1------------------------------------------------------------------------------
2--                                                                          --
3--                GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS               --
4--                                                                          --
5--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6--                                                                          --
7--                                  B o d y                                 --
8--                                                                          --
9--         Copyright (C) 1992-2012, Free Software Foundation, Inc.          --
10--                                                                          --
11-- GNARL is free software; you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNARL was developed by the GNARL team at Florida State University.       --
28-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29--                                                                          --
30------------------------------------------------------------------------------
31
32--  This is a GNU/Linux (GNU/LinuxThreads) version of this package
33
34--  This package contains all the GNULL primitives that interface directly with
35--  the underlying OS.
36
37pragma Polling (Off);
38--  Turn off polling, we do not want ATC polling to take place during tasking
39--  operations. It causes infinite loops and other problems.
40
41with Interfaces.C;
42
43with System.Task_Info;
44with System.Tasking.Debug;
45with System.Interrupt_Management;
46with System.OS_Primitives;
47with System.Stack_Checking.Operations;
48with System.Multiprocessors;
49
50with System.Soft_Links;
51--  We use System.Soft_Links instead of System.Tasking.Initialization
52--  because the later is a higher level package that we shouldn't depend on.
53--  For example when using the restricted run time, it is replaced by
54--  System.Tasking.Restricted.Stages.
55
56package body System.Task_Primitives.Operations is
57
58   package SSL renames System.Soft_Links;
59   package SC renames System.Stack_Checking.Operations;
60
61   use System.Tasking.Debug;
62   use System.Tasking;
63   use Interfaces.C;
64   use System.OS_Interface;
65   use System.Parameters;
66   use System.OS_Primitives;
67   use System.Task_Info;
68
69   ----------------
70   -- Local Data --
71   ----------------
72
73   --  The followings are logically constants, but need to be initialized
74   --  at run time.
75
76   Single_RTS_Lock : aliased RTS_Lock;
77   --  This is a lock to allow only one thread of control in the RTS at
78   --  a time; it is used to execute in mutual exclusion from all other tasks.
79   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
80
81   Environment_Task_Id : Task_Id;
82   --  A variable to hold Task_Id for the environment task
83
84   Unblocked_Signal_Mask : aliased sigset_t;
85   --  The set of signals that should be unblocked in all tasks
86
87   --  The followings are internal configuration constants needed
88
89   Next_Serial_Number : Task_Serial_Number := 100;
90   --  We start at 100 (reserve some special values for using in error checks)
91
92   Time_Slice_Val : Integer;
93   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
94
95   Dispatching_Policy : Character;
96   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
97
98   Locking_Policy : Character;
99   pragma Import (C, Locking_Policy, "__gl_locking_policy");
100
101   Foreign_Task_Elaborated : aliased Boolean := True;
102   --  Used to identified fake tasks (i.e., non-Ada Threads)
103
104   Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
105   --  Whether to use an alternate signal stack for stack overflows
106
107   Abort_Handler_Installed : Boolean := False;
108   --  True if a handler for the abort signal is installed
109
110   Null_Thread_Id : constant pthread_t := pthread_t'Last;
111   --  Constant to indicate that the thread identifier has not yet been
112   --  initialized.
113
114   --------------------
115   -- Local Packages --
116   --------------------
117
118   package Specific is
119
120      procedure Initialize (Environment_Task : Task_Id);
121      pragma Inline (Initialize);
122      --  Initialize various data needed by this package
123
124      function Is_Valid_Task return Boolean;
125      pragma Inline (Is_Valid_Task);
126      --  Does executing thread have a TCB?
127
128      procedure Set (Self_Id : Task_Id);
129      pragma Inline (Set);
130      --  Set the self id for the current task
131
132      function Self return Task_Id;
133      pragma Inline (Self);
134      --  Return a pointer to the Ada Task Control Block of the calling task
135
136   end Specific;
137
138   package body Specific is separate;
139   --  The body of this package is target specific
140
141   ----------------------------------
142   -- ATCB allocation/deallocation --
143   ----------------------------------
144
145   package body ATCB_Allocation is separate;
146   --  The body of this package is shared across several targets
147
148   ---------------------------------
149   -- Support for foreign threads --
150   ---------------------------------
151
152   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
153   --  Allocate and Initialize a new ATCB for the current Thread
154
155   function Register_Foreign_Thread
156     (Thread : Thread_Id) return Task_Id is separate;
157
158   -----------------------
159   -- Local Subprograms --
160   -----------------------
161
162   procedure Abort_Handler (signo : Signal);
163
164   -------------------
165   -- Abort_Handler --
166   -------------------
167
168   procedure Abort_Handler (signo : Signal) is
169      pragma Unreferenced (signo);
170
171      Self_Id : constant Task_Id := Self;
172      Result  : Interfaces.C.int;
173      Old_Set : aliased sigset_t;
174
175   begin
176      --  It's not safe to raise an exception when using GCC ZCX mechanism.
177      --  Note that we still need to install a signal handler, since in some
178      --  cases (e.g. shutdown of the Server_Task in System.Interrupts) we
179      --  need to send the Abort signal to a task.
180
181      if ZCX_By_Default then
182         return;
183      end if;
184
185      if Self_Id.Deferral_Level = 0
186        and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
187        and then not Self_Id.Aborting
188      then
189         Self_Id.Aborting := True;
190
191         --  Make sure signals used for RTS internal purpose are unmasked
192
193         Result :=
194           pthread_sigmask
195             (SIG_UNBLOCK,
196              Unblocked_Signal_Mask'Access,
197              Old_Set'Access);
198         pragma Assert (Result = 0);
199
200         raise Standard'Abort_Signal;
201      end if;
202   end Abort_Handler;
203
204   --------------
205   -- Lock_RTS --
206   --------------
207
208   procedure Lock_RTS is
209   begin
210      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
211   end Lock_RTS;
212
213   ----------------
214   -- Unlock_RTS --
215   ----------------
216
217   procedure Unlock_RTS is
218   begin
219      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
220   end Unlock_RTS;
221
222   -----------------
223   -- Stack_Guard --
224   -----------------
225
226   --  The underlying thread system extends the memory (up to 2MB) when needed
227
228   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
229      pragma Unreferenced (T);
230      pragma Unreferenced (On);
231   begin
232      null;
233   end Stack_Guard;
234
235   --------------------
236   -- Get_Thread_Id  --
237   --------------------
238
239   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
240   begin
241      return T.Common.LL.Thread;
242   end Get_Thread_Id;
243
244   ----------
245   -- Self --
246   ----------
247
248   function Self return Task_Id renames Specific.Self;
249
250   ---------------------
251   -- Initialize_Lock --
252   ---------------------
253
254   --  Note: mutexes and cond_variables needed per-task basis are initialized
255   --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
256   --  as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
257   --  status change of RTS. Therefore raising Storage_Error in the following
258   --  routines should be able to be handled safely.
259
260   procedure Initialize_Lock
261     (Prio : System.Any_Priority;
262      L    : not null access Lock)
263   is
264      pragma Unreferenced (Prio);
265
266   begin
267      if Locking_Policy = 'R' then
268         declare
269            RWlock_Attr : aliased pthread_rwlockattr_t;
270            Result      : Interfaces.C.int;
271
272         begin
273            --  Set the rwlock to prefer writer to avoid writers starvation
274
275            Result := pthread_rwlockattr_init (RWlock_Attr'Access);
276            pragma Assert (Result = 0);
277
278            Result := pthread_rwlockattr_setkind_np
279              (RWlock_Attr'Access,
280               PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
281            pragma Assert (Result = 0);
282
283            Result := pthread_rwlock_init (L.RW'Access, RWlock_Attr'Access);
284
285            pragma Assert (Result = 0 or else Result = ENOMEM);
286
287            if Result = ENOMEM then
288               raise Storage_Error with "Failed to allocate a lock";
289            end if;
290         end;
291
292      else
293         declare
294            Result : Interfaces.C.int;
295
296         begin
297            Result := pthread_mutex_init (L.WO'Access, null);
298
299            pragma Assert (Result = 0 or else Result = ENOMEM);
300
301            if Result = ENOMEM then
302               raise Storage_Error with "Failed to allocate a lock";
303            end if;
304         end;
305      end if;
306   end Initialize_Lock;
307
308   procedure Initialize_Lock
309     (L     : not null access RTS_Lock;
310      Level : Lock_Level)
311   is
312      pragma Unreferenced (Level);
313
314      Result : Interfaces.C.int;
315
316   begin
317      Result := pthread_mutex_init (L, null);
318
319      pragma Assert (Result = 0 or else Result = ENOMEM);
320
321      if Result = ENOMEM then
322         raise Storage_Error;
323      end if;
324   end Initialize_Lock;
325
326   -------------------
327   -- Finalize_Lock --
328   -------------------
329
330   procedure Finalize_Lock (L : not null access Lock) is
331      Result : Interfaces.C.int;
332   begin
333      if Locking_Policy = 'R' then
334         Result := pthread_rwlock_destroy (L.RW'Access);
335      else
336         Result := pthread_mutex_destroy (L.WO'Access);
337      end if;
338      pragma Assert (Result = 0);
339   end Finalize_Lock;
340
341   procedure Finalize_Lock (L : not null access RTS_Lock) is
342      Result : Interfaces.C.int;
343   begin
344      Result := pthread_mutex_destroy (L);
345      pragma Assert (Result = 0);
346   end Finalize_Lock;
347
348   ----------------
349   -- Write_Lock --
350   ----------------
351
352   procedure Write_Lock
353     (L                 : not null access Lock;
354      Ceiling_Violation : out Boolean)
355   is
356      Result : Interfaces.C.int;
357   begin
358      if Locking_Policy = 'R' then
359         Result := pthread_rwlock_wrlock (L.RW'Access);
360      else
361         Result := pthread_mutex_lock (L.WO'Access);
362      end if;
363
364      Ceiling_Violation := Result = EINVAL;
365
366      --  Assume the cause of EINVAL is a priority ceiling violation
367
368      pragma Assert (Result = 0 or else Result = EINVAL);
369   end Write_Lock;
370
371   procedure Write_Lock
372     (L           : not null access RTS_Lock;
373      Global_Lock : Boolean := False)
374   is
375      Result : Interfaces.C.int;
376   begin
377      if not Single_Lock or else Global_Lock then
378         Result := pthread_mutex_lock (L);
379         pragma Assert (Result = 0);
380      end if;
381   end Write_Lock;
382
383   procedure Write_Lock (T : Task_Id) is
384      Result : Interfaces.C.int;
385   begin
386      if not Single_Lock then
387         Result := pthread_mutex_lock (T.Common.LL.L'Access);
388         pragma Assert (Result = 0);
389      end if;
390   end Write_Lock;
391
392   ---------------
393   -- Read_Lock --
394   ---------------
395
396   procedure Read_Lock
397     (L                 : not null access Lock;
398      Ceiling_Violation : out Boolean)
399   is
400      Result : Interfaces.C.int;
401   begin
402      if Locking_Policy = 'R' then
403         Result := pthread_rwlock_rdlock (L.RW'Access);
404      else
405         Result := pthread_mutex_lock (L.WO'Access);
406      end if;
407
408      Ceiling_Violation := Result = EINVAL;
409
410      --  Assume the cause of EINVAL is a priority ceiling violation
411
412      pragma Assert (Result = 0 or else Result = EINVAL);
413   end Read_Lock;
414
415   ------------
416   -- Unlock --
417   ------------
418
419   procedure Unlock (L : not null access Lock) is
420      Result : Interfaces.C.int;
421   begin
422      if Locking_Policy = 'R' then
423         Result := pthread_rwlock_unlock (L.RW'Access);
424      else
425         Result := pthread_mutex_unlock (L.WO'Access);
426      end if;
427      pragma Assert (Result = 0);
428   end Unlock;
429
430   procedure Unlock
431     (L           : not null access RTS_Lock;
432      Global_Lock : Boolean := False)
433   is
434      Result : Interfaces.C.int;
435   begin
436      if not Single_Lock or else Global_Lock then
437         Result := pthread_mutex_unlock (L);
438         pragma Assert (Result = 0);
439      end if;
440   end Unlock;
441
442   procedure Unlock (T : Task_Id) is
443      Result : Interfaces.C.int;
444   begin
445      if not Single_Lock then
446         Result := pthread_mutex_unlock (T.Common.LL.L'Access);
447         pragma Assert (Result = 0);
448      end if;
449   end Unlock;
450
451   -----------------
452   -- Set_Ceiling --
453   -----------------
454
455   --  Dynamic priority ceilings are not supported by the underlying system
456
457   procedure Set_Ceiling
458     (L    : not null access Lock;
459      Prio : System.Any_Priority)
460   is
461      pragma Unreferenced (L, Prio);
462   begin
463      null;
464   end Set_Ceiling;
465
466   -----------
467   -- Sleep --
468   -----------
469
470   procedure Sleep
471     (Self_ID  : Task_Id;
472      Reason   : System.Tasking.Task_States)
473   is
474      pragma Unreferenced (Reason);
475
476      Result : Interfaces.C.int;
477
478   begin
479      pragma Assert (Self_ID = Self);
480
481      Result :=
482        pthread_cond_wait
483          (cond  => Self_ID.Common.LL.CV'Access,
484           mutex => (if Single_Lock
485                     then Single_RTS_Lock'Access
486                     else Self_ID.Common.LL.L'Access));
487
488      --  EINTR is not considered a failure
489
490      pragma Assert (Result = 0 or else Result = EINTR);
491   end Sleep;
492
493   -----------------
494   -- Timed_Sleep --
495   -----------------
496
497   --  This is for use within the run-time system, so abort is
498   --  assumed to be already deferred, and the caller should be
499   --  holding its own ATCB lock.
500
501   procedure Timed_Sleep
502     (Self_ID  : Task_Id;
503      Time     : Duration;
504      Mode     : ST.Delay_Modes;
505      Reason   : System.Tasking.Task_States;
506      Timedout : out Boolean;
507      Yielded  : out Boolean)
508   is
509      pragma Unreferenced (Reason);
510
511      Base_Time  : constant Duration := Monotonic_Clock;
512      Check_Time : Duration := Base_Time;
513      Abs_Time   : Duration;
514      Request    : aliased timespec;
515      Result     : Interfaces.C.int;
516
517   begin
518      Timedout := True;
519      Yielded := False;
520
521      Abs_Time :=
522        (if Mode = Relative
523         then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
524         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
525
526      if Abs_Time > Check_Time then
527         Request := To_Timespec (Abs_Time);
528
529         loop
530            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
531
532            Result :=
533              pthread_cond_timedwait
534                (cond    => Self_ID.Common.LL.CV'Access,
535                 mutex   => (if Single_Lock
536                             then Single_RTS_Lock'Access
537                             else Self_ID.Common.LL.L'Access),
538                 abstime => Request'Access);
539
540            Check_Time := Monotonic_Clock;
541            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
542
543            if Result = 0 or else Result = EINTR then
544
545               --  Somebody may have called Wakeup for us
546
547               Timedout := False;
548               exit;
549            end if;
550
551            pragma Assert (Result = ETIMEDOUT);
552         end loop;
553      end if;
554   end Timed_Sleep;
555
556   -----------------
557   -- Timed_Delay --
558   -----------------
559
560   --  This is for use in implementing delay statements, so we assume the
561   --  caller is abort-deferred but is holding no locks.
562
563   procedure Timed_Delay
564     (Self_ID : Task_Id;
565      Time    : Duration;
566      Mode    : ST.Delay_Modes)
567   is
568      Base_Time  : constant Duration := Monotonic_Clock;
569      Check_Time : Duration := Base_Time;
570      Abs_Time   : Duration;
571      Request    : aliased timespec;
572
573      Result : Interfaces.C.int;
574      pragma Warnings (Off, Result);
575
576   begin
577      if Single_Lock then
578         Lock_RTS;
579      end if;
580
581      Write_Lock (Self_ID);
582
583      Abs_Time :=
584        (if Mode = Relative
585         then Time + Check_Time
586         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
587
588      if Abs_Time > Check_Time then
589         Request := To_Timespec (Abs_Time);
590         Self_ID.Common.State := Delay_Sleep;
591
592         loop
593            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
594
595            Result :=
596              pthread_cond_timedwait
597                (cond    => Self_ID.Common.LL.CV'Access,
598                 mutex   => (if Single_Lock
599                             then Single_RTS_Lock'Access
600                             else Self_ID.Common.LL.L'Access),
601                 abstime => Request'Access);
602
603            Check_Time := Monotonic_Clock;
604            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
605
606            pragma Assert (Result = 0 or else
607              Result = ETIMEDOUT or else
608              Result = EINTR);
609         end loop;
610
611         Self_ID.Common.State := Runnable;
612      end if;
613
614      Unlock (Self_ID);
615
616      if Single_Lock then
617         Unlock_RTS;
618      end if;
619
620      Result := sched_yield;
621   end Timed_Delay;
622
623   ---------------------
624   -- Monotonic_Clock --
625   ---------------------
626
627   function Monotonic_Clock return Duration is
628      use Interfaces;
629
630      type timeval is array (1 .. 2) of C.long;
631
632      procedure timeval_to_duration
633        (T    : not null access timeval;
634         sec  : not null access C.long;
635         usec : not null access C.long);
636      pragma Import (C, timeval_to_duration, "__gnat_timeval_to_duration");
637
638      Micro  : constant := 10**6;
639      sec    : aliased C.long;
640      usec   : aliased C.long;
641      TV     : aliased timeval;
642      Result : int;
643
644      function gettimeofday
645        (Tv : access timeval;
646         Tz : System.Address := System.Null_Address) return int;
647      pragma Import (C, gettimeofday, "gettimeofday");
648
649   begin
650      Result := gettimeofday (TV'Access, System.Null_Address);
651      pragma Assert (Result = 0);
652      timeval_to_duration (TV'Access, sec'Access, usec'Access);
653      return Duration (sec) + Duration (usec) / Micro;
654   end Monotonic_Clock;
655
656   -------------------
657   -- RT_Resolution --
658   -------------------
659
660   function RT_Resolution return Duration is
661   begin
662      return 10#1.0#E-6;
663   end RT_Resolution;
664
665   ------------
666   -- Wakeup --
667   ------------
668
669   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
670      pragma Unreferenced (Reason);
671      Result : Interfaces.C.int;
672   begin
673      Result := pthread_cond_signal (T.Common.LL.CV'Access);
674      pragma Assert (Result = 0);
675   end Wakeup;
676
677   -----------
678   -- Yield --
679   -----------
680
681   procedure Yield (Do_Yield : Boolean := True) is
682      Result : Interfaces.C.int;
683      pragma Unreferenced (Result);
684   begin
685      if Do_Yield then
686         Result := sched_yield;
687      end if;
688   end Yield;
689
690   ------------------
691   -- Set_Priority --
692   ------------------
693
694   procedure Set_Priority
695     (T                   : Task_Id;
696      Prio                : System.Any_Priority;
697      Loss_Of_Inheritance : Boolean := False)
698   is
699      pragma Unreferenced (Loss_Of_Inheritance);
700
701      Result : Interfaces.C.int;
702      Param  : aliased struct_sched_param;
703
704      function Get_Policy (Prio : System.Any_Priority) return Character;
705      pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
706      --  Get priority specific dispatching policy
707
708      Priority_Specific_Policy : constant Character := Get_Policy (Prio);
709      --  Upper case first character of the policy name corresponding to the
710      --  task as set by a Priority_Specific_Dispatching pragma.
711
712   begin
713      T.Common.Current_Priority := Prio;
714
715      --  Priorities are 1 .. 99 on GNU/Linux, so we map 0 .. 98 to 1 .. 99
716
717      Param.sched_priority := Interfaces.C.int (Prio) + 1;
718
719      if Dispatching_Policy = 'R'
720        or else Priority_Specific_Policy = 'R'
721        or else Time_Slice_Val > 0
722      then
723         Result :=
724           pthread_setschedparam
725             (T.Common.LL.Thread, SCHED_RR, Param'Access);
726
727      elsif Dispatching_Policy = 'F'
728        or else Priority_Specific_Policy = 'F'
729        or else Time_Slice_Val = 0
730      then
731         Result :=
732           pthread_setschedparam
733             (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
734
735      else
736         Param.sched_priority := 0;
737         Result :=
738           pthread_setschedparam
739             (T.Common.LL.Thread,
740              SCHED_OTHER, Param'Access);
741      end if;
742
743      pragma Assert (Result = 0 or else Result = EPERM);
744   end Set_Priority;
745
746   ------------------
747   -- Get_Priority --
748   ------------------
749
750   function Get_Priority (T : Task_Id) return System.Any_Priority is
751   begin
752      return T.Common.Current_Priority;
753   end Get_Priority;
754
755   ----------------
756   -- Enter_Task --
757   ----------------
758
759   procedure Enter_Task (Self_ID : Task_Id) is
760   begin
761      if Self_ID.Common.Task_Info /= null
762        and then Self_ID.Common.Task_Info.CPU_Affinity = No_CPU
763      then
764         raise Invalid_CPU_Number;
765      end if;
766
767      Self_ID.Common.LL.Thread := pthread_self;
768      Self_ID.Common.LL.LWP := lwp_self;
769
770      if Self_ID.Common.Task_Image_Len > 0 then
771         declare
772            Task_Name : String (1 .. Parameters.Max_Task_Image_Length + 1);
773            Result    : int;
774
775         begin
776            --  Set thread name to ease debugging
777
778            Task_Name (1 .. Self_ID.Common.Task_Image_Len) :=
779              Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len);
780            Task_Name (Self_ID.Common.Task_Image_Len + 1) := ASCII.NUL;
781
782            Result := prctl (PR_SET_NAME, unsigned_long (Task_Name'Address));
783            pragma Assert (Result = 0);
784         end;
785      end if;
786
787      Specific.Set (Self_ID);
788
789      if Use_Alternate_Stack
790        and then Self_ID.Common.Task_Alternate_Stack /= Null_Address
791      then
792         declare
793            Stack  : aliased stack_t;
794            Result : Interfaces.C.int;
795         begin
796            Stack.ss_sp    := Self_ID.Common.Task_Alternate_Stack;
797            Stack.ss_size  := Alternate_Stack_Size;
798            Stack.ss_flags := 0;
799            Result := sigaltstack (Stack'Access, null);
800            pragma Assert (Result = 0);
801         end;
802      end if;
803   end Enter_Task;
804
805   -------------------
806   -- Is_Valid_Task --
807   -------------------
808
809   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
810
811   -----------------------------
812   -- Register_Foreign_Thread --
813   -----------------------------
814
815   function Register_Foreign_Thread return Task_Id is
816   begin
817      if Is_Valid_Task then
818         return Self;
819      else
820         return Register_Foreign_Thread (pthread_self);
821      end if;
822   end Register_Foreign_Thread;
823
824   --------------------
825   -- Initialize_TCB --
826   --------------------
827
828   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
829      Cond_Attr : aliased pthread_condattr_t;
830      Result    : Interfaces.C.int;
831
832   begin
833      --  Give the task a unique serial number
834
835      Self_ID.Serial_Number := Next_Serial_Number;
836      Next_Serial_Number := Next_Serial_Number + 1;
837      pragma Assert (Next_Serial_Number /= 0);
838
839      Self_ID.Common.LL.Thread := Null_Thread_Id;
840
841      if not Single_Lock then
842         Result :=
843           pthread_mutex_init (Self_ID.Common.LL.L'Access, null);
844         pragma Assert (Result = 0 or else Result = ENOMEM);
845
846         if Result /= 0 then
847            Succeeded := False;
848            return;
849         end if;
850      end if;
851
852      Result := pthread_condattr_init (Cond_Attr'Access);
853      pragma Assert (Result = 0);
854
855      Result :=
856        pthread_cond_init (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
857      pragma Assert (Result = 0 or else Result = ENOMEM);
858
859      if Result = 0 then
860         Succeeded := True;
861      else
862         if not Single_Lock then
863            Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
864            pragma Assert (Result = 0);
865         end if;
866
867         Succeeded := False;
868      end if;
869   end Initialize_TCB;
870
871   -----------------
872   -- Create_Task --
873   -----------------
874
875   procedure Create_Task
876     (T          : Task_Id;
877      Wrapper    : System.Address;
878      Stack_Size : System.Parameters.Size_Type;
879      Priority   : System.Any_Priority;
880      Succeeded  : out Boolean)
881   is
882      Attributes          : aliased pthread_attr_t;
883      Adjusted_Stack_Size : Interfaces.C.size_t;
884      Result              : Interfaces.C.int;
885
886      use type System.Multiprocessors.CPU_Range;
887
888   begin
889      --  Check whether both Dispatching_Domain and CPU are specified for
890      --  the task, and the CPU value is not contained within the range of
891      --  processors for the domain.
892
893      if T.Common.Domain /= null
894        and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
895        and then
896          (T.Common.Base_CPU not in T.Common.Domain'Range
897            or else not T.Common.Domain (T.Common.Base_CPU))
898      then
899         Succeeded := False;
900         return;
901      end if;
902
903      Adjusted_Stack_Size :=
904         Interfaces.C.size_t (Stack_Size + Alternate_Stack_Size);
905
906      Result := pthread_attr_init (Attributes'Access);
907      pragma Assert (Result = 0 or else Result = ENOMEM);
908
909      if Result /= 0 then
910         Succeeded := False;
911         return;
912      end if;
913
914      Result :=
915        pthread_attr_setstacksize (Attributes'Access, Adjusted_Stack_Size);
916      pragma Assert (Result = 0);
917
918      Result :=
919        pthread_attr_setdetachstate
920          (Attributes'Access, PTHREAD_CREATE_DETACHED);
921      pragma Assert (Result = 0);
922
923      --  Set the required attributes for the creation of the thread
924
925      --  Note: Previously, we called pthread_setaffinity_np (after thread
926      --  creation but before thread activation) to set the affinity but it was
927      --  not behaving as expected. Setting the required attributes for the
928      --  creation of the thread works correctly and it is more appropriate.
929
930      --  Do nothing if required support not provided by the operating system
931
932      if pthread_attr_setaffinity_np'Address = System.Null_Address then
933         null;
934
935      --  Support is available
936
937      elsif T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU then
938         declare
939            CPUs    : constant size_t :=
940                        Interfaces.C.size_t
941                          (System.Multiprocessors.Number_Of_CPUs);
942            CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
943            Size    : constant size_t := CPU_ALLOC_SIZE (CPUs);
944
945         begin
946            CPU_ZERO (Size, CPU_Set);
947            System.OS_Interface.CPU_SET
948              (int (T.Common.Base_CPU), Size, CPU_Set);
949            Result :=
950              pthread_attr_setaffinity_np (Attributes'Access, Size, CPU_Set);
951            pragma Assert (Result = 0);
952
953            CPU_FREE (CPU_Set);
954         end;
955
956      --  Handle Task_Info
957
958      elsif T.Common.Task_Info /= null then
959         Result :=
960           pthread_attr_setaffinity_np
961             (Attributes'Access,
962              CPU_SETSIZE / 8,
963              T.Common.Task_Info.CPU_Affinity'Access);
964         pragma Assert (Result = 0);
965
966      --  Handle dispatching domains
967
968      --  To avoid changing CPU affinities when not needed, we set the
969      --  affinity only when assigning to a domain other than the default
970      --  one, or when the default one has been modified.
971
972      elsif T.Common.Domain /= null and then
973        (T.Common.Domain /= ST.System_Domain
974          or else T.Common.Domain.all /=
975                    (Multiprocessors.CPU'First ..
976                     Multiprocessors.Number_Of_CPUs => True))
977      then
978         declare
979            CPUs    : constant size_t :=
980                        Interfaces.C.size_t
981                          (System.Multiprocessors.Number_Of_CPUs);
982            CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
983            Size    : constant size_t := CPU_ALLOC_SIZE (CPUs);
984
985         begin
986            CPU_ZERO (Size, CPU_Set);
987
988            --  Set the affinity to all the processors belonging to the
989            --  dispatching domain.
990
991            for Proc in T.Common.Domain'Range loop
992               if T.Common.Domain (Proc) then
993                  System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
994               end if;
995            end loop;
996
997            Result :=
998              pthread_attr_setaffinity_np (Attributes'Access, Size, CPU_Set);
999            pragma Assert (Result = 0);
1000
1001            CPU_FREE (CPU_Set);
1002         end;
1003      end if;
1004
1005      --  Since the initial signal mask of a thread is inherited from the
1006      --  creator, and the Environment task has all its signals masked, we
1007      --  do not need to manipulate caller's signal mask at this point.
1008      --  All tasks in RTS will have All_Tasks_Mask initially.
1009
1010      --  Note: the use of Unrestricted_Access in the following call is needed
1011      --  because otherwise we have an error of getting a access-to-volatile
1012      --  value which points to a non-volatile object. But in this case it is
1013      --  safe to do this, since we know we have no problems with aliasing and
1014      --  Unrestricted_Access bypasses this check.
1015
1016      Result :=
1017        pthread_create
1018          (T.Common.LL.Thread'Unrestricted_Access,
1019           Attributes'Access,
1020           Thread_Body_Access (Wrapper),
1021           To_Address (T));
1022
1023      pragma Assert
1024        (Result = 0 or else Result = EAGAIN or else Result = ENOMEM);
1025
1026      if Result /= 0 then
1027         Succeeded := False;
1028         Result := pthread_attr_destroy (Attributes'Access);
1029         pragma Assert (Result = 0);
1030         return;
1031      end if;
1032
1033      Succeeded := True;
1034
1035      Result := pthread_attr_destroy (Attributes'Access);
1036      pragma Assert (Result = 0);
1037
1038      Set_Priority (T, Priority);
1039   end Create_Task;
1040
1041   ------------------
1042   -- Finalize_TCB --
1043   ------------------
1044
1045   procedure Finalize_TCB (T : Task_Id) is
1046      Result : Interfaces.C.int;
1047
1048   begin
1049      if not Single_Lock then
1050         Result := pthread_mutex_destroy (T.Common.LL.L'Access);
1051         pragma Assert (Result = 0);
1052      end if;
1053
1054      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
1055      pragma Assert (Result = 0);
1056
1057      if T.Known_Tasks_Index /= -1 then
1058         Known_Tasks (T.Known_Tasks_Index) := null;
1059      end if;
1060
1061      SC.Invalidate_Stack_Cache (T.Common.Compiler_Data.Pri_Stack_Info'Access);
1062
1063      ATCB_Allocation.Free_ATCB (T);
1064   end Finalize_TCB;
1065
1066   ---------------
1067   -- Exit_Task --
1068   ---------------
1069
1070   procedure Exit_Task is
1071   begin
1072      Specific.Set (null);
1073   end Exit_Task;
1074
1075   ----------------
1076   -- Abort_Task --
1077   ----------------
1078
1079   procedure Abort_Task (T : Task_Id) is
1080      Result : Interfaces.C.int;
1081   begin
1082      if Abort_Handler_Installed then
1083         Result :=
1084           pthread_kill
1085             (T.Common.LL.Thread,
1086              Signal (System.Interrupt_Management.Abort_Task_Interrupt));
1087         pragma Assert (Result = 0);
1088      end if;
1089   end Abort_Task;
1090
1091   ----------------
1092   -- Initialize --
1093   ----------------
1094
1095   procedure Initialize (S : in out Suspension_Object) is
1096      Result : Interfaces.C.int;
1097
1098   begin
1099      --  Initialize internal state (always to False (RM D.10(6)))
1100
1101      S.State := False;
1102      S.Waiting := False;
1103
1104      --  Initialize internal mutex
1105
1106      Result := pthread_mutex_init (S.L'Access, null);
1107
1108      pragma Assert (Result = 0 or else Result = ENOMEM);
1109
1110      if Result = ENOMEM then
1111         raise Storage_Error;
1112      end if;
1113
1114      --  Initialize internal condition variable
1115
1116      Result := pthread_cond_init (S.CV'Access, null);
1117
1118      pragma Assert (Result = 0 or else Result = ENOMEM);
1119
1120      if Result /= 0 then
1121         Result := pthread_mutex_destroy (S.L'Access);
1122         pragma Assert (Result = 0);
1123
1124         if Result = ENOMEM then
1125            raise Storage_Error;
1126         end if;
1127      end if;
1128   end Initialize;
1129
1130   --------------
1131   -- Finalize --
1132   --------------
1133
1134   procedure Finalize (S : in out Suspension_Object) is
1135      Result : Interfaces.C.int;
1136
1137   begin
1138      --  Destroy internal mutex
1139
1140      Result := pthread_mutex_destroy (S.L'Access);
1141      pragma Assert (Result = 0);
1142
1143      --  Destroy internal condition variable
1144
1145      Result := pthread_cond_destroy (S.CV'Access);
1146      pragma Assert (Result = 0);
1147   end Finalize;
1148
1149   -------------------
1150   -- Current_State --
1151   -------------------
1152
1153   function Current_State (S : Suspension_Object) return Boolean is
1154   begin
1155      --  We do not want to use lock on this read operation. State is marked
1156      --  as Atomic so that we ensure that the value retrieved is correct.
1157
1158      return S.State;
1159   end Current_State;
1160
1161   ---------------
1162   -- Set_False --
1163   ---------------
1164
1165   procedure Set_False (S : in out Suspension_Object) is
1166      Result : Interfaces.C.int;
1167
1168   begin
1169      SSL.Abort_Defer.all;
1170
1171      Result := pthread_mutex_lock (S.L'Access);
1172      pragma Assert (Result = 0);
1173
1174      S.State := False;
1175
1176      Result := pthread_mutex_unlock (S.L'Access);
1177      pragma Assert (Result = 0);
1178
1179      SSL.Abort_Undefer.all;
1180   end Set_False;
1181
1182   --------------
1183   -- Set_True --
1184   --------------
1185
1186   procedure Set_True (S : in out Suspension_Object) is
1187      Result : Interfaces.C.int;
1188
1189   begin
1190      SSL.Abort_Defer.all;
1191
1192      Result := pthread_mutex_lock (S.L'Access);
1193      pragma Assert (Result = 0);
1194
1195      --  If there is already a task waiting on this suspension object then
1196      --  we resume it, leaving the state of the suspension object to False,
1197      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1198      --  the state to True.
1199
1200      if S.Waiting then
1201         S.Waiting := False;
1202         S.State := False;
1203
1204         Result := pthread_cond_signal (S.CV'Access);
1205         pragma Assert (Result = 0);
1206
1207      else
1208         S.State := True;
1209      end if;
1210
1211      Result := pthread_mutex_unlock (S.L'Access);
1212      pragma Assert (Result = 0);
1213
1214      SSL.Abort_Undefer.all;
1215   end Set_True;
1216
1217   ------------------------
1218   -- Suspend_Until_True --
1219   ------------------------
1220
1221   procedure Suspend_Until_True (S : in out Suspension_Object) is
1222      Result : Interfaces.C.int;
1223
1224   begin
1225      SSL.Abort_Defer.all;
1226
1227      Result := pthread_mutex_lock (S.L'Access);
1228      pragma Assert (Result = 0);
1229
1230      if S.Waiting then
1231
1232         --  Program_Error must be raised upon calling Suspend_Until_True
1233         --  if another task is already waiting on that suspension object
1234         --  (RM D.10(10)).
1235
1236         Result := pthread_mutex_unlock (S.L'Access);
1237         pragma Assert (Result = 0);
1238
1239         SSL.Abort_Undefer.all;
1240
1241         raise Program_Error;
1242
1243      else
1244         --  Suspend the task if the state is False. Otherwise, the task
1245         --  continues its execution, and the state of the suspension object
1246         --  is set to False (ARM D.10 par. 9).
1247
1248         if S.State then
1249            S.State := False;
1250         else
1251            S.Waiting := True;
1252
1253            loop
1254               --  Loop in case pthread_cond_wait returns earlier than expected
1255               --  (e.g. in case of EINTR caused by a signal). This should not
1256               --  happen with the current Linux implementation of pthread, but
1257               --  POSIX does not guarantee it so this may change in future.
1258
1259               Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1260               pragma Assert (Result = 0 or else Result = EINTR);
1261
1262               exit when not S.Waiting;
1263            end loop;
1264         end if;
1265
1266         Result := pthread_mutex_unlock (S.L'Access);
1267         pragma Assert (Result = 0);
1268
1269         SSL.Abort_Undefer.all;
1270      end if;
1271   end Suspend_Until_True;
1272
1273   ----------------
1274   -- Check_Exit --
1275   ----------------
1276
1277   --  Dummy version
1278
1279   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1280      pragma Unreferenced (Self_ID);
1281   begin
1282      return True;
1283   end Check_Exit;
1284
1285   --------------------
1286   -- Check_No_Locks --
1287   --------------------
1288
1289   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1290      pragma Unreferenced (Self_ID);
1291   begin
1292      return True;
1293   end Check_No_Locks;
1294
1295   ----------------------
1296   -- Environment_Task --
1297   ----------------------
1298
1299   function Environment_Task return Task_Id is
1300   begin
1301      return Environment_Task_Id;
1302   end Environment_Task;
1303
1304   ------------------
1305   -- Suspend_Task --
1306   ------------------
1307
1308   function Suspend_Task
1309     (T           : ST.Task_Id;
1310      Thread_Self : Thread_Id) return Boolean
1311   is
1312   begin
1313      if T.Common.LL.Thread /= Thread_Self then
1314         return pthread_kill (T.Common.LL.Thread, SIGSTOP) = 0;
1315      else
1316         return True;
1317      end if;
1318   end Suspend_Task;
1319
1320   -----------------
1321   -- Resume_Task --
1322   -----------------
1323
1324   function Resume_Task
1325     (T           : ST.Task_Id;
1326      Thread_Self : Thread_Id) return Boolean
1327   is
1328   begin
1329      if T.Common.LL.Thread /= Thread_Self then
1330         return pthread_kill (T.Common.LL.Thread, SIGCONT) = 0;
1331      else
1332         return True;
1333      end if;
1334   end Resume_Task;
1335
1336   --------------------
1337   -- Stop_All_Tasks --
1338   --------------------
1339
1340   procedure Stop_All_Tasks is
1341   begin
1342      null;
1343   end Stop_All_Tasks;
1344
1345   ---------------
1346   -- Stop_Task --
1347   ---------------
1348
1349   function Stop_Task (T : ST.Task_Id) return Boolean is
1350      pragma Unreferenced (T);
1351   begin
1352      return False;
1353   end Stop_Task;
1354
1355   -------------------
1356   -- Continue_Task --
1357   -------------------
1358
1359   function Continue_Task (T : ST.Task_Id) return Boolean is
1360      pragma Unreferenced (T);
1361   begin
1362      return False;
1363   end Continue_Task;
1364
1365   ----------------
1366   -- Initialize --
1367   ----------------
1368
1369   procedure Initialize (Environment_Task : Task_Id) is
1370      act     : aliased struct_sigaction;
1371      old_act : aliased struct_sigaction;
1372      Tmp_Set : aliased sigset_t;
1373      Result  : Interfaces.C.int;
1374      --  Whether to use an alternate signal stack for stack overflows
1375
1376      function State
1377        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1378      pragma Import (C, State, "__gnat_get_interrupt_state");
1379      --  Get interrupt state.  Defined in a-init.c
1380      --  The input argument is the interrupt number,
1381      --  and the result is one of the following:
1382
1383      Default : constant Character := 's';
1384      --    'n'   this interrupt not set by any Interrupt_State pragma
1385      --    'u'   Interrupt_State pragma set state to User
1386      --    'r'   Interrupt_State pragma set state to Runtime
1387      --    's'   Interrupt_State pragma set state to System (use "default"
1388      --           system handler)
1389
1390      use type System.Multiprocessors.CPU_Range;
1391
1392   begin
1393      Environment_Task_Id := Environment_Task;
1394
1395      Interrupt_Management.Initialize;
1396
1397      --  Prepare the set of signals that should be unblocked in all tasks
1398
1399      Result := sigemptyset (Unblocked_Signal_Mask'Access);
1400      pragma Assert (Result = 0);
1401
1402      for J in Interrupt_Management.Interrupt_ID loop
1403         if System.Interrupt_Management.Keep_Unmasked (J) then
1404            Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1405            pragma Assert (Result = 0);
1406         end if;
1407      end loop;
1408
1409      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1410
1411      --  Initialize the global RTS lock
1412
1413      Specific.Initialize (Environment_Task);
1414
1415      if Use_Alternate_Stack then
1416         Environment_Task.Common.Task_Alternate_Stack :=
1417           Alternate_Stack'Address;
1418      end if;
1419
1420      --  Make environment task known here because it doesn't go through
1421      --  Activate_Tasks, which does it for all other tasks.
1422
1423      Known_Tasks (Known_Tasks'First) := Environment_Task;
1424      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1425
1426      Enter_Task (Environment_Task);
1427
1428      if State
1429          (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
1430      then
1431         act.sa_flags := 0;
1432         act.sa_handler := Abort_Handler'Address;
1433
1434         Result := sigemptyset (Tmp_Set'Access);
1435         pragma Assert (Result = 0);
1436         act.sa_mask := Tmp_Set;
1437
1438         Result :=
1439           sigaction
1440           (Signal (Interrupt_Management.Abort_Task_Interrupt),
1441            act'Unchecked_Access,
1442            old_act'Unchecked_Access);
1443         pragma Assert (Result = 0);
1444         Abort_Handler_Installed := True;
1445      end if;
1446
1447      --  pragma CPU and dispatching domains for the environment task
1448
1449      Set_Task_Affinity (Environment_Task);
1450   end Initialize;
1451
1452   -----------------------
1453   -- Set_Task_Affinity --
1454   -----------------------
1455
1456   procedure Set_Task_Affinity (T : ST.Task_Id) is
1457      use type System.Multiprocessors.CPU_Range;
1458
1459   begin
1460      --  Do nothing if there is no support for setting affinities or the
1461      --  underlying thread has not yet been created. If the thread has not
1462      --  yet been created then the proper affinity will be set during its
1463      --  creation.
1464
1465      if pthread_setaffinity_np'Address /= System.Null_Address
1466        and then T.Common.LL.Thread /= Null_Thread_Id
1467      then
1468         declare
1469            CPUs    : constant size_t :=
1470                        Interfaces.C.size_t
1471                          (System.Multiprocessors.Number_Of_CPUs);
1472            CPU_Set : cpu_set_t_ptr := null;
1473            Size    : constant size_t := CPU_ALLOC_SIZE (CPUs);
1474
1475            Result  : Interfaces.C.int;
1476
1477         begin
1478            --  We look at the specific CPU (Base_CPU) first, then at the
1479            --  Task_Info field, and finally at the assigned dispatching
1480            --  domain, if any.
1481
1482            if T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
1483
1484               --  Set the affinity to an unique CPU
1485
1486               CPU_Set := CPU_ALLOC (CPUs);
1487               System.OS_Interface.CPU_ZERO (Size, CPU_Set);
1488               System.OS_Interface.CPU_SET
1489                 (int (T.Common.Base_CPU), Size, CPU_Set);
1490
1491            --  Handle Task_Info
1492
1493            elsif T.Common.Task_Info /= null then
1494               CPU_Set := T.Common.Task_Info.CPU_Affinity'Access;
1495
1496            --  Handle dispatching domains
1497
1498            elsif T.Common.Domain /= null and then
1499              (T.Common.Domain /= ST.System_Domain
1500                or else T.Common.Domain.all /=
1501                          (Multiprocessors.CPU'First ..
1502                           Multiprocessors.Number_Of_CPUs => True))
1503            then
1504               --  Set the affinity to all the processors belonging to the
1505               --  dispatching domain. To avoid changing CPU affinities when
1506               --  not needed, we set the affinity only when assigning to a
1507               --  domain other than the default one, or when the default one
1508               --  has been modified.
1509
1510               CPU_Set := CPU_ALLOC (CPUs);
1511               System.OS_Interface.CPU_ZERO (Size, CPU_Set);
1512
1513               for Proc in T.Common.Domain'Range loop
1514                  System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
1515               end loop;
1516            end if;
1517
1518            --  We set the new affinity if needed. Otherwise, the new task
1519            --  will inherit its creator's CPU affinity mask (according to
1520            --  the documentation of pthread_setaffinity_np), which is
1521            --  consistent with Ada's required semantics.
1522
1523            if CPU_Set /= null then
1524               Result :=
1525                 pthread_setaffinity_np (T.Common.LL.Thread, Size, CPU_Set);
1526               pragma Assert (Result = 0);
1527
1528               CPU_FREE (CPU_Set);
1529            end if;
1530         end;
1531      end if;
1532   end Set_Task_Affinity;
1533
1534end System.Task_Primitives.Operations;
1535