1 /* Loop splitting.
2    Copyright (C) 2015-2021 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "tree-pass.h"
27 #include "ssa.h"
28 #include "fold-const.h"
29 #include "tree-cfg.h"
30 #include "tree-ssa.h"
31 #include "tree-ssa-loop-niter.h"
32 #include "tree-ssa-loop.h"
33 #include "tree-ssa-loop-manip.h"
34 #include "tree-into-ssa.h"
35 #include "tree-inline.h"
36 #include "tree-cfgcleanup.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "gimple-iterator.h"
40 #include "gimple-pretty-print.h"
41 #include "cfghooks.h"
42 #include "gimple-fold.h"
43 #include "gimplify-me.h"
44 
45 /* This file implements two kinds of loop splitting.
46 
47    One transformation of loops like:
48 
49    for (i = 0; i < 100; i++)
50      {
51        if (i < 50)
52          A;
53        else
54          B;
55      }
56 
57    into:
58 
59    for (i = 0; i < 50; i++)
60      {
61        A;
62      }
63    for (; i < 100; i++)
64      {
65        B;
66      }
67 
68    */
69 
70 /* Return true when BB inside LOOP is a potential iteration space
71    split point, i.e. ends with a condition like "IV < comp", which
72    is true on one side of the iteration space and false on the other,
73    and the split point can be computed.  If so, also return the border
74    point in *BORDER and the comparison induction variable in IV.  */
75 
76 static tree
split_at_bb_p(class loop * loop,basic_block bb,tree * border,affine_iv * iv)77 split_at_bb_p (class loop *loop, basic_block bb, tree *border, affine_iv *iv)
78 {
79   gimple *last;
80   gcond *stmt;
81   affine_iv iv2;
82 
83   /* BB must end in a simple conditional jump.  */
84   last = last_stmt (bb);
85   if (!last || gimple_code (last) != GIMPLE_COND)
86     return NULL_TREE;
87   stmt = as_a <gcond *> (last);
88 
89   enum tree_code code = gimple_cond_code (stmt);
90 
91   /* Only handle relational comparisons, for equality and non-equality
92      we'd have to split the loop into two loops and a middle statement.  */
93   switch (code)
94     {
95       case LT_EXPR:
96       case LE_EXPR:
97       case GT_EXPR:
98       case GE_EXPR:
99 	break;
100       default:
101 	return NULL_TREE;
102     }
103 
104   if (loop_exits_from_bb_p (loop, bb))
105     return NULL_TREE;
106 
107   tree op0 = gimple_cond_lhs (stmt);
108   tree op1 = gimple_cond_rhs (stmt);
109   class loop *useloop = loop_containing_stmt (stmt);
110 
111   if (!simple_iv (loop, useloop, op0, iv, false))
112     return NULL_TREE;
113   if (!simple_iv (loop, useloop, op1, &iv2, false))
114     return NULL_TREE;
115 
116   /* Make it so that the first argument of the condition is
117      the looping one.  */
118   if (!integer_zerop (iv2.step))
119     {
120       std::swap (op0, op1);
121       std::swap (*iv, iv2);
122       code = swap_tree_comparison (code);
123       gimple_cond_set_condition (stmt, code, op0, op1);
124       update_stmt (stmt);
125     }
126   else if (integer_zerop (iv->step))
127     return NULL_TREE;
128   if (!integer_zerop (iv2.step))
129     return NULL_TREE;
130   if (!iv->no_overflow)
131     return NULL_TREE;
132 
133   if (dump_file && (dump_flags & TDF_DETAILS))
134     {
135       fprintf (dump_file, "Found potential split point: ");
136       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
137       fprintf (dump_file, " { ");
138       print_generic_expr (dump_file, iv->base, TDF_SLIM);
139       fprintf (dump_file, " + I*");
140       print_generic_expr (dump_file, iv->step, TDF_SLIM);
141       fprintf (dump_file, " } %s ", get_tree_code_name (code));
142       print_generic_expr (dump_file, iv2.base, TDF_SLIM);
143       fprintf (dump_file, "\n");
144     }
145 
146   *border = iv2.base;
147   return op0;
148 }
149 
150 /* Given a GUARD conditional stmt inside LOOP, which we want to make always
151    true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
152    (a post-increment IV) and NEWBOUND (the comparator) adjust the loop
153    exit test statement to loop back only if the GUARD statement will
154    also be true/false in the next iteration.  */
155 
156 static void
patch_loop_exit(class loop * loop,gcond * guard,tree nextval,tree newbound,bool initial_true)157 patch_loop_exit (class loop *loop, gcond *guard, tree nextval, tree newbound,
158 		 bool initial_true)
159 {
160   edge exit = single_exit (loop);
161   gcond *stmt = as_a <gcond *> (last_stmt (exit->src));
162   gimple_cond_set_condition (stmt, gimple_cond_code (guard),
163 			     nextval, newbound);
164   update_stmt (stmt);
165 
166   edge stay = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
167 
168   exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
169   stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
170 
171   if (initial_true)
172     {
173       exit->flags |= EDGE_FALSE_VALUE;
174       stay->flags |= EDGE_TRUE_VALUE;
175     }
176   else
177     {
178       exit->flags |= EDGE_TRUE_VALUE;
179       stay->flags |= EDGE_FALSE_VALUE;
180     }
181 }
182 
183 /* Give an induction variable GUARD_IV, and its affine descriptor IV,
184    find the loop phi node in LOOP defining it directly, or create
185    such phi node.  Return that phi node.  */
186 
187 static gphi *
find_or_create_guard_phi(class loop * loop,tree guard_iv,affine_iv *)188 find_or_create_guard_phi (class loop *loop, tree guard_iv, affine_iv * /*iv*/)
189 {
190   gimple *def = SSA_NAME_DEF_STMT (guard_iv);
191   gphi *phi;
192   if ((phi = dyn_cast <gphi *> (def))
193       && gimple_bb (phi) == loop->header)
194     return phi;
195 
196   /* XXX Create the PHI instead.  */
197   return NULL;
198 }
199 
200 /* Returns true if the exit values of all loop phi nodes can be
201    determined easily (i.e. that connect_loop_phis can determine them).  */
202 
203 static bool
easy_exit_values(class loop * loop)204 easy_exit_values (class loop *loop)
205 {
206   edge exit = single_exit (loop);
207   edge latch = loop_latch_edge (loop);
208   gphi_iterator psi;
209 
210   /* Currently we regard the exit values as easy if they are the same
211      as the value over the backedge.  Which is the case if the definition
212      of the backedge value dominates the exit edge.  */
213   for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
214     {
215       gphi *phi = psi.phi ();
216       tree next = PHI_ARG_DEF_FROM_EDGE (phi, latch);
217       basic_block bb;
218       if (TREE_CODE (next) == SSA_NAME
219 	  && (bb = gimple_bb (SSA_NAME_DEF_STMT (next)))
220 	  && !dominated_by_p (CDI_DOMINATORS, exit->src, bb))
221 	return false;
222     }
223 
224   return true;
225 }
226 
227 /* This function updates the SSA form after connect_loops made a new
228    edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
229    conditional).  I.e. the second loop can now be entered either
230    via the original entry or via NEW_E, so the entry values of LOOP2
231    phi nodes are either the original ones or those at the exit
232    of LOOP1.  Insert new phi nodes in LOOP2 pre-header reflecting
233    this.  The loops need to fulfill easy_exit_values().  */
234 
235 static void
connect_loop_phis(class loop * loop1,class loop * loop2,edge new_e)236 connect_loop_phis (class loop *loop1, class loop *loop2, edge new_e)
237 {
238   basic_block rest = loop_preheader_edge (loop2)->src;
239   gcc_assert (new_e->dest == rest);
240   edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
241 
242   edge firste = loop_preheader_edge (loop1);
243   edge seconde = loop_preheader_edge (loop2);
244   edge firstn = loop_latch_edge (loop1);
245   gphi_iterator psi_first, psi_second;
246   for (psi_first = gsi_start_phis (loop1->header),
247        psi_second = gsi_start_phis (loop2->header);
248        !gsi_end_p (psi_first);
249        gsi_next (&psi_first), gsi_next (&psi_second))
250     {
251       tree init, next, new_init;
252       use_operand_p op;
253       gphi *phi_first = psi_first.phi ();
254       gphi *phi_second = psi_second.phi ();
255 
256       init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
257       next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
258       op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
259       gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
260 
261       /* Prefer using original variable as a base for the new ssa name.
262 	 This is necessary for virtual ops, and useful in order to avoid
263 	 losing debug info for real ops.  */
264       if (TREE_CODE (next) == SSA_NAME
265 	  && useless_type_conversion_p (TREE_TYPE (next),
266 					TREE_TYPE (init)))
267 	new_init = copy_ssa_name (next);
268       else if (TREE_CODE (init) == SSA_NAME
269 	       && useless_type_conversion_p (TREE_TYPE (init),
270 					     TREE_TYPE (next)))
271 	new_init = copy_ssa_name (init);
272       else if (useless_type_conversion_p (TREE_TYPE (next),
273 					  TREE_TYPE (init)))
274 	new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
275 				       "unrinittmp");
276       else
277 	new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
278 				       "unrinittmp");
279 
280       gphi * newphi = create_phi_node (new_init, rest);
281       add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
282       add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
283       SET_USE (op, new_init);
284     }
285 }
286 
287 /* The two loops LOOP1 and LOOP2 were just created by loop versioning,
288    they are still equivalent and placed in two arms of a diamond, like so:
289 
290                .------if (cond)------.
291                v                     v
292              pre1                   pre2
293               |                      |
294         .--->h1                     h2<----.
295         |     |                      |     |
296         |    ex1---.            .---ex2    |
297         |    /     |            |     \    |
298         '---l1     X            |     l2---'
299                    |            |
300                    |            |
301                    '--->join<---'
302 
303    This function transforms the program such that LOOP1 is conditionally
304    falling through to LOOP2, or skipping it.  This is done by splitting
305    the ex1->join edge at X in the diagram above, and inserting a condition
306    whose one arm goes to pre2, resulting in this situation:
307 
308                .------if (cond)------.
309                v                     v
310              pre1       .---------->pre2
311               |         |            |
312         .--->h1         |           h2<----.
313         |     |         |            |     |
314         |    ex1---.    |       .---ex2    |
315         |    /     v    |       |     \    |
316         '---l1   skip---'       |     l2---'
317                    |            |
318                    |            |
319                    '--->join<---'
320 
321 
322    The condition used is the exit condition of LOOP1, which effectively means
323    that when the first loop exits (for whatever reason) but the real original
324    exit expression is still false the second loop will be entered.
325    The function returns the new edge cond->pre2.
326 
327    This doesn't update the SSA form, see connect_loop_phis for that.  */
328 
329 static edge
connect_loops(class loop * loop1,class loop * loop2)330 connect_loops (class loop *loop1, class loop *loop2)
331 {
332   edge exit = single_exit (loop1);
333   basic_block skip_bb = split_edge (exit);
334   gcond *skip_stmt;
335   gimple_stmt_iterator gsi;
336   edge new_e, skip_e;
337 
338   gimple *stmt = last_stmt (exit->src);
339   skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
340 				 gimple_cond_lhs (stmt),
341 				 gimple_cond_rhs (stmt),
342 				 NULL_TREE, NULL_TREE);
343   gsi = gsi_last_bb (skip_bb);
344   gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
345 
346   skip_e = EDGE_SUCC (skip_bb, 0);
347   skip_e->flags &= ~EDGE_FALLTHRU;
348   new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
349   if (exit->flags & EDGE_TRUE_VALUE)
350     {
351       skip_e->flags |= EDGE_TRUE_VALUE;
352       new_e->flags |= EDGE_FALSE_VALUE;
353     }
354   else
355     {
356       skip_e->flags |= EDGE_FALSE_VALUE;
357       new_e->flags |= EDGE_TRUE_VALUE;
358     }
359 
360   new_e->probability = profile_probability::likely ();
361   skip_e->probability = new_e->probability.invert ();
362 
363   return new_e;
364 }
365 
366 /* This returns the new bound for iterations given the original iteration
367    space in NITER, an arbitrary new bound BORDER, assumed to be some
368    comparison value with a different IV, the initial value GUARD_INIT of
369    that other IV, and the comparison code GUARD_CODE that compares
370    that other IV with BORDER.  We return an SSA name, and place any
371    necessary statements for that computation into *STMTS.
372 
373    For example for such a loop:
374 
375      for (i = beg, j = guard_init; i < end; i++, j++)
376        if (j < border)  // this is supposed to be true/false
377          ...
378 
379    we want to return a new bound (on j) that makes the loop iterate
380    as long as the condition j < border stays true.  We also don't want
381    to iterate more often than the original loop, so we have to introduce
382    some cut-off as well (via min/max), effectively resulting in:
383 
384      newend = min (end+guard_init-beg, border)
385      for (i = beg; j = guard_init; j < newend; i++, j++)
386        if (j < c)
387          ...
388 
389    Depending on the direction of the IVs and if the exit tests
390    are strict or non-strict we need to use MIN or MAX,
391    and add or subtract 1.  This routine computes newend above.  */
392 
393 static tree
compute_new_first_bound(gimple_seq * stmts,class tree_niter_desc * niter,tree border,enum tree_code guard_code,tree guard_init)394 compute_new_first_bound (gimple_seq *stmts, class tree_niter_desc *niter,
395 			 tree border,
396 			 enum tree_code guard_code, tree guard_init)
397 {
398   /* The niter structure contains the after-increment IV, we need
399      the loop-enter base, so subtract STEP once.  */
400   tree controlbase = force_gimple_operand (niter->control.base,
401 					   stmts, true, NULL_TREE);
402   tree controlstep = niter->control.step;
403   tree enddiff;
404   if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
405     {
406       controlstep = gimple_build (stmts, NEGATE_EXPR,
407 				  TREE_TYPE (controlstep), controlstep);
408       enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
409 			      TREE_TYPE (controlbase),
410 			      controlbase, controlstep);
411     }
412   else
413     enddiff = gimple_build (stmts, MINUS_EXPR,
414 			    TREE_TYPE (controlbase),
415 			    controlbase, controlstep);
416 
417   /* Compute end-beg.  */
418   gimple_seq stmts2;
419   tree end = force_gimple_operand (niter->bound, &stmts2,
420 					true, NULL_TREE);
421   gimple_seq_add_seq_without_update (stmts, stmts2);
422   if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
423     {
424       tree tem = gimple_convert (stmts, sizetype, enddiff);
425       tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
426       enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
427 			      TREE_TYPE (enddiff),
428 			      end, tem);
429     }
430   else
431     enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
432 			    end, enddiff);
433 
434   /* Compute guard_init + (end-beg).  */
435   tree newbound;
436   enddiff = gimple_convert (stmts, TREE_TYPE (guard_init), enddiff);
437   if (POINTER_TYPE_P (TREE_TYPE (guard_init)))
438     {
439       enddiff = gimple_convert (stmts, sizetype, enddiff);
440       newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
441 			       TREE_TYPE (guard_init),
442 			       guard_init, enddiff);
443     }
444   else
445     newbound = gimple_build (stmts, PLUS_EXPR, TREE_TYPE (guard_init),
446 			     guard_init, enddiff);
447 
448   /* Depending on the direction of the IVs the new bound for the first
449      loop is the minimum or maximum of old bound and border.
450      Also, if the guard condition isn't strictly less or greater,
451      we need to adjust the bound.  */
452   int addbound = 0;
453   enum tree_code minmax;
454   if (niter->cmp == LT_EXPR)
455     {
456       /* GT and LE are the same, inverted.  */
457       if (guard_code == GT_EXPR || guard_code == LE_EXPR)
458 	addbound = -1;
459       minmax = MIN_EXPR;
460     }
461   else
462     {
463       gcc_assert (niter->cmp == GT_EXPR);
464       if (guard_code == GE_EXPR || guard_code == LT_EXPR)
465 	addbound = 1;
466       minmax = MAX_EXPR;
467     }
468 
469   if (addbound)
470     {
471       tree type2 = TREE_TYPE (newbound);
472       if (POINTER_TYPE_P (type2))
473 	type2 = sizetype;
474       newbound = gimple_build (stmts,
475 			       POINTER_TYPE_P (TREE_TYPE (newbound))
476 			       ? POINTER_PLUS_EXPR : PLUS_EXPR,
477 			       TREE_TYPE (newbound),
478 			       newbound,
479 			       build_int_cst (type2, addbound));
480     }
481 
482   tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
483 			      border, newbound);
484   return newend;
485 }
486 
487 /* Checks if LOOP contains an conditional block whose condition
488    depends on which side in the iteration space it is, and if so
489    splits the iteration space into two loops.  Returns true if the
490    loop was split.  NITER must contain the iteration descriptor for the
491    single exit of LOOP.  */
492 
493 static bool
split_loop(class loop * loop1)494 split_loop (class loop *loop1)
495 {
496   class tree_niter_desc niter;
497   basic_block *bbs;
498   unsigned i;
499   bool changed = false;
500   tree guard_iv;
501   tree border = NULL_TREE;
502   affine_iv iv;
503 
504   if (!single_exit (loop1)
505       /* ??? We could handle non-empty latches when we split the latch edge
506 	 (not the exit edge), and put the new exit condition in the new block.
507 	 OTOH this executes some code unconditionally that might have been
508 	 skipped by the original exit before.  */
509       || !empty_block_p (loop1->latch)
510       || !easy_exit_values (loop1)
511       || !number_of_iterations_exit (loop1, single_exit (loop1), &niter,
512 				     false, true)
513       || niter.cmp == ERROR_MARK
514       /* We can't yet handle loops controlled by a != predicate.  */
515       || niter.cmp == NE_EXPR)
516     return false;
517 
518   bbs = get_loop_body (loop1);
519 
520   if (!can_copy_bbs_p (bbs, loop1->num_nodes))
521     {
522       free (bbs);
523       return false;
524     }
525 
526   /* Find a splitting opportunity.  */
527   for (i = 0; i < loop1->num_nodes; i++)
528     if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv)))
529       {
530 	/* Handling opposite steps is not implemented yet.  Neither
531 	   is handling different step sizes.  */
532 	if ((tree_int_cst_sign_bit (iv.step)
533 	     != tree_int_cst_sign_bit (niter.control.step))
534 	    || !tree_int_cst_equal (iv.step, niter.control.step))
535 	  continue;
536 
537 	/* Find a loop PHI node that defines guard_iv directly,
538 	   or create one doing that.  */
539 	gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
540 	if (!phi)
541 	  continue;
542 	gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i]));
543 	tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
544 						 loop_preheader_edge (loop1));
545 	enum tree_code guard_code = gimple_cond_code (guard_stmt);
546 
547 	/* Loop splitting is implemented by versioning the loop, placing
548 	   the new loop after the old loop, make the first loop iterate
549 	   as long as the conditional stays true (or false) and let the
550 	   second (new) loop handle the rest of the iterations.
551 
552 	   First we need to determine if the condition will start being true
553 	   or false in the first loop.  */
554 	bool initial_true;
555 	switch (guard_code)
556 	  {
557 	    case LT_EXPR:
558 	    case LE_EXPR:
559 	      initial_true = !tree_int_cst_sign_bit (iv.step);
560 	      break;
561 	    case GT_EXPR:
562 	    case GE_EXPR:
563 	      initial_true = tree_int_cst_sign_bit (iv.step);
564 	      break;
565 	    default:
566 	      gcc_unreachable ();
567 	  }
568 
569 	/* Build a condition that will skip the first loop when the
570 	   guard condition won't ever be true (or false).  */
571 	gimple_seq stmts2;
572 	border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
573 	if (stmts2)
574 	  gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
575 					    stmts2);
576 	tree cond = build2 (guard_code, boolean_type_node, guard_init, border);
577 	if (!initial_true)
578 	  cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
579 
580 	/* Now version the loop, placing loop2 after loop1 connecting
581 	   them, and fix up SSA form for that.  */
582 	initialize_original_copy_tables ();
583 	basic_block cond_bb;
584 
585 	class loop *loop2 = loop_version (loop1, cond, &cond_bb,
586 					   profile_probability::always (),
587 					   profile_probability::always (),
588 					   profile_probability::always (),
589 					   profile_probability::always (),
590 					   true);
591 	gcc_assert (loop2);
592 
593 	edge new_e = connect_loops (loop1, loop2);
594 	connect_loop_phis (loop1, loop2, new_e);
595 
596 	/* The iterations of the second loop is now already
597 	   exactly those that the first loop didn't do, but the
598 	   iteration space of the first loop is still the original one.
599 	   Compute the new bound for the guarding IV and patch the
600 	   loop exit to use it instead of original IV and bound.  */
601 	gimple_seq stmts = NULL;
602 	tree newend = compute_new_first_bound (&stmts, &niter, border,
603 					       guard_code, guard_init);
604 	if (stmts)
605 	  gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
606 					    stmts);
607 	tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
608 	patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true);
609 
610 	/* Finally patch out the two copies of the condition to be always
611 	   true/false (or opposite).  */
612 	gcond *force_true = as_a<gcond *> (last_stmt (bbs[i]));
613 	gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i])));
614 	if (!initial_true)
615 	  std::swap (force_true, force_false);
616 	gimple_cond_make_true (force_true);
617 	gimple_cond_make_false (force_false);
618 	update_stmt (force_true);
619 	update_stmt (force_false);
620 
621 	free_original_copy_tables ();
622 
623 	changed = true;
624 	if (dump_file && (dump_flags & TDF_DETAILS))
625 	  fprintf (dump_file, ";; Loop split.\n");
626 
627 	if (dump_enabled_p ())
628 	  dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, guard_stmt, "loop split\n");
629 
630 	/* Only deal with the first opportunity.  */
631 	break;
632       }
633 
634   free (bbs);
635   return changed;
636 }
637 
638 /* Another transformation of loops like:
639 
640    for (i = INIT (); CHECK (i); i = NEXT ())
641      {
642        if (expr (a_1, a_2, ..., a_n))  // expr is pure
643          a_j = ...;  // change at least one a_j
644        else
645          S;          // not change any a_j
646      }
647 
648    into:
649 
650    for (i = INIT (); CHECK (i); i = NEXT ())
651      {
652        if (expr (a_1, a_2, ..., a_n))
653          a_j = ...;
654        else
655          {
656            S;
657            i = NEXT ();
658            break;
659          }
660      }
661 
662    for (; CHECK (i); i = NEXT ())
663      {
664        S;
665      }
666 
667    */
668 
669 /* Data structure to hold temporary information during loop split upon
670    semi-invariant conditional statement.  */
671 class split_info {
672 public:
673   /* Array of all basic blocks in a loop, returned by get_loop_body().  */
674   basic_block *bbs;
675 
676   /* All memory store/clobber statements in a loop.  */
677   auto_vec<gimple *> memory_stores;
678 
679   /* Whether above memory stores vector has been filled.  */
680   int need_init;
681 
682   /* Control dependencies of basic blocks in a loop.  */
683   auto_vec<hash_set<basic_block> *> control_deps;
684 
split_info()685   split_info () : bbs (NULL),  need_init (true) { }
686 
~split_info()687   ~split_info ()
688     {
689       if (bbs)
690 	free (bbs);
691 
692       for (unsigned i = 0; i < control_deps.length (); i++)
693 	delete control_deps[i];
694     }
695 };
696 
697 /* Find all statements with memory-write effect in LOOP, including memory
698    store and non-pure function call, and keep those in a vector.  This work
699    is only done one time, for the vector should be constant during analysis
700    stage of semi-invariant condition.  */
701 
702 static void
find_vdef_in_loop(struct loop * loop)703 find_vdef_in_loop (struct loop *loop)
704 {
705   split_info *info = (split_info *) loop->aux;
706   gphi *vphi = get_virtual_phi (loop->header);
707 
708   /* Indicate memory store vector has been filled.  */
709   info->need_init = false;
710 
711   /* If loop contains memory operation, there must be a virtual PHI node in
712      loop header basic block.  */
713   if (vphi == NULL)
714     return;
715 
716   /* All virtual SSA names inside the loop are connected to be a cyclic
717      graph via virtual PHI nodes.  The virtual PHI node in loop header just
718      links the first and the last virtual SSA names, by using the last as
719      PHI operand to define the first.  */
720   const edge latch = loop_latch_edge (loop);
721   const tree first = gimple_phi_result (vphi);
722   const tree last = PHI_ARG_DEF_FROM_EDGE (vphi, latch);
723 
724   /* The virtual SSA cyclic graph might consist of only one SSA name, who
725      is defined by itself.
726 
727        .MEM_1 = PHI <.MEM_2(loop entry edge), .MEM_1(latch edge)>
728 
729      This means the loop contains only memory loads, so we can skip it.  */
730   if (first == last)
731     return;
732 
733   auto_vec<gimple *> other_stores;
734   auto_vec<tree> worklist;
735   auto_bitmap visited;
736 
737   bitmap_set_bit (visited, SSA_NAME_VERSION (first));
738   bitmap_set_bit (visited, SSA_NAME_VERSION (last));
739   worklist.safe_push (last);
740 
741   do
742     {
743       tree vuse = worklist.pop ();
744       gimple *stmt = SSA_NAME_DEF_STMT (vuse);
745 
746       /* We mark the first and last SSA names as visited at the beginning,
747 	 and reversely start the process from the last SSA name towards the
748 	 first, which ensures that this do-while will not touch SSA names
749 	 defined outside the loop.  */
750       gcc_assert (gimple_bb (stmt)
751 		  && flow_bb_inside_loop_p (loop, gimple_bb (stmt)));
752 
753       if (gimple_code (stmt) == GIMPLE_PHI)
754 	{
755 	  gphi *phi = as_a <gphi *> (stmt);
756 
757 	  for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
758 	    {
759 	      tree arg = gimple_phi_arg_def (stmt, i);
760 
761 	      if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
762 		worklist.safe_push (arg);
763 	    }
764 	}
765       else
766 	{
767 	  tree prev = gimple_vuse (stmt);
768 
769 	  /* Non-pure call statement is conservatively assumed to impact all
770 	     memory locations.  So place call statements ahead of other memory
771 	     stores in the vector with an idea of using them as shortcut
772 	     terminators to memory alias analysis.  */
773 	  if (gimple_code (stmt) == GIMPLE_CALL)
774 	    info->memory_stores.safe_push (stmt);
775 	  else
776 	    other_stores.safe_push (stmt);
777 
778 	  if (bitmap_set_bit (visited, SSA_NAME_VERSION (prev)))
779 	    worklist.safe_push (prev);
780 	}
781     } while (!worklist.is_empty ());
782 
783     info->memory_stores.safe_splice (other_stores);
784 }
785 
786 /* Two basic blocks have equivalent control dependency if one dominates to
787    the other, and it is post-dominated by the latter.  Given a basic block
788    BB in LOOP, find farest equivalent dominating basic block.  For BB, there
789    is a constraint that BB does not post-dominate loop header of LOOP, this
790    means BB is control-dependent on at least one basic block in LOOP.  */
791 
792 static basic_block
get_control_equiv_head_block(struct loop * loop,basic_block bb)793 get_control_equiv_head_block (struct loop *loop, basic_block bb)
794 {
795   while (!bb->aux)
796     {
797       basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
798 
799       gcc_checking_assert (dom_bb && flow_bb_inside_loop_p (loop, dom_bb));
800 
801       if (!dominated_by_p (CDI_POST_DOMINATORS, dom_bb, bb))
802 	break;
803 
804       bb = dom_bb;
805     }
806   return bb;
807 }
808 
809 /* Given a BB in LOOP, find out all basic blocks in LOOP that BB is control-
810    dependent on.  */
811 
812 static hash_set<basic_block> *
find_control_dep_blocks(struct loop * loop,basic_block bb)813 find_control_dep_blocks (struct loop *loop, basic_block bb)
814 {
815   /* BB has same control dependency as loop header, then it is not control-
816      dependent on any basic block in LOOP.  */
817   if (dominated_by_p (CDI_POST_DOMINATORS, loop->header, bb))
818     return NULL;
819 
820   basic_block equiv_head = get_control_equiv_head_block (loop, bb);
821 
822   if (equiv_head->aux)
823     {
824       /* There is a basic block containing control dependency equivalent
825 	 to BB.  No need to recompute that, and also set this information
826 	 to other equivalent basic blocks.  */
827       for (; bb != equiv_head;
828 	   bb = get_immediate_dominator (CDI_DOMINATORS, bb))
829 	bb->aux = equiv_head->aux;
830       return (hash_set<basic_block> *) equiv_head->aux;
831     }
832 
833   /* A basic block X is control-dependent on another Y iff there exists
834      a path from X to Y, in which every basic block other than X and Y
835      is post-dominated by Y, but X is not post-dominated by Y.
836 
837      According to this rule, traverse basic blocks in the loop backwards
838      starting from BB, if a basic block is post-dominated by BB, extend
839      current post-dominating path to this block, otherwise it is another
840      one that BB is control-dependent on.  */
841 
842   auto_vec<basic_block> pdom_worklist;
843   hash_set<basic_block> pdom_visited;
844   hash_set<basic_block> *dep_bbs = new hash_set<basic_block>;
845 
846   pdom_worklist.safe_push (equiv_head);
847 
848   do
849     {
850       basic_block pdom_bb = pdom_worklist.pop ();
851       edge_iterator ei;
852       edge e;
853 
854       if (pdom_visited.add (pdom_bb))
855 	continue;
856 
857       FOR_EACH_EDGE (e, ei, pdom_bb->preds)
858 	{
859 	  basic_block pred_bb = e->src;
860 
861 	  if (!dominated_by_p (CDI_POST_DOMINATORS, pred_bb, bb))
862 	    {
863 	      dep_bbs->add (pred_bb);
864 	      continue;
865 	    }
866 
867 	  pred_bb = get_control_equiv_head_block (loop, pred_bb);
868 
869 	  if (pdom_visited.contains (pred_bb))
870 	    continue;
871 
872 	  if (!pred_bb->aux)
873 	    {
874 	      pdom_worklist.safe_push (pred_bb);
875 	      continue;
876 	    }
877 
878 	  /* If control dependency of basic block is available, fast extend
879 	     post-dominating path using the information instead of advancing
880 	     forward step-by-step.  */
881 	  hash_set<basic_block> *pred_dep_bbs
882 			= (hash_set<basic_block> *) pred_bb->aux;
883 
884 	  for (hash_set<basic_block>::iterator iter = pred_dep_bbs->begin ();
885 	       iter != pred_dep_bbs->end (); ++iter)
886 	    {
887 	      basic_block pred_dep_bb = *iter;
888 
889 	      /* Basic blocks can either be in control dependency of BB, or
890 		 must be post-dominated by BB, if so, extend the path from
891 		 these basic blocks.  */
892 	      if (!dominated_by_p (CDI_POST_DOMINATORS, pred_dep_bb, bb))
893 		dep_bbs->add (pred_dep_bb);
894 	      else if (!pdom_visited.contains (pred_dep_bb))
895 		pdom_worklist.safe_push (pred_dep_bb);
896 	    }
897 	}
898     } while (!pdom_worklist.is_empty ());
899 
900   /* Record computed control dependencies in loop so that we can reach them
901      when reclaiming resources.  */
902   ((split_info *) loop->aux)->control_deps.safe_push (dep_bbs);
903 
904   /* Associate control dependence with related equivalent basic blocks.  */
905   for (equiv_head->aux = dep_bbs; bb != equiv_head;
906        bb = get_immediate_dominator (CDI_DOMINATORS, bb))
907     bb->aux = dep_bbs;
908 
909   return dep_bbs;
910 }
911 
912 /* Forward declaration */
913 
914 static bool
915 stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
916 			 const_basic_block skip_head,
917 			 hash_map<gimple *, bool> &stmt_stat);
918 
919 /* Given STMT, memory load or pure call statement, check whether it is impacted
920    by some memory store in LOOP, excluding trace starting from SKIP_HEAD (the
921    trace is composed of SKIP_HEAD and those basic block dominated by it, always
922    corresponds to one branch of a conditional statement).  If SKIP_HEAD is
923    NULL, all basic blocks of LOOP are checked.  */
924 
925 static bool
vuse_semi_invariant_p(struct loop * loop,gimple * stmt,const_basic_block skip_head)926 vuse_semi_invariant_p (struct loop *loop, gimple *stmt,
927 		       const_basic_block skip_head)
928 {
929   split_info *info = (split_info *) loop->aux;
930   tree rhs = NULL_TREE;
931   ao_ref ref;
932   gimple *store;
933   unsigned i;
934 
935   /* Collect memory store/clobber statements if haven't done that.  */
936   if (info->need_init)
937     find_vdef_in_loop (loop);
938 
939   if (is_gimple_assign (stmt))
940     rhs = gimple_assign_rhs1 (stmt);
941 
942   ao_ref_init (&ref, rhs);
943 
944   FOR_EACH_VEC_ELT (info->memory_stores, i, store)
945     {
946       /* Skip basic blocks dominated by SKIP_HEAD, if non-NULL.  */
947       if (skip_head
948 	  && dominated_by_p (CDI_DOMINATORS, gimple_bb (store), skip_head))
949 	continue;
950 
951       if (!ref.ref || stmt_may_clobber_ref_p_1 (store, &ref))
952 	return false;
953     }
954 
955   return true;
956 }
957 
958 /* Suppose one condition branch, led by SKIP_HEAD, is not executed since
959    certain iteration of LOOP, check whether an SSA name (NAME) remains
960    unchanged in next iteration.  We call this characteristic semi-
961    invariantness.  SKIP_HEAD might be NULL, if so, nothing excluded, all basic
962    blocks and control flows in the loop will be considered.  Semi-invariant
963    state of checked statement is cached in hash map STMT_STAT to avoid
964    redundant computation in possible following re-check.  */
965 
966 static inline bool
ssa_semi_invariant_p(struct loop * loop,tree name,const_basic_block skip_head,hash_map<gimple *,bool> & stmt_stat)967 ssa_semi_invariant_p (struct loop *loop, tree name,
968 		      const_basic_block skip_head,
969 		      hash_map<gimple *, bool> &stmt_stat)
970 {
971   gimple *def = SSA_NAME_DEF_STMT (name);
972   const_basic_block def_bb = gimple_bb (def);
973 
974   /* An SSA name defined outside loop is definitely semi-invariant.  */
975   if (!def_bb || !flow_bb_inside_loop_p (loop, def_bb))
976     return true;
977 
978   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
979     return false;
980 
981   return stmt_semi_invariant_p_1 (loop, def, skip_head, stmt_stat);
982 }
983 
984 /* Check whether a loop iteration PHI node (LOOP_PHI) defines a value that is
985    semi-invariant in LOOP.  Basic blocks dominated by SKIP_HEAD (if non-NULL),
986    are excluded from LOOP.  */
987 
988 static bool
loop_iter_phi_semi_invariant_p(struct loop * loop,gphi * loop_phi,const_basic_block skip_head)989 loop_iter_phi_semi_invariant_p (struct loop *loop, gphi *loop_phi,
990 				const_basic_block skip_head)
991 {
992   const_edge latch = loop_latch_edge (loop);
993   tree name = gimple_phi_result (loop_phi);
994   tree from = PHI_ARG_DEF_FROM_EDGE (loop_phi, latch);
995 
996   gcc_checking_assert (from);
997 
998   /* Loop iteration PHI node locates in loop header, and it has two source
999      operands, one is an initial value coming from outside the loop, the other
1000      is a value through latch of the loop, which is derived in last iteration,
1001      we call the latter latch value.  From the PHI node to definition of latch
1002      value, if excluding branch trace starting from SKIP_HEAD, except copy-
1003      assignment or likewise, there is no other kind of value redefinition, SSA
1004      name defined by the PHI node is semi-invariant.
1005 
1006                          loop entry
1007                               |     .--- latch ---.
1008                               |     |             |
1009                               v     v             |
1010                   x_1 = PHI <x_0,  x_3>           |
1011                            |                      |
1012                            v                      |
1013               .------- if (cond) -------.         |
1014               |                         |         |
1015               |                     [ SKIP ]      |
1016               |                         |         |
1017               |                     x_2 = ...     |
1018               |                         |         |
1019               '---- T ---->.<---- F ----'         |
1020                            |                      |
1021                            v                      |
1022                   x_3 = PHI <x_1, x_2>            |
1023                            |                      |
1024                            '----------------------'
1025 
1026      Suppose in certain iteration, execution flow in above graph goes through
1027      true branch, which means that one source value to define x_3 in false
1028      branch (x_2) is skipped, x_3 only comes from x_1, and x_1 in next
1029      iterations is defined by x_3, we know that x_1 will never changed if COND
1030      always chooses true branch from then on.  */
1031 
1032   while (from != name)
1033     {
1034       /* A new value comes from a CONSTANT.  */
1035       if (TREE_CODE (from) != SSA_NAME)
1036 	return false;
1037 
1038       gimple *stmt = SSA_NAME_DEF_STMT (from);
1039       const_basic_block bb = gimple_bb (stmt);
1040 
1041       /* A new value comes from outside the loop.  */
1042       if (!bb || !flow_bb_inside_loop_p (loop, bb))
1043 	return false;
1044 
1045       from = NULL_TREE;
1046 
1047       if (gimple_code (stmt) == GIMPLE_PHI)
1048 	{
1049 	  gphi *phi = as_a <gphi *> (stmt);
1050 
1051 	  for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
1052 	    {
1053 	      if (skip_head)
1054 		{
1055 		  const_edge e = gimple_phi_arg_edge (phi, i);
1056 
1057 		  /* Don't consider redefinitions in excluded basic blocks.  */
1058 		  if (dominated_by_p (CDI_DOMINATORS, e->src, skip_head))
1059 		    continue;
1060 		}
1061 
1062 	      tree arg = gimple_phi_arg_def (phi, i);
1063 
1064 	      if (!from)
1065 		from = arg;
1066 	      else if (!operand_equal_p (from, arg, 0))
1067 		/* There are more than one source operands that provide
1068 		   different values to the SSA name, it is variant.  */
1069 		return false;
1070 	    }
1071 	}
1072       else if (gimple_code (stmt) == GIMPLE_ASSIGN)
1073 	{
1074 	  /* For simple value copy, check its rhs instead.  */
1075 	  if (gimple_assign_ssa_name_copy_p (stmt))
1076 	    from = gimple_assign_rhs1 (stmt);
1077 	}
1078 
1079       /* Any other kind of definition is deemed to introduce a new value
1080 	 to the SSA name.  */
1081       if (!from)
1082 	return false;
1083     }
1084   return true;
1085 }
1086 
1087 /* Check whether conditional predicates that BB is control-dependent on, are
1088    semi-invariant in LOOP.  Basic blocks dominated by SKIP_HEAD (if non-NULL),
1089    are excluded from LOOP.  Semi-invariant state of checked statement is cached
1090    in hash map STMT_STAT.  */
1091 
1092 static bool
control_dep_semi_invariant_p(struct loop * loop,basic_block bb,const_basic_block skip_head,hash_map<gimple *,bool> & stmt_stat)1093 control_dep_semi_invariant_p (struct loop *loop, basic_block bb,
1094 			      const_basic_block skip_head,
1095 			      hash_map<gimple *, bool> &stmt_stat)
1096 {
1097   hash_set<basic_block> *dep_bbs = find_control_dep_blocks (loop, bb);
1098 
1099   if (!dep_bbs)
1100     return true;
1101 
1102   for (hash_set<basic_block>::iterator iter = dep_bbs->begin ();
1103        iter != dep_bbs->end (); ++iter)
1104     {
1105       gimple *last = last_stmt (*iter);
1106 
1107       if (!last)
1108 	return false;
1109 
1110       /* Only check condition predicates.  */
1111       if (gimple_code (last) != GIMPLE_COND
1112 	  && gimple_code (last) != GIMPLE_SWITCH)
1113 	return false;
1114 
1115       if (!stmt_semi_invariant_p_1 (loop, last, skip_head, stmt_stat))
1116 	return false;
1117     }
1118 
1119   return true;
1120 }
1121 
1122 /* Check whether STMT is semi-invariant in LOOP, iff all its operands are
1123    semi-invariant, consequently, all its defined values are semi-invariant.
1124    Basic blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP.
1125    Semi-invariant state of checked statement is cached in hash map
1126    STMT_STAT.  */
1127 
1128 static bool
stmt_semi_invariant_p_1(struct loop * loop,gimple * stmt,const_basic_block skip_head,hash_map<gimple *,bool> & stmt_stat)1129 stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
1130 			 const_basic_block skip_head,
1131 			 hash_map<gimple *, bool> &stmt_stat)
1132 {
1133   bool existed;
1134   bool &invar = stmt_stat.get_or_insert (stmt, &existed);
1135 
1136   if (existed)
1137     return invar;
1138 
1139   /* A statement might depend on itself, which is treated as variant.  So set
1140      state of statement under check to be variant to ensure that.  */
1141   invar = false;
1142 
1143   if (gimple_code (stmt) == GIMPLE_PHI)
1144     {
1145       gphi *phi = as_a <gphi *> (stmt);
1146 
1147       if (gimple_bb (stmt) == loop->header)
1148 	{
1149 	  /* If the entry value is subject to abnormal coalescing
1150 	     avoid the transform since we're going to duplicate the
1151 	     loop header and thus likely introduce overlapping life-ranges
1152 	     between the PHI def and the entry on the path when the
1153 	     first loop is skipped.  */
1154 	  tree entry_def
1155 	    = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1156 	  if (TREE_CODE (entry_def) == SSA_NAME
1157 	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (entry_def))
1158 	    return false;
1159 	  invar = loop_iter_phi_semi_invariant_p (loop, phi, skip_head);
1160 	  return invar;
1161 	}
1162 
1163       /* For a loop PHI node that does not locate in loop header, it is semi-
1164 	 invariant only if two conditions are met.  The first is its source
1165 	 values are derived from CONSTANT (including loop-invariant value), or
1166 	 from SSA name defined by semi-invariant loop iteration PHI node.  The
1167 	 second is its source incoming edges are control-dependent on semi-
1168 	 invariant conditional predicates.  */
1169       for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
1170 	{
1171 	  const_edge e = gimple_phi_arg_edge (phi, i);
1172 	  tree arg = gimple_phi_arg_def (phi, i);
1173 
1174 	  if (TREE_CODE (arg) == SSA_NAME)
1175 	    {
1176 	      if (!ssa_semi_invariant_p (loop, arg, skip_head, stmt_stat))
1177 		return false;
1178 
1179 	      /* If source value is defined in location from where the source
1180 		 edge comes in, no need to check control dependency again
1181 		 since this has been done in above SSA name check stage.  */
1182 	      if (e->src == gimple_bb (SSA_NAME_DEF_STMT (arg)))
1183 		continue;
1184 	    }
1185 
1186 	  if (!control_dep_semi_invariant_p (loop, e->src, skip_head,
1187 					     stmt_stat))
1188 	    return false;
1189 	}
1190     }
1191   else
1192     {
1193       ssa_op_iter iter;
1194       tree use;
1195 
1196       /* Volatile memory load or return of normal (non-const/non-pure) call
1197 	 should not be treated as constant in each iteration of loop.  */
1198       if (gimple_has_side_effects (stmt))
1199 	return false;
1200 
1201       /* Check if any memory store may kill memory load at this place.  */
1202       if (gimple_vuse (stmt) && !vuse_semi_invariant_p (loop, stmt, skip_head))
1203 	return false;
1204 
1205       /* Although operand of a statement might be SSA name, CONSTANT or
1206 	 VARDECL, here we only need to check SSA name operands.  This is
1207 	 because check on VARDECL operands, which involve memory loads,
1208 	 must have been done prior to invocation of this function in
1209 	 vuse_semi_invariant_p.  */
1210       FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1211 	if (!ssa_semi_invariant_p (loop, use, skip_head, stmt_stat))
1212 	  return false;
1213     }
1214 
1215   if (!control_dep_semi_invariant_p (loop, gimple_bb (stmt), skip_head,
1216 				     stmt_stat))
1217     return false;
1218 
1219   /* Here we SHOULD NOT use invar = true, since hash map might be changed due
1220      to new insertion, and thus invar may point to invalid memory.  */
1221   stmt_stat.put (stmt, true);
1222   return true;
1223 }
1224 
1225 /* A helper function to check whether STMT is semi-invariant in LOOP.  Basic
1226    blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP.  */
1227 
1228 static bool
stmt_semi_invariant_p(struct loop * loop,gimple * stmt,const_basic_block skip_head)1229 stmt_semi_invariant_p (struct loop *loop, gimple *stmt,
1230 		       const_basic_block skip_head)
1231 {
1232   hash_map<gimple *, bool> stmt_stat;
1233   return stmt_semi_invariant_p_1 (loop, stmt, skip_head, stmt_stat);
1234 }
1235 
1236 /* Determine when conditional statement never transfers execution to one of its
1237    branch, whether we can remove the branch's leading basic block (BRANCH_BB)
1238    and those basic blocks dominated by BRANCH_BB.  */
1239 
1240 static bool
branch_removable_p(basic_block branch_bb)1241 branch_removable_p (basic_block branch_bb)
1242 {
1243   edge_iterator ei;
1244   edge e;
1245 
1246   if (single_pred_p (branch_bb))
1247     return true;
1248 
1249   FOR_EACH_EDGE (e, ei, branch_bb->preds)
1250     {
1251       if (dominated_by_p (CDI_DOMINATORS, e->src, branch_bb))
1252 	continue;
1253 
1254       if (dominated_by_p (CDI_DOMINATORS, branch_bb, e->src))
1255 	continue;
1256 
1257        /* The branch can be reached from opposite branch, or from some
1258 	  statement not dominated by the conditional statement.  */
1259       return false;
1260     }
1261 
1262   return true;
1263 }
1264 
1265 /* Find out which branch of a conditional statement (COND) is invariant in the
1266    execution context of LOOP.  That is: once the branch is selected in certain
1267    iteration of the loop, any operand that contributes to computation of the
1268    conditional statement remains unchanged in all following iterations.  */
1269 
1270 static edge
get_cond_invariant_branch(struct loop * loop,gcond * cond)1271 get_cond_invariant_branch (struct loop *loop, gcond *cond)
1272 {
1273   basic_block cond_bb = gimple_bb (cond);
1274   basic_block targ_bb[2];
1275   bool invar[2];
1276   unsigned invar_checks = 0;
1277 
1278   for (unsigned i = 0; i < 2; i++)
1279     {
1280       targ_bb[i] = EDGE_SUCC (cond_bb, i)->dest;
1281 
1282       /* One branch directs to loop exit, no need to perform loop split upon
1283 	 this conditional statement.  Firstly, it is trivial if the exit branch
1284 	 is semi-invariant, for the statement is just to break loop.  Secondly,
1285 	 if the opposite branch is semi-invariant, it means that the statement
1286 	 is real loop-invariant, which is covered by loop unswitch.  */
1287       if (!flow_bb_inside_loop_p (loop, targ_bb[i]))
1288 	return NULL;
1289     }
1290 
1291   for (unsigned i = 0; i < 2; i++)
1292     {
1293       invar[!i] = false;
1294 
1295       if (!branch_removable_p (targ_bb[i]))
1296 	continue;
1297 
1298       /* Given a semi-invariant branch, if its opposite branch dominates
1299 	 loop latch, it and its following trace will only be executed in
1300 	 final iteration of loop, namely it is not part of repeated body
1301 	 of the loop.  Similar to the above case that the branch is loop
1302 	 exit, no need to split loop.  */
1303       if (dominated_by_p (CDI_DOMINATORS, loop->latch, targ_bb[i]))
1304 	continue;
1305 
1306       invar[!i] = stmt_semi_invariant_p (loop, cond, targ_bb[i]);
1307       invar_checks++;
1308     }
1309 
1310   /* With both branches being invariant (handled by loop unswitch) or
1311      variant is not what we want.  */
1312   if (invar[0] ^ !invar[1])
1313     return NULL;
1314 
1315   /* Found a real loop-invariant condition, do nothing.  */
1316   if (invar_checks < 2 && stmt_semi_invariant_p (loop, cond, NULL))
1317     return NULL;
1318 
1319   return EDGE_SUCC (cond_bb, invar[0] ? 0 : 1);
1320 }
1321 
1322 /* Calculate increased code size measured by estimated insn number if applying
1323    loop split upon certain branch (BRANCH_EDGE) of a conditional statement.  */
1324 
1325 static int
compute_added_num_insns(struct loop * loop,const_edge branch_edge)1326 compute_added_num_insns (struct loop *loop, const_edge branch_edge)
1327 {
1328   basic_block cond_bb = branch_edge->src;
1329   unsigned branch = EDGE_SUCC (cond_bb, 1) == branch_edge;
1330   basic_block opposite_bb = EDGE_SUCC (cond_bb, !branch)->dest;
1331   basic_block *bbs = ((split_info *) loop->aux)->bbs;
1332   int num = 0;
1333 
1334   for (unsigned i = 0; i < loop->num_nodes; i++)
1335     {
1336       /* Do no count basic blocks only in opposite branch.  */
1337       if (dominated_by_p (CDI_DOMINATORS, bbs[i], opposite_bb))
1338 	continue;
1339 
1340       num += estimate_num_insns_seq (bb_seq (bbs[i]), &eni_size_weights);
1341     }
1342 
1343   /* It is unnecessary to evaluate expression of the conditional statement
1344      in new loop that contains only invariant branch.  This expression should
1345      be constant value (either true or false).  Exclude code size of insns
1346      that contribute to computation of the expression.  */
1347 
1348   auto_vec<gimple *> worklist;
1349   hash_set<gimple *> removed;
1350   gimple *stmt = last_stmt (cond_bb);
1351 
1352   worklist.safe_push (stmt);
1353   removed.add (stmt);
1354   num -= estimate_num_insns (stmt, &eni_size_weights);
1355 
1356   do
1357     {
1358       ssa_op_iter opnd_iter;
1359       use_operand_p opnd_p;
1360 
1361       stmt = worklist.pop ();
1362       FOR_EACH_PHI_OR_STMT_USE (opnd_p, stmt, opnd_iter, SSA_OP_USE)
1363 	{
1364 	  tree opnd = USE_FROM_PTR (opnd_p);
1365 
1366 	  if (TREE_CODE (opnd) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (opnd))
1367 	    continue;
1368 
1369 	  gimple *opnd_stmt = SSA_NAME_DEF_STMT (opnd);
1370 	  use_operand_p use_p;
1371 	  imm_use_iterator use_iter;
1372 
1373 	  if (removed.contains (opnd_stmt)
1374 	      || !flow_bb_inside_loop_p (loop, gimple_bb (opnd_stmt)))
1375 	    continue;
1376 
1377 	  FOR_EACH_IMM_USE_FAST (use_p, use_iter, opnd)
1378 	    {
1379 	      gimple *use_stmt = USE_STMT (use_p);
1380 
1381 	      if (!is_gimple_debug (use_stmt) && !removed.contains (use_stmt))
1382 		{
1383 		  opnd_stmt = NULL;
1384 		  break;
1385 		}
1386 	    }
1387 
1388 	  if (opnd_stmt)
1389 	    {
1390 	      worklist.safe_push (opnd_stmt);
1391 	      removed.add (opnd_stmt);
1392 	      num -= estimate_num_insns (opnd_stmt, &eni_size_weights);
1393 	    }
1394 	}
1395     } while (!worklist.is_empty ());
1396 
1397   gcc_assert (num >= 0);
1398   return num;
1399 }
1400 
1401 /* Find out loop-invariant branch of a conditional statement (COND) if it has,
1402    and check whether it is eligible and profitable to perform loop split upon
1403    this branch in LOOP.  */
1404 
1405 static edge
get_cond_branch_to_split_loop(struct loop * loop,gcond * cond)1406 get_cond_branch_to_split_loop (struct loop *loop, gcond *cond)
1407 {
1408   edge invar_branch = get_cond_invariant_branch (loop, cond);
1409   if (!invar_branch)
1410     return NULL;
1411 
1412   /* When accurate profile information is available, and execution
1413      frequency of the branch is too low, just let it go.  */
1414   profile_probability prob = invar_branch->probability;
1415   if (prob.reliable_p ())
1416     {
1417       int thres = param_min_loop_cond_split_prob;
1418 
1419       if (prob < profile_probability::always ().apply_scale (thres, 100))
1420 	return NULL;
1421     }
1422 
1423   /* Add a threshold for increased code size to disable loop split.  */
1424   if (compute_added_num_insns (loop, invar_branch) > param_max_peeled_insns)
1425     return NULL;
1426 
1427   return invar_branch;
1428 }
1429 
1430 /* Given a loop (LOOP1) with a loop-invariant branch (INVAR_BRANCH) of some
1431    conditional statement, perform loop split transformation illustrated
1432    as the following graph.
1433 
1434                .-------T------ if (true) ------F------.
1435                |                    .---------------. |
1436                |                    |               | |
1437                v                    |               v v
1438           pre-header                |            pre-header
1439                | .------------.     |                 | .------------.
1440                | |            |     |                 | |            |
1441                | v            |     |                 | v            |
1442              header           |     |               header           |
1443                |              |     |                 |              |
1444       .--- if (cond) ---.     |     |        .--- if (true) ---.     |
1445       |                 |     |     |        |                 |     |
1446   invariant             |     |     |    invariant             |     |
1447       |                 |     |     |        |                 |     |
1448       '---T--->.<---F---'     |     |        '---T--->.<---F---'     |
1449                |              |    /                  |              |
1450              stmts            |   /                 stmts            |
1451                |              F  T                    |              |
1452               / \             | /                    / \             |
1453      .-------*   *      [ if (cond) ]       .-------*   *            |
1454      |           |            |             |           |            |
1455      |         latch          |             |         latch          |
1456      |           |            |             |           |            |
1457      |           '------------'             |           '------------'
1458      '------------------------. .-----------'
1459              loop1            | |                   loop2
1460                               v v
1461                              exits
1462 
1463    In the graph, loop1 represents the part derived from original one, and
1464    loop2 is duplicated using loop_version (), which corresponds to the part
1465    of original one being splitted out.  In original latch edge of loop1, we
1466    insert a new conditional statement duplicated from the semi-invariant cond,
1467    and one of its branch goes back to loop1 header as a latch edge, and the
1468    other branch goes to loop2 pre-header as an entry edge.  And also in loop2,
1469    we abandon the variant branch of the conditional statement by setting a
1470    constant bool condition, based on which branch is semi-invariant.  */
1471 
1472 static bool
do_split_loop_on_cond(struct loop * loop1,edge invar_branch)1473 do_split_loop_on_cond (struct loop *loop1, edge invar_branch)
1474 {
1475   basic_block cond_bb = invar_branch->src;
1476   bool true_invar = !!(invar_branch->flags & EDGE_TRUE_VALUE);
1477   gcond *cond = as_a <gcond *> (last_stmt (cond_bb));
1478 
1479   gcc_assert (cond_bb->loop_father == loop1);
1480 
1481   if (dump_enabled_p ())
1482     dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, cond,
1483 		     "loop split on semi-invariant condition at %s branch\n",
1484 		     true_invar ? "true" : "false");
1485 
1486   initialize_original_copy_tables ();
1487 
1488   struct loop *loop2 = loop_version (loop1, boolean_true_node, NULL,
1489 				     profile_probability::always (),
1490 				     profile_probability::never (),
1491 				     profile_probability::always (),
1492 				     profile_probability::always (),
1493 				     true);
1494   if (!loop2)
1495     {
1496       free_original_copy_tables ();
1497       return false;
1498     }
1499 
1500   basic_block cond_bb_copy = get_bb_copy (cond_bb);
1501   gcond *cond_copy = as_a<gcond *> (last_stmt (cond_bb_copy));
1502 
1503   /* Replace the condition in loop2 with a bool constant to let PassManager
1504      remove the variant branch after current pass completes.  */
1505   if (true_invar)
1506     gimple_cond_make_true (cond_copy);
1507   else
1508     gimple_cond_make_false (cond_copy);
1509 
1510   update_stmt (cond_copy);
1511 
1512   /* Insert a new conditional statement on latch edge of loop1, its condition
1513      is duplicated from the semi-invariant.  This statement acts as a switch
1514      to transfer execution from loop1 to loop2, when loop1 enters into
1515      invariant state.  */
1516   basic_block latch_bb = split_edge (loop_latch_edge (loop1));
1517   basic_block break_bb = split_edge (single_pred_edge (latch_bb));
1518   gimple *break_cond = gimple_build_cond (gimple_cond_code(cond),
1519 					  gimple_cond_lhs (cond),
1520 					  gimple_cond_rhs (cond),
1521 					  NULL_TREE, NULL_TREE);
1522 
1523   gimple_stmt_iterator gsi = gsi_last_bb (break_bb);
1524   gsi_insert_after (&gsi, break_cond, GSI_NEW_STMT);
1525 
1526   edge to_loop1 = single_succ_edge (break_bb);
1527   edge to_loop2 = make_edge (break_bb, loop_preheader_edge (loop2)->src, 0);
1528 
1529   to_loop1->flags &= ~EDGE_FALLTHRU;
1530   to_loop1->flags |= true_invar ? EDGE_FALSE_VALUE : EDGE_TRUE_VALUE;
1531   to_loop2->flags |= true_invar ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE;
1532 
1533   /* Due to introduction of a control flow edge from loop1 latch to loop2
1534      pre-header, we should update PHIs in loop2 to reflect this connection
1535      between loop1 and loop2.  */
1536   connect_loop_phis (loop1, loop2, to_loop2);
1537 
1538   free_original_copy_tables ();
1539 
1540   return true;
1541 }
1542 
1543 /* Traverse all conditional statements in LOOP, to find out a good candidate
1544    upon which we can do loop split.  */
1545 
1546 static bool
split_loop_on_cond(struct loop * loop)1547 split_loop_on_cond (struct loop *loop)
1548 {
1549   split_info *info = new split_info ();
1550   basic_block *bbs = info->bbs = get_loop_body (loop);
1551   bool do_split = false;
1552 
1553   /* Allocate an area to keep temporary info, and associate its address
1554      with loop aux field.  */
1555   loop->aux = info;
1556 
1557   for (unsigned i = 0; i < loop->num_nodes; i++)
1558     bbs[i]->aux = NULL;
1559 
1560   for (unsigned i = 0; i < loop->num_nodes; i++)
1561     {
1562       basic_block bb = bbs[i];
1563 
1564       /* We only consider conditional statement, which be executed at most once
1565 	 in each iteration of the loop.  So skip statements in inner loops.  */
1566       if ((bb->loop_father != loop) || (bb->flags & BB_IRREDUCIBLE_LOOP))
1567 	continue;
1568 
1569       /* Actually this check is not a must constraint.  With it, we can ensure
1570 	 conditional statement will always be executed in each iteration.  */
1571       if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1572 	continue;
1573 
1574       gimple *last = last_stmt (bb);
1575 
1576       if (!last || gimple_code (last) != GIMPLE_COND)
1577 	continue;
1578 
1579       gcond *cond = as_a <gcond *> (last);
1580       edge branch_edge = get_cond_branch_to_split_loop (loop, cond);
1581 
1582       if (branch_edge)
1583 	{
1584 	  do_split_loop_on_cond (loop, branch_edge);
1585 	  do_split = true;
1586 	  break;
1587 	}
1588     }
1589 
1590   delete info;
1591   loop->aux = NULL;
1592 
1593   return do_split;
1594 }
1595 
1596 /* Main entry point.  Perform loop splitting on all suitable loops.  */
1597 
1598 static unsigned int
tree_ssa_split_loops(void)1599 tree_ssa_split_loops (void)
1600 {
1601   bool changed = false;
1602 
1603   gcc_assert (scev_initialized_p ());
1604 
1605   calculate_dominance_info (CDI_POST_DOMINATORS);
1606 
1607   for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT))
1608     loop->aux = NULL;
1609 
1610   /* Go through all loops starting from innermost.  */
1611   for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1612     {
1613       if (loop->aux)
1614 	{
1615 	  /* If any of our inner loops was split, don't split us,
1616 	     and mark our containing loop as having had splits as well.  */
1617 	  loop_outer (loop)->aux = loop;
1618 	  continue;
1619 	}
1620 
1621       if (optimize_loop_for_size_p (loop))
1622 	continue;
1623 
1624       if (split_loop (loop) || split_loop_on_cond (loop))
1625 	{
1626 	  /* Mark our containing loop as having had some split inner loops.  */
1627 	  loop_outer (loop)->aux = loop;
1628 	  changed = true;
1629 	}
1630     }
1631 
1632   for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT))
1633     loop->aux = NULL;
1634 
1635   clear_aux_for_blocks ();
1636 
1637   free_dominance_info (CDI_POST_DOMINATORS);
1638 
1639   if (changed)
1640     {
1641       rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1642       return TODO_cleanup_cfg;
1643     }
1644   return 0;
1645 }
1646 
1647 /* Loop splitting pass.  */
1648 
1649 namespace {
1650 
1651 const pass_data pass_data_loop_split =
1652 {
1653   GIMPLE_PASS, /* type */
1654   "lsplit", /* name */
1655   OPTGROUP_LOOP, /* optinfo_flags */
1656   TV_LOOP_SPLIT, /* tv_id */
1657   PROP_cfg, /* properties_required */
1658   0, /* properties_provided */
1659   0, /* properties_destroyed */
1660   0, /* todo_flags_start */
1661   0, /* todo_flags_finish */
1662 };
1663 
1664 class pass_loop_split : public gimple_opt_pass
1665 {
1666 public:
pass_loop_split(gcc::context * ctxt)1667   pass_loop_split (gcc::context *ctxt)
1668     : gimple_opt_pass (pass_data_loop_split, ctxt)
1669   {}
1670 
1671   /* opt_pass methods: */
gate(function *)1672   virtual bool gate (function *) { return flag_split_loops != 0; }
1673   virtual unsigned int execute (function *);
1674 
1675 }; // class pass_loop_split
1676 
1677 unsigned int
execute(function * fun)1678 pass_loop_split::execute (function *fun)
1679 {
1680   if (number_of_loops (fun) <= 1)
1681     return 0;
1682 
1683   return tree_ssa_split_loops ();
1684 }
1685 
1686 } // anon namespace
1687 
1688 gimple_opt_pass *
make_pass_loop_split(gcc::context * ctxt)1689 make_pass_loop_split (gcc::context *ctxt)
1690 {
1691   return new pass_loop_split (ctxt);
1692 }
1693