1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ A G G R                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Util; use Exp_Util;
34with Exp_Ch3;  use Exp_Ch3;
35with Exp_Ch6;  use Exp_Ch6;
36with Exp_Ch7;  use Exp_Ch7;
37with Exp_Ch9;  use Exp_Ch9;
38with Exp_Disp; use Exp_Disp;
39with Exp_Tss;  use Exp_Tss;
40with Fname;    use Fname;
41with Freeze;   use Freeze;
42with Itypes;   use Itypes;
43with Lib;      use Lib;
44with Namet;    use Namet;
45with Nmake;    use Nmake;
46with Nlists;   use Nlists;
47with Opt;      use Opt;
48with Restrict; use Restrict;
49with Rident;   use Rident;
50with Rtsfind;  use Rtsfind;
51with Ttypes;   use Ttypes;
52with Sem;      use Sem;
53with Sem_Aggr; use Sem_Aggr;
54with Sem_Aux;  use Sem_Aux;
55with Sem_Ch3;  use Sem_Ch3;
56with Sem_Eval; use Sem_Eval;
57with Sem_Res;  use Sem_Res;
58with Sem_Util; use Sem_Util;
59with Sinfo;    use Sinfo;
60with Snames;   use Snames;
61with Stand;    use Stand;
62with Targparm; use Targparm;
63with Tbuild;   use Tbuild;
64with Uintp;    use Uintp;
65
66package body Exp_Aggr is
67
68   type Case_Bounds is record
69     Choice_Lo   : Node_Id;
70     Choice_Hi   : Node_Id;
71     Choice_Node : Node_Id;
72   end record;
73
74   type Case_Table_Type is array (Nat range <>) of Case_Bounds;
75   --  Table type used by Check_Case_Choices procedure
76
77   function Has_Default_Init_Comps (N : Node_Id) return Boolean;
78   --  N is an aggregate (record or array). Checks the presence of default
79   --  initialization (<>) in any component (Ada 2005: AI-287).
80
81   function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
82   --  Returns true if N is an aggregate used to initialize the components
83   --  of an statically allocated dispatch table.
84
85   function Must_Slide
86     (Obj_Type : Entity_Id;
87      Typ      : Entity_Id) return Boolean;
88   --  A static array aggregate in an object declaration can in most cases be
89   --  expanded in place. The one exception is when the aggregate is given
90   --  with component associations that specify different bounds from those of
91   --  the type definition in the object declaration. In this pathological
92   --  case the aggregate must slide, and we must introduce an intermediate
93   --  temporary to hold it.
94   --
95   --  The same holds in an assignment to one-dimensional array of arrays,
96   --  when a component may be given with bounds that differ from those of the
97   --  component type.
98
99   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
100   --  Sort the Case Table using the Lower Bound of each Choice as the key.
101   --  A simple insertion sort is used since the number of choices in a case
102   --  statement of variant part will usually be small and probably in near
103   --  sorted order.
104
105   procedure Collect_Initialization_Statements
106     (Obj        : Entity_Id;
107      N          : Node_Id;
108      Node_After : Node_Id);
109   --  If Obj is not frozen, collect actions inserted after N until, but not
110   --  including, Node_After, for initialization of Obj, and move them to an
111   --  expression with actions, which becomes the Initialization_Statements for
112   --  Obj.
113
114   ------------------------------------------------------
115   -- Local subprograms for Record Aggregate Expansion --
116   ------------------------------------------------------
117
118   function Build_Record_Aggr_Code
119     (N   : Node_Id;
120      Typ : Entity_Id;
121      Lhs : Node_Id) return List_Id;
122   --  N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
123   --  aggregate. Target is an expression containing the location on which the
124   --  component by component assignments will take place. Returns the list of
125   --  assignments plus all other adjustments needed for tagged and controlled
126   --  types.
127
128   procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
129   --  N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
130   --  aggregate (which can only be a record type, this procedure is only used
131   --  for record types). Transform the given aggregate into a sequence of
132   --  assignments performed component by component.
133
134   procedure Expand_Record_Aggregate
135     (N           : Node_Id;
136      Orig_Tag    : Node_Id := Empty;
137      Parent_Expr : Node_Id := Empty);
138   --  This is the top level procedure for record aggregate expansion.
139   --  Expansion for record aggregates needs expand aggregates for tagged
140   --  record types. Specifically Expand_Record_Aggregate adds the Tag
141   --  field in front of the Component_Association list that was created
142   --  during resolution by Resolve_Record_Aggregate.
143   --
144   --    N is the record aggregate node.
145   --    Orig_Tag is the value of the Tag that has to be provided for this
146   --      specific aggregate. It carries the tag corresponding to the type
147   --      of the outermost aggregate during the recursive expansion
148   --    Parent_Expr is the ancestor part of the original extension
149   --      aggregate
150
151   function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
152   --  Return true if one of the component is of a discriminated type with
153   --  defaults. An aggregate for a type with mutable components must be
154   --  expanded into individual assignments.
155
156   procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
157   --  If the type of the aggregate is a type extension with renamed discrimi-
158   --  nants, we must initialize the hidden discriminants of the parent.
159   --  Otherwise, the target object must not be initialized. The discriminants
160   --  are initialized by calling the initialization procedure for the type.
161   --  This is incorrect if the initialization of other components has any
162   --  side effects. We restrict this call to the case where the parent type
163   --  has a variant part, because this is the only case where the hidden
164   --  discriminants are accessed, namely when calling discriminant checking
165   --  functions of the parent type, and when applying a stream attribute to
166   --  an object of the derived type.
167
168   -----------------------------------------------------
169   -- Local Subprograms for Array Aggregate Expansion --
170   -----------------------------------------------------
171
172   function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
173   --  Very large static aggregates present problems to the back-end, and are
174   --  transformed into assignments and loops. This function verifies that the
175   --  total number of components of an aggregate is acceptable for rewriting
176   --  into a purely positional static form. Aggr_Size_OK must be called before
177   --  calling Flatten.
178   --
179   --  This function also detects and warns about one-component aggregates that
180   --  appear in a non-static context. Even if the component value is static,
181   --  such an aggregate must be expanded into an assignment.
182
183   function Backend_Processing_Possible (N : Node_Id) return Boolean;
184   --  This function checks if array aggregate N can be processed directly
185   --  by the backend. If this is the case True is returned.
186
187   function Build_Array_Aggr_Code
188     (N           : Node_Id;
189      Ctype       : Entity_Id;
190      Index       : Node_Id;
191      Into        : Node_Id;
192      Scalar_Comp : Boolean;
193      Indexes     : List_Id := No_List) return List_Id;
194   --  This recursive routine returns a list of statements containing the
195   --  loops and assignments that are needed for the expansion of the array
196   --  aggregate N.
197   --
198   --    N is the (sub-)aggregate node to be expanded into code. This node has
199   --    been fully analyzed, and its Etype is properly set.
200   --
201   --    Index is the index node corresponding to the array sub-aggregate N
202   --
203   --    Into is the target expression into which we are copying the aggregate.
204   --    Note that this node may not have been analyzed yet, and so the Etype
205   --    field may not be set.
206   --
207   --    Scalar_Comp is True if the component type of the aggregate is scalar
208   --
209   --    Indexes is the current list of expressions used to index the object we
210   --    are writing into.
211
212   procedure Convert_Array_Aggr_In_Allocator
213     (Decl   : Node_Id;
214      Aggr   : Node_Id;
215      Target : Node_Id);
216   --  If the aggregate appears within an allocator and can be expanded in
217   --  place, this routine generates the individual assignments to components
218   --  of the designated object. This is an optimization over the general
219   --  case, where a temporary is first created on the stack and then used to
220   --  construct the allocated object on the heap.
221
222   procedure Convert_To_Positional
223     (N                    : Node_Id;
224      Max_Others_Replicate : Nat     := 5;
225      Handle_Bit_Packed    : Boolean := False);
226   --  If possible, convert named notation to positional notation. This
227   --  conversion is possible only in some static cases. If the conversion is
228   --  possible, then N is rewritten with the analyzed converted aggregate.
229   --  The parameter Max_Others_Replicate controls the maximum number of
230   --  values corresponding to an others choice that will be converted to
231   --  positional notation (the default of 5 is the normal limit, and reflects
232   --  the fact that normally the loop is better than a lot of separate
233   --  assignments). Note that this limit gets overridden in any case if
234   --  either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
235   --  set. The parameter Handle_Bit_Packed is usually set False (since we do
236   --  not expect the back end to handle bit packed arrays, so the normal case
237   --  of conversion is pointless), but in the special case of a call from
238   --  Packed_Array_Aggregate_Handled, we set this parameter to True, since
239   --  these are cases we handle in there.
240
241   --  It would seem worthwhile to have a higher default value for Max_Others_
242   --  replicate, but aggregates in the compiler make this impossible: the
243   --  compiler bootstrap fails if Max_Others_Replicate is greater than 25.
244   --  This is unexpected ???
245
246   procedure Expand_Array_Aggregate (N : Node_Id);
247   --  This is the top-level routine to perform array aggregate expansion.
248   --  N is the N_Aggregate node to be expanded.
249
250   function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
251   --  For two-dimensional packed aggregates with constant bounds and constant
252   --  components, it is preferable to pack the inner aggregates because the
253   --  whole matrix can then be presented to the back-end as a one-dimensional
254   --  list of literals. This is much more efficient than expanding into single
255   --  component assignments. This function determines if the type Typ is for
256   --  an array that is suitable for this optimization: it returns True if Typ
257   --  is a two dimensional bit packed array with component size 1, 2, or 4.
258
259   function Late_Expansion
260     (N      : Node_Id;
261      Typ    : Entity_Id;
262      Target : Node_Id) return List_Id;
263   --  This routine implements top-down expansion of nested aggregates. In
264   --  doing so, it avoids the generation of temporaries at each level. N is
265   --  a nested record or array aggregate with the Expansion_Delayed flag.
266   --  Typ is the expected type of the aggregate. Target is a (duplicatable)
267   --  expression that will hold the result of the aggregate expansion.
268
269   function Make_OK_Assignment_Statement
270     (Sloc       : Source_Ptr;
271      Name       : Node_Id;
272      Expression : Node_Id) return Node_Id;
273   --  This is like Make_Assignment_Statement, except that Assignment_OK
274   --  is set in the left operand. All assignments built by this unit use
275   --  this routine. This is needed to deal with assignments to initialized
276   --  constants that are done in place.
277
278   function Number_Of_Choices (N : Node_Id) return Nat;
279   --  Returns the number of discrete choices (not including the others choice
280   --  if present) contained in (sub-)aggregate N.
281
282   function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
283   --  Given an array aggregate, this function handles the case of a packed
284   --  array aggregate with all constant values, where the aggregate can be
285   --  evaluated at compile time. If this is possible, then N is rewritten
286   --  to be its proper compile time value with all the components properly
287   --  assembled. The expression is analyzed and resolved and True is returned.
288   --  If this transformation is not possible, N is unchanged and False is
289   --  returned.
290
291   function Safe_Slice_Assignment (N : Node_Id) return Boolean;
292   --  If a slice assignment has an aggregate with a single others_choice,
293   --  the assignment can be done in place even if bounds are not static,
294   --  by converting it into a loop over the discrete range of the slice.
295
296   function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
297   --  If the type of the aggregate is a two-dimensional bit_packed array
298   --  it may be transformed into an array of bytes with constant values,
299   --  and presented to the back-end as a static value. The function returns
300   --  false if this transformation cannot be performed. THis is similar to,
301   --  and reuses part of the machinery in Packed_Array_Aggregate_Handled.
302
303   ------------------
304   -- Aggr_Size_OK --
305   ------------------
306
307   function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
308      Lo   : Node_Id;
309      Hi   : Node_Id;
310      Indx : Node_Id;
311      Siz  : Int;
312      Lov  : Uint;
313      Hiv  : Uint;
314
315      --  The following constant determines the maximum size of an array
316      --  aggregate produced by converting named to positional notation (e.g.
317      --  from others clauses). This avoids running away with attempts to
318      --  convert huge aggregates, which hit memory limits in the backend.
319
320      --  The normal limit is 5000, but we increase this limit to 2**24 (about
321      --  16 million) if Restrictions (No_Elaboration_Code) or Restrictions
322      --  (No_Implicit_Loops) is specified, since in either case we are at
323      --  risk of declaring the program illegal because of this limit. We also
324      --  increase the limit when Static_Elaboration_Desired, given that this
325      --  means that objects are intended to be placed in data memory.
326
327      --  We also increase the limit if the aggregate is for a packed two-
328      --  dimensional array, because if components are static it is much more
329      --  efficient to construct a one-dimensional equivalent array with static
330      --  components.
331
332      Max_Aggr_Size : constant Nat :=
333        5000 + (2 ** 24 - 5000) *
334          Boolean'Pos
335            (Restriction_Active (No_Elaboration_Code)
336             or else Restriction_Active (No_Implicit_Loops)
337             or else Is_Two_Dim_Packed_Array (Typ)
338             or else ((Ekind (Current_Scope) = E_Package
339                       and then Static_Elaboration_Desired (Current_Scope))));
340
341      function Component_Count (T : Entity_Id) return Int;
342      --  The limit is applied to the total number of components that the
343      --  aggregate will have, which is the number of static expressions
344      --  that will appear in the flattened array. This requires a recursive
345      --  computation of the number of scalar components of the structure.
346
347      ---------------------
348      -- Component_Count --
349      ---------------------
350
351      function Component_Count (T : Entity_Id) return Int is
352         Res  : Int := 0;
353         Comp : Entity_Id;
354
355      begin
356         if Is_Scalar_Type (T) then
357            return 1;
358
359         elsif Is_Record_Type (T) then
360            Comp := First_Component (T);
361            while Present (Comp) loop
362               Res := Res + Component_Count (Etype (Comp));
363               Next_Component (Comp);
364            end loop;
365
366            return Res;
367
368         elsif Is_Array_Type (T) then
369            declare
370               Lo : constant Node_Id :=
371                 Type_Low_Bound (Etype (First_Index (T)));
372               Hi : constant Node_Id :=
373                 Type_High_Bound (Etype (First_Index (T)));
374
375               Siz : constant Int := Component_Count (Component_Type (T));
376
377            begin
378               if not Compile_Time_Known_Value (Lo)
379                 or else not Compile_Time_Known_Value (Hi)
380               then
381                  return 0;
382               else
383                  return
384                    Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
385               end if;
386            end;
387
388         else
389            --  Can only be a null for an access type
390
391            return 1;
392         end if;
393      end Component_Count;
394
395   --  Start of processing for Aggr_Size_OK
396
397   begin
398      Siz  := Component_Count (Component_Type (Typ));
399
400      Indx := First_Index (Typ);
401      while Present (Indx) loop
402         Lo  := Type_Low_Bound (Etype (Indx));
403         Hi  := Type_High_Bound (Etype (Indx));
404
405         --  Bounds need to be known at compile time
406
407         if not Compile_Time_Known_Value (Lo)
408           or else not Compile_Time_Known_Value (Hi)
409         then
410            return False;
411         end if;
412
413         Lov := Expr_Value (Lo);
414         Hiv := Expr_Value (Hi);
415
416         --  A flat array is always safe
417
418         if Hiv < Lov then
419            return True;
420         end if;
421
422         --  One-component aggregates are suspicious, and if the context type
423         --  is an object declaration with non-static bounds it will trip gcc;
424         --  such an aggregate must be expanded into a single assignment.
425
426         if Hiv = Lov
427           and then Nkind (Parent (N)) = N_Object_Declaration
428         then
429            declare
430               Index_Type : constant Entity_Id :=
431                 Etype
432                   (First_Index (Etype (Defining_Identifier (Parent (N)))));
433               Indx       : Node_Id;
434
435            begin
436               if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
437                  or else not Compile_Time_Known_Value
438                                (Type_High_Bound (Index_Type))
439               then
440                  if Present (Component_Associations (N)) then
441                     Indx :=
442                       First (Choices (First (Component_Associations (N))));
443
444                     if Is_Entity_Name (Indx)
445                       and then not Is_Type (Entity (Indx))
446                     then
447                        Error_Msg_N
448                          ("single component aggregate in "
449                           &  "non-static context??", Indx);
450                        Error_Msg_N ("\maybe subtype name was meant??", Indx);
451                     end if;
452                  end if;
453
454                  return False;
455               end if;
456            end;
457         end if;
458
459         declare
460            Rng : constant Uint := Hiv - Lov + 1;
461
462         begin
463            --  Check if size is too large
464
465            if not UI_Is_In_Int_Range (Rng) then
466               return False;
467            end if;
468
469            Siz := Siz * UI_To_Int (Rng);
470         end;
471
472         if Siz <= 0
473           or else Siz > Max_Aggr_Size
474         then
475            return False;
476         end if;
477
478         --  Bounds must be in integer range, for later array construction
479
480         if not UI_Is_In_Int_Range (Lov)
481             or else
482            not UI_Is_In_Int_Range (Hiv)
483         then
484            return False;
485         end if;
486
487         Next_Index (Indx);
488      end loop;
489
490      return True;
491   end Aggr_Size_OK;
492
493   ---------------------------------
494   -- Backend_Processing_Possible --
495   ---------------------------------
496
497   --  Backend processing by Gigi/gcc is possible only if all the following
498   --  conditions are met:
499
500   --    1. N is fully positional
501
502   --    2. N is not a bit-packed array aggregate;
503
504   --    3. The size of N's array type must be known at compile time. Note
505   --       that this implies that the component size is also known
506
507   --    4. The array type of N does not follow the Fortran layout convention
508   --       or if it does it must be 1 dimensional.
509
510   --    5. The array component type may not be tagged (which could necessitate
511   --       reassignment of proper tags).
512
513   --    6. The array component type must not have unaligned bit components
514
515   --    7. None of the components of the aggregate may be bit unaligned
516   --       components.
517
518   --    8. There cannot be delayed components, since we do not know enough
519   --       at this stage to know if back end processing is possible.
520
521   --    9. There cannot be any discriminated record components, since the
522   --       back end cannot handle this complex case.
523
524   --   10. No controlled actions need to be generated for components
525
526   --   11. For a VM back end, the array should have no aliased components
527
528   function Backend_Processing_Possible (N : Node_Id) return Boolean is
529      Typ : constant Entity_Id := Etype (N);
530      --  Typ is the correct constrained array subtype of the aggregate
531
532      function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
533      --  This routine checks components of aggregate N, enforcing checks
534      --  1, 7, 8, and 9. In the multi-dimensional case, these checks are
535      --  performed on subaggregates. The Index value is the current index
536      --  being checked in the multi-dimensional case.
537
538      ---------------------
539      -- Component_Check --
540      ---------------------
541
542      function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
543         Expr : Node_Id;
544
545      begin
546         --  Checks 1: (no component associations)
547
548         if Present (Component_Associations (N)) then
549            return False;
550         end if;
551
552         --  Checks on components
553
554         --  Recurse to check subaggregates, which may appear in qualified
555         --  expressions. If delayed, the front-end will have to expand.
556         --  If the component is a discriminated record, treat as non-static,
557         --  as the back-end cannot handle this properly.
558
559         Expr := First (Expressions (N));
560         while Present (Expr) loop
561
562            --  Checks 8: (no delayed components)
563
564            if Is_Delayed_Aggregate (Expr) then
565               return False;
566            end if;
567
568            --  Checks 9: (no discriminated records)
569
570            if Present (Etype (Expr))
571              and then Is_Record_Type (Etype (Expr))
572              and then Has_Discriminants (Etype (Expr))
573            then
574               return False;
575            end if;
576
577            --  Checks 7. Component must not be bit aligned component
578
579            if Possible_Bit_Aligned_Component (Expr) then
580               return False;
581            end if;
582
583            --  Recursion to following indexes for multiple dimension case
584
585            if Present (Next_Index (Index))
586               and then not Component_Check (Expr, Next_Index (Index))
587            then
588               return False;
589            end if;
590
591            --  All checks for that component finished, on to next
592
593            Next (Expr);
594         end loop;
595
596         return True;
597      end Component_Check;
598
599   --  Start of processing for Backend_Processing_Possible
600
601   begin
602      --  Checks 2 (array not bit packed) and 10 (no controlled actions)
603
604      if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
605         return False;
606      end if;
607
608      --  If component is limited, aggregate must be expanded because each
609      --  component assignment must be built in place.
610
611      if Is_Immutably_Limited_Type (Component_Type (Typ)) then
612         return False;
613      end if;
614
615      --  Checks 4 (array must not be multi-dimensional Fortran case)
616
617      if Convention (Typ) = Convention_Fortran
618        and then Number_Dimensions (Typ) > 1
619      then
620         return False;
621      end if;
622
623      --  Checks 3 (size of array must be known at compile time)
624
625      if not Size_Known_At_Compile_Time (Typ) then
626         return False;
627      end if;
628
629      --  Checks on components
630
631      if not Component_Check (N, First_Index (Typ)) then
632         return False;
633      end if;
634
635      --  Checks 5 (if the component type is tagged, then we may need to do
636      --    tag adjustments. Perhaps this should be refined to check for any
637      --    component associations that actually need tag adjustment, similar
638      --    to the test in Component_Not_OK_For_Backend for record aggregates
639      --    with tagged components, but not clear whether it's worthwhile ???;
640      --    in the case of the JVM, object tags are handled implicitly)
641
642      if Is_Tagged_Type (Component_Type (Typ))
643        and then Tagged_Type_Expansion
644      then
645         return False;
646      end if;
647
648      --  Checks 6 (component type must not have bit aligned components)
649
650      if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
651         return False;
652      end if;
653
654      --  Checks 11: Array aggregates with aliased components are currently
655      --  not well supported by the VM backend; disable temporarily this
656      --  backend processing until it is definitely supported.
657
658      if VM_Target /= No_VM
659        and then Has_Aliased_Components (Base_Type (Typ))
660      then
661         return False;
662      end if;
663
664      --  Backend processing is possible
665
666      Set_Size_Known_At_Compile_Time (Etype (N), True);
667      return True;
668   end Backend_Processing_Possible;
669
670   ---------------------------
671   -- Build_Array_Aggr_Code --
672   ---------------------------
673
674   --  The code that we generate from a one dimensional aggregate is
675
676   --  1. If the sub-aggregate contains discrete choices we
677
678   --     (a) Sort the discrete choices
679
680   --     (b) Otherwise for each discrete choice that specifies a range we
681   --         emit a loop. If a range specifies a maximum of three values, or
682   --         we are dealing with an expression we emit a sequence of
683   --         assignments instead of a loop.
684
685   --     (c) Generate the remaining loops to cover the others choice if any
686
687   --  2. If the aggregate contains positional elements we
688
689   --     (a) translate the positional elements in a series of assignments
690
691   --     (b) Generate a final loop to cover the others choice if any.
692   --         Note that this final loop has to be a while loop since the case
693
694   --             L : Integer := Integer'Last;
695   --             H : Integer := Integer'Last;
696   --             A : array (L .. H) := (1, others =>0);
697
698   --         cannot be handled by a for loop. Thus for the following
699
700   --             array (L .. H) := (.. positional elements.., others =>E);
701
702   --         we always generate something like:
703
704   --             J : Index_Type := Index_Of_Last_Positional_Element;
705   --             while J < H loop
706   --                J := Index_Base'Succ (J)
707   --                Tmp (J) := E;
708   --             end loop;
709
710   function Build_Array_Aggr_Code
711     (N           : Node_Id;
712      Ctype       : Entity_Id;
713      Index       : Node_Id;
714      Into        : Node_Id;
715      Scalar_Comp : Boolean;
716      Indexes     : List_Id := No_List) return List_Id
717   is
718      Loc          : constant Source_Ptr := Sloc (N);
719      Index_Base   : constant Entity_Id  := Base_Type (Etype (Index));
720      Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
721      Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
722
723      function Add (Val : Int; To : Node_Id) return Node_Id;
724      --  Returns an expression where Val is added to expression To, unless
725      --  To+Val is provably out of To's base type range. To must be an
726      --  already analyzed expression.
727
728      function Empty_Range (L, H : Node_Id) return Boolean;
729      --  Returns True if the range defined by L .. H is certainly empty
730
731      function Equal (L, H : Node_Id) return Boolean;
732      --  Returns True if L = H for sure
733
734      function Index_Base_Name return Node_Id;
735      --  Returns a new reference to the index type name
736
737      function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
738      --  Ind must be a side-effect free expression. If the input aggregate
739      --  N to Build_Loop contains no sub-aggregates, then this function
740      --  returns the assignment statement:
741      --
742      --     Into (Indexes, Ind) := Expr;
743      --
744      --  Otherwise we call Build_Code recursively
745      --
746      --  Ada 2005 (AI-287): In case of default initialized component, Expr
747      --  is empty and we generate a call to the corresponding IP subprogram.
748
749      function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
750      --  Nodes L and H must be side-effect free expressions.
751      --  If the input aggregate N to Build_Loop contains no sub-aggregates,
752      --  This routine returns the for loop statement
753      --
754      --     for J in Index_Base'(L) .. Index_Base'(H) loop
755      --        Into (Indexes, J) := Expr;
756      --     end loop;
757      --
758      --  Otherwise we call Build_Code recursively.
759      --  As an optimization if the loop covers 3 or less scalar elements we
760      --  generate a sequence of assignments.
761
762      function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
763      --  Nodes L and H must be side-effect free expressions.
764      --  If the input aggregate N to Build_Loop contains no sub-aggregates,
765      --  This routine returns the while loop statement
766      --
767      --     J : Index_Base := L;
768      --     while J < H loop
769      --        J := Index_Base'Succ (J);
770      --        Into (Indexes, J) := Expr;
771      --     end loop;
772      --
773      --  Otherwise we call Build_Code recursively
774
775      function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
776      function Local_Expr_Value               (E : Node_Id) return Uint;
777      --  These two Local routines are used to replace the corresponding ones
778      --  in sem_eval because while processing the bounds of an aggregate with
779      --  discrete choices whose index type is an enumeration, we build static
780      --  expressions not recognized by Compile_Time_Known_Value as such since
781      --  they have not yet been analyzed and resolved. All the expressions in
782      --  question are things like Index_Base_Name'Val (Const) which we can
783      --  easily recognize as being constant.
784
785      ---------
786      -- Add --
787      ---------
788
789      function Add (Val : Int; To : Node_Id) return Node_Id is
790         Expr_Pos : Node_Id;
791         Expr     : Node_Id;
792         To_Pos   : Node_Id;
793         U_To     : Uint;
794         U_Val    : constant Uint := UI_From_Int (Val);
795
796      begin
797         --  Note: do not try to optimize the case of Val = 0, because
798         --  we need to build a new node with the proper Sloc value anyway.
799
800         --  First test if we can do constant folding
801
802         if Local_Compile_Time_Known_Value (To) then
803            U_To := Local_Expr_Value (To) + Val;
804
805            --  Determine if our constant is outside the range of the index.
806            --  If so return an Empty node. This empty node will be caught
807            --  by Empty_Range below.
808
809            if Compile_Time_Known_Value (Index_Base_L)
810              and then U_To < Expr_Value (Index_Base_L)
811            then
812               return Empty;
813
814            elsif Compile_Time_Known_Value (Index_Base_H)
815              and then U_To > Expr_Value (Index_Base_H)
816            then
817               return Empty;
818            end if;
819
820            Expr_Pos := Make_Integer_Literal (Loc, U_To);
821            Set_Is_Static_Expression (Expr_Pos);
822
823            if not Is_Enumeration_Type (Index_Base) then
824               Expr := Expr_Pos;
825
826            --  If we are dealing with enumeration return
827            --     Index_Base'Val (Expr_Pos)
828
829            else
830               Expr :=
831                 Make_Attribute_Reference
832                   (Loc,
833                    Prefix         => Index_Base_Name,
834                    Attribute_Name => Name_Val,
835                    Expressions    => New_List (Expr_Pos));
836            end if;
837
838            return Expr;
839         end if;
840
841         --  If we are here no constant folding possible
842
843         if not Is_Enumeration_Type (Index_Base) then
844            Expr :=
845              Make_Op_Add (Loc,
846                           Left_Opnd  => Duplicate_Subexpr (To),
847                           Right_Opnd => Make_Integer_Literal (Loc, U_Val));
848
849         --  If we are dealing with enumeration return
850         --    Index_Base'Val (Index_Base'Pos (To) + Val)
851
852         else
853            To_Pos :=
854              Make_Attribute_Reference
855                (Loc,
856                 Prefix         => Index_Base_Name,
857                 Attribute_Name => Name_Pos,
858                 Expressions    => New_List (Duplicate_Subexpr (To)));
859
860            Expr_Pos :=
861              Make_Op_Add (Loc,
862                           Left_Opnd  => To_Pos,
863                           Right_Opnd => Make_Integer_Literal (Loc, U_Val));
864
865            Expr :=
866              Make_Attribute_Reference
867                (Loc,
868                 Prefix         => Index_Base_Name,
869                 Attribute_Name => Name_Val,
870                 Expressions    => New_List (Expr_Pos));
871         end if;
872
873         return Expr;
874      end Add;
875
876      -----------------
877      -- Empty_Range --
878      -----------------
879
880      function Empty_Range (L, H : Node_Id) return Boolean is
881         Is_Empty : Boolean := False;
882         Low      : Node_Id;
883         High     : Node_Id;
884
885      begin
886         --  First check if L or H were already detected as overflowing the
887         --  index base range type by function Add above. If this is so Add
888         --  returns the empty node.
889
890         if No (L) or else No (H) then
891            return True;
892         end if;
893
894         for J in 1 .. 3 loop
895            case J is
896
897               --  L > H    range is empty
898
899               when 1 =>
900                  Low  := L;
901                  High := H;
902
903               --  B_L > H  range must be empty
904
905               when 2 =>
906                  Low  := Index_Base_L;
907                  High := H;
908
909               --  L > B_H  range must be empty
910
911               when 3 =>
912                  Low  := L;
913                  High := Index_Base_H;
914            end case;
915
916            if Local_Compile_Time_Known_Value (Low)
917              and then Local_Compile_Time_Known_Value (High)
918            then
919               Is_Empty :=
920                 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
921            end if;
922
923            exit when Is_Empty;
924         end loop;
925
926         return Is_Empty;
927      end Empty_Range;
928
929      -----------
930      -- Equal --
931      -----------
932
933      function Equal (L, H : Node_Id) return Boolean is
934      begin
935         if L = H then
936            return True;
937
938         elsif Local_Compile_Time_Known_Value (L)
939           and then Local_Compile_Time_Known_Value (H)
940         then
941            return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
942         end if;
943
944         return False;
945      end Equal;
946
947      ----------------
948      -- Gen_Assign --
949      ----------------
950
951      function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
952         L : constant List_Id := New_List;
953         A : Node_Id;
954
955         New_Indexes  : List_Id;
956         Indexed_Comp : Node_Id;
957         Expr_Q       : Node_Id;
958         Comp_Type    : Entity_Id := Empty;
959
960         function Add_Loop_Actions (Lis : List_Id) return List_Id;
961         --  Collect insert_actions generated in the construction of a
962         --  loop, and prepend them to the sequence of assignments to
963         --  complete the eventual body of the loop.
964
965         ----------------------
966         -- Add_Loop_Actions --
967         ----------------------
968
969         function Add_Loop_Actions (Lis : List_Id) return List_Id is
970            Res : List_Id;
971
972         begin
973            --  Ada 2005 (AI-287): Do nothing else in case of default
974            --  initialized component.
975
976            if No (Expr) then
977               return Lis;
978
979            elsif Nkind (Parent (Expr)) = N_Component_Association
980              and then Present (Loop_Actions (Parent (Expr)))
981            then
982               Append_List (Lis, Loop_Actions (Parent (Expr)));
983               Res := Loop_Actions (Parent (Expr));
984               Set_Loop_Actions (Parent (Expr), No_List);
985               return Res;
986
987            else
988               return Lis;
989            end if;
990         end Add_Loop_Actions;
991
992      --  Start of processing for Gen_Assign
993
994      begin
995         if No (Indexes) then
996            New_Indexes := New_List;
997         else
998            New_Indexes := New_Copy_List_Tree (Indexes);
999         end if;
1000
1001         Append_To (New_Indexes, Ind);
1002
1003         if Present (Next_Index (Index)) then
1004            return
1005              Add_Loop_Actions (
1006                Build_Array_Aggr_Code
1007                  (N           => Expr,
1008                   Ctype       => Ctype,
1009                   Index       => Next_Index (Index),
1010                   Into        => Into,
1011                   Scalar_Comp => Scalar_Comp,
1012                   Indexes     => New_Indexes));
1013         end if;
1014
1015         --  If we get here then we are at a bottom-level (sub-)aggregate
1016
1017         Indexed_Comp :=
1018           Checks_Off
1019             (Make_Indexed_Component (Loc,
1020                Prefix      => New_Copy_Tree (Into),
1021                Expressions => New_Indexes));
1022
1023         Set_Assignment_OK (Indexed_Comp);
1024
1025         --  Ada 2005 (AI-287): In case of default initialized component, Expr
1026         --  is not present (and therefore we also initialize Expr_Q to empty).
1027
1028         if No (Expr) then
1029            Expr_Q := Empty;
1030         elsif Nkind (Expr) = N_Qualified_Expression then
1031            Expr_Q := Expression (Expr);
1032         else
1033            Expr_Q := Expr;
1034         end if;
1035
1036         if Present (Etype (N))
1037           and then Etype (N) /= Any_Composite
1038         then
1039            Comp_Type := Component_Type (Etype (N));
1040            pragma Assert (Comp_Type = Ctype); --  AI-287
1041
1042         elsif Present (Next (First (New_Indexes))) then
1043
1044            --  Ada 2005 (AI-287): Do nothing in case of default initialized
1045            --  component because we have received the component type in
1046            --  the formal parameter Ctype.
1047
1048            --  ??? Some assert pragmas have been added to check if this new
1049            --      formal can be used to replace this code in all cases.
1050
1051            if Present (Expr) then
1052
1053               --  This is a multidimensional array. Recover the component
1054               --  type from the outermost aggregate, because subaggregates
1055               --  do not have an assigned type.
1056
1057               declare
1058                  P : Node_Id;
1059
1060               begin
1061                  P := Parent (Expr);
1062                  while Present (P) loop
1063                     if Nkind (P) = N_Aggregate
1064                       and then Present (Etype (P))
1065                     then
1066                        Comp_Type := Component_Type (Etype (P));
1067                        exit;
1068
1069                     else
1070                        P := Parent (P);
1071                     end if;
1072                  end loop;
1073
1074                  pragma Assert (Comp_Type = Ctype); --  AI-287
1075               end;
1076            end if;
1077         end if;
1078
1079         --  Ada 2005 (AI-287): We only analyze the expression in case of non-
1080         --  default initialized components (otherwise Expr_Q is not present).
1081
1082         if Present (Expr_Q)
1083           and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
1084         then
1085            --  At this stage the Expression may not have been analyzed yet
1086            --  because the array aggregate code has not been updated to use
1087            --  the Expansion_Delayed flag and avoid analysis altogether to
1088            --  solve the same problem (see Resolve_Aggr_Expr). So let us do
1089            --  the analysis of non-array aggregates now in order to get the
1090            --  value of Expansion_Delayed flag for the inner aggregate ???
1091
1092            if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
1093               Analyze_And_Resolve (Expr_Q, Comp_Type);
1094            end if;
1095
1096            if Is_Delayed_Aggregate (Expr_Q) then
1097
1098               --  This is either a subaggregate of a multidimensional array,
1099               --  or a component of an array type whose component type is
1100               --  also an array. In the latter case, the expression may have
1101               --  component associations that provide different bounds from
1102               --  those of the component type, and sliding must occur. Instead
1103               --  of decomposing the current aggregate assignment, force the
1104               --  re-analysis of the assignment, so that a temporary will be
1105               --  generated in the usual fashion, and sliding will take place.
1106
1107               if Nkind (Parent (N)) = N_Assignment_Statement
1108                 and then Is_Array_Type (Comp_Type)
1109                 and then Present (Component_Associations (Expr_Q))
1110                 and then Must_Slide (Comp_Type, Etype (Expr_Q))
1111               then
1112                  Set_Expansion_Delayed (Expr_Q, False);
1113                  Set_Analyzed (Expr_Q, False);
1114
1115               else
1116                  return
1117                    Add_Loop_Actions (
1118                      Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
1119               end if;
1120            end if;
1121         end if;
1122
1123         --  Ada 2005 (AI-287): In case of default initialized component, call
1124         --  the initialization subprogram associated with the component type.
1125         --  If the component type is an access type, add an explicit null
1126         --  assignment, because for the back-end there is an initialization
1127         --  present for the whole aggregate, and no default initialization
1128         --  will take place.
1129
1130         --  In addition, if the component type is controlled, we must call
1131         --  its Initialize procedure explicitly, because there is no explicit
1132         --  object creation that will invoke it otherwise.
1133
1134         if No (Expr) then
1135            if Present (Base_Init_Proc (Base_Type (Ctype)))
1136              or else Has_Task (Base_Type (Ctype))
1137            then
1138               Append_List_To (L,
1139                 Build_Initialization_Call (Loc,
1140                   Id_Ref            => Indexed_Comp,
1141                   Typ               => Ctype,
1142                   With_Default_Init => True));
1143
1144            elsif Is_Access_Type (Ctype) then
1145               Append_To (L,
1146                  Make_Assignment_Statement (Loc,
1147                     Name => Indexed_Comp,
1148                     Expression => Make_Null (Loc)));
1149            end if;
1150
1151            if Needs_Finalization (Ctype) then
1152               Append_To (L,
1153                 Make_Init_Call (
1154                   Obj_Ref => New_Copy_Tree (Indexed_Comp),
1155                   Typ     => Ctype));
1156            end if;
1157
1158         else
1159            --  Now generate the assignment with no associated controlled
1160            --  actions since the target of the assignment may not have been
1161            --  initialized, it is not possible to Finalize it as expected by
1162            --  normal controlled assignment. The rest of the controlled
1163            --  actions are done manually with the proper finalization list
1164            --  coming from the context.
1165
1166            A :=
1167              Make_OK_Assignment_Statement (Loc,
1168                Name       => Indexed_Comp,
1169                Expression => New_Copy_Tree (Expr));
1170
1171            if Present (Comp_Type) and then Needs_Finalization (Comp_Type) then
1172               Set_No_Ctrl_Actions (A);
1173
1174               --  If this is an aggregate for an array of arrays, each
1175               --  sub-aggregate will be expanded as well, and even with
1176               --  No_Ctrl_Actions the assignments of inner components will
1177               --  require attachment in their assignments to temporaries.
1178               --  These temporaries must be finalized for each subaggregate,
1179               --  to prevent multiple attachments of the same temporary
1180               --  location to same finalization chain (and consequently
1181               --  circular lists). To ensure that finalization takes place
1182               --  for each subaggregate we wrap the assignment in a block.
1183
1184               if Is_Array_Type (Comp_Type)
1185                 and then Nkind (Expr) = N_Aggregate
1186               then
1187                  A :=
1188                    Make_Block_Statement (Loc,
1189                      Handled_Statement_Sequence =>
1190                        Make_Handled_Sequence_Of_Statements (Loc,
1191                           Statements => New_List (A)));
1192               end if;
1193            end if;
1194
1195            Append_To (L, A);
1196
1197            --  Adjust the tag if tagged (because of possible view
1198            --  conversions), unless compiling for a VM where
1199            --  tags are implicit.
1200
1201            if Present (Comp_Type)
1202              and then Is_Tagged_Type (Comp_Type)
1203              and then Tagged_Type_Expansion
1204            then
1205               declare
1206                  Full_Typ : constant Entity_Id := Underlying_Type (Comp_Type);
1207
1208               begin
1209                  A :=
1210                    Make_OK_Assignment_Statement (Loc,
1211                      Name =>
1212                        Make_Selected_Component (Loc,
1213                          Prefix =>  New_Copy_Tree (Indexed_Comp),
1214                          Selector_Name =>
1215                            New_Reference_To
1216                              (First_Tag_Component (Full_Typ), Loc)),
1217
1218                      Expression =>
1219                        Unchecked_Convert_To (RTE (RE_Tag),
1220                          New_Reference_To
1221                            (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
1222                             Loc)));
1223
1224                  Append_To (L, A);
1225               end;
1226            end if;
1227
1228            --  Adjust and attach the component to the proper final list, which
1229            --  can be the controller of the outer record object or the final
1230            --  list associated with the scope.
1231
1232            --  If the component is itself an array of controlled types, whose
1233            --  value is given by a sub-aggregate, then the attach calls have
1234            --  been generated when individual subcomponent are assigned, and
1235            --  must not be done again to prevent malformed finalization chains
1236            --  (see comments above, concerning the creation of a block to hold
1237            --  inner finalization actions).
1238
1239            if Present (Comp_Type)
1240              and then Needs_Finalization (Comp_Type)
1241              and then not Is_Limited_Type (Comp_Type)
1242              and then not
1243                (Is_Array_Type (Comp_Type)
1244                   and then Is_Controlled (Component_Type (Comp_Type))
1245                   and then Nkind (Expr) = N_Aggregate)
1246            then
1247               Append_To (L,
1248                 Make_Adjust_Call (
1249                   Obj_Ref => New_Copy_Tree (Indexed_Comp),
1250                   Typ     => Comp_Type));
1251            end if;
1252         end if;
1253
1254         return Add_Loop_Actions (L);
1255      end Gen_Assign;
1256
1257      --------------
1258      -- Gen_Loop --
1259      --------------
1260
1261      function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
1262         L_J : Node_Id;
1263
1264         L_L : Node_Id;
1265         --  Index_Base'(L)
1266
1267         L_H : Node_Id;
1268         --  Index_Base'(H)
1269
1270         L_Range : Node_Id;
1271         --  Index_Base'(L) .. Index_Base'(H)
1272
1273         L_Iteration_Scheme : Node_Id;
1274         --  L_J in Index_Base'(L) .. Index_Base'(H)
1275
1276         L_Body : List_Id;
1277         --  The statements to execute in the loop
1278
1279         S : constant List_Id := New_List;
1280         --  List of statements
1281
1282         Tcopy : Node_Id;
1283         --  Copy of expression tree, used for checking purposes
1284
1285      begin
1286         --  If loop bounds define an empty range return the null statement
1287
1288         if Empty_Range (L, H) then
1289            Append_To (S, Make_Null_Statement (Loc));
1290
1291            --  Ada 2005 (AI-287): Nothing else need to be done in case of
1292            --  default initialized component.
1293
1294            if No (Expr) then
1295               null;
1296
1297            else
1298               --  The expression must be type-checked even though no component
1299               --  of the aggregate will have this value. This is done only for
1300               --  actual components of the array, not for subaggregates. Do
1301               --  the check on a copy, because the expression may be shared
1302               --  among several choices, some of which might be non-null.
1303
1304               if Present (Etype (N))
1305                 and then Is_Array_Type (Etype (N))
1306                 and then No (Next_Index (Index))
1307               then
1308                  Expander_Mode_Save_And_Set (False);
1309                  Tcopy := New_Copy_Tree (Expr);
1310                  Set_Parent (Tcopy, N);
1311                  Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1312                  Expander_Mode_Restore;
1313               end if;
1314            end if;
1315
1316            return S;
1317
1318         --  If loop bounds are the same then generate an assignment
1319
1320         elsif Equal (L, H) then
1321            return Gen_Assign (New_Copy_Tree (L), Expr);
1322
1323         --  If H - L <= 2 then generate a sequence of assignments when we are
1324         --  processing the bottom most aggregate and it contains scalar
1325         --  components.
1326
1327         elsif No (Next_Index (Index))
1328           and then Scalar_Comp
1329           and then Local_Compile_Time_Known_Value (L)
1330           and then Local_Compile_Time_Known_Value (H)
1331           and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
1332         then
1333
1334            Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1335            Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1336
1337            if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1338               Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1339            end if;
1340
1341            return S;
1342         end if;
1343
1344         --  Otherwise construct the loop, starting with the loop index L_J
1345
1346         L_J := Make_Temporary (Loc, 'J', L);
1347
1348         --  Construct "L .. H" in Index_Base. We use a qualified expression
1349         --  for the bound to convert to the index base, but we don't need
1350         --  to do that if we already have the base type at hand.
1351
1352         if Etype (L) = Index_Base then
1353            L_L := L;
1354         else
1355            L_L :=
1356              Make_Qualified_Expression (Loc,
1357                Subtype_Mark => Index_Base_Name,
1358                Expression   => L);
1359         end if;
1360
1361         if Etype (H) = Index_Base then
1362            L_H := H;
1363         else
1364            L_H :=
1365              Make_Qualified_Expression (Loc,
1366                Subtype_Mark => Index_Base_Name,
1367                Expression   => H);
1368         end if;
1369
1370         L_Range :=
1371           Make_Range (Loc,
1372             Low_Bound => L_L,
1373             High_Bound => L_H);
1374
1375         --  Construct "for L_J in Index_Base range L .. H"
1376
1377         L_Iteration_Scheme :=
1378           Make_Iteration_Scheme
1379             (Loc,
1380              Loop_Parameter_Specification =>
1381                Make_Loop_Parameter_Specification
1382                  (Loc,
1383                   Defining_Identifier         => L_J,
1384                   Discrete_Subtype_Definition => L_Range));
1385
1386         --  Construct the statements to execute in the loop body
1387
1388         L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
1389
1390         --  Construct the final loop
1391
1392         Append_To (S, Make_Implicit_Loop_Statement
1393                         (Node             => N,
1394                          Identifier       => Empty,
1395                          Iteration_Scheme => L_Iteration_Scheme,
1396                          Statements       => L_Body));
1397
1398         --  A small optimization: if the aggregate is initialized with a box
1399         --  and the component type has no initialization procedure, remove the
1400         --  useless empty loop.
1401
1402         if Nkind (First (S)) = N_Loop_Statement
1403           and then Is_Empty_List (Statements (First (S)))
1404         then
1405            return New_List (Make_Null_Statement (Loc));
1406         else
1407            return S;
1408         end if;
1409      end Gen_Loop;
1410
1411      ---------------
1412      -- Gen_While --
1413      ---------------
1414
1415      --  The code built is
1416
1417      --     W_J : Index_Base := L;
1418      --     while W_J < H loop
1419      --        W_J := Index_Base'Succ (W);
1420      --        L_Body;
1421      --     end loop;
1422
1423      function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
1424         W_J : Node_Id;
1425
1426         W_Decl : Node_Id;
1427         --  W_J : Base_Type := L;
1428
1429         W_Iteration_Scheme : Node_Id;
1430         --  while W_J < H
1431
1432         W_Index_Succ : Node_Id;
1433         --  Index_Base'Succ (J)
1434
1435         W_Increment : Node_Id;
1436         --  W_J := Index_Base'Succ (W)
1437
1438         W_Body : constant List_Id := New_List;
1439         --  The statements to execute in the loop
1440
1441         S : constant List_Id := New_List;
1442         --  list of statement
1443
1444      begin
1445         --  If loop bounds define an empty range or are equal return null
1446
1447         if Empty_Range (L, H) or else Equal (L, H) then
1448            Append_To (S, Make_Null_Statement (Loc));
1449            return S;
1450         end if;
1451
1452         --  Build the decl of W_J
1453
1454         W_J    := Make_Temporary (Loc, 'J', L);
1455         W_Decl :=
1456           Make_Object_Declaration
1457             (Loc,
1458              Defining_Identifier => W_J,
1459              Object_Definition   => Index_Base_Name,
1460              Expression          => L);
1461
1462         --  Theoretically we should do a New_Copy_Tree (L) here, but we know
1463         --  that in this particular case L is a fresh Expr generated by
1464         --  Add which we are the only ones to use.
1465
1466         Append_To (S, W_Decl);
1467
1468         --  Construct " while W_J < H"
1469
1470         W_Iteration_Scheme :=
1471           Make_Iteration_Scheme
1472             (Loc,
1473              Condition => Make_Op_Lt
1474                             (Loc,
1475                              Left_Opnd  => New_Reference_To (W_J, Loc),
1476                              Right_Opnd => New_Copy_Tree (H)));
1477
1478         --  Construct the statements to execute in the loop body
1479
1480         W_Index_Succ :=
1481           Make_Attribute_Reference
1482             (Loc,
1483              Prefix         => Index_Base_Name,
1484              Attribute_Name => Name_Succ,
1485              Expressions    => New_List (New_Reference_To (W_J, Loc)));
1486
1487         W_Increment  :=
1488           Make_OK_Assignment_Statement
1489             (Loc,
1490              Name       => New_Reference_To (W_J, Loc),
1491              Expression => W_Index_Succ);
1492
1493         Append_To (W_Body, W_Increment);
1494         Append_List_To (W_Body,
1495           Gen_Assign (New_Reference_To (W_J, Loc), Expr));
1496
1497         --  Construct the final loop
1498
1499         Append_To (S, Make_Implicit_Loop_Statement
1500                         (Node             => N,
1501                          Identifier       => Empty,
1502                          Iteration_Scheme => W_Iteration_Scheme,
1503                          Statements       => W_Body));
1504
1505         return S;
1506      end Gen_While;
1507
1508      ---------------------
1509      -- Index_Base_Name --
1510      ---------------------
1511
1512      function Index_Base_Name return Node_Id is
1513      begin
1514         return New_Reference_To (Index_Base, Sloc (N));
1515      end Index_Base_Name;
1516
1517      ------------------------------------
1518      -- Local_Compile_Time_Known_Value --
1519      ------------------------------------
1520
1521      function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1522      begin
1523         return Compile_Time_Known_Value (E)
1524           or else
1525             (Nkind (E) = N_Attribute_Reference
1526               and then Attribute_Name (E) = Name_Val
1527               and then Compile_Time_Known_Value (First (Expressions (E))));
1528      end Local_Compile_Time_Known_Value;
1529
1530      ----------------------
1531      -- Local_Expr_Value --
1532      ----------------------
1533
1534      function Local_Expr_Value (E : Node_Id) return Uint is
1535      begin
1536         if Compile_Time_Known_Value (E) then
1537            return Expr_Value (E);
1538         else
1539            return Expr_Value (First (Expressions (E)));
1540         end if;
1541      end Local_Expr_Value;
1542
1543      --  Build_Array_Aggr_Code Variables
1544
1545      Assoc  : Node_Id;
1546      Choice : Node_Id;
1547      Expr   : Node_Id;
1548      Typ    : Entity_Id;
1549
1550      Others_Expr        : Node_Id := Empty;
1551      Others_Box_Present : Boolean := False;
1552
1553      Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1554      Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1555      --  The aggregate bounds of this specific sub-aggregate. Note that if
1556      --  the code generated by Build_Array_Aggr_Code is executed then these
1557      --  bounds are OK. Otherwise a Constraint_Error would have been raised.
1558
1559      Aggr_Low  : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1560      Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
1561      --  After Duplicate_Subexpr these are side-effect free
1562
1563      Low        : Node_Id;
1564      High       : Node_Id;
1565
1566      Nb_Choices : Nat := 0;
1567      Table      : Case_Table_Type (1 .. Number_Of_Choices (N));
1568      --  Used to sort all the different choice values
1569
1570      Nb_Elements : Int;
1571      --  Number of elements in the positional aggregate
1572
1573      New_Code : constant List_Id := New_List;
1574
1575   --  Start of processing for Build_Array_Aggr_Code
1576
1577   begin
1578      --  First before we start, a special case. if we have a bit packed
1579      --  array represented as a modular type, then clear the value to
1580      --  zero first, to ensure that unused bits are properly cleared.
1581
1582      Typ := Etype (N);
1583
1584      if Present (Typ)
1585        and then Is_Bit_Packed_Array (Typ)
1586        and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
1587      then
1588         Append_To (New_Code,
1589           Make_Assignment_Statement (Loc,
1590             Name => New_Copy_Tree (Into),
1591             Expression =>
1592               Unchecked_Convert_To (Typ,
1593                 Make_Integer_Literal (Loc, Uint_0))));
1594      end if;
1595
1596      --  If the component type contains tasks, we need to build a Master
1597      --  entity in the current scope, because it will be needed if build-
1598      --  in-place functions are called in the expanded code.
1599
1600      if Nkind (Parent (N)) = N_Object_Declaration
1601        and then Has_Task (Typ)
1602      then
1603         Build_Master_Entity (Defining_Identifier (Parent (N)));
1604      end if;
1605
1606      --  STEP 1: Process component associations
1607
1608      --  For those associations that may generate a loop, initialize
1609      --  Loop_Actions to collect inserted actions that may be crated.
1610
1611      --  Skip this if no component associations
1612
1613      if No (Expressions (N)) then
1614
1615         --  STEP 1 (a): Sort the discrete choices
1616
1617         Assoc := First (Component_Associations (N));
1618         while Present (Assoc) loop
1619            Choice := First (Choices (Assoc));
1620            while Present (Choice) loop
1621               if Nkind (Choice) = N_Others_Choice then
1622                  Set_Loop_Actions (Assoc, New_List);
1623
1624                  if Box_Present (Assoc) then
1625                     Others_Box_Present := True;
1626                  else
1627                     Others_Expr := Expression (Assoc);
1628                  end if;
1629                  exit;
1630               end if;
1631
1632               Get_Index_Bounds (Choice, Low, High);
1633
1634               if Low /= High then
1635                  Set_Loop_Actions (Assoc, New_List);
1636               end if;
1637
1638               Nb_Choices := Nb_Choices + 1;
1639               if Box_Present (Assoc) then
1640                  Table (Nb_Choices) := (Choice_Lo   => Low,
1641                                         Choice_Hi   => High,
1642                                         Choice_Node => Empty);
1643               else
1644                  Table (Nb_Choices) := (Choice_Lo   => Low,
1645                                         Choice_Hi   => High,
1646                                         Choice_Node => Expression (Assoc));
1647               end if;
1648               Next (Choice);
1649            end loop;
1650
1651            Next (Assoc);
1652         end loop;
1653
1654         --  If there is more than one set of choices these must be static
1655         --  and we can therefore sort them. Remember that Nb_Choices does not
1656         --  account for an others choice.
1657
1658         if Nb_Choices > 1 then
1659            Sort_Case_Table (Table);
1660         end if;
1661
1662         --  STEP 1 (b):  take care of the whole set of discrete choices
1663
1664         for J in 1 .. Nb_Choices loop
1665            Low  := Table (J).Choice_Lo;
1666            High := Table (J).Choice_Hi;
1667            Expr := Table (J).Choice_Node;
1668            Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1669         end loop;
1670
1671         --  STEP 1 (c): generate the remaining loops to cover others choice
1672         --  We don't need to generate loops over empty gaps, but if there is
1673         --  a single empty range we must analyze the expression for semantics
1674
1675         if Present (Others_Expr) or else Others_Box_Present then
1676            declare
1677               First : Boolean := True;
1678
1679            begin
1680               for J in 0 .. Nb_Choices loop
1681                  if J = 0 then
1682                     Low := Aggr_Low;
1683                  else
1684                     Low := Add (1, To => Table (J).Choice_Hi);
1685                  end if;
1686
1687                  if J = Nb_Choices then
1688                     High := Aggr_High;
1689                  else
1690                     High := Add (-1, To => Table (J + 1).Choice_Lo);
1691                  end if;
1692
1693                  --  If this is an expansion within an init proc, make
1694                  --  sure that discriminant references are replaced by
1695                  --  the corresponding discriminal.
1696
1697                  if Inside_Init_Proc then
1698                     if Is_Entity_Name (Low)
1699                       and then Ekind (Entity (Low)) = E_Discriminant
1700                     then
1701                        Set_Entity (Low, Discriminal (Entity (Low)));
1702                     end if;
1703
1704                     if Is_Entity_Name (High)
1705                       and then Ekind (Entity (High)) = E_Discriminant
1706                     then
1707                        Set_Entity (High, Discriminal (Entity (High)));
1708                     end if;
1709                  end if;
1710
1711                  if First
1712                    or else not Empty_Range (Low, High)
1713                  then
1714                     First := False;
1715                     Append_List
1716                       (Gen_Loop (Low, High, Others_Expr), To => New_Code);
1717                  end if;
1718               end loop;
1719            end;
1720         end if;
1721
1722      --  STEP 2: Process positional components
1723
1724      else
1725         --  STEP 2 (a): Generate the assignments for each positional element
1726         --  Note that here we have to use Aggr_L rather than Aggr_Low because
1727         --  Aggr_L is analyzed and Add wants an analyzed expression.
1728
1729         Expr        := First (Expressions (N));
1730         Nb_Elements := -1;
1731         while Present (Expr) loop
1732            Nb_Elements := Nb_Elements + 1;
1733            Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1734                         To => New_Code);
1735            Next (Expr);
1736         end loop;
1737
1738         --  STEP 2 (b): Generate final loop if an others choice is present
1739         --  Here Nb_Elements gives the offset of the last positional element.
1740
1741         if Present (Component_Associations (N)) then
1742            Assoc := Last (Component_Associations (N));
1743
1744            --  Ada 2005 (AI-287)
1745
1746            if Box_Present (Assoc) then
1747               Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1748                                       Aggr_High,
1749                                       Empty),
1750                            To => New_Code);
1751            else
1752               Expr  := Expression (Assoc);
1753
1754               Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1755                                       Aggr_High,
1756                                       Expr), --  AI-287
1757                            To => New_Code);
1758            end if;
1759         end if;
1760      end if;
1761
1762      return New_Code;
1763   end Build_Array_Aggr_Code;
1764
1765   ----------------------------
1766   -- Build_Record_Aggr_Code --
1767   ----------------------------
1768
1769   function Build_Record_Aggr_Code
1770     (N   : Node_Id;
1771      Typ : Entity_Id;
1772      Lhs : Node_Id) return List_Id
1773   is
1774      Loc     : constant Source_Ptr := Sloc (N);
1775      L       : constant List_Id    := New_List;
1776      N_Typ   : constant Entity_Id  := Etype (N);
1777
1778      Comp      : Node_Id;
1779      Instr     : Node_Id;
1780      Ref       : Node_Id;
1781      Target    : Entity_Id;
1782      Comp_Type : Entity_Id;
1783      Selector  : Entity_Id;
1784      Comp_Expr : Node_Id;
1785      Expr_Q    : Node_Id;
1786
1787      --  If this is an internal aggregate, the External_Final_List is an
1788      --  expression for the controller record of the enclosing type.
1789
1790      --  If the current aggregate has several controlled components, this
1791      --  expression will appear in several calls to attach to the finali-
1792      --  zation list, and it must not be shared.
1793
1794      Ancestor_Is_Expression   : Boolean := False;
1795      Ancestor_Is_Subtype_Mark : Boolean := False;
1796
1797      Init_Typ : Entity_Id := Empty;
1798
1799      Finalization_Done : Boolean := False;
1800      --  True if Generate_Finalization_Actions has already been called; calls
1801      --  after the first do nothing.
1802
1803      function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
1804      --  Returns the value that the given discriminant of an ancestor type
1805      --  should receive (in the absence of a conflict with the value provided
1806      --  by an ancestor part of an extension aggregate).
1807
1808      procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
1809      --  Check that each of the discriminant values defined by the ancestor
1810      --  part of an extension aggregate match the corresponding values
1811      --  provided by either an association of the aggregate or by the
1812      --  constraint imposed by a parent type (RM95-4.3.2(8)).
1813
1814      function Compatible_Int_Bounds
1815        (Agg_Bounds : Node_Id;
1816         Typ_Bounds : Node_Id) return Boolean;
1817      --  Return true if Agg_Bounds are equal or within Typ_Bounds. It is
1818      --  assumed that both bounds are integer ranges.
1819
1820      procedure Generate_Finalization_Actions;
1821      --  Deal with the various controlled type data structure initializations
1822      --  (but only if it hasn't been done already).
1823
1824      function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1825      --  Returns the first discriminant association in the constraint
1826      --  associated with T, if any, otherwise returns Empty.
1827
1828      procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
1829      --  If Typ is derived, and constrains discriminants of the parent type,
1830      --  these discriminants are not components of the aggregate, and must be
1831      --  initialized. The assignments are appended to List.
1832
1833      function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
1834      --  Check whether Bounds is a range node and its lower and higher bounds
1835      --  are integers literals.
1836
1837      ---------------------------------
1838      -- Ancestor_Discriminant_Value --
1839      ---------------------------------
1840
1841      function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1842         Assoc        : Node_Id;
1843         Assoc_Elmt   : Elmt_Id;
1844         Aggr_Comp    : Entity_Id;
1845         Corresp_Disc : Entity_Id;
1846         Current_Typ  : Entity_Id := Base_Type (Typ);
1847         Parent_Typ   : Entity_Id;
1848         Parent_Disc  : Entity_Id;
1849         Save_Assoc   : Node_Id := Empty;
1850
1851      begin
1852         --  First check any discriminant associations to see if any of them
1853         --  provide a value for the discriminant.
1854
1855         if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1856            Assoc := First (Component_Associations (N));
1857            while Present (Assoc) loop
1858               Aggr_Comp := Entity (First (Choices (Assoc)));
1859
1860               if Ekind (Aggr_Comp) = E_Discriminant then
1861                  Save_Assoc := Expression (Assoc);
1862
1863                  Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1864                  while Present (Corresp_Disc) loop
1865
1866                     --  If found a corresponding discriminant then return the
1867                     --  value given in the aggregate. (Note: this is not
1868                     --  correct in the presence of side effects. ???)
1869
1870                     if Disc = Corresp_Disc then
1871                        return Duplicate_Subexpr (Expression (Assoc));
1872                     end if;
1873
1874                     Corresp_Disc :=
1875                       Corresponding_Discriminant (Corresp_Disc);
1876                  end loop;
1877               end if;
1878
1879               Next (Assoc);
1880            end loop;
1881         end if;
1882
1883         --  No match found in aggregate, so chain up parent types to find
1884         --  a constraint that defines the value of the discriminant.
1885
1886         Parent_Typ := Etype (Current_Typ);
1887         while Current_Typ /= Parent_Typ loop
1888            if Has_Discriminants (Parent_Typ)
1889              and then not Has_Unknown_Discriminants (Parent_Typ)
1890            then
1891               Parent_Disc := First_Discriminant (Parent_Typ);
1892
1893               --  We either get the association from the subtype indication
1894               --  of the type definition itself, or from the discriminant
1895               --  constraint associated with the type entity (which is
1896               --  preferable, but it's not always present ???)
1897
1898               if Is_Empty_Elmt_List (
1899                 Discriminant_Constraint (Current_Typ))
1900               then
1901                  Assoc := Get_Constraint_Association (Current_Typ);
1902                  Assoc_Elmt := No_Elmt;
1903               else
1904                  Assoc_Elmt :=
1905                    First_Elmt (Discriminant_Constraint (Current_Typ));
1906                  Assoc := Node (Assoc_Elmt);
1907               end if;
1908
1909               --  Traverse the discriminants of the parent type looking
1910               --  for one that corresponds.
1911
1912               while Present (Parent_Disc) and then Present (Assoc) loop
1913                  Corresp_Disc := Parent_Disc;
1914                  while Present (Corresp_Disc)
1915                    and then Disc /= Corresp_Disc
1916                  loop
1917                     Corresp_Disc :=
1918                       Corresponding_Discriminant (Corresp_Disc);
1919                  end loop;
1920
1921                  if Disc = Corresp_Disc then
1922                     if Nkind (Assoc) = N_Discriminant_Association then
1923                        Assoc := Expression (Assoc);
1924                     end if;
1925
1926                     --  If the located association directly denotes a
1927                     --  discriminant, then use the value of a saved
1928                     --  association of the aggregate. This is a kludge to
1929                     --  handle certain cases involving multiple discriminants
1930                     --  mapped to a single discriminant of a descendant. It's
1931                     --  not clear how to locate the appropriate discriminant
1932                     --  value for such cases. ???
1933
1934                     if Is_Entity_Name (Assoc)
1935                       and then Ekind (Entity (Assoc)) = E_Discriminant
1936                     then
1937                        Assoc := Save_Assoc;
1938                     end if;
1939
1940                     return Duplicate_Subexpr (Assoc);
1941                  end if;
1942
1943                  Next_Discriminant (Parent_Disc);
1944
1945                  if No (Assoc_Elmt) then
1946                     Next (Assoc);
1947                  else
1948                     Next_Elmt (Assoc_Elmt);
1949                     if Present (Assoc_Elmt) then
1950                        Assoc := Node (Assoc_Elmt);
1951                     else
1952                        Assoc := Empty;
1953                     end if;
1954                  end if;
1955               end loop;
1956            end if;
1957
1958            Current_Typ := Parent_Typ;
1959            Parent_Typ := Etype (Current_Typ);
1960         end loop;
1961
1962         --  In some cases there's no ancestor value to locate (such as
1963         --  when an ancestor part given by an expression defines the
1964         --  discriminant value).
1965
1966         return Empty;
1967      end Ancestor_Discriminant_Value;
1968
1969      ----------------------------------
1970      -- Check_Ancestor_Discriminants --
1971      ----------------------------------
1972
1973      procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
1974         Discr      : Entity_Id;
1975         Disc_Value : Node_Id;
1976         Cond       : Node_Id;
1977
1978      begin
1979         Discr := First_Discriminant (Base_Type (Anc_Typ));
1980         while Present (Discr) loop
1981            Disc_Value := Ancestor_Discriminant_Value (Discr);
1982
1983            if Present (Disc_Value) then
1984               Cond := Make_Op_Ne (Loc,
1985                 Left_Opnd =>
1986                   Make_Selected_Component (Loc,
1987                     Prefix        => New_Copy_Tree (Target),
1988                     Selector_Name => New_Occurrence_Of (Discr, Loc)),
1989                 Right_Opnd => Disc_Value);
1990
1991               Append_To (L,
1992                 Make_Raise_Constraint_Error (Loc,
1993                   Condition => Cond,
1994                   Reason    => CE_Discriminant_Check_Failed));
1995            end if;
1996
1997            Next_Discriminant (Discr);
1998         end loop;
1999      end Check_Ancestor_Discriminants;
2000
2001      ---------------------------
2002      -- Compatible_Int_Bounds --
2003      ---------------------------
2004
2005      function Compatible_Int_Bounds
2006        (Agg_Bounds : Node_Id;
2007         Typ_Bounds : Node_Id) return Boolean
2008      is
2009         Agg_Lo : constant Uint := Intval (Low_Bound  (Agg_Bounds));
2010         Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
2011         Typ_Lo : constant Uint := Intval (Low_Bound  (Typ_Bounds));
2012         Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
2013      begin
2014         return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
2015      end Compatible_Int_Bounds;
2016
2017      --------------------------------
2018      -- Get_Constraint_Association --
2019      --------------------------------
2020
2021      function Get_Constraint_Association (T : Entity_Id) return Node_Id is
2022         Indic : Node_Id;
2023         Typ   : Entity_Id;
2024
2025      begin
2026         Typ := T;
2027
2028         --  Handle private types in instances
2029
2030         if In_Instance
2031           and then Is_Private_Type (Typ)
2032           and then Present (Full_View (Typ))
2033         then
2034            Typ := Full_View (Typ);
2035         end if;
2036
2037         Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
2038
2039         --  ??? Also need to cover case of a type mark denoting a subtype
2040         --  with constraint.
2041
2042         if Nkind (Indic) = N_Subtype_Indication
2043           and then Present (Constraint (Indic))
2044         then
2045            return First (Constraints (Constraint (Indic)));
2046         end if;
2047
2048         return Empty;
2049      end Get_Constraint_Association;
2050
2051      -------------------------------
2052      -- Init_Hidden_Discriminants --
2053      -------------------------------
2054
2055      procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
2056         Btype       : Entity_Id;
2057         Parent_Type : Entity_Id;
2058         Disc        : Entity_Id;
2059         Discr_Val   : Elmt_Id;
2060
2061      begin
2062         Btype := Base_Type (Typ);
2063         while Is_Derived_Type (Btype)
2064           and then Present (Stored_Constraint (Btype))
2065         loop
2066            Parent_Type := Etype (Btype);
2067
2068            Disc := First_Discriminant (Parent_Type);
2069            Discr_Val := First_Elmt (Stored_Constraint (Base_Type (Typ)));
2070            while Present (Discr_Val) loop
2071
2072               --  Only those discriminants of the parent that are not
2073               --  renamed by discriminants of the derived type need to
2074               --  be added explicitly.
2075
2076               if not Is_Entity_Name (Node (Discr_Val))
2077                 or else Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
2078               then
2079                  Comp_Expr :=
2080                    Make_Selected_Component (Loc,
2081                      Prefix        => New_Copy_Tree (Target),
2082                      Selector_Name => New_Occurrence_Of (Disc, Loc));
2083
2084                  Instr :=
2085                    Make_OK_Assignment_Statement (Loc,
2086                      Name       => Comp_Expr,
2087                      Expression => New_Copy_Tree (Node (Discr_Val)));
2088
2089                  Set_No_Ctrl_Actions (Instr);
2090                  Append_To (List, Instr);
2091               end if;
2092
2093               Next_Discriminant (Disc);
2094               Next_Elmt (Discr_Val);
2095            end loop;
2096
2097            Btype := Base_Type (Parent_Type);
2098         end loop;
2099      end Init_Hidden_Discriminants;
2100
2101      -------------------------
2102      -- Is_Int_Range_Bounds --
2103      -------------------------
2104
2105      function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2106      begin
2107         return Nkind (Bounds) = N_Range
2108           and then Nkind (Low_Bound  (Bounds)) = N_Integer_Literal
2109           and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2110      end Is_Int_Range_Bounds;
2111
2112      -----------------------------------
2113      -- Generate_Finalization_Actions --
2114      -----------------------------------
2115
2116      procedure Generate_Finalization_Actions is
2117      begin
2118         --  Do the work only the first time this is called
2119
2120         if Finalization_Done then
2121            return;
2122         end if;
2123
2124         Finalization_Done := True;
2125
2126         --  Determine the external finalization list. It is either the
2127         --  finalization list of the outer-scope or the one coming from
2128         --  an outer aggregate. When the target is not a temporary, the
2129         --  proper scope is the scope of the target rather than the
2130         --  potentially transient current scope.
2131
2132         if Is_Controlled (Typ)
2133           and then Ancestor_Is_Subtype_Mark
2134         then
2135            Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2136            Set_Assignment_OK (Ref);
2137
2138            Append_To (L,
2139              Make_Procedure_Call_Statement (Loc,
2140                Name =>
2141                  New_Reference_To
2142                    (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2143                Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2144         end if;
2145      end Generate_Finalization_Actions;
2146
2147      function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2148      --  If default expression of a component mentions a discriminant of the
2149      --  type, it must be rewritten as the discriminant of the target object.
2150
2151      function Replace_Type (Expr : Node_Id) return Traverse_Result;
2152      --  If the aggregate contains a self-reference, traverse each expression
2153      --  to replace a possible self-reference with a reference to the proper
2154      --  component of the target of the assignment.
2155
2156      --------------------------
2157      -- Rewrite_Discriminant --
2158      --------------------------
2159
2160      function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2161      begin
2162         if Is_Entity_Name (Expr)
2163           and then Present (Entity (Expr))
2164           and then Ekind (Entity (Expr)) = E_In_Parameter
2165           and then Present (Discriminal_Link (Entity (Expr)))
2166           and then Scope (Discriminal_Link (Entity (Expr)))
2167                      = Base_Type (Etype (N))
2168         then
2169            Rewrite (Expr,
2170              Make_Selected_Component (Loc,
2171                Prefix        => New_Copy_Tree (Lhs),
2172                Selector_Name => Make_Identifier (Loc, Chars (Expr))));
2173         end if;
2174         return OK;
2175      end Rewrite_Discriminant;
2176
2177      ------------------
2178      -- Replace_Type --
2179      ------------------
2180
2181      function Replace_Type (Expr : Node_Id) return Traverse_Result is
2182      begin
2183         --  Note regarding the Root_Type test below: Aggregate components for
2184         --  self-referential types include attribute references to the current
2185         --  instance, of the form: Typ'access, etc.. These references are
2186         --  rewritten as references to the target of the aggregate: the
2187         --  left-hand side of an assignment, the entity in a declaration,
2188         --  or a temporary. Without this test, we would improperly extended
2189         --  this rewriting to attribute references whose prefix was not the
2190         --  type of the aggregate.
2191
2192         if Nkind (Expr) = N_Attribute_Reference
2193           and then Is_Entity_Name (Prefix (Expr))
2194           and then Is_Type (Entity (Prefix (Expr)))
2195           and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
2196         then
2197            if Is_Entity_Name (Lhs) then
2198               Rewrite (Prefix (Expr),
2199                 New_Occurrence_Of (Entity (Lhs), Loc));
2200
2201            elsif Nkind (Lhs) = N_Selected_Component then
2202               Rewrite (Expr,
2203                 Make_Attribute_Reference (Loc,
2204                   Attribute_Name => Name_Unrestricted_Access,
2205                   Prefix         => New_Copy_Tree (Lhs)));
2206               Set_Analyzed (Parent (Expr), False);
2207
2208            else
2209               Rewrite (Expr,
2210                 Make_Attribute_Reference (Loc,
2211                   Attribute_Name => Name_Unrestricted_Access,
2212                   Prefix         => New_Copy_Tree (Lhs)));
2213               Set_Analyzed (Parent (Expr), False);
2214            end if;
2215         end if;
2216
2217         return OK;
2218      end Replace_Type;
2219
2220      procedure Replace_Self_Reference is
2221        new Traverse_Proc (Replace_Type);
2222
2223      procedure Replace_Discriminants is
2224        new Traverse_Proc (Rewrite_Discriminant);
2225
2226   --  Start of processing for Build_Record_Aggr_Code
2227
2228   begin
2229      if Has_Self_Reference (N) then
2230         Replace_Self_Reference (N);
2231      end if;
2232
2233      --  If the target of the aggregate is class-wide, we must convert it
2234      --  to the actual type of the aggregate, so that the proper components
2235      --  are visible. We know already that the types are compatible.
2236
2237      if Present (Etype (Lhs))
2238        and then Is_Class_Wide_Type (Etype (Lhs))
2239      then
2240         Target := Unchecked_Convert_To (Typ, Lhs);
2241      else
2242         Target := Lhs;
2243      end if;
2244
2245      --  Deal with the ancestor part of extension aggregates or with the
2246      --  discriminants of the root type.
2247
2248      if Nkind (N) = N_Extension_Aggregate then
2249         declare
2250            Ancestor : constant Node_Id := Ancestor_Part (N);
2251            Assign   : List_Id;
2252
2253         begin
2254            --  If the ancestor part is a subtype mark "T", we generate
2255
2256            --     init-proc (T (tmp));  if T is constrained and
2257            --     init-proc (S (tmp));  where S applies an appropriate
2258            --                           constraint if T is unconstrained
2259
2260            if Is_Entity_Name (Ancestor)
2261              and then Is_Type (Entity (Ancestor))
2262            then
2263               Ancestor_Is_Subtype_Mark := True;
2264
2265               if Is_Constrained (Entity (Ancestor)) then
2266                  Init_Typ := Entity (Ancestor);
2267
2268               --  For an ancestor part given by an unconstrained type mark,
2269               --  create a subtype constrained by appropriate corresponding
2270               --  discriminant values coming from either associations of the
2271               --  aggregate or a constraint on a parent type. The subtype will
2272               --  be used to generate the correct default value for the
2273               --  ancestor part.
2274
2275               elsif Has_Discriminants (Entity (Ancestor)) then
2276                  declare
2277                     Anc_Typ    : constant Entity_Id := Entity (Ancestor);
2278                     Anc_Constr : constant List_Id   := New_List;
2279                     Discrim    : Entity_Id;
2280                     Disc_Value : Node_Id;
2281                     New_Indic  : Node_Id;
2282                     Subt_Decl  : Node_Id;
2283
2284                  begin
2285                     Discrim := First_Discriminant (Anc_Typ);
2286                     while Present (Discrim) loop
2287                        Disc_Value := Ancestor_Discriminant_Value (Discrim);
2288                        Append_To (Anc_Constr, Disc_Value);
2289                        Next_Discriminant (Discrim);
2290                     end loop;
2291
2292                     New_Indic :=
2293                       Make_Subtype_Indication (Loc,
2294                         Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2295                         Constraint   =>
2296                           Make_Index_Or_Discriminant_Constraint (Loc,
2297                             Constraints => Anc_Constr));
2298
2299                     Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2300
2301                     Subt_Decl :=
2302                       Make_Subtype_Declaration (Loc,
2303                         Defining_Identifier => Init_Typ,
2304                         Subtype_Indication  => New_Indic);
2305
2306                     --  Itypes must be analyzed with checks off Declaration
2307                     --  must have a parent for proper handling of subsidiary
2308                     --  actions.
2309
2310                     Set_Parent (Subt_Decl, N);
2311                     Analyze (Subt_Decl, Suppress => All_Checks);
2312                  end;
2313               end if;
2314
2315               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2316               Set_Assignment_OK (Ref);
2317
2318               if not Is_Interface (Init_Typ) then
2319                  Append_List_To (L,
2320                    Build_Initialization_Call (Loc,
2321                      Id_Ref            => Ref,
2322                      Typ               => Init_Typ,
2323                      In_Init_Proc      => Within_Init_Proc,
2324                      With_Default_Init => Has_Default_Init_Comps (N)
2325                                             or else
2326                                           Has_Task (Base_Type (Init_Typ))));
2327
2328                  if Is_Constrained (Entity (Ancestor))
2329                    and then Has_Discriminants (Entity (Ancestor))
2330                  then
2331                     Check_Ancestor_Discriminants (Entity (Ancestor));
2332                  end if;
2333               end if;
2334
2335            --  Handle calls to C++ constructors
2336
2337            elsif Is_CPP_Constructor_Call (Ancestor) then
2338               Init_Typ := Etype (Ancestor);
2339               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2340               Set_Assignment_OK (Ref);
2341
2342               Append_List_To (L,
2343                 Build_Initialization_Call (Loc,
2344                   Id_Ref            => Ref,
2345                   Typ               => Init_Typ,
2346                   In_Init_Proc      => Within_Init_Proc,
2347                   With_Default_Init => Has_Default_Init_Comps (N),
2348                   Constructor_Ref   => Ancestor));
2349
2350            --  Ada 2005 (AI-287): If the ancestor part is an aggregate of
2351            --  limited type, a recursive call expands the ancestor. Note that
2352            --  in the limited case, the ancestor part must be either a
2353            --  function call (possibly qualified, or wrapped in an unchecked
2354            --  conversion) or aggregate (definitely qualified).
2355            --  The ancestor part can also be a function call (that may be
2356            --  transformed into an explicit dereference) or a qualification
2357            --  of one such.
2358
2359            elsif Is_Limited_Type (Etype (Ancestor))
2360              and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
2361                                                    N_Extension_Aggregate)
2362            then
2363               Ancestor_Is_Expression := True;
2364
2365               --  Set up  finalization data for enclosing record, because
2366               --  controlled subcomponents of the ancestor part will be
2367               --  attached to it.
2368
2369               Generate_Finalization_Actions;
2370
2371               Append_List_To (L,
2372                  Build_Record_Aggr_Code
2373                    (N   => Unqualify (Ancestor),
2374                     Typ => Etype (Unqualify (Ancestor)),
2375                     Lhs => Target));
2376
2377            --  If the ancestor part is an expression "E", we generate
2378
2379            --     T (tmp) := E;
2380
2381            --  In Ada 2005, this includes the case of a (possibly qualified)
2382            --  limited function call. The assignment will turn into a
2383            --  build-in-place function call (for further details, see
2384            --  Make_Build_In_Place_Call_In_Assignment).
2385
2386            else
2387               Ancestor_Is_Expression := True;
2388               Init_Typ := Etype (Ancestor);
2389
2390               --  If the ancestor part is an aggregate, force its full
2391               --  expansion, which was delayed.
2392
2393               if Nkind_In (Unqualify (Ancestor), N_Aggregate,
2394                                               N_Extension_Aggregate)
2395               then
2396                  Set_Analyzed (Ancestor, False);
2397                  Set_Analyzed (Expression (Ancestor), False);
2398               end if;
2399
2400               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2401               Set_Assignment_OK (Ref);
2402
2403               --  Make the assignment without usual controlled actions since
2404               --  we only want the post adjust but not the pre finalize here
2405               --  Add manual adjust when necessary.
2406
2407               Assign := New_List (
2408                 Make_OK_Assignment_Statement (Loc,
2409                   Name       => Ref,
2410                   Expression => Ancestor));
2411               Set_No_Ctrl_Actions (First (Assign));
2412
2413               --  Assign the tag now to make sure that the dispatching call in
2414               --  the subsequent deep_adjust works properly (unless VM_Target,
2415               --  where tags are implicit).
2416
2417               if Tagged_Type_Expansion then
2418                  Instr :=
2419                    Make_OK_Assignment_Statement (Loc,
2420                      Name =>
2421                        Make_Selected_Component (Loc,
2422                          Prefix => New_Copy_Tree (Target),
2423                          Selector_Name =>
2424                            New_Reference_To
2425                              (First_Tag_Component (Base_Type (Typ)), Loc)),
2426
2427                      Expression =>
2428                        Unchecked_Convert_To (RTE (RE_Tag),
2429                          New_Reference_To
2430                            (Node (First_Elmt
2431                               (Access_Disp_Table (Base_Type (Typ)))),
2432                             Loc)));
2433
2434                  Set_Assignment_OK (Name (Instr));
2435                  Append_To (Assign, Instr);
2436
2437                  --  Ada 2005 (AI-251): If tagged type has progenitors we must
2438                  --  also initialize tags of the secondary dispatch tables.
2439
2440                  if Has_Interfaces (Base_Type (Typ)) then
2441                     Init_Secondary_Tags
2442                       (Typ        => Base_Type (Typ),
2443                        Target     => Target,
2444                        Stmts_List => Assign);
2445                  end if;
2446               end if;
2447
2448               --  Call Adjust manually
2449
2450               if Needs_Finalization (Etype (Ancestor))
2451                 and then not Is_Limited_Type (Etype (Ancestor))
2452               then
2453                  Append_To (Assign,
2454                    Make_Adjust_Call (
2455                      Obj_Ref => New_Copy_Tree (Ref),
2456                      Typ     => Etype (Ancestor)));
2457               end if;
2458
2459               Append_To (L,
2460                 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
2461
2462               if Has_Discriminants (Init_Typ) then
2463                  Check_Ancestor_Discriminants (Init_Typ);
2464               end if;
2465            end if;
2466         end;
2467
2468         --  Generate assignments of hidden assignments. If the base type is an
2469         --  unchecked union, the discriminants are unknown to the back-end and
2470         --  absent from a value of the type, so assignments for them are not
2471         --  emitted.
2472
2473         if Has_Discriminants (Typ)
2474           and then not Is_Unchecked_Union (Base_Type (Typ))
2475         then
2476            Init_Hidden_Discriminants (Typ, L);
2477         end if;
2478
2479      --  Normal case (not an extension aggregate)
2480
2481      else
2482         --  Generate the discriminant expressions, component by component.
2483         --  If the base type is an unchecked union, the discriminants are
2484         --  unknown to the back-end and absent from a value of the type, so
2485         --  assignments for them are not emitted.
2486
2487         if Has_Discriminants (Typ)
2488           and then not Is_Unchecked_Union (Base_Type (Typ))
2489         then
2490            Init_Hidden_Discriminants (Typ, L);
2491
2492            --  Generate discriminant init values for the visible discriminants
2493
2494            declare
2495               Discriminant : Entity_Id;
2496               Discriminant_Value : Node_Id;
2497
2498            begin
2499               Discriminant := First_Stored_Discriminant (Typ);
2500               while Present (Discriminant) loop
2501                  Comp_Expr :=
2502                    Make_Selected_Component (Loc,
2503                      Prefix        => New_Copy_Tree (Target),
2504                      Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2505
2506                  Discriminant_Value :=
2507                    Get_Discriminant_Value (
2508                      Discriminant,
2509                      N_Typ,
2510                      Discriminant_Constraint (N_Typ));
2511
2512                  Instr :=
2513                    Make_OK_Assignment_Statement (Loc,
2514                      Name       => Comp_Expr,
2515                      Expression => New_Copy_Tree (Discriminant_Value));
2516
2517                  Set_No_Ctrl_Actions (Instr);
2518                  Append_To (L, Instr);
2519
2520                  Next_Stored_Discriminant (Discriminant);
2521               end loop;
2522            end;
2523         end if;
2524      end if;
2525
2526      --  For CPP types we generate an implicit call to the C++ default
2527      --  constructor to ensure the proper initialization of the _Tag
2528      --  component.
2529
2530      if Is_CPP_Class (Root_Type (Typ))
2531        and then CPP_Num_Prims (Typ) > 0
2532      then
2533         Invoke_Constructor : declare
2534            CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);
2535
2536            procedure Invoke_IC_Proc (T : Entity_Id);
2537            --  Recursive routine used to climb to parents. Required because
2538            --  parents must be initialized before descendants to ensure
2539            --  propagation of inherited C++ slots.
2540
2541            --------------------
2542            -- Invoke_IC_Proc --
2543            --------------------
2544
2545            procedure Invoke_IC_Proc (T : Entity_Id) is
2546            begin
2547               --  Avoid generating extra calls. Initialization required
2548               --  only for types defined from the level of derivation of
2549               --  type of the constructor and the type of the aggregate.
2550
2551               if T = CPP_Parent then
2552                  return;
2553               end if;
2554
2555               Invoke_IC_Proc (Etype (T));
2556
2557               --  Generate call to the IC routine
2558
2559               if Present (CPP_Init_Proc (T)) then
2560                  Append_To (L,
2561                    Make_Procedure_Call_Statement (Loc,
2562                      New_Reference_To (CPP_Init_Proc (T), Loc)));
2563               end if;
2564            end Invoke_IC_Proc;
2565
2566         --  Start of processing for Invoke_Constructor
2567
2568         begin
2569            --  Implicit invocation of the C++ constructor
2570
2571            if Nkind (N) = N_Aggregate then
2572               Append_To (L,
2573                 Make_Procedure_Call_Statement (Loc,
2574                   Name =>
2575                     New_Reference_To
2576                       (Base_Init_Proc (CPP_Parent), Loc),
2577                   Parameter_Associations => New_List (
2578                     Unchecked_Convert_To (CPP_Parent,
2579                       New_Copy_Tree (Lhs)))));
2580            end if;
2581
2582            Invoke_IC_Proc (Typ);
2583         end Invoke_Constructor;
2584      end if;
2585
2586      --  Generate the assignments, component by component
2587
2588      --    tmp.comp1 := Expr1_From_Aggr;
2589      --    tmp.comp2 := Expr2_From_Aggr;
2590      --    ....
2591
2592      Comp := First (Component_Associations (N));
2593      while Present (Comp) loop
2594         Selector := Entity (First (Choices (Comp)));
2595
2596         --  C++ constructors
2597
2598         if Is_CPP_Constructor_Call (Expression (Comp)) then
2599            Append_List_To (L,
2600              Build_Initialization_Call (Loc,
2601                Id_Ref            => Make_Selected_Component (Loc,
2602                                       Prefix        => New_Copy_Tree (Target),
2603                                       Selector_Name =>
2604                                         New_Occurrence_Of (Selector, Loc)),
2605                Typ               => Etype (Selector),
2606                Enclos_Type       => Typ,
2607                With_Default_Init => True,
2608                Constructor_Ref   => Expression (Comp)));
2609
2610         --  Ada 2005 (AI-287): For each default-initialized component generate
2611         --  a call to the corresponding IP subprogram if available.
2612
2613         elsif Box_Present (Comp)
2614           and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
2615         then
2616            if Ekind (Selector) /= E_Discriminant then
2617               Generate_Finalization_Actions;
2618            end if;
2619
2620            --  Ada 2005 (AI-287): If the component type has tasks then
2621            --  generate the activation chain and master entities (except
2622            --  in case of an allocator because in that case these entities
2623            --  are generated by Build_Task_Allocate_Block_With_Init_Stmts).
2624
2625            declare
2626               Ctype            : constant Entity_Id := Etype (Selector);
2627               Inside_Allocator : Boolean            := False;
2628               P                : Node_Id            := Parent (N);
2629
2630            begin
2631               if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
2632                  while Present (P) loop
2633                     if Nkind (P) = N_Allocator then
2634                        Inside_Allocator := True;
2635                        exit;
2636                     end if;
2637
2638                     P := Parent (P);
2639                  end loop;
2640
2641                  if not Inside_Init_Proc and not Inside_Allocator then
2642                     Build_Activation_Chain_Entity (N);
2643                  end if;
2644               end if;
2645            end;
2646
2647            Append_List_To (L,
2648              Build_Initialization_Call (Loc,
2649                Id_Ref            => Make_Selected_Component (Loc,
2650                                       Prefix        => New_Copy_Tree (Target),
2651                                       Selector_Name =>
2652                                         New_Occurrence_Of (Selector, Loc)),
2653                Typ               => Etype (Selector),
2654                Enclos_Type       => Typ,
2655                With_Default_Init => True));
2656
2657         --  Prepare for component assignment
2658
2659         elsif Ekind (Selector) /= E_Discriminant
2660           or else Nkind (N) = N_Extension_Aggregate
2661         then
2662            --  All the discriminants have now been assigned
2663
2664            --  This is now a good moment to initialize and attach all the
2665            --  controllers. Their position may depend on the discriminants.
2666
2667            if Ekind (Selector) /= E_Discriminant then
2668               Generate_Finalization_Actions;
2669            end if;
2670
2671            Comp_Type := Underlying_Type (Etype (Selector));
2672            Comp_Expr :=
2673              Make_Selected_Component (Loc,
2674                Prefix        => New_Copy_Tree (Target),
2675                Selector_Name => New_Occurrence_Of (Selector, Loc));
2676
2677            if Nkind (Expression (Comp)) = N_Qualified_Expression then
2678               Expr_Q := Expression (Expression (Comp));
2679            else
2680               Expr_Q := Expression (Comp);
2681            end if;
2682
2683            --  Now either create the assignment or generate the code for the
2684            --  inner aggregate top-down.
2685
2686            if Is_Delayed_Aggregate (Expr_Q) then
2687
2688               --  We have the following case of aggregate nesting inside
2689               --  an object declaration:
2690
2691               --    type Arr_Typ is array (Integer range <>) of ...;
2692
2693               --    type Rec_Typ (...) is record
2694               --       Obj_Arr_Typ : Arr_Typ (A .. B);
2695               --    end record;
2696
2697               --    Obj_Rec_Typ : Rec_Typ := (...,
2698               --      Obj_Arr_Typ => (X => (...), Y => (...)));
2699
2700               --  The length of the ranges of the aggregate and Obj_Add_Typ
2701               --  are equal (B - A = Y - X), but they do not coincide (X /=
2702               --  A and B /= Y). This case requires array sliding which is
2703               --  performed in the following manner:
2704
2705               --    subtype Arr_Sub is Arr_Typ (X .. Y);
2706               --    Temp : Arr_Sub;
2707               --    Temp (X) := (...);
2708               --    ...
2709               --    Temp (Y) := (...);
2710               --    Obj_Rec_Typ.Obj_Arr_Typ := Temp;
2711
2712               if Ekind (Comp_Type) = E_Array_Subtype
2713                 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
2714                 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
2715                 and then not
2716                   Compatible_Int_Bounds
2717                     (Agg_Bounds => Aggregate_Bounds (Expr_Q),
2718                      Typ_Bounds => First_Index (Comp_Type))
2719               then
2720                  --  Create the array subtype with bounds equal to those of
2721                  --  the corresponding aggregate.
2722
2723                  declare
2724                     SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
2725
2726                     SubD : constant Node_Id :=
2727                       Make_Subtype_Declaration (Loc,
2728                         Defining_Identifier => SubE,
2729                         Subtype_Indication  =>
2730                           Make_Subtype_Indication (Loc,
2731                             Subtype_Mark =>
2732                               New_Reference_To (Etype (Comp_Type), Loc),
2733                             Constraint =>
2734                               Make_Index_Or_Discriminant_Constraint
2735                                 (Loc,
2736                                  Constraints => New_List (
2737                                    New_Copy_Tree
2738                                      (Aggregate_Bounds (Expr_Q))))));
2739
2740                     --  Create a temporary array of the above subtype which
2741                     --  will be used to capture the aggregate assignments.
2742
2743                     TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
2744
2745                     TmpD : constant Node_Id :=
2746                       Make_Object_Declaration (Loc,
2747                         Defining_Identifier => TmpE,
2748                         Object_Definition   => New_Reference_To (SubE, Loc));
2749
2750                  begin
2751                     Set_No_Initialization (TmpD);
2752                     Append_To (L, SubD);
2753                     Append_To (L, TmpD);
2754
2755                     --  Expand aggregate into assignments to the temp array
2756
2757                     Append_List_To (L,
2758                       Late_Expansion (Expr_Q, Comp_Type,
2759                         New_Reference_To (TmpE, Loc)));
2760
2761                     --  Slide
2762
2763                     Append_To (L,
2764                       Make_Assignment_Statement (Loc,
2765                         Name       => New_Copy_Tree (Comp_Expr),
2766                         Expression => New_Reference_To (TmpE, Loc)));
2767                  end;
2768
2769               --  Normal case (sliding not required)
2770
2771               else
2772                  Append_List_To (L,
2773                    Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
2774               end if;
2775
2776            --  Expr_Q is not delayed aggregate
2777
2778            else
2779               if Has_Discriminants (Typ) then
2780                  Replace_Discriminants (Expr_Q);
2781               end if;
2782
2783               Instr :=
2784                 Make_OK_Assignment_Statement (Loc,
2785                   Name       => Comp_Expr,
2786                   Expression => Expr_Q);
2787
2788               Set_No_Ctrl_Actions (Instr);
2789               Append_To (L, Instr);
2790
2791               --  Adjust the tag if tagged (because of possible view
2792               --  conversions), unless compiling for a VM where tags are
2793               --  implicit.
2794
2795               --    tmp.comp._tag := comp_typ'tag;
2796
2797               if Is_Tagged_Type (Comp_Type)
2798                 and then Tagged_Type_Expansion
2799               then
2800                  Instr :=
2801                    Make_OK_Assignment_Statement (Loc,
2802                      Name =>
2803                        Make_Selected_Component (Loc,
2804                          Prefix =>  New_Copy_Tree (Comp_Expr),
2805                          Selector_Name =>
2806                            New_Reference_To
2807                              (First_Tag_Component (Comp_Type), Loc)),
2808
2809                      Expression =>
2810                        Unchecked_Convert_To (RTE (RE_Tag),
2811                          New_Reference_To
2812                            (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
2813                             Loc)));
2814
2815                  Append_To (L, Instr);
2816               end if;
2817
2818               --  Generate:
2819               --    Adjust (tmp.comp);
2820
2821               if Needs_Finalization (Comp_Type)
2822                 and then not Is_Limited_Type (Comp_Type)
2823               then
2824                  Append_To (L,
2825                    Make_Adjust_Call (
2826                      Obj_Ref => New_Copy_Tree (Comp_Expr),
2827                      Typ     => Comp_Type));
2828               end if;
2829            end if;
2830
2831         --  ???
2832
2833         elsif Ekind (Selector) = E_Discriminant
2834           and then Nkind (N) /= N_Extension_Aggregate
2835           and then Nkind (Parent (N)) = N_Component_Association
2836           and then Is_Constrained (Typ)
2837         then
2838            --  We must check that the discriminant value imposed by the
2839            --  context is the same as the value given in the subaggregate,
2840            --  because after the expansion into assignments there is no
2841            --  record on which to perform a regular discriminant check.
2842
2843            declare
2844               D_Val : Elmt_Id;
2845               Disc  : Entity_Id;
2846
2847            begin
2848               D_Val := First_Elmt (Discriminant_Constraint (Typ));
2849               Disc  := First_Discriminant (Typ);
2850               while Chars (Disc) /= Chars (Selector) loop
2851                  Next_Discriminant (Disc);
2852                  Next_Elmt (D_Val);
2853               end loop;
2854
2855               pragma Assert (Present (D_Val));
2856
2857               --  This check cannot performed for components that are
2858               --  constrained by a current instance, because this is not a
2859               --  value that can be compared with the actual constraint.
2860
2861               if Nkind (Node (D_Val)) /= N_Attribute_Reference
2862                 or else not Is_Entity_Name (Prefix (Node (D_Val)))
2863                 or else not Is_Type (Entity (Prefix (Node (D_Val))))
2864               then
2865                  Append_To (L,
2866                  Make_Raise_Constraint_Error (Loc,
2867                    Condition =>
2868                      Make_Op_Ne (Loc,
2869                        Left_Opnd => New_Copy_Tree (Node (D_Val)),
2870                        Right_Opnd => Expression (Comp)),
2871                      Reason => CE_Discriminant_Check_Failed));
2872
2873               else
2874                  --  Find self-reference in previous discriminant assignment,
2875                  --  and replace with proper expression.
2876
2877                  declare
2878                     Ass : Node_Id;
2879
2880                  begin
2881                     Ass := First (L);
2882                     while Present (Ass) loop
2883                        if Nkind (Ass) = N_Assignment_Statement
2884                          and then Nkind (Name (Ass)) = N_Selected_Component
2885                          and then Chars (Selector_Name (Name (Ass))) =
2886                             Chars (Disc)
2887                        then
2888                           Set_Expression
2889                             (Ass, New_Copy_Tree (Expression (Comp)));
2890                           exit;
2891                        end if;
2892                        Next (Ass);
2893                     end loop;
2894                  end;
2895               end if;
2896            end;
2897         end if;
2898
2899         Next (Comp);
2900      end loop;
2901
2902      --  If the type is tagged, the tag needs to be initialized (unless
2903      --  compiling for the Java VM where tags are implicit). It is done
2904      --  late in the initialization process because in some cases, we call
2905      --  the init proc of an ancestor which will not leave out the right tag
2906
2907      if Ancestor_Is_Expression then
2908         null;
2909
2910      --  For CPP types we generated a call to the C++ default constructor
2911      --  before the components have been initialized to ensure the proper
2912      --  initialization of the _Tag component (see above).
2913
2914      elsif Is_CPP_Class (Typ) then
2915         null;
2916
2917      elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
2918         Instr :=
2919           Make_OK_Assignment_Statement (Loc,
2920             Name =>
2921               Make_Selected_Component (Loc,
2922                 Prefix => New_Copy_Tree (Target),
2923                 Selector_Name =>
2924                   New_Reference_To
2925                     (First_Tag_Component (Base_Type (Typ)), Loc)),
2926
2927             Expression =>
2928               Unchecked_Convert_To (RTE (RE_Tag),
2929                 New_Reference_To
2930                   (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
2931                    Loc)));
2932
2933         Append_To (L, Instr);
2934
2935         --  Ada 2005 (AI-251): If the tagged type has been derived from
2936         --  abstract interfaces we must also initialize the tags of the
2937         --  secondary dispatch tables.
2938
2939         if Has_Interfaces (Base_Type (Typ)) then
2940            Init_Secondary_Tags
2941              (Typ        => Base_Type (Typ),
2942               Target     => Target,
2943               Stmts_List => L);
2944         end if;
2945      end if;
2946
2947      --  If the controllers have not been initialized yet (by lack of non-
2948      --  discriminant components), let's do it now.
2949
2950      Generate_Finalization_Actions;
2951
2952      return L;
2953   end Build_Record_Aggr_Code;
2954
2955   ---------------------------------------
2956   -- Collect_Initialization_Statements --
2957   ---------------------------------------
2958
2959   procedure Collect_Initialization_Statements
2960     (Obj        : Entity_Id;
2961      N          : Node_Id;
2962      Node_After : Node_Id)
2963   is
2964      Loc          : constant Source_Ptr := Sloc (N);
2965      Init_Actions : constant List_Id    := New_List;
2966      Init_Node    : Node_Id;
2967      EA           : Node_Id;
2968
2969   begin
2970      --  Nothing to do if Obj is already frozen, as in this case we known we
2971      --  won't need to move the initialization statements about later on.
2972
2973      if Is_Frozen (Obj) then
2974         return;
2975      end if;
2976
2977      Init_Node := N;
2978      while Next (Init_Node) /= Node_After loop
2979         Append_To (Init_Actions, Remove_Next (Init_Node));
2980      end loop;
2981
2982      if not Is_Empty_List (Init_Actions) then
2983         EA :=
2984           Make_Expression_With_Actions (Loc,
2985             Actions    => Init_Actions,
2986             Expression => Make_Null_Statement (Loc));
2987         Insert_Action_After (Init_Node, EA);
2988         Set_Initialization_Statements (Obj, EA);
2989      end if;
2990   end Collect_Initialization_Statements;
2991
2992   -------------------------------
2993   -- Convert_Aggr_In_Allocator --
2994   -------------------------------
2995
2996   procedure Convert_Aggr_In_Allocator
2997     (Alloc :  Node_Id;
2998      Decl  :  Node_Id;
2999      Aggr  :  Node_Id)
3000   is
3001      Loc  : constant Source_Ptr := Sloc (Aggr);
3002      Typ  : constant Entity_Id  := Etype (Aggr);
3003      Temp : constant Entity_Id  := Defining_Identifier (Decl);
3004
3005      Occ  : constant Node_Id :=
3006        Unchecked_Convert_To (Typ,
3007          Make_Explicit_Dereference (Loc, New_Reference_To (Temp, Loc)));
3008
3009   begin
3010      if Is_Array_Type (Typ) then
3011         Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
3012
3013      elsif Has_Default_Init_Comps (Aggr) then
3014         declare
3015            L          : constant List_Id := New_List;
3016            Init_Stmts : List_Id;
3017
3018         begin
3019            Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
3020
3021            if Has_Task (Typ) then
3022               Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
3023               Insert_Actions (Alloc, L);
3024            else
3025               Insert_Actions (Alloc, Init_Stmts);
3026            end if;
3027         end;
3028
3029      else
3030         Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
3031      end if;
3032   end Convert_Aggr_In_Allocator;
3033
3034   --------------------------------
3035   -- Convert_Aggr_In_Assignment --
3036   --------------------------------
3037
3038   procedure Convert_Aggr_In_Assignment (N : Node_Id) is
3039      Aggr : Node_Id            := Expression (N);
3040      Typ  : constant Entity_Id := Etype (Aggr);
3041      Occ  : constant Node_Id   := New_Copy_Tree (Name (N));
3042
3043   begin
3044      if Nkind (Aggr) = N_Qualified_Expression then
3045         Aggr := Expression (Aggr);
3046      end if;
3047
3048      Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3049   end Convert_Aggr_In_Assignment;
3050
3051   ---------------------------------
3052   -- Convert_Aggr_In_Object_Decl --
3053   ---------------------------------
3054
3055   procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
3056      Obj  : constant Entity_Id  := Defining_Identifier (N);
3057      Aggr : Node_Id             := Expression (N);
3058      Loc  : constant Source_Ptr := Sloc (Aggr);
3059      Typ  : constant Entity_Id  := Etype (Aggr);
3060      Occ  : constant Node_Id    := New_Occurrence_Of (Obj, Loc);
3061
3062      function Discriminants_Ok return Boolean;
3063      --  If the object type is constrained, the discriminants in the
3064      --  aggregate must be checked against the discriminants of the subtype.
3065      --  This cannot be done using Apply_Discriminant_Checks because after
3066      --  expansion there is no aggregate left to check.
3067
3068      ----------------------
3069      -- Discriminants_Ok --
3070      ----------------------
3071
3072      function Discriminants_Ok return Boolean is
3073         Cond  : Node_Id := Empty;
3074         Check : Node_Id;
3075         D     : Entity_Id;
3076         Disc1 : Elmt_Id;
3077         Disc2 : Elmt_Id;
3078         Val1  : Node_Id;
3079         Val2  : Node_Id;
3080
3081      begin
3082         D := First_Discriminant (Typ);
3083         Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3084         Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
3085         while Present (Disc1) and then Present (Disc2) loop
3086            Val1 := Node (Disc1);
3087            Val2 := Node (Disc2);
3088
3089            if not Is_OK_Static_Expression (Val1)
3090              or else not Is_OK_Static_Expression (Val2)
3091            then
3092               Check := Make_Op_Ne (Loc,
3093                 Left_Opnd  => Duplicate_Subexpr (Val1),
3094                 Right_Opnd => Duplicate_Subexpr (Val2));
3095
3096               if No (Cond) then
3097                  Cond := Check;
3098
3099               else
3100                  Cond := Make_Or_Else (Loc,
3101                    Left_Opnd => Cond,
3102                    Right_Opnd => Check);
3103               end if;
3104
3105            elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3106               Apply_Compile_Time_Constraint_Error (Aggr,
3107                 Msg    => "incorrect value for discriminant&??",
3108                 Reason => CE_Discriminant_Check_Failed,
3109                 Ent    => D);
3110               return False;
3111            end if;
3112
3113            Next_Discriminant (D);
3114            Next_Elmt (Disc1);
3115            Next_Elmt (Disc2);
3116         end loop;
3117
3118         --  If any discriminant constraint is non-static, emit a check
3119
3120         if Present (Cond) then
3121            Insert_Action (N,
3122              Make_Raise_Constraint_Error (Loc,
3123                Condition => Cond,
3124                Reason => CE_Discriminant_Check_Failed));
3125         end if;
3126
3127         return True;
3128      end Discriminants_Ok;
3129
3130   --  Start of processing for Convert_Aggr_In_Object_Decl
3131
3132   begin
3133      Set_Assignment_OK (Occ);
3134
3135      if Nkind (Aggr) = N_Qualified_Expression then
3136         Aggr := Expression (Aggr);
3137      end if;
3138
3139      if Has_Discriminants (Typ)
3140        and then Typ /= Etype (Obj)
3141        and then Is_Constrained (Etype (Obj))
3142        and then not Discriminants_Ok
3143      then
3144         return;
3145      end if;
3146
3147      --  If the context is an extended return statement, it has its own
3148      --  finalization machinery (i.e. works like a transient scope) and
3149      --  we do not want to create an additional one, because objects on
3150      --  the finalization list of the return must be moved to the caller's
3151      --  finalization list to complete the return.
3152
3153      --  However, if the aggregate is limited, it is built in place, and the
3154      --  controlled components are not assigned to intermediate temporaries
3155      --  so there is no need for a transient scope in this case either.
3156
3157      if Requires_Transient_Scope (Typ)
3158        and then Ekind (Current_Scope) /= E_Return_Statement
3159        and then not Is_Limited_Type (Typ)
3160      then
3161         Establish_Transient_Scope
3162           (Aggr,
3163            Sec_Stack =>
3164              Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3165      end if;
3166
3167      declare
3168         Node_After   : constant Node_Id := Next (N);
3169      begin
3170         Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3171         Collect_Initialization_Statements (Obj, N, Node_After);
3172      end;
3173      Set_No_Initialization (N);
3174      Initialize_Discriminants (N, Typ);
3175   end Convert_Aggr_In_Object_Decl;
3176
3177   -------------------------------------
3178   -- Convert_Array_Aggr_In_Allocator --
3179   -------------------------------------
3180
3181   procedure Convert_Array_Aggr_In_Allocator
3182     (Decl   : Node_Id;
3183      Aggr   : Node_Id;
3184      Target : Node_Id)
3185   is
3186      Aggr_Code : List_Id;
3187      Typ       : constant Entity_Id := Etype (Aggr);
3188      Ctyp      : constant Entity_Id := Component_Type (Typ);
3189
3190   begin
3191      --  The target is an explicit dereference of the allocated object.
3192      --  Generate component assignments to it, as for an aggregate that
3193      --  appears on the right-hand side of an assignment statement.
3194
3195      Aggr_Code :=
3196        Build_Array_Aggr_Code (Aggr,
3197          Ctype       => Ctyp,
3198          Index       => First_Index (Typ),
3199          Into        => Target,
3200          Scalar_Comp => Is_Scalar_Type (Ctyp));
3201
3202      Insert_Actions_After (Decl, Aggr_Code);
3203   end Convert_Array_Aggr_In_Allocator;
3204
3205   ----------------------------
3206   -- Convert_To_Assignments --
3207   ----------------------------
3208
3209   procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
3210      Loc  : constant Source_Ptr := Sloc (N);
3211      T    : Entity_Id;
3212      Temp : Entity_Id;
3213
3214      Instr       : Node_Id;
3215      Target_Expr : Node_Id;
3216      Parent_Kind : Node_Kind;
3217      Unc_Decl    : Boolean := False;
3218      Parent_Node : Node_Id;
3219
3220   begin
3221      pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
3222      pragma Assert (Is_Record_Type (Typ));
3223
3224      Parent_Node := Parent (N);
3225      Parent_Kind := Nkind (Parent_Node);
3226
3227      if Parent_Kind = N_Qualified_Expression then
3228
3229         --  Check if we are in a unconstrained declaration because in this
3230         --  case the current delayed expansion mechanism doesn't work when
3231         --  the declared object size depend on the initializing expr.
3232
3233         begin
3234            Parent_Node := Parent (Parent_Node);
3235            Parent_Kind := Nkind (Parent_Node);
3236
3237            if Parent_Kind = N_Object_Declaration then
3238               Unc_Decl :=
3239                 not Is_Entity_Name (Object_Definition (Parent_Node))
3240                   or else Has_Discriminants
3241                             (Entity (Object_Definition (Parent_Node)))
3242                   or else Is_Class_Wide_Type
3243                             (Entity (Object_Definition (Parent_Node)));
3244            end if;
3245         end;
3246      end if;
3247
3248      --  Just set the Delay flag in the cases where the transformation will be
3249      --  done top down from above.
3250
3251      if False
3252
3253         --  Internal aggregate (transformed when expanding the parent)
3254
3255         or else Parent_Kind = N_Aggregate
3256         or else Parent_Kind = N_Extension_Aggregate
3257         or else Parent_Kind = N_Component_Association
3258
3259         --  Allocator (see Convert_Aggr_In_Allocator)
3260
3261         or else Parent_Kind = N_Allocator
3262
3263         --  Object declaration (see Convert_Aggr_In_Object_Decl)
3264
3265         or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
3266
3267         --  Safe assignment (see Convert_Aggr_Assignments). So far only the
3268         --  assignments in init procs are taken into account.
3269
3270         or else (Parent_Kind = N_Assignment_Statement
3271                   and then Inside_Init_Proc)
3272
3273         --  (Ada 2005) An inherently limited type in a return statement,
3274         --  which will be handled in a build-in-place fashion, and may be
3275         --  rewritten as an extended return and have its own finalization
3276         --  machinery. In the case of a simple return, the aggregate needs
3277         --  to be delayed until the scope for the return statement has been
3278         --  created, so that any finalization chain will be associated with
3279         --  that scope. For extended returns, we delay expansion to avoid the
3280         --  creation of an unwanted transient scope that could result in
3281         --  premature finalization of the return object (which is built in
3282         --  in place within the caller's scope).
3283
3284         or else
3285           (Is_Immutably_Limited_Type (Typ)
3286             and then
3287               (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
3288                 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
3289      then
3290         Set_Expansion_Delayed (N);
3291         return;
3292      end if;
3293
3294      if Requires_Transient_Scope (Typ) then
3295         Establish_Transient_Scope
3296           (N, Sec_Stack =>
3297                 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3298      end if;
3299
3300      --  If the aggregate is non-limited, create a temporary. If it is limited
3301      --  and the context is an assignment, this is a subaggregate for an
3302      --  enclosing aggregate being expanded. It must be built in place, so use
3303      --  the target of the current assignment.
3304
3305      if Is_Limited_Type (Typ)
3306        and then Nkind (Parent (N)) = N_Assignment_Statement
3307      then
3308         Target_Expr := New_Copy_Tree (Name (Parent (N)));
3309         Insert_Actions (Parent (N),
3310           Build_Record_Aggr_Code (N, Typ, Target_Expr));
3311         Rewrite (Parent (N), Make_Null_Statement (Loc));
3312
3313      else
3314         Temp := Make_Temporary (Loc, 'A', N);
3315
3316         --  If the type inherits unknown discriminants, use the view with
3317         --  known discriminants if available.
3318
3319         if Has_Unknown_Discriminants (Typ)
3320            and then Present (Underlying_Record_View (Typ))
3321         then
3322            T := Underlying_Record_View (Typ);
3323         else
3324            T := Typ;
3325         end if;
3326
3327         Instr :=
3328           Make_Object_Declaration (Loc,
3329             Defining_Identifier => Temp,
3330             Object_Definition   => New_Occurrence_Of (T, Loc));
3331
3332         Set_No_Initialization (Instr);
3333         Insert_Action (N, Instr);
3334         Initialize_Discriminants (Instr, T);
3335         Target_Expr := New_Occurrence_Of (Temp, Loc);
3336         Insert_Actions (N, Build_Record_Aggr_Code (N, T, Target_Expr));
3337         Rewrite (N, New_Occurrence_Of (Temp, Loc));
3338         Analyze_And_Resolve (N, T);
3339      end if;
3340   end Convert_To_Assignments;
3341
3342   ---------------------------
3343   -- Convert_To_Positional --
3344   ---------------------------
3345
3346   procedure Convert_To_Positional
3347     (N                    : Node_Id;
3348      Max_Others_Replicate : Nat     := 5;
3349      Handle_Bit_Packed    : Boolean := False)
3350   is
3351      Typ : constant Entity_Id := Etype (N);
3352
3353      Static_Components : Boolean := True;
3354
3355      procedure Check_Static_Components;
3356      --  Check whether all components of the aggregate are compile-time known
3357      --  values, and can be passed as is to the back-end without further
3358      --  expansion.
3359
3360      function Flatten
3361        (N   : Node_Id;
3362         Ix  : Node_Id;
3363         Ixb : Node_Id) return Boolean;
3364      --  Convert the aggregate into a purely positional form if possible. On
3365      --  entry the bounds of all dimensions are known to be static, and the
3366      --  total number of components is safe enough to expand.
3367
3368      function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
3369      --  Return True iff the array N is flat (which is not trivial in the case
3370      --  of multidimensional aggregates).
3371
3372      -----------------------------
3373      -- Check_Static_Components --
3374      -----------------------------
3375
3376      procedure Check_Static_Components is
3377         Expr : Node_Id;
3378
3379      begin
3380         Static_Components := True;
3381
3382         if Nkind (N) = N_String_Literal then
3383            null;
3384
3385         elsif Present (Expressions (N)) then
3386            Expr := First (Expressions (N));
3387            while Present (Expr) loop
3388               if Nkind (Expr) /= N_Aggregate
3389                 or else not Compile_Time_Known_Aggregate (Expr)
3390                 or else Expansion_Delayed (Expr)
3391               then
3392                  Static_Components := False;
3393                  exit;
3394               end if;
3395
3396               Next (Expr);
3397            end loop;
3398         end if;
3399
3400         if Nkind (N) = N_Aggregate
3401           and then  Present (Component_Associations (N))
3402         then
3403            Expr := First (Component_Associations (N));
3404            while Present (Expr) loop
3405               if Nkind_In (Expression (Expr), N_Integer_Literal,
3406                                               N_Real_Literal)
3407               then
3408                  null;
3409
3410               elsif Is_Entity_Name (Expression (Expr))
3411                 and then Present (Entity (Expression (Expr)))
3412                 and then Ekind (Entity (Expression (Expr))) =
3413                   E_Enumeration_Literal
3414               then
3415                  null;
3416
3417               elsif Nkind (Expression (Expr)) /= N_Aggregate
3418                 or else not Compile_Time_Known_Aggregate (Expression (Expr))
3419                 or else Expansion_Delayed (Expression (Expr))
3420               then
3421                  Static_Components := False;
3422                  exit;
3423               end if;
3424
3425               Next (Expr);
3426            end loop;
3427         end if;
3428      end Check_Static_Components;
3429
3430      -------------
3431      -- Flatten --
3432      -------------
3433
3434      function Flatten
3435        (N   : Node_Id;
3436         Ix  : Node_Id;
3437         Ixb : Node_Id) return Boolean
3438      is
3439         Loc : constant Source_Ptr := Sloc (N);
3440         Blo : constant Node_Id    := Type_Low_Bound (Etype (Ixb));
3441         Lo  : constant Node_Id    := Type_Low_Bound (Etype (Ix));
3442         Hi  : constant Node_Id    := Type_High_Bound (Etype (Ix));
3443         Lov : Uint;
3444         Hiv : Uint;
3445
3446         Others_Present : Boolean := False;
3447
3448      begin
3449         if Nkind (Original_Node (N)) = N_String_Literal then
3450            return True;
3451         end if;
3452
3453         if not Compile_Time_Known_Value (Lo)
3454           or else not Compile_Time_Known_Value (Hi)
3455         then
3456            return False;
3457         end if;
3458
3459         Lov := Expr_Value (Lo);
3460         Hiv := Expr_Value (Hi);
3461
3462         --  Check if there is an others choice
3463
3464         if Present (Component_Associations (N)) then
3465            declare
3466               Assoc   : Node_Id;
3467               Choice  : Node_Id;
3468
3469            begin
3470               Assoc := First (Component_Associations (N));
3471               while Present (Assoc) loop
3472
3473                  --  If this is a box association, flattening is in general
3474                  --  not possible because at this point we cannot tell if the
3475                  --  default is static or even exists.
3476
3477                  if Box_Present (Assoc) then
3478                     return False;
3479                  end if;
3480
3481                  Choice := First (Choices (Assoc));
3482
3483                  while Present (Choice) loop
3484                     if Nkind (Choice) = N_Others_Choice then
3485                        Others_Present := True;
3486                     end if;
3487
3488                     Next (Choice);
3489                  end loop;
3490
3491                  Next (Assoc);
3492               end loop;
3493            end;
3494         end if;
3495
3496         --  If the low bound is not known at compile time and others is not
3497         --  present we can proceed since the bounds can be obtained from the
3498         --  aggregate.
3499
3500         --  Note: This case is required in VM platforms since their backends
3501         --  normalize array indexes in the range 0 .. N-1. Hence, if we do
3502         --  not flat an array whose bounds cannot be obtained from the type
3503         --  of the index the backend has no way to properly generate the code.
3504         --  See ACATS c460010 for an example.
3505
3506         if Hiv < Lov
3507           or else (not Compile_Time_Known_Value (Blo)
3508                     and then Others_Present)
3509         then
3510            return False;
3511         end if;
3512
3513         --  Determine if set of alternatives is suitable for conversion and
3514         --  build an array containing the values in sequence.
3515
3516         declare
3517            Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
3518                     of Node_Id := (others => Empty);
3519            --  The values in the aggregate sorted appropriately
3520
3521            Vlist : List_Id;
3522            --  Same data as Vals in list form
3523
3524            Rep_Count : Nat;
3525            --  Used to validate Max_Others_Replicate limit
3526
3527            Elmt         : Node_Id;
3528            Num          : Int := UI_To_Int (Lov);
3529            Choice_Index : Int;
3530            Choice       : Node_Id;
3531            Lo, Hi       : Node_Id;
3532
3533         begin
3534            if Present (Expressions (N)) then
3535               Elmt := First (Expressions (N));
3536               while Present (Elmt) loop
3537                  if Nkind (Elmt) = N_Aggregate
3538                    and then Present (Next_Index (Ix))
3539                    and then
3540                      not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
3541                  then
3542                     return False;
3543                  end if;
3544
3545                  Vals (Num) := Relocate_Node (Elmt);
3546                  Num := Num + 1;
3547
3548                  Next (Elmt);
3549               end loop;
3550            end if;
3551
3552            if No (Component_Associations (N)) then
3553               return True;
3554            end if;
3555
3556            Elmt := First (Component_Associations (N));
3557
3558            if Nkind (Expression (Elmt)) = N_Aggregate then
3559               if Present (Next_Index (Ix))
3560                 and then
3561                   not Flatten
3562                        (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
3563               then
3564                  return False;
3565               end if;
3566            end if;
3567
3568            Component_Loop : while Present (Elmt) loop
3569               Choice := First (Choices (Elmt));
3570               Choice_Loop : while Present (Choice) loop
3571
3572                  --  If we have an others choice, fill in the missing elements
3573                  --  subject to the limit established by Max_Others_Replicate.
3574
3575                  if Nkind (Choice) = N_Others_Choice then
3576                     Rep_Count := 0;
3577
3578                     for J in Vals'Range loop
3579                        if No (Vals (J)) then
3580                           Vals (J) := New_Copy_Tree (Expression (Elmt));
3581                           Rep_Count := Rep_Count + 1;
3582
3583                           --  Check for maximum others replication. Note that
3584                           --  we skip this test if either of the restrictions
3585                           --  No_Elaboration_Code or No_Implicit_Loops is
3586                           --  active, if this is a preelaborable unit or
3587                           --  a predefined unit, or if the unit must be
3588                           --  placed in data memory. This also ensures that
3589                           --  predefined units get the same level of constant
3590                           --  folding in Ada 95 and Ada 2005, where their
3591                           --  categorization has changed.
3592
3593                           declare
3594                              P : constant Entity_Id :=
3595                                Cunit_Entity (Current_Sem_Unit);
3596
3597                           begin
3598                              --  Check if duplication OK and if so continue
3599                              --  processing.
3600
3601                              if Restriction_Active (No_Elaboration_Code)
3602                                or else Restriction_Active (No_Implicit_Loops)
3603                                or else
3604                                  (Ekind (Current_Scope) = E_Package
3605                                    and then
3606                                      Static_Elaboration_Desired
3607                                        (Current_Scope))
3608                                or else Is_Preelaborated (P)
3609                                or else (Ekind (P) = E_Package_Body
3610                                          and then
3611                                            Is_Preelaborated (Spec_Entity (P)))
3612                                or else
3613                                  Is_Predefined_File_Name
3614                                    (Unit_File_Name (Get_Source_Unit (P)))
3615                              then
3616                                 null;
3617
3618                              --  If duplication not OK, then we return False
3619                              --  if the replication count is too high
3620
3621                              elsif Rep_Count > Max_Others_Replicate then
3622                                 return False;
3623
3624                              --  Continue on if duplication not OK, but the
3625                              --  replication count is not excessive.
3626
3627                              else
3628                                 null;
3629                              end if;
3630                           end;
3631                        end if;
3632                     end loop;
3633
3634                     exit Component_Loop;
3635
3636                  --  Case of a subtype mark, identifier or expanded name
3637
3638                  elsif Is_Entity_Name (Choice)
3639                    and then Is_Type (Entity (Choice))
3640                  then
3641                     Lo := Type_Low_Bound  (Etype (Choice));
3642                     Hi := Type_High_Bound (Etype (Choice));
3643
3644                  --  Case of subtype indication
3645
3646                  elsif Nkind (Choice) = N_Subtype_Indication then
3647                     Lo := Low_Bound  (Range_Expression (Constraint (Choice)));
3648                     Hi := High_Bound (Range_Expression (Constraint (Choice)));
3649
3650                  --  Case of a range
3651
3652                  elsif Nkind (Choice) = N_Range then
3653                     Lo := Low_Bound (Choice);
3654                     Hi := High_Bound (Choice);
3655
3656                  --  Normal subexpression case
3657
3658                  else pragma Assert (Nkind (Choice) in N_Subexpr);
3659                     if not Compile_Time_Known_Value (Choice) then
3660                        return False;
3661
3662                     else
3663                        Choice_Index := UI_To_Int (Expr_Value (Choice));
3664                        if Choice_Index in Vals'Range then
3665                           Vals (Choice_Index) :=
3666                             New_Copy_Tree (Expression (Elmt));
3667                           goto Continue;
3668
3669                        else
3670                           --  Choice is statically out-of-range, will be
3671                           --  rewritten to raise Constraint_Error.
3672
3673                           return False;
3674                        end if;
3675                     end if;
3676                  end if;
3677
3678                  --  Range cases merge with Lo,Hi set
3679
3680                  if not Compile_Time_Known_Value (Lo)
3681                       or else
3682                     not Compile_Time_Known_Value (Hi)
3683                  then
3684                     return False;
3685                  else
3686                     for J in UI_To_Int (Expr_Value (Lo)) ..
3687                              UI_To_Int (Expr_Value (Hi))
3688                     loop
3689                        Vals (J) := New_Copy_Tree (Expression (Elmt));
3690                     end loop;
3691                  end if;
3692
3693               <<Continue>>
3694                  Next (Choice);
3695               end loop Choice_Loop;
3696
3697               Next (Elmt);
3698            end loop Component_Loop;
3699
3700            --  If we get here the conversion is possible
3701
3702            Vlist := New_List;
3703            for J in Vals'Range loop
3704               Append (Vals (J), Vlist);
3705            end loop;
3706
3707            Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
3708            Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
3709            return True;
3710         end;
3711      end Flatten;
3712
3713      -------------
3714      -- Is_Flat --
3715      -------------
3716
3717      function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
3718         Elmt : Node_Id;
3719
3720      begin
3721         if Dims = 0 then
3722            return True;
3723
3724         elsif Nkind (N) = N_Aggregate then
3725            if Present (Component_Associations (N)) then
3726               return False;
3727
3728            else
3729               Elmt := First (Expressions (N));
3730               while Present (Elmt) loop
3731                  if not Is_Flat (Elmt, Dims - 1) then
3732                     return False;
3733                  end if;
3734
3735                  Next (Elmt);
3736               end loop;
3737
3738               return True;
3739            end if;
3740         else
3741            return True;
3742         end if;
3743      end Is_Flat;
3744
3745   --  Start of processing for Convert_To_Positional
3746
3747   begin
3748      --  Ada 2005 (AI-287): Do not convert in case of default initialized
3749      --  components because in this case will need to call the corresponding
3750      --  IP procedure.
3751
3752      if Has_Default_Init_Comps (N) then
3753         return;
3754      end if;
3755
3756      if Is_Flat (N, Number_Dimensions (Typ)) then
3757         return;
3758      end if;
3759
3760      if Is_Bit_Packed_Array (Typ)
3761        and then not Handle_Bit_Packed
3762      then
3763         return;
3764      end if;
3765
3766      --  Do not convert to positional if controlled components are involved
3767      --  since these require special processing
3768
3769      if Has_Controlled_Component (Typ) then
3770         return;
3771      end if;
3772
3773      Check_Static_Components;
3774
3775      --  If the size is known, or all the components are static, try to
3776      --  build a fully positional aggregate.
3777
3778      --  The size of the type  may not be known for an aggregate with
3779      --  discriminated array components, but if the components are static
3780      --  it is still possible to verify statically that the length is
3781      --  compatible with the upper bound of the type, and therefore it is
3782      --  worth flattening such aggregates as well.
3783
3784      --  For now the back-end expands these aggregates into individual
3785      --  assignments to the target anyway, but it is conceivable that
3786      --  it will eventually be able to treat such aggregates statically???
3787
3788      if Aggr_Size_OK (N, Typ)
3789        and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
3790      then
3791         if Static_Components then
3792            Set_Compile_Time_Known_Aggregate (N);
3793            Set_Expansion_Delayed (N, False);
3794         end if;
3795
3796         Analyze_And_Resolve (N, Typ);
3797      end if;
3798
3799      --  Is Static_Eaboration_Desired has been specified, diagnose aggregates
3800      --  that will still require initialization code.
3801
3802      if (Ekind (Current_Scope) = E_Package
3803        and then Static_Elaboration_Desired (Current_Scope))
3804        and then Nkind (Parent (N)) = N_Object_Declaration
3805      then
3806         declare
3807            Expr : Node_Id;
3808
3809         begin
3810            if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
3811               Expr := First (Expressions (N));
3812               while Present (Expr) loop
3813                  if Nkind_In (Expr, N_Integer_Literal, N_Real_Literal)
3814                    or else
3815                      (Is_Entity_Name (Expr)
3816                        and then Ekind (Entity (Expr)) = E_Enumeration_Literal)
3817                  then
3818                     null;
3819
3820                  else
3821                     Error_Msg_N
3822                       ("non-static object  requires elaboration code??", N);
3823                     exit;
3824                  end if;
3825
3826                  Next (Expr);
3827               end loop;
3828
3829               if Present (Component_Associations (N)) then
3830                  Error_Msg_N ("object requires elaboration code??", N);
3831               end if;
3832            end if;
3833         end;
3834      end if;
3835   end Convert_To_Positional;
3836
3837   ----------------------------
3838   -- Expand_Array_Aggregate --
3839   ----------------------------
3840
3841   --  Array aggregate expansion proceeds as follows:
3842
3843   --  1. If requested we generate code to perform all the array aggregate
3844   --     bound checks, specifically
3845
3846   --         (a) Check that the index range defined by aggregate bounds is
3847   --             compatible with corresponding index subtype.
3848
3849   --         (b) If an others choice is present check that no aggregate
3850   --             index is outside the bounds of the index constraint.
3851
3852   --         (c) For multidimensional arrays make sure that all subaggregates
3853   --             corresponding to the same dimension have the same bounds.
3854
3855   --  2. Check for packed array aggregate which can be converted to a
3856   --     constant so that the aggregate disappeares completely.
3857
3858   --  3. Check case of nested aggregate. Generally nested aggregates are
3859   --     handled during the processing of the parent aggregate.
3860
3861   --  4. Check if the aggregate can be statically processed. If this is the
3862   --     case pass it as is to Gigi. Note that a necessary condition for
3863   --     static processing is that the aggregate be fully positional.
3864
3865   --  5. If in place aggregate expansion is possible (i.e. no need to create
3866   --     a temporary) then mark the aggregate as such and return. Otherwise
3867   --     create a new temporary and generate the appropriate initialization
3868   --     code.
3869
3870   procedure Expand_Array_Aggregate (N : Node_Id) is
3871      Loc : constant Source_Ptr := Sloc (N);
3872
3873      Typ  : constant Entity_Id := Etype (N);
3874      Ctyp : constant Entity_Id := Component_Type (Typ);
3875      --  Typ is the correct constrained array subtype of the aggregate
3876      --  Ctyp is the corresponding component type.
3877
3878      Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
3879      --  Number of aggregate index dimensions
3880
3881      Aggr_Low  : array (1 .. Aggr_Dimension) of Node_Id;
3882      Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
3883      --  Low and High bounds of the constraint for each aggregate index
3884
3885      Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
3886      --  The type of each index
3887
3888      Maybe_In_Place_OK : Boolean;
3889      --  If the type is neither controlled nor packed and the aggregate
3890      --  is the expression in an assignment, assignment in place may be
3891      --  possible, provided other conditions are met on the LHS.
3892
3893      Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
3894        (others => False);
3895      --  If Others_Present (J) is True, then there is an others choice
3896      --  in one of the sub-aggregates of N at dimension J.
3897
3898      procedure Build_Constrained_Type (Positional : Boolean);
3899      --  If the subtype is not static or unconstrained, build a constrained
3900      --  type using the computable sizes of the aggregate and its sub-
3901      --  aggregates.
3902
3903      procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
3904      --  Checks that the bounds of Aggr_Bounds are within the bounds defined
3905      --  by Index_Bounds.
3906
3907      procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
3908      --  Checks that in a multi-dimensional array aggregate all subaggregates
3909      --  corresponding to the same dimension have the same bounds.
3910      --  Sub_Aggr is an array sub-aggregate. Dim is the dimension
3911      --  corresponding to the sub-aggregate.
3912
3913      procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
3914      --  Computes the values of array Others_Present. Sub_Aggr is the
3915      --  array sub-aggregate we start the computation from. Dim is the
3916      --  dimension corresponding to the sub-aggregate.
3917
3918      function In_Place_Assign_OK return Boolean;
3919      --  Simple predicate to determine whether an aggregate assignment can
3920      --  be done in place, because none of the new values can depend on the
3921      --  components of the target of the assignment.
3922
3923      procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
3924      --  Checks that if an others choice is present in any sub-aggregate no
3925      --  aggregate index is outside the bounds of the index constraint.
3926      --  Sub_Aggr is an array sub-aggregate. Dim is the dimension
3927      --  corresponding to the sub-aggregate.
3928
3929      function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
3930      --  In addition to Maybe_In_Place_OK, in order for an aggregate to be
3931      --  built directly into the target of the assignment it must be free
3932      --  of side-effects.
3933
3934      ----------------------------
3935      -- Build_Constrained_Type --
3936      ----------------------------
3937
3938      procedure Build_Constrained_Type (Positional : Boolean) is
3939         Loc      : constant Source_Ptr := Sloc (N);
3940         Agg_Type : constant Entity_Id  := Make_Temporary (Loc, 'A');
3941         Comp     : Node_Id;
3942         Decl     : Node_Id;
3943         Typ      : constant Entity_Id := Etype (N);
3944         Indexes  : constant List_Id   := New_List;
3945         Num      : Int;
3946         Sub_Agg  : Node_Id;
3947
3948      begin
3949         --  If the aggregate is purely positional, all its subaggregates
3950         --  have the same size. We collect the dimensions from the first
3951         --  subaggregate at each level.
3952
3953         if Positional then
3954            Sub_Agg := N;
3955
3956            for D in 1 .. Number_Dimensions (Typ) loop
3957               Sub_Agg := First (Expressions (Sub_Agg));
3958
3959               Comp := Sub_Agg;
3960               Num := 0;
3961               while Present (Comp) loop
3962                  Num := Num + 1;
3963                  Next (Comp);
3964               end loop;
3965
3966               Append_To (Indexes,
3967                 Make_Range (Loc,
3968                   Low_Bound =>  Make_Integer_Literal (Loc, 1),
3969                   High_Bound => Make_Integer_Literal (Loc, Num)));
3970            end loop;
3971
3972         else
3973            --  We know the aggregate type is unconstrained and the aggregate
3974            --  is not processable by the back end, therefore not necessarily
3975            --  positional. Retrieve each dimension bounds (computed earlier).
3976
3977            for D in 1 .. Number_Dimensions (Typ) loop
3978               Append (
3979                 Make_Range (Loc,
3980                    Low_Bound  => Aggr_Low  (D),
3981                    High_Bound => Aggr_High (D)),
3982                 Indexes);
3983            end loop;
3984         end if;
3985
3986         Decl :=
3987           Make_Full_Type_Declaration (Loc,
3988               Defining_Identifier => Agg_Type,
3989               Type_Definition =>
3990                 Make_Constrained_Array_Definition (Loc,
3991                   Discrete_Subtype_Definitions => Indexes,
3992                   Component_Definition         =>
3993                     Make_Component_Definition (Loc,
3994                       Aliased_Present    => False,
3995                       Subtype_Indication =>
3996                         New_Occurrence_Of (Component_Type (Typ), Loc))));
3997
3998         Insert_Action (N, Decl);
3999         Analyze (Decl);
4000         Set_Etype (N, Agg_Type);
4001         Set_Is_Itype (Agg_Type);
4002         Freeze_Itype (Agg_Type, N);
4003      end Build_Constrained_Type;
4004
4005      ------------------
4006      -- Check_Bounds --
4007      ------------------
4008
4009      procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
4010         Aggr_Lo : Node_Id;
4011         Aggr_Hi : Node_Id;
4012
4013         Ind_Lo  : Node_Id;
4014         Ind_Hi  : Node_Id;
4015
4016         Cond    : Node_Id := Empty;
4017
4018      begin
4019         Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
4020         Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
4021
4022         --  Generate the following test:
4023         --
4024         --    [constraint_error when
4025         --      Aggr_Lo <= Aggr_Hi and then
4026         --        (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
4027
4028         --  As an optimization try to see if some tests are trivially vacuous
4029         --  because we are comparing an expression against itself.
4030
4031         if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
4032            Cond := Empty;
4033
4034         elsif Aggr_Hi = Ind_Hi then
4035            Cond :=
4036              Make_Op_Lt (Loc,
4037                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4038                Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
4039
4040         elsif Aggr_Lo = Ind_Lo then
4041            Cond :=
4042              Make_Op_Gt (Loc,
4043                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4044                Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
4045
4046         else
4047            Cond :=
4048              Make_Or_Else (Loc,
4049                Left_Opnd =>
4050                  Make_Op_Lt (Loc,
4051                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4052                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
4053
4054                Right_Opnd =>
4055                  Make_Op_Gt (Loc,
4056                    Left_Opnd  => Duplicate_Subexpr (Aggr_Hi),
4057                    Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
4058         end if;
4059
4060         if Present (Cond) then
4061            Cond :=
4062              Make_And_Then (Loc,
4063                Left_Opnd =>
4064                  Make_Op_Le (Loc,
4065                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4066                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
4067
4068                Right_Opnd => Cond);
4069
4070            Set_Analyzed (Left_Opnd  (Left_Opnd (Cond)), False);
4071            Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
4072            Insert_Action (N,
4073              Make_Raise_Constraint_Error (Loc,
4074                Condition => Cond,
4075                Reason    => CE_Length_Check_Failed));
4076         end if;
4077      end Check_Bounds;
4078
4079      ----------------------------
4080      -- Check_Same_Aggr_Bounds --
4081      ----------------------------
4082
4083      procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
4084         Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
4085         Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
4086         --  The bounds of this specific sub-aggregate
4087
4088         Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4089         Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4090         --  The bounds of the aggregate for this dimension
4091
4092         Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4093         --  The index type for this dimension.xxx
4094
4095         Cond  : Node_Id := Empty;
4096         Assoc : Node_Id;
4097         Expr  : Node_Id;
4098
4099      begin
4100         --  If index checks are on generate the test
4101
4102         --    [constraint_error when
4103         --      Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
4104
4105         --  As an optimization try to see if some tests are trivially vacuos
4106         --  because we are comparing an expression against itself. Also for
4107         --  the first dimension the test is trivially vacuous because there
4108         --  is just one aggregate for dimension 1.
4109
4110         if Index_Checks_Suppressed (Ind_Typ) then
4111            Cond := Empty;
4112
4113         elsif Dim = 1
4114           or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
4115         then
4116            Cond := Empty;
4117
4118         elsif Aggr_Hi = Sub_Hi then
4119            Cond :=
4120              Make_Op_Ne (Loc,
4121                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4122                Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
4123
4124         elsif Aggr_Lo = Sub_Lo then
4125            Cond :=
4126              Make_Op_Ne (Loc,
4127                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4128                Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
4129
4130         else
4131            Cond :=
4132              Make_Or_Else (Loc,
4133                Left_Opnd =>
4134                  Make_Op_Ne (Loc,
4135                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4136                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
4137
4138                Right_Opnd =>
4139                  Make_Op_Ne (Loc,
4140                    Left_Opnd  => Duplicate_Subexpr (Aggr_Hi),
4141                    Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
4142         end if;
4143
4144         if Present (Cond) then
4145            Insert_Action (N,
4146              Make_Raise_Constraint_Error (Loc,
4147                Condition => Cond,
4148                Reason    => CE_Length_Check_Failed));
4149         end if;
4150
4151         --  Now look inside the sub-aggregate to see if there is more work
4152
4153         if Dim < Aggr_Dimension then
4154
4155            --  Process positional components
4156
4157            if Present (Expressions (Sub_Aggr)) then
4158               Expr := First (Expressions (Sub_Aggr));
4159               while Present (Expr) loop
4160                  Check_Same_Aggr_Bounds (Expr, Dim + 1);
4161                  Next (Expr);
4162               end loop;
4163            end if;
4164
4165            --  Process component associations
4166
4167            if Present (Component_Associations (Sub_Aggr)) then
4168               Assoc := First (Component_Associations (Sub_Aggr));
4169               while Present (Assoc) loop
4170                  Expr := Expression (Assoc);
4171                  Check_Same_Aggr_Bounds (Expr, Dim + 1);
4172                  Next (Assoc);
4173               end loop;
4174            end if;
4175         end if;
4176      end Check_Same_Aggr_Bounds;
4177
4178      ----------------------------
4179      -- Compute_Others_Present --
4180      ----------------------------
4181
4182      procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
4183         Assoc : Node_Id;
4184         Expr  : Node_Id;
4185
4186      begin
4187         if Present (Component_Associations (Sub_Aggr)) then
4188            Assoc := Last (Component_Associations (Sub_Aggr));
4189
4190            if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4191               Others_Present (Dim) := True;
4192            end if;
4193         end if;
4194
4195         --  Now look inside the sub-aggregate to see if there is more work
4196
4197         if Dim < Aggr_Dimension then
4198
4199            --  Process positional components
4200
4201            if Present (Expressions (Sub_Aggr)) then
4202               Expr := First (Expressions (Sub_Aggr));
4203               while Present (Expr) loop
4204                  Compute_Others_Present (Expr, Dim + 1);
4205                  Next (Expr);
4206               end loop;
4207            end if;
4208
4209            --  Process component associations
4210
4211            if Present (Component_Associations (Sub_Aggr)) then
4212               Assoc := First (Component_Associations (Sub_Aggr));
4213               while Present (Assoc) loop
4214                  Expr := Expression (Assoc);
4215                  Compute_Others_Present (Expr, Dim + 1);
4216                  Next (Assoc);
4217               end loop;
4218            end if;
4219         end if;
4220      end Compute_Others_Present;
4221
4222      ------------------------
4223      -- In_Place_Assign_OK --
4224      ------------------------
4225
4226      function In_Place_Assign_OK return Boolean is
4227         Aggr_In : Node_Id;
4228         Aggr_Lo : Node_Id;
4229         Aggr_Hi : Node_Id;
4230         Obj_In  : Node_Id;
4231         Obj_Lo  : Node_Id;
4232         Obj_Hi  : Node_Id;
4233
4234         function Safe_Aggregate (Aggr : Node_Id) return Boolean;
4235         --  Check recursively that each component of a (sub)aggregate does
4236         --  not depend on the variable being assigned to.
4237
4238         function Safe_Component (Expr : Node_Id) return Boolean;
4239         --  Verify that an expression cannot depend on the variable being
4240         --  assigned to. Room for improvement here (but less than before).
4241
4242         --------------------
4243         -- Safe_Aggregate --
4244         --------------------
4245
4246         function Safe_Aggregate (Aggr : Node_Id) return Boolean is
4247            Expr : Node_Id;
4248
4249         begin
4250            if Present (Expressions (Aggr)) then
4251               Expr := First (Expressions (Aggr));
4252               while Present (Expr) loop
4253                  if Nkind (Expr) = N_Aggregate then
4254                     if not Safe_Aggregate (Expr) then
4255                        return False;
4256                     end if;
4257
4258                  elsif not Safe_Component (Expr) then
4259                     return False;
4260                  end if;
4261
4262                  Next (Expr);
4263               end loop;
4264            end if;
4265
4266            if Present (Component_Associations (Aggr)) then
4267               Expr := First (Component_Associations (Aggr));
4268               while Present (Expr) loop
4269                  if Nkind (Expression (Expr)) = N_Aggregate then
4270                     if not Safe_Aggregate (Expression (Expr)) then
4271                        return False;
4272                     end if;
4273
4274                  --  If association has a box, no way to determine yet
4275                  --  whether default can be assigned in place.
4276
4277                  elsif Box_Present (Expr) then
4278                     return False;
4279
4280                  elsif not Safe_Component (Expression (Expr)) then
4281                     return False;
4282                  end if;
4283
4284                  Next (Expr);
4285               end loop;
4286            end if;
4287
4288            return True;
4289         end Safe_Aggregate;
4290
4291         --------------------
4292         -- Safe_Component --
4293         --------------------
4294
4295         function Safe_Component (Expr : Node_Id) return Boolean is
4296            Comp : Node_Id := Expr;
4297
4298            function Check_Component (Comp : Node_Id) return Boolean;
4299            --  Do the recursive traversal, after copy
4300
4301            ---------------------
4302            -- Check_Component --
4303            ---------------------
4304
4305            function Check_Component (Comp : Node_Id) return Boolean is
4306            begin
4307               if Is_Overloaded (Comp) then
4308                  return False;
4309               end if;
4310
4311               return Compile_Time_Known_Value (Comp)
4312
4313                 or else (Is_Entity_Name (Comp)
4314                           and then  Present (Entity (Comp))
4315                           and then No (Renamed_Object (Entity (Comp))))
4316
4317                 or else (Nkind (Comp) = N_Attribute_Reference
4318                           and then Check_Component (Prefix (Comp)))
4319
4320                 or else (Nkind (Comp) in N_Binary_Op
4321                           and then Check_Component (Left_Opnd  (Comp))
4322                           and then Check_Component (Right_Opnd (Comp)))
4323
4324                 or else (Nkind (Comp) in N_Unary_Op
4325                           and then Check_Component (Right_Opnd (Comp)))
4326
4327                 or else (Nkind (Comp) = N_Selected_Component
4328                           and then Check_Component (Prefix (Comp)))
4329
4330                 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
4331                           and then Check_Component (Expression (Comp)));
4332            end Check_Component;
4333
4334         --  Start of processing for Safe_Component
4335
4336         begin
4337            --  If the component appears in an association that may
4338            --  correspond to more than one element, it is not analyzed
4339            --  before the expansion into assignments, to avoid side effects.
4340            --  We analyze, but do not resolve the copy, to obtain sufficient
4341            --  entity information for the checks that follow. If component is
4342            --  overloaded we assume an unsafe function call.
4343
4344            if not Analyzed (Comp) then
4345               if Is_Overloaded (Expr) then
4346                  return False;
4347
4348               elsif Nkind (Expr) = N_Aggregate
4349                  and then not Is_Others_Aggregate (Expr)
4350               then
4351                  return False;
4352
4353               elsif Nkind (Expr) = N_Allocator then
4354
4355                  --  For now, too complex to analyze
4356
4357                  return False;
4358               end if;
4359
4360               Comp := New_Copy_Tree (Expr);
4361               Set_Parent (Comp, Parent (Expr));
4362               Analyze (Comp);
4363            end if;
4364
4365            if Nkind (Comp) = N_Aggregate then
4366               return Safe_Aggregate (Comp);
4367            else
4368               return Check_Component (Comp);
4369            end if;
4370         end Safe_Component;
4371
4372      --  Start of processing for In_Place_Assign_OK
4373
4374      begin
4375         if Present (Component_Associations (N)) then
4376
4377            --  On assignment, sliding can take place, so we cannot do the
4378            --  assignment in place unless the bounds of the aggregate are
4379            --  statically equal to those of the target.
4380
4381            --  If the aggregate is given by an others choice, the bounds
4382            --  are derived from the left-hand side, and the assignment is
4383            --  safe if the expression is.
4384
4385            if Is_Others_Aggregate (N) then
4386               return
4387                 Safe_Component
4388                  (Expression (First (Component_Associations (N))));
4389            end if;
4390
4391            Aggr_In := First_Index (Etype (N));
4392
4393            if Nkind (Parent (N)) = N_Assignment_Statement then
4394               Obj_In  := First_Index (Etype (Name (Parent (N))));
4395
4396            else
4397               --  Context is an allocator. Check bounds of aggregate
4398               --  against given type in qualified expression.
4399
4400               pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
4401               Obj_In :=
4402                 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
4403            end if;
4404
4405            while Present (Aggr_In) loop
4406               Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
4407               Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
4408
4409               if not Compile_Time_Known_Value (Aggr_Lo)
4410                 or else not Compile_Time_Known_Value (Aggr_Hi)
4411                 or else not Compile_Time_Known_Value (Obj_Lo)
4412                 or else not Compile_Time_Known_Value (Obj_Hi)
4413                 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
4414                 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
4415               then
4416                  return False;
4417               end if;
4418
4419               Next_Index (Aggr_In);
4420               Next_Index (Obj_In);
4421            end loop;
4422         end if;
4423
4424         --  Now check the component values themselves
4425
4426         return Safe_Aggregate (N);
4427      end In_Place_Assign_OK;
4428
4429      ------------------
4430      -- Others_Check --
4431      ------------------
4432
4433      procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
4434         Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4435         Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4436         --  The bounds of the aggregate for this dimension
4437
4438         Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4439         --  The index type for this dimension
4440
4441         Need_To_Check : Boolean := False;
4442
4443         Choices_Lo : Node_Id := Empty;
4444         Choices_Hi : Node_Id := Empty;
4445         --  The lowest and highest discrete choices for a named sub-aggregate
4446
4447         Nb_Choices : Int := -1;
4448         --  The number of discrete non-others choices in this sub-aggregate
4449
4450         Nb_Elements : Uint := Uint_0;
4451         --  The number of elements in a positional aggregate
4452
4453         Cond : Node_Id := Empty;
4454
4455         Assoc  : Node_Id;
4456         Choice : Node_Id;
4457         Expr   : Node_Id;
4458
4459      begin
4460         --  Check if we have an others choice. If we do make sure that this
4461         --  sub-aggregate contains at least one element in addition to the
4462         --  others choice.
4463
4464         if Range_Checks_Suppressed (Ind_Typ) then
4465            Need_To_Check := False;
4466
4467         elsif Present (Expressions (Sub_Aggr))
4468           and then Present (Component_Associations (Sub_Aggr))
4469         then
4470            Need_To_Check := True;
4471
4472         elsif Present (Component_Associations (Sub_Aggr)) then
4473            Assoc := Last (Component_Associations (Sub_Aggr));
4474
4475            if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
4476               Need_To_Check := False;
4477
4478            else
4479               --  Count the number of discrete choices. Start with -1 because
4480               --  the others choice does not count.
4481
4482               Nb_Choices := -1;
4483               Assoc := First (Component_Associations (Sub_Aggr));
4484               while Present (Assoc) loop
4485                  Choice := First (Choices (Assoc));
4486                  while Present (Choice) loop
4487                     Nb_Choices := Nb_Choices + 1;
4488                     Next (Choice);
4489                  end loop;
4490
4491                  Next (Assoc);
4492               end loop;
4493
4494               --  If there is only an others choice nothing to do
4495
4496               Need_To_Check := (Nb_Choices > 0);
4497            end if;
4498
4499         else
4500            Need_To_Check := False;
4501         end if;
4502
4503         --  If we are dealing with a positional sub-aggregate with an others
4504         --  choice then compute the number or positional elements.
4505
4506         if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
4507            Expr := First (Expressions (Sub_Aggr));
4508            Nb_Elements := Uint_0;
4509            while Present (Expr) loop
4510               Nb_Elements := Nb_Elements + 1;
4511               Next (Expr);
4512            end loop;
4513
4514         --  If the aggregate contains discrete choices and an others choice
4515         --  compute the smallest and largest discrete choice values.
4516
4517         elsif Need_To_Check then
4518            Compute_Choices_Lo_And_Choices_Hi : declare
4519
4520               Table : Case_Table_Type (1 .. Nb_Choices);
4521               --  Used to sort all the different choice values
4522
4523               J    : Pos := 1;
4524               Low  : Node_Id;
4525               High : Node_Id;
4526
4527            begin
4528               Assoc := First (Component_Associations (Sub_Aggr));
4529               while Present (Assoc) loop
4530                  Choice := First (Choices (Assoc));
4531                  while Present (Choice) loop
4532                     if Nkind (Choice) = N_Others_Choice then
4533                        exit;
4534                     end if;
4535
4536                     Get_Index_Bounds (Choice, Low, High);
4537                     Table (J).Choice_Lo := Low;
4538                     Table (J).Choice_Hi := High;
4539
4540                     J := J + 1;
4541                     Next (Choice);
4542                  end loop;
4543
4544                  Next (Assoc);
4545               end loop;
4546
4547               --  Sort the discrete choices
4548
4549               Sort_Case_Table (Table);
4550
4551               Choices_Lo := Table (1).Choice_Lo;
4552               Choices_Hi := Table (Nb_Choices).Choice_Hi;
4553            end Compute_Choices_Lo_And_Choices_Hi;
4554         end if;
4555
4556         --  If no others choice in this sub-aggregate, or the aggregate
4557         --  comprises only an others choice, nothing to do.
4558
4559         if not Need_To_Check then
4560            Cond := Empty;
4561
4562         --  If we are dealing with an aggregate containing an others choice
4563         --  and positional components, we generate the following test:
4564
4565         --    if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
4566         --            Ind_Typ'Pos (Aggr_Hi)
4567         --    then
4568         --       raise Constraint_Error;
4569         --    end if;
4570
4571         elsif Nb_Elements > Uint_0 then
4572            Cond :=
4573              Make_Op_Gt (Loc,
4574                Left_Opnd  =>
4575                  Make_Op_Add (Loc,
4576                    Left_Opnd  =>
4577                      Make_Attribute_Reference (Loc,
4578                        Prefix         => New_Reference_To (Ind_Typ, Loc),
4579                        Attribute_Name => Name_Pos,
4580                        Expressions    =>
4581                          New_List
4582                            (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
4583                    Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
4584
4585                Right_Opnd =>
4586                  Make_Attribute_Reference (Loc,
4587                    Prefix         => New_Reference_To (Ind_Typ, Loc),
4588                    Attribute_Name => Name_Pos,
4589                    Expressions    => New_List (
4590                      Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
4591
4592         --  If we are dealing with an aggregate containing an others choice
4593         --  and discrete choices we generate the following test:
4594
4595         --    [constraint_error when
4596         --      Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
4597
4598         else
4599            Cond :=
4600              Make_Or_Else (Loc,
4601                Left_Opnd =>
4602                  Make_Op_Lt (Loc,
4603                    Left_Opnd  =>
4604                      Duplicate_Subexpr_Move_Checks (Choices_Lo),
4605                    Right_Opnd =>
4606                      Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
4607
4608                Right_Opnd =>
4609                  Make_Op_Gt (Loc,
4610                    Left_Opnd  =>
4611                      Duplicate_Subexpr (Choices_Hi),
4612                    Right_Opnd =>
4613                      Duplicate_Subexpr (Aggr_Hi)));
4614         end if;
4615
4616         if Present (Cond) then
4617            Insert_Action (N,
4618              Make_Raise_Constraint_Error (Loc,
4619                Condition => Cond,
4620                Reason    => CE_Length_Check_Failed));
4621            --  Questionable reason code, shouldn't that be a
4622            --  CE_Range_Check_Failed ???
4623         end if;
4624
4625         --  Now look inside the sub-aggregate to see if there is more work
4626
4627         if Dim < Aggr_Dimension then
4628
4629            --  Process positional components
4630
4631            if Present (Expressions (Sub_Aggr)) then
4632               Expr := First (Expressions (Sub_Aggr));
4633               while Present (Expr) loop
4634                  Others_Check (Expr, Dim + 1);
4635                  Next (Expr);
4636               end loop;
4637            end if;
4638
4639            --  Process component associations
4640
4641            if Present (Component_Associations (Sub_Aggr)) then
4642               Assoc := First (Component_Associations (Sub_Aggr));
4643               while Present (Assoc) loop
4644                  Expr := Expression (Assoc);
4645                  Others_Check (Expr, Dim + 1);
4646                  Next (Assoc);
4647               end loop;
4648            end if;
4649         end if;
4650      end Others_Check;
4651
4652      -------------------------
4653      -- Safe_Left_Hand_Side --
4654      -------------------------
4655
4656      function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
4657         function Is_Safe_Index (Indx : Node_Id) return Boolean;
4658         --  If the left-hand side includes an indexed component, check that
4659         --  the indexes are free of side-effect.
4660
4661         -------------------
4662         -- Is_Safe_Index --
4663         -------------------
4664
4665         function Is_Safe_Index (Indx : Node_Id) return Boolean is
4666         begin
4667            if Is_Entity_Name (Indx) then
4668               return True;
4669
4670            elsif Nkind (Indx) = N_Integer_Literal then
4671               return True;
4672
4673            elsif Nkind (Indx) = N_Function_Call
4674              and then Is_Entity_Name (Name (Indx))
4675              and then
4676                Has_Pragma_Pure_Function (Entity (Name (Indx)))
4677            then
4678               return True;
4679
4680            elsif Nkind (Indx) = N_Type_Conversion
4681              and then Is_Safe_Index (Expression (Indx))
4682            then
4683               return True;
4684
4685            else
4686               return False;
4687            end if;
4688         end Is_Safe_Index;
4689
4690      --  Start of processing for Safe_Left_Hand_Side
4691
4692      begin
4693         if Is_Entity_Name (N) then
4694            return True;
4695
4696         elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
4697           and then Safe_Left_Hand_Side (Prefix (N))
4698         then
4699            return True;
4700
4701         elsif Nkind (N) = N_Indexed_Component
4702           and then Safe_Left_Hand_Side (Prefix (N))
4703           and then
4704             Is_Safe_Index (First (Expressions (N)))
4705         then
4706            return True;
4707
4708         elsif Nkind (N) = N_Unchecked_Type_Conversion then
4709            return Safe_Left_Hand_Side (Expression (N));
4710
4711         else
4712            return False;
4713         end if;
4714      end Safe_Left_Hand_Side;
4715
4716      --  Local variables
4717
4718      Tmp : Entity_Id;
4719      --  Holds the temporary aggregate value
4720
4721      Tmp_Decl : Node_Id;
4722      --  Holds the declaration of Tmp
4723
4724      Aggr_Code   : List_Id;
4725      Parent_Node : Node_Id;
4726      Parent_Kind : Node_Kind;
4727
4728   --  Start of processing for Expand_Array_Aggregate
4729
4730   begin
4731      --  Do not touch the special aggregates of attributes used for Asm calls
4732
4733      if Is_RTE (Ctyp, RE_Asm_Input_Operand)
4734        or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
4735      then
4736         return;
4737
4738      --  Do not expand an aggregate for an array type which contains tasks if
4739      --  the aggregate is associated with an unexpanded return statement of a
4740      --  build-in-place function. The aggregate is expanded when the related
4741      --  return statement (rewritten into an extended return) is processed.
4742      --  This delay ensures that any temporaries and initialization code
4743      --  generated for the aggregate appear in the proper return block and
4744      --  use the correct _chain and _master.
4745
4746      elsif Has_Task (Base_Type (Etype (N)))
4747        and then Nkind (Parent (N)) = N_Simple_Return_Statement
4748        and then Is_Build_In_Place_Function
4749                   (Return_Applies_To (Return_Statement_Entity (Parent (N))))
4750      then
4751         return;
4752      end if;
4753
4754      --  If the semantic analyzer has determined that aggregate N will raise
4755      --  Constraint_Error at run time, then the aggregate node has been
4756      --  replaced with an N_Raise_Constraint_Error node and we should
4757      --  never get here.
4758
4759      pragma Assert (not Raises_Constraint_Error (N));
4760
4761      --  STEP 1a
4762
4763      --  Check that the index range defined by aggregate bounds is
4764      --  compatible with corresponding index subtype.
4765
4766      Index_Compatibility_Check : declare
4767         Aggr_Index_Range : Node_Id := First_Index (Typ);
4768         --  The current aggregate index range
4769
4770         Index_Constraint : Node_Id := First_Index (Etype (Typ));
4771         --  The corresponding index constraint against which we have to
4772         --  check the above aggregate index range.
4773
4774      begin
4775         Compute_Others_Present (N, 1);
4776
4777         for J in 1 .. Aggr_Dimension loop
4778            --  There is no need to emit a check if an others choice is
4779            --  present for this array aggregate dimension since in this
4780            --  case one of N's sub-aggregates has taken its bounds from the
4781            --  context and these bounds must have been checked already. In
4782            --  addition all sub-aggregates corresponding to the same
4783            --  dimension must all have the same bounds (checked in (c) below).
4784
4785            if not Range_Checks_Suppressed (Etype (Index_Constraint))
4786              and then not Others_Present (J)
4787            then
4788               --  We don't use Checks.Apply_Range_Check here because it emits
4789               --  a spurious check. Namely it checks that the range defined by
4790               --  the aggregate bounds is non empty. But we know this already
4791               --  if we get here.
4792
4793               Check_Bounds (Aggr_Index_Range, Index_Constraint);
4794            end if;
4795
4796            --  Save the low and high bounds of the aggregate index as well as
4797            --  the index type for later use in checks (b) and (c) below.
4798
4799            Aggr_Low  (J) := Low_Bound (Aggr_Index_Range);
4800            Aggr_High (J) := High_Bound (Aggr_Index_Range);
4801
4802            Aggr_Index_Typ (J) := Etype (Index_Constraint);
4803
4804            Next_Index (Aggr_Index_Range);
4805            Next_Index (Index_Constraint);
4806         end loop;
4807      end Index_Compatibility_Check;
4808
4809      --  STEP 1b
4810
4811      --  If an others choice is present check that no aggregate index is
4812      --  outside the bounds of the index constraint.
4813
4814      Others_Check (N, 1);
4815
4816      --  STEP 1c
4817
4818      --  For multidimensional arrays make sure that all subaggregates
4819      --  corresponding to the same dimension have the same bounds.
4820
4821      if Aggr_Dimension > 1 then
4822         Check_Same_Aggr_Bounds (N, 1);
4823      end if;
4824
4825      --  STEP 2
4826
4827      --  Here we test for is packed array aggregate that we can handle at
4828      --  compile time. If so, return with transformation done. Note that we do
4829      --  this even if the aggregate is nested, because once we have done this
4830      --  processing, there is no more nested aggregate!
4831
4832      if Packed_Array_Aggregate_Handled (N) then
4833         return;
4834      end if;
4835
4836      --  At this point we try to convert to positional form
4837
4838      if Ekind (Current_Scope) = E_Package
4839        and then Static_Elaboration_Desired (Current_Scope)
4840      then
4841         Convert_To_Positional (N, Max_Others_Replicate => 100);
4842      else
4843         Convert_To_Positional (N);
4844      end if;
4845
4846      --  if the result is no longer an aggregate (e.g. it may be a string
4847      --  literal, or a temporary which has the needed value), then we are
4848      --  done, since there is no longer a nested aggregate.
4849
4850      if Nkind (N) /= N_Aggregate then
4851         return;
4852
4853      --  We are also done if the result is an analyzed aggregate, indicating
4854      --  that Convert_To_Positional succeeded and reanalyzed the rewritten
4855      --  aggregate.
4856
4857      elsif Analyzed (N)
4858        and then N /= Original_Node (N)
4859      then
4860         return;
4861      end if;
4862
4863      --  If all aggregate components are compile-time known and the aggregate
4864      --  has been flattened, nothing left to do. The same occurs if the
4865      --  aggregate is used to initialize the components of an statically
4866      --  allocated dispatch table.
4867
4868      if Compile_Time_Known_Aggregate (N)
4869        or else Is_Static_Dispatch_Table_Aggregate (N)
4870      then
4871         Set_Expansion_Delayed (N, False);
4872         return;
4873      end if;
4874
4875      --  Now see if back end processing is possible
4876
4877      if Backend_Processing_Possible (N) then
4878
4879         --  If the aggregate is static but the constraints are not, build
4880         --  a static subtype for the aggregate, so that Gigi can place it
4881         --  in static memory. Perform an unchecked_conversion to the non-
4882         --  static type imposed by the context.
4883
4884         declare
4885            Itype      : constant Entity_Id := Etype (N);
4886            Index      : Node_Id;
4887            Needs_Type : Boolean := False;
4888
4889         begin
4890            Index := First_Index (Itype);
4891            while Present (Index) loop
4892               if not Is_Static_Subtype (Etype (Index)) then
4893                  Needs_Type := True;
4894                  exit;
4895               else
4896                  Next_Index (Index);
4897               end if;
4898            end loop;
4899
4900            if Needs_Type then
4901               Build_Constrained_Type (Positional => True);
4902               Rewrite (N, Unchecked_Convert_To (Itype, N));
4903               Analyze (N);
4904            end if;
4905         end;
4906
4907         return;
4908      end if;
4909
4910      --  STEP 3
4911
4912      --  Delay expansion for nested aggregates: it will be taken care of
4913      --  when the parent aggregate is expanded.
4914
4915      Parent_Node := Parent (N);
4916      Parent_Kind := Nkind (Parent_Node);
4917
4918      if Parent_Kind = N_Qualified_Expression then
4919         Parent_Node := Parent (Parent_Node);
4920         Parent_Kind := Nkind (Parent_Node);
4921      end if;
4922
4923      if Parent_Kind = N_Aggregate
4924        or else Parent_Kind = N_Extension_Aggregate
4925        or else Parent_Kind = N_Component_Association
4926        or else (Parent_Kind = N_Object_Declaration
4927                  and then Needs_Finalization (Typ))
4928        or else (Parent_Kind = N_Assignment_Statement
4929                  and then Inside_Init_Proc)
4930      then
4931         if Static_Array_Aggregate (N)
4932           or else Compile_Time_Known_Aggregate (N)
4933         then
4934            Set_Expansion_Delayed (N, False);
4935            return;
4936         else
4937            Set_Expansion_Delayed (N);
4938            return;
4939         end if;
4940      end if;
4941
4942      --  STEP 4
4943
4944      --  Look if in place aggregate expansion is possible
4945
4946      --  For object declarations we build the aggregate in place, unless
4947      --  the array is bit-packed or the component is controlled.
4948
4949      --  For assignments we do the assignment in place if all the component
4950      --  associations have compile-time known values. For other cases we
4951      --  create a temporary. The analysis for safety of on-line assignment
4952      --  is delicate, i.e. we don't know how to do it fully yet ???
4953
4954      --  For allocators we assign to the designated object in place if the
4955      --  aggregate meets the same conditions as other in-place assignments.
4956      --  In this case the aggregate may not come from source but was created
4957      --  for default initialization, e.g. with Initialize_Scalars.
4958
4959      if Requires_Transient_Scope (Typ) then
4960         Establish_Transient_Scope
4961           (N, Sec_Stack => Has_Controlled_Component (Typ));
4962      end if;
4963
4964      if Has_Default_Init_Comps (N) then
4965         Maybe_In_Place_OK := False;
4966
4967      elsif Is_Bit_Packed_Array (Typ)
4968        or else Has_Controlled_Component (Typ)
4969      then
4970         Maybe_In_Place_OK := False;
4971
4972      else
4973         Maybe_In_Place_OK :=
4974          (Nkind (Parent (N)) = N_Assignment_Statement
4975            and then Comes_From_Source (N)
4976            and then In_Place_Assign_OK)
4977
4978          or else
4979            (Nkind (Parent (Parent (N))) = N_Allocator
4980              and then In_Place_Assign_OK);
4981      end if;
4982
4983      --  If this is an array of tasks, it will be expanded into build-in-place
4984      --  assignments. Build an activation chain for the tasks now.
4985
4986      if Has_Task (Etype (N)) then
4987         Build_Activation_Chain_Entity (N);
4988      end if;
4989
4990      --  Perform in-place expansion of aggregate in an object declaration.
4991      --  Note: actions generated for the aggregate will be captured in an
4992      --  expression-with-actions statement so that they can be transferred
4993      --  to freeze actions later if there is an address clause for the
4994      --  object. (Note: we don't use a block statement because this would
4995      --  cause generated freeze nodes to be elaborated in the wrong scope).
4996
4997      --  Should document these individual tests ???
4998
4999      if not Has_Default_Init_Comps (N)
5000         and then Comes_From_Source (Parent_Node)
5001         and then Parent_Kind = N_Object_Declaration
5002         and then not
5003           Must_Slide (Etype (Defining_Identifier (Parent_Node)), Typ)
5004         and then N = Expression (Parent_Node)
5005         and then not Is_Bit_Packed_Array (Typ)
5006         and then not Has_Controlled_Component (Typ)
5007      then
5008         Tmp := Defining_Identifier (Parent (N));
5009         Set_No_Initialization (Parent (N));
5010         Set_Expression (Parent (N), Empty);
5011
5012         --  Set the type of the entity, for use in the analysis of the
5013         --  subsequent indexed assignments. If the nominal type is not
5014         --  constrained, build a subtype from the known bounds of the
5015         --  aggregate. If the declaration has a subtype mark, use it,
5016         --  otherwise use the itype of the aggregate.
5017
5018         if not Is_Constrained (Typ) then
5019            Build_Constrained_Type (Positional => False);
5020         elsif Is_Entity_Name (Object_Definition (Parent (N)))
5021           and then Is_Constrained (Entity (Object_Definition (Parent (N))))
5022         then
5023            Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
5024         else
5025            Set_Size_Known_At_Compile_Time (Typ, False);
5026            Set_Etype (Tmp, Typ);
5027         end if;
5028
5029      elsif Maybe_In_Place_OK
5030        and then Nkind (Parent (N)) = N_Qualified_Expression
5031        and then Nkind (Parent (Parent (N))) = N_Allocator
5032      then
5033         Set_Expansion_Delayed (N);
5034         return;
5035
5036      --  In the remaining cases the aggregate is the RHS of an assignment
5037
5038      elsif Maybe_In_Place_OK
5039        and then Safe_Left_Hand_Side (Name (Parent (N)))
5040      then
5041         Tmp := Name (Parent (N));
5042
5043         if Etype (Tmp) /= Etype (N) then
5044            Apply_Length_Check (N, Etype (Tmp));
5045
5046            if Nkind (N) = N_Raise_Constraint_Error then
5047
5048               --  Static error, nothing further to expand
5049
5050               return;
5051            end if;
5052         end if;
5053
5054      elsif Maybe_In_Place_OK
5055        and then Nkind (Name (Parent (N))) = N_Slice
5056        and then Safe_Slice_Assignment (N)
5057      then
5058         --  Safe_Slice_Assignment rewrites assignment as a loop
5059
5060         return;
5061
5062      --  Step 5
5063
5064      --  In place aggregate expansion is not possible
5065
5066      else
5067         Maybe_In_Place_OK := False;
5068         Tmp := Make_Temporary (Loc, 'A', N);
5069         Tmp_Decl :=
5070           Make_Object_Declaration
5071             (Loc,
5072              Defining_Identifier => Tmp,
5073              Object_Definition   => New_Occurrence_Of (Typ, Loc));
5074         Set_No_Initialization (Tmp_Decl, True);
5075
5076         --  If we are within a loop, the temporary will be pushed on the
5077         --  stack at each iteration. If the aggregate is the expression for an
5078         --  allocator, it will be immediately copied to the heap and can
5079         --  be reclaimed at once. We create a transient scope around the
5080         --  aggregate for this purpose.
5081
5082         if Ekind (Current_Scope) = E_Loop
5083           and then Nkind (Parent (Parent (N))) = N_Allocator
5084         then
5085            Establish_Transient_Scope (N, False);
5086         end if;
5087
5088         Insert_Action (N, Tmp_Decl);
5089      end if;
5090
5091      --  Construct and insert the aggregate code. We can safely suppress index
5092      --  checks because this code is guaranteed not to raise CE on index
5093      --  checks. However we should *not* suppress all checks.
5094
5095      declare
5096         Target : Node_Id;
5097
5098      begin
5099         if Nkind (Tmp) = N_Defining_Identifier then
5100            Target := New_Reference_To (Tmp, Loc);
5101
5102         else
5103
5104            if Has_Default_Init_Comps (N) then
5105
5106               --  Ada 2005 (AI-287): This case has not been analyzed???
5107
5108               raise Program_Error;
5109            end if;
5110
5111            --  Name in assignment is explicit dereference
5112
5113            Target := New_Copy (Tmp);
5114         end if;
5115
5116         Aggr_Code :=
5117           Build_Array_Aggr_Code (N,
5118             Ctype       => Ctyp,
5119             Index       => First_Index (Typ),
5120             Into        => Target,
5121             Scalar_Comp => Is_Scalar_Type (Ctyp));
5122      end;
5123
5124      if Comes_From_Source (Tmp) then
5125         declare
5126            Node_After : constant Node_Id := Next (Parent_Node);
5127
5128         begin
5129            Insert_Actions_After (Parent_Node, Aggr_Code);
5130
5131            if Parent_Kind = N_Object_Declaration then
5132               Collect_Initialization_Statements
5133                 (Obj => Tmp, N => Parent_Node, Node_After => Node_After);
5134            end if;
5135         end;
5136
5137      else
5138         Insert_Actions (N, Aggr_Code);
5139      end if;
5140
5141      --  If the aggregate has been assigned in place, remove the original
5142      --  assignment.
5143
5144      if Nkind (Parent (N)) = N_Assignment_Statement
5145        and then Maybe_In_Place_OK
5146      then
5147         Rewrite (Parent (N), Make_Null_Statement (Loc));
5148
5149      elsif Nkind (Parent (N)) /= N_Object_Declaration
5150        or else Tmp /= Defining_Identifier (Parent (N))
5151      then
5152         Rewrite (N, New_Occurrence_Of (Tmp, Loc));
5153         Analyze_And_Resolve (N, Typ);
5154      end if;
5155   end Expand_Array_Aggregate;
5156
5157   ------------------------
5158   -- Expand_N_Aggregate --
5159   ------------------------
5160
5161   procedure Expand_N_Aggregate (N : Node_Id) is
5162   begin
5163      if Is_Record_Type (Etype (N)) then
5164         Expand_Record_Aggregate (N);
5165      else
5166         Expand_Array_Aggregate (N);
5167      end if;
5168   exception
5169      when RE_Not_Available =>
5170         return;
5171   end Expand_N_Aggregate;
5172
5173   ----------------------------------
5174   -- Expand_N_Extension_Aggregate --
5175   ----------------------------------
5176
5177   --  If the ancestor part is an expression, add a component association for
5178   --  the parent field. If the type of the ancestor part is not the direct
5179   --  parent of the expected type,  build recursively the needed ancestors.
5180   --  If the ancestor part is a subtype_mark, replace aggregate with a decla-
5181   --  ration for a temporary of the expected type, followed by individual
5182   --  assignments to the given components.
5183
5184   procedure Expand_N_Extension_Aggregate (N : Node_Id) is
5185      Loc : constant Source_Ptr := Sloc  (N);
5186      A   : constant Node_Id    := Ancestor_Part (N);
5187      Typ : constant Entity_Id  := Etype (N);
5188
5189   begin
5190      --  If the ancestor is a subtype mark, an init proc must be called
5191      --  on the resulting object which thus has to be materialized in
5192      --  the front-end
5193
5194      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
5195         Convert_To_Assignments (N, Typ);
5196
5197      --  The extension aggregate is transformed into a record aggregate
5198      --  of the following form (c1 and c2 are inherited components)
5199
5200      --   (Exp with c3 => a, c4 => b)
5201      --      ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
5202
5203      else
5204         Set_Etype (N, Typ);
5205
5206         if Tagged_Type_Expansion then
5207            Expand_Record_Aggregate (N,
5208              Orig_Tag    =>
5209                New_Occurrence_Of
5210                  (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
5211              Parent_Expr => A);
5212
5213         --  No tag is needed in the case of a VM
5214
5215         else
5216            Expand_Record_Aggregate (N, Parent_Expr => A);
5217         end if;
5218      end if;
5219
5220   exception
5221      when RE_Not_Available =>
5222         return;
5223   end Expand_N_Extension_Aggregate;
5224
5225   -----------------------------
5226   -- Expand_Record_Aggregate --
5227   -----------------------------
5228
5229   procedure Expand_Record_Aggregate
5230     (N           : Node_Id;
5231      Orig_Tag    : Node_Id := Empty;
5232      Parent_Expr : Node_Id := Empty)
5233   is
5234      Loc      : constant Source_Ptr := Sloc  (N);
5235      Comps    : constant List_Id    := Component_Associations (N);
5236      Typ      : constant Entity_Id  := Etype (N);
5237      Base_Typ : constant Entity_Id  := Base_Type (Typ);
5238
5239      Static_Components : Boolean := True;
5240      --  Flag to indicate whether all components are compile-time known,
5241      --  and the aggregate can be constructed statically and handled by
5242      --  the back-end.
5243
5244      function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
5245      --  Returns true if N is an expression of composite type which can be
5246      --  fully evaluated at compile time without raising constraint error.
5247      --  Such expressions can be passed as is to Gigi without any expansion.
5248      --
5249      --  This returns true for N_Aggregate with Compile_Time_Known_Aggregate
5250      --  set and constants whose expression is such an aggregate, recursively.
5251
5252      function Component_Not_OK_For_Backend return Boolean;
5253      --  Check for presence of component which makes it impossible for the
5254      --  backend to process the aggregate, thus requiring the use of a series
5255      --  of assignment statements. Cases checked for are a nested aggregate
5256      --  needing Late_Expansion, the presence of a tagged component which may
5257      --  need tag adjustment, and a bit unaligned component reference.
5258      --
5259      --  We also force expansion into assignments if a component is of a
5260      --  mutable type (including a private type with discriminants) because
5261      --  in that case the size of the component to be copied may be smaller
5262      --  than the side of the target, and there is no simple way for gigi
5263      --  to compute the size of the object to be copied.
5264      --
5265      --  NOTE: This is part of the ongoing work to define precisely the
5266      --  interface between front-end and back-end handling of aggregates.
5267      --  In general it is desirable to pass aggregates as they are to gigi,
5268      --  in order to minimize elaboration code. This is one case where the
5269      --  semantics of Ada complicate the analysis and lead to anomalies in
5270      --  the gcc back-end if the aggregate is not expanded into assignments.
5271
5272      function Has_Visible_Private_Ancestor (Id : E) return Boolean;
5273      --  If any ancestor of the current type is private, the aggregate
5274      --  cannot be built in place. We canot rely on Has_Private_Ancestor,
5275      --  because it will not be set when type and its parent are in the
5276      --  same scope, and the parent component needs expansion.
5277
5278      function Top_Level_Aggregate (N : Node_Id) return Node_Id;
5279      --  For nested aggregates return the ultimate enclosing aggregate; for
5280      --  non-nested aggregates return N.
5281
5282      ----------------------------------------
5283      -- Compile_Time_Known_Composite_Value --
5284      ----------------------------------------
5285
5286      function Compile_Time_Known_Composite_Value
5287        (N : Node_Id) return Boolean
5288      is
5289      begin
5290         --  If we have an entity name, then see if it is the name of a
5291         --  constant and if so, test the corresponding constant value.
5292
5293         if Is_Entity_Name (N) then
5294            declare
5295               E : constant Entity_Id := Entity (N);
5296               V : Node_Id;
5297            begin
5298               if Ekind (E) /= E_Constant then
5299                  return False;
5300               else
5301                  V := Constant_Value (E);
5302                  return Present (V)
5303                    and then Compile_Time_Known_Composite_Value (V);
5304               end if;
5305            end;
5306
5307         --  We have a value, see if it is compile time known
5308
5309         else
5310            if Nkind (N) = N_Aggregate then
5311               return Compile_Time_Known_Aggregate (N);
5312            end if;
5313
5314            --  All other types of values are not known at compile time
5315
5316            return False;
5317         end if;
5318
5319      end Compile_Time_Known_Composite_Value;
5320
5321      ----------------------------------
5322      -- Component_Not_OK_For_Backend --
5323      ----------------------------------
5324
5325      function Component_Not_OK_For_Backend return Boolean is
5326         C      : Node_Id;
5327         Expr_Q : Node_Id;
5328
5329      begin
5330         if No (Comps) then
5331            return False;
5332         end if;
5333
5334         C := First (Comps);
5335         while Present (C) loop
5336
5337            --  If the component has box initialization, expansion is needed
5338            --  and component is not ready for backend.
5339
5340            if Box_Present (C) then
5341               return True;
5342            end if;
5343
5344            if Nkind (Expression (C)) = N_Qualified_Expression then
5345               Expr_Q := Expression (Expression (C));
5346            else
5347               Expr_Q := Expression (C);
5348            end if;
5349
5350            --  Return true if the aggregate has any associations for tagged
5351            --  components that may require tag adjustment.
5352
5353            --  These are cases where the source expression may have a tag that
5354            --  could differ from the component tag (e.g., can occur for type
5355            --  conversions and formal parameters). (Tag adjustment not needed
5356            --  if VM_Target because object tags are implicit in the machine.)
5357
5358            if Is_Tagged_Type (Etype (Expr_Q))
5359              and then (Nkind (Expr_Q) = N_Type_Conversion
5360                         or else (Is_Entity_Name (Expr_Q)
5361                                    and then
5362                                      Ekind (Entity (Expr_Q)) in Formal_Kind))
5363              and then Tagged_Type_Expansion
5364            then
5365               Static_Components := False;
5366               return True;
5367
5368            elsif Is_Delayed_Aggregate (Expr_Q) then
5369               Static_Components := False;
5370               return True;
5371
5372            elsif Possible_Bit_Aligned_Component (Expr_Q) then
5373               Static_Components := False;
5374               return True;
5375            end if;
5376
5377            if Is_Elementary_Type (Etype (Expr_Q)) then
5378               if not Compile_Time_Known_Value (Expr_Q) then
5379                  Static_Components := False;
5380               end if;
5381
5382            elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
5383               Static_Components := False;
5384
5385               if Is_Private_Type (Etype (Expr_Q))
5386                 and then Has_Discriminants (Etype (Expr_Q))
5387               then
5388                  return True;
5389               end if;
5390            end if;
5391
5392            Next (C);
5393         end loop;
5394
5395         return False;
5396      end Component_Not_OK_For_Backend;
5397
5398      -----------------------------------
5399      --  Has_Visible_Private_Ancestor --
5400      -----------------------------------
5401
5402      function Has_Visible_Private_Ancestor (Id : E) return Boolean is
5403         R  : constant Entity_Id := Root_Type (Id);
5404         T1 : Entity_Id := Id;
5405
5406      begin
5407         loop
5408            if Is_Private_Type (T1) then
5409               return True;
5410
5411            elsif T1 = R then
5412               return False;
5413
5414            else
5415               T1 := Etype (T1);
5416            end if;
5417         end loop;
5418      end Has_Visible_Private_Ancestor;
5419
5420      -------------------------
5421      -- Top_Level_Aggregate --
5422      -------------------------
5423
5424      function Top_Level_Aggregate (N : Node_Id) return Node_Id is
5425         Aggr : Node_Id;
5426
5427      begin
5428         Aggr := N;
5429         while Present (Parent (Aggr))
5430           and then Nkind_In (Parent (Aggr), N_Component_Association,
5431                                             N_Aggregate)
5432         loop
5433            Aggr := Parent (Aggr);
5434         end loop;
5435
5436         return Aggr;
5437      end Top_Level_Aggregate;
5438
5439      --  Local variables
5440
5441      Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
5442      Tag_Value      : Node_Id;
5443      Comp           : Entity_Id;
5444      New_Comp       : Node_Id;
5445
5446   --  Start of processing for Expand_Record_Aggregate
5447
5448   begin
5449      --  If the aggregate is to be assigned to an atomic variable, we
5450      --  have to prevent a piecemeal assignment even if the aggregate
5451      --  is to be expanded. We create a temporary for the aggregate, and
5452      --  assign the temporary instead, so that the back end can generate
5453      --  an atomic move for it.
5454
5455      if Is_Atomic (Typ)
5456        and then Comes_From_Source (Parent (N))
5457        and then Is_Atomic_Aggregate (N, Typ)
5458      then
5459         return;
5460
5461      --  No special management required for aggregates used to initialize
5462      --  statically allocated dispatch tables
5463
5464      elsif Is_Static_Dispatch_Table_Aggregate (N) then
5465         return;
5466      end if;
5467
5468      --  Ada 2005 (AI-318-2): We need to convert to assignments if components
5469      --  are build-in-place function calls. The assignments will each turn
5470      --  into a build-in-place function call. If components are all static,
5471      --  we can pass the aggregate to the backend regardless of limitedness.
5472
5473      --  Extension aggregates, aggregates in extended return statements, and
5474      --  aggregates for C++ imported types must be expanded.
5475
5476      if Ada_Version >= Ada_2005 and then Is_Immutably_Limited_Type (Typ) then
5477         if not Nkind_In (Parent (N), N_Object_Declaration,
5478                                      N_Component_Association)
5479         then
5480            Convert_To_Assignments (N, Typ);
5481
5482         elsif Nkind (N) = N_Extension_Aggregate
5483           or else Convention (Typ) = Convention_CPP
5484         then
5485            Convert_To_Assignments (N, Typ);
5486
5487         elsif not Size_Known_At_Compile_Time (Typ)
5488           or else Component_Not_OK_For_Backend
5489           or else not Static_Components
5490         then
5491            Convert_To_Assignments (N, Typ);
5492
5493         else
5494            Set_Compile_Time_Known_Aggregate (N);
5495            Set_Expansion_Delayed (N, False);
5496         end if;
5497
5498      --  Gigi doesn't properly handle temporaries of variable size so we
5499      --  generate it in the front-end
5500
5501      elsif not Size_Known_At_Compile_Time (Typ)
5502        and then Tagged_Type_Expansion
5503      then
5504         Convert_To_Assignments (N, Typ);
5505
5506      --  Temporaries for controlled aggregates need to be attached to a final
5507      --  chain in order to be properly finalized, so it has to be created in
5508      --  the front-end
5509
5510      elsif Is_Controlled (Typ)
5511        or else Has_Controlled_Component (Base_Type (Typ))
5512      then
5513         Convert_To_Assignments (N, Typ);
5514
5515         --  Ada 2005 (AI-287): In case of default initialized components we
5516         --  convert the aggregate into assignments.
5517
5518      elsif Has_Default_Init_Comps (N) then
5519         Convert_To_Assignments (N, Typ);
5520
5521      --  Check components
5522
5523      elsif Component_Not_OK_For_Backend then
5524         Convert_To_Assignments (N, Typ);
5525
5526      --  If an ancestor is private, some components are not inherited and we
5527      --  cannot expand into a record aggregate.
5528
5529      elsif Has_Visible_Private_Ancestor (Typ) then
5530         Convert_To_Assignments (N, Typ);
5531
5532      --  ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
5533      --  is not able to handle the aggregate for Late_Request.
5534
5535      elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
5536         Convert_To_Assignments (N, Typ);
5537
5538      --  If the tagged types covers interface types we need to initialize all
5539      --  hidden components containing pointers to secondary dispatch tables.
5540
5541      elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
5542         Convert_To_Assignments (N, Typ);
5543
5544      --  If some components are mutable, the size of the aggregate component
5545      --  may be distinct from the default size of the type component, so
5546      --  we need to expand to insure that the back-end copies the proper
5547      --  size of the data. However, if the aggregate is the initial value of
5548      --  a constant, the target is immutable and might be built statically
5549      --  if components are appropriate.
5550
5551      elsif Has_Mutable_Components (Typ)
5552        and then
5553          (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
5554            or else not Constant_Present (Parent (Top_Level_Aggr))
5555            or else not Static_Components)
5556      then
5557         Convert_To_Assignments (N, Typ);
5558
5559      --  If the type involved has any non-bit aligned components, then we are
5560      --  not sure that the back end can handle this case correctly.
5561
5562      elsif Type_May_Have_Bit_Aligned_Components (Typ) then
5563         Convert_To_Assignments (N, Typ);
5564
5565      --  In all other cases, build a proper aggregate handlable by gigi
5566
5567      else
5568         if Nkind (N) = N_Aggregate then
5569
5570            --  If the aggregate is static and can be handled by the back-end,
5571            --  nothing left to do.
5572
5573            if Static_Components then
5574               Set_Compile_Time_Known_Aggregate (N);
5575               Set_Expansion_Delayed (N, False);
5576            end if;
5577         end if;
5578
5579         --  If no discriminants, nothing special to do
5580
5581         if not Has_Discriminants (Typ) then
5582            null;
5583
5584         --  Case of discriminants present
5585
5586         elsif Is_Derived_Type (Typ) then
5587
5588            --  For untagged types, non-stored discriminants are replaced
5589            --  with stored discriminants, which are the ones that gigi uses
5590            --  to describe the type and its components.
5591
5592            Generate_Aggregate_For_Derived_Type : declare
5593               Constraints  : constant List_Id := New_List;
5594               First_Comp   : Node_Id;
5595               Discriminant : Entity_Id;
5596               Decl         : Node_Id;
5597               Num_Disc     : Int := 0;
5598               Num_Gird     : Int := 0;
5599
5600               procedure Prepend_Stored_Values (T : Entity_Id);
5601               --  Scan the list of stored discriminants of the type, and add
5602               --  their values to the aggregate being built.
5603
5604               ---------------------------
5605               -- Prepend_Stored_Values --
5606               ---------------------------
5607
5608               procedure Prepend_Stored_Values (T : Entity_Id) is
5609               begin
5610                  Discriminant := First_Stored_Discriminant (T);
5611                  while Present (Discriminant) loop
5612                     New_Comp :=
5613                       Make_Component_Association (Loc,
5614                         Choices    =>
5615                           New_List (New_Occurrence_Of (Discriminant, Loc)),
5616
5617                         Expression =>
5618                           New_Copy_Tree (
5619                             Get_Discriminant_Value (
5620                                 Discriminant,
5621                                 Typ,
5622                                 Discriminant_Constraint (Typ))));
5623
5624                     if No (First_Comp) then
5625                        Prepend_To (Component_Associations (N), New_Comp);
5626                     else
5627                        Insert_After (First_Comp, New_Comp);
5628                     end if;
5629
5630                     First_Comp := New_Comp;
5631                     Next_Stored_Discriminant (Discriminant);
5632                  end loop;
5633               end Prepend_Stored_Values;
5634
5635            --  Start of processing for Generate_Aggregate_For_Derived_Type
5636
5637            begin
5638               --  Remove the associations for the discriminant of derived type
5639
5640               First_Comp := First (Component_Associations (N));
5641               while Present (First_Comp) loop
5642                  Comp := First_Comp;
5643                  Next (First_Comp);
5644
5645                  if Ekind (Entity
5646                             (First (Choices (Comp)))) = E_Discriminant
5647                  then
5648                     Remove (Comp);
5649                     Num_Disc := Num_Disc + 1;
5650                  end if;
5651               end loop;
5652
5653               --  Insert stored discriminant associations in the correct
5654               --  order. If there are more stored discriminants than new
5655               --  discriminants, there is at least one new discriminant that
5656               --  constrains more than one of the stored discriminants. In
5657               --  this case we need to construct a proper subtype of the
5658               --  parent type, in order to supply values to all the
5659               --  components. Otherwise there is one-one correspondence
5660               --  between the constraints and the stored discriminants.
5661
5662               First_Comp := Empty;
5663
5664               Discriminant := First_Stored_Discriminant (Base_Type (Typ));
5665               while Present (Discriminant) loop
5666                  Num_Gird := Num_Gird + 1;
5667                  Next_Stored_Discriminant (Discriminant);
5668               end loop;
5669
5670               --  Case of more stored discriminants than new discriminants
5671
5672               if Num_Gird > Num_Disc then
5673
5674                  --  Create a proper subtype of the parent type, which is the
5675                  --  proper implementation type for the aggregate, and convert
5676                  --  it to the intended target type.
5677
5678                  Discriminant := First_Stored_Discriminant (Base_Type (Typ));
5679                  while Present (Discriminant) loop
5680                     New_Comp :=
5681                       New_Copy_Tree (
5682                         Get_Discriminant_Value (
5683                             Discriminant,
5684                             Typ,
5685                             Discriminant_Constraint (Typ)));
5686                     Append (New_Comp, Constraints);
5687                     Next_Stored_Discriminant (Discriminant);
5688                  end loop;
5689
5690                  Decl :=
5691                    Make_Subtype_Declaration (Loc,
5692                      Defining_Identifier => Make_Temporary (Loc, 'T'),
5693                      Subtype_Indication =>
5694                        Make_Subtype_Indication (Loc,
5695                          Subtype_Mark =>
5696                            New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
5697                          Constraint =>
5698                            Make_Index_Or_Discriminant_Constraint
5699                              (Loc, Constraints)));
5700
5701                  Insert_Action (N, Decl);
5702                  Prepend_Stored_Values (Base_Type (Typ));
5703
5704                  Set_Etype (N, Defining_Identifier (Decl));
5705                  Set_Analyzed (N);
5706
5707                  Rewrite (N, Unchecked_Convert_To (Typ, N));
5708                  Analyze (N);
5709
5710               --  Case where we do not have fewer new discriminants than
5711               --  stored discriminants, so in this case we can simply use the
5712               --  stored discriminants of the subtype.
5713
5714               else
5715                  Prepend_Stored_Values (Typ);
5716               end if;
5717            end Generate_Aggregate_For_Derived_Type;
5718         end if;
5719
5720         if Is_Tagged_Type (Typ) then
5721
5722            --  In the tagged case, _parent and _tag component must be created
5723
5724            --  Reset Null_Present unconditionally. Tagged records always have
5725            --  at least one field (the tag or the parent).
5726
5727            Set_Null_Record_Present (N, False);
5728
5729            --  When the current aggregate comes from the expansion of an
5730            --  extension aggregate, the parent expr is replaced by an
5731            --  aggregate formed by selected components of this expr.
5732
5733            if Present (Parent_Expr)
5734              and then Is_Empty_List (Comps)
5735            then
5736               Comp := First_Component_Or_Discriminant (Typ);
5737               while Present (Comp) loop
5738
5739                  --  Skip all expander-generated components
5740
5741                  if
5742                    not Comes_From_Source (Original_Record_Component (Comp))
5743                  then
5744                     null;
5745
5746                  else
5747                     New_Comp :=
5748                       Make_Selected_Component (Loc,
5749                         Prefix =>
5750                           Unchecked_Convert_To (Typ,
5751                             Duplicate_Subexpr (Parent_Expr, True)),
5752
5753                         Selector_Name => New_Occurrence_Of (Comp, Loc));
5754
5755                     Append_To (Comps,
5756                       Make_Component_Association (Loc,
5757                         Choices    =>
5758                           New_List (New_Occurrence_Of (Comp, Loc)),
5759                         Expression =>
5760                           New_Comp));
5761
5762                     Analyze_And_Resolve (New_Comp, Etype (Comp));
5763                  end if;
5764
5765                  Next_Component_Or_Discriminant (Comp);
5766               end loop;
5767            end if;
5768
5769            --  Compute the value for the Tag now, if the type is a root it
5770            --  will be included in the aggregate right away, otherwise it will
5771            --  be propagated to the parent aggregate.
5772
5773            if Present (Orig_Tag) then
5774               Tag_Value := Orig_Tag;
5775            elsif not Tagged_Type_Expansion then
5776               Tag_Value := Empty;
5777            else
5778               Tag_Value :=
5779                 New_Occurrence_Of
5780                   (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
5781            end if;
5782
5783            --  For a derived type, an aggregate for the parent is formed with
5784            --  all the inherited components.
5785
5786            if Is_Derived_Type (Typ) then
5787
5788               declare
5789                  First_Comp   : Node_Id;
5790                  Parent_Comps : List_Id;
5791                  Parent_Aggr  : Node_Id;
5792                  Parent_Name  : Node_Id;
5793
5794               begin
5795                  --  Remove the inherited component association from the
5796                  --  aggregate and store them in the parent aggregate
5797
5798                  First_Comp := First (Component_Associations (N));
5799                  Parent_Comps := New_List;
5800                  while Present (First_Comp)
5801                    and then Scope (Original_Record_Component (
5802                            Entity (First (Choices (First_Comp))))) /= Base_Typ
5803                  loop
5804                     Comp := First_Comp;
5805                     Next (First_Comp);
5806                     Remove (Comp);
5807                     Append (Comp, Parent_Comps);
5808                  end loop;
5809
5810                  Parent_Aggr := Make_Aggregate (Loc,
5811                    Component_Associations => Parent_Comps);
5812                  Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
5813
5814                  --  Find the _parent component
5815
5816                  Comp := First_Component (Typ);
5817                  while Chars (Comp) /= Name_uParent loop
5818                     Comp := Next_Component (Comp);
5819                  end loop;
5820
5821                  Parent_Name := New_Occurrence_Of (Comp, Loc);
5822
5823                  --  Insert the parent aggregate
5824
5825                  Prepend_To (Component_Associations (N),
5826                    Make_Component_Association (Loc,
5827                      Choices    => New_List (Parent_Name),
5828                      Expression => Parent_Aggr));
5829
5830                  --  Expand recursively the parent propagating the right Tag
5831
5832                  Expand_Record_Aggregate
5833                    (Parent_Aggr, Tag_Value, Parent_Expr);
5834
5835                  --  The ancestor part may be a nested aggregate that has
5836                  --  delayed expansion: recheck now.
5837
5838                  if Component_Not_OK_For_Backend then
5839                     Convert_To_Assignments (N, Typ);
5840                  end if;
5841               end;
5842
5843            --  For a root type, the tag component is added (unless compiling
5844            --  for the VMs, where tags are implicit).
5845
5846            elsif Tagged_Type_Expansion then
5847               declare
5848                  Tag_Name  : constant Node_Id :=
5849                    New_Occurrence_Of (First_Tag_Component (Typ), Loc);
5850                  Typ_Tag   : constant Entity_Id := RTE (RE_Tag);
5851                  Conv_Node : constant Node_Id :=
5852                    Unchecked_Convert_To (Typ_Tag, Tag_Value);
5853
5854               begin
5855                  Set_Etype (Conv_Node, Typ_Tag);
5856                  Prepend_To (Component_Associations (N),
5857                    Make_Component_Association (Loc,
5858                      Choices    => New_List (Tag_Name),
5859                      Expression => Conv_Node));
5860               end;
5861            end if;
5862         end if;
5863      end if;
5864
5865   end Expand_Record_Aggregate;
5866
5867   ----------------------------
5868   -- Has_Default_Init_Comps --
5869   ----------------------------
5870
5871   function Has_Default_Init_Comps (N : Node_Id) return Boolean is
5872      Comps : constant List_Id := Component_Associations (N);
5873      C     : Node_Id;
5874      Expr  : Node_Id;
5875   begin
5876      pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
5877
5878      if No (Comps) then
5879         return False;
5880      end if;
5881
5882      if Has_Self_Reference (N) then
5883         return True;
5884      end if;
5885
5886      --  Check if any direct component has default initialized components
5887
5888      C := First (Comps);
5889      while Present (C) loop
5890         if Box_Present (C) then
5891            return True;
5892         end if;
5893
5894         Next (C);
5895      end loop;
5896
5897      --  Recursive call in case of aggregate expression
5898
5899      C := First (Comps);
5900      while Present (C) loop
5901         Expr := Expression (C);
5902
5903         if Present (Expr)
5904           and then
5905             Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
5906           and then Has_Default_Init_Comps (Expr)
5907         then
5908            return True;
5909         end if;
5910
5911         Next (C);
5912      end loop;
5913
5914      return False;
5915   end Has_Default_Init_Comps;
5916
5917   --------------------------
5918   -- Is_Delayed_Aggregate --
5919   --------------------------
5920
5921   function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
5922      Node : Node_Id   := N;
5923      Kind : Node_Kind := Nkind (Node);
5924
5925   begin
5926      if Kind = N_Qualified_Expression then
5927         Node := Expression (Node);
5928         Kind := Nkind (Node);
5929      end if;
5930
5931      if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
5932         return False;
5933      else
5934         return Expansion_Delayed (Node);
5935      end if;
5936   end Is_Delayed_Aggregate;
5937
5938   ----------------------------------------
5939   -- Is_Static_Dispatch_Table_Aggregate --
5940   ----------------------------------------
5941
5942   function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
5943      Typ : constant Entity_Id := Base_Type (Etype (N));
5944
5945   begin
5946      return Static_Dispatch_Tables
5947        and then Tagged_Type_Expansion
5948        and then RTU_Loaded (Ada_Tags)
5949
5950         --  Avoid circularity when rebuilding the compiler
5951
5952        and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
5953        and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
5954                    or else
5955                  Typ = RTE (RE_Address_Array)
5956                    or else
5957                  Typ = RTE (RE_Type_Specific_Data)
5958                    or else
5959                  Typ = RTE (RE_Tag_Table)
5960                    or else
5961                  (RTE_Available (RE_Interface_Data)
5962                     and then Typ = RTE (RE_Interface_Data))
5963                    or else
5964                  (RTE_Available (RE_Interfaces_Array)
5965                     and then Typ = RTE (RE_Interfaces_Array))
5966                    or else
5967                  (RTE_Available (RE_Interface_Data_Element)
5968                     and then Typ = RTE (RE_Interface_Data_Element)));
5969   end Is_Static_Dispatch_Table_Aggregate;
5970
5971   -----------------------------
5972   -- Is_Two_Dim_Packed_Array --
5973   -----------------------------
5974
5975   function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
5976      C : constant Int := UI_To_Int (Component_Size (Typ));
5977   begin
5978      return Number_Dimensions (Typ) = 2
5979        and then Is_Bit_Packed_Array (Typ)
5980        and then (C = 1 or else C = 2 or else C = 4);
5981   end Is_Two_Dim_Packed_Array;
5982
5983   --------------------
5984   -- Late_Expansion --
5985   --------------------
5986
5987   function Late_Expansion
5988     (N      : Node_Id;
5989      Typ    : Entity_Id;
5990      Target : Node_Id) return List_Id
5991   is
5992   begin
5993      if Is_Record_Type (Etype (N)) then
5994         return Build_Record_Aggr_Code (N, Typ, Target);
5995
5996      else pragma Assert (Is_Array_Type (Etype (N)));
5997         return
5998           Build_Array_Aggr_Code
5999             (N           => N,
6000              Ctype       => Component_Type (Etype (N)),
6001              Index       => First_Index (Typ),
6002              Into        => Target,
6003              Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
6004              Indexes     => No_List);
6005      end if;
6006   end Late_Expansion;
6007
6008   ----------------------------------
6009   -- Make_OK_Assignment_Statement --
6010   ----------------------------------
6011
6012   function Make_OK_Assignment_Statement
6013     (Sloc       : Source_Ptr;
6014      Name       : Node_Id;
6015      Expression : Node_Id) return Node_Id
6016   is
6017   begin
6018      Set_Assignment_OK (Name);
6019
6020      return Make_Assignment_Statement (Sloc, Name, Expression);
6021   end Make_OK_Assignment_Statement;
6022
6023   -----------------------
6024   -- Number_Of_Choices --
6025   -----------------------
6026
6027   function Number_Of_Choices (N : Node_Id) return Nat is
6028      Assoc  : Node_Id;
6029      Choice : Node_Id;
6030
6031      Nb_Choices : Nat := 0;
6032
6033   begin
6034      if Present (Expressions (N)) then
6035         return 0;
6036      end if;
6037
6038      Assoc := First (Component_Associations (N));
6039      while Present (Assoc) loop
6040         Choice := First (Choices (Assoc));
6041         while Present (Choice) loop
6042            if Nkind (Choice) /= N_Others_Choice then
6043               Nb_Choices := Nb_Choices + 1;
6044            end if;
6045
6046            Next (Choice);
6047         end loop;
6048
6049         Next (Assoc);
6050      end loop;
6051
6052      return Nb_Choices;
6053   end Number_Of_Choices;
6054
6055   ------------------------------------
6056   -- Packed_Array_Aggregate_Handled --
6057   ------------------------------------
6058
6059   --  The current version of this procedure will handle at compile time
6060   --  any array aggregate that meets these conditions:
6061
6062   --    One and two dimensional, bit packed
6063   --    Underlying packed type is modular type
6064   --    Bounds are within 32-bit Int range
6065   --    All bounds and values are static
6066
6067   --  Note: for now, in the 2-D case, we only handle component sizes of
6068   --  1, 2, 4 (cases where an integral number of elements occupies a byte).
6069
6070   function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
6071      Loc  : constant Source_Ptr := Sloc (N);
6072      Typ  : constant Entity_Id  := Etype (N);
6073      Ctyp : constant Entity_Id  := Component_Type (Typ);
6074
6075      Not_Handled : exception;
6076      --  Exception raised if this aggregate cannot be handled
6077
6078   begin
6079      --  Handle one- or two dimensional bit packed array
6080
6081      if not Is_Bit_Packed_Array (Typ)
6082        or else Number_Dimensions (Typ) > 2
6083      then
6084         return False;
6085      end if;
6086
6087      --  If two-dimensional, check whether it can be folded, and transformed
6088      --  into a one-dimensional aggregate for the Packed_Array_Type of the
6089      --  original type.
6090
6091      if Number_Dimensions (Typ) = 2 then
6092         return Two_Dim_Packed_Array_Handled (N);
6093      end if;
6094
6095      if not Is_Modular_Integer_Type (Packed_Array_Type (Typ)) then
6096         return False;
6097      end if;
6098
6099      if not Is_Scalar_Type (Component_Type (Typ))
6100        and then Has_Non_Standard_Rep (Component_Type (Typ))
6101      then
6102         return False;
6103      end if;
6104
6105      declare
6106         Csiz  : constant Nat := UI_To_Int (Component_Size (Typ));
6107
6108         Lo : Node_Id;
6109         Hi : Node_Id;
6110         --  Bounds of index type
6111
6112         Lob : Uint;
6113         Hib : Uint;
6114         --  Values of bounds if compile time known
6115
6116         function Get_Component_Val (N : Node_Id) return Uint;
6117         --  Given a expression value N of the component type Ctyp, returns a
6118         --  value of Csiz (component size) bits representing this value. If
6119         --  the value is non-static or any other reason exists why the value
6120         --  cannot be returned, then Not_Handled is raised.
6121
6122         -----------------------
6123         -- Get_Component_Val --
6124         -----------------------
6125
6126         function Get_Component_Val (N : Node_Id) return Uint is
6127            Val  : Uint;
6128
6129         begin
6130            --  We have to analyze the expression here before doing any further
6131            --  processing here. The analysis of such expressions is deferred
6132            --  till expansion to prevent some problems of premature analysis.
6133
6134            Analyze_And_Resolve (N, Ctyp);
6135
6136            --  Must have a compile time value. String literals have to be
6137            --  converted into temporaries as well, because they cannot easily
6138            --  be converted into their bit representation.
6139
6140            if not Compile_Time_Known_Value (N)
6141              or else Nkind (N) = N_String_Literal
6142            then
6143               raise Not_Handled;
6144            end if;
6145
6146            Val := Expr_Rep_Value (N);
6147
6148            --  Adjust for bias, and strip proper number of bits
6149
6150            if Has_Biased_Representation (Ctyp) then
6151               Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
6152            end if;
6153
6154            return Val mod Uint_2 ** Csiz;
6155         end Get_Component_Val;
6156
6157      --  Here we know we have a one dimensional bit packed array
6158
6159      begin
6160         Get_Index_Bounds (First_Index (Typ), Lo, Hi);
6161
6162         --  Cannot do anything if bounds are dynamic
6163
6164         if not Compile_Time_Known_Value (Lo)
6165              or else
6166            not Compile_Time_Known_Value (Hi)
6167         then
6168            return False;
6169         end if;
6170
6171         --  Or are silly out of range of int bounds
6172
6173         Lob := Expr_Value (Lo);
6174         Hib := Expr_Value (Hi);
6175
6176         if not UI_Is_In_Int_Range (Lob)
6177              or else
6178            not UI_Is_In_Int_Range (Hib)
6179         then
6180            return False;
6181         end if;
6182
6183         --  At this stage we have a suitable aggregate for handling at compile
6184         --  time. The only remaining checks are that the values of expressions
6185         --  in the aggregate are compile-time known (checks are performed by
6186         --  Get_Component_Val, and that any subtypes or ranges are statically
6187         --  known.
6188
6189         --  If the aggregate is not fully positional at this stage, then
6190         --  convert it to positional form. Either this will fail, in which
6191         --  case we can do nothing, or it will succeed, in which case we have
6192         --  succeeded in handling the aggregate and transforming it into a
6193         --  modular value, or it will stay an aggregate, in which case we
6194         --  have failed to create a packed value for it.
6195
6196         if Present (Component_Associations (N)) then
6197            Convert_To_Positional
6198              (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6199            return Nkind (N) /= N_Aggregate;
6200         end if;
6201
6202         --  Otherwise we are all positional, so convert to proper value
6203
6204         declare
6205            Lov : constant Int := UI_To_Int (Lob);
6206            Hiv : constant Int := UI_To_Int (Hib);
6207
6208            Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
6209            --  The length of the array (number of elements)
6210
6211            Aggregate_Val : Uint;
6212            --  Value of aggregate. The value is set in the low order bits of
6213            --  this value. For the little-endian case, the values are stored
6214            --  from low-order to high-order and for the big-endian case the
6215            --  values are stored from high-order to low-order. Note that gigi
6216            --  will take care of the conversions to left justify the value in
6217            --  the big endian case (because of left justified modular type
6218            --  processing), so we do not have to worry about that here.
6219
6220            Lit : Node_Id;
6221            --  Integer literal for resulting constructed value
6222
6223            Shift : Nat;
6224            --  Shift count from low order for next value
6225
6226            Incr : Int;
6227            --  Shift increment for loop
6228
6229            Expr : Node_Id;
6230            --  Next expression from positional parameters of aggregate
6231
6232            Left_Justified : Boolean;
6233            --  Set True if we are filling the high order bits of the target
6234            --  value (i.e. the value is left justified).
6235
6236         begin
6237            --  For little endian, we fill up the low order bits of the target
6238            --  value. For big endian we fill up the high order bits of the
6239            --  target value (which is a left justified modular value).
6240
6241            Left_Justified := Bytes_Big_Endian;
6242
6243            --  Switch justification if using -gnatd8
6244
6245            if Debug_Flag_8 then
6246               Left_Justified := not Left_Justified;
6247            end if;
6248
6249            --  Switch justfification if reverse storage order
6250
6251            if Reverse_Storage_Order (Base_Type (Typ)) then
6252               Left_Justified := not Left_Justified;
6253            end if;
6254
6255            if Left_Justified then
6256               Shift := Csiz * (Len - 1);
6257               Incr  := -Csiz;
6258            else
6259               Shift := 0;
6260               Incr  := +Csiz;
6261            end if;
6262
6263            --  Loop to set the values
6264
6265            if Len = 0 then
6266               Aggregate_Val := Uint_0;
6267            else
6268               Expr := First (Expressions (N));
6269               Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
6270
6271               for J in 2 .. Len loop
6272                  Shift := Shift + Incr;
6273                  Next (Expr);
6274                  Aggregate_Val :=
6275                    Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
6276               end loop;
6277            end if;
6278
6279            --  Now we can rewrite with the proper value
6280
6281            Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
6282            Set_Print_In_Hex (Lit);
6283
6284            --  Construct the expression using this literal. Note that it is
6285            --  important to qualify the literal with its proper modular type
6286            --  since universal integer does not have the required range and
6287            --  also this is a left justified modular type, which is important
6288            --  in the big-endian case.
6289
6290            Rewrite (N,
6291              Unchecked_Convert_To (Typ,
6292                Make_Qualified_Expression (Loc,
6293                  Subtype_Mark =>
6294                    New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
6295                  Expression   => Lit)));
6296
6297            Analyze_And_Resolve (N, Typ);
6298            return True;
6299         end;
6300      end;
6301
6302   exception
6303      when Not_Handled =>
6304         return False;
6305   end Packed_Array_Aggregate_Handled;
6306
6307   ----------------------------
6308   -- Has_Mutable_Components --
6309   ----------------------------
6310
6311   function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
6312      Comp : Entity_Id;
6313
6314   begin
6315      Comp := First_Component (Typ);
6316      while Present (Comp) loop
6317         if Is_Record_Type (Etype (Comp))
6318           and then Has_Discriminants (Etype (Comp))
6319           and then not Is_Constrained (Etype (Comp))
6320         then
6321            return True;
6322         end if;
6323
6324         Next_Component (Comp);
6325      end loop;
6326
6327      return False;
6328   end Has_Mutable_Components;
6329
6330   ------------------------------
6331   -- Initialize_Discriminants --
6332   ------------------------------
6333
6334   procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
6335      Loc  : constant Source_Ptr := Sloc (N);
6336      Bas  : constant Entity_Id  := Base_Type (Typ);
6337      Par  : constant Entity_Id  := Etype (Bas);
6338      Decl : constant Node_Id    := Parent (Par);
6339      Ref  : Node_Id;
6340
6341   begin
6342      if Is_Tagged_Type (Bas)
6343        and then Is_Derived_Type (Bas)
6344        and then Has_Discriminants (Par)
6345        and then Has_Discriminants (Bas)
6346        and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
6347        and then Nkind (Decl) = N_Full_Type_Declaration
6348        and then Nkind (Type_Definition (Decl)) = N_Record_Definition
6349        and then Present
6350          (Variant_Part (Component_List (Type_Definition (Decl))))
6351        and then Nkind (N) /= N_Extension_Aggregate
6352      then
6353
6354         --   Call init proc to set discriminants.
6355         --   There should eventually be a special procedure for this ???
6356
6357         Ref := New_Reference_To (Defining_Identifier (N), Loc);
6358         Insert_Actions_After (N,
6359           Build_Initialization_Call (Sloc (N), Ref, Typ));
6360      end if;
6361   end Initialize_Discriminants;
6362
6363   ----------------
6364   -- Must_Slide --
6365   ----------------
6366
6367   function Must_Slide
6368     (Obj_Type : Entity_Id;
6369      Typ      : Entity_Id) return Boolean
6370   is
6371      L1, L2, H1, H2 : Node_Id;
6372   begin
6373      --  No sliding if the type of the object is not established yet, if it is
6374      --  an unconstrained type whose actual subtype comes from the aggregate,
6375      --  or if the two types are identical.
6376
6377      if not Is_Array_Type (Obj_Type) then
6378         return False;
6379
6380      elsif not Is_Constrained (Obj_Type) then
6381         return False;
6382
6383      elsif Typ = Obj_Type then
6384         return False;
6385
6386      else
6387         --  Sliding can only occur along the first dimension
6388
6389         Get_Index_Bounds (First_Index (Typ), L1, H1);
6390         Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
6391
6392         if not Is_Static_Expression (L1)
6393           or else not Is_Static_Expression (L2)
6394           or else not Is_Static_Expression (H1)
6395           or else not Is_Static_Expression (H2)
6396         then
6397            return False;
6398         else
6399            return Expr_Value (L1) /= Expr_Value (L2)
6400                     or else
6401                   Expr_Value (H1) /= Expr_Value (H2);
6402         end if;
6403      end if;
6404   end Must_Slide;
6405
6406   ---------------------------
6407   -- Safe_Slice_Assignment --
6408   ---------------------------
6409
6410   function Safe_Slice_Assignment (N : Node_Id) return Boolean is
6411      Loc        : constant Source_Ptr := Sloc (Parent (N));
6412      Pref       : constant Node_Id    := Prefix (Name (Parent (N)));
6413      Range_Node : constant Node_Id    := Discrete_Range (Name (Parent (N)));
6414      Expr       : Node_Id;
6415      L_J        : Entity_Id;
6416      L_Iter     : Node_Id;
6417      L_Body     : Node_Id;
6418      Stat       : Node_Id;
6419
6420   begin
6421      --  Generate: for J in Range loop Pref (J) := Expr; end loop;
6422
6423      if Comes_From_Source (N)
6424        and then No (Expressions (N))
6425        and then Nkind (First (Choices (First (Component_Associations (N)))))
6426                   = N_Others_Choice
6427      then
6428         Expr := Expression (First (Component_Associations (N)));
6429         L_J := Make_Temporary (Loc, 'J');
6430
6431         L_Iter :=
6432           Make_Iteration_Scheme (Loc,
6433             Loop_Parameter_Specification =>
6434               Make_Loop_Parameter_Specification
6435                 (Loc,
6436                  Defining_Identifier         => L_J,
6437                  Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
6438
6439         L_Body :=
6440           Make_Assignment_Statement (Loc,
6441              Name =>
6442                Make_Indexed_Component (Loc,
6443                  Prefix      => Relocate_Node (Pref),
6444                  Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
6445               Expression => Relocate_Node (Expr));
6446
6447         --  Construct the final loop
6448
6449         Stat :=
6450           Make_Implicit_Loop_Statement
6451             (Node             => Parent (N),
6452              Identifier       => Empty,
6453              Iteration_Scheme => L_Iter,
6454              Statements       => New_List (L_Body));
6455
6456         --  Set type of aggregate to be type of lhs in assignment,
6457         --  to suppress redundant length checks.
6458
6459         Set_Etype (N, Etype (Name (Parent (N))));
6460
6461         Rewrite (Parent (N), Stat);
6462         Analyze (Parent (N));
6463         return True;
6464
6465      else
6466         return False;
6467      end if;
6468   end Safe_Slice_Assignment;
6469
6470   ----------------------------------
6471   -- Two_Dim_Packed_Array_Handled --
6472   ----------------------------------
6473
6474   function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
6475      Loc          : constant Source_Ptr := Sloc (N);
6476      Typ          : constant Entity_Id := Etype (N);
6477      Ctyp         : constant Entity_Id := Component_Type (Typ);
6478      Comp_Size    : constant Int := UI_To_Int (Component_Size (Typ));
6479      Packed_Array : constant Entity_Id := Packed_Array_Type (Base_Type (Typ));
6480
6481      One_Comp  : Node_Id;
6482      --  Expression in original aggregate
6483
6484      One_Dim   : Node_Id;
6485      --  One-dimensional subaggregate
6486
6487   begin
6488
6489      --  For now, only deal with cases where an integral number of elements
6490      --  fit in a single byte. This includes the most common boolean case.
6491
6492      if not (Comp_Size = 1 or else
6493              Comp_Size = 2 or else
6494              Comp_Size = 4)
6495      then
6496         return False;
6497      end if;
6498
6499      Convert_To_Positional
6500        (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6501
6502      --  Verify that all components are static
6503
6504      if Nkind (N) = N_Aggregate
6505        and then Compile_Time_Known_Aggregate (N)
6506      then
6507         null;
6508
6509      --  The aggregate may have been re-analyzed and converted already
6510
6511      elsif Nkind (N) /= N_Aggregate then
6512         return True;
6513
6514      --  If component associations remain, the aggregate is not static
6515
6516      elsif Present (Component_Associations (N)) then
6517         return False;
6518
6519      else
6520         One_Dim := First (Expressions (N));
6521         while Present (One_Dim) loop
6522            if Present (Component_Associations (One_Dim)) then
6523               return False;
6524            end if;
6525
6526            One_Comp := First (Expressions (One_Dim));
6527            while Present (One_Comp) loop
6528               if not Is_OK_Static_Expression (One_Comp) then
6529                  return False;
6530               end if;
6531
6532               Next (One_Comp);
6533            end loop;
6534
6535            Next (One_Dim);
6536         end loop;
6537      end if;
6538
6539      --  Two-dimensional aggregate is now fully positional so pack one
6540      --  dimension to create a static one-dimensional array, and rewrite
6541      --  as an unchecked conversion to the original type.
6542
6543      declare
6544         Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
6545         --  The packed array type is a byte array
6546
6547         Packed_Num : Int;
6548         --  Number of components accumulated in current byte
6549
6550         Comps : List_Id;
6551         --  Assembled list of packed values for equivalent aggregate
6552
6553         Comp_Val : Uint;
6554         --  integer value of component
6555
6556         Incr : Int;
6557         --  Step size for packing
6558
6559         Init_Shift : Int;
6560         --  Endian-dependent start position for packing
6561
6562         Shift : Int;
6563         --  Current insertion position
6564
6565         Val : Int;
6566         --  Component of packed array being assembled.
6567
6568      begin
6569         Comps := New_List;
6570         Val   := 0;
6571         Packed_Num := 0;
6572
6573         --  Account for endianness.  See corresponding comment in
6574         --  Packed_Array_Aggregate_Handled concerning the following.
6575
6576         if Bytes_Big_Endian
6577           xor Debug_Flag_8
6578           xor Reverse_Storage_Order (Base_Type (Typ))
6579         then
6580            Init_Shift := Byte_Size - Comp_Size;
6581            Incr := -Comp_Size;
6582         else
6583            Init_Shift := 0;
6584            Incr := +Comp_Size;
6585         end if;
6586
6587         Shift := Init_Shift;
6588         One_Dim := First (Expressions (N));
6589
6590         --  Iterate over each subaggregate
6591
6592         while Present (One_Dim) loop
6593            One_Comp := First (Expressions (One_Dim));
6594
6595            while Present (One_Comp) loop
6596               if Packed_Num = Byte_Size / Comp_Size then
6597
6598                  --  Byte is complete, add to list of expressions
6599
6600                  Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
6601                  Val := 0;
6602                  Shift := Init_Shift;
6603                  Packed_Num := 0;
6604
6605               else
6606                  Comp_Val := Expr_Rep_Value (One_Comp);
6607
6608                  --  Adjust for bias, and strip proper number of bits
6609
6610                  if Has_Biased_Representation (Ctyp) then
6611                     Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
6612                  end if;
6613
6614                  Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
6615                  Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
6616                  Shift := Shift + Incr;
6617                  One_Comp := Next (One_Comp);
6618                  Packed_Num := Packed_Num + 1;
6619               end if;
6620            end loop;
6621
6622            One_Dim := Next (One_Dim);
6623         end loop;
6624
6625         if Packed_Num > 0 then
6626
6627            --  Add final incomplete byte if present
6628
6629            Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
6630         end if;
6631
6632         Rewrite (N,
6633             Unchecked_Convert_To (Typ,
6634               Make_Qualified_Expression (Loc,
6635                 Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
6636                 Expression   =>
6637                   Make_Aggregate (Loc,  Expressions => Comps))));
6638         Analyze_And_Resolve (N);
6639         return True;
6640      end;
6641   end Two_Dim_Packed_Array_Handled;
6642
6643   ---------------------
6644   -- Sort_Case_Table --
6645   ---------------------
6646
6647   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
6648      L : constant Int := Case_Table'First;
6649      U : constant Int := Case_Table'Last;
6650      K : Int;
6651      J : Int;
6652      T : Case_Bounds;
6653
6654   begin
6655      K := L;
6656      while K /= U loop
6657         T := Case_Table (K + 1);
6658
6659         J := K + 1;
6660         while J /= L
6661           and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
6662                    Expr_Value (T.Choice_Lo)
6663         loop
6664            Case_Table (J) := Case_Table (J - 1);
6665            J := J - 1;
6666         end loop;
6667
6668         Case_Table (J) := T;
6669         K := K + 1;
6670      end loop;
6671   end Sort_Case_Table;
6672
6673   ----------------------------
6674   -- Static_Array_Aggregate --
6675   ----------------------------
6676
6677   function Static_Array_Aggregate (N : Node_Id) return Boolean is
6678      Bounds : constant Node_Id := Aggregate_Bounds (N);
6679
6680      Typ       : constant Entity_Id := Etype (N);
6681      Comp_Type : constant Entity_Id := Component_Type (Typ);
6682      Agg       : Node_Id;
6683      Expr      : Node_Id;
6684      Lo        : Node_Id;
6685      Hi        : Node_Id;
6686
6687   begin
6688      if Is_Tagged_Type (Typ)
6689        or else Is_Controlled (Typ)
6690        or else Is_Packed (Typ)
6691      then
6692         return False;
6693      end if;
6694
6695      if Present (Bounds)
6696        and then Nkind (Bounds) = N_Range
6697        and then Nkind (Low_Bound  (Bounds)) = N_Integer_Literal
6698        and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
6699      then
6700         Lo := Low_Bound  (Bounds);
6701         Hi := High_Bound (Bounds);
6702
6703         if No (Component_Associations (N)) then
6704
6705            --  Verify that all components are static integers
6706
6707            Expr := First (Expressions (N));
6708            while Present (Expr) loop
6709               if Nkind (Expr) /= N_Integer_Literal then
6710                  return False;
6711               end if;
6712
6713               Next (Expr);
6714            end loop;
6715
6716            return True;
6717
6718         else
6719            --  We allow only a single named association, either a static
6720            --  range or an others_clause, with a static expression.
6721
6722            Expr := First (Component_Associations (N));
6723
6724            if Present (Expressions (N)) then
6725               return False;
6726
6727            elsif Present (Next (Expr)) then
6728               return False;
6729
6730            elsif Present (Next (First (Choices (Expr)))) then
6731               return False;
6732
6733            else
6734               --  The aggregate is static if all components are literals,
6735               --  or else all its components are static aggregates for the
6736               --  component type. We also limit the size of a static aggregate
6737               --  to prevent runaway static expressions.
6738
6739               if Is_Array_Type (Comp_Type)
6740                 or else Is_Record_Type (Comp_Type)
6741               then
6742                  if Nkind (Expression (Expr)) /= N_Aggregate
6743                    or else
6744                      not Compile_Time_Known_Aggregate (Expression (Expr))
6745                  then
6746                     return False;
6747                  end if;
6748
6749               elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
6750                  return False;
6751               end if;
6752
6753               if not Aggr_Size_OK (N, Typ) then
6754                  return False;
6755               end if;
6756
6757               --  Create a positional aggregate with the right number of
6758               --  copies of the expression.
6759
6760               Agg := Make_Aggregate (Sloc (N), New_List, No_List);
6761
6762               for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
6763               loop
6764                  Append_To
6765                    (Expressions (Agg), New_Copy (Expression (Expr)));
6766
6767                  --  The copied expression must be analyzed and resolved.
6768                  --  Besides setting the type, this ensures that static
6769                  --  expressions are appropriately marked as such.
6770
6771                  Analyze_And_Resolve
6772                    (Last (Expressions (Agg)), Component_Type (Typ));
6773               end loop;
6774
6775               Set_Aggregate_Bounds (Agg, Bounds);
6776               Set_Etype (Agg, Typ);
6777               Set_Analyzed (Agg);
6778               Rewrite (N, Agg);
6779               Set_Compile_Time_Known_Aggregate (N);
6780
6781               return True;
6782            end if;
6783         end if;
6784
6785      else
6786         return False;
6787      end if;
6788   end Static_Array_Aggregate;
6789
6790end Exp_Aggr;
6791