1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file provides Go implementations of elementary multi-precision
6// arithmetic operations on word vectors. These have the suffix _g.
7// These are needed for platforms without assembly implementations of these routines.
8// This file also contains elementary operations that can be implemented
9// sufficiently efficiently in Go.
10
11package big
12
13import "math/bits"
14
15// A Word represents a single digit of a multi-precision unsigned integer.
16type Word uint
17
18const (
19	_S = _W / 8 // word size in bytes
20
21	_W = bits.UintSize // word size in bits
22	_B = 1 << _W       // digit base
23	_M = _B - 1        // digit mask
24)
25
26// Many of the loops in this file are of the form
27//   for i := 0; i < len(z) && i < len(x) && i < len(y); i++
28// i < len(z) is the real condition.
29// However, checking i < len(x) && i < len(y) as well is faster than
30// having the compiler do a bounds check in the body of the loop;
31// remarkably it is even faster than hoisting the bounds check
32// out of the loop, by doing something like
33//   _, _ = x[len(z)-1], y[len(z)-1]
34// There are other ways to hoist the bounds check out of the loop,
35// but the compiler's BCE isn't powerful enough for them (yet?).
36// See the discussion in CL 164966.
37
38// ----------------------------------------------------------------------------
39// Elementary operations on words
40//
41// These operations are used by the vector operations below.
42
43// z1<<_W + z0 = x*y
44func mulWW_g(x, y Word) (z1, z0 Word) {
45	hi, lo := bits.Mul(uint(x), uint(y))
46	return Word(hi), Word(lo)
47}
48
49// z1<<_W + z0 = x*y + c
50func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
51	hi, lo := bits.Mul(uint(x), uint(y))
52	var cc uint
53	lo, cc = bits.Add(lo, uint(c), 0)
54	return Word(hi + cc), Word(lo)
55}
56
57// nlz returns the number of leading zeros in x.
58// Wraps bits.LeadingZeros call for convenience.
59func nlz(x Word) uint {
60	return uint(bits.LeadingZeros(uint(x)))
61}
62
63// The resulting carry c is either 0 or 1.
64func addVV_g(z, x, y []Word) (c Word) {
65	// The comment near the top of this file discusses this for loop condition.
66	for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
67		zi, cc := bits.Add(uint(x[i]), uint(y[i]), uint(c))
68		z[i] = Word(zi)
69		c = Word(cc)
70	}
71	return
72}
73
74// The resulting carry c is either 0 or 1.
75func subVV_g(z, x, y []Word) (c Word) {
76	// The comment near the top of this file discusses this for loop condition.
77	for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
78		zi, cc := bits.Sub(uint(x[i]), uint(y[i]), uint(c))
79		z[i] = Word(zi)
80		c = Word(cc)
81	}
82	return
83}
84
85// The resulting carry c is either 0 or 1.
86func addVW_g(z, x []Word, y Word) (c Word) {
87	c = y
88	// The comment near the top of this file discusses this for loop condition.
89	for i := 0; i < len(z) && i < len(x); i++ {
90		zi, cc := bits.Add(uint(x[i]), uint(c), 0)
91		z[i] = Word(zi)
92		c = Word(cc)
93	}
94	return
95}
96
97// addVWlarge is addVW, but intended for large z.
98// The only difference is that we check on every iteration
99// whether we are done with carries,
100// and if so, switch to a much faster copy instead.
101// This is only a good idea for large z,
102// because the overhead of the check and the function call
103// outweigh the benefits when z is small.
104func addVWlarge(z, x []Word, y Word) (c Word) {
105	c = y
106	// The comment near the top of this file discusses this for loop condition.
107	for i := 0; i < len(z) && i < len(x); i++ {
108		if c == 0 {
109			copy(z[i:], x[i:])
110			return
111		}
112		zi, cc := bits.Add(uint(x[i]), uint(c), 0)
113		z[i] = Word(zi)
114		c = Word(cc)
115	}
116	return
117}
118
119func subVW_g(z, x []Word, y Word) (c Word) {
120	c = y
121	// The comment near the top of this file discusses this for loop condition.
122	for i := 0; i < len(z) && i < len(x); i++ {
123		zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
124		z[i] = Word(zi)
125		c = Word(cc)
126	}
127	return
128}
129
130// subVWlarge is to subVW as addVWlarge is to addVW.
131func subVWlarge(z, x []Word, y Word) (c Word) {
132	c = y
133	// The comment near the top of this file discusses this for loop condition.
134	for i := 0; i < len(z) && i < len(x); i++ {
135		if c == 0 {
136			copy(z[i:], x[i:])
137			return
138		}
139		zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
140		z[i] = Word(zi)
141		c = Word(cc)
142	}
143	return
144}
145
146func shlVU_g(z, x []Word, s uint) (c Word) {
147	if s == 0 {
148		copy(z, x)
149		return
150	}
151	if len(z) == 0 {
152		return
153	}
154	s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
155	ŝ := _W - s
156	ŝ &= _W - 1 // ditto
157	c = x[len(z)-1] >> ŝ
158	for i := len(z) - 1; i > 0; i-- {
159		z[i] = x[i]<<s | x[i-1]>>ŝ
160	}
161	z[0] = x[0] << s
162	return
163}
164
165func shrVU_g(z, x []Word, s uint) (c Word) {
166	if s == 0 {
167		copy(z, x)
168		return
169	}
170	if len(z) == 0 {
171		return
172	}
173	if len(x) != len(z) {
174		// This is an invariant guaranteed by the caller.
175		panic("len(x) != len(z)")
176	}
177	s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
178	ŝ := _W - s
179	ŝ &= _W - 1 // ditto
180	c = x[0] << ŝ
181	for i := 1; i < len(z); i++ {
182		z[i-1] = x[i-1]>>s | x[i]<<ŝ
183	}
184	z[len(z)-1] = x[len(z)-1] >> s
185	return
186}
187
188func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
189	c = r
190	// The comment near the top of this file discusses this for loop condition.
191	for i := 0; i < len(z) && i < len(x); i++ {
192		c, z[i] = mulAddWWW_g(x[i], y, c)
193	}
194	return
195}
196
197func addMulVVW_g(z, x []Word, y Word) (c Word) {
198	// The comment near the top of this file discusses this for loop condition.
199	for i := 0; i < len(z) && i < len(x); i++ {
200		z1, z0 := mulAddWWW_g(x[i], y, z[i])
201		lo, cc := bits.Add(uint(z0), uint(c), 0)
202		c, z[i] = Word(cc), Word(lo)
203		c += z1
204	}
205	return
206}
207
208// q = ( x1 << _W + x0 - r)/y. m = floor(( _B^2 - 1 ) / d - _B). Requiring x1<y.
209// An approximate reciprocal with a reference to "Improved Division by Invariant Integers
210// (IEEE Transactions on Computers, 11 Jun. 2010)"
211func divWW(x1, x0, y, m Word) (q, r Word) {
212	s := nlz(y)
213	if s != 0 {
214		x1 = x1<<s | x0>>(_W-s)
215		x0 <<= s
216		y <<= s
217	}
218	d := uint(y)
219	// We know that
220	//   m = ⎣(B^2-1)/d⎦-B
221	//   ⎣(B^2-1)/d⎦ = m+B
222	//   (B^2-1)/d = m+B+delta1    0 <= delta1 <= (d-1)/d
223	//   B^2/d = m+B+delta2        0 <= delta2 <= 1
224	// The quotient we're trying to compute is
225	//   quotient = ⎣(x1*B+x0)/d⎦
226	//            = ⎣(x1*B*(B^2/d)+x0*(B^2/d))/B^2⎦
227	//            = ⎣(x1*B*(m+B+delta2)+x0*(m+B+delta2))/B^2⎦
228	//            = ⎣(x1*m+x1*B+x0)/B + x0*m/B^2 + delta2*(x1*B+x0)/B^2⎦
229	// The latter two terms of this three-term sum are between 0 and 1.
230	// So we can compute just the first term, and we will be low by at most 2.
231	t1, t0 := bits.Mul(uint(m), uint(x1))
232	_, c := bits.Add(t0, uint(x0), 0)
233	t1, _ = bits.Add(t1, uint(x1), c)
234	// The quotient is either t1, t1+1, or t1+2.
235	// We'll try t1 and adjust if needed.
236	qq := t1
237	// compute remainder r=x-d*q.
238	dq1, dq0 := bits.Mul(d, qq)
239	r0, b := bits.Sub(uint(x0), dq0, 0)
240	r1, _ := bits.Sub(uint(x1), dq1, b)
241	// The remainder we just computed is bounded above by B+d:
242	// r = x1*B + x0 - d*q.
243	//   = x1*B + x0 - d*⎣(x1*m+x1*B+x0)/B⎦
244	//   = x1*B + x0 - d*((x1*m+x1*B+x0)/B-alpha)                                   0 <= alpha < 1
245	//   = x1*B + x0 - x1*d/B*m                         - x1*d - x0*d/B + d*alpha
246	//   = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦             - x1*d - x0*d/B + d*alpha
247	//   = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦             - x1*d - x0*d/B + d*alpha
248	//   = x1*B + x0 - x1*d/B*((B^2-1)/d-B-beta)        - x1*d - x0*d/B + d*alpha   0 <= beta < 1
249	//   = x1*B + x0 - x1*B + x1/B + x1*d + x1*d/B*beta - x1*d - x0*d/B + d*alpha
250	//   =        x0        + x1/B        + x1*d/B*beta        - x0*d/B + d*alpha
251	//   = x0*(1-d/B) + x1*(1+d*beta)/B + d*alpha
252	//   <  B*(1-d/B) +  d*B/B          + d          because x0<B (and 1-d/B>0), x1<d, 1+d*beta<=B, alpha<1
253	//   =  B - d     +  d              + d
254	//   = B+d
255	// So r1 can only be 0 or 1. If r1 is 1, then we know q was too small.
256	// Add 1 to q and subtract d from r. That guarantees that r is <B, so
257	// we no longer need to keep track of r1.
258	if r1 != 0 {
259		qq++
260		r0 -= d
261	}
262	// If the remainder is still too large, increment q one more time.
263	if r0 >= d {
264		qq++
265		r0 -= d
266	}
267	return Word(qq), Word(r0 >> s)
268}
269
270// reciprocalWord return the reciprocal of the divisor. rec = floor(( _B^2 - 1 ) / u - _B). u = d1 << nlz(d1).
271func reciprocalWord(d1 Word) Word {
272	u := uint(d1 << nlz(d1))
273	x1 := ^u
274	x0 := uint(_M)
275	rec, _ := bits.Div(x1, x0, u) // (_B^2-1)/U-_B = (_B*(_M-C)+_M)/U
276	return Word(rec)
277}
278