1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5//go:generate go run decgen.go -output dec_helpers.go
6
7package gob
8
9import (
10	"encoding"
11	"errors"
12	"io"
13	"math"
14	"math/bits"
15	"reflect"
16)
17
18var (
19	errBadUint = errors.New("gob: encoded unsigned integer out of range")
20	errBadType = errors.New("gob: unknown type id or corrupted data")
21	errRange   = errors.New("gob: bad data: field numbers out of bounds")
22)
23
24type decHelper func(state *decoderState, v reflect.Value, length int, ovfl error) bool
25
26// decoderState is the execution state of an instance of the decoder. A new state
27// is created for nested objects.
28type decoderState struct {
29	dec *Decoder
30	// The buffer is stored with an extra indirection because it may be replaced
31	// if we load a type during decode (when reading an interface value).
32	b        *decBuffer
33	fieldnum int           // the last field number read.
34	next     *decoderState // for free list
35}
36
37// decBuffer is an extremely simple, fast implementation of a read-only byte buffer.
38// It is initialized by calling Size and then copying the data into the slice returned by Bytes().
39type decBuffer struct {
40	data   []byte
41	offset int // Read offset.
42}
43
44func (d *decBuffer) Read(p []byte) (int, error) {
45	n := copy(p, d.data[d.offset:])
46	if n == 0 && len(p) != 0 {
47		return 0, io.EOF
48	}
49	d.offset += n
50	return n, nil
51}
52
53func (d *decBuffer) Drop(n int) {
54	if n > d.Len() {
55		panic("drop")
56	}
57	d.offset += n
58}
59
60// Size grows the buffer to exactly n bytes, so d.Bytes() will
61// return a slice of length n. Existing data is first discarded.
62func (d *decBuffer) Size(n int) {
63	d.Reset()
64	if cap(d.data) < n {
65		d.data = make([]byte, n)
66	} else {
67		d.data = d.data[0:n]
68	}
69}
70
71func (d *decBuffer) ReadByte() (byte, error) {
72	if d.offset >= len(d.data) {
73		return 0, io.EOF
74	}
75	c := d.data[d.offset]
76	d.offset++
77	return c, nil
78}
79
80func (d *decBuffer) Len() int {
81	return len(d.data) - d.offset
82}
83
84func (d *decBuffer) Bytes() []byte {
85	return d.data[d.offset:]
86}
87
88func (d *decBuffer) Reset() {
89	d.data = d.data[0:0]
90	d.offset = 0
91}
92
93// We pass the bytes.Buffer separately for easier testing of the infrastructure
94// without requiring a full Decoder.
95func (dec *Decoder) newDecoderState(buf *decBuffer) *decoderState {
96	d := dec.freeList
97	if d == nil {
98		d = new(decoderState)
99		d.dec = dec
100	} else {
101		dec.freeList = d.next
102	}
103	d.b = buf
104	return d
105}
106
107func (dec *Decoder) freeDecoderState(d *decoderState) {
108	d.next = dec.freeList
109	dec.freeList = d
110}
111
112func overflow(name string) error {
113	return errors.New(`value for "` + name + `" out of range`)
114}
115
116// decodeUintReader reads an encoded unsigned integer from an io.Reader.
117// Used only by the Decoder to read the message length.
118func decodeUintReader(r io.Reader, buf []byte) (x uint64, width int, err error) {
119	width = 1
120	n, err := io.ReadFull(r, buf[0:width])
121	if n == 0 {
122		return
123	}
124	b := buf[0]
125	if b <= 0x7f {
126		return uint64(b), width, nil
127	}
128	n = -int(int8(b))
129	if n > uint64Size {
130		err = errBadUint
131		return
132	}
133	width, err = io.ReadFull(r, buf[0:n])
134	if err != nil {
135		if err == io.EOF {
136			err = io.ErrUnexpectedEOF
137		}
138		return
139	}
140	// Could check that the high byte is zero but it's not worth it.
141	for _, b := range buf[0:width] {
142		x = x<<8 | uint64(b)
143	}
144	width++ // +1 for length byte
145	return
146}
147
148// decodeUint reads an encoded unsigned integer from state.r.
149// Does not check for overflow.
150func (state *decoderState) decodeUint() (x uint64) {
151	b, err := state.b.ReadByte()
152	if err != nil {
153		error_(err)
154	}
155	if b <= 0x7f {
156		return uint64(b)
157	}
158	n := -int(int8(b))
159	if n > uint64Size {
160		error_(errBadUint)
161	}
162	buf := state.b.Bytes()
163	if len(buf) < n {
164		errorf("invalid uint data length %d: exceeds input size %d", n, len(buf))
165	}
166	// Don't need to check error; it's safe to loop regardless.
167	// Could check that the high byte is zero but it's not worth it.
168	for _, b := range buf[0:n] {
169		x = x<<8 | uint64(b)
170	}
171	state.b.Drop(n)
172	return x
173}
174
175// decodeInt reads an encoded signed integer from state.r.
176// Does not check for overflow.
177func (state *decoderState) decodeInt() int64 {
178	x := state.decodeUint()
179	if x&1 != 0 {
180		return ^int64(x >> 1)
181	}
182	return int64(x >> 1)
183}
184
185// getLength decodes the next uint and makes sure it is a possible
186// size for a data item that follows, which means it must fit in a
187// non-negative int and fit in the buffer.
188func (state *decoderState) getLength() (int, bool) {
189	n := int(state.decodeUint())
190	if n < 0 || state.b.Len() < n || tooBig <= n {
191		return 0, false
192	}
193	return n, true
194}
195
196// decOp is the signature of a decoding operator for a given type.
197type decOp func(i *decInstr, state *decoderState, v reflect.Value)
198
199// The 'instructions' of the decoding machine
200type decInstr struct {
201	op    decOp
202	field int   // field number of the wire type
203	index []int // field access indices for destination type
204	ovfl  error // error message for overflow/underflow (for arrays, of the elements)
205}
206
207// ignoreUint discards a uint value with no destination.
208func ignoreUint(i *decInstr, state *decoderState, v reflect.Value) {
209	state.decodeUint()
210}
211
212// ignoreTwoUints discards a uint value with no destination. It's used to skip
213// complex values.
214func ignoreTwoUints(i *decInstr, state *decoderState, v reflect.Value) {
215	state.decodeUint()
216	state.decodeUint()
217}
218
219// Since the encoder writes no zeros, if we arrive at a decoder we have
220// a value to extract and store. The field number has already been read
221// (it's how we knew to call this decoder).
222// Each decoder is responsible for handling any indirections associated
223// with the data structure. If any pointer so reached is nil, allocation must
224// be done.
225
226// decAlloc takes a value and returns a settable value that can
227// be assigned to. If the value is a pointer, decAlloc guarantees it points to storage.
228// The callers to the individual decoders are expected to have used decAlloc.
229// The individual decoders don't need to it.
230func decAlloc(v reflect.Value) reflect.Value {
231	for v.Kind() == reflect.Ptr {
232		if v.IsNil() {
233			v.Set(reflect.New(v.Type().Elem()))
234		}
235		v = v.Elem()
236	}
237	return v
238}
239
240// decBool decodes a uint and stores it as a boolean in value.
241func decBool(i *decInstr, state *decoderState, value reflect.Value) {
242	value.SetBool(state.decodeUint() != 0)
243}
244
245// decInt8 decodes an integer and stores it as an int8 in value.
246func decInt8(i *decInstr, state *decoderState, value reflect.Value) {
247	v := state.decodeInt()
248	if v < math.MinInt8 || math.MaxInt8 < v {
249		error_(i.ovfl)
250	}
251	value.SetInt(v)
252}
253
254// decUint8 decodes an unsigned integer and stores it as a uint8 in value.
255func decUint8(i *decInstr, state *decoderState, value reflect.Value) {
256	v := state.decodeUint()
257	if math.MaxUint8 < v {
258		error_(i.ovfl)
259	}
260	value.SetUint(v)
261}
262
263// decInt16 decodes an integer and stores it as an int16 in value.
264func decInt16(i *decInstr, state *decoderState, value reflect.Value) {
265	v := state.decodeInt()
266	if v < math.MinInt16 || math.MaxInt16 < v {
267		error_(i.ovfl)
268	}
269	value.SetInt(v)
270}
271
272// decUint16 decodes an unsigned integer and stores it as a uint16 in value.
273func decUint16(i *decInstr, state *decoderState, value reflect.Value) {
274	v := state.decodeUint()
275	if math.MaxUint16 < v {
276		error_(i.ovfl)
277	}
278	value.SetUint(v)
279}
280
281// decInt32 decodes an integer and stores it as an int32 in value.
282func decInt32(i *decInstr, state *decoderState, value reflect.Value) {
283	v := state.decodeInt()
284	if v < math.MinInt32 || math.MaxInt32 < v {
285		error_(i.ovfl)
286	}
287	value.SetInt(v)
288}
289
290// decUint32 decodes an unsigned integer and stores it as a uint32 in value.
291func decUint32(i *decInstr, state *decoderState, value reflect.Value) {
292	v := state.decodeUint()
293	if math.MaxUint32 < v {
294		error_(i.ovfl)
295	}
296	value.SetUint(v)
297}
298
299// decInt64 decodes an integer and stores it as an int64 in value.
300func decInt64(i *decInstr, state *decoderState, value reflect.Value) {
301	v := state.decodeInt()
302	value.SetInt(v)
303}
304
305// decUint64 decodes an unsigned integer and stores it as a uint64 in value.
306func decUint64(i *decInstr, state *decoderState, value reflect.Value) {
307	v := state.decodeUint()
308	value.SetUint(v)
309}
310
311// Floating-point numbers are transmitted as uint64s holding the bits
312// of the underlying representation. They are sent byte-reversed, with
313// the exponent end coming out first, so integer floating point numbers
314// (for example) transmit more compactly. This routine does the
315// unswizzling.
316func float64FromBits(u uint64) float64 {
317	v := bits.ReverseBytes64(u)
318	return math.Float64frombits(v)
319}
320
321// float32FromBits decodes an unsigned integer, treats it as a 32-bit floating-point
322// number, and returns it. It's a helper function for float32 and complex64.
323// It returns a float64 because that's what reflection needs, but its return
324// value is known to be accurately representable in a float32.
325func float32FromBits(u uint64, ovfl error) float64 {
326	v := float64FromBits(u)
327	av := v
328	if av < 0 {
329		av = -av
330	}
331	// +Inf is OK in both 32- and 64-bit floats. Underflow is always OK.
332	if math.MaxFloat32 < av && av <= math.MaxFloat64 {
333		error_(ovfl)
334	}
335	return v
336}
337
338// decFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point
339// number, and stores it in value.
340func decFloat32(i *decInstr, state *decoderState, value reflect.Value) {
341	value.SetFloat(float32FromBits(state.decodeUint(), i.ovfl))
342}
343
344// decFloat64 decodes an unsigned integer, treats it as a 64-bit floating-point
345// number, and stores it in value.
346func decFloat64(i *decInstr, state *decoderState, value reflect.Value) {
347	value.SetFloat(float64FromBits(state.decodeUint()))
348}
349
350// decComplex64 decodes a pair of unsigned integers, treats them as a
351// pair of floating point numbers, and stores them as a complex64 in value.
352// The real part comes first.
353func decComplex64(i *decInstr, state *decoderState, value reflect.Value) {
354	real := float32FromBits(state.decodeUint(), i.ovfl)
355	imag := float32FromBits(state.decodeUint(), i.ovfl)
356	value.SetComplex(complex(real, imag))
357}
358
359// decComplex128 decodes a pair of unsigned integers, treats them as a
360// pair of floating point numbers, and stores them as a complex128 in value.
361// The real part comes first.
362func decComplex128(i *decInstr, state *decoderState, value reflect.Value) {
363	real := float64FromBits(state.decodeUint())
364	imag := float64FromBits(state.decodeUint())
365	value.SetComplex(complex(real, imag))
366}
367
368// decUint8Slice decodes a byte slice and stores in value a slice header
369// describing the data.
370// uint8 slices are encoded as an unsigned count followed by the raw bytes.
371func decUint8Slice(i *decInstr, state *decoderState, value reflect.Value) {
372	n, ok := state.getLength()
373	if !ok {
374		errorf("bad %s slice length: %d", value.Type(), n)
375	}
376	if value.Cap() < n {
377		value.Set(reflect.MakeSlice(value.Type(), n, n))
378	} else {
379		value.Set(value.Slice(0, n))
380	}
381	if _, err := state.b.Read(value.Bytes()); err != nil {
382		errorf("error decoding []byte: %s", err)
383	}
384}
385
386// decString decodes byte array and stores in value a string header
387// describing the data.
388// Strings are encoded as an unsigned count followed by the raw bytes.
389func decString(i *decInstr, state *decoderState, value reflect.Value) {
390	n, ok := state.getLength()
391	if !ok {
392		errorf("bad %s slice length: %d", value.Type(), n)
393	}
394	// Read the data.
395	data := state.b.Bytes()
396	if len(data) < n {
397		errorf("invalid string length %d: exceeds input size %d", n, len(data))
398	}
399	s := string(data[:n])
400	state.b.Drop(n)
401	value.SetString(s)
402}
403
404// ignoreUint8Array skips over the data for a byte slice value with no destination.
405func ignoreUint8Array(i *decInstr, state *decoderState, value reflect.Value) {
406	n, ok := state.getLength()
407	if !ok {
408		errorf("slice length too large")
409	}
410	bn := state.b.Len()
411	if bn < n {
412		errorf("invalid slice length %d: exceeds input size %d", n, bn)
413	}
414	state.b.Drop(n)
415}
416
417// Execution engine
418
419// The encoder engine is an array of instructions indexed by field number of the incoming
420// decoder. It is executed with random access according to field number.
421type decEngine struct {
422	instr    []decInstr
423	numInstr int // the number of active instructions
424}
425
426// decodeSingle decodes a top-level value that is not a struct and stores it in value.
427// Such values are preceded by a zero, making them have the memory layout of a
428// struct field (although with an illegal field number).
429func (dec *Decoder) decodeSingle(engine *decEngine, value reflect.Value) {
430	state := dec.newDecoderState(&dec.buf)
431	defer dec.freeDecoderState(state)
432	state.fieldnum = singletonField
433	if state.decodeUint() != 0 {
434		errorf("decode: corrupted data: non-zero delta for singleton")
435	}
436	instr := &engine.instr[singletonField]
437	instr.op(instr, state, value)
438}
439
440// decodeStruct decodes a top-level struct and stores it in value.
441// Indir is for the value, not the type. At the time of the call it may
442// differ from ut.indir, which was computed when the engine was built.
443// This state cannot arise for decodeSingle, which is called directly
444// from the user's value, not from the innards of an engine.
445func (dec *Decoder) decodeStruct(engine *decEngine, value reflect.Value) {
446	state := dec.newDecoderState(&dec.buf)
447	defer dec.freeDecoderState(state)
448	state.fieldnum = -1
449	for state.b.Len() > 0 {
450		delta := int(state.decodeUint())
451		if delta < 0 {
452			errorf("decode: corrupted data: negative delta")
453		}
454		if delta == 0 { // struct terminator is zero delta fieldnum
455			break
456		}
457		fieldnum := state.fieldnum + delta
458		if fieldnum >= len(engine.instr) {
459			error_(errRange)
460			break
461		}
462		instr := &engine.instr[fieldnum]
463		var field reflect.Value
464		if instr.index != nil {
465			// Otherwise the field is unknown to us and instr.op is an ignore op.
466			field = value.FieldByIndex(instr.index)
467			if field.Kind() == reflect.Ptr {
468				field = decAlloc(field)
469			}
470		}
471		instr.op(instr, state, field)
472		state.fieldnum = fieldnum
473	}
474}
475
476var noValue reflect.Value
477
478// ignoreStruct discards the data for a struct with no destination.
479func (dec *Decoder) ignoreStruct(engine *decEngine) {
480	state := dec.newDecoderState(&dec.buf)
481	defer dec.freeDecoderState(state)
482	state.fieldnum = -1
483	for state.b.Len() > 0 {
484		delta := int(state.decodeUint())
485		if delta < 0 {
486			errorf("ignore decode: corrupted data: negative delta")
487		}
488		if delta == 0 { // struct terminator is zero delta fieldnum
489			break
490		}
491		fieldnum := state.fieldnum + delta
492		if fieldnum >= len(engine.instr) {
493			error_(errRange)
494		}
495		instr := &engine.instr[fieldnum]
496		instr.op(instr, state, noValue)
497		state.fieldnum = fieldnum
498	}
499}
500
501// ignoreSingle discards the data for a top-level non-struct value with no
502// destination. It's used when calling Decode with a nil value.
503func (dec *Decoder) ignoreSingle(engine *decEngine) {
504	state := dec.newDecoderState(&dec.buf)
505	defer dec.freeDecoderState(state)
506	state.fieldnum = singletonField
507	delta := int(state.decodeUint())
508	if delta != 0 {
509		errorf("decode: corrupted data: non-zero delta for singleton")
510	}
511	instr := &engine.instr[singletonField]
512	instr.op(instr, state, noValue)
513}
514
515// decodeArrayHelper does the work for decoding arrays and slices.
516func (dec *Decoder) decodeArrayHelper(state *decoderState, value reflect.Value, elemOp decOp, length int, ovfl error, helper decHelper) {
517	if helper != nil && helper(state, value, length, ovfl) {
518		return
519	}
520	instr := &decInstr{elemOp, 0, nil, ovfl}
521	isPtr := value.Type().Elem().Kind() == reflect.Ptr
522	for i := 0; i < length; i++ {
523		if state.b.Len() == 0 {
524			errorf("decoding array or slice: length exceeds input size (%d elements)", length)
525		}
526		v := value.Index(i)
527		if isPtr {
528			v = decAlloc(v)
529		}
530		elemOp(instr, state, v)
531	}
532}
533
534// decodeArray decodes an array and stores it in value.
535// The length is an unsigned integer preceding the elements. Even though the length is redundant
536// (it's part of the type), it's a useful check and is included in the encoding.
537func (dec *Decoder) decodeArray(state *decoderState, value reflect.Value, elemOp decOp, length int, ovfl error, helper decHelper) {
538	if n := state.decodeUint(); n != uint64(length) {
539		errorf("length mismatch in decodeArray")
540	}
541	dec.decodeArrayHelper(state, value, elemOp, length, ovfl, helper)
542}
543
544// decodeIntoValue is a helper for map decoding.
545func decodeIntoValue(state *decoderState, op decOp, isPtr bool, value reflect.Value, instr *decInstr) reflect.Value {
546	v := value
547	if isPtr {
548		v = decAlloc(value)
549	}
550
551	op(instr, state, v)
552	return value
553}
554
555// decodeMap decodes a map and stores it in value.
556// Maps are encoded as a length followed by key:value pairs.
557// Because the internals of maps are not visible to us, we must
558// use reflection rather than pointer magic.
559func (dec *Decoder) decodeMap(mtyp reflect.Type, state *decoderState, value reflect.Value, keyOp, elemOp decOp, ovfl error) {
560	n := int(state.decodeUint())
561	if value.IsNil() {
562		value.Set(reflect.MakeMapWithSize(mtyp, n))
563	}
564	keyIsPtr := mtyp.Key().Kind() == reflect.Ptr
565	elemIsPtr := mtyp.Elem().Kind() == reflect.Ptr
566	keyInstr := &decInstr{keyOp, 0, nil, ovfl}
567	elemInstr := &decInstr{elemOp, 0, nil, ovfl}
568	keyP := reflect.New(mtyp.Key())
569	keyZ := reflect.Zero(mtyp.Key())
570	elemP := reflect.New(mtyp.Elem())
571	elemZ := reflect.Zero(mtyp.Elem())
572	for i := 0; i < n; i++ {
573		key := decodeIntoValue(state, keyOp, keyIsPtr, keyP.Elem(), keyInstr)
574		elem := decodeIntoValue(state, elemOp, elemIsPtr, elemP.Elem(), elemInstr)
575		value.SetMapIndex(key, elem)
576		keyP.Elem().Set(keyZ)
577		elemP.Elem().Set(elemZ)
578	}
579}
580
581// ignoreArrayHelper does the work for discarding arrays and slices.
582func (dec *Decoder) ignoreArrayHelper(state *decoderState, elemOp decOp, length int) {
583	instr := &decInstr{elemOp, 0, nil, errors.New("no error")}
584	for i := 0; i < length; i++ {
585		if state.b.Len() == 0 {
586			errorf("decoding array or slice: length exceeds input size (%d elements)", length)
587		}
588		elemOp(instr, state, noValue)
589	}
590}
591
592// ignoreArray discards the data for an array value with no destination.
593func (dec *Decoder) ignoreArray(state *decoderState, elemOp decOp, length int) {
594	if n := state.decodeUint(); n != uint64(length) {
595		errorf("length mismatch in ignoreArray")
596	}
597	dec.ignoreArrayHelper(state, elemOp, length)
598}
599
600// ignoreMap discards the data for a map value with no destination.
601func (dec *Decoder) ignoreMap(state *decoderState, keyOp, elemOp decOp) {
602	n := int(state.decodeUint())
603	keyInstr := &decInstr{keyOp, 0, nil, errors.New("no error")}
604	elemInstr := &decInstr{elemOp, 0, nil, errors.New("no error")}
605	for i := 0; i < n; i++ {
606		keyOp(keyInstr, state, noValue)
607		elemOp(elemInstr, state, noValue)
608	}
609}
610
611// decodeSlice decodes a slice and stores it in value.
612// Slices are encoded as an unsigned length followed by the elements.
613func (dec *Decoder) decodeSlice(state *decoderState, value reflect.Value, elemOp decOp, ovfl error, helper decHelper) {
614	u := state.decodeUint()
615	typ := value.Type()
616	size := uint64(typ.Elem().Size())
617	nBytes := u * size
618	n := int(u)
619	// Take care with overflow in this calculation.
620	if n < 0 || uint64(n) != u || nBytes > tooBig || (size > 0 && nBytes/size != u) {
621		// We don't check n against buffer length here because if it's a slice
622		// of interfaces, there will be buffer reloads.
623		errorf("%s slice too big: %d elements of %d bytes", typ.Elem(), u, size)
624	}
625	if value.Cap() < n {
626		value.Set(reflect.MakeSlice(typ, n, n))
627	} else {
628		value.Set(value.Slice(0, n))
629	}
630	dec.decodeArrayHelper(state, value, elemOp, n, ovfl, helper)
631}
632
633// ignoreSlice skips over the data for a slice value with no destination.
634func (dec *Decoder) ignoreSlice(state *decoderState, elemOp decOp) {
635	dec.ignoreArrayHelper(state, elemOp, int(state.decodeUint()))
636}
637
638// decodeInterface decodes an interface value and stores it in value.
639// Interfaces are encoded as the name of a concrete type followed by a value.
640// If the name is empty, the value is nil and no value is sent.
641func (dec *Decoder) decodeInterface(ityp reflect.Type, state *decoderState, value reflect.Value) {
642	// Read the name of the concrete type.
643	nr := state.decodeUint()
644	if nr > 1<<31 { // zero is permissible for anonymous types
645		errorf("invalid type name length %d", nr)
646	}
647	if nr > uint64(state.b.Len()) {
648		errorf("invalid type name length %d: exceeds input size", nr)
649	}
650	n := int(nr)
651	name := state.b.Bytes()[:n]
652	state.b.Drop(n)
653	// Allocate the destination interface value.
654	if len(name) == 0 {
655		// Copy the nil interface value to the target.
656		value.Set(reflect.Zero(value.Type()))
657		return
658	}
659	if len(name) > 1024 {
660		errorf("name too long (%d bytes): %.20q...", len(name), name)
661	}
662	// The concrete type must be registered.
663	typi, ok := nameToConcreteType.Load(string(name))
664	if !ok {
665		errorf("name not registered for interface: %q", name)
666	}
667	typ := typi.(reflect.Type)
668
669	// Read the type id of the concrete value.
670	concreteId := dec.decodeTypeSequence(true)
671	if concreteId < 0 {
672		error_(dec.err)
673	}
674	// Byte count of value is next; we don't care what it is (it's there
675	// in case we want to ignore the value by skipping it completely).
676	state.decodeUint()
677	// Read the concrete value.
678	v := allocValue(typ)
679	dec.decodeValue(concreteId, v)
680	if dec.err != nil {
681		error_(dec.err)
682	}
683	// Assign the concrete value to the interface.
684	// Tread carefully; it might not satisfy the interface.
685	if !typ.AssignableTo(ityp) {
686		errorf("%s is not assignable to type %s", typ, ityp)
687	}
688	// Copy the interface value to the target.
689	value.Set(v)
690}
691
692// ignoreInterface discards the data for an interface value with no destination.
693func (dec *Decoder) ignoreInterface(state *decoderState) {
694	// Read the name of the concrete type.
695	n, ok := state.getLength()
696	if !ok {
697		errorf("bad interface encoding: name too large for buffer")
698	}
699	bn := state.b.Len()
700	if bn < n {
701		errorf("invalid interface value length %d: exceeds input size %d", n, bn)
702	}
703	state.b.Drop(n)
704	id := dec.decodeTypeSequence(true)
705	if id < 0 {
706		error_(dec.err)
707	}
708	// At this point, the decoder buffer contains a delimited value. Just toss it.
709	n, ok = state.getLength()
710	if !ok {
711		errorf("bad interface encoding: data length too large for buffer")
712	}
713	state.b.Drop(n)
714}
715
716// decodeGobDecoder decodes something implementing the GobDecoder interface.
717// The data is encoded as a byte slice.
718func (dec *Decoder) decodeGobDecoder(ut *userTypeInfo, state *decoderState, value reflect.Value) {
719	// Read the bytes for the value.
720	n, ok := state.getLength()
721	if !ok {
722		errorf("GobDecoder: length too large for buffer")
723	}
724	b := state.b.Bytes()
725	if len(b) < n {
726		errorf("GobDecoder: invalid data length %d: exceeds input size %d", n, len(b))
727	}
728	b = b[:n]
729	state.b.Drop(n)
730	var err error
731	// We know it's one of these.
732	switch ut.externalDec {
733	case xGob:
734		err = value.Interface().(GobDecoder).GobDecode(b)
735	case xBinary:
736		err = value.Interface().(encoding.BinaryUnmarshaler).UnmarshalBinary(b)
737	case xText:
738		err = value.Interface().(encoding.TextUnmarshaler).UnmarshalText(b)
739	}
740	if err != nil {
741		error_(err)
742	}
743}
744
745// ignoreGobDecoder discards the data for a GobDecoder value with no destination.
746func (dec *Decoder) ignoreGobDecoder(state *decoderState) {
747	// Read the bytes for the value.
748	n, ok := state.getLength()
749	if !ok {
750		errorf("GobDecoder: length too large for buffer")
751	}
752	bn := state.b.Len()
753	if bn < n {
754		errorf("GobDecoder: invalid data length %d: exceeds input size %d", n, bn)
755	}
756	state.b.Drop(n)
757}
758
759// Index by Go types.
760var decOpTable = [...]decOp{
761	reflect.Bool:       decBool,
762	reflect.Int8:       decInt8,
763	reflect.Int16:      decInt16,
764	reflect.Int32:      decInt32,
765	reflect.Int64:      decInt64,
766	reflect.Uint8:      decUint8,
767	reflect.Uint16:     decUint16,
768	reflect.Uint32:     decUint32,
769	reflect.Uint64:     decUint64,
770	reflect.Float32:    decFloat32,
771	reflect.Float64:    decFloat64,
772	reflect.Complex64:  decComplex64,
773	reflect.Complex128: decComplex128,
774	reflect.String:     decString,
775}
776
777// Indexed by gob types.  tComplex will be added during type.init().
778var decIgnoreOpMap = map[typeId]decOp{
779	tBool:    ignoreUint,
780	tInt:     ignoreUint,
781	tUint:    ignoreUint,
782	tFloat:   ignoreUint,
783	tBytes:   ignoreUint8Array,
784	tString:  ignoreUint8Array,
785	tComplex: ignoreTwoUints,
786}
787
788// decOpFor returns the decoding op for the base type under rt and
789// the indirection count to reach it.
790func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string, inProgress map[reflect.Type]*decOp) *decOp {
791	ut := userType(rt)
792	// If the type implements GobEncoder, we handle it without further processing.
793	if ut.externalDec != 0 {
794		return dec.gobDecodeOpFor(ut)
795	}
796
797	// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
798	// Return the pointer to the op we're already building.
799	if opPtr := inProgress[rt]; opPtr != nil {
800		return opPtr
801	}
802	typ := ut.base
803	var op decOp
804	k := typ.Kind()
805	if int(k) < len(decOpTable) {
806		op = decOpTable[k]
807	}
808	if op == nil {
809		inProgress[rt] = &op
810		// Special cases
811		switch t := typ; t.Kind() {
812		case reflect.Array:
813			name = "element of " + name
814			elemId := dec.wireType[wireId].ArrayT.Elem
815			elemOp := dec.decOpFor(elemId, t.Elem(), name, inProgress)
816			ovfl := overflow(name)
817			helper := decArrayHelper[t.Elem().Kind()]
818			op = func(i *decInstr, state *decoderState, value reflect.Value) {
819				state.dec.decodeArray(state, value, *elemOp, t.Len(), ovfl, helper)
820			}
821
822		case reflect.Map:
823			keyId := dec.wireType[wireId].MapT.Key
824			elemId := dec.wireType[wireId].MapT.Elem
825			keyOp := dec.decOpFor(keyId, t.Key(), "key of "+name, inProgress)
826			elemOp := dec.decOpFor(elemId, t.Elem(), "element of "+name, inProgress)
827			ovfl := overflow(name)
828			op = func(i *decInstr, state *decoderState, value reflect.Value) {
829				state.dec.decodeMap(t, state, value, *keyOp, *elemOp, ovfl)
830			}
831
832		case reflect.Slice:
833			name = "element of " + name
834			if t.Elem().Kind() == reflect.Uint8 {
835				op = decUint8Slice
836				break
837			}
838			var elemId typeId
839			if tt, ok := builtinIdToType[wireId]; ok {
840				elemId = tt.(*sliceType).Elem
841			} else {
842				elemId = dec.wireType[wireId].SliceT.Elem
843			}
844			elemOp := dec.decOpFor(elemId, t.Elem(), name, inProgress)
845			ovfl := overflow(name)
846			helper := decSliceHelper[t.Elem().Kind()]
847			op = func(i *decInstr, state *decoderState, value reflect.Value) {
848				state.dec.decodeSlice(state, value, *elemOp, ovfl, helper)
849			}
850
851		case reflect.Struct:
852			// Generate a closure that calls out to the engine for the nested type.
853			ut := userType(typ)
854			enginePtr, err := dec.getDecEnginePtr(wireId, ut)
855			if err != nil {
856				error_(err)
857			}
858			op = func(i *decInstr, state *decoderState, value reflect.Value) {
859				// indirect through enginePtr to delay evaluation for recursive structs.
860				dec.decodeStruct(*enginePtr, value)
861			}
862		case reflect.Interface:
863			op = func(i *decInstr, state *decoderState, value reflect.Value) {
864				state.dec.decodeInterface(t, state, value)
865			}
866		}
867	}
868	if op == nil {
869		errorf("decode can't handle type %s", rt)
870	}
871	return &op
872}
873
874// decIgnoreOpFor returns the decoding op for a field that has no destination.
875func (dec *Decoder) decIgnoreOpFor(wireId typeId, inProgress map[typeId]*decOp) *decOp {
876	// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
877	// Return the pointer to the op we're already building.
878	if opPtr := inProgress[wireId]; opPtr != nil {
879		return opPtr
880	}
881	op, ok := decIgnoreOpMap[wireId]
882	if !ok {
883		inProgress[wireId] = &op
884		if wireId == tInterface {
885			// Special case because it's a method: the ignored item might
886			// define types and we need to record their state in the decoder.
887			op = func(i *decInstr, state *decoderState, value reflect.Value) {
888				state.dec.ignoreInterface(state)
889			}
890			return &op
891		}
892		// Special cases
893		wire := dec.wireType[wireId]
894		switch {
895		case wire == nil:
896			errorf("bad data: undefined type %s", wireId.string())
897		case wire.ArrayT != nil:
898			elemId := wire.ArrayT.Elem
899			elemOp := dec.decIgnoreOpFor(elemId, inProgress)
900			op = func(i *decInstr, state *decoderState, value reflect.Value) {
901				state.dec.ignoreArray(state, *elemOp, wire.ArrayT.Len)
902			}
903
904		case wire.MapT != nil:
905			keyId := dec.wireType[wireId].MapT.Key
906			elemId := dec.wireType[wireId].MapT.Elem
907			keyOp := dec.decIgnoreOpFor(keyId, inProgress)
908			elemOp := dec.decIgnoreOpFor(elemId, inProgress)
909			op = func(i *decInstr, state *decoderState, value reflect.Value) {
910				state.dec.ignoreMap(state, *keyOp, *elemOp)
911			}
912
913		case wire.SliceT != nil:
914			elemId := wire.SliceT.Elem
915			elemOp := dec.decIgnoreOpFor(elemId, inProgress)
916			op = func(i *decInstr, state *decoderState, value reflect.Value) {
917				state.dec.ignoreSlice(state, *elemOp)
918			}
919
920		case wire.StructT != nil:
921			// Generate a closure that calls out to the engine for the nested type.
922			enginePtr, err := dec.getIgnoreEnginePtr(wireId)
923			if err != nil {
924				error_(err)
925			}
926			op = func(i *decInstr, state *decoderState, value reflect.Value) {
927				// indirect through enginePtr to delay evaluation for recursive structs
928				state.dec.ignoreStruct(*enginePtr)
929			}
930
931		case wire.GobEncoderT != nil, wire.BinaryMarshalerT != nil, wire.TextMarshalerT != nil:
932			op = func(i *decInstr, state *decoderState, value reflect.Value) {
933				state.dec.ignoreGobDecoder(state)
934			}
935		}
936	}
937	if op == nil {
938		errorf("bad data: ignore can't handle type %s", wireId.string())
939	}
940	return &op
941}
942
943// gobDecodeOpFor returns the op for a type that is known to implement
944// GobDecoder.
945func (dec *Decoder) gobDecodeOpFor(ut *userTypeInfo) *decOp {
946	rcvrType := ut.user
947	if ut.decIndir == -1 {
948		rcvrType = reflect.PtrTo(rcvrType)
949	} else if ut.decIndir > 0 {
950		for i := int8(0); i < ut.decIndir; i++ {
951			rcvrType = rcvrType.Elem()
952		}
953	}
954	var op decOp
955	op = func(i *decInstr, state *decoderState, value reflect.Value) {
956		// We now have the base type. We need its address if the receiver is a pointer.
957		if value.Kind() != reflect.Ptr && rcvrType.Kind() == reflect.Ptr {
958			value = value.Addr()
959		}
960		state.dec.decodeGobDecoder(ut, state, value)
961	}
962	return &op
963}
964
965// compatibleType asks: Are these two gob Types compatible?
966// Answers the question for basic types, arrays, maps and slices, plus
967// GobEncoder/Decoder pairs.
968// Structs are considered ok; fields will be checked later.
969func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId, inProgress map[reflect.Type]typeId) bool {
970	if rhs, ok := inProgress[fr]; ok {
971		return rhs == fw
972	}
973	inProgress[fr] = fw
974	ut := userType(fr)
975	wire, ok := dec.wireType[fw]
976	// If wire was encoded with an encoding method, fr must have that method.
977	// And if not, it must not.
978	// At most one of the booleans in ut is set.
979	// We could possibly relax this constraint in the future in order to
980	// choose the decoding method using the data in the wireType.
981	// The parentheses look odd but are correct.
982	if (ut.externalDec == xGob) != (ok && wire.GobEncoderT != nil) ||
983		(ut.externalDec == xBinary) != (ok && wire.BinaryMarshalerT != nil) ||
984		(ut.externalDec == xText) != (ok && wire.TextMarshalerT != nil) {
985		return false
986	}
987	if ut.externalDec != 0 { // This test trumps all others.
988		return true
989	}
990	switch t := ut.base; t.Kind() {
991	default:
992		// chan, etc: cannot handle.
993		return false
994	case reflect.Bool:
995		return fw == tBool
996	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
997		return fw == tInt
998	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
999		return fw == tUint
1000	case reflect.Float32, reflect.Float64:
1001		return fw == tFloat
1002	case reflect.Complex64, reflect.Complex128:
1003		return fw == tComplex
1004	case reflect.String:
1005		return fw == tString
1006	case reflect.Interface:
1007		return fw == tInterface
1008	case reflect.Array:
1009		if !ok || wire.ArrayT == nil {
1010			return false
1011		}
1012		array := wire.ArrayT
1013		return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem, inProgress)
1014	case reflect.Map:
1015		if !ok || wire.MapT == nil {
1016			return false
1017		}
1018		MapType := wire.MapT
1019		return dec.compatibleType(t.Key(), MapType.Key, inProgress) && dec.compatibleType(t.Elem(), MapType.Elem, inProgress)
1020	case reflect.Slice:
1021		// Is it an array of bytes?
1022		if t.Elem().Kind() == reflect.Uint8 {
1023			return fw == tBytes
1024		}
1025		// Extract and compare element types.
1026		var sw *sliceType
1027		if tt, ok := builtinIdToType[fw]; ok {
1028			sw, _ = tt.(*sliceType)
1029		} else if wire != nil {
1030			sw = wire.SliceT
1031		}
1032		elem := userType(t.Elem()).base
1033		return sw != nil && dec.compatibleType(elem, sw.Elem, inProgress)
1034	case reflect.Struct:
1035		return true
1036	}
1037}
1038
1039// typeString returns a human-readable description of the type identified by remoteId.
1040func (dec *Decoder) typeString(remoteId typeId) string {
1041	typeLock.Lock()
1042	defer typeLock.Unlock()
1043	if t := idToType[remoteId]; t != nil {
1044		// globally known type.
1045		return t.string()
1046	}
1047	return dec.wireType[remoteId].string()
1048}
1049
1050// compileSingle compiles the decoder engine for a non-struct top-level value, including
1051// GobDecoders.
1052func (dec *Decoder) compileSingle(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) {
1053	rt := ut.user
1054	engine = new(decEngine)
1055	engine.instr = make([]decInstr, 1) // one item
1056	name := rt.String()                // best we can do
1057	if !dec.compatibleType(rt, remoteId, make(map[reflect.Type]typeId)) {
1058		remoteType := dec.typeString(remoteId)
1059		// Common confusing case: local interface type, remote concrete type.
1060		if ut.base.Kind() == reflect.Interface && remoteId != tInterface {
1061			return nil, errors.New("gob: local interface type " + name + " can only be decoded from remote interface type; received concrete type " + remoteType)
1062		}
1063		return nil, errors.New("gob: decoding into local type " + name + ", received remote type " + remoteType)
1064	}
1065	op := dec.decOpFor(remoteId, rt, name, make(map[reflect.Type]*decOp))
1066	ovfl := errors.New(`value for "` + name + `" out of range`)
1067	engine.instr[singletonField] = decInstr{*op, singletonField, nil, ovfl}
1068	engine.numInstr = 1
1069	return
1070}
1071
1072// compileIgnoreSingle compiles the decoder engine for a non-struct top-level value that will be discarded.
1073func (dec *Decoder) compileIgnoreSingle(remoteId typeId) *decEngine {
1074	engine := new(decEngine)
1075	engine.instr = make([]decInstr, 1) // one item
1076	op := dec.decIgnoreOpFor(remoteId, make(map[typeId]*decOp))
1077	ovfl := overflow(dec.typeString(remoteId))
1078	engine.instr[0] = decInstr{*op, 0, nil, ovfl}
1079	engine.numInstr = 1
1080	return engine
1081}
1082
1083// compileDec compiles the decoder engine for a value. If the value is not a struct,
1084// it calls out to compileSingle.
1085func (dec *Decoder) compileDec(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) {
1086	defer catchError(&err)
1087	rt := ut.base
1088	srt := rt
1089	if srt.Kind() != reflect.Struct || ut.externalDec != 0 {
1090		return dec.compileSingle(remoteId, ut)
1091	}
1092	var wireStruct *structType
1093	// Builtin types can come from global pool; the rest must be defined by the decoder.
1094	// Also we know we're decoding a struct now, so the client must have sent one.
1095	if t, ok := builtinIdToType[remoteId]; ok {
1096		wireStruct, _ = t.(*structType)
1097	} else {
1098		wire := dec.wireType[remoteId]
1099		if wire == nil {
1100			error_(errBadType)
1101		}
1102		wireStruct = wire.StructT
1103	}
1104	if wireStruct == nil {
1105		errorf("type mismatch in decoder: want struct type %s; got non-struct", rt)
1106	}
1107	engine = new(decEngine)
1108	engine.instr = make([]decInstr, len(wireStruct.Field))
1109	seen := make(map[reflect.Type]*decOp)
1110	// Loop over the fields of the wire type.
1111	for fieldnum := 0; fieldnum < len(wireStruct.Field); fieldnum++ {
1112		wireField := wireStruct.Field[fieldnum]
1113		if wireField.Name == "" {
1114			errorf("empty name for remote field of type %s", wireStruct.Name)
1115		}
1116		ovfl := overflow(wireField.Name)
1117		// Find the field of the local type with the same name.
1118		localField, present := srt.FieldByName(wireField.Name)
1119		// TODO(r): anonymous names
1120		if !present || !isExported(wireField.Name) {
1121			op := dec.decIgnoreOpFor(wireField.Id, make(map[typeId]*decOp))
1122			engine.instr[fieldnum] = decInstr{*op, fieldnum, nil, ovfl}
1123			continue
1124		}
1125		if !dec.compatibleType(localField.Type, wireField.Id, make(map[reflect.Type]typeId)) {
1126			errorf("wrong type (%s) for received field %s.%s", localField.Type, wireStruct.Name, wireField.Name)
1127		}
1128		op := dec.decOpFor(wireField.Id, localField.Type, localField.Name, seen)
1129		engine.instr[fieldnum] = decInstr{*op, fieldnum, localField.Index, ovfl}
1130		engine.numInstr++
1131	}
1132	return
1133}
1134
1135// getDecEnginePtr returns the engine for the specified type.
1136func (dec *Decoder) getDecEnginePtr(remoteId typeId, ut *userTypeInfo) (enginePtr **decEngine, err error) {
1137	rt := ut.user
1138	decoderMap, ok := dec.decoderCache[rt]
1139	if !ok {
1140		decoderMap = make(map[typeId]**decEngine)
1141		dec.decoderCache[rt] = decoderMap
1142	}
1143	if enginePtr, ok = decoderMap[remoteId]; !ok {
1144		// To handle recursive types, mark this engine as underway before compiling.
1145		enginePtr = new(*decEngine)
1146		decoderMap[remoteId] = enginePtr
1147		*enginePtr, err = dec.compileDec(remoteId, ut)
1148		if err != nil {
1149			delete(decoderMap, remoteId)
1150		}
1151	}
1152	return
1153}
1154
1155// emptyStruct is the type we compile into when ignoring a struct value.
1156type emptyStruct struct{}
1157
1158var emptyStructType = reflect.TypeOf(emptyStruct{})
1159
1160// getIgnoreEnginePtr returns the engine for the specified type when the value is to be discarded.
1161func (dec *Decoder) getIgnoreEnginePtr(wireId typeId) (enginePtr **decEngine, err error) {
1162	var ok bool
1163	if enginePtr, ok = dec.ignorerCache[wireId]; !ok {
1164		// To handle recursive types, mark this engine as underway before compiling.
1165		enginePtr = new(*decEngine)
1166		dec.ignorerCache[wireId] = enginePtr
1167		wire := dec.wireType[wireId]
1168		if wire != nil && wire.StructT != nil {
1169			*enginePtr, err = dec.compileDec(wireId, userType(emptyStructType))
1170		} else {
1171			*enginePtr = dec.compileIgnoreSingle(wireId)
1172		}
1173		if err != nil {
1174			delete(dec.ignorerCache, wireId)
1175		}
1176	}
1177	return
1178}
1179
1180// decodeValue decodes the data stream representing a value and stores it in value.
1181func (dec *Decoder) decodeValue(wireId typeId, value reflect.Value) {
1182	defer catchError(&dec.err)
1183	// If the value is nil, it means we should just ignore this item.
1184	if !value.IsValid() {
1185		dec.decodeIgnoredValue(wireId)
1186		return
1187	}
1188	// Dereference down to the underlying type.
1189	ut := userType(value.Type())
1190	base := ut.base
1191	var enginePtr **decEngine
1192	enginePtr, dec.err = dec.getDecEnginePtr(wireId, ut)
1193	if dec.err != nil {
1194		return
1195	}
1196	value = decAlloc(value)
1197	engine := *enginePtr
1198	if st := base; st.Kind() == reflect.Struct && ut.externalDec == 0 {
1199		wt := dec.wireType[wireId]
1200		if engine.numInstr == 0 && st.NumField() > 0 &&
1201			wt != nil && len(wt.StructT.Field) > 0 {
1202			name := base.Name()
1203			errorf("type mismatch: no fields matched compiling decoder for %s", name)
1204		}
1205		dec.decodeStruct(engine, value)
1206	} else {
1207		dec.decodeSingle(engine, value)
1208	}
1209}
1210
1211// decodeIgnoredValue decodes the data stream representing a value of the specified type and discards it.
1212func (dec *Decoder) decodeIgnoredValue(wireId typeId) {
1213	var enginePtr **decEngine
1214	enginePtr, dec.err = dec.getIgnoreEnginePtr(wireId)
1215	if dec.err != nil {
1216		return
1217	}
1218	wire := dec.wireType[wireId]
1219	if wire != nil && wire.StructT != nil {
1220		dec.ignoreStruct(*enginePtr)
1221	} else {
1222		dec.ignoreSingle(*enginePtr)
1223	}
1224}
1225
1226func init() {
1227	var iop, uop decOp
1228	switch reflect.TypeOf(int(0)).Bits() {
1229	case 32:
1230		iop = decInt32
1231		uop = decUint32
1232	case 64:
1233		iop = decInt64
1234		uop = decUint64
1235	default:
1236		panic("gob: unknown size of int/uint")
1237	}
1238	decOpTable[reflect.Int] = iop
1239	decOpTable[reflect.Uint] = uop
1240
1241	// Finally uintptr
1242	switch reflect.TypeOf(uintptr(0)).Bits() {
1243	case 32:
1244		uop = decUint32
1245	case 64:
1246		uop = decUint64
1247	default:
1248		panic("gob: unknown size of uintptr")
1249	}
1250	decOpTable[reflect.Uintptr] = uop
1251}
1252
1253// Gob depends on being able to take the address
1254// of zeroed Values it creates, so use this wrapper instead
1255// of the standard reflect.Zero.
1256// Each call allocates once.
1257func allocValue(t reflect.Type) reflect.Value {
1258	return reflect.New(t).Elem()
1259}
1260