
1108
1109 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1110 to support ia64 speculation. When changes are needed, new rtx X and new mode
1111 NMODE are written, and the callback returns true. */
1112 static int
hash_with_unspec_callback(const_rtx x,machine_mode mode ATTRIBUTE_UNUSED,rtx * nx,machine_mode * nmode)1113 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1114 rtx *nx, machine_mode* nmode)
1115 {
1116 if (GET_CODE (x) == UNSPEC
1117 && targetm.sched.skip_rtx_p
1118 && targetm.sched.skip_rtx_p (x))
1119 {
1120 *nx = XVECEXP (x, 0 ,0);
1121 *nmode = VOIDmode;
1122 return 1;
1123 }
1124
1125 return 0;
1126 }
1127
1128 /* Returns LHS and RHS are ok to be scheduled separately. */
1129 static bool
lhs_and_rhs_separable_p(rtx lhs,rtx rhs)1130 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1131 {
1132 if (lhs == NULL || rhs == NULL)
1133 return false;
1134
1135 /* Do not schedule constants as rhs: no point to use reg, if const
1136 can be used. Moreover, scheduling const as rhs may lead to mode
1137 mismatch cause consts don't have modes but they could be merged
1138 from branches where the same const used in different modes. */
1139 if (CONSTANT_P (rhs))
1140 return false;
1141
1142 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1143 if (COMPARISON_P (rhs))
1144 return false;
1145
1146 /* Do not allow single REG to be an rhs. */
1147 if (REG_P (rhs))
1148 return false;
1149
1150 /* See comment at find_used_regs_1 (*1) for explanation of this
1151 restriction. */
1152 /* FIXME: remove this later. */
1153 if (MEM_P (lhs))
1154 return false;
1155
1156 /* This will filter all tricky things like ZERO_EXTRACT etc.
1157 For now we don't handle it. */
1158 if (!REG_P (lhs) && !MEM_P (lhs))
1159 return false;
1160
1161 return true;
1162 }
1163
1164 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1165 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1166 used e.g. for insns from recovery blocks. */
1167 static void
vinsn_init(vinsn_t vi,insn_t insn,bool force_unique_p)1168 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1169 {
1170 hash_rtx_callback_function hrcf;
1171 int insn_class;
1172
1173 VINSN_INSN_RTX (vi) = insn;
1174 VINSN_COUNT (vi) = 0;
1175 vi->cost = -1;
1176
1177 if (INSN_NOP_P (insn))
1178 return;
1179
1180 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1181 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1182 else
1183 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1184
1185 /* Hash vinsn depending on whether it is separable or not. */
1186 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1187 if (VINSN_SEPARABLE_P (vi))
1188 {
1189 rtx rhs = VINSN_RHS (vi);
1190
1191 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1192 NULL, NULL, false, hrcf);
1193 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1194 VOIDmode, NULL, NULL,
1195 false, hrcf);
1196 }
1197 else
1198 {
1199 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1200 NULL, NULL, false, hrcf);
1201 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1202 }
1203
1204 insn_class = haifa_classify_insn (insn);
1205 if (insn_class >= 2
1206 && (!targetm.sched.get_insn_spec_ds
1207 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1208 == 0)))
1209 VINSN_MAY_TRAP_P (vi) = true;
1210 else
1211 VINSN_MAY_TRAP_P (vi) = false;
1212 }
1213
1214 /* Indicate that VI has become the part of an rtx object. */
1215 void
vinsn_attach(vinsn_t vi)1216 vinsn_attach (vinsn_t vi)
1217 {
1218 /* Assert that VI is not pending for deletion. */
1219 gcc_assert (VINSN_INSN_RTX (vi));
1220
1221 VINSN_COUNT (vi)++;
1222 }
1223
1224 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1225 VINSN_TYPE (VI). */
1226 static vinsn_t
vinsn_create(insn_t insn,bool force_unique_p)1227 vinsn_create (insn_t insn, bool force_unique_p)
1228 {
1229 vinsn_t vi = XCNEW (struct vinsn_def);
1230
1231 vinsn_init (vi, insn, force_unique_p);
1232 return vi;
1233 }
1234
1235 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1236 the copy. */
1237 vinsn_t
vinsn_copy(vinsn_t vi,bool reattach_p)1238 vinsn_copy (vinsn_t vi, bool reattach_p)
1239 {
1240 rtx_insn *copy;
1241 bool unique = VINSN_UNIQUE_P (vi);
1242 vinsn_t new_vi;
1243
1244 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1245 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1246 if (reattach_p)
1247 {
1248 vinsn_detach (vi);
1249 vinsn_attach (new_vi);
1250 }
1251
1252 return new_vi;
1253 }
1254
1255 /* Delete the VI vinsn and free its data. */
1256 static void
vinsn_delete(vinsn_t vi)1257 vinsn_delete (vinsn_t vi)
1258 {
1259 gcc_assert (VINSN_COUNT (vi) == 0);
1260
1261 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1262 {
1263 return_regset_to_pool (VINSN_REG_SETS (vi));
1264 return_regset_to_pool (VINSN_REG_USES (vi));
1265 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1266 }
1267
1268 free (vi);
1269 }
1270
1271 /* Indicate that VI is no longer a part of some rtx object.
1272 Remove VI if it is no longer needed. */
1273 void
vinsn_detach(vinsn_t vi)1274 vinsn_detach (vinsn_t vi)
1275 {
1276 gcc_assert (VINSN_COUNT (vi) > 0);
1277
1278 if (--VINSN_COUNT (vi) == 0)
1279 vinsn_delete (vi);
1280 }
1281
1282 /* Returns TRUE if VI is a branch. */
1283 bool
vinsn_cond_branch_p(vinsn_t vi)1284 vinsn_cond_branch_p (vinsn_t vi)
1285 {
1286 insn_t insn;
1287
1288 if (!VINSN_UNIQUE_P (vi))
1289 return false;
1290
1291 insn = VINSN_INSN_RTX (vi);
1292 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1293 return false;
1294
1295 return control_flow_insn_p (insn);
1296 }
1297
1298 /* Return latency of INSN. */
1299 static int
sel_insn_rtx_cost(rtx_insn * insn)1300 sel_insn_rtx_cost (rtx_insn *insn)
1301 {
1302 int cost;
1303
1304 /* A USE insn, or something else we don't need to
1305 understand. We can't pass these directly to
1306 result_ready_cost or insn_default_latency because it will
1307 trigger a fatal error for unrecognizable insns. */
1308 if (recog_memoized (insn) < 0)
1309 cost = 0;
1310 else
1311 {
1312 cost = insn_default_latency (insn);
1313
1314 if (cost < 0)
1315 cost = 0;
1316 }
1317
1318 return cost;
1319 }
1320
1321 /* Return the cost of the VI.
1322 !!! FIXME: Unify with haifa-sched.c: insn_sched_cost (). */
1323 int
sel_vinsn_cost(vinsn_t vi)1324 sel_vinsn_cost (vinsn_t vi)
1325 {
1326 int cost = vi->cost;
1327
1328 if (cost < 0)
1329 {
1330 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1331 vi->cost = cost;
1332 }
1333
1334 return cost;
1335 }
1336
1337
1338 /* Functions for insn emitting. */
1339
1340 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1341 EXPR and SEQNO. */
1342 insn_t
sel_gen_insn_from_rtx_after(rtx pattern,expr_t expr,int seqno,insn_t after)1343 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1344 {
1345 insn_t new_insn;
1346
1347 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1348
1349 new_insn = emit_insn_after (pattern, after);
1350 set_insn_init (expr, NULL, seqno);
1351 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1352
1353 return new_insn;
1354 }
1355
1356 /* Force newly generated vinsns to be unique. */
1357 static bool init_insn_force_unique_p = false;
1358
1359 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1360 initialize its data from EXPR and SEQNO. */
1361 insn_t
sel_gen_recovery_insn_from_rtx_after(rtx pattern,expr_t expr,int seqno,insn_t after)1362 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1363 insn_t after)
1364 {
1365 insn_t insn;
1366
1367 gcc_assert (!init_insn_force_unique_p);
1368
1369 init_insn_force_unique_p = true;
1370 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1371 CANT_MOVE (insn) = 1;
1372 init_insn_force_unique_p = false;
1373
1374 return insn;
1375 }
1376
1377 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1378 take it as a new vinsn instead of EXPR's vinsn.
1379 We simplify insns later, after scheduling region in
1380 simplify_changed_insns. */
1381 insn_t
sel_gen_insn_from_expr_after(expr_t expr,vinsn_t vinsn,int seqno,insn_t after)1382 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1383 insn_t after)
1384 {
1385 expr_t emit_expr;
1386 insn_t insn;
1387 int flags;
1388
1389 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1390 seqno);
1391 insn = EXPR_INSN_RTX (emit_expr);
1392
1393 /* The insn may come from the transformation cache, which may hold already
1394 deleted insns, so mark it as not deleted. */
1395 insn->set_undeleted ();
1396
1397 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1398
1399 flags = INSN_INIT_TODO_SSID;
1400 if (INSN_LUID (insn) == 0)
1401 flags |= INSN_INIT_TODO_LUID;
1402 sel_init_new_insn (insn, flags);
1403
1404 return insn;
1405 }
1406
1407 /* Move insn from EXPR after AFTER. */
1408 insn_t
sel_move_insn(expr_t expr,int seqno,insn_t after)1409 sel_move_insn (expr_t expr, int seqno, insn_t after)
1410 {
1411 insn_t insn = EXPR_INSN_RTX (expr);
1412 basic_block bb = BLOCK_FOR_INSN (after);
1413 insn_t next = NEXT_INSN (after);
1414
1415 /* Assert that in move_op we disconnected this insn properly. */
1416 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1417 SET_PREV_INSN (insn) = after;
1418 SET_NEXT_INSN (insn) = next;
1419
1420 SET_NEXT_INSN (after) = insn;
1421 SET_PREV_INSN (next) = insn;
1422
1423 /* Update links from insn to bb and vice versa. */
1424 df_insn_change_bb (insn, bb);
1425 if (BB_END (bb) == after)
1426 BB_END (bb) = insn;
1427
1428 prepare_insn_expr (insn, seqno);
1429 return insn;
1430 }
1431
1432
1433 /* Functions to work with right-hand sides. */
1434
1435 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1436 VECT and return true when found. Use NEW_VINSN for comparison only when
1437 COMPARE_VINSNS is true. Write to INDP the index on which
1438 the search has stopped, such that inserting the new element at INDP will
1439 retain VECT's sort order. */
1440 static bool
find_in_history_vect_1(vec<expr_history_def> vect,unsigned uid,vinsn_t new_vinsn,bool compare_vinsns,int * indp)1441 find_in_history_vect_1 (vec<expr_history_def> vect,
1442 unsigned uid, vinsn_t new_vinsn,
1443 bool compare_vinsns, int *indp)
1444 {
1445 expr_history_def *arr;
1446 int i, j, len = vect.length ();
1447
1448 if (len == 0)
1449 {
1450 *indp = 0;
1451 return false;
1452 }
1453
1454 arr = vect.address ();
1455 i = 0, j = len - 1;
1456
1457 while (i <= j)
1458 {
1459 unsigned auid = arr[i].uid;
1460 vinsn_t avinsn = arr[i].new_expr_vinsn;
1461
1462 if (auid == uid
1463 /* When undoing transformation on a bookkeeping copy, the new vinsn
1464 may not be exactly equal to the one that is saved in the vector.
1465 This is because the insn whose copy we're checking was possibly
1466 substituted itself. */
1467 && (! compare_vinsns
1468 || vinsn_equal_p (avinsn, new_vinsn)))
1469 {
1470 *indp = i;
1471 return true;
1472 }
1473 else if (auid > uid)
1474 break;
1475 i++;
1476 }
1477
1478 *indp = i;
1479 return false;
1480 }
1481
1482 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1483 the position found or -1, if no such value is in vector.
1484 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1485 int
find_in_history_vect(vec<expr_history_def> vect,rtx insn,vinsn_t new_vinsn,bool originators_p)1486 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1487 vinsn_t new_vinsn, bool originators_p)
1488 {
1489 int ind;
1490
1491 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1492 false, &ind))
1493 return ind;
1494
1495 if (INSN_ORIGINATORS (insn) && originators_p)
1496 {
1497 unsigned uid;
1498 bitmap_iterator bi;
1499
1500 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1501 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1502 return ind;
1503 }
1504
1505 return -1;
1506 }
1507
1508 /* Insert new element in a sorted history vector pointed to by PVECT,
1509 if it is not there already. The element is searched using
1510 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1511 the history of a transformation. */
1512 void
insert_in_history_vect(vec<expr_history_def> * pvect,unsigned uid,enum local_trans_type type,vinsn_t old_expr_vinsn,vinsn_t new_expr_vinsn,ds_t spec_ds)1513 insert_in_history_vect (vec<expr_history_def> *pvect,
1514 unsigned uid, enum local_trans_type type,
1515 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1516 ds_t spec_ds)
1517 {
1518 vec<expr_history_def> vect = *pvect;
1519 expr_history_def temp;
1520 bool res;
1521 int ind;
1522
1523 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1524
1525 if (res)
1526 {
1527 expr_history_def *phist = &vect[ind];
1528
1529 /* It is possible that speculation types of expressions that were
1530 propagated through different paths will be different here. In this
1531 case, merge the status to get the correct check later. */
1532 if (phist->spec_ds != spec_ds)
1533 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1534 return;
1535 }
1536
1537 temp.uid = uid;
1538 temp.old_expr_vinsn = old_expr_vinsn;
1539 temp.new_expr_vinsn = new_expr_vinsn;
1540 temp.spec_ds = spec_ds;
1541 temp.type = type;
1542
1543 vinsn_attach (old_expr_vinsn);
1544 vinsn_attach (new_expr_vinsn);
1545 vect.safe_insert (ind, temp);
1546 *pvect = vect;
1547 }
1548
1549 /* Free history vector PVECT. */
1550 static void
free_history_vect(vec<expr_history_def> & pvect)1551 free_history_vect (vec<expr_history_def> &pvect)
1552 {
1553 unsigned i;
1554 expr_history_def *phist;
1555
1556 if (! pvect.exists ())
1557 return;
1558
1559 for (i = 0; pvect.iterate (i, &phist); i++)
1560 {
1561 vinsn_detach (phist->old_expr_vinsn);
1562 vinsn_detach (phist->new_expr_vinsn);
1563 }
1564
1565 pvect.release ();
1566 }
1567
1568 /* Merge vector FROM to PVECT. */
1569 static void
merge_history_vect(vec<expr_history_def> * pvect,vec<expr_history_def> from)1570 merge_history_vect (vec<expr_history_def> *pvect,
1571 vec<expr_history_def> from)
1572 {
1573 expr_history_def *phist;
1574 int i;
1575
1576 /* We keep this vector sorted. */
1577 for (i = 0; from.iterate (i, &phist); i++)
1578 insert_in_history_vect (pvect, phist->uid, phist->type,
1579 phist->old_expr_vinsn, phist->new_expr_vinsn,
1580 phist->spec_ds);
1581 }
1582
1583 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1584 bool
vinsn_equal_p(vinsn_t x,vinsn_t y)1585 vinsn_equal_p (vinsn_t x, vinsn_t y)
1586 {
1587 rtx_equal_p_callback_function repcf;
1588
1589 if (x == y)
1590 return true;
1591
1592 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1593 return false;
1594
1595 if (VINSN_HASH (x) != VINSN_HASH (y))
1596 return false;
1597
1598 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1599 if (VINSN_SEPARABLE_P (x))
1600 {
1601 /* Compare RHSes of VINSNs. */
1602 gcc_assert (VINSN_RHS (x));
1603 gcc_assert (VINSN_RHS (y));
1604
1605 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1606 }
1607
1608 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1609 }
1610
1611
1612 /* Functions for working with expressions. */
1613
1614 /* Initialize EXPR. */
1615 static void
init_expr(expr_t expr,vinsn_t vi,int spec,int use,int priority,int sched_times,int orig_bb_index,ds_t spec_done_ds,ds_t spec_to_check_ds,int orig_sched_cycle,vec<expr_history_def> history,signed char target_available,bool was_substituted,bool was_renamed,bool needs_spec_check_p,bool cant_move)1616 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1617 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1618 ds_t spec_to_check_ds, int orig_sched_cycle,
1619 vec<expr_history_def> history,
1620 signed char target_available,
1621 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1622 bool cant_move)
1623 {
1624 vinsn_attach (vi);
1625
1626 EXPR_VINSN (expr) = vi;
1627 EXPR_SPEC (expr) = spec;
1628 EXPR_USEFULNESS (expr) = use;
1629 EXPR_PRIORITY (expr) = priority;
1630 EXPR_PRIORITY_ADJ (expr) = 0;
1631 EXPR_SCHED_TIMES (expr) = sched_times;
1632 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1633 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1634 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1635 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1636
1637 if (history.exists ())
1638 EXPR_HISTORY_OF_CHANGES (expr) = history;
1639 else
1640 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1641
1642 EXPR_TARGET_AVAILABLE (expr) = target_available;
1643 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1644 EXPR_WAS_RENAMED (expr) = was_renamed;
1645 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1646 EXPR_CANT_MOVE (expr) = cant_move;
1647 }
1648
1649 /* Make a copy of the expr FROM into the expr TO. */
1650 void
copy_expr(expr_t to,expr_t from)1651 copy_expr (expr_t to, expr_t from)
1652 {
1653 vec<expr_history_def> temp = vNULL;
1654
1655 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1656 {
1657 unsigned i;
1658 expr_history_def *phist;
1659
1660 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1661 for (i = 0;
1662 temp.iterate (i, &phist);
1663 i++)
1664 {
1665 vinsn_attach (phist->old_expr_vinsn);
1666 vinsn_attach (phist->new_expr_vinsn);
1667 }
1668 }
1669
1670 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1671 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1672 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1673 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1674 EXPR_ORIG_SCHED_CYCLE (from), temp,
1675 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1676 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1677 EXPR_CANT_MOVE (from));
1678 }
1679
1680 /* Same, but the final expr will not ever be in av sets, so don't copy
1681 "uninteresting" data such as bitmap cache. */
1682 void
copy_expr_onside(expr_t to,expr_t from)1683 copy_expr_onside (expr_t to, expr_t from)
1684 {
1685 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1686 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1687 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1688 vNULL,
1689 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1690 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1691 EXPR_CANT_MOVE (from));
1692 }
1693
1694 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1695 initializing new insns. */
1696 static void
prepare_insn_expr(insn_t insn,int seqno)1697 prepare_insn_expr (insn_t insn, int seqno)
1698 {
1699 expr_t expr = INSN_EXPR (insn);
1700 ds_t ds;
1701
1702 INSN_SEQNO (insn) = seqno;
1703 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1704 EXPR_SPEC (expr) = 0;
1705 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1706 EXPR_WAS_SUBSTITUTED (expr) = 0;
1707 EXPR_WAS_RENAMED (expr) = 0;
1708 EXPR_TARGET_AVAILABLE (expr) = 1;
1709 INSN_LIVE_VALID_P (insn) = false;
1710
1711 /* ??? If this expression is speculative, make its dependence
1712 as weak as possible. We can filter this expression later
1713 in process_spec_exprs, because we do not distinguish
1714 between the status we got during compute_av_set and the
1715 existing status. To be fixed. */
1716 ds = EXPR_SPEC_DONE_DS (expr);
1717 if (ds)
1718 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1719
1720 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1721 }
1722
1723 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1724 is non-null when expressions are merged from different successors at
1725 a split point. */
1726 static void
update_target_availability(expr_t to,expr_t from,insn_t split_point)1727 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1728 {
1729 if (EXPR_TARGET_AVAILABLE (to) < 0
1730 || EXPR_TARGET_AVAILABLE (from) < 0)
1731 EXPR_TARGET_AVAILABLE (to) = -1;
1732 else
1733 {
1734 /* We try to detect the case when one of the expressions
1735 can only be reached through another one. In this case,
1736 we can do better. */
1737 if (split_point == NULL)
1738 {
1739 int toind, fromind;
1740
1741 toind = EXPR_ORIG_BB_INDEX (to);
1742 fromind = EXPR_ORIG_BB_INDEX (from);
1743
1744 if (toind && toind == fromind)
1745 /* Do nothing -- everything is done in
1746 merge_with_other_exprs. */
1747 ;
1748 else
1749 EXPR_TARGET_AVAILABLE (to) = -1;
1750 }
1751 else if (EXPR_TARGET_AVAILABLE (from) == 0
1752 && EXPR_LHS (from)
1753 && REG_P (EXPR_LHS (from))
1754 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1755 EXPR_TARGET_AVAILABLE (to) = -1;
1756 else
1757 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1758 }
1759 }
1760
1761 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1762 is non-null when expressions are merged from different successors at
1763 a split point. */
1764 static void
update_speculative_bits(expr_t to,expr_t from,insn_t split_point)1765 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1766 {
1767 ds_t old_to_ds, old_from_ds;
1768
1769 old_to_ds = EXPR_SPEC_DONE_DS (to);
1770 old_from_ds = EXPR_SPEC_DONE_DS (from);
1771
1772 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1773 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1774 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1775
1776 /* When merging e.g. control & data speculative exprs, or a control
1777 speculative with a control&data speculative one, we really have
1778 to change vinsn too. Also, when speculative status is changed,
1779 we also need to record this as a transformation in expr's history. */
1780 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1781 {
1782 old_to_ds = ds_get_speculation_types (old_to_ds);
1783 old_from_ds = ds_get_speculation_types (old_from_ds);
1784
1785 if (old_to_ds != old_from_ds)
1786 {
1787 ds_t record_ds;
1788
1789 /* When both expressions are speculative, we need to change
1790 the vinsn first. */
1791 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1792 {
1793 int res;
1794
1795 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1796 gcc_assert (res >= 0);
1797 }
1798
1799 if (split_point != NULL)
1800 {
1801 /* Record the change with proper status. */
1802 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1803 record_ds &= ~(old_to_ds & SPECULATIVE);
1804 record_ds &= ~(old_from_ds & SPECULATIVE);
1805
1806 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1807 INSN_UID (split_point), TRANS_SPECULATION,
1808 EXPR_VINSN (from), EXPR_VINSN (to),
1809 record_ds);
1810 }
1811 }
1812 }
1813 }
1814
1815
1816 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1817 this is done along different paths. */
1818 void
merge_expr_data(expr_t to,expr_t from,insn_t split_point)1819 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1820 {
1821 /* Choose the maximum of the specs of merged exprs. This is required
1822 for correctness of bookkeeping. */
1823 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1824 EXPR_SPEC (to) = EXPR_SPEC (from);
1825
1826 if (split_point)
1827 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1828 else
1829 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1830 EXPR_USEFULNESS (from));
1831
1832 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1833 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1834
1835 /* We merge sched-times half-way to the larger value to avoid the endless
1836 pipelining of unneeded insns. The average seems to be good compromise
1837 between pipelining opportunities and avoiding extra work. */
1838 if (EXPR_SCHED_TIMES (to) != EXPR_SCHED_TIMES (from))
1839 EXPR_SCHED_TIMES (to) = ((EXPR_SCHED_TIMES (from) + EXPR_SCHED_TIMES (to)
1840 + 1) / 2);
1841
1842 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1843 EXPR_ORIG_BB_INDEX (to) = 0;
1844
1845 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1846 EXPR_ORIG_SCHED_CYCLE (from));
1847
1848 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1849 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1850 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1851
1852 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1853 EXPR_HISTORY_OF_CHANGES (from));
1854 update_target_availability (to, from, split_point);
1855 update_speculative_bits (to, from, split_point);
1856 }
1857
1858 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1859 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1860 are merged from different successors at a split point. */
1861 void
merge_expr(expr_t to,expr_t from,insn_t split_point)1862 merge_expr (expr_t to, expr_t from, insn_t split_point)
1863 {
1864 vinsn_t to_vi = EXPR_VINSN (to);
1865 vinsn_t from_vi = EXPR_VINSN (from);
1866
1867 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1868
1869 /* Make sure that speculative pattern is propagated into exprs that
1870 have non-speculative one. This will provide us with consistent
1871 speculative bits and speculative patterns inside expr. */
1872 if (EXPR_SPEC_DONE_DS (to) == 0
1873 && (EXPR_SPEC_DONE_DS (from) != 0
1874 /* Do likewise for volatile insns, so that we always retain
1875 the may_trap_p bit on the resulting expression. However,
1876 avoid propagating the trapping bit into the instructions
1877 already speculated. This would result in replacing the
1878 speculative pattern with the non-speculative one and breaking
1879 the speculation support. */
1880 || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1881 && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
1882 change_vinsn_in_expr (to, EXPR_VINSN (from));
1883
1884 merge_expr_data (to, from, split_point);
1885 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1886 }
1887
1888 /* Clear the information of this EXPR. */
1889 void
clear_expr(expr_t expr)1890 clear_expr (expr_t expr)
1891 {
1892
1893 vinsn_detach (EXPR_VINSN (expr));
1894 EXPR_VINSN (expr) = NULL;
1895
1896 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1897 }
1898
1899 /* For a given LV_SET, mark EXPR having unavailable target register. */
1900 static void
set_unavailable_target_for_expr(expr_t expr,regset lv_set)1901 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1902 {
1903 if (EXPR_SEPARABLE_P (expr))
1904 {
1905 if (REG_P (EXPR_LHS (expr))
1906 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1907 {
1908 /* If it's an insn like r1 = use (r1, ...), and it exists in
1909 different forms in each of the av_sets being merged, we can't say
1910 whether original destination register is available or not.
1911 However, this still works if destination register is not used
1912 in the original expression: if the branch at which LV_SET we're
1913 looking here is not actually 'other branch' in sense that same
1914 expression is available through it (but it can't be determined
1915 at computation stage because of transformations on one of the
1916 branches), it still won't affect the availability.
1917 Liveness of a register somewhere on a code motion path means
1918 it's either read somewhere on a codemotion path, live on
1919 'other' branch, live at the point immediately following
1920 the original operation, or is read by the original operation.
1921 The latter case is filtered out in the condition below.
1922 It still doesn't cover the case when register is defined and used
1923 somewhere within the code motion path, and in this case we could
1924 miss a unifying code motion along both branches using a renamed
1925 register, but it won't affect a code correctness since upon
1926 an actual code motion a bookkeeping code would be generated. */
1927 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1928 EXPR_LHS (expr)))
1929 EXPR_TARGET_AVAILABLE (expr) = -1;
1930 else
1931 EXPR_TARGET_AVAILABLE (expr) = false;
1932 }
1933 }
1934 else
1935 {
1936 unsigned regno;
1937 reg_set_iterator rsi;
1938
1939 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1940 0, regno, rsi)
1941 if (bitmap_bit_p (lv_set, regno))
1942 {
1943 EXPR_TARGET_AVAILABLE (expr) = false;
1944 break;
1945 }
1946
1947 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1948 0, regno, rsi)
1949 if (bitmap_bit_p (lv_set, regno))
1950 {
1951 EXPR_TARGET_AVAILABLE (expr) = false;
1952 break;
1953 }
1954 }
1955 }
1956
1957 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1958 or dependence status have changed, 2 when also the target register
1959 became unavailable, 0 if nothing had to be changed. */
1960 int
speculate_expr(expr_t expr,ds_t ds)1961 speculate_expr (expr_t expr, ds_t ds)
1962 {
1963 int res;
1964 rtx_insn *orig_insn_rtx;
1965 rtx spec_pat;
1966 ds_t target_ds, current_ds;
1967
1968 /* Obtain the status we need to put on EXPR. */
1969 target_ds = (ds & SPECULATIVE);
1970 current_ds = EXPR_SPEC_DONE_DS (expr);
1971 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1972
1973 orig_insn_rtx = EXPR_INSN_RTX (expr);
1974
1975 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1976
1977 switch (res)
1978 {
1979 case 0:
1980 EXPR_SPEC_DONE_DS (expr) = ds;
1981 return current_ds != ds ? 1 : 0;
1982
1983 case 1:
1984 {
1985 rtx_insn *spec_insn_rtx =
1986 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1987 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1988
1989 change_vinsn_in_expr (expr, spec_vinsn);
1990 EXPR_SPEC_DONE_DS (expr) = ds;
1991 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1992
1993 /* Do not allow clobbering the address register of speculative
1994 insns. */
1995 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1996 expr_dest_reg (expr)))
1997 {
1998 EXPR_TARGET_AVAILABLE (expr) = false;
1999 return 2;
2000 }
2001
2002 return 1;
2003 }
2004
2005 case -1:
2006 return -1;
2007
2008 default:
2009 gcc_unreachable ();
2010 return -1;
2011 }
2012 }
2013
2014 /* Return a destination register, if any, of EXPR. */
2015 rtx
expr_dest_reg(expr_t expr)2016 expr_dest_reg (expr_t expr)
2017 {
2018 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2019
2020 if (dest != NULL_RTX && REG_P (dest))
2021 return dest;
2022
2023 return NULL_RTX;
2024 }
2025
2026 /* Returns the REGNO of the R's destination. */
2027 unsigned
expr_dest_regno(expr_t expr)2028 expr_dest_regno (expr_t expr)
2029 {
2030 rtx dest = expr_dest_reg (expr);
2031
2032 gcc_assert (dest != NULL_RTX);
2033 return REGNO (dest);
2034 }
2035
2036 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2037 AV_SET having unavailable target register. */
2038 void
mark_unavailable_targets(av_set_t join_set,av_set_t av_set,regset lv_set)2039 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2040 {
2041 expr_t expr;
2042 av_set_iterator avi;
2043
2044 FOR_EACH_EXPR (expr, avi, join_set)
2045 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2046 set_unavailable_target_for_expr (expr, lv_set);
2047 }
2048
2049
2050 /* Returns true if REG (at least partially) is present in REGS. */
2051 bool
register_unavailable_p(regset regs,rtx reg)2052 register_unavailable_p (regset regs, rtx reg)
2053 {
2054 unsigned regno, end_regno;
2055
2056 regno = REGNO (reg);
2057 if (bitmap_bit_p (regs, regno))
2058 return true;
2059
2060 end_regno = END_REGNO (reg);
2061
2062 while (++regno < end_regno)
2063 if (bitmap_bit_p (regs, regno))
2064 return true;
2065
2066 return false;
2067 }
2068
2069 /* Av set functions. */
2070
2071 /* Add a new element to av set SETP.
2072 Return the element added. */
2073 static av_set_t
av_set_add_element(av_set_t * setp)2074 av_set_add_element (av_set_t *setp)
2075 {
2076 /* Insert at the beginning of the list. */
2077 _list_add (setp);
2078 return *setp;
2079 }
2080
2081 /* Add EXPR to SETP. */
2082 void
av_set_add(av_set_t * setp,expr_t expr)2083 av_set_add (av_set_t *setp, expr_t expr)
2084 {
2085 av_set_t elem;
2086
2087 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2088 elem = av_set_add_element (setp);
2089 copy_expr (_AV_SET_EXPR (elem), expr);
2090 }
2091
2092 /* Same, but do not copy EXPR. */
2093 static void
av_set_add_nocopy(av_set_t * setp,expr_t expr)2094 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2095 {
2096 av_set_t elem;
2097
2098 elem = av_set_add_element (setp);
2099 *_AV_SET_EXPR (elem) = *expr;
2100 }
2101
2102 /* Remove expr pointed to by IP from the av_set. */
2103 void
av_set_iter_remove(av_set_iterator * ip)2104 av_set_iter_remove (av_set_iterator *ip)
2105 {
2106 clear_expr (_AV_SET_EXPR (*ip->lp));
2107 _list_iter_remove (ip);
2108 }
2109
2110 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2111 sense of vinsn_equal_p function. Return NULL if no such expr is
2112 in SET was found. */
2113 expr_t
av_set_lookup(av_set_t set,vinsn_t sought_vinsn)2114 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2115 {
2116 expr_t expr;
2117 av_set_iterator i;
2118
2119 FOR_EACH_EXPR (expr, i, set)
2120 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2121 return expr;
2122 return NULL;
2123 }
2124
2125 /* Same, but also remove the EXPR found. */
2126 static expr_t
av_set_lookup_and_remove(av_set_t * setp,vinsn_t sought_vinsn)2127 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2128 {
2129 expr_t expr;
2130 av_set_iterator i;
2131
2132 FOR_EACH_EXPR_1 (expr, i, setp)
2133 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2134 {
2135 _list_iter_remove_nofree (&i);
2136 return expr;
2137 }
2138 return NULL;
2139 }
2140
2141 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2142 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2143 Returns NULL if no such expr is in SET was found. */
2144 static expr_t
av_set_lookup_other_equiv_expr(av_set_t set,expr_t expr)2145 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2146 {
2147 expr_t cur_expr;
2148 av_set_iterator i;
2149
2150 FOR_EACH_EXPR (cur_expr, i, set)
2151 {
2152 if (cur_expr == expr)
2153 continue;
2154 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2155 return cur_expr;
2156 }
2157
2158 return NULL;
2159 }
2160
2161 /* If other expression is already in AVP, remove one of them. */
2162 expr_t
merge_with_other_exprs(av_set_t * avp,av_set_iterator * ip,expr_t expr)2163 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2164 {
2165 expr_t expr2;
2166
2167 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2168 if (expr2 != NULL)
2169 {
2170 /* Reset target availability on merge, since taking it only from one
2171 of the exprs would be controversial for different code. */
2172 EXPR_TARGET_AVAILABLE (expr2) = -1;
2173 EXPR_USEFULNESS (expr2) = 0;
2174
2175 merge_expr (expr2, expr, NULL);
2176
2177 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2178 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2179
2180 av_set_iter_remove (ip);
2181 return expr2;
2182 }
2183
2184 return expr;
2185 }
2186
2187 /* Return true if there is an expr that correlates to VI in SET. */
2188 bool
av_set_is_in_p(av_set_t set,vinsn_t vi)2189 av_set_is_in_p (av_set_t set, vinsn_t vi)
2190 {
2191 return av_set_lookup (set, vi) != NULL;
2192 }
2193
2194 /* Return a copy of SET. */
2195 av_set_t
av_set_copy(av_set_t set)2196 av_set_copy (av_set_t set)
2197 {
2198 expr_t expr;
2199 av_set_iterator i;
2200 av_set_t res = NULL;
2201
2202 FOR_EACH_EXPR (expr, i, set)
2203 av_set_add (&res, expr);
2204
2205 return res;
2206 }
2207
2208 /* Join two av sets that do not have common elements by attaching second set
2209 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2210 _AV_SET_NEXT of first set's last element). */
2211 static void
join_distinct_sets(av_set_t * to_tailp,av_set_t * fromp)2212 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2213 {
2214 gcc_assert (*to_tailp == NULL);
2215 *to_tailp = *fromp;
2216 *fromp = NULL;
2217 }
2218
2219 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2220 pointed to by FROMP afterwards. */
2221 void
av_set_union_and_clear(av_set_t * top,av_set_t * fromp,insn_t insn)2222 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2223 {
2224 expr_t expr1;
2225 av_set_iterator i;
2226
2227 /* Delete from TOP all exprs, that present in FROMP. */
2228 FOR_EACH_EXPR_1 (expr1, i, top)
2229 {
2230 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2231
2232 if (expr2)
2233 {
2234 merge_expr (expr2, expr1, insn);
2235 av_set_iter_remove (&i);
2236 }
2237 }
2238
2239 join_distinct_sets (i.lp, fromp);
2240 }
2241
2242 /* Same as above, but also update availability of target register in
2243 TOP judging by TO_LV_SET and FROM_LV_SET. */
2244 void
av_set_union_and_live(av_set_t * top,av_set_t * fromp,regset to_lv_set,regset from_lv_set,insn_t insn)2245 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2246 regset from_lv_set, insn_t insn)
2247 {
2248 expr_t expr1;
2249 av_set_iterator i;
2250 av_set_t *to_tailp, in_both_set = NULL;
2251
2252 /* Delete from TOP all expres, that present in FROMP. */
2253 FOR_EACH_EXPR_1 (expr1, i, top)
2254 {
2255 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2256
2257 if (expr2)
2258 {
2259 /* It may be that the expressions have different destination
2260 registers, in which case we need to check liveness here. */
2261 if (EXPR_SEPARABLE_P (expr1))
2262 {
2263 int regno1 = (REG_P (EXPR_LHS (expr1))
2264 ? (int) expr_dest_regno (expr1) : -1);
2265 int regno2 = (REG_P (EXPR_LHS (expr2))
2266 ? (int) expr_dest_regno (expr2) : -1);
2267
2268 /* ??? We don't have a way to check restrictions for
2269 *other* register on the current path, we did it only
2270 for the current target register. Give up. */
2271 if (regno1 != regno2)
2272 EXPR_TARGET_AVAILABLE (expr2) = -1;
2273 }
2274 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2275 EXPR_TARGET_AVAILABLE (expr2) = -1;
2276
2277 merge_expr (expr2, expr1, insn);
2278 av_set_add_nocopy (&in_both_set, expr2);
2279 av_set_iter_remove (&i);
2280 }
2281 else
2282 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2283 FROM_LV_SET. */
2284 set_unavailable_target_for_expr (expr1, from_lv_set);
2285 }
2286 to_tailp = i.lp;
2287
2288 /* These expressions are not present in TOP. Check liveness
2289 restrictions on TO_LV_SET. */
2290 FOR_EACH_EXPR (expr1, i, *fromp)
2291 set_unavailable_target_for_expr (expr1, to_lv_set);
2292
2293 join_distinct_sets (i.lp, &in_both_set);
2294 join_distinct_sets (to_tailp, fromp);
2295 }
2296
2297 /* Clear av_set pointed to by SETP. */
2298 void
av_set_clear(av_set_t * setp)2299 av_set_clear (av_set_t *setp)
2300 {
2301 expr_t expr;
2302 av_set_iterator i;
2303
2304 FOR_EACH_EXPR_1 (expr, i, setp)
2305 av_set_iter_remove (&i);
2306
2307 gcc_assert (*setp == NULL);
2308 }
2309
2310 /* Leave only one non-speculative element in the SETP. */
2311 void
av_set_leave_one_nonspec(av_set_t * setp)2312 av_set_leave_one_nonspec (av_set_t *setp)
2313 {
2314 expr_t expr;
2315 av_set_iterator i;
2316 bool has_one_nonspec = false;
2317
2318 /* Keep all speculative exprs, and leave one non-speculative
2319 (the first one). */
2320 FOR_EACH_EXPR_1 (expr, i, setp)
2321 {
2322 if (!EXPR_SPEC_DONE_DS (expr))
2323 {
2324 if (has_one_nonspec)
2325 av_set_iter_remove (&i);
2326 else
2327 has_one_nonspec = true;
2328 }
2329 }
2330 }
2331
2332 /* Return the N'th element of the SET. */
2333 expr_t
av_set_element(av_set_t set,int n)2334 av_set_element (av_set_t set, int n)
2335 {
2336 expr_t expr;
2337 av_set_iterator i;
2338
2339 FOR_EACH_EXPR (expr, i, set)
2340 if (n-- == 0)
2341 return expr;
2342
2343 gcc_unreachable ();
2344 return NULL;
2345 }
2346
2347 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2348 void
av_set_substract_cond_branches(av_set_t * avp)2349 av_set_substract_cond_branches (av_set_t *avp)
2350 {
2351 av_set_iterator i;
2352 expr_t expr;
2353
2354 FOR_EACH_EXPR_1 (expr, i, avp)
2355 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2356 av_set_iter_remove (&i);
2357 }
2358
2359 /* Multiplies usefulness attribute of each member of av-set *AVP by
2360 value PROB / ALL_PROB. */
2361 void
av_set_split_usefulness(av_set_t av,int prob,int all_prob)2362 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2363 {
2364 av_set_iterator i;
2365 expr_t expr;
2366
2367 FOR_EACH_EXPR (expr, i, av)
2368 EXPR_USEFULNESS (expr) = (all_prob
2369 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2370 : 0);
2371 }
2372
2373 /* Leave in AVP only those expressions, which are present in AV,
2374 and return it, merging history expressions. */
2375 void
av_set_code_motion_filter(av_set_t * avp,av_set_t av)2376 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2377 {
2378 av_set_iterator i;
2379 expr_t expr, expr2;
2380
2381 FOR_EACH_EXPR_1 (expr, i, avp)
2382 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2383 av_set_iter_remove (&i);
2384 else
2385 /* When updating av sets in bookkeeping blocks, we can add more insns
2386 there which will be transformed but the upper av sets will not
2387 reflect those transformations. We then fail to undo those
2388 when searching for such insns. So merge the history saved
2389 in the av set of the block we are processing. */
2390 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2391 EXPR_HISTORY_OF_CHANGES (expr2));
2392 }
2393
2394
2395
2396 /* Dependence hooks to initialize insn data. */
2397
2398 /* This is used in hooks callable from dependence analysis when initializing
2399 instruction's data. */
2400 static struct
2401 {
2402 /* Where the dependence was found (lhs/rhs). */
2403 deps_where_t where;
2404
2405 /* The actual data object to initialize. */
2406 idata_t id;
2407
2408 /* True when the insn should not be made clonable. */
2409 bool force_unique_p;
2410
2411 /* True when insn should be treated as of type USE, i.e. never renamed. */
2412 bool force_use_p;
2413 } deps_init_id_data;
2414
2415
2416 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2417 clonable. */
2418 static void
setup_id_for_insn(idata_t id,insn_t insn,bool force_unique_p)2419 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2420 {
2421 int type;
2422
2423 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2424 That clonable insns which can be separated into lhs and rhs have type SET.
2425 Other clonable insns have type USE. */
2426 type = GET_CODE (insn);
2427
2428 /* Only regular insns could be cloned. */
2429 if (type == INSN && !force_unique_p)
2430 type = SET;
2431 else if (type == JUMP_INSN && simplejump_p (insn))
2432 type = PC;
2433 else if (type == DEBUG_INSN)
2434 type = !force_unique_p ? USE : INSN;
2435
2436 IDATA_TYPE (id) = type;
2437 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2438 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2440 }
2441
2442 /* Start initializing insn data. */
2443 static void
deps_init_id_start_insn(insn_t insn)2444 deps_init_id_start_insn (insn_t insn)
2445 {
2446 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2447
2448 setup_id_for_insn (deps_init_id_data.id, insn,
2449 deps_init_id_data.force_unique_p);
2450 deps_init_id_data.where = DEPS_IN_INSN;
2451 }
2452
2453 /* Start initializing lhs data. */
2454 static void
deps_init_id_start_lhs(rtx lhs)2455 deps_init_id_start_lhs (rtx lhs)
2456 {
2457 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2458 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2459
2460 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2461 {
2462 IDATA_LHS (deps_init_id_data.id) = lhs;
2463 deps_init_id_data.where = DEPS_IN_LHS;
2464 }
2465 }
2466
2467 /* Finish initializing lhs data. */
2468 static void
deps_init_id_finish_lhs(void)2469 deps_init_id_finish_lhs (void)
2470 {
2471 deps_init_id_data.where = DEPS_IN_INSN;
2472 }
2473
2474 /* Note a set of REGNO. */
2475 static void
deps_init_id_note_reg_set(int regno)2476 deps_init_id_note_reg_set (int regno)
2477 {
2478 haifa_note_reg_set (regno);
2479
2480 if (deps_init_id_data.where == DEPS_IN_RHS)
2481 deps_init_id_data.force_use_p = true;
2482
2483 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2484 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2485
2486 #ifdef STACK_REGS
2487 /* Make instructions that set stack registers to be ineligible for
2488 renaming to avoid issues with find_used_regs. */
2489 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2490 deps_init_id_data.force_use_p = true;
2491 #endif
2492 }
2493
2494 /* Note a clobber of REGNO. */
2495 static void
deps_init_id_note_reg_clobber(int regno)2496 deps_init_id_note_reg_clobber (int regno)
2497 {
2498 haifa_note_reg_clobber (regno);
2499
2500 if (deps_init_id_data.where == DEPS_IN_RHS)
2501 deps_init_id_data.force_use_p = true;
2502
2503 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2504 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2505 }
2506
2507 /* Note a use of REGNO. */
2508 static void
deps_init_id_note_reg_use(int regno)2509 deps_init_id_note_reg_use (int regno)
2510 {
2511 haifa_note_reg_use (regno);
2512
2513 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2514 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2515 }
2516
2517 /* Start initializing rhs data. */
2518 static void
deps_init_id_start_rhs(rtx rhs)2519 deps_init_id_start_rhs (rtx rhs)
2520 {
2521 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2522
2523 /* And there was no sel_deps_reset_to_insn (). */
2524 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2525 {
2526 IDATA_RHS (deps_init_id_data.id) = rhs;
2527 deps_init_id_data.where = DEPS_IN_RHS;
2528 }
2529 }
2530
2531 /* Finish initializing rhs data. */
2532 static void
deps_init_id_finish_rhs(void)2533 deps_init_id_finish_rhs (void)
2534 {
2535 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2536 || deps_init_id_data.where == DEPS_IN_INSN);
2537 deps_init_id_data.where = DEPS_IN_INSN;
2538 }
2539
2540 /* Finish initializing insn data. */
2541 static void
deps_init_id_finish_insn(void)2542 deps_init_id_finish_insn (void)
2543 {
2544 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2545
2546 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2547 {
2548 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2549 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2550
2551 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2552 || deps_init_id_data.force_use_p)
2553 {
2554 /* This should be a USE, as we don't want to schedule its RHS
2555 separately. However, we still want to have them recorded
2556 for the purposes of substitution. That's why we don't
2557 simply call downgrade_to_use () here. */
2558 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2559 gcc_assert (!lhs == !rhs);
2560
2561 IDATA_TYPE (deps_init_id_data.id) = USE;
2562 }
2563 }
2564
2565 deps_init_id_data.where = DEPS_IN_NOWHERE;
2566 }
2567
2568 /* This is dependence info used for initializing insn's data. */
2569 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2570
2571 /* This initializes most of the static part of the above structure. */
2572 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2573 {
2574 NULL,
2575
2576 deps_init_id_start_insn,
2577 deps_init_id_finish_insn,
2578 deps_init_id_start_lhs,
2579 deps_init_id_finish_lhs,
2580 deps_init_id_start_rhs,
2581 deps_init_id_finish_rhs,
2582 deps_init_id_note_reg_set,
2583 deps_init_id_note_reg_clobber,
2584 deps_init_id_note_reg_use,
2585 NULL, /* note_mem_dep */
2586 NULL, /* note_dep */
2587
2588 0, /* use_cselib */
2589 0, /* use_deps_list */
2590 0 /* generate_spec_deps */
2591 };
2592
2593 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2594 we don't actually need information about lhs and rhs. */
2595 static void
setup_id_lhs_rhs(idata_t id,insn_t insn,bool force_unique_p)2596 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2597 {
2598 rtx pat = PATTERN (insn);
2599
2600 if (NONJUMP_INSN_P (insn)
2601 && GET_CODE (pat) == SET
2602 && !force_unique_p)
2603 {
2604 IDATA_RHS (id) = SET_SRC (pat);
2605 IDATA_LHS (id) = SET_DEST (pat);
2606 }
2607 else
2608 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2609 }
2610
2611 /* Possibly downgrade INSN to USE. */
2612 static void
maybe_downgrade_id_to_use(idata_t id,insn_t insn)2613 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2614 {
2615 bool must_be_use = false;
2616 df_ref def;
2617 rtx lhs = IDATA_LHS (id);
2618 rtx rhs = IDATA_RHS (id);
2619
2620 /* We downgrade only SETs. */
2621 if (IDATA_TYPE (id) != SET)
2622 return;
2623
2624 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2625 {
2626 IDATA_TYPE (id) = USE;
2627 return;
2628 }
2629
2630 FOR_EACH_INSN_DEF (def, insn)
2631 {
2632 if (DF_REF_INSN (def)
2633 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2634 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2635 {
2636 must_be_use = true;
2637 break;
2638 }
2639
2640 #ifdef STACK_REGS
2641 /* Make instructions that set stack registers to be ineligible for
2642 renaming to avoid issues with find_used_regs. */
2643 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2644 {
2645 must_be_use = true;
2646 break;
2647 }
2648 #endif
2649 }
2650
2651 if (must_be_use)
2652 IDATA_TYPE (id) = USE;
2653 }
2654
2655 /* Setup implicit register clobbers calculated by sched-deps for INSN
2656 before reload and save them in ID. */
2657 static void
setup_id_implicit_regs(idata_t id,insn_t insn)2658 setup_id_implicit_regs (idata_t id, insn_t insn)
2659 {
2660 if (reload_completed)
2661 return;
2662
2663 HARD_REG_SET temp;
2664
2665 get_implicit_reg_pending_clobbers (&temp, insn);
2666 IOR_REG_SET_HRS (IDATA_REG_SETS (id), temp);
2667 }
2668
2669 /* Setup register sets describing INSN in ID. */
2670 static void
setup_id_reg_sets(idata_t id,insn_t insn)2671 setup_id_reg_sets (idata_t id, insn_t insn)
2672 {
2673 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2674 df_ref def, use;
2675 regset tmp = get_clear_regset_from_pool ();
2676
2677 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2678 {
2679 unsigned int regno = DF_REF_REGNO (def);
2680
2681 /* Post modifies are treated like clobbers by sched-deps.c. */
2682 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2683 | DF_REF_PRE_POST_MODIFY)))
2684 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2685 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2686 {
2687 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2688
2689 #ifdef STACK_REGS
2690 /* For stack registers, treat writes to them as writes
2691 to the first one to be consistent with sched-deps.c. */
2692 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2693 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2694 #endif
2695 }
2696 /* Mark special refs that generate read/write def pair. */
2697 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2698 || regno == STACK_POINTER_REGNUM)
2699 bitmap_set_bit (tmp, regno);
2700 }
2701
2702 FOR_EACH_INSN_INFO_USE (use, insn_info)
2703 {
2704 unsigned int regno = DF_REF_REGNO (use);
2705
2706 /* When these refs are met for the first time, skip them, as
2707 these uses are just counterparts of some defs. */
2708 if (bitmap_bit_p (tmp, regno))
2709 bitmap_clear_bit (tmp, regno);
2710 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2711 {
2712 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2713
2714 #ifdef STACK_REGS
2715 /* For stack registers, treat reads from them as reads from
2716 the first one to be consistent with sched-deps.c. */
2717 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2718 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2719 #endif
2720 }
2721 }
2722
2723 /* Also get implicit reg clobbers from sched-deps. */
2724 setup_id_implicit_regs (id, insn);
2725
2726 return_regset_to_pool (tmp);
2727 }
2728
2729 /* Initialize instruction data for INSN in ID using DF's data. */
2730 static void
init_id_from_df(idata_t id,insn_t insn,bool force_unique_p)2731 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2732 {
2733 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2734
2735 setup_id_for_insn (id, insn, force_unique_p);
2736 setup_id_lhs_rhs (id, insn, force_unique_p);
2737
2738 if (INSN_NOP_P (insn))
2739 return;
2740
2741 maybe_downgrade_id_to_use (id, insn);
2742 setup_id_reg_sets (id, insn);
2743 }
2744
2745 /* Initialize instruction data for INSN in ID. */
2746 static void
deps_init_id(idata_t id,insn_t insn,bool force_unique_p)2747 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2748 {
2749 class deps_desc _dc, *dc = &_dc;
2750
2751 deps_init_id_data.where = DEPS_IN_NOWHERE;
2752 deps_init_id_data.id = id;
2753 deps_init_id_data.force_unique_p = force_unique_p;
2754 deps_init_id_data.force_use_p = false;
2755
2756 init_deps (dc, false);
2757 memcpy (&deps_init_id_sched_deps_info,
2758 &const_deps_init_id_sched_deps_info,
2759 sizeof (deps_init_id_sched_deps_info));
2760 if (spec_info != NULL)
2761 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2762 sched_deps_info = &deps_init_id_sched_deps_info;
2763
2764 deps_analyze_insn (dc, insn);
2765 /* Implicit reg clobbers received from sched-deps separately. */
2766 setup_id_implicit_regs (id, insn);
2767
2768 free_deps (dc);
2769 deps_init_id_data.id = NULL;
2770 }
2771
2772
2773 struct sched_scan_info_def
2774 {
2775 /* This hook notifies scheduler frontend to extend its internal per basic
2776 block data structures. This hook should be called once before a series of
2777 calls to bb_init (). */
2778 void (*extend_bb) (void);
2779
2780 /* This hook makes scheduler frontend to initialize its internal data
2781 structures for the passed basic block. */
2782 void (*init_bb) (basic_block);
2783
2784 /* This hook notifies scheduler frontend to extend its internal per insn data
2785 structures. This hook should be called once before a series of calls to
2786 insn_init (). */
2787 void (*extend_insn) (void);
2788
2789 /* This hook makes scheduler frontend to initialize its internal data
2790 structures for the passed insn. */
2791 void (*init_insn) (insn_t);
2792 };
2793
2794 /* A driver function to add a set of basic blocks (BBS) to the
2795 scheduling region. */
2796 static void
sched_scan(const struct sched_scan_info_def * ssi,bb_vec_t bbs)2797 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2798 {
2799 unsigned i;
2800 basic_block bb;
2801
2802 if (ssi->extend_bb)
2803 ssi->extend_bb ();
2804
2805 if (ssi->init_bb)
2806 FOR_EACH_VEC_ELT (bbs, i, bb)
2807 ssi->init_bb (bb);
2808
2809 if (ssi->extend_insn)
2810 ssi->extend_insn ();
2811
2812 if (ssi->init_insn)
2813 FOR_EACH_VEC_ELT (bbs, i, bb)
2814 {
2815 rtx_insn *insn;
2816
2817 FOR_BB_INSNS (bb, insn)
2818 ssi->init_insn (insn);
2819 }
2820 }
2821
2822 /* Implement hooks for collecting fundamental insn properties like if insn is
2823 an ASM or is within a SCHED_GROUP. */
2824
2825 /* True when a "one-time init" data for INSN was already inited. */
2826 static bool
first_time_insn_init(insn_t insn)2827 first_time_insn_init (insn_t insn)
2828 {
2829 return INSN_LIVE (insn) == NULL;
2830 }
2831
2832 /* Hash an entry in a transformed_insns hashtable. */
2833 static hashval_t
hash_transformed_insns(const void * p)2834 hash_transformed_insns (const void *p)
2835 {
2836 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2837 }
2838
2839 /* Compare the entries in a transformed_insns hashtable. */
2840 static int
eq_transformed_insns(const void * p,const void * q)2841 eq_transformed_insns (const void *p, const void *q)
2842 {
2843 rtx_insn *i1 =
2844 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2845 rtx_insn *i2 =
2846 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2847
2848 if (INSN_UID (i1) == INSN_UID (i2))
2849 return 1;
2850 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2851 }
2852
2853 /* Free an entry in a transformed_insns hashtable. */
2854 static void
free_transformed_insns(void * p)2855 free_transformed_insns (void *p)
2856 {
2857 struct transformed_insns *pti = (struct transformed_insns *) p;
2858
2859 vinsn_detach (pti->vinsn_old);
2860 vinsn_detach (pti->vinsn_new);
2861 free (pti);
2862 }
2863
2864 /* Init the s_i_d data for INSN which should be inited just once, when
2865 we first see the insn. */
2866 static void
init_first_time_insn_data(insn_t insn)2867 init_first_time_insn_data (insn_t insn)
2868 {
2869 /* This should not be set if this is the first time we init data for
2870 insn. */
2871 gcc_assert (first_time_insn_init (insn));
2872
2873 /* These are needed for nops too. */
2874 INSN_LIVE (insn) = get_regset_from_pool ();
2875 INSN_LIVE_VALID_P (insn) = false;
2876
2877 if (!INSN_NOP_P (insn))
2878 {
2879 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2880 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2881 INSN_TRANSFORMED_INSNS (insn)
2882 = htab_create (16, hash_transformed_insns,
2883 eq_transformed_insns, free_transformed_insns);
2884 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2885 }
2886 }
2887
2888 /* Free almost all above data for INSN that is scheduled already.
2889 Used for extra-large basic blocks. */
2890 void
free_data_for_scheduled_insn(insn_t insn)2891 free_data_for_scheduled_insn (insn_t insn)
2892 {
2893 gcc_assert (! first_time_insn_init (insn));
2894
2895 if (! INSN_ANALYZED_DEPS (insn))
2896 return;
2897
2898 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2899 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2900 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2901
2902 /* This is allocated only for bookkeeping insns. */
2903 if (INSN_ORIGINATORS (insn))
2904 BITMAP_FREE (INSN_ORIGINATORS (insn));
2905 free_deps (&INSN_DEPS_CONTEXT (insn));
2906
2907 INSN_ANALYZED_DEPS (insn) = NULL;
2908
2909 /* Clear the readonly flag so we would ICE when trying to recalculate
2910 the deps context (as we believe that it should not happen). */
2911 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2912 }
2913
2914 /* Free the same data as above for INSN. */
2915 static void
free_first_time_insn_data(insn_t insn)2916 free_first_time_insn_data (insn_t insn)
2917 {
2918 gcc_assert (! first_time_insn_init (insn));
2919
2920 free_data_for_scheduled_insn (insn);
2921 return_regset_to_pool (INSN_LIVE (insn));
2922 INSN_LIVE (insn) = NULL;
2923 INSN_LIVE_VALID_P (insn) = false;
2924 }
2925
2926 /* Initialize region-scope data structures for basic blocks. */
2927 static void
init_global_and_expr_for_bb(basic_block bb)2928 init_global_and_expr_for_bb (basic_block bb)
2929 {
2930 if (sel_bb_empty_p (bb))
2931 return;
2932
2933 invalidate_av_set (bb);
2934 }
2935
2936 /* Data for global dependency analysis (to initialize CANT_MOVE and
2937 SCHED_GROUP_P). */
2938 static struct
2939 {
2940 /* Previous insn. */
2941 insn_t prev_insn;
2942 } init_global_data;
2943
2944 /* Determine if INSN is in the sched_group, is an asm or should not be
2945 cloned. After that initialize its expr. */
2946 static void
init_global_and_expr_for_insn(insn_t insn)2947 init_global_and_expr_for_insn (insn_t insn)
2948 {
2949 if (LABEL_P (insn))
2950 return;
2951
2952 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2953 {
2954 init_global_data.prev_insn = NULL;
2955 return;
2956 }
2957
2958 gcc_assert (INSN_P (insn));
2959
2960 if (SCHED_GROUP_P (insn))
2961 /* Setup a sched_group. */
2962 {
2963 insn_t prev_insn = init_global_data.prev_insn;
2964
2965 if (prev_insn)
2966 INSN_SCHED_NEXT (prev_insn) = insn;
2967
2968 init_global_data.prev_insn = insn;
2969 }
2970 else
2971 init_global_data.prev_insn = NULL;
2972
2973 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2974 || asm_noperands (PATTERN (insn)) >= 0)
2975 /* Mark INSN as an asm. */
2976 INSN_ASM_P (insn) = true;
2977
2978 {
2979 bool force_unique_p;
2980 ds_t spec_done_ds;
2981
2982 /* Certain instructions cannot be cloned, and frame related insns and
2983 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2984 their block. */
2985 if (prologue_epilogue_contains (insn))
2986 {
2987 if (RTX_FRAME_RELATED_P (insn))
2988 CANT_MOVE (insn) = 1;
2989 else
2990 {
2991 rtx note;
2992 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2993 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2994 && ((enum insn_note) INTVAL (XEXP (note, 0))
2995 == NOTE_INSN_EPILOGUE_BEG))
2996 {
2997 CANT_MOVE (insn) = 1;
2998 break;
2999 }
3000 }
3001 force_unique_p = true;
3002 }
3003 else
3004 if (CANT_MOVE (insn)
3005 || INSN_ASM_P (insn)
3006 || SCHED_GROUP_P (insn)
3007 || CALL_P (insn)
3008 /* Exception handling insns are always unique. */
3009 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3010 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3011 || control_flow_insn_p (insn)
3012 || volatile_insn_p (PATTERN (insn))
3013 || (targetm.cannot_copy_insn_p
3014 && targetm.cannot_copy_insn_p (insn)))
3015 force_unique_p = true;
3016 else
3017 force_unique_p = false;
3018
3019 if (targetm.sched.get_insn_spec_ds)
3020 {
3021 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3022 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3023 }
3024 else
3025 spec_done_ds = 0;
3026
3027 /* Initialize INSN's expr. */
3028 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3029 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3030 spec_done_ds, 0, 0, vNULL, true,
3031 false, false, false, CANT_MOVE (insn));
3032 }
3033
3034 init_first_time_insn_data (insn);
3035 }
3036
3037 /* Scan the region and initialize instruction data for basic blocks BBS. */
3038 void
sel_init_global_and_expr(bb_vec_t bbs)3039 sel_init_global_and_expr (bb_vec_t bbs)
3040 {
3041 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3042 const struct sched_scan_info_def ssi =
3043 {
3044 NULL, /* extend_bb */
3045 init_global_and_expr_for_bb, /* init_bb */
3046 extend_insn_data, /* extend_insn */
3047 init_global_and_expr_for_insn /* init_insn */
3048 };
3049
3050 sched_scan (&ssi, bbs);
3051 }
3052
3053 /* Finalize region-scope data structures for basic blocks. */
3054 static void
finish_global_and_expr_for_bb(basic_block bb)3055 finish_global_and_expr_for_bb (basic_block bb)
3056 {
3057 av_set_clear (&BB_AV_SET (bb));
3058 BB_AV_LEVEL (bb) = 0;
3059 }
3060
3061 /* Finalize INSN's data. */
3062 static void
finish_global_and_expr_insn(insn_t insn)3063 finish_global_and_expr_insn (insn_t insn)
3064 {
3065 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3066 return;
3067
3068 gcc_assert (INSN_P (insn));
3069
3070 if (INSN_LUID (insn) > 0)
3071 {
3072 free_first_time_insn_data (insn);
3073 INSN_WS_LEVEL (insn) = 0;
3074 CANT_MOVE (insn) = 0;
3075
3076 /* We can no longer assert this, as vinsns of this insn could be
3077 easily live in other insn's caches. This should be changed to
3078 a counter-like approach among all vinsns. */
3079 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3080 clear_expr (INSN_EXPR (insn));
3081 }
3082 }
3083
3084 /* Finalize per instruction data for the whole region. */
3085 void
sel_finish_global_and_expr(void)3086 sel_finish_global_and_expr (void)
3087 {
3088 {
3089 bb_vec_t bbs;
3090 int i;
3091
3092 bbs.create (current_nr_blocks);
3093
3094 for (i = 0; i < current_nr_blocks; i++)
3095 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3096
3097 /* Clear AV_SETs and INSN_EXPRs. */
3098 {
3099 const struct sched_scan_info_def ssi =
3100 {
3101 NULL, /* extend_bb */
3102 finish_global_and_expr_for_bb, /* init_bb */
3103 NULL, /* extend_insn */
3104 finish_global_and_expr_insn /* init_insn */
3105 };
3106
3107 sched_scan (&ssi, bbs);
3108 }
3109
3110 bbs.release ();
3111 }
3112
3113 finish_insns ();
3114 }
3115
3116
3117 /* In the below hooks, we merely calculate whether or not a dependence
3118 exists, and in what part of insn. However, we will need more data
3119 when we'll start caching dependence requests. */
3120
3121 /* Container to hold information for dependency analysis. */
3122 static struct
3123 {
3124 deps_t dc;
3125
3126 /* A variable to track which part of rtx we are scanning in
3127 sched-deps.c: sched_analyze_insn (). */
3128 deps_where_t where;
3129
3130 /* Current producer. */
3131 insn_t pro;
3132
3133 /* Current consumer. */
3134 vinsn_t con;
3135
3136 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3137 X is from { INSN, LHS, RHS }. */
3138 ds_t has_dep_p[DEPS_IN_NOWHERE];
3139 } has_dependence_data;
3140
3141 /* Start analyzing dependencies of INSN. */
3142 static void
has_dependence_start_insn(insn_t insn ATTRIBUTE_UNUSED)3143 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3144 {
3145 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3146
3147 has_dependence_data.where = DEPS_IN_INSN;
3148 }
3149
3150 /* Finish analyzing dependencies of an insn. */
3151 static void
has_dependence_finish_insn(void)3152 has_dependence_finish_insn (void)
3153 {
3154 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3155
3156 has_dependence_data.where = DEPS_IN_NOWHERE;
3157 }
3158
3159 /* Start analyzing dependencies of LHS. */
3160 static void
has_dependence_start_lhs(rtx lhs ATTRIBUTE_UNUSED)3161 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3162 {
3163 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3164
3165 if (VINSN_LHS (has_dependence_data.con) != NULL)
3166 has_dependence_data.where = DEPS_IN_LHS;
3167 }
3168
3169 /* Finish analyzing dependencies of an lhs. */
3170 static void
has_dependence_finish_lhs(void)3171 has_dependence_finish_lhs (void)
3172 {
3173 has_dependence_data.where = DEPS_IN_INSN;
3174 }
3175
3176 /* Start analyzing dependencies of RHS. */
3177 static void
has_dependence_start_rhs(rtx rhs ATTRIBUTE_UNUSED)3178 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3179 {
3180 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3181
3182 if (VINSN_RHS (has_dependence_data.con) != NULL)
3183 has_dependence_data.where = DEPS_IN_RHS;
3184 }
3185
3186 /* Start analyzing dependencies of an rhs. */
3187 static void
has_dependence_finish_rhs(void)3188 has_dependence_finish_rhs (void)
3189 {
3190 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3191 || has_dependence_data.where == DEPS_IN_INSN);
3192
3193 has_dependence_data.where = DEPS_IN_INSN;
3194 }
3195
3196 /* Note a set of REGNO. */
3197 static void
has_dependence_note_reg_set(int regno)3198 has_dependence_note_reg_set (int regno)
3199 {
3200 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3201
3202 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3203 VINSN_INSN_RTX
3204 (has_dependence_data.con)))
3205 {
3206 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3207
3208 if (reg_last->sets != NULL
3209 || reg_last->clobbers != NULL)
3210 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3211
3212 if (reg_last->uses || reg_last->implicit_sets)
3213 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3214 }
3215 }
3216
3217 /* Note a clobber of REGNO. */
3218 static void
has_dependence_note_reg_clobber(int regno)3219 has_dependence_note_reg_clobber (int regno)
3220 {
3221 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3222
3223 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3224 VINSN_INSN_RTX
3225 (has_dependence_data.con)))
3226 {
3227 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3228
3229 if (reg_last->sets)
3230 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3231
3232 if (reg_last->uses || reg_last->implicit_sets)
3233 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3234 }
3235 }
3236
3237 /* Note a use of REGNO. */
3238 static void
has_dependence_note_reg_use(int regno)3239 has_dependence_note_reg_use (int regno)
3240 {
3241 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3242
3243 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3244 VINSN_INSN_RTX
3245 (has_dependence_data.con)))
3246 {
3247 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3248
3249 if (reg_last->sets)
3250 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3251
3252 if (reg_last->clobbers || reg_last->implicit_sets)
3253 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3254
3255 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3256 is actually a check insn. We need to do this for any register
3257 read-read dependency with the check unless we track properly
3258 all registers written by BE_IN_SPEC-speculated insns, as
3259 we don't have explicit dependence lists. See PR 53975. */
3260 if (reg_last->uses)
3261 {
3262 ds_t pro_spec_checked_ds;
3263
3264 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3265 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3266
3267 if (pro_spec_checked_ds != 0)
3268 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3269 NULL_RTX, NULL_RTX);
3270 }
3271 }
3272 }
3273
3274 /* Note a memory dependence. */
3275 static void
has_dependence_note_mem_dep(rtx mem ATTRIBUTE_UNUSED,rtx pending_mem ATTRIBUTE_UNUSED,insn_t pending_insn ATTRIBUTE_UNUSED,ds_t ds ATTRIBUTE_UNUSED)3276 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3277 rtx pending_mem ATTRIBUTE_UNUSED,
3278 insn_t pending_insn ATTRIBUTE_UNUSED,
3279 ds_t ds ATTRIBUTE_UNUSED)
3280 {
3281 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3282 VINSN_INSN_RTX (has_dependence_data.con)))
3283 {
3284 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3285
3286 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3287 }
3288 }
3289
3290 /* Note a dependence. */
3291 static void
has_dependence_note_dep(insn_t pro,ds_t ds ATTRIBUTE_UNUSED)3292 has_dependence_note_dep (insn_t pro, ds_t ds ATTRIBUTE_UNUSED)
3293 {
3294 insn_t real_pro = has_dependence_data.pro;
3295 insn_t real_con = VINSN_INSN_RTX (has_dependence_data.con);
3296
3297 /* We do not allow for debug insns to move through others unless they
3298 are at the start of bb. This movement may create bookkeeping copies
3299 that later would not be able to move up, violating the invariant
3300 that a bookkeeping copy should be movable as the original insn.
3301 Detect that here and allow that movement if we allowed it before
3302 in the first place. */
3303 if (DEBUG_INSN_P (real_con) && !DEBUG_INSN_P (real_pro)
3304 && INSN_UID (NEXT_INSN (pro)) == INSN_UID (real_con))
3305 return;
3306
3307 if (!sched_insns_conditions_mutex_p (real_pro, real_con))
3308 {
3309 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3310
3311 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3312 }
3313 }
3314
3315 /* Mark the insn as having a hard dependence that prevents speculation. */
3316 void
sel_mark_hard_insn(rtx insn)3317 sel_mark_hard_insn (rtx insn)
3318 {
3319 int i;
3320
3321 /* Only work when we're in has_dependence_p mode.
3322 ??? This is a hack, this should actually be a hook. */
3323 if (!has_dependence_data.dc || !has_dependence_data.pro)
3324 return;
3325
3326 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3327 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3328
3329 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3330 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3331 }
3332
3333 /* This structure holds the hooks for the dependency analysis used when
3334 actually processing dependencies in the scheduler. */
3335 static struct sched_deps_info_def has_dependence_sched_deps_info;
3336
3337 /* This initializes most of the fields of the above structure. */
3338 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3339 {
3340 NULL,
3341
3342 has_dependence_start_insn,
3343 has_dependence_finish_insn,
3344 has_dependence_start_lhs,
3345 has_dependence_finish_lhs,
3346 has_dependence_start_rhs,
3347 has_dependence_finish_rhs,
3348 has_dependence_note_reg_set,
3349 has_dependence_note_reg_clobber,
3350 has_dependence_note_reg_use,
3351 has_dependence_note_mem_dep,
3352 has_dependence_note_dep,
3353
3354 0, /* use_cselib */
3355 0, /* use_deps_list */
3356 0 /* generate_spec_deps */
3357 };
3358
3359 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3360 static void
setup_has_dependence_sched_deps_info(void)3361 setup_has_dependence_sched_deps_info (void)
3362 {
3363 memcpy (&has_dependence_sched_deps_info,
3364 &const_has_dependence_sched_deps_info,
3365 sizeof (has_dependence_sched_deps_info));
3366
3367 if (spec_info != NULL)
3368 has_dependence_sched_deps_info.generate_spec_deps = 1;
3369
3370 sched_deps_info = &has_dependence_sched_deps_info;
3371 }
3372
3373 /* Remove all dependences found and recorded in has_dependence_data array. */
3374 void
sel_clear_has_dependence(void)3375 sel_clear_has_dependence (void)
3376 {
3377 int i;
3378
3379 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3380 has_dependence_data.has_dep_p[i] = 0;
3381 }
3382
3383 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3384 to the dependence information array in HAS_DEP_PP. */
3385 ds_t
has_dependence_p(expr_t expr,insn_t pred,ds_t ** has_dep_pp)3386 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3387 {
3388 int i;
3389 ds_t ds;
3390 class deps_desc *dc;
3391
3392 if (INSN_SIMPLEJUMP_P (pred))
3393 /* Unconditional jump is just a transfer of control flow.
3394 Ignore it. */
3395 return false;
3396
3397 dc = &INSN_DEPS_CONTEXT (pred);
3398
3399 /* We init this field lazily. */
3400 if (dc->reg_last == NULL)
3401 init_deps_reg_last (dc);
3402
3403 if (!dc->readonly)
3404 {
3405 has_dependence_data.pro = NULL;
3406 /* Initialize empty dep context with information about PRED. */
3407 advance_deps_context (dc, pred);
3408 dc->readonly = 1;
3409 }
3410
3411 has_dependence_data.where = DEPS_IN_NOWHERE;
3412 has_dependence_data.pro = pred;
3413 has_dependence_data.con = EXPR_VINSN (expr);
3414 has_dependence_data.dc = dc;
3415
3416 sel_clear_has_dependence ();
3417
3418 /* Now catch all dependencies that would be generated between PRED and
3419 INSN. */
3420 setup_has_dependence_sched_deps_info ();
3421 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3422 has_dependence_data.dc = NULL;
3423
3424 /* When a barrier was found, set DEPS_IN_INSN bits. */
3425 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3426 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3427 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3428 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3429
3430 /* Do not allow stores to memory to move through checks. Currently
3431 we don't move this to sched-deps.c as the check doesn't have
3432 obvious places to which this dependence can be attached.
3433 FIMXE: this should go to a hook. */
3434 if (EXPR_LHS (expr)
3435 && MEM_P (EXPR_LHS (expr))
3436 && sel_insn_is_speculation_check (pred))
3437 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3438
3439 *has_dep_pp = has_dependence_data.has_dep_p;
3440 ds = 0;
3441 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3442 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3443 NULL_RTX, NULL_RTX);
3444
3445 return ds;
3446 }
3447
3448
3449 /* Dependence hooks implementation that checks dependence latency constraints
3450 on the insns being scheduled. The entry point for these routines is
3451 tick_check_p predicate. */
3452
3453 static struct
3454 {
3455 /* An expr we are currently checking. */
3456 expr_t expr;
3457
3458 /* A minimal cycle for its scheduling. */
3459 int cycle;
3460
3461 /* Whether we have seen a true dependence while checking. */
3462 bool seen_true_dep_p;
3463 } tick_check_data;
3464
3465 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3466 on PRO with status DS and weight DW. */
3467 static void
tick_check_dep_with_dw(insn_t pro_insn,ds_t ds,dw_t dw)3468 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3469 {
3470 expr_t con_expr = tick_check_data.expr;
3471 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3472
3473 if (con_insn != pro_insn)
3474 {
3475 enum reg_note dt;
3476 int tick;
3477
3478 if (/* PROducer was removed from above due to pipelining. */
3479 !INSN_IN_STREAM_P (pro_insn)
3480 /* Or PROducer was originally on the next iteration regarding the
3481 CONsumer. */
3482 || (INSN_SCHED_TIMES (pro_insn)
3483 - EXPR_SCHED_TIMES (con_expr)) > 1)
3484 /* Don't count this dependence. */
3485 return;
3486
3487 dt = ds_to_dt (ds);
3488 if (dt == REG_DEP_TRUE)
3489 tick_check_data.seen_true_dep_p = true;
3490
3491 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3492
3493 {
3494 dep_def _dep, *dep = &_dep;
3495
3496 init_dep (dep, pro_insn, con_insn, dt);
3497
3498 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3499 }
3500
3501 /* When there are several kinds of dependencies between pro and con,
3502 only REG_DEP_TRUE should be taken into account. */
3503 if (tick > tick_check_data.cycle
3504 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3505 tick_check_data.cycle = tick;
3506 }
3507 }
3508
3509 /* An implementation of note_dep hook. */
3510 static void
tick_check_note_dep(insn_t pro,ds_t ds)3511 tick_check_note_dep (insn_t pro, ds_t ds)
3512 {
3513 tick_check_dep_with_dw (pro, ds, 0);
3514 }
3515
3516 /* An implementation of note_mem_dep hook. */
3517 static void
tick_check_note_mem_dep(rtx mem1,rtx mem2,insn_t pro,ds_t ds)3518 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3519 {
3520 dw_t dw;
3521
3522 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3523 ? estimate_dep_weak (mem1, mem2)
3524 : 0);
3525
3526 tick_check_dep_with_dw (pro, ds, dw);
3527 }
3528
3529 /* This structure contains hooks for dependence analysis used when determining
3530 whether an insn is ready for scheduling. */
3531 static struct sched_deps_info_def tick_check_sched_deps_info =
3532 {
3533 NULL,
3534
3535 NULL,
3536 NULL,
3537 NULL,
3538 NULL,
3539 NULL,
3540 NULL,
3541 haifa_note_reg_set,
3542 haifa_note_reg_clobber,
3543 haifa_note_reg_use,
3544 tick_check_note_mem_dep,
3545 tick_check_note_dep,
3546
3547 0, 0, 0
3548 };
3549
3550 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3551 scheduled. Return 0 if all data from producers in DC is ready. */
3552 int
tick_check_p(expr_t expr,deps_t dc,fence_t fence)3553 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3554 {
3555 int cycles_left;
3556 /* Initialize variables. */
3557 tick_check_data.expr = expr;
3558 tick_check_data.cycle = 0;
3559 tick_check_data.seen_true_dep_p = false;
3560 sched_deps_info = &tick_check_sched_deps_info;
3561
3562 gcc_assert (!dc->readonly);
3563 dc->readonly = 1;
3564 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3565 dc->readonly = 0;
3566
3567 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3568
3569 return cycles_left >= 0 ? cycles_left : 0;
3570 }
3571
3572
3573 /* Functions to work with insns. */
3574
3575 /* Returns true if LHS of INSN is the same as DEST of an insn
3576 being moved. */
3577 bool
lhs_of_insn_equals_to_dest_p(insn_t insn,rtx dest)3578 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3579 {
3580 rtx lhs = INSN_LHS (insn);
3581
3582 if (lhs == NULL || dest == NULL)
3583 return false;
3584
3585 return rtx_equal_p (lhs, dest);
3586 }
3587
3588 /* Return s_i_d entry of INSN. Callable from debugger. */
3589 sel_insn_data_def
insn_sid(insn_t insn)3590 insn_sid (insn_t insn)
3591 {
3592 return *SID (insn);
3593 }
3594
3595 /* True when INSN is a speculative check. We can tell this by looking
3596 at the data structures of the selective scheduler, not by examining
3597 the pattern. */
3598 bool
sel_insn_is_speculation_check(rtx insn)3599 sel_insn_is_speculation_check (rtx insn)
3600 {
3601 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3602 }
3603
3604 /* Extracts machine mode MODE and destination location DST_LOC
3605 for given INSN. */
3606 void
get_dest_and_mode(rtx insn,rtx * dst_loc,machine_mode * mode)3607 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3608 {
3609 rtx pat = PATTERN (insn);
3610
3611 gcc_assert (dst_loc);
3612 gcc_assert (GET_CODE (pat) == SET);
3613
3614 *dst_loc = SET_DEST (pat);
3615
3616 gcc_assert (*dst_loc);
3617 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3618
3619 if (mode)
3620 *mode = GET_MODE (*dst_loc);
3621 }
3622
3623 /* Returns true when moving through JUMP will result in bookkeeping
3624 creation. */
3625 bool
bookkeeping_can_be_created_if_moved_through_p(insn_t jump)3626 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3627 {
3628 insn_t succ;
3629 succ_iterator si;
3630
3631 FOR_EACH_SUCC (succ, si, jump)
3632 if (sel_num_cfg_preds_gt_1 (succ))
3633 return true;
3634
3635 return false;
3636 }
3637
3638 /* Return 'true' if INSN is the only one in its basic block. */
3639 static bool
insn_is_the_only_one_in_bb_p(insn_t insn)3640 insn_is_the_only_one_in_bb_p (insn_t insn)
3641 {
3642 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3643 }
3644
3645 /* Check that the region we're scheduling still has at most one
3646 backedge. */
3647 static void
verify_backedges(void)3648 verify_backedges (void)
3649 {
3650 if (pipelining_p)
3651 {
3652 int i, n = 0;
3653 edge e;
3654 edge_iterator ei;
3655
3656 for (i = 0; i < current_nr_blocks; i++)
3657 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3658 if (in_current_region_p (e->dest)
3659 && BLOCK_TO_BB (e->dest->index) < i)
3660 n++;
3661
3662 gcc_assert (n <= 1);
3663 }
3664 }
3665
3666
3667 /* Functions to work with control flow. */
3668
3669 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3670 are sorted in topological order (it might have been invalidated by
3671 redirecting an edge). */
3672 static void
sel_recompute_toporder(void)3673 sel_recompute_toporder (void)
3674 {
3675 int i, n, rgn;
3676 int *postorder, n_blocks;
3677
3678 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3679 n_blocks = post_order_compute (postorder, false, false);
3680
3681 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3682 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3683 if (CONTAINING_RGN (postorder[i]) == rgn)
3684 {
3685 BLOCK_TO_BB (postorder[i]) = n;
3686 BB_TO_BLOCK (n) = postorder[i];
3687 n++;
3688 }
3689
3690 /* Assert that we updated info for all blocks. We may miss some blocks if
3691 this function is called when redirecting an edge made a block
3692 unreachable, but that block is not deleted yet. */
3693 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3694 }
3695
3696 /* Tidy the possibly empty block BB. */
3697 static bool
maybe_tidy_empty_bb(basic_block bb)3698 maybe_tidy_empty_bb (basic_block bb)
3699 {
3700 basic_block succ_bb, pred_bb, note_bb;
3701 vec<basic_block> dom_bbs;
3702 edge e;
3703 edge_iterator ei;
3704 bool rescan_p;
3705
3706 /* Keep empty bb only if this block immediately precedes EXIT and
3707 has incoming non-fallthrough edge, or it has no predecessors or
3708 successors. Otherwise remove it. */
3709 if (!sel_bb_empty_p (bb)
3710 || (single_succ_p (bb)
3711 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3712 && (!single_pred_p (bb)
3713 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3714 || EDGE_COUNT (bb->preds) == 0
3715 || EDGE_COUNT (bb->succs) == 0)
3716 return false;
3717
3718 /* Do not attempt to redirect complex edges. */
3719 FOR_EACH_EDGE (e, ei, bb->preds)
3720 if (e->flags & EDGE_COMPLEX)
3721 return false;
3722 else if (e->flags & EDGE_FALLTHRU)
3723 {
3724 rtx note;
3725 /* If prev bb ends with asm goto, see if any of the
3726 ASM_OPERANDS_LABELs don't point to the fallthru
3727 label. Do not attempt to redirect it in that case. */
3728 if (JUMP_P (BB_END (e->src))
3729 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3730 {
3731 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3732
3733 for (i = 0; i < n; ++i)
3734 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3735 return false;
3736 }
3737 }
3738
3739 free_data_sets (bb);
3740
3741 /* Do not delete BB if it has more than one successor.
3742 That can occur when we moving a jump. */
3743 if (!single_succ_p (bb))
3744 {
3745 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3746 sel_merge_blocks (bb->prev_bb, bb);
3747 return true;
3748 }
3749
3750 succ_bb = single_succ (bb);
3751 rescan_p = true;
3752 pred_bb = NULL;
3753 dom_bbs.create (0);
3754
3755 /* Save a pred/succ from the current region to attach the notes to. */
3756 note_bb = NULL;
3757 FOR_EACH_EDGE (e, ei, bb->preds)
3758 if (in_current_region_p (e->src))
3759 {
3760 note_bb = e->src;
3761 break;
3762 }
3763 if (note_bb == NULL)
3764 note_bb = succ_bb;
3765
3766 /* Redirect all non-fallthru edges to the next bb. */
3767 while (rescan_p)
3768 {
3769 rescan_p = false;
3770
3771 FOR_EACH_EDGE (e, ei, bb->preds)
3772 {
3773 pred_bb = e->src;
3774
3775 if (!(e->flags & EDGE_FALLTHRU))
3776 {
3777 /* We cannot invalidate computed topological order by moving
3778 the edge destination block (E->SUCC) along a fallthru edge.
3779
3780 We will update dominators here only when we'll get
3781 an unreachable block when redirecting, otherwise
3782 sel_redirect_edge_and_branch will take care of it. */
3783 if (e->dest != bb
3784 && single_pred_p (e->dest))
3785 dom_bbs.safe_push (e->dest);
3786 sel_redirect_edge_and_branch (e, succ_bb);
3787 rescan_p = true;
3788 break;
3789 }
3790 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3791 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3792 still have to adjust it. */
3793 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3794 {
3795 /* If possible, try to remove the unneeded conditional jump. */
3796 if (onlyjump_p (BB_END (pred_bb))
3797 && INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3798 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3799 {
3800 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3801 tidy_fallthru_edge (e);
3802 }
3803 else
3804 sel_redirect_edge_and_branch (e, succ_bb);
3805 rescan_p = true;
3806 break;
3807 }
3808 }
3809 }
3810
3811 if (can_merge_blocks_p (bb->prev_bb, bb))
3812 sel_merge_blocks (bb->prev_bb, bb);
3813 else
3814 {
3815 /* This is a block without fallthru predecessor. Just delete it. */
3816 gcc_assert (note_bb);
3817 move_bb_info (note_bb, bb);
3818 remove_empty_bb (bb, true);
3819 }
3820
3821 if (!dom_bbs.is_empty ())
3822 {
3823 dom_bbs.safe_push (succ_bb);
3824 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3825 dom_bbs.release ();
3826 }
3827
3828 return true;
3829 }
3830
3831 /* Tidy the control flow after we have removed original insn from
3832 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3833 is true, also try to optimize control flow on non-empty blocks. */
3834 bool
tidy_control_flow(basic_block xbb,bool full_tidying)3835 tidy_control_flow (basic_block xbb, bool full_tidying)
3836 {
3837 bool changed = true;
3838 insn_t first, last;
3839
3840 /* First check whether XBB is empty. */
3841 changed = maybe_tidy_empty_bb (xbb);
3842 if (changed || !full_tidying)
3843 return changed;
3844
3845 /* Check if there is a unnecessary jump after insn left. */
3846 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3847 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3848 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3849 {
3850 /* We used to call sel_remove_insn here that can trigger tidy_control_flow
3851 before we fix up the fallthru edge. Correct that ordering by
3852 explicitly doing the latter before the former. */
3853 clear_expr (INSN_EXPR (BB_END (xbb)));
3854 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3855 if (tidy_control_flow (xbb, false))
3856 return true;
3857 }
3858
3859 first = sel_bb_head (xbb);
3860 last = sel_bb_end (xbb);
3861 if (MAY_HAVE_DEBUG_INSNS)
3862 {
3863 if (first != last && DEBUG_INSN_P (first))
3864 do
3865 first = NEXT_INSN (first);
3866 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3867
3868 if (first != last && DEBUG_INSN_P (last))
3869 do
3870 last = PREV_INSN (last);
3871 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3872 }
3873 /* Check if there is an unnecessary jump in previous basic block leading
3874 to next basic block left after removing INSN from stream.
3875 If it is so, remove that jump and redirect edge to current
3876 basic block (where there was INSN before deletion). This way
3877 when NOP will be deleted several instructions later with its
3878 basic block we will not get a jump to next instruction, which
3879 can be harmful. */
3880 if (first == last
3881 && !sel_bb_empty_p (xbb)
3882 && INSN_NOP_P (last)
3883 /* Flow goes fallthru from current block to the next. */
3884 && EDGE_COUNT (xbb->succs) == 1
3885 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3886 /* When successor is an EXIT block, it may not be the next block. */
3887 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3888 /* And unconditional jump in previous basic block leads to
3889 next basic block of XBB and this jump can be safely removed. */
3890 && in_current_region_p (xbb->prev_bb)
3891 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3892 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3893 /* Also this jump is not at the scheduling boundary. */
3894 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3895 {
3896 bool recompute_toporder_p;
3897 /* Clear data structures of jump - jump itself will be removed
3898 by sel_redirect_edge_and_branch. */
3899 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3900 recompute_toporder_p
3901 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3902
3903 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3904
3905 /* We could have skipped some debug insns which did not get removed with the block,
3906 and the seqnos could become incorrect. Fix them up here. */
3907 if (MAY_HAVE_DEBUG_INSNS && (sel_bb_head (xbb) != first || sel_bb_end (xbb) != last))
3908 {
3909 if (!sel_bb_empty_p (xbb->prev_bb))
3910 {
3911 int prev_seqno = INSN_SEQNO (sel_bb_end (xbb->prev_bb));
3912 if (prev_seqno > INSN_SEQNO (sel_bb_head (xbb)))
3913 for (insn_t insn = sel_bb_head (xbb); insn != first; insn = NEXT_INSN (insn))
3914 INSN_SEQNO (insn) = prev_seqno + 1;
3915 }
3916 }
3917
3918 /* It can turn out that after removing unused jump, basic block
3919 that contained that jump, becomes empty too. In such case
3920 remove it too. */
3921 if (sel_bb_empty_p (xbb->prev_bb))
3922 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3923 if (recompute_toporder_p)
3924 sel_recompute_toporder ();
3925 }
3926
3927 /* TODO: use separate flag for CFG checking. */
3928 if (flag_checking)
3929 {
3930 verify_backedges ();
3931 verify_dominators (CDI_DOMINATORS);
3932 }
3933
3934 return changed;
3935 }
3936
3937 /* Purge meaningless empty blocks in the middle of a region. */
3938 void
purge_empty_blocks(void)3939 purge_empty_blocks (void)
3940 {
3941 int i;
3942
3943 /* Do not attempt to delete the first basic block in the region. */
3944 for (i = 1; i < current_nr_blocks; )
3945 {
3946 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3947
3948 if (maybe_tidy_empty_bb (b))
3949 continue;
3950
3951 i++;
3952 }
3953 }
3954
3955 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3956 do not delete insn's data, because it will be later re-emitted.
3957 Return true if we have removed some blocks afterwards. */
3958 bool
sel_remove_insn(insn_t insn,bool only_disconnect,bool full_tidying)3959 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3960 {
3961 basic_block bb = BLOCK_FOR_INSN (insn);
3962
3963 gcc_assert (INSN_IN_STREAM_P (insn));
3964
3965 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3966 {
3967 expr_t expr;
3968 av_set_iterator i;
3969
3970 /* When we remove a debug insn that is head of a BB, it remains
3971 in the AV_SET of the block, but it shouldn't. */
3972 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3973 if (EXPR_INSN_RTX (expr) == insn)
3974 {
3975 av_set_iter_remove (&i);
3976 break;
3977 }
3978 }
3979
3980 if (only_disconnect)
3981 remove_insn (insn);
3982 else
3983 {
3984 delete_insn (insn);
3985 clear_expr (INSN_EXPR (insn));
3986 }
3987
3988 /* It is necessary to NULL these fields in case we are going to re-insert
3989 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3990 case, but also for NOPs that we will return to the nop pool. */
3991 SET_PREV_INSN (insn) = NULL_RTX;
3992 SET_NEXT_INSN (insn) = NULL_RTX;
3993 set_block_for_insn (insn, NULL);
3994
3995 return tidy_control_flow (bb, full_tidying);
3996 }
3997
3998 /* Estimate number of the insns in BB. */
3999 static int
sel_estimate_number_of_insns(basic_block bb)4000 sel_estimate_number_of_insns (basic_block bb)
4001 {
4002 int res = 0;
4003 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
4004
4005 for (; insn != next_tail; insn = NEXT_INSN (insn))
4006 if (NONDEBUG_INSN_P (insn))
4007 res++;
4008
4009 return res;
4010 }
4011
4012 /* We don't need separate luids for notes or labels. */
4013 static int
sel_luid_for_non_insn(rtx x)4014 sel_luid_for_non_insn (rtx x)
4015 {
4016 gcc_assert (NOTE_P (x) || LABEL_P (x));
4017
4018 return -1;
4019 }
4020
4021 /* Find the proper seqno for inserting at INSN by successors.
4022 Return -1 if no successors with positive seqno exist. */
4023 static int
get_seqno_by_succs(rtx_insn * insn)4024 get_seqno_by_succs (rtx_insn *insn)
4025 {
4026 basic_block bb = BLOCK_FOR_INSN (insn);
4027 rtx_insn *tmp = insn, *end = BB_END (bb);
4028 int seqno;
4029 insn_t succ = NULL;
4030 succ_iterator si;
4031
4032 while (tmp != end)
4033 {
4034 tmp = NEXT_INSN (tmp);
4035 if (INSN_P (tmp))
4036 return INSN_SEQNO (tmp);
4037 }
4038
4039 seqno = INT_MAX;
4040
4041 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4042 if (INSN_SEQNO (succ) > 0)
4043 seqno = MIN (seqno, INSN_SEQNO (succ));
4044
4045 if (seqno == INT_MAX)
4046 return -1;
4047
4048 return seqno;
4049 }
4050
4051 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4052 seqno in corner cases. */
4053 static int
get_seqno_for_a_jump(insn_t insn,int old_seqno)4054 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4055 {
4056 int seqno;
4057
4058 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4059
4060 if (!sel_bb_head_p (insn))
4061 seqno = INSN_SEQNO (PREV_INSN (insn));
4062 else
4063 {
4064 basic_block bb = BLOCK_FOR_INSN (insn);
4065
4066 if (single_pred_p (bb)
4067 && !in_current_region_p (single_pred (bb)))
4068 {
4069 /* We can have preds outside a region when splitting edges
4070 for pipelining of an outer loop. Use succ instead.
4071 There should be only one of them. */
4072 insn_t succ = NULL;
4073 succ_iterator si;
4074 bool first = true;
4075
4076 gcc_assert (flag_sel_sched_pipelining_outer_loops
4077 && current_loop_nest);
4078 FOR_EACH_SUCC_1 (succ, si, insn,
4079 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4080 {
4081 gcc_assert (first);
4082 first = false;
4083 }
4084
4085 gcc_assert (succ != NULL);
4086 seqno = INSN_SEQNO (succ);
4087 }
4088 else
4089 {
4090 insn_t *preds;
4091 int n;
4092
4093 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4094
4095 gcc_assert (n > 0);
4096 /* For one predecessor, use simple method. */
4097 if (n == 1)
4098 seqno = INSN_SEQNO (preds[0]);
4099 else
4100 seqno = get_seqno_by_preds (insn);
4101
4102 free (preds);
4103 }
4104 }
4105
4106 /* We were unable to find a good seqno among preds. */
4107 if (seqno < 0)
4108 seqno = get_seqno_by_succs (insn);
4109
4110 if (seqno < 0)
4111 {
4112 /* The only case where this could be here legally is that the only
4113 unscheduled insn was a conditional jump that got removed and turned
4114 into this unconditional one. Initialize from the old seqno
4115 of that jump passed down to here. */
4116 seqno = old_seqno;
4117 }
4118
4119 gcc_assert (seqno >= 0);
4120 return seqno;
4121 }
4122
4123 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4124 with positive seqno exist. */
4125 int
get_seqno_by_preds(rtx_insn * insn)4126 get_seqno_by_preds (rtx_insn *insn)
4127 {
4128 basic_block bb = BLOCK_FOR_INSN (insn);
4129 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4130 insn_t *preds;
4131 int n, i, seqno;
4132
4133 /* Loop backwards from INSN to HEAD including both. */
4134 while (1)
4135 {
4136 if (INSN_P (tmp))
4137 return INSN_SEQNO (tmp);
4138 if (tmp == head)
4139 break;
4140 tmp = PREV_INSN (tmp);
4141 }
4142
4143 cfg_preds (bb, &preds, &n);
4144 for (i = 0, seqno = -1; i < n; i++)
4145 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4146
4147 return seqno;
4148 }
4149
4150
4151
4152 /* Extend pass-scope data structures for basic blocks. */
4153 void
sel_extend_global_bb_info(void)4154 sel_extend_global_bb_info (void)
4155 {
4156 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
4157 }
4158
4159 /* Extend region-scope data structures for basic blocks. */
4160 static void
extend_region_bb_info(void)4161 extend_region_bb_info (void)
4162 {
4163 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
4164 }
4165
4166 /* Extend all data structures to fit for all basic blocks. */
4167 static void
extend_bb_info(void)4168 extend_bb_info (void)
4169 {
4170 sel_extend_global_bb_info ();
4171 extend_region_bb_info ();
4172 }
4173
4174 /* Finalize pass-scope data structures for basic blocks. */
4175 void
sel_finish_global_bb_info(void)4176 sel_finish_global_bb_info (void)
4177 {
4178 sel_global_bb_info.release ();
4179 }
4180
4181 /* Finalize region-scope data structures for basic blocks. */
4182 static void
finish_region_bb_info(void)4183 finish_region_bb_info (void)
4184 {
4185 sel_region_bb_info.release ();
4186 }
4187
4188
4189 /* Data for each insn in current region. */
4190 vec<sel_insn_data_def> s_i_d;
4191
4192 /* Extend data structures for insns from current region. */
4193 static void
extend_insn_data(void)4194 extend_insn_data (void)
4195 {
4196 int reserve;
4197
4198 sched_extend_target ();
4199 sched_deps_init (false);
4200
4201 /* Extend data structures for insns from current region. */
4202 reserve = (sched_max_luid + 1 - s_i_d.length ());
4203 if (reserve > 0 && ! s_i_d.space (reserve))
4204 {
4205 int size;
4206
4207 if (sched_max_luid / 2 > 1024)
4208 size = sched_max_luid + 1024;
4209 else
4210 size = 3 * sched_max_luid / 2;
4211
4212
4213 s_i_d.safe_grow_cleared (size, true);
4214 }
4215 }
4216
4217 /* Finalize data structures for insns from current region. */
4218 static void
finish_insns(void)4219 finish_insns (void)
4220 {
4221 unsigned i;
4222
4223 /* Clear here all dependence contexts that may have left from insns that were
4224 removed during the scheduling. */
4225 for (i = 0; i < s_i_d.length (); i++)
4226 {
4227 sel_insn_data_def *sid_entry = &s_i_d[i];
4228
4229 if (sid_entry->live)
4230 return_regset_to_pool (sid_entry->live);
4231 if (sid_entry->analyzed_deps)
4232 {
4233 BITMAP_FREE (sid_entry->analyzed_deps);
4234 BITMAP_FREE (sid_entry->found_deps);
4235 htab_delete (sid_entry->transformed_insns);
4236 free_deps (&sid_entry->deps_context);
4237 }
4238 if (EXPR_VINSN (&sid_entry->expr))
4239 {
4240 clear_expr (&sid_entry->expr);
4241
4242 /* Also, clear CANT_MOVE bit here, because we really don't want it
4243 to be passed to the next region. */
4244 CANT_MOVE_BY_LUID (i) = 0;
4245 }
4246 }
4247
4248 s_i_d.release ();
4249 }
4250
4251 /* A proxy to pass initialization data to init_insn (). */
4252 static sel_insn_data_def _insn_init_ssid;
4253 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4254
4255 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4256 static bool insn_init_create_new_vinsn_p;
4257
4258 /* Set all necessary data for initialization of the new insn[s]. */
4259 static expr_t
set_insn_init(expr_t expr,vinsn_t vi,int seqno)4260 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4261 {
4262 expr_t x = &insn_init_ssid->expr;
4263
4264 copy_expr_onside (x, expr);
4265 if (vi != NULL)
4266 {
4267 insn_init_create_new_vinsn_p = false;
4268 change_vinsn_in_expr (x, vi);
4269 }
4270 else
4271 insn_init_create_new_vinsn_p = true;
4272
4273 insn_init_ssid->seqno = seqno;
4274 return x;
4275 }
4276
4277 /* Init data for INSN. */
4278 static void
init_insn_data(insn_t insn)4279 init_insn_data (insn_t insn)
4280 {
4281 expr_t expr;
4282 sel_insn_data_t ssid = insn_init_ssid;
4283
4284 /* The fields mentioned below are special and hence are not being
4285 propagated to the new insns. */
4286 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4287 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4288 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4289
4290 expr = INSN_EXPR (insn);
4291 copy_expr (expr, &ssid->expr);
4292 prepare_insn_expr (insn, ssid->seqno);
4293
4294 if (insn_init_create_new_vinsn_p)
4295 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4296
4297 if (first_time_insn_init (insn))
4298 init_first_time_insn_data (insn);
4299 }
4300
4301 /* This is used to initialize spurious jumps generated by
4302 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4303 in corner cases within get_seqno_for_a_jump. */
4304 static void
init_simplejump_data(insn_t insn,int old_seqno)4305 init_simplejump_data (insn_t insn, int old_seqno)
4306 {
4307 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4308 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4309 vNULL, true, false, false,
4310 false, true);
4311 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4312 init_first_time_insn_data (insn);
4313 }
4314
4315 /* Perform deferred initialization of insns. This is used to process
4316 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4317 for initializing simplejumps in init_simplejump_data. */
4318 static void
sel_init_new_insn(insn_t insn,int flags,int old_seqno)4319 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4320 {
4321 /* We create data structures for bb when the first insn is emitted in it. */
4322 if (INSN_P (insn)
4323 && INSN_IN_STREAM_P (insn)
4324 && insn_is_the_only_one_in_bb_p (insn))
4325 {
4326 extend_bb_info ();
4327 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4328 }
4329
4330 if (flags & INSN_INIT_TODO_LUID)
4331 {
4332 sched_extend_luids ();
4333 sched_init_insn_luid (insn);
4334 }
4335
4336 if (flags & INSN_INIT_TODO_SSID)
4337 {
4338 extend_insn_data ();
4339 init_insn_data (insn);
4340 clear_expr (&insn_init_ssid->expr);
4341 }
4342
4343 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4344 {
4345 extend_insn_data ();
4346 init_simplejump_data (insn, old_seqno);
4347 }
4348
4349 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4350 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4351 }
4352
4353
4354 /* Functions to init/finish work with lv sets. */
4355
4356 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4357 static void
init_lv_set(basic_block bb)4358 init_lv_set (basic_block bb)
4359 {
4360 gcc_assert (!BB_LV_SET_VALID_P (bb));
4361
4362 BB_LV_SET (bb) = get_regset_from_pool ();
4363 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4364 BB_LV_SET_VALID_P (bb) = true;
4365 }
4366
4367 /* Copy liveness information to BB from FROM_BB. */
4368 static void
copy_lv_set_from(basic_block bb,basic_block from_bb)4369 copy_lv_set_from (basic_block bb, basic_block from_bb)
4370 {
4371 gcc_assert (!BB_LV_SET_VALID_P (bb));
4372
4373 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4374 BB_LV_SET_VALID_P (bb) = true;
4375 }
4376
4377 /* Initialize lv set of all bb headers. */
4378 void
init_lv_sets(void)4379 init_lv_sets (void)
4380 {
4381 basic_block bb;
4382
4383 /* Initialize of LV sets. */
4384 FOR_EACH_BB_FN (bb, cfun)
4385 init_lv_set (bb);
4386
4387 /* Don't forget EXIT_BLOCK. */
4388 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4389 }
4390
4391 /* Release lv set of HEAD. */
4392 static void
free_lv_set(basic_block bb)4393 free_lv_set (basic_block bb)
4394 {
4395 gcc_assert (BB_LV_SET (bb) != NULL);
4396
4397 return_regset_to_pool (BB_LV_SET (bb));
4398 BB_LV_SET (bb) = NULL;
4399 BB_LV_SET_VALID_P (bb) = false;
4400 }
4401
4402 /* Finalize lv sets of all bb headers. */
4403 void
free_lv_sets(void)4404 free_lv_sets (void)
4405 {
4406 basic_block bb;
4407
4408 /* Don't forget EXIT_BLOCK. */
4409 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4410
4411 /* Free LV sets. */
4412 FOR_EACH_BB_FN (bb, cfun)
4413 if (BB_LV_SET (bb))
4414 free_lv_set (bb);
4415 }
4416
4417 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4418 compute_av() processes BB. This function is called when creating new basic
4419 blocks, as well as for blocks (either new or existing) where new jumps are
4420 created when the control flow is being updated. */
4421 static void
invalidate_av_set(basic_block bb)4422 invalidate_av_set (basic_block bb)
4423 {
4424 BB_AV_LEVEL (bb) = -1;
4425 }
4426
4427 /* Create initial data sets for BB (they will be invalid). */
4428 static void
create_initial_data_sets(basic_block bb)4429 create_initial_data_sets (basic_block bb)
4430 {
4431 if (BB_LV_SET (bb))
4432 BB_LV_SET_VALID_P (bb) = false;
4433 else
4434 BB_LV_SET (bb) = get_regset_from_pool ();
4435 invalidate_av_set (bb);
4436 }
4437
4438 /* Free av set of BB. */
4439 static void
free_av_set(basic_block bb)4440 free_av_set (basic_block bb)
4441 {
4442 av_set_clear (&BB_AV_SET (bb));
4443 BB_AV_LEVEL (bb) = 0;
4444 }
4445
4446 /* Free data sets of BB. */
4447 void
free_data_sets(basic_block bb)4448 free_data_sets (basic_block bb)
4449 {
4450 free_lv_set (bb);
4451 free_av_set (bb);
4452 }
4453
4454 /* Exchange data sets of TO and FROM. */
4455 void
exchange_data_sets(basic_block to,basic_block from)4456 exchange_data_sets (basic_block to, basic_block from)
4457 {
4458 /* Exchange lv sets of TO and FROM. */
4459 std::swap (BB_LV_SET (from), BB_LV_SET (to));
4460 std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4461
4462 /* Exchange av sets of TO and FROM. */
4463 std::swap (BB_AV_SET (from), BB_AV_SET (to));
4464 std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4465 }
4466
4467 /* Copy data sets of FROM to TO. */
4468 void
copy_data_sets(basic_block to,basic_block from)4469 copy_data_sets (basic_block to, basic_block from)
4470 {
4471 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4472 gcc_assert (BB_AV_SET (to) == NULL);
4473
4474 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4475 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4476
4477 if (BB_AV_SET_VALID_P (from))
4478 {
4479 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4480 }
4481 if (BB_LV_SET_VALID_P (from))
4482 {
4483 gcc_assert (BB_LV_SET (to) != NULL);
4484 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4485 }
4486 }
4487
4488 /* Return an av set for INSN, if any. */
4489 av_set_t
get_av_set(insn_t insn)4490 get_av_set (insn_t insn)
4491 {
4492 av_set_t av_set;
4493
4494 gcc_assert (AV_SET_VALID_P (insn));
4495
4496 if (sel_bb_head_p (insn))
4497 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4498 else
4499 av_set = NULL;
4500
4501 return av_set;
4502 }
4503
4504 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4505 int
get_av_level(insn_t insn)4506 get_av_level (insn_t insn)
4507 {
4508 int av_level;
4509
4510 gcc_assert (INSN_P (insn));
4511
4512 if (sel_bb_head_p (insn))
4513 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4514 else
4515 av_level = INSN_WS_LEVEL (insn);
4516
4517 return av_level;
4518 }
4519
4520
4521
4522 /* Variables to work with control-flow graph. */
4523
4524 /* The basic block that already has been processed by the sched_data_update (),
4525 but hasn't been in sel_add_bb () yet. */
4526 static vec<basic_block> last_added_blocks;
4527
4528 /* A pool for allocating successor infos. */
4529 static struct
4530 {
4531 /* A stack for saving succs_info structures. */
4532 struct succs_info *stack;
4533
4534 /* Its size. */
4535 int size;
4536
4537 /* Top of the stack. */
4538 int top;
4539
4540 /* Maximal value of the top. */
4541 int max_top;
4542 } succs_info_pool;
4543
4544 /* Functions to work with control-flow graph. */
4545
4546 /* Return basic block note of BB. */
4547 rtx_insn *
sel_bb_head(basic_block bb)4548 sel_bb_head (basic_block bb)
4549 {
4550 rtx_insn *head;
4551
4552 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4553 {
4554 gcc_assert (exit_insn != NULL_RTX);
4555 head = exit_insn;
4556 }
4557 else
4558 {
4559 rtx_note *note = bb_note (bb);
4560 head = next_nonnote_insn (note);
4561
4562 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4563 head = NULL;
4564 }
4565
4566 return head;
4567 }
4568
4569 /* Return true if INSN is a basic block header. */
4570 bool
sel_bb_head_p(insn_t insn)4571 sel_bb_head_p (insn_t insn)
4572 {
4573 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4574 }
4575
4576 /* Return last insn of BB. */
4577 rtx_insn *
sel_bb_end(basic_block bb)4578 sel_bb_end (basic_block bb)
4579 {
4580 if (sel_bb_empty_p (bb))
4581 return NULL;
4582
4583 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4584
4585 return BB_END (bb);
4586 }
4587
4588 /* Return true if INSN is the last insn in its basic block. */
4589 bool
sel_bb_end_p(insn_t insn)4590 sel_bb_end_p (insn_t insn)
4591 {
4592 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4593 }
4594
4595 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4596 bool
sel_bb_empty_p(basic_block bb)4597 sel_bb_empty_p (basic_block bb)
4598 {
4599 return sel_bb_head (bb) == NULL;
4600 }
4601
4602 /* True when BB belongs to the current scheduling region. */
4603 bool
in_current_region_p(basic_block bb)4604 in_current_region_p (basic_block bb)
4605 {
4606 if (bb->index < NUM_FIXED_BLOCKS)
4607 return false;
4608
4609 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4610 }
4611
4612 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4613 basic_block
fallthru_bb_of_jump(const rtx_insn * jump)4614 fallthru_bb_of_jump (const rtx_insn *jump)
4615 {
4616 if (!JUMP_P (jump))
4617 return NULL;
4618
4619 if (!any_condjump_p (jump))
4620 return NULL;
4621
4622 /* A basic block that ends with a conditional jump may still have one successor
4623 (and be followed by a barrier), we are not interested. */
4624 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4625 return NULL;
4626
4627 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4628 }
4629
4630 /* Remove all notes from BB. */
4631 static void
init_bb(basic_block bb)4632 init_bb (basic_block bb)
4633 {
4634 remove_notes (bb_note (bb), BB_END (bb));
4635 BB_NOTE_LIST (bb) = note_list;
4636 }
4637
4638 void
sel_init_bbs(bb_vec_t bbs)4639 sel_init_bbs (bb_vec_t bbs)
4640 {
4641 const struct sched_scan_info_def ssi =
4642 {
4643 extend_bb_info, /* extend_bb */
4644 init_bb, /* init_bb */
4645 NULL, /* extend_insn */
4646 NULL /* init_insn */
4647 };
4648
4649 sched_scan (&ssi, bbs);
4650 }
4651
4652 /* Restore notes for the whole region. */
4653 static void
sel_restore_notes(void)4654 sel_restore_notes (void)
4655 {
4656 int bb;
4657 insn_t insn;
4658
4659 for (bb = 0; bb < current_nr_blocks; bb++)
4660 {
4661 basic_block first, last;
4662
4663 first = EBB_FIRST_BB (bb);
4664 last = EBB_LAST_BB (bb)->next_bb;
4665
4666 do
4667 {
4668 note_list = BB_NOTE_LIST (first);
4669 restore_other_notes (NULL, first);
4670 BB_NOTE_LIST (first) = NULL;
4671
4672 FOR_BB_INSNS (first, insn)
4673 if (NONDEBUG_INSN_P (insn))
4674 reemit_notes (insn);
4675
4676 first = first->next_bb;
4677 }
4678 while (first != last);
4679 }
4680 }
4681
4682 /* Free per-bb data structures. */
4683 void
sel_finish_bbs(void)4684 sel_finish_bbs (void)
4685 {
4686 sel_restore_notes ();
4687
4688 /* Remove current loop preheader from this loop. */
4689 if (current_loop_nest)
4690 sel_remove_loop_preheader ();
4691
4692 finish_region_bb_info ();
4693 }
4694
4695 /* Return true if INSN has a single successor of type FLAGS. */
4696 bool
sel_insn_has_single_succ_p(insn_t insn,int flags)4697 sel_insn_has_single_succ_p (insn_t insn, int flags)
4698 {
4699 insn_t succ;
4700 succ_iterator si;
4701 bool first_p = true;
4702
4703 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4704 {
4705 if (first_p)
4706 first_p = false;
4707 else
4708 return false;
4709 }
4710
4711 return true;
4712 }
4713
4714 /* Allocate successor's info. */
4715 static struct succs_info *
alloc_succs_info(void)4716 alloc_succs_info (void)
4717 {
4718 if (succs_info_pool.top == succs_info_pool.max_top)
4719 {
4720 int i;
4721
4722 if (++succs_info_pool.max_top >= succs_info_pool.size)
4723 gcc_unreachable ();
4724
4725 i = ++succs_info_pool.top;
4726 succs_info_pool.stack[i].succs_ok.create (10);
4727 succs_info_pool.stack[i].succs_other.create (10);
4728 succs_info_pool.stack[i].probs_ok.create (10);
4729 }
4730 else
4731 succs_info_pool.top++;
4732
4733 return &succs_info_pool.stack[succs_info_pool.top];
4734 }
4735
4736 /* Free successor's info. */
4737 void
free_succs_info(struct succs_info * sinfo)4738 free_succs_info (struct succs_info * sinfo)
4739 {
4740 gcc_assert (succs_info_pool.top >= 0
4741 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4742 succs_info_pool.top--;
4743
4744 /* Clear stale info. */
4745 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4746 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4747 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4748 sinfo->all_prob = 0;
4749 sinfo->succs_ok_n = 0;
4750 sinfo->all_succs_n = 0;
4751 }
4752
4753 /* Compute successor info for INSN. FLAGS are the flags passed
4754 to the FOR_EACH_SUCC_1 iterator. */
4755 struct succs_info *
compute_succs_info(insn_t insn,short flags)4756 compute_succs_info (insn_t insn, short flags)
4757 {
4758 succ_iterator si;
4759 insn_t succ;
4760 struct succs_info *sinfo = alloc_succs_info ();
4761
4762 /* Traverse *all* successors and decide what to do with each. */
4763 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4764 {
4765 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4766 perform code motion through inner loops. */
4767 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4768
4769 if (current_flags & flags)
4770 {
4771 sinfo->succs_ok.safe_push (succ);
4772 sinfo->probs_ok.safe_push (
4773 /* FIXME: Improve calculation when skipping
4774 inner loop to exits. */
4775 si.bb_end
4776 ? (si.e1->probability.initialized_p ()
4777 ? si.e1->probability.to_reg_br_prob_base ()
4778 : 0)
4779 : REG_BR_PROB_BASE);
4780 sinfo->succs_ok_n++;
4781 }
4782 else
4783 sinfo->succs_other.safe_push (succ);
4784
4785 /* Compute all_prob. */
4786 if (!si.bb_end)
4787 sinfo->all_prob = REG_BR_PROB_BASE;
4788 else if (si.e1->probability.initialized_p ())
4789 sinfo->all_prob += si.e1->probability.to_reg_br_prob_base ();
4790
4791 sinfo->all_succs_n++;
4792 }
4793
4794 return sinfo;
4795 }
4796
4797 /* Return the predecessors of BB in PREDS and their number in N.
4798 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4799 static void
cfg_preds_1(basic_block bb,insn_t ** preds,int * n,int * size)4800 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4801 {
4802 edge e;
4803 edge_iterator ei;
4804
4805 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4806
4807 FOR_EACH_EDGE (e, ei, bb->preds)
4808 {
4809 basic_block pred_bb = e->src;
4810 insn_t bb_end = BB_END (pred_bb);
4811
4812 if (!in_current_region_p (pred_bb))
4813 {
4814 gcc_assert (flag_sel_sched_pipelining_outer_loops
4815 && current_loop_nest);
4816 continue;
4817 }
4818
4819 if (sel_bb_empty_p (pred_bb))
4820 cfg_preds_1 (pred_bb, preds, n, size);
4821 else
4822 {
4823 if (*n == *size)
4824 *preds = XRESIZEVEC (insn_t, *preds,
4825 (*size = 2 * *size + 1));
4826 (*preds)[(*n)++] = bb_end;
4827 }
4828 }
4829
4830 gcc_assert (*n != 0
4831 || (flag_sel_sched_pipelining_outer_loops
4832 && current_loop_nest));
4833 }
4834
4835 /* Find all predecessors of BB and record them in PREDS and their number
4836 in N. Empty blocks are skipped, and only normal (forward in-region)
4837 edges are processed. */
4838 static void
cfg_preds(basic_block bb,insn_t ** preds,int * n)4839 cfg_preds (basic_block bb, insn_t **preds, int *n)
4840 {
4841 int size = 0;
4842
4843 *preds = NULL;
4844 *n = 0;
4845 cfg_preds_1 (bb, preds, n, &size);
4846 }
4847
4848 /* Returns true if we are moving INSN through join point. */
4849 bool
sel_num_cfg_preds_gt_1(insn_t insn)4850 sel_num_cfg_preds_gt_1 (insn_t insn)
4851 {
4852 basic_block bb;
4853
4854 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4855 return false;
4856
4857 bb = BLOCK_FOR_INSN (insn);
4858
4859 while (1)
4860 {
4861 if (EDGE_COUNT (bb->preds) > 1)
4862 return true;
4863
4864 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4865 bb = EDGE_PRED (bb, 0)->src;
4866
4867 if (!sel_bb_empty_p (bb))
4868 break;
4869 }
4870
4871 return false;
4872 }
4873
4874 /* Returns true when BB should be the end of an ebb. Adapted from the
4875 code in sched-ebb.c. */
4876 bool
bb_ends_ebb_p(basic_block bb)4877 bb_ends_ebb_p (basic_block bb)
4878 {
4879 basic_block next_bb = bb_next_bb (bb);
4880 edge e;
4881
4882 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4883 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4884 || (LABEL_P (BB_HEAD (next_bb))
4885 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4886 Work around that. */
4887 && !single_pred_p (next_bb)))
4888 return true;
4889
4890 if (!in_current_region_p (next_bb))
4891 return true;
4892
4893 e = find_fallthru_edge (bb->succs);
4894 if (e)
4895 {
4896 gcc_assert (e->dest == next_bb);
4897
4898 return false;
4899 }
4900
4901 return true;
4902 }
4903
4904 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4905 successor of INSN. */
4906 bool
in_same_ebb_p(insn_t insn,insn_t succ)4907 in_same_ebb_p (insn_t insn, insn_t succ)
4908 {
4909 basic_block ptr = BLOCK_FOR_INSN (insn);
4910
4911 for (;;)
4912 {
4913 if (ptr == BLOCK_FOR_INSN (succ))
4914 return true;
4915
4916 if (bb_ends_ebb_p (ptr))
4917 return false;
4918
4919 ptr = bb_next_bb (ptr);
4920 }
4921 }
4922
4923 /* Recomputes the reverse topological order for the function and
4924 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4925 modified appropriately. */
4926 static void
recompute_rev_top_order(void)4927 recompute_rev_top_order (void)
4928 {
4929 int *postorder;
4930 int n_blocks, i;
4931
4932 if (!rev_top_order_index
4933 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4934 {
4935 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4936 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4937 rev_top_order_index_len);
4938 }
4939
4940 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4941
4942 n_blocks = post_order_compute (postorder, true, false);
4943 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4944
4945 /* Build reverse function: for each basic block with BB->INDEX == K
4946 rev_top_order_index[K] is it's reverse topological sort number. */
4947 for (i = 0; i < n_blocks; i++)
4948 {
4949 gcc_assert (postorder[i] < rev_top_order_index_len);
4950 rev_top_order_index[postorder[i]] = i;
4951 }
4952
4953 free (postorder);
4954 }
4955
4956 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4957 void
clear_outdated_rtx_info(basic_block bb)4958 clear_outdated_rtx_info (basic_block bb)
4959 {
4960 rtx_insn *insn;
4961
4962 FOR_BB_INSNS (bb, insn)
4963 if (INSN_P (insn))
4964 {
4965 SCHED_GROUP_P (insn) = 0;
4966 INSN_AFTER_STALL_P (insn) = 0;
4967 INSN_SCHED_TIMES (insn) = 0;
4968 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4969
4970 /* We cannot use the changed caches, as previously we could ignore
4971 the LHS dependence due to enabled renaming and transform
4972 the expression, and currently we'll be unable to do this. */
4973 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4974 }
4975 }
4976
4977 /* Add BB_NOTE to the pool of available basic block notes. */
4978 static void
return_bb_to_pool(basic_block bb)4979 return_bb_to_pool (basic_block bb)
4980 {
4981 rtx_note *note = bb_note (bb);
4982
4983 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4984 && bb->aux == NULL);
4985
4986 /* It turns out that current cfg infrastructure does not support
4987 reuse of basic blocks. Don't bother for now. */
4988 /*bb_note_pool.safe_push (note);*/
4989 }
4990
4991 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4992 static rtx_note *
get_bb_note_from_pool(void)4993 get_bb_note_from_pool (void)
4994 {
4995 if (bb_note_pool.is_empty ())
4996 return NULL;
4997 else
4998 {
4999 rtx_note *note = bb_note_pool.pop ();
5000
5001 SET_PREV_INSN (note) = NULL_RTX;
5002 SET_NEXT_INSN (note) = NULL_RTX;
5003
5004 return note;
5005 }
5006 }
5007
5008 /* Free bb_note_pool. */
5009 void
free_bb_note_pool(void)5010 free_bb_note_pool (void)
5011 {
5012 bb_note_pool.release ();
5013 }
5014
5015 /* Setup scheduler pool and successor structure. */
5016 void
alloc_sched_pools(void)5017 alloc_sched_pools (void)
5018 {
5019 int succs_size;
5020
5021 succs_size = MAX_WS + 1;
5022 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5023 succs_info_pool.size = succs_size;
5024 succs_info_pool.top = -1;
5025 succs_info_pool.max_top = -1;
5026 }
5027
5028 /* Free the pools. */
5029 void
free_sched_pools(void)5030 free_sched_pools (void)
5031 {
5032 int i;
5033
5034 sched_lists_pool.release ();
5035 gcc_assert (succs_info_pool.top == -1);
5036 for (i = 0; i <= succs_info_pool.max_top; i++)
5037 {
5038 succs_info_pool.stack[i].succs_ok.release ();
5039 succs_info_pool.stack[i].succs_other.release ();
5040 succs_info_pool.stack[i].probs_ok.release ();
5041 }
5042 free (succs_info_pool.stack);
5043 }
5044
5045
5046 /* Returns a position in RGN where BB can be inserted retaining
5047 topological order. */
5048 static int
find_place_to_insert_bb(basic_block bb,int rgn)5049 find_place_to_insert_bb (basic_block bb, int rgn)
5050 {
5051 bool has_preds_outside_rgn = false;
5052 edge e;
5053 edge_iterator ei;
5054
5055 /* Find whether we have preds outside the region. */
5056 FOR_EACH_EDGE (e, ei, bb->preds)
5057 if (!in_current_region_p (e->src))
5058 {
5059 has_preds_outside_rgn = true;
5060 break;
5061 }
5062
5063 /* Recompute the top order -- needed when we have > 1 pred
5064 and in case we don't have preds outside. */
5065 if (flag_sel_sched_pipelining_outer_loops
5066 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5067 {
5068 int i, bbi = bb->index, cur_bbi;
5069
5070 recompute_rev_top_order ();
5071 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5072 {
5073 cur_bbi = BB_TO_BLOCK (i);
5074 if (rev_top_order_index[bbi]
5075 < rev_top_order_index[cur_bbi])
5076 break;
5077 }
5078
5079 /* We skipped the right block, so we increase i. We accommodate
5080 it for increasing by step later, so we decrease i. */
5081 return (i + 1) - 1;
5082 }
5083 else if (has_preds_outside_rgn)
5084 {
5085 /* This is the case when we generate an extra empty block
5086 to serve as region head during pipelining. */
5087 e = EDGE_SUCC (bb, 0);
5088 gcc_assert (EDGE_COUNT (bb->succs) == 1
5089 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5090 && (BLOCK_TO_BB (e->dest->index) == 0));
5091 return -1;
5092 }
5093
5094 /* We don't have preds outside the region. We should have
5095 the only pred, because the multiple preds case comes from
5096 the pipelining of outer loops, and that is handled above.
5097 Just take the bbi of this single pred. */
5098 if (EDGE_COUNT (bb->succs) > 0)
5099 {
5100 int pred_bbi;
5101
5102 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5103
5104 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5105 return BLOCK_TO_BB (pred_bbi);
5106 }
5107 else
5108 /* BB has no successors. It is safe to put it in the end. */
5109 return current_nr_blocks - 1;
5110 }
5111
5112 /* Deletes an empty basic block freeing its data. */
5113 static void
delete_and_free_basic_block(basic_block bb)5114 delete_and_free_basic_block (basic_block bb)
5115 {
5116 gcc_assert (sel_bb_empty_p (bb));
5117
5118 if (BB_LV_SET (bb))
5119 free_lv_set (bb);
5120
5121 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5122
5123 /* Can't assert av_set properties because we use sel_aremove_bb
5124 when removing loop preheader from the region. At the point of
5125 removing the preheader we already have deallocated sel_region_bb_info. */
5126 gcc_assert (BB_LV_SET (bb) == NULL
5127 && !BB_LV_SET_VALID_P (bb)
5128 && BB_AV_LEVEL (bb) == 0
5129 && BB_AV_SET (bb) == NULL);
5130
5131 delete_basic_block (bb);
5132 }
5133
5134 /* Add BB to the current region and update the region data. */
5135 static void
add_block_to_current_region(basic_block bb)5136 add_block_to_current_region (basic_block bb)
5137 {
5138 int i, pos, bbi = -2, rgn;
5139
5140 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5141 bbi = find_place_to_insert_bb (bb, rgn);
5142 bbi += 1;
5143 pos = RGN_BLOCKS (rgn) + bbi;
5144
5145 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5146 && ebb_head[bbi] == pos);
5147
5148 /* Make a place for the new block. */
5149 extend_regions ();
5150
5151 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5152 BLOCK_TO_BB (rgn_bb_table[i])++;
5153
5154 memmove (rgn_bb_table + pos + 1,
5155 rgn_bb_table + pos,
5156 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5157
5158 /* Initialize data for BB. */
5159 rgn_bb_table[pos] = bb->index;
5160 BLOCK_TO_BB (bb->index) = bbi;
5161 CONTAINING_RGN (bb->index) = rgn;
5162
5163 RGN_NR_BLOCKS (rgn)++;
5164
5165 for (i = rgn + 1; i <= nr_regions; i++)
5166 RGN_BLOCKS (i)++;
5167 }
5168
5169 /* Remove BB from the current region and update the region data. */
5170 static void
remove_bb_from_region(basic_block bb)5171 remove_bb_from_region (basic_block bb)
5172 {
5173 int i, pos, bbi = -2, rgn;
5174
5175 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5176 bbi = BLOCK_TO_BB (bb->index);
5177 pos = RGN_BLOCKS (rgn) + bbi;
5178
5179 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5180 && ebb_head[bbi] == pos);
5181
5182 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5183 BLOCK_TO_BB (rgn_bb_table[i])--;
5184
5185 memmove (rgn_bb_table + pos,
5186 rgn_bb_table + pos + 1,
5187 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5188
5189 RGN_NR_BLOCKS (rgn)--;
5190 for (i = rgn + 1; i <= nr_regions; i++)
5191 RGN_BLOCKS (i)--;
5192 }
5193
5194 /* Add BB to the current region and update all data. If BB is NULL, add all
5195 blocks from last_added_blocks vector. */
5196 static void
sel_add_bb(basic_block bb)5197 sel_add_bb (basic_block bb)
5198 {
5199 /* Extend luids so that new notes will receive zero luids. */
5200 sched_extend_luids ();
5201 sched_init_bbs ();
5202 sel_init_bbs (last_added_blocks);
5203
5204 /* When bb is passed explicitly, the vector should contain
5205 the only element that equals to bb; otherwise, the vector
5206 should not be NULL. */
5207 gcc_assert (last_added_blocks.exists ());
5208
5209 if (bb != NULL)
5210 {
5211 gcc_assert (last_added_blocks.length () == 1
5212 && last_added_blocks[0] == bb);
5213 add_block_to_current_region (bb);
5214
5215 /* We associate creating/deleting data sets with the first insn
5216 appearing / disappearing in the bb. */
5217 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5218 create_initial_data_sets (bb);
5219
5220 last_added_blocks.release ();
5221 }
5222 else
5223 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5224 {
5225 int i;
5226 basic_block temp_bb = NULL;
5227
5228 for (i = 0;
5229 last_added_blocks.iterate (i, &bb); i++)
5230 {
5231 add_block_to_current_region (bb);
5232 temp_bb = bb;
5233 }
5234
5235 /* We need to fetch at least one bb so we know the region
5236 to update. */
5237 gcc_assert (temp_bb != NULL);
5238 bb = temp_bb;
5239
5240 last_added_blocks.release ();
5241 }
5242
5243 rgn_setup_region (CONTAINING_RGN (bb->index));
5244 }
5245
5246 /* Remove BB from the current region and update all data.
5247 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5248 static void
sel_remove_bb(basic_block bb,bool remove_from_cfg_p)5249 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5250 {
5251 unsigned idx = bb->index;
5252
5253 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5254
5255 remove_bb_from_region (bb);
5256 return_bb_to_pool (bb);
5257 bitmap_clear_bit (blocks_to_reschedule, idx);
5258
5259 if (remove_from_cfg_p)
5260 {
5261 basic_block succ = single_succ (bb);
5262 delete_and_free_basic_block (bb);
5263 set_immediate_dominator (CDI_DOMINATORS, succ,
5264 recompute_dominator (CDI_DOMINATORS, succ));
5265 }
5266
5267 rgn_setup_region (CONTAINING_RGN (idx));
5268 }
5269
5270 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5271 static void
move_bb_info(basic_block merge_bb,basic_block empty_bb)5272 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5273 {
5274 if (in_current_region_p (merge_bb))
5275 concat_note_lists (BB_NOTE_LIST (empty_bb),
5276 &BB_NOTE_LIST (merge_bb));
5277 BB_NOTE_LIST (empty_bb) = NULL;
5278
5279 }
5280
5281 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5282 region, but keep it in CFG. */
5283 static void
remove_empty_bb(basic_block empty_bb,bool remove_from_cfg_p)5284 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5285 {
5286 /* The block should contain just a note or a label.
5287 We try to check whether it is unused below. */
5288 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5289 || LABEL_P (BB_HEAD (empty_bb)));
5290
5291 /* If basic block has predecessors or successors, redirect them. */
5292 if (remove_from_cfg_p
5293 && (EDGE_COUNT (empty_bb->preds) > 0
5294 || EDGE_COUNT (empty_bb->succs) > 0))
5295 {
5296 basic_block pred;
5297 basic_block succ;
5298
5299 /* We need to init PRED and SUCC before redirecting edges. */
5300 if (EDGE_COUNT (empty_bb->preds) > 0)
5301 {
5302 edge e;
5303
5304 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5305
5306 e = EDGE_PRED (empty_bb, 0);
5307 gcc_assert (e->src == empty_bb->prev_bb
5308 && (e->flags & EDGE_FALLTHRU));
5309
5310 pred = empty_bb->prev_bb;
5311 }
5312 else
5313 pred = NULL;
5314
5315 if (EDGE_COUNT (empty_bb->succs) > 0)
5316 {
5317 /* We do not check fallthruness here as above, because
5318 after removing a jump the edge may actually be not fallthru. */
5319 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5320 succ = EDGE_SUCC (empty_bb, 0)->dest;
5321 }
5322 else
5323 succ = NULL;
5324
5325 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5326 {
5327 edge e = EDGE_PRED (empty_bb, 0);
5328
5329 if (e->flags & EDGE_FALLTHRU)
5330 redirect_edge_succ_nodup (e, succ);
5331 else
5332 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5333 }
5334
5335 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5336 {
5337 edge e = EDGE_SUCC (empty_bb, 0);
5338
5339 if (find_edge (pred, e->dest) == NULL)
5340 redirect_edge_pred (e, pred);
5341 }
5342 }
5343
5344 /* Finish removing. */
5345 sel_remove_bb (empty_bb, remove_from_cfg_p);
5346 }
5347
5348 /* An implementation of create_basic_block hook, which additionally updates
5349 per-bb data structures. */
5350 static basic_block
sel_create_basic_block(void * headp,void * endp,basic_block after)5351 sel_create_basic_block (void *headp, void *endp, basic_block after)
5352 {
5353 basic_block new_bb;
5354 rtx_note *new_bb_note;
5355
5356 gcc_assert (flag_sel_sched_pipelining_outer_loops
5357 || !last_added_blocks.exists ());
5358
5359 new_bb_note = get_bb_note_from_pool ();
5360
5361 if (new_bb_note == NULL_RTX)
5362 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5363 else
5364 {
5365 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5366 (rtx_insn *) endp,
5367 new_bb_note, after);
5368 new_bb->aux = NULL;
5369 }
5370
5371 last_added_blocks.safe_push (new_bb);
5372
5373 return new_bb;
5374 }
5375
5376 /* Implement sched_init_only_bb (). */
5377 static void
sel_init_only_bb(basic_block bb,basic_block after)5378 sel_init_only_bb (basic_block bb, basic_block after)
5379 {
5380 gcc_assert (after == NULL);
5381
5382 extend_regions ();
5383 rgn_make_new_region_out_of_new_block (bb);
5384 }
5385
5386 /* Update the latch when we've splitted or merged it from FROM block to TO.
5387 This should be checked for all outer loops, too. */
5388 static void
change_loops_latches(basic_block from,basic_block to)5389 change_loops_latches (basic_block from, basic_block to)
5390 {
5391 gcc_assert (from != to);
5392
5393 if (current_loop_nest)
5394 {
5395 class loop *loop;
5396
5397 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5398 if (considered_for_pipelining_p (loop) && loop->latch == from)
5399 {
5400 gcc_assert (loop == current_loop_nest);
5401 loop->latch = to;
5402 gcc_assert (loop_latch_edge (loop));
5403 }
5404 }
5405 }
5406
5407 /* Splits BB on two basic blocks, adding it to the region and extending
5408 per-bb data structures. Returns the newly created bb. */
5409 static basic_block
sel_split_block(basic_block bb,rtx after)5410 sel_split_block (basic_block bb, rtx after)
5411 {
5412 basic_block new_bb;
5413 insn_t insn;
5414
5415 new_bb = sched_split_block_1 (bb, after);
5416 sel_add_bb (new_bb);
5417
5418 /* This should be called after sel_add_bb, because this uses
5419 CONTAINING_RGN for the new block, which is not yet initialized.
5420 FIXME: this function may be a no-op now. */
5421 change_loops_latches (bb, new_bb);
5422
5423 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5424 FOR_BB_INSNS (new_bb, insn)
5425 if (INSN_P (insn))
5426 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5427
5428 if (sel_bb_empty_p (bb))
5429 {
5430 gcc_assert (!sel_bb_empty_p (new_bb));
5431
5432 /* NEW_BB has data sets that need to be updated and BB holds
5433 data sets that should be removed. Exchange these data sets
5434 so that we won't lose BB's valid data sets. */
5435 exchange_data_sets (new_bb, bb);
5436 free_data_sets (bb);
5437 }
5438
5439 if (!sel_bb_empty_p (new_bb)
5440 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5441 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5442
5443 return new_bb;
5444 }
5445
5446 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5447 Otherwise returns NULL. */
5448 static rtx_insn *
check_for_new_jump(basic_block bb,int prev_max_uid)5449 check_for_new_jump (basic_block bb, int prev_max_uid)
5450 {
5451 rtx_insn *end;
5452
5453 end = sel_bb_end (bb);
5454 if (end && INSN_UID (end) >= prev_max_uid)
5455 return end;
5456 return NULL;
5457 }
5458
5459 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5460 New means having UID at least equal to PREV_MAX_UID. */
5461 static rtx_insn *
find_new_jump(basic_block from,basic_block jump_bb,int prev_max_uid)5462 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5463 {
5464 rtx_insn *jump;
5465
5466 /* Return immediately if no new insns were emitted. */
5467 if (get_max_uid () == prev_max_uid)
5468 return NULL;
5469
5470 /* Now check both blocks for new jumps. It will ever be only one. */
5471 if ((jump = check_for_new_jump (from, prev_max_uid)))
5472 return jump;
5473
5474 if (jump_bb != NULL
5475 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5476 return jump;
5477 return NULL;
5478 }
5479
5480 /* Splits E and adds the newly created basic block to the current region.
5481 Returns this basic block. */
5482 basic_block
sel_split_edge(edge e)5483 sel_split_edge (edge e)
5484 {
5485 basic_block new_bb, src, other_bb = NULL;
5486 int prev_max_uid;
5487 rtx_insn *jump;
5488
5489 src = e->src;
5490 prev_max_uid = get_max_uid ();
5491 new_bb = split_edge (e);
5492
5493 if (flag_sel_sched_pipelining_outer_loops
5494 && current_loop_nest)
5495 {
5496 int i;
5497 basic_block bb;
5498
5499 /* Some of the basic blocks might not have been added to the loop.
5500 Add them here, until this is fixed in force_fallthru. */
5501 for (i = 0;
5502 last_added_blocks.iterate (i, &bb); i++)
5503 if (!bb->loop_father)
5504 {
5505 add_bb_to_loop (bb, e->dest->loop_father);
5506
5507 gcc_assert (!other_bb && (new_bb->index != bb->index));
5508 other_bb = bb;
5509 }
5510 }
5511
5512 /* Add all last_added_blocks to the region. */
5513 sel_add_bb (NULL);
5514
5515 jump = find_new_jump (src, new_bb, prev_max_uid);
5516 if (jump)
5517 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5518
5519 /* Put the correct lv set on this block. */
5520 if (other_bb && !sel_bb_empty_p (other_bb))
5521 compute_live (sel_bb_head (other_bb));
5522
5523 return new_bb;
5524 }
5525
5526 /* Implement sched_create_empty_bb (). */
5527 static basic_block
sel_create_empty_bb(basic_block after)5528 sel_create_empty_bb (basic_block after)
5529 {
5530 basic_block new_bb;
5531
5532 new_bb = sched_create_empty_bb_1 (after);
5533
5534 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5535 later. */
5536 gcc_assert (last_added_blocks.length () == 1
5537 && last_added_blocks[0] == new_bb);
5538
5539 last_added_blocks.release ();
5540 return new_bb;
5541 }
5542
5543 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5544 will be splitted to insert a check. */
5545 basic_block
sel_create_recovery_block(insn_t orig_insn)5546 sel_create_recovery_block (insn_t orig_insn)
5547 {
5548 basic_block first_bb, second_bb, recovery_block;
5549 basic_block before_recovery = NULL;
5550 rtx_insn *jump;
5551
5552 first_bb = BLOCK_FOR_INSN (orig_insn);
5553 if (sel_bb_end_p (orig_insn))
5554 {
5555 /* Avoid introducing an empty block while splitting. */
5556 gcc_assert (single_succ_p (first_bb));
5557 second_bb = single_succ (first_bb);
5558 }
5559 else
5560 second_bb = sched_split_block (first_bb, orig_insn);
5561
5562 recovery_block = sched_create_recovery_block (&before_recovery);
5563 if (before_recovery)
5564 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5565
5566 gcc_assert (sel_bb_empty_p (recovery_block));
5567 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5568 if (current_loops != NULL)
5569 add_bb_to_loop (recovery_block, first_bb->loop_father);
5570
5571 sel_add_bb (recovery_block);
5572
5573 jump = BB_END (recovery_block);
5574 gcc_assert (sel_bb_head (recovery_block) == jump);
5575 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5576
5577 return recovery_block;
5578 }
5579
5580 /* Merge basic block B into basic block A. */
5581 static void
sel_merge_blocks(basic_block a,basic_block b)5582 sel_merge_blocks (basic_block a, basic_block b)
5583 {
5584 gcc_assert (sel_bb_empty_p (b)
5585 && EDGE_COUNT (b->preds) == 1
5586 && EDGE_PRED (b, 0)->src == b->prev_bb);
5587
5588 move_bb_info (b->prev_bb, b);
5589 remove_empty_bb (b, false);
5590 merge_blocks (a, b);
5591 change_loops_latches (b, a);
5592 }
5593
5594 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5595 data structures for possibly created bb and insns. */
5596 void
sel_redirect_edge_and_branch_force(edge e,basic_block to)5597 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5598 {
5599 basic_block jump_bb, src, orig_dest = e->dest;
5600 int prev_max_uid;
5601 rtx_insn *jump;
5602 int old_seqno = -1;
5603
5604 /* This function is now used only for bookkeeping code creation, where
5605 we'll never get the single pred of orig_dest block and thus will not
5606 hit unreachable blocks when updating dominator info. */
5607 gcc_assert (!sel_bb_empty_p (e->src)
5608 && !single_pred_p (orig_dest));
5609 src = e->src;
5610 prev_max_uid = get_max_uid ();
5611 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5612 when the conditional jump being redirected may become unconditional. */
5613 if (any_condjump_p (BB_END (src))
5614 && INSN_SEQNO (BB_END (src)) >= 0)
5615 old_seqno = INSN_SEQNO (BB_END (src));
5616
5617 jump_bb = redirect_edge_and_branch_force (e, to);
5618 if (jump_bb != NULL)
5619 sel_add_bb (jump_bb);
5620
5621 /* This function could not be used to spoil the loop structure by now,
5622 thus we don't care to update anything. But check it to be sure. */
5623 if (current_loop_nest
5624 && pipelining_p)
5625 gcc_assert (loop_latch_edge (current_loop_nest));
5626
5627 jump = find_new_jump (src, jump_bb, prev_max_uid);
5628 if (jump)
5629 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5630 old_seqno);
5631 set_immediate_dominator (CDI_DOMINATORS, to,
5632 recompute_dominator (CDI_DOMINATORS, to));
5633 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5634 recompute_dominator (CDI_DOMINATORS, orig_dest));
5635 if (jump && sel_bb_head_p (jump))
5636 compute_live (jump);
5637 }
5638
5639 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5640 redirected edge are in reverse topological order. */
5641 bool
sel_redirect_edge_and_branch(edge e,basic_block to)5642 sel_redirect_edge_and_branch (edge e, basic_block to)
5643 {
5644 bool latch_edge_p;
5645 basic_block src, orig_dest = e->dest;
5646 int prev_max_uid;
5647 rtx_insn *jump;
5648 edge redirected;
5649 bool recompute_toporder_p = false;
5650 bool maybe_unreachable = single_pred_p (orig_dest);
5651 int old_seqno = -1;
5652
5653 latch_edge_p = (pipelining_p
5654 && current_loop_nest
5655 && e == loop_latch_edge (current_loop_nest));
5656
5657 src = e->src;
5658 prev_max_uid = get_max_uid ();
5659
5660 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5661 when the conditional jump being redirected may become unconditional. */
5662 if (any_condjump_p (BB_END (src))
5663 && INSN_SEQNO (BB_END (src)) >= 0)
5664 old_seqno = INSN_SEQNO (BB_END (src));
5665
5666 redirected = redirect_edge_and_branch (e, to);
5667
5668 gcc_assert (redirected && !last_added_blocks.exists ());
5669
5670 /* When we've redirected a latch edge, update the header. */
5671 if (latch_edge_p)
5672 {
5673 current_loop_nest->header = to;
5674 gcc_assert (loop_latch_edge (current_loop_nest));
5675 }
5676
5677 /* In rare situations, the topological relation between the blocks connected
5678 by the redirected edge can change (see PR42245 for an example). Update
5679 block_to_bb/bb_to_block. */
5680 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5681 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5682 recompute_toporder_p = true;
5683
5684 jump = find_new_jump (src, NULL, prev_max_uid);
5685 if (jump)
5686 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5687
5688 /* Only update dominator info when we don't have unreachable blocks.
5689 Otherwise we'll update in maybe_tidy_empty_bb. */
5690 if (!maybe_unreachable)
5691 {
5692 set_immediate_dominator (CDI_DOMINATORS, to,
5693 recompute_dominator (CDI_DOMINATORS, to));
5694 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5695 recompute_dominator (CDI_DOMINATORS, orig_dest));
5696 }
5697 if (jump && sel_bb_head_p (jump))
5698 compute_live (jump);
5699 return recompute_toporder_p;
5700 }
5701
5702 /* This variable holds the cfg hooks used by the selective scheduler. */
5703 static struct cfg_hooks sel_cfg_hooks;
5704
5705 /* Register sel-sched cfg hooks. */
5706 void
sel_register_cfg_hooks(void)5707 sel_register_cfg_hooks (void)
5708 {
5709 sched_split_block = sel_split_block;
5710
5711 orig_cfg_hooks = get_cfg_hooks ();
5712 sel_cfg_hooks = orig_cfg_hooks;
5713
5714 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5715
5716 set_cfg_hooks (sel_cfg_hooks);
5717
5718 sched_init_only_bb = sel_init_only_bb;
5719 sched_split_block = sel_split_block;
5720 sched_create_empty_bb = sel_create_empty_bb;
5721 }
5722
5723 /* Unregister sel-sched cfg hooks. */
5724 void
sel_unregister_cfg_hooks(void)5725 sel_unregister_cfg_hooks (void)
5726 {
5727 sched_create_empty_bb = NULL;
5728 sched_split_block = NULL;
5729 sched_init_only_bb = NULL;
5730
5731 set_cfg_hooks (orig_cfg_hooks);
5732 }
5733
5734
5735 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5736 LABEL is where this jump should be directed. */
5737 rtx_insn *
create_insn_rtx_from_pattern(rtx pattern,rtx label)5738 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5739 {
5740 rtx_insn *insn_rtx;
5741
5742 gcc_assert (!INSN_P (pattern));
5743
5744 start_sequence ();
5745
5746 if (label == NULL_RTX)
5747 insn_rtx = emit_insn (pattern);
5748 else if (DEBUG_INSN_P (label))
5749 insn_rtx = emit_debug_insn (pattern);
5750 else
5751 {
5752 insn_rtx = emit_jump_insn (pattern);
5753 JUMP_LABEL (insn_rtx) = label;
5754 ++LABEL_NUSES (label);
5755 }
5756
5757 end_sequence ();
5758
5759 sched_extend_luids ();
5760 sched_extend_target ();
5761 sched_deps_init (false);
5762
5763 /* Initialize INSN_CODE now. */
5764 recog_memoized (insn_rtx);
5765 return insn_rtx;
5766 }
5767
5768 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5769 must not be clonable. */
5770 vinsn_t
create_vinsn_from_insn_rtx(rtx_insn * insn_rtx,bool force_unique_p)5771 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5772 {
5773 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5774
5775 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5776 return vinsn_create (insn_rtx, force_unique_p);
5777 }
5778
5779 /* Create a copy of INSN_RTX. */
5780 rtx_insn *
create_copy_of_insn_rtx(rtx insn_rtx)5781 create_copy_of_insn_rtx (rtx insn_rtx)
5782 {
5783 rtx_insn *res;
5784 rtx link;
5785
5786 if (DEBUG_INSN_P (insn_rtx))
5787 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5788 insn_rtx);
5789
5790 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5791
5792 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5793 NULL_RTX);
5794
5795 /* Locate the end of existing REG_NOTES in NEW_RTX. */
5796 rtx *ptail = ®_NOTES (res);
5797 while (*ptail != NULL_RTX)
5798 ptail = &XEXP (*ptail, 1);
5799
5800 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5801 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5802 there too, but are supposed to be sticky, so we copy them. */
5803 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5804 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5805 && REG_NOTE_KIND (link) != REG_EQUAL
5806 && REG_NOTE_KIND (link) != REG_EQUIV)
5807 {
5808 *ptail = duplicate_reg_note (link);
5809 ptail = &XEXP (*ptail, 1);
5810 }
5811
5812 return res;
5813 }
5814
5815 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5816 void
change_vinsn_in_expr(expr_t expr,vinsn_t new_vinsn)5817 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5818 {
5819 vinsn_detach (EXPR_VINSN (expr));
5820
5821 EXPR_VINSN (expr) = new_vinsn;
5822 vinsn_attach (new_vinsn);
5823 }
5824
5825 /* Helpers for global init. */
5826 /* This structure is used to be able to call existing bundling mechanism
5827 and calculate insn priorities. */
5828 static struct haifa_sched_info sched_sel_haifa_sched_info =
5829 {
5830 NULL, /* init_ready_list */
5831 NULL, /* can_schedule_ready_p */
5832 NULL, /* schedule_more_p */
5833 NULL, /* new_ready */
5834 NULL, /* rgn_rank */
5835 sel_print_insn, /* rgn_print_insn */
5836 contributes_to_priority,
5837 NULL, /* insn_finishes_block_p */
5838
5839 NULL, NULL,
5840 NULL, NULL,
5841 0, 0,
5842
5843 NULL, /* add_remove_insn */
5844 NULL, /* begin_schedule_ready */
5845 NULL, /* begin_move_insn */
5846 NULL, /* advance_target_bb */
5847
5848 NULL,
5849 NULL,
5850
5851 SEL_SCHED | NEW_BBS
5852 };
5853
5854 /* Setup special insns used in the scheduler. */
5855 void
setup_nop_and_exit_insns(void)5856 setup_nop_and_exit_insns (void)
5857 {
5858 gcc_assert (nop_pattern == NULL_RTX
5859 && exit_insn == NULL_RTX);
5860
5861 nop_pattern = constm1_rtx;
5862
5863 start_sequence ();
5864 emit_insn (nop_pattern);
5865 exit_insn = get_insns ();
5866 end_sequence ();
5867 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5868 }
5869
5870 /* Free special insns used in the scheduler. */
5871 void
free_nop_and_exit_insns(void)5872 free_nop_and_exit_insns (void)
5873 {
5874 exit_insn = NULL;
5875 nop_pattern = NULL_RTX;
5876 }
5877
5878 /* Setup a special vinsn used in new insns initialization. */
5879 void
setup_nop_vinsn(void)5880 setup_nop_vinsn (void)
5881 {
5882 nop_vinsn = vinsn_create (exit_insn, false);
5883 vinsn_attach (nop_vinsn);
5884 }
5885
5886 /* Free a special vinsn used in new insns initialization. */
5887 void
free_nop_vinsn(void)5888 free_nop_vinsn (void)
5889 {
5890 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5891 vinsn_detach (nop_vinsn);
5892 nop_vinsn = NULL;
5893 }
5894
5895 /* Call a set_sched_flags hook. */
5896 void
sel_set_sched_flags(void)5897 sel_set_sched_flags (void)
5898 {
5899 /* ??? This means that set_sched_flags were called, and we decided to
5900 support speculation. However, set_sched_flags also modifies flags
5901 on current_sched_info, doing this only at global init. And we
5902 sometimes change c_s_i later. So put the correct flags again. */
5903 if (spec_info && targetm.sched.set_sched_flags)
5904 targetm.sched.set_sched_flags (spec_info);
5905 }
5906
5907 /* Setup pointers to global sched info structures. */
5908 void
sel_setup_sched_infos(void)5909 sel_setup_sched_infos (void)
5910 {
5911 rgn_setup_common_sched_info ();
5912
5913 memcpy (&sel_common_sched_info, common_sched_info,
5914 sizeof (sel_common_sched_info));
5915
5916 sel_common_sched_info.fix_recovery_cfg = NULL;
5917 sel_common_sched_info.add_block = NULL;
5918 sel_common_sched_info.estimate_number_of_insns
5919 = sel_estimate_number_of_insns;
5920 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5921 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5922
5923 common_sched_info = &sel_common_sched_info;
5924
5925 current_sched_info = &sched_sel_haifa_sched_info;
5926 current_sched_info->sched_max_insns_priority =
5927 get_rgn_sched_max_insns_priority ();
5928
5929 sel_set_sched_flags ();
5930 }
5931
5932
5933 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5934 *BB_ORD_INDEX after that is increased. */
5935 static void
sel_add_block_to_region(basic_block bb,int * bb_ord_index,int rgn)5936 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5937 {
5938 RGN_NR_BLOCKS (rgn) += 1;
5939 RGN_DONT_CALC_DEPS (rgn) = 0;
5940 RGN_HAS_REAL_EBB (rgn) = 0;
5941 CONTAINING_RGN (bb->index) = rgn;
5942 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5943 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5944 (*bb_ord_index)++;
5945
5946 /* FIXME: it is true only when not scheduling ebbs. */
5947 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5948 }
5949
5950 /* Functions to support pipelining of outer loops. */
5951
5952 /* Creates a new empty region and returns it's number. */
5953 static int
sel_create_new_region(void)5954 sel_create_new_region (void)
5955 {
5956 int new_rgn_number = nr_regions;
5957
5958 RGN_NR_BLOCKS (new_rgn_number) = 0;
5959
5960 /* FIXME: This will work only when EBBs are not created. */
5961 if (new_rgn_number != 0)
5962 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5963 RGN_NR_BLOCKS (new_rgn_number - 1);
5964 else
5965 RGN_BLOCKS (new_rgn_number) = 0;
5966
5967 /* Set the blocks of the next region so the other functions may
5968 calculate the number of blocks in the region. */
5969 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5970 RGN_NR_BLOCKS (new_rgn_number);
5971
5972 nr_regions++;
5973
5974 return new_rgn_number;
5975 }
5976
5977 /* If X has a smaller topological sort number than Y, returns -1;
5978 if greater, returns 1. */
5979 static int
bb_top_order_comparator(const void * x,const void * y)5980 bb_top_order_comparator (const void *x, const void *y)
5981 {
5982 basic_block bb1 = *(const basic_block *) x;
5983 basic_block bb2 = *(const basic_block *) y;
5984
5985 gcc_assert (bb1 == bb2
5986 || rev_top_order_index[bb1->index]
5987 != rev_top_order_index[bb2->index]);
5988
5989 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5990 bbs with greater number should go earlier. */
5991 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5992 return -1;
5993 else
5994 return 1;
5995 }
5996
5997 /* Create a region for LOOP and return its number. If we don't want
5998 to pipeline LOOP, return -1. */
5999 static int
make_region_from_loop(class loop * loop)6000 make_region_from_loop (class loop *loop)
6001 {
6002 unsigned int i;
6003 int new_rgn_number = -1;
6004 class loop *inner;
6005
6006 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6007 int bb_ord_index = 0;
6008 basic_block *loop_blocks;
6009 basic_block preheader_block;
6010
6011 if (loop->num_nodes
6012 > (unsigned) param_max_pipeline_region_blocks)
6013 return -1;
6014
6015 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6016 for (inner = loop->inner; inner; inner = inner->inner)
6017 if (flow_bb_inside_loop_p (inner, loop->latch))
6018 return -1;
6019
6020 loop->ninsns = num_loop_insns (loop);
6021 if ((int) loop->ninsns > param_max_pipeline_region_insns)
6022 return -1;
6023
6024 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6025
6026 for (i = 0; i < loop->num_nodes; i++)
6027 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6028 {
6029 free (loop_blocks);
6030 return -1;
6031 }
6032
6033 preheader_block = loop_preheader_edge (loop)->src;
6034 gcc_assert (preheader_block);
6035 gcc_assert (loop_blocks[0] == loop->header);
6036
6037 new_rgn_number = sel_create_new_region ();
6038
6039 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6040 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6041
6042 for (i = 0; i < loop->num_nodes; i++)
6043 {
6044 /* Add only those blocks that haven't been scheduled in the inner loop.
6045 The exception is the basic blocks with bookkeeping code - they should
6046 be added to the region (and they actually don't belong to the loop
6047 body, but to the region containing that loop body). */
6048
6049 gcc_assert (new_rgn_number >= 0);
6050
6051 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6052 {
6053 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6054 new_rgn_number);
6055 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6056 }
6057 }
6058
6059 free (loop_blocks);
6060 MARK_LOOP_FOR_PIPELINING (loop);
6061
6062 return new_rgn_number;
6063 }
6064
6065 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6066 void
make_region_from_loop_preheader(vec<basic_block> * & loop_blocks)6067 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6068 {
6069 unsigned int i;
6070 int new_rgn_number = -1;
6071 basic_block bb;
6072
6073 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6074 int bb_ord_index = 0;
6075
6076 new_rgn_number = sel_create_new_region ();
6077
6078 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6079 {
6080 gcc_assert (new_rgn_number >= 0);
6081
6082 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6083 }
6084
6085 vec_free (loop_blocks);
6086 }
6087
6088
6089 /* Create region(s) from loop nest LOOP, such that inner loops will be
6090 pipelined before outer loops. Returns true when a region for LOOP
6091 is created. */
6092 static bool
make_regions_from_loop_nest(class loop * loop)6093 make_regions_from_loop_nest (class loop *loop)
6094 {
6095 class loop *cur_loop;
6096 int rgn_number;
6097
6098 /* Traverse all inner nodes of the loop. */
6099 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6100 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6101 return false;
6102
6103 /* At this moment all regular inner loops should have been pipelined.
6104 Try to create a region from this loop. */
6105 rgn_number = make_region_from_loop (loop);
6106
6107 if (rgn_number < 0)
6108 return false;
6109
6110 loop_nests.safe_push (loop);
6111 return true;
6112 }
6113
6114 /* Initalize data structures needed. */
6115 void
sel_init_pipelining(void)6116 sel_init_pipelining (void)
6117 {
6118 /* Collect loop information to be used in outer loops pipelining. */
6119 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6120 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6121 | LOOPS_HAVE_RECORDED_EXITS
6122 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6123 current_loop_nest = NULL;
6124
6125 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6126 bitmap_clear (bbs_in_loop_rgns);
6127
6128 recompute_rev_top_order ();
6129 }
6130
6131 /* Returns a class loop for region RGN. */
6132 loop_p
get_loop_nest_for_rgn(unsigned int rgn)6133 get_loop_nest_for_rgn (unsigned int rgn)
6134 {
6135 /* Regions created with extend_rgns don't have corresponding loop nests,
6136 because they don't represent loops. */
6137 if (rgn < loop_nests.length ())
6138 return loop_nests[rgn];
6139 else
6140 return NULL;
6141 }
6142
6143 /* True when LOOP was included into pipelining regions. */
6144 bool
considered_for_pipelining_p(class loop * loop)6145 considered_for_pipelining_p (class loop *loop)
6146 {
6147 if (loop_depth (loop) == 0)
6148 return false;
6149
6150 /* Now, the loop could be too large or irreducible. Check whether its
6151 region is in LOOP_NESTS.
6152 We determine the region number of LOOP as the region number of its
6153 latch. We can't use header here, because this header could be
6154 just removed preheader and it will give us the wrong region number.
6155 Latch can't be used because it could be in the inner loop too. */
6156 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6157 {
6158 int rgn = CONTAINING_RGN (loop->latch->index);
6159
6160 gcc_assert ((unsigned) rgn < loop_nests.length ());
6161 return true;
6162 }
6163
6164 return false;
6165 }
6166
6167 /* Makes regions from the rest of the blocks, after loops are chosen
6168 for pipelining. */
6169 static void
make_regions_from_the_rest(void)6170 make_regions_from_the_rest (void)
6171 {
6172 int cur_rgn_blocks;
6173 int *loop_hdr;
6174 int i;
6175
6176 basic_block bb;
6177 edge e;
6178 edge_iterator ei;
6179 int *degree;
6180
6181 /* Index in rgn_bb_table where to start allocating new regions. */
6182 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6183
6184 /* Make regions from all the rest basic blocks - those that don't belong to
6185 any loop or belong to irreducible loops. Prepare the data structures
6186 for extend_rgns. */
6187
6188 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6189 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6190 loop. */
6191 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6192 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6193
6194
6195 /* For each basic block that belongs to some loop assign the number
6196 of innermost loop it belongs to. */
6197 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6198 loop_hdr[i] = -1;
6199
6200 FOR_EACH_BB_FN (bb, cfun)
6201 {
6202 if (bb->loop_father && bb->loop_father->num != 0
6203 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6204 loop_hdr[bb->index] = bb->loop_father->num;
6205 }
6206
6207 /* For each basic block degree is calculated as the number of incoming
6208 edges, that are going out of bbs that are not yet scheduled.
6209 The basic blocks that are scheduled have degree value of zero. */
6210 FOR_EACH_BB_FN (bb, cfun)
6211 {
6212 degree[bb->index] = 0;
6213
6214 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6215 {
6216 FOR_EACH_EDGE (e, ei, bb->preds)
6217 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6218 degree[bb->index]++;
6219 }
6220 else
6221 degree[bb->index] = -1;
6222 }
6223
6224 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6225
6226 /* Any block that did not end up in a region is placed into a region
6227 by itself. */
6228 FOR_EACH_BB_FN (bb, cfun)
6229 if (degree[bb->index] >= 0)
6230 {
6231 rgn_bb_table[cur_rgn_blocks] = bb->index;
6232 RGN_NR_BLOCKS (nr_regions) = 1;
6233 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6234 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6235 RGN_HAS_REAL_EBB (nr_regions) = 0;
6236 CONTAINING_RGN (bb->index) = nr_regions++;
6237 BLOCK_TO_BB (bb->index) = 0;
6238 }
6239
6240 free (degree);
6241 free (loop_hdr);
6242 }
6243
6244 /* Free data structures used in pipelining of loops. */
sel_finish_pipelining(void)6245 void sel_finish_pipelining (void)
6246 {
6247 /* Release aux fields so we don't free them later by mistake. */
6248 for (auto loop : loops_list (cfun, 0))
6249 loop->aux = NULL;
6250
6251 loop_optimizer_finalize ();
6252
6253 loop_nests.release ();
6254
6255 free (rev_top_order_index);
6256 rev_top_order_index = NULL;
6257 }
6258
6259 /* This function replaces the find_rgns when
6260 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6261 void
sel_find_rgns(void)6262 sel_find_rgns (void)
6263 {
6264 sel_init_pipelining ();
6265 extend_regions ();
6266
6267 if (current_loops)
6268 {
6269 unsigned flags = flag_sel_sched_pipelining_outer_loops
6270 ? LI_FROM_INNERMOST
6271 : LI_ONLY_INNERMOST;
6272
6273 for (auto loop : loops_list (cfun, flags))
6274 make_regions_from_loop_nest (loop);
6275 }
6276
6277 /* Make regions from all the rest basic blocks and schedule them.
6278 These blocks include blocks that don't belong to any loop or belong
6279 to irreducible loops. */
6280 make_regions_from_the_rest ();
6281
6282 /* We don't need bbs_in_loop_rgns anymore. */
6283 sbitmap_free (bbs_in_loop_rgns);
6284 bbs_in_loop_rgns = NULL;
6285 }
6286
6287 /* Add the preheader blocks from previous loop to current region taking
6288 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6289 This function is only used with -fsel-sched-pipelining-outer-loops. */
6290 void
sel_add_loop_preheaders(bb_vec_t * bbs)6291 sel_add_loop_preheaders (bb_vec_t *bbs)
6292 {
6293 int i;
6294 basic_block bb;
6295 vec<basic_block> *preheader_blocks
6296 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6297
6298 if (!preheader_blocks)
6299 return;
6300
6301 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6302 {
6303 bbs->safe_push (bb);
6304 last_added_blocks.safe_push (bb);
6305 sel_add_bb (bb);
6306 }
6307
6308 vec_free (preheader_blocks);
6309 }
6310
6311 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6312 Please note that the function should also work when pipelining_p is
6313 false, because it is used when deciding whether we should or should
6314 not reschedule pipelined code. */
6315 bool
sel_is_loop_preheader_p(basic_block bb)6316 sel_is_loop_preheader_p (basic_block bb)
6317 {
6318 if (current_loop_nest)
6319 {
6320 class loop *outer;
6321
6322 if (preheader_removed)
6323 return false;
6324
6325 /* Preheader is the first block in the region. */
6326 if (BLOCK_TO_BB (bb->index) == 0)
6327 return true;
6328
6329 /* We used to find a preheader with the topological information.
6330 Check that the above code is equivalent to what we did before. */
6331
6332 if (in_current_region_p (current_loop_nest->header))
6333 gcc_assert (!(BLOCK_TO_BB (bb->index)
6334 < BLOCK_TO_BB (current_loop_nest->header->index)));
6335
6336 /* Support the situation when the latch block of outer loop
6337 could be from here. */
6338 for (outer = loop_outer (current_loop_nest);
6339 outer;
6340 outer = loop_outer (outer))
6341 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6342 gcc_unreachable ();
6343 }
6344
6345 return false;
6346 }
6347
6348 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6349 can be removed, making the corresponding edge fallthrough (assuming that
6350 all basic blocks between JUMP_BB and DEST_BB are empty). */
6351 static bool
bb_has_removable_jump_to_p(basic_block jump_bb,basic_block dest_bb)6352 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6353 {
6354 if (!onlyjump_p (BB_END (jump_bb))
6355 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6356 return false;
6357
6358 /* Several outgoing edges, abnormal edge or destination of jump is
6359 not DEST_BB. */
6360 if (EDGE_COUNT (jump_bb->succs) != 1
6361 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6362 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6363 return false;
6364
6365 /* If not anything of the upper. */
6366 return true;
6367 }
6368
6369 /* Removes the loop preheader from the current region and saves it in
6370 PREHEADER_BLOCKS of the father loop, so they will be added later to
6371 region that represents an outer loop. */
6372 static void
sel_remove_loop_preheader(void)6373 sel_remove_loop_preheader (void)
6374 {
6375 int i, old_len;
6376 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6377 basic_block bb;
6378 bool all_empty_p = true;
6379 vec<basic_block> *preheader_blocks
6380 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6381
6382 vec_check_alloc (preheader_blocks, 0);
6383
6384 gcc_assert (current_loop_nest);
6385 old_len = preheader_blocks->length ();
6386
6387 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6388 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6389 {
6390 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6391
6392 /* If the basic block belongs to region, but doesn't belong to
6393 corresponding loop, then it should be a preheader. */
6394 if (sel_is_loop_preheader_p (bb))
6395 {
6396 preheader_blocks->safe_push (bb);
6397 if (BB_END (bb) != bb_note (bb))
6398 all_empty_p = false;
6399 }
6400 }
6401
6402 /* Remove these blocks only after iterating over the whole region. */
6403 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6404 {
6405 bb = (*preheader_blocks)[i];
6406 sel_remove_bb (bb, false);
6407 }
6408
6409 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6410 {
6411 if (!all_empty_p)
6412 /* Immediately create new region from preheader. */
6413 make_region_from_loop_preheader (preheader_blocks);
6414 else
6415 {
6416 /* If all preheader blocks are empty - dont create new empty region.
6417 Instead, remove them completely. */
6418 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6419 {
6420 edge e;
6421 edge_iterator ei;
6422 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6423
6424 /* Redirect all incoming edges to next basic block. */
6425 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6426 {
6427 if (! (e->flags & EDGE_FALLTHRU))
6428 redirect_edge_and_branch (e, bb->next_bb);
6429 else
6430 redirect_edge_succ (e, bb->next_bb);
6431 }
6432 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6433 delete_and_free_basic_block (bb);
6434
6435 /* Check if after deleting preheader there is a nonconditional
6436 jump in PREV_BB that leads to the next basic block NEXT_BB.
6437 If it is so - delete this jump and clear data sets of its
6438 basic block if it becomes empty. */
6439 if (next_bb->prev_bb == prev_bb
6440 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6441 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6442 {
6443 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6444 if (BB_END (prev_bb) == bb_note (prev_bb))
6445 free_data_sets (prev_bb);
6446 }
6447
6448 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6449 recompute_dominator (CDI_DOMINATORS,
6450 next_bb));
6451 }
6452 }
6453 vec_free (preheader_blocks);
6454 }
6455 else
6456 /* Store preheader within the father's loop structure. */
6457 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6458 preheader_blocks);
6459 }
6460
6461 #endif
6462