1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--   A D A . C O N T A I N E R S . B O U N D E D _ O R D E R E D _ S E T S  --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 2004-2012, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- This unit was originally developed by Matthew J Heaney.                  --
28------------------------------------------------------------------------------
29
30with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
31pragma Elaborate_All
32  (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
33
34with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
35pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
36
37with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations;
38pragma Elaborate_All
39  (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations);
40
41with Ada.Finalization; use Ada.Finalization;
42
43with System; use type System.Address;
44
45package body Ada.Containers.Bounded_Ordered_Sets is
46
47   type Iterator is new Limited_Controlled and
48     Set_Iterator_Interfaces.Reversible_Iterator with
49   record
50      Container : Set_Access;
51      Node      : Count_Type;
52   end record;
53
54   overriding procedure Finalize (Object : in out Iterator);
55
56   overriding function First (Object : Iterator) return Cursor;
57   overriding function Last  (Object : Iterator) return Cursor;
58
59   overriding function Next
60     (Object   : Iterator;
61      Position : Cursor) return Cursor;
62
63   overriding function Previous
64     (Object   : Iterator;
65      Position : Cursor) return Cursor;
66
67   ------------------------------
68   -- Access to Fields of Node --
69   ------------------------------
70
71   --  These subprograms provide functional notation for access to fields
72   --  of a node, and procedural notation for modifying these fields.
73
74   function Color (Node : Node_Type) return Red_Black_Trees.Color_Type;
75   pragma Inline (Color);
76
77   function Left (Node : Node_Type) return Count_Type;
78   pragma Inline (Left);
79
80   function Parent (Node : Node_Type) return Count_Type;
81   pragma Inline (Parent);
82
83   function Right (Node : Node_Type) return Count_Type;
84   pragma Inline (Right);
85
86   procedure Set_Color
87     (Node  : in out Node_Type;
88      Color : Red_Black_Trees.Color_Type);
89   pragma Inline (Set_Color);
90
91   procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
92   pragma Inline (Set_Left);
93
94   procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
95   pragma Inline (Set_Right);
96
97   procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
98   pragma Inline (Set_Parent);
99
100   -----------------------
101   -- Local Subprograms --
102   -----------------------
103
104   procedure Insert_Sans_Hint
105     (Container : in out Set;
106      New_Item  : Element_Type;
107      Node      : out Count_Type;
108      Inserted  : out Boolean);
109
110   procedure Insert_With_Hint
111     (Dst_Set  : in out Set;
112      Dst_Hint : Count_Type;
113      Src_Node : Node_Type;
114      Dst_Node : out Count_Type);
115
116   function Is_Greater_Element_Node
117     (Left  : Element_Type;
118      Right : Node_Type) return Boolean;
119   pragma Inline (Is_Greater_Element_Node);
120
121   function Is_Less_Element_Node
122     (Left  : Element_Type;
123      Right : Node_Type) return Boolean;
124   pragma Inline (Is_Less_Element_Node);
125
126   function Is_Less_Node_Node (L, R : Node_Type) return Boolean;
127   pragma Inline (Is_Less_Node_Node);
128
129   procedure Replace_Element
130     (Container : in out Set;
131      Index     : Count_Type;
132      Item      : Element_Type);
133
134   --------------------------
135   -- Local Instantiations --
136   --------------------------
137
138   package Tree_Operations is
139      new Red_Black_Trees.Generic_Bounded_Operations (Tree_Types);
140
141   use Tree_Operations;
142
143   package Element_Keys is
144      new Red_Black_Trees.Generic_Bounded_Keys
145        (Tree_Operations     => Tree_Operations,
146         Key_Type            => Element_Type,
147         Is_Less_Key_Node    => Is_Less_Element_Node,
148         Is_Greater_Key_Node => Is_Greater_Element_Node);
149
150   package Set_Ops is
151      new Red_Black_Trees.Generic_Bounded_Set_Operations
152        (Tree_Operations  => Tree_Operations,
153         Set_Type         => Set,
154         Assign           => Assign,
155         Insert_With_Hint => Insert_With_Hint,
156         Is_Less          => Is_Less_Node_Node);
157
158   ---------
159   -- "<" --
160   ---------
161
162   function "<" (Left, Right : Cursor) return Boolean is
163   begin
164      if Left.Node = 0 then
165         raise Constraint_Error with "Left cursor equals No_Element";
166      end if;
167
168      if Right.Node = 0 then
169         raise Constraint_Error with "Right cursor equals No_Element";
170      end if;
171
172      pragma Assert (Vet (Left.Container.all, Left.Node),
173                     "bad Left cursor in ""<""");
174
175      pragma Assert (Vet (Right.Container.all, Right.Node),
176                     "bad Right cursor in ""<""");
177
178      declare
179         LN : Nodes_Type renames Left.Container.Nodes;
180         RN : Nodes_Type renames Right.Container.Nodes;
181      begin
182         return LN (Left.Node).Element < RN (Right.Node).Element;
183      end;
184   end "<";
185
186   function "<" (Left : Cursor; Right : Element_Type) return Boolean is
187   begin
188      if Left.Node = 0 then
189         raise Constraint_Error with "Left cursor equals No_Element";
190      end if;
191
192      pragma Assert (Vet (Left.Container.all, Left.Node),
193                     "bad Left cursor in ""<""");
194
195      return Left.Container.Nodes (Left.Node).Element < Right;
196   end "<";
197
198   function "<" (Left : Element_Type; Right : Cursor) return Boolean is
199   begin
200      if Right.Node = 0 then
201         raise Constraint_Error with "Right cursor equals No_Element";
202      end if;
203
204      pragma Assert (Vet (Right.Container.all, Right.Node),
205                     "bad Right cursor in ""<""");
206
207      return Left < Right.Container.Nodes (Right.Node).Element;
208   end "<";
209
210   ---------
211   -- "=" --
212   ---------
213
214   function "=" (Left, Right : Set) return Boolean is
215      function Is_Equal_Node_Node (L, R : Node_Type) return Boolean;
216      pragma Inline (Is_Equal_Node_Node);
217
218      function Is_Equal is
219         new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
220
221      ------------------------
222      -- Is_Equal_Node_Node --
223      ------------------------
224
225      function Is_Equal_Node_Node (L, R : Node_Type) return Boolean is
226      begin
227         return L.Element = R.Element;
228      end Is_Equal_Node_Node;
229
230   --  Start of processing for Is_Equal
231
232   begin
233      return Is_Equal (Left, Right);
234   end "=";
235
236   ---------
237   -- ">" --
238   ---------
239
240   function ">" (Left, Right : Cursor) return Boolean is
241   begin
242      if Left.Node = 0 then
243         raise Constraint_Error with "Left cursor equals No_Element";
244      end if;
245
246      if Right.Node = 0 then
247         raise Constraint_Error with "Right cursor equals No_Element";
248      end if;
249
250      pragma Assert (Vet (Left.Container.all, Left.Node),
251                     "bad Left cursor in "">""");
252
253      pragma Assert (Vet (Right.Container.all, Right.Node),
254                     "bad Right cursor in "">""");
255
256      --  L > R same as R < L
257
258      declare
259         LN : Nodes_Type renames Left.Container.Nodes;
260         RN : Nodes_Type renames Right.Container.Nodes;
261      begin
262         return RN (Right.Node).Element < LN (Left.Node).Element;
263      end;
264   end ">";
265
266   function ">" (Left : Element_Type; Right : Cursor) return Boolean is
267   begin
268      if Right.Node = 0 then
269         raise Constraint_Error with "Right cursor equals No_Element";
270      end if;
271
272      pragma Assert (Vet (Right.Container.all, Right.Node),
273                     "bad Right cursor in "">""");
274
275      return Right.Container.Nodes (Right.Node).Element < Left;
276   end ">";
277
278   function ">" (Left : Cursor; Right : Element_Type) return Boolean is
279   begin
280      if Left.Node = 0 then
281         raise Constraint_Error with "Left cursor equals No_Element";
282      end if;
283
284      pragma Assert (Vet (Left.Container.all, Left.Node),
285                     "bad Left cursor in "">""");
286
287      return Right < Left.Container.Nodes (Left.Node).Element;
288   end ">";
289
290   ------------
291   -- Assign --
292   ------------
293
294   procedure Assign (Target : in out Set; Source : Set) is
295      procedure Append_Element (Source_Node : Count_Type);
296
297      procedure Append_Elements is
298         new Tree_Operations.Generic_Iteration (Append_Element);
299
300      --------------------
301      -- Append_Element --
302      --------------------
303
304      procedure Append_Element (Source_Node : Count_Type) is
305         SN : Node_Type renames Source.Nodes (Source_Node);
306
307         procedure Set_Element (Node : in out Node_Type);
308         pragma Inline (Set_Element);
309
310         function New_Node return Count_Type;
311         pragma Inline (New_Node);
312
313         procedure Insert_Post is
314            new Element_Keys.Generic_Insert_Post (New_Node);
315
316         procedure Unconditional_Insert_Sans_Hint is
317            new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
318
319         procedure Unconditional_Insert_Avec_Hint is
320            new Element_Keys.Generic_Unconditional_Insert_With_Hint
321              (Insert_Post,
322               Unconditional_Insert_Sans_Hint);
323
324         procedure Allocate is
325            new Tree_Operations.Generic_Allocate (Set_Element);
326
327         --------------
328         -- New_Node --
329         --------------
330
331         function New_Node return Count_Type is
332            Result : Count_Type;
333         begin
334            Allocate (Target, Result);
335            return Result;
336         end New_Node;
337
338         -----------------
339         -- Set_Element --
340         -----------------
341
342         procedure Set_Element (Node : in out Node_Type) is
343         begin
344            Node.Element := SN.Element;
345         end Set_Element;
346
347         Target_Node : Count_Type;
348
349      --  Start of processing for Append_Element
350
351      begin
352         Unconditional_Insert_Avec_Hint
353           (Tree  => Target,
354            Hint  => 0,
355            Key   => SN.Element,
356            Node  => Target_Node);
357      end Append_Element;
358
359   --  Start of processing for Assign
360
361   begin
362      if Target'Address = Source'Address then
363         return;
364      end if;
365
366      if Target.Capacity < Source.Length then
367         raise Capacity_Error
368           with "Target capacity is less than Source length";
369      end if;
370
371      Target.Clear;
372      Append_Elements (Source);
373   end Assign;
374
375   -------------
376   -- Ceiling --
377   -------------
378
379   function Ceiling (Container : Set; Item : Element_Type) return Cursor is
380      Node : constant Count_Type :=
381        Element_Keys.Ceiling (Container, Item);
382   begin
383      return (if Node = 0 then No_Element
384              else Cursor'(Container'Unrestricted_Access, Node));
385   end Ceiling;
386
387   -----------
388   -- Clear --
389   -----------
390
391   procedure Clear (Container : in out Set) is
392   begin
393      Tree_Operations.Clear_Tree (Container);
394   end Clear;
395
396   -----------
397   -- Color --
398   -----------
399
400   function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
401   begin
402      return Node.Color;
403   end Color;
404
405   ------------------------
406   -- Constant_Reference --
407   ------------------------
408
409   function Constant_Reference
410     (Container : aliased Set;
411      Position  : Cursor) return Constant_Reference_Type
412   is
413   begin
414      if Position.Container = null then
415         raise Constraint_Error with "Position cursor has no element";
416      end if;
417
418      if Position.Container /= Container'Unrestricted_Access then
419         raise Program_Error with
420           "Position cursor designates wrong container";
421      end if;
422
423      pragma Assert
424        (Vet (Container, Position.Node),
425         "bad cursor in Constant_Reference");
426
427      declare
428         N : Node_Type renames Container.Nodes (Position.Node);
429      begin
430         return (Element => N.Element'Access);
431      end;
432   end Constant_Reference;
433
434   --------------
435   -- Contains --
436   --------------
437
438   function Contains
439     (Container : Set;
440      Item      : Element_Type) return Boolean
441   is
442   begin
443      return Find (Container, Item) /= No_Element;
444   end Contains;
445
446   ----------
447   -- Copy --
448   ----------
449
450   function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
451      C : Count_Type;
452
453   begin
454      if Capacity = 0 then
455         C := Source.Length;
456      elsif Capacity >= Source.Length then
457         C := Capacity;
458      else
459         raise Capacity_Error with "Capacity value too small";
460      end if;
461
462      return Target : Set (Capacity => C) do
463         Assign (Target => Target, Source => Source);
464      end return;
465   end Copy;
466
467   ------------
468   -- Delete --
469   ------------
470
471   procedure Delete (Container : in out Set; Position : in out Cursor) is
472   begin
473      if Position.Node = 0 then
474         raise Constraint_Error with "Position cursor equals No_Element";
475      end if;
476
477      if Position.Container /= Container'Unrestricted_Access then
478         raise Program_Error with "Position cursor designates wrong set";
479      end if;
480
481      pragma Assert (Vet (Container, Position.Node),
482                     "bad cursor in Delete");
483
484      Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
485      Tree_Operations.Free (Container, Position.Node);
486
487      Position := No_Element;
488   end Delete;
489
490   procedure Delete (Container : in out Set; Item : Element_Type) is
491      X : constant Count_Type := Element_Keys.Find (Container, Item);
492
493   begin
494      if X = 0 then
495         raise Constraint_Error with "attempt to delete element not in set";
496      end if;
497
498      Tree_Operations.Delete_Node_Sans_Free (Container, X);
499      Tree_Operations.Free (Container, X);
500   end Delete;
501
502   ------------------
503   -- Delete_First --
504   ------------------
505
506   procedure Delete_First (Container : in out Set) is
507      X : constant Count_Type := Container.First;
508   begin
509      if X /= 0 then
510         Tree_Operations.Delete_Node_Sans_Free (Container, X);
511         Tree_Operations.Free (Container, X);
512      end if;
513   end Delete_First;
514
515   -----------------
516   -- Delete_Last --
517   -----------------
518
519   procedure Delete_Last (Container : in out Set) is
520      X : constant Count_Type := Container.Last;
521   begin
522      if X /= 0 then
523         Tree_Operations.Delete_Node_Sans_Free (Container, X);
524         Tree_Operations.Free (Container, X);
525      end if;
526   end Delete_Last;
527
528   ----------------
529   -- Difference --
530   ----------------
531
532   procedure Difference (Target : in out Set; Source : Set)
533      renames Set_Ops.Set_Difference;
534
535   function Difference (Left, Right : Set) return Set
536      renames Set_Ops.Set_Difference;
537
538   -------------
539   -- Element --
540   -------------
541
542   function Element (Position : Cursor) return Element_Type is
543   begin
544      if Position.Node = 0 then
545         raise Constraint_Error with "Position cursor equals No_Element";
546      end if;
547
548      pragma Assert (Vet (Position.Container.all, Position.Node),
549                     "bad cursor in Element");
550
551      return Position.Container.Nodes (Position.Node).Element;
552   end Element;
553
554   -------------------------
555   -- Equivalent_Elements --
556   -------------------------
557
558   function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
559   begin
560      return (if Left < Right or else Right < Left then False else True);
561   end Equivalent_Elements;
562
563   ---------------------
564   -- Equivalent_Sets --
565   ---------------------
566
567   function Equivalent_Sets (Left, Right : Set) return Boolean is
568      function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean;
569      pragma Inline (Is_Equivalent_Node_Node);
570
571      function Is_Equivalent is
572         new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
573
574      -----------------------------
575      -- Is_Equivalent_Node_Node --
576      -----------------------------
577
578      function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
579      begin
580         return (if L.Element < R.Element then False
581                 elsif R.Element < L.Element then False
582                 else True);
583      end Is_Equivalent_Node_Node;
584
585   --  Start of processing for Equivalent_Sets
586
587   begin
588      return Is_Equivalent (Left, Right);
589   end Equivalent_Sets;
590
591   -------------
592   -- Exclude --
593   -------------
594
595   procedure Exclude (Container : in out Set; Item : Element_Type) is
596      X : constant Count_Type := Element_Keys.Find (Container, Item);
597   begin
598      if X /= 0 then
599         Tree_Operations.Delete_Node_Sans_Free (Container, X);
600         Tree_Operations.Free (Container, X);
601      end if;
602   end Exclude;
603
604   --------------
605   -- Finalize --
606   --------------
607
608   procedure Finalize (Object : in out Iterator) is
609   begin
610      if Object.Container /= null then
611         declare
612            B : Natural renames Object.Container.all.Busy;
613         begin
614            B := B - 1;
615         end;
616      end if;
617   end Finalize;
618
619   ----------
620   -- Find --
621   ----------
622
623   function Find (Container : Set; Item : Element_Type) return Cursor is
624      Node : constant Count_Type := Element_Keys.Find (Container, Item);
625   begin
626      return (if Node = 0 then No_Element
627              else Cursor'(Container'Unrestricted_Access, Node));
628   end Find;
629
630   -----------
631   -- First --
632   -----------
633
634   function First (Container : Set) return Cursor is
635   begin
636      return (if Container.First = 0 then No_Element
637              else Cursor'(Container'Unrestricted_Access, Container.First));
638   end First;
639
640   function First (Object : Iterator) return Cursor is
641   begin
642      --  The value of the iterator object's Node component influences the
643      --  behavior of the First (and Last) selector function.
644
645      --  When the Node component is 0, this means the iterator object was
646      --  constructed without a start expression, in which case the (forward)
647      --  iteration starts from the (logical) beginning of the entire sequence
648      --  of items (corresponding to Container.First, for a forward iterator).
649
650      --  Otherwise, this is iteration over a partial sequence of items. When
651      --  the Node component is positive, the iterator object was constructed
652      --  with a start expression, that specifies the position from which the
653      --  (forward) partial iteration begins.
654
655      if Object.Node = 0 then
656         return Bounded_Ordered_Sets.First (Object.Container.all);
657      else
658         return Cursor'(Object.Container, Object.Node);
659      end if;
660   end First;
661
662   -------------------
663   -- First_Element --
664   -------------------
665
666   function First_Element (Container : Set) return Element_Type is
667   begin
668      if Container.First = 0 then
669         raise Constraint_Error with "set is empty";
670      end if;
671
672      return Container.Nodes (Container.First).Element;
673   end First_Element;
674
675   -----------
676   -- Floor --
677   -----------
678
679   function Floor (Container : Set; Item : Element_Type) return Cursor is
680      Node : constant Count_Type := Element_Keys.Floor (Container, Item);
681   begin
682      return (if Node = 0 then No_Element
683              else Cursor'(Container'Unrestricted_Access, Node));
684   end Floor;
685
686   ------------------
687   -- Generic_Keys --
688   ------------------
689
690   package body Generic_Keys is
691
692      -----------------------
693      -- Local Subprograms --
694      -----------------------
695
696      function Is_Greater_Key_Node
697        (Left  : Key_Type;
698         Right : Node_Type) return Boolean;
699      pragma Inline (Is_Greater_Key_Node);
700
701      function Is_Less_Key_Node
702        (Left  : Key_Type;
703         Right : Node_Type) return Boolean;
704      pragma Inline (Is_Less_Key_Node);
705
706      --------------------------
707      -- Local Instantiations --
708      --------------------------
709
710      package Key_Keys is
711        new Red_Black_Trees.Generic_Bounded_Keys
712          (Tree_Operations     => Tree_Operations,
713           Key_Type            => Key_Type,
714           Is_Less_Key_Node    => Is_Less_Key_Node,
715           Is_Greater_Key_Node => Is_Greater_Key_Node);
716
717      -------------
718      -- Ceiling --
719      -------------
720
721      function Ceiling (Container : Set; Key : Key_Type) return Cursor is
722         Node : constant Count_Type :=
723           Key_Keys.Ceiling (Container, Key);
724      begin
725         return (if Node = 0 then No_Element
726                 else Cursor'(Container'Unrestricted_Access, Node));
727      end Ceiling;
728
729      ------------------------
730      -- Constant_Reference --
731      ------------------------
732
733      function Constant_Reference
734        (Container : aliased Set;
735         Key       : Key_Type) return Constant_Reference_Type
736      is
737         Node : constant Count_Type := Key_Keys.Find (Container, Key);
738
739      begin
740         if Node = 0 then
741            raise Constraint_Error with "key not in set";
742         end if;
743
744         declare
745            N : Node_Type renames Container.Nodes (Node);
746         begin
747            return (Element => N.Element'Access);
748         end;
749      end Constant_Reference;
750
751      --------------
752      -- Contains --
753      --------------
754
755      function Contains (Container : Set; Key : Key_Type) return Boolean is
756      begin
757         return Find (Container, Key) /= No_Element;
758      end Contains;
759
760      ------------
761      -- Delete --
762      ------------
763
764      procedure Delete (Container : in out Set; Key : Key_Type) is
765         X : constant Count_Type := Key_Keys.Find (Container, Key);
766
767      begin
768         if X = 0 then
769            raise Constraint_Error with "attempt to delete key not in set";
770         end if;
771
772         Tree_Operations.Delete_Node_Sans_Free (Container, X);
773         Tree_Operations.Free (Container, X);
774      end Delete;
775
776      -------------
777      -- Element --
778      -------------
779
780      function Element (Container : Set; Key : Key_Type) return Element_Type is
781         Node : constant Count_Type := Key_Keys.Find (Container, Key);
782
783      begin
784         if Node = 0 then
785            raise Constraint_Error with "key not in set";
786         end if;
787
788         return Container.Nodes (Node).Element;
789      end Element;
790
791      ---------------------
792      -- Equivalent_Keys --
793      ---------------------
794
795      function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
796      begin
797         return (if Left < Right or else Right < Left then False else True);
798      end Equivalent_Keys;
799
800      -------------
801      -- Exclude --
802      -------------
803
804      procedure Exclude (Container : in out Set; Key : Key_Type) is
805         X : constant Count_Type := Key_Keys.Find (Container, Key);
806      begin
807         if X /= 0 then
808            Tree_Operations.Delete_Node_Sans_Free (Container, X);
809            Tree_Operations.Free (Container, X);
810         end if;
811      end Exclude;
812
813      ----------
814      -- Find --
815      ----------
816
817      function Find (Container : Set; Key : Key_Type) return Cursor is
818         Node : constant Count_Type := Key_Keys.Find (Container, Key);
819      begin
820         return (if Node = 0 then No_Element
821                 else Cursor'(Container'Unrestricted_Access, Node));
822      end Find;
823
824      -----------
825      -- Floor --
826      -----------
827
828      function Floor (Container : Set; Key : Key_Type) return Cursor is
829         Node : constant Count_Type := Key_Keys.Floor (Container, Key);
830      begin
831         return (if Node = 0 then No_Element
832                 else Cursor'(Container'Unrestricted_Access, Node));
833      end Floor;
834
835      -------------------------
836      -- Is_Greater_Key_Node --
837      -------------------------
838
839      function Is_Greater_Key_Node
840        (Left  : Key_Type;
841         Right : Node_Type) return Boolean
842      is
843      begin
844         return Key (Right.Element) < Left;
845      end Is_Greater_Key_Node;
846
847      ----------------------
848      -- Is_Less_Key_Node --
849      ----------------------
850
851      function Is_Less_Key_Node
852        (Left  : Key_Type;
853         Right : Node_Type) return Boolean
854      is
855      begin
856         return Left < Key (Right.Element);
857      end Is_Less_Key_Node;
858
859      ---------
860      -- Key --
861      ---------
862
863      function Key (Position : Cursor) return Key_Type is
864      begin
865         if Position.Node = 0 then
866            raise Constraint_Error with
867              "Position cursor equals No_Element";
868         end if;
869
870         pragma Assert (Vet (Position.Container.all, Position.Node),
871                        "bad cursor in Key");
872
873         return Key (Position.Container.Nodes (Position.Node).Element);
874      end Key;
875
876      ----------
877      -- Read --
878      ----------
879
880      procedure  Read
881        (Stream : not null access Root_Stream_Type'Class;
882         Item   : out Reference_Type)
883      is
884      begin
885         raise Program_Error with "attempt to stream reference";
886      end Read;
887
888      ------------------------------
889      -- Reference_Preserving_Key --
890      ------------------------------
891
892      function Reference_Preserving_Key
893        (Container : aliased in out Set;
894         Position  : Cursor) return Reference_Type
895      is
896      begin
897         if Position.Container = null then
898            raise Constraint_Error with "Position cursor has no element";
899         end if;
900
901         if Position.Container /= Container'Unrestricted_Access then
902            raise Program_Error with
903              "Position cursor designates wrong container";
904         end if;
905
906         pragma Assert
907           (Vet (Container, Position.Node),
908            "bad cursor in function Reference_Preserving_Key");
909
910         --  Some form of finalization will be required in order to actually
911         --  check that the key-part of the element designated by Position has
912         --  not changed.  ???
913
914         declare
915            N : Node_Type renames Container.Nodes (Position.Node);
916         begin
917            return (Element => N.Element'Access);
918         end;
919      end Reference_Preserving_Key;
920
921      function Reference_Preserving_Key
922        (Container : aliased in out Set;
923         Key       : Key_Type) return Reference_Type
924      is
925         Node : constant Count_Type := Key_Keys.Find (Container, Key);
926
927      begin
928         if Node = 0 then
929            raise Constraint_Error with "key not in set";
930         end if;
931
932         declare
933            N : Node_Type renames Container.Nodes (Node);
934         begin
935            return (Element => N.Element'Access);
936         end;
937      end Reference_Preserving_Key;
938
939      -------------
940      -- Replace --
941      -------------
942
943      procedure Replace
944        (Container : in out Set;
945         Key       : Key_Type;
946         New_Item  : Element_Type)
947      is
948         Node : constant Count_Type := Key_Keys.Find (Container, Key);
949
950      begin
951         if Node = 0 then
952            raise Constraint_Error with
953              "attempt to replace key not in set";
954         end if;
955
956         Replace_Element (Container, Node, New_Item);
957      end Replace;
958
959      -----------------------------------
960      -- Update_Element_Preserving_Key --
961      -----------------------------------
962
963      procedure Update_Element_Preserving_Key
964        (Container : in out Set;
965         Position  : Cursor;
966         Process   : not null access procedure (Element : in out Element_Type))
967      is
968      begin
969         if Position.Node = 0 then
970            raise Constraint_Error with
971              "Position cursor equals No_Element";
972         end if;
973
974         if Position.Container /= Container'Unrestricted_Access then
975            raise Program_Error with
976              "Position cursor designates wrong set";
977         end if;
978
979         pragma Assert (Vet (Container, Position.Node),
980                        "bad cursor in Update_Element_Preserving_Key");
981
982         declare
983            N : Node_Type renames Container.Nodes (Position.Node);
984            E : Element_Type renames N.Element;
985            K : constant Key_Type := Key (E);
986
987            B : Natural renames Container.Busy;
988            L : Natural renames Container.Lock;
989
990         begin
991            B := B + 1;
992            L := L + 1;
993
994            begin
995               Process (E);
996            exception
997               when others =>
998                  L := L - 1;
999                  B := B - 1;
1000                  raise;
1001            end;
1002
1003            L := L - 1;
1004            B := B - 1;
1005
1006            if Equivalent_Keys (K, Key (E)) then
1007               return;
1008            end if;
1009         end;
1010
1011         Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
1012         Tree_Operations.Free (Container, Position.Node);
1013
1014         raise Program_Error with "key was modified";
1015      end Update_Element_Preserving_Key;
1016
1017      -----------
1018      -- Write --
1019      -----------
1020
1021      procedure Write
1022        (Stream : not null access Root_Stream_Type'Class;
1023         Item   : Reference_Type)
1024      is
1025      begin
1026         raise Program_Error with "attempt to stream reference";
1027      end Write;
1028   end Generic_Keys;
1029
1030   -----------------
1031   -- Has_Element --
1032   -----------------
1033
1034   function Has_Element (Position : Cursor) return Boolean is
1035   begin
1036      return Position /= No_Element;
1037   end Has_Element;
1038
1039   -------------
1040   -- Include --
1041   -------------
1042
1043   procedure Include (Container : in out Set; New_Item : Element_Type) is
1044      Position : Cursor;
1045      Inserted : Boolean;
1046
1047   begin
1048      Insert (Container, New_Item, Position, Inserted);
1049
1050      if not Inserted then
1051         if Container.Lock > 0 then
1052            raise Program_Error with
1053              "attempt to tamper with elements (set is locked)";
1054         end if;
1055
1056         Container.Nodes (Position.Node).Element := New_Item;
1057      end if;
1058   end Include;
1059
1060   ------------
1061   -- Insert --
1062   ------------
1063
1064   procedure Insert
1065     (Container : in out Set;
1066      New_Item  : Element_Type;
1067      Position  : out Cursor;
1068      Inserted  : out Boolean)
1069   is
1070   begin
1071      Insert_Sans_Hint
1072        (Container,
1073         New_Item,
1074         Position.Node,
1075         Inserted);
1076
1077      Position.Container := Container'Unrestricted_Access;
1078   end Insert;
1079
1080   procedure Insert
1081     (Container : in out Set;
1082      New_Item  : Element_Type)
1083   is
1084      Position : Cursor;
1085      pragma Unreferenced (Position);
1086
1087      Inserted : Boolean;
1088
1089   begin
1090      Insert (Container, New_Item, Position, Inserted);
1091
1092      if not Inserted then
1093         raise Constraint_Error with
1094           "attempt to insert element already in set";
1095      end if;
1096   end Insert;
1097
1098   ----------------------
1099   -- Insert_Sans_Hint --
1100   ----------------------
1101
1102   procedure Insert_Sans_Hint
1103     (Container : in out Set;
1104      New_Item  : Element_Type;
1105      Node      : out Count_Type;
1106      Inserted  : out Boolean)
1107   is
1108      procedure Set_Element (Node : in out Node_Type);
1109      pragma Inline (Set_Element);
1110
1111      function New_Node return Count_Type;
1112      pragma Inline (New_Node);
1113
1114      procedure Insert_Post is
1115        new Element_Keys.Generic_Insert_Post (New_Node);
1116
1117      procedure Conditional_Insert_Sans_Hint is
1118        new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1119
1120      procedure Allocate is
1121         new Tree_Operations.Generic_Allocate (Set_Element);
1122
1123      --------------
1124      -- New_Node --
1125      --------------
1126
1127      function New_Node return Count_Type is
1128         Result : Count_Type;
1129      begin
1130         Allocate (Container, Result);
1131         return Result;
1132      end New_Node;
1133
1134      -----------------
1135      -- Set_Element --
1136      -----------------
1137
1138      procedure Set_Element (Node : in out Node_Type) is
1139      begin
1140         Node.Element := New_Item;
1141      end Set_Element;
1142
1143   --  Start of processing for Insert_Sans_Hint
1144
1145   begin
1146      Conditional_Insert_Sans_Hint
1147        (Container,
1148         New_Item,
1149         Node,
1150         Inserted);
1151   end Insert_Sans_Hint;
1152
1153   ----------------------
1154   -- Insert_With_Hint --
1155   ----------------------
1156
1157   procedure Insert_With_Hint
1158     (Dst_Set  : in out Set;
1159      Dst_Hint : Count_Type;
1160      Src_Node : Node_Type;
1161      Dst_Node : out Count_Type)
1162   is
1163      Success : Boolean;
1164      pragma Unreferenced (Success);
1165
1166      procedure Set_Element (Node : in out Node_Type);
1167      pragma Inline (Set_Element);
1168
1169      function New_Node return Count_Type;
1170      pragma Inline (New_Node);
1171
1172      procedure Insert_Post is
1173         new Element_Keys.Generic_Insert_Post (New_Node);
1174
1175      procedure Insert_Sans_Hint is
1176         new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1177
1178      procedure Local_Insert_With_Hint is
1179         new Element_Keys.Generic_Conditional_Insert_With_Hint
1180           (Insert_Post,
1181            Insert_Sans_Hint);
1182
1183      procedure Allocate is
1184         new Tree_Operations.Generic_Allocate (Set_Element);
1185
1186      --------------
1187      -- New_Node --
1188      --------------
1189
1190      function New_Node return Count_Type is
1191         Result : Count_Type;
1192      begin
1193         Allocate (Dst_Set, Result);
1194         return Result;
1195      end New_Node;
1196
1197      -----------------
1198      -- Set_Element --
1199      -----------------
1200
1201      procedure Set_Element (Node : in out Node_Type) is
1202      begin
1203         Node.Element := Src_Node.Element;
1204      end Set_Element;
1205
1206   --  Start of processing for Insert_With_Hint
1207
1208   begin
1209      Local_Insert_With_Hint
1210        (Dst_Set,
1211         Dst_Hint,
1212         Src_Node.Element,
1213         Dst_Node,
1214         Success);
1215   end Insert_With_Hint;
1216
1217   ------------------
1218   -- Intersection --
1219   ------------------
1220
1221   procedure Intersection (Target : in out Set; Source : Set)
1222      renames Set_Ops.Set_Intersection;
1223
1224   function Intersection (Left, Right : Set) return Set
1225      renames Set_Ops.Set_Intersection;
1226
1227   --------------
1228   -- Is_Empty --
1229   --------------
1230
1231   function Is_Empty (Container : Set) return Boolean is
1232   begin
1233      return Container.Length = 0;
1234   end Is_Empty;
1235
1236   -----------------------------
1237   -- Is_Greater_Element_Node --
1238   -----------------------------
1239
1240   function Is_Greater_Element_Node
1241     (Left  : Element_Type;
1242      Right : Node_Type) return Boolean
1243   is
1244   begin
1245      --  Compute e > node same as node < e
1246
1247      return Right.Element < Left;
1248   end Is_Greater_Element_Node;
1249
1250   --------------------------
1251   -- Is_Less_Element_Node --
1252   --------------------------
1253
1254   function Is_Less_Element_Node
1255     (Left  : Element_Type;
1256      Right : Node_Type) return Boolean
1257   is
1258   begin
1259      return Left < Right.Element;
1260   end Is_Less_Element_Node;
1261
1262   -----------------------
1263   -- Is_Less_Node_Node --
1264   -----------------------
1265
1266   function Is_Less_Node_Node (L, R : Node_Type) return Boolean is
1267   begin
1268      return L.Element < R.Element;
1269   end Is_Less_Node_Node;
1270
1271   ---------------
1272   -- Is_Subset --
1273   ---------------
1274
1275   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean
1276      renames Set_Ops.Set_Subset;
1277
1278   -------------
1279   -- Iterate --
1280   -------------
1281
1282   procedure Iterate
1283     (Container : Set;
1284      Process   : not null access procedure (Position : Cursor))
1285   is
1286      procedure Process_Node (Node : Count_Type);
1287      pragma Inline (Process_Node);
1288
1289      procedure Local_Iterate is
1290        new Tree_Operations.Generic_Iteration (Process_Node);
1291
1292      ------------------
1293      -- Process_Node --
1294      ------------------
1295
1296      procedure Process_Node (Node : Count_Type) is
1297      begin
1298         Process (Cursor'(Container'Unrestricted_Access, Node));
1299      end Process_Node;
1300
1301      S : Set renames Container'Unrestricted_Access.all;
1302      B : Natural renames S.Busy;
1303
1304   --  Start of processing for Iterate
1305
1306   begin
1307      B := B + 1;
1308
1309      begin
1310         Local_Iterate (S);
1311      exception
1312         when others =>
1313            B := B - 1;
1314            raise;
1315      end;
1316
1317      B := B - 1;
1318   end Iterate;
1319
1320   function Iterate (Container : Set)
1321     return Set_Iterator_Interfaces.Reversible_Iterator'class
1322   is
1323      B : Natural renames Container'Unrestricted_Access.all.Busy;
1324
1325   begin
1326      --  The value of the Node component influences the behavior of the First
1327      --  and Last selector functions of the iterator object. When the Node
1328      --  component is 0 (as is the case here), this means the iterator object
1329      --  was constructed without a start expression. This is a complete
1330      --  iterator, meaning that the iteration starts from the (logical)
1331      --  beginning of the sequence of items.
1332
1333      --  Note: For a forward iterator, Container.First is the beginning, and
1334      --  for a reverse iterator, Container.Last is the beginning.
1335
1336      return It : constant Iterator :=
1337        Iterator'(Limited_Controlled with
1338                    Container => Container'Unrestricted_Access,
1339                    Node      => 0)
1340      do
1341         B := B + 1;
1342      end return;
1343   end Iterate;
1344
1345   function Iterate (Container : Set; Start : Cursor)
1346     return Set_Iterator_Interfaces.Reversible_Iterator'class
1347   is
1348      B  : Natural renames Container'Unrestricted_Access.all.Busy;
1349
1350   begin
1351      --  It was formerly the case that when Start = No_Element, the partial
1352      --  iterator was defined to behave the same as for a complete iterator,
1353      --  and iterate over the entire sequence of items. However, those
1354      --  semantics were unintuitive and arguably error-prone (it is too easy
1355      --  to accidentally create an endless loop), and so they were changed,
1356      --  per the ARG meeting in Denver on 2011/11. However, there was no
1357      --  consensus about what positive meaning this corner case should have,
1358      --  and so it was decided to simply raise an exception. This does imply,
1359      --  however, that it is not possible to use a partial iterator to specify
1360      --  an empty sequence of items.
1361
1362      if Start = No_Element then
1363         raise Constraint_Error with
1364           "Start position for iterator equals No_Element";
1365      end if;
1366
1367      if Start.Container /= Container'Unrestricted_Access then
1368         raise Program_Error with
1369           "Start cursor of Iterate designates wrong set";
1370      end if;
1371
1372      pragma Assert (Vet (Container, Start.Node),
1373                     "Start cursor of Iterate is bad");
1374
1375      --  The value of the Node component influences the behavior of the First
1376      --  and Last selector functions of the iterator object. When the Node
1377      --  component is positive (as is the case here), it means that this
1378      --  is a partial iteration, over a subset of the complete sequence of
1379      --  items. The iterator object was constructed with a start expression,
1380      --  indicating the position from which the iteration begins. (Note that
1381      --  the start position has the same value irrespective of whether this
1382      --  is a forward or reverse iteration.)
1383
1384      return It : constant Iterator :=
1385        Iterator'(Limited_Controlled with
1386                    Container => Container'Unrestricted_Access,
1387                    Node      => Start.Node)
1388      do
1389         B := B + 1;
1390      end return;
1391   end Iterate;
1392
1393   ----------
1394   -- Last --
1395   ----------
1396
1397   function Last (Container : Set) return Cursor is
1398   begin
1399      return (if Container.Last = 0 then No_Element
1400              else Cursor'(Container'Unrestricted_Access, Container.Last));
1401   end Last;
1402
1403   function Last (Object : Iterator) return Cursor is
1404   begin
1405      --  The value of the iterator object's Node component influences the
1406      --  behavior of the Last (and First) selector function.
1407
1408      --  When the Node component is 0, this means the iterator object was
1409      --  constructed without a start expression, in which case the (reverse)
1410      --  iteration starts from the (logical) beginning of the entire sequence
1411      --  (corresponding to Container.Last, for a reverse iterator).
1412
1413      --  Otherwise, this is iteration over a partial sequence of items. When
1414      --  the Node component is positive, the iterator object was constructed
1415      --  with a start expression, that specifies the position from which the
1416      --  (reverse) partial iteration begins.
1417
1418      if Object.Node = 0 then
1419         return Bounded_Ordered_Sets.Last (Object.Container.all);
1420      else
1421         return Cursor'(Object.Container, Object.Node);
1422      end if;
1423   end Last;
1424
1425   ------------------
1426   -- Last_Element --
1427   ------------------
1428
1429   function Last_Element (Container : Set) return Element_Type is
1430   begin
1431      if Container.Last = 0 then
1432         raise Constraint_Error with "set is empty";
1433      end if;
1434
1435      return Container.Nodes (Container.Last).Element;
1436   end Last_Element;
1437
1438   ----------
1439   -- Left --
1440   ----------
1441
1442   function Left (Node : Node_Type) return Count_Type is
1443   begin
1444      return Node.Left;
1445   end Left;
1446
1447   ------------
1448   -- Length --
1449   ------------
1450
1451   function Length (Container : Set) return Count_Type is
1452   begin
1453      return Container.Length;
1454   end Length;
1455
1456   ----------
1457   -- Move --
1458   ----------
1459
1460   procedure Move (Target : in out Set; Source : in out Set) is
1461   begin
1462      if Target'Address = Source'Address then
1463         return;
1464      end if;
1465
1466      if Source.Busy > 0 then
1467         raise Program_Error with
1468           "attempt to tamper with cursors (container is busy)";
1469      end if;
1470
1471      Target.Assign (Source);
1472      Source.Clear;
1473   end Move;
1474
1475   ----------
1476   -- Next --
1477   ----------
1478
1479   function Next (Position : Cursor) return Cursor is
1480   begin
1481      if Position = No_Element then
1482         return No_Element;
1483      end if;
1484
1485      pragma Assert (Vet (Position.Container.all, Position.Node),
1486                     "bad cursor in Next");
1487
1488      declare
1489         Node : constant Count_Type :=
1490           Tree_Operations.Next (Position.Container.all, Position.Node);
1491
1492      begin
1493         if Node = 0 then
1494            return No_Element;
1495         end if;
1496
1497         return Cursor'(Position.Container, Node);
1498      end;
1499   end Next;
1500
1501   procedure Next (Position : in out Cursor) is
1502   begin
1503      Position := Next (Position);
1504   end Next;
1505
1506   function Next (Object : Iterator; Position : Cursor) return Cursor is
1507   begin
1508      if Position.Container = null then
1509         return No_Element;
1510      end if;
1511
1512      if Position.Container /= Object.Container then
1513         raise Program_Error with
1514           "Position cursor of Next designates wrong set";
1515      end if;
1516
1517      return Next (Position);
1518   end Next;
1519
1520   -------------
1521   -- Overlap --
1522   -------------
1523
1524   function Overlap (Left, Right : Set) return Boolean
1525      renames Set_Ops.Set_Overlap;
1526
1527   ------------
1528   -- Parent --
1529   ------------
1530
1531   function Parent (Node : Node_Type) return Count_Type is
1532   begin
1533      return Node.Parent;
1534   end Parent;
1535
1536   --------------
1537   -- Previous --
1538   --------------
1539
1540   function Previous (Position : Cursor) return Cursor is
1541   begin
1542      if Position = No_Element then
1543         return No_Element;
1544      end if;
1545
1546      pragma Assert (Vet (Position.Container.all, Position.Node),
1547                     "bad cursor in Previous");
1548
1549      declare
1550         Node : constant Count_Type :=
1551           Tree_Operations.Previous (Position.Container.all, Position.Node);
1552      begin
1553         return (if Node = 0 then No_Element
1554                 else Cursor'(Position.Container, Node));
1555      end;
1556   end Previous;
1557
1558   procedure Previous (Position : in out Cursor) is
1559   begin
1560      Position := Previous (Position);
1561   end Previous;
1562
1563   function Previous (Object : Iterator; Position : Cursor) return Cursor is
1564   begin
1565      if Position.Container = null then
1566         return No_Element;
1567      end if;
1568
1569      if Position.Container /= Object.Container then
1570         raise Program_Error with
1571           "Position cursor of Previous designates wrong set";
1572      end if;
1573
1574      return Previous (Position);
1575   end Previous;
1576
1577   -------------------
1578   -- Query_Element --
1579   -------------------
1580
1581   procedure Query_Element
1582     (Position : Cursor;
1583      Process  : not null access procedure (Element : Element_Type))
1584   is
1585   begin
1586      if Position.Node = 0 then
1587         raise Constraint_Error with "Position cursor equals No_Element";
1588      end if;
1589
1590      pragma Assert (Vet (Position.Container.all, Position.Node),
1591                     "bad cursor in Query_Element");
1592
1593      declare
1594         S : Set renames Position.Container.all;
1595         B : Natural renames S.Busy;
1596         L : Natural renames S.Lock;
1597
1598      begin
1599         B := B + 1;
1600         L := L + 1;
1601
1602         begin
1603            Process (S.Nodes (Position.Node).Element);
1604         exception
1605            when others =>
1606               L := L - 1;
1607               B := B - 1;
1608               raise;
1609         end;
1610
1611         L := L - 1;
1612         B := B - 1;
1613      end;
1614   end Query_Element;
1615
1616   ----------
1617   -- Read --
1618   ----------
1619
1620   procedure Read
1621     (Stream    : not null access Root_Stream_Type'Class;
1622      Container : out Set)
1623   is
1624      procedure Read_Element (Node : in out Node_Type);
1625      pragma Inline (Read_Element);
1626
1627      procedure Allocate is
1628         new Tree_Operations.Generic_Allocate (Read_Element);
1629
1630      procedure Read_Elements is
1631         new Tree_Operations.Generic_Read (Allocate);
1632
1633      ------------------
1634      -- Read_Element --
1635      ------------------
1636
1637      procedure Read_Element (Node : in out Node_Type) is
1638      begin
1639         Element_Type'Read (Stream, Node.Element);
1640      end Read_Element;
1641
1642   --  Start of processing for Read
1643
1644   begin
1645      Read_Elements (Stream, Container);
1646   end Read;
1647
1648   procedure Read
1649     (Stream : not null access Root_Stream_Type'Class;
1650      Item   : out Cursor)
1651   is
1652   begin
1653      raise Program_Error with "attempt to stream set cursor";
1654   end Read;
1655
1656   procedure Read
1657     (Stream : not null access Root_Stream_Type'Class;
1658      Item   : out Constant_Reference_Type)
1659   is
1660   begin
1661      raise Program_Error with "attempt to stream reference";
1662   end Read;
1663
1664   -------------
1665   -- Replace --
1666   -------------
1667
1668   procedure Replace (Container : in out Set; New_Item : Element_Type) is
1669      Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
1670
1671   begin
1672      if Node = 0 then
1673         raise Constraint_Error with
1674           "attempt to replace element not in set";
1675      end if;
1676
1677      if Container.Lock > 0 then
1678         raise Program_Error with
1679           "attempt to tamper with elements (set is locked)";
1680      end if;
1681
1682      Container.Nodes (Node).Element := New_Item;
1683   end Replace;
1684
1685   ---------------------
1686   -- Replace_Element --
1687   ---------------------
1688
1689   procedure Replace_Element
1690     (Container : in out Set;
1691      Index     : Count_Type;
1692      Item      : Element_Type)
1693   is
1694      pragma Assert (Index /= 0);
1695
1696      function New_Node return Count_Type;
1697      pragma Inline (New_Node);
1698
1699      procedure Local_Insert_Post is
1700         new Element_Keys.Generic_Insert_Post (New_Node);
1701
1702      procedure Local_Insert_Sans_Hint is
1703         new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1704
1705      procedure Local_Insert_With_Hint is
1706         new Element_Keys.Generic_Conditional_Insert_With_Hint
1707           (Local_Insert_Post,
1708            Local_Insert_Sans_Hint);
1709
1710      Nodes : Nodes_Type renames Container.Nodes;
1711      Node  : Node_Type renames Nodes (Index);
1712
1713      --------------
1714      -- New_Node --
1715      --------------
1716
1717      function New_Node return Count_Type is
1718      begin
1719         Node.Element := Item;
1720         Node.Color   := Red_Black_Trees.Red;
1721         Node.Parent  := 0;
1722         Node.Right   := 0;
1723         Node.Left    := 0;
1724         return Index;
1725      end New_Node;
1726
1727      Hint      : Count_Type;
1728      Result    : Count_Type;
1729      Inserted  : Boolean;
1730
1731   --  Start of processing for Replace_Element
1732
1733   begin
1734      if Item < Node.Element
1735        or else Node.Element < Item
1736      then
1737         null;
1738
1739      else
1740         if Container.Lock > 0 then
1741            raise Program_Error with
1742              "attempt to tamper with elements (set is locked)";
1743         end if;
1744
1745         Node.Element := Item;
1746         return;
1747      end if;
1748
1749      Hint := Element_Keys.Ceiling (Container, Item);
1750
1751      if Hint = 0 then
1752         null;
1753
1754      elsif Item < Nodes (Hint).Element then
1755         if Hint = Index then
1756            if Container.Lock > 0 then
1757               raise Program_Error with
1758                 "attempt to tamper with elements (set is locked)";
1759            end if;
1760
1761            Node.Element := Item;
1762            return;
1763         end if;
1764
1765      else
1766         pragma Assert (not (Nodes (Hint).Element < Item));
1767         raise Program_Error with "attempt to replace existing element";
1768      end if;
1769
1770      Tree_Operations.Delete_Node_Sans_Free (Container, Index);
1771
1772      Local_Insert_With_Hint
1773        (Tree     => Container,
1774         Position => Hint,
1775         Key      => Item,
1776         Node     => Result,
1777         Inserted => Inserted);
1778
1779      pragma Assert (Inserted);
1780      pragma Assert (Result = Index);
1781   end Replace_Element;
1782
1783   procedure Replace_Element
1784     (Container : in out Set;
1785      Position  : Cursor;
1786      New_Item  : Element_Type)
1787   is
1788   begin
1789      if Position.Node = 0 then
1790         raise Constraint_Error with
1791           "Position cursor equals No_Element";
1792      end if;
1793
1794      if Position.Container /= Container'Unrestricted_Access then
1795         raise Program_Error with
1796           "Position cursor designates wrong set";
1797      end if;
1798
1799      pragma Assert (Vet (Container, Position.Node),
1800                     "bad cursor in Replace_Element");
1801
1802      Replace_Element (Container, Position.Node, New_Item);
1803   end Replace_Element;
1804
1805   ---------------------
1806   -- Reverse_Iterate --
1807   ---------------------
1808
1809   procedure Reverse_Iterate
1810     (Container : Set;
1811      Process   : not null access procedure (Position : Cursor))
1812   is
1813      procedure Process_Node (Node : Count_Type);
1814      pragma Inline (Process_Node);
1815
1816      procedure Local_Reverse_Iterate is
1817         new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1818
1819      ------------------
1820      -- Process_Node --
1821      ------------------
1822
1823      procedure Process_Node (Node : Count_Type) is
1824      begin
1825         Process (Cursor'(Container'Unrestricted_Access, Node));
1826      end Process_Node;
1827
1828      S : Set renames Container'Unrestricted_Access.all;
1829      B : Natural renames S.Busy;
1830
1831   --  Start of processing for Reverse_Iterate
1832
1833   begin
1834      B := B + 1;
1835
1836      begin
1837         Local_Reverse_Iterate (S);
1838      exception
1839         when others =>
1840            B := B - 1;
1841            raise;
1842      end;
1843
1844      B := B - 1;
1845   end Reverse_Iterate;
1846
1847   -----------
1848   -- Right --
1849   -----------
1850
1851   function Right (Node : Node_Type) return Count_Type is
1852   begin
1853      return Node.Right;
1854   end Right;
1855
1856   ---------------
1857   -- Set_Color --
1858   ---------------
1859
1860   procedure Set_Color
1861     (Node  : in out Node_Type;
1862      Color : Red_Black_Trees.Color_Type)
1863   is
1864   begin
1865      Node.Color := Color;
1866   end Set_Color;
1867
1868   --------------
1869   -- Set_Left --
1870   --------------
1871
1872   procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
1873   begin
1874      Node.Left := Left;
1875   end Set_Left;
1876
1877   ----------------
1878   -- Set_Parent --
1879   ----------------
1880
1881   procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
1882   begin
1883      Node.Parent := Parent;
1884   end Set_Parent;
1885
1886   ---------------
1887   -- Set_Right --
1888   ---------------
1889
1890   procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
1891   begin
1892      Node.Right := Right;
1893   end Set_Right;
1894
1895   --------------------------
1896   -- Symmetric_Difference --
1897   --------------------------
1898
1899   procedure Symmetric_Difference (Target : in out Set; Source : Set)
1900      renames Set_Ops.Set_Symmetric_Difference;
1901
1902   function Symmetric_Difference (Left, Right : Set) return Set
1903      renames Set_Ops.Set_Symmetric_Difference;
1904
1905   ------------
1906   -- To_Set --
1907   ------------
1908
1909   function To_Set (New_Item : Element_Type) return Set is
1910      Node     : Count_Type;
1911      Inserted : Boolean;
1912   begin
1913      return S : Set (1) do
1914         Insert_Sans_Hint (S, New_Item, Node, Inserted);
1915         pragma Assert (Inserted);
1916      end return;
1917   end To_Set;
1918
1919   -----------
1920   -- Union --
1921   -----------
1922
1923   procedure Union (Target : in out Set; Source : Set)
1924      renames Set_Ops.Set_Union;
1925
1926   function Union (Left, Right : Set) return Set
1927      renames Set_Ops.Set_Union;
1928
1929   -----------
1930   -- Write --
1931   -----------
1932
1933   procedure Write
1934     (Stream    : not null access Root_Stream_Type'Class;
1935      Container : Set)
1936   is
1937      procedure Write_Element
1938        (Stream : not null access Root_Stream_Type'Class;
1939         Node   : Node_Type);
1940      pragma Inline (Write_Element);
1941
1942      procedure Write_Elements is
1943         new Tree_Operations.Generic_Write (Write_Element);
1944
1945      -------------------
1946      -- Write_Element --
1947      -------------------
1948
1949      procedure Write_Element
1950        (Stream : not null access Root_Stream_Type'Class;
1951         Node   : Node_Type)
1952      is
1953      begin
1954         Element_Type'Write (Stream, Node.Element);
1955      end Write_Element;
1956
1957   --  Start of processing for Write
1958
1959   begin
1960      Write_Elements (Stream, Container);
1961   end Write;
1962
1963   procedure Write
1964     (Stream : not null access Root_Stream_Type'Class;
1965      Item   : Cursor)
1966   is
1967   begin
1968      raise Program_Error with "attempt to stream set cursor";
1969   end Write;
1970
1971   procedure Write
1972     (Stream : not null access Root_Stream_Type'Class;
1973      Item   : Constant_Reference_Type)
1974   is
1975   begin
1976      raise Program_Error with "attempt to stream reference";
1977   end Write;
1978
1979end Ada.Containers.Bounded_Ordered_Sets;
1980