1// Copyright 2013 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package cipher
6
7import (
8	subtleoverlap "crypto/internal/subtle"
9	"crypto/subtle"
10	"encoding/binary"
11	"errors"
12)
13
14// AEAD is a cipher mode providing authenticated encryption with associated
15// data. For a description of the methodology, see
16//	https://en.wikipedia.org/wiki/Authenticated_encryption
17type AEAD interface {
18	// NonceSize returns the size of the nonce that must be passed to Seal
19	// and Open.
20	NonceSize() int
21
22	// Overhead returns the maximum difference between the lengths of a
23	// plaintext and its ciphertext.
24	Overhead() int
25
26	// Seal encrypts and authenticates plaintext, authenticates the
27	// additional data and appends the result to dst, returning the updated
28	// slice. The nonce must be NonceSize() bytes long and unique for all
29	// time, for a given key.
30	//
31	// To reuse plaintext's storage for the encrypted output, use plaintext[:0]
32	// as dst. Otherwise, the remaining capacity of dst must not overlap plaintext.
33	Seal(dst, nonce, plaintext, additionalData []byte) []byte
34
35	// Open decrypts and authenticates ciphertext, authenticates the
36	// additional data and, if successful, appends the resulting plaintext
37	// to dst, returning the updated slice. The nonce must be NonceSize()
38	// bytes long and both it and the additional data must match the
39	// value passed to Seal.
40	//
41	// To reuse ciphertext's storage for the decrypted output, use ciphertext[:0]
42	// as dst. Otherwise, the remaining capacity of dst must not overlap plaintext.
43	//
44	// Even if the function fails, the contents of dst, up to its capacity,
45	// may be overwritten.
46	Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error)
47}
48
49// gcmAble is an interface implemented by ciphers that have a specific optimized
50// implementation of GCM, like crypto/aes. NewGCM will check for this interface
51// and return the specific AEAD if found.
52type gcmAble interface {
53	NewGCM(nonceSize, tagSize int) (AEAD, error)
54}
55
56// gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM
57// standard and make binary.BigEndian suitable for marshaling these values, the
58// bits are stored in big endian order. For example:
59//   the coefficient of x⁰ can be obtained by v.low >> 63.
60//   the coefficient of x⁶³ can be obtained by v.low & 1.
61//   the coefficient of x⁶⁴ can be obtained by v.high >> 63.
62//   the coefficient of x¹²⁷ can be obtained by v.high & 1.
63type gcmFieldElement struct {
64	low, high uint64
65}
66
67// gcm represents a Galois Counter Mode with a specific key. See
68// https://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
69type gcm struct {
70	cipher    Block
71	nonceSize int
72	tagSize   int
73	// productTable contains the first sixteen powers of the key, H.
74	// However, they are in bit reversed order. See NewGCMWithNonceSize.
75	productTable [16]gcmFieldElement
76}
77
78// NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode
79// with the standard nonce length.
80//
81// In general, the GHASH operation performed by this implementation of GCM is not constant-time.
82// An exception is when the underlying Block was created by aes.NewCipher
83// on systems with hardware support for AES. See the crypto/aes package documentation for details.
84func NewGCM(cipher Block) (AEAD, error) {
85	return newGCMWithNonceAndTagSize(cipher, gcmStandardNonceSize, gcmTagSize)
86}
87
88// NewGCMWithNonceSize returns the given 128-bit, block cipher wrapped in Galois
89// Counter Mode, which accepts nonces of the given length. The length must not
90// be zero.
91//
92// Only use this function if you require compatibility with an existing
93// cryptosystem that uses non-standard nonce lengths. All other users should use
94// NewGCM, which is faster and more resistant to misuse.
95func NewGCMWithNonceSize(cipher Block, size int) (AEAD, error) {
96	return newGCMWithNonceAndTagSize(cipher, size, gcmTagSize)
97}
98
99// NewGCMWithTagSize returns the given 128-bit, block cipher wrapped in Galois
100// Counter Mode, which generates tags with the given length.
101//
102// Tag sizes between 12 and 16 bytes are allowed.
103//
104// Only use this function if you require compatibility with an existing
105// cryptosystem that uses non-standard tag lengths. All other users should use
106// NewGCM, which is more resistant to misuse.
107func NewGCMWithTagSize(cipher Block, tagSize int) (AEAD, error) {
108	return newGCMWithNonceAndTagSize(cipher, gcmStandardNonceSize, tagSize)
109}
110
111func newGCMWithNonceAndTagSize(cipher Block, nonceSize, tagSize int) (AEAD, error) {
112	if tagSize < gcmMinimumTagSize || tagSize > gcmBlockSize {
113		return nil, errors.New("cipher: incorrect tag size given to GCM")
114	}
115
116	if nonceSize <= 0 {
117		return nil, errors.New("cipher: the nonce can't have zero length, or the security of the key will be immediately compromised")
118	}
119
120	if cipher, ok := cipher.(gcmAble); ok {
121		return cipher.NewGCM(nonceSize, tagSize)
122	}
123
124	if cipher.BlockSize() != gcmBlockSize {
125		return nil, errors.New("cipher: NewGCM requires 128-bit block cipher")
126	}
127
128	var key [gcmBlockSize]byte
129	cipher.Encrypt(key[:], key[:])
130
131	g := &gcm{cipher: cipher, nonceSize: nonceSize, tagSize: tagSize}
132
133	// We precompute 16 multiples of |key|. However, when we do lookups
134	// into this table we'll be using bits from a field element and
135	// therefore the bits will be in the reverse order. So normally one
136	// would expect, say, 4*key to be in index 4 of the table but due to
137	// this bit ordering it will actually be in index 0010 (base 2) = 2.
138	x := gcmFieldElement{
139		binary.BigEndian.Uint64(key[:8]),
140		binary.BigEndian.Uint64(key[8:]),
141	}
142	g.productTable[reverseBits(1)] = x
143
144	for i := 2; i < 16; i += 2 {
145		g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)])
146		g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x)
147	}
148
149	return g, nil
150}
151
152const (
153	gcmBlockSize         = 16
154	gcmTagSize           = 16
155	gcmMinimumTagSize    = 12 // NIST SP 800-38D recommends tags with 12 or more bytes.
156	gcmStandardNonceSize = 12
157)
158
159func (g *gcm) NonceSize() int {
160	return g.nonceSize
161}
162
163func (g *gcm) Overhead() int {
164	return g.tagSize
165}
166
167func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte {
168	if len(nonce) != g.nonceSize {
169		panic("crypto/cipher: incorrect nonce length given to GCM")
170	}
171	if uint64(len(plaintext)) > ((1<<32)-2)*uint64(g.cipher.BlockSize()) {
172		panic("crypto/cipher: message too large for GCM")
173	}
174
175	ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize)
176	if subtleoverlap.InexactOverlap(out, plaintext) {
177		panic("crypto/cipher: invalid buffer overlap")
178	}
179
180	var counter, tagMask [gcmBlockSize]byte
181	g.deriveCounter(&counter, nonce)
182
183	g.cipher.Encrypt(tagMask[:], counter[:])
184	gcmInc32(&counter)
185
186	g.counterCrypt(out, plaintext, &counter)
187
188	var tag [gcmTagSize]byte
189	g.auth(tag[:], out[:len(plaintext)], data, &tagMask)
190	copy(out[len(plaintext):], tag[:])
191
192	return ret
193}
194
195var errOpen = errors.New("cipher: message authentication failed")
196
197func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
198	if len(nonce) != g.nonceSize {
199		panic("crypto/cipher: incorrect nonce length given to GCM")
200	}
201	// Sanity check to prevent the authentication from always succeeding if an implementation
202	// leaves tagSize uninitialized, for example.
203	if g.tagSize < gcmMinimumTagSize {
204		panic("crypto/cipher: incorrect GCM tag size")
205	}
206
207	if len(ciphertext) < g.tagSize {
208		return nil, errOpen
209	}
210	if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(g.cipher.BlockSize())+uint64(g.tagSize) {
211		return nil, errOpen
212	}
213
214	tag := ciphertext[len(ciphertext)-g.tagSize:]
215	ciphertext = ciphertext[:len(ciphertext)-g.tagSize]
216
217	var counter, tagMask [gcmBlockSize]byte
218	g.deriveCounter(&counter, nonce)
219
220	g.cipher.Encrypt(tagMask[:], counter[:])
221	gcmInc32(&counter)
222
223	var expectedTag [gcmTagSize]byte
224	g.auth(expectedTag[:], ciphertext, data, &tagMask)
225
226	ret, out := sliceForAppend(dst, len(ciphertext))
227	if subtleoverlap.InexactOverlap(out, ciphertext) {
228		panic("crypto/cipher: invalid buffer overlap")
229	}
230
231	if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 {
232		// The AESNI code decrypts and authenticates concurrently, and
233		// so overwrites dst in the event of a tag mismatch. That
234		// behavior is mimicked here in order to be consistent across
235		// platforms.
236		for i := range out {
237			out[i] = 0
238		}
239		return nil, errOpen
240	}
241
242	g.counterCrypt(out, ciphertext, &counter)
243
244	return ret, nil
245}
246
247// reverseBits reverses the order of the bits of 4-bit number in i.
248func reverseBits(i int) int {
249	i = ((i << 2) & 0xc) | ((i >> 2) & 0x3)
250	i = ((i << 1) & 0xa) | ((i >> 1) & 0x5)
251	return i
252}
253
254// gcmAdd adds two elements of GF(2¹²⁸) and returns the sum.
255func gcmAdd(x, y *gcmFieldElement) gcmFieldElement {
256	// Addition in a characteristic 2 field is just XOR.
257	return gcmFieldElement{x.low ^ y.low, x.high ^ y.high}
258}
259
260// gcmDouble returns the result of doubling an element of GF(2¹²⁸).
261func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) {
262	msbSet := x.high&1 == 1
263
264	// Because of the bit-ordering, doubling is actually a right shift.
265	double.high = x.high >> 1
266	double.high |= x.low << 63
267	double.low = x.low >> 1
268
269	// If the most-significant bit was set before shifting then it,
270	// conceptually, becomes a term of x^128. This is greater than the
271	// irreducible polynomial so the result has to be reduced. The
272	// irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to
273	// eliminate the term at x^128 which also means subtracting the other
274	// four terms. In characteristic 2 fields, subtraction == addition ==
275	// XOR.
276	if msbSet {
277		double.low ^= 0xe100000000000000
278	}
279
280	return
281}
282
283var gcmReductionTable = []uint16{
284	0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
285	0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
286}
287
288// mul sets y to y*H, where H is the GCM key, fixed during NewGCMWithNonceSize.
289func (g *gcm) mul(y *gcmFieldElement) {
290	var z gcmFieldElement
291
292	for i := 0; i < 2; i++ {
293		word := y.high
294		if i == 1 {
295			word = y.low
296		}
297
298		// Multiplication works by multiplying z by 16 and adding in
299		// one of the precomputed multiples of H.
300		for j := 0; j < 64; j += 4 {
301			msw := z.high & 0xf
302			z.high >>= 4
303			z.high |= z.low << 60
304			z.low >>= 4
305			z.low ^= uint64(gcmReductionTable[msw]) << 48
306
307			// the values in |table| are ordered for
308			// little-endian bit positions. See the comment
309			// in NewGCMWithNonceSize.
310			t := &g.productTable[word&0xf]
311
312			z.low ^= t.low
313			z.high ^= t.high
314			word >>= 4
315		}
316	}
317
318	*y = z
319}
320
321// updateBlocks extends y with more polynomial terms from blocks, based on
322// Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks.
323func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) {
324	for len(blocks) > 0 {
325		y.low ^= binary.BigEndian.Uint64(blocks)
326		y.high ^= binary.BigEndian.Uint64(blocks[8:])
327		g.mul(y)
328		blocks = blocks[gcmBlockSize:]
329	}
330}
331
332// update extends y with more polynomial terms from data. If data is not a
333// multiple of gcmBlockSize bytes long then the remainder is zero padded.
334func (g *gcm) update(y *gcmFieldElement, data []byte) {
335	fullBlocks := (len(data) >> 4) << 4
336	g.updateBlocks(y, data[:fullBlocks])
337
338	if len(data) != fullBlocks {
339		var partialBlock [gcmBlockSize]byte
340		copy(partialBlock[:], data[fullBlocks:])
341		g.updateBlocks(y, partialBlock[:])
342	}
343}
344
345// gcmInc32 treats the final four bytes of counterBlock as a big-endian value
346// and increments it.
347func gcmInc32(counterBlock *[16]byte) {
348	ctr := counterBlock[len(counterBlock)-4:]
349	binary.BigEndian.PutUint32(ctr, binary.BigEndian.Uint32(ctr)+1)
350}
351
352// sliceForAppend takes a slice and a requested number of bytes. It returns a
353// slice with the contents of the given slice followed by that many bytes and a
354// second slice that aliases into it and contains only the extra bytes. If the
355// original slice has sufficient capacity then no allocation is performed.
356func sliceForAppend(in []byte, n int) (head, tail []byte) {
357	if total := len(in) + n; cap(in) >= total {
358		head = in[:total]
359	} else {
360		head = make([]byte, total)
361		copy(head, in)
362	}
363	tail = head[len(in):]
364	return
365}
366
367// counterCrypt crypts in to out using g.cipher in counter mode.
368func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) {
369	var mask [gcmBlockSize]byte
370
371	for len(in) >= gcmBlockSize {
372		g.cipher.Encrypt(mask[:], counter[:])
373		gcmInc32(counter)
374
375		xorWords(out, in, mask[:])
376		out = out[gcmBlockSize:]
377		in = in[gcmBlockSize:]
378	}
379
380	if len(in) > 0 {
381		g.cipher.Encrypt(mask[:], counter[:])
382		gcmInc32(counter)
383		xorBytes(out, in, mask[:])
384	}
385}
386
387// deriveCounter computes the initial GCM counter state from the given nonce.
388// See NIST SP 800-38D, section 7.1. This assumes that counter is filled with
389// zeros on entry.
390func (g *gcm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) {
391	// GCM has two modes of operation with respect to the initial counter
392	// state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path"
393	// for nonces of other lengths. For a 96-bit nonce, the nonce, along
394	// with a four-byte big-endian counter starting at one, is used
395	// directly as the starting counter. For other nonce sizes, the counter
396	// is computed by passing it through the GHASH function.
397	if len(nonce) == gcmStandardNonceSize {
398		copy(counter[:], nonce)
399		counter[gcmBlockSize-1] = 1
400	} else {
401		var y gcmFieldElement
402		g.update(&y, nonce)
403		y.high ^= uint64(len(nonce)) * 8
404		g.mul(&y)
405		binary.BigEndian.PutUint64(counter[:8], y.low)
406		binary.BigEndian.PutUint64(counter[8:], y.high)
407	}
408}
409
410// auth calculates GHASH(ciphertext, additionalData), masks the result with
411// tagMask and writes the result to out.
412func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) {
413	var y gcmFieldElement
414	g.update(&y, additionalData)
415	g.update(&y, ciphertext)
416
417	y.low ^= uint64(len(additionalData)) * 8
418	y.high ^= uint64(len(ciphertext)) * 8
419
420	g.mul(&y)
421
422	binary.BigEndian.PutUint64(out, y.low)
423	binary.BigEndian.PutUint64(out[8:], y.high)
424
425	xorWords(out, out, tagMask[:])
426}
427