1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ U T I L                              --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 1992-2013, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26--  Package containing utility procedures used throughout the semantics
27
28with Einfo;   use Einfo;
29with Exp_Tss; use Exp_Tss;
30with Namet;   use Namet;
31with Snames;  use Snames;
32with Types;   use Types;
33with Uintp;   use Uintp;
34with Urealp;  use Urealp;
35
36package Sem_Util is
37
38   function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
39   --  Given a type that implements interfaces look for its associated
40   --  definition node and return its list of interfaces.
41
42   procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
43   --  Add A to the list of access types to process when expanding the
44   --  freeze node of E.
45
46   procedure Add_Global_Declaration (N : Node_Id);
47   --  These procedures adds a declaration N at the library level, to be
48   --  elaborated before any other code in the unit. It is used for example
49   --  for the entity that marks whether a unit has been elaborated. The
50   --  declaration is added to the Declarations list of the Aux_Decls_Node
51   --  for the current unit. The declarations are added in the current scope,
52   --  so the caller should push a new scope as required before the call.
53
54   function Addressable (V : Uint) return Boolean;
55   function Addressable (V : Int)  return Boolean;
56   pragma Inline (Addressable);
57   --  Returns True if the value of V is the word size of an addressable
58   --  factor of the word size (typically 8, 16, 32 or 64).
59
60   function Alignment_In_Bits (E : Entity_Id) return Uint;
61   --  If the alignment of the type or object E is currently known to the
62   --  compiler, then this function returns the alignment value in bits.
63   --  Otherwise Uint_0 is returned, indicating that the alignment of the
64   --  entity is not yet known to the compiler.
65
66   procedure Append_Inherited_Subprogram (S : Entity_Id);
67   --  If the parent of the operation is declared in the visible part of
68   --  the current scope, the inherited operation is visible even though the
69   --  derived type that inherits the operation may be completed in the private
70   --  part of the current package.
71
72   procedure Apply_Compile_Time_Constraint_Error
73     (N      : Node_Id;
74      Msg    : String;
75      Reason : RT_Exception_Code;
76      Ent    : Entity_Id  := Empty;
77      Typ    : Entity_Id  := Empty;
78      Loc    : Source_Ptr := No_Location;
79      Rep    : Boolean    := True;
80      Warn   : Boolean    := False);
81   --  N is a subexpression which will raise constraint error when evaluated
82   --  at runtime. Msg is a message that explains the reason for raising the
83   --  exception. The last character is ? if the message is always a warning,
84   --  even in Ada 95, and is not a ? if the message represents an illegality
85   --  (because of violation of static expression rules) in Ada 95 (but not
86   --  in Ada 83). Typically this routine posts all messages at the Sloc of
87   --  node N. However, if Loc /= No_Location, Loc is the Sloc used to output
88   --  the message. After posting the appropriate message, and if the flag
89   --  Rep is set, this routine replaces the expression with an appropriate
90   --  N_Raise_Constraint_Error node using the given Reason code. This node
91   --  is then marked as being static if the original node is static, but
92   --  sets the flag Raises_Constraint_Error, preventing further evaluation.
93   --  The error message may contain a } or & insertion character. This
94   --  normally references Etype (N), unless the Ent argument is given
95   --  explicitly, in which case it is used instead. The type of the raise
96   --  node that is built is normally Etype (N), but if the Typ parameter
97   --  is present, this is used instead. Warn is normally False. If it is
98   --  True then the message is treated as a warning even though it does
99   --  not end with a ? (this is used when the caller wants to parameterize
100   --  whether an error or warning is given.
101
102   function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
103   --  If at the point of declaration an array type has a private or limited
104   --  component, several array operations are not avaiable on the type, and
105   --  the array type is flagged accordingly. If in the immediate scope of
106   --  the array type the component becomes non-private or non-limited, these
107   --  operations become avaiable. This can happen if the scopes of both types
108   --  are open, and the scope of the array is not outside the scope of the
109   --  component.
110
111   procedure Bad_Attribute
112     (N    : Node_Id;
113      Nam  : Name_Id;
114      Warn : Boolean := False);
115   --  Called when node N is expected to contain a valid attribute name, and
116   --  Nam is found instead. If Warn is set True this is a warning, else this
117   --  is an error.
118
119   procedure Bad_Predicated_Subtype_Use
120     (Msg : String;
121      N   : Node_Id;
122      Typ : Entity_Id);
123   --  This is called when Typ, a predicated subtype, is used in a context
124   --  which does not allow the use of a predicated subtype. Msg is passed
125   --  to Error_Msg_FE to output an appropriate message using N as the
126   --  location, and Typ as the entity. The caller must set up any insertions
127   --  other than the & for the type itself. Note that if Typ is a generic
128   --  actual type, then the message will be output as a warning, and a
129   --  raise Program_Error is inserted using Insert_Action with node N as
130   --  the insertion point. Node N also supplies the source location for
131   --  construction of the raise node. If Typ is NOT a type with predicates
132   --  this call has no effect.
133
134   function Build_Actual_Subtype
135     (T : Entity_Id;
136      N : Node_Or_Entity_Id) return Node_Id;
137   --  Build an anonymous subtype for an entity or expression, using the
138   --  bounds of the entity or the discriminants of the enclosing record.
139   --  T is the type for which the actual subtype is required, and N is either
140   --  a defining identifier, or any subexpression.
141
142   function Build_Actual_Subtype_Of_Component
143     (T : Entity_Id;
144      N : Node_Id) return Node_Id;
145   --  Determine whether a selected component has a type that depends on
146   --  discriminants, and build actual subtype for it if so.
147
148   function Build_Default_Subtype
149     (T : Entity_Id;
150      N : Node_Id) return Entity_Id;
151   --  If T is an unconstrained type with defaulted discriminants, build a
152   --  subtype constrained by the default values, insert the subtype
153   --  declaration in the tree before N, and return the entity of that
154   --  subtype. Otherwise, simply return T.
155
156   function Build_Discriminal_Subtype_Of_Component
157     (T : Entity_Id) return Node_Id;
158   --  Determine whether a record component has a type that depends on
159   --  discriminants, and build actual subtype for it if so.
160
161   procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
162   --  Given a compilation unit node N, allocate an elaboration counter for
163   --  the compilation unit, and install it in the Elaboration_Entity field
164   --  of Spec_Id, the entity for the compilation unit.
165
166      procedure Build_Explicit_Dereference
167        (Expr : Node_Id;
168         Disc : Entity_Id);
169      --  AI05-139: Names with implicit dereference. If the expression N is a
170      --  reference type and the context imposes the corresponding designated
171      --  type, convert N into N.Disc.all. Such expressions are always over-
172      --  loaded with both interpretations, and the dereference interpretation
173      --  carries the name of the reference discriminant.
174
175   function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
176   --  Returns True if the expression cannot possibly raise Constraint_Error.
177   --  The response is conservative in the sense that a result of False does
178   --  not necessarily mean that CE could be raised, but a response of True
179   --  means that for sure CE cannot be raised.
180
181   procedure Check_Function_Writable_Actuals (N : Node_Id);
182   --  (Ada 2012): If the construct N has two or more direct constituents that
183   --  are names or expressions whose evaluation may occur in an arbitrary
184   --  order, at least one of which contains a function call with an in out or
185   --  out parameter, then the construct is legal only if: for each name that
186   --  is passed as a parameter of mode in out or out to some inner function
187   --  call C2 (not including the construct N itself), there is no other name
188   --  anywhere within a direct constituent of the construct C other than
189   --  the one containing C2, that is known to refer to the same object (RM
190   --  6.4.1(6.17/3)).
191
192   procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id);
193   --  AI05-139-2: Accessors and iterators for containers. This procedure
194   --  checks whether T is a reference type, and if so it adds an interprettion
195   --  to Expr whose type is the designated type of the reference_discriminant.
196
197   procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
198   --  Within a protected function, the current object is a constant, and
199   --  internal calls to a procedure or entry are illegal. Similarly, other
200   --  uses of a protected procedure in a renaming or a generic instantiation
201   --  in the context of a protected function are illegal (AI05-0225).
202
203   procedure Check_Later_Vs_Basic_Declarations
204     (Decls          : List_Id;
205      During_Parsing : Boolean);
206   --  If During_Parsing is True, check for misplacement of later vs basic
207   --  declarations in Ada 83. If During_Parsing is False, and the SPARK
208   --  restriction is set, do the same: although SPARK 95 removes the
209   --  distinction between initial and later declarative items, the distinction
210   --  remains in the Examiner (JB01-005). Note that the Examiner does not
211   --  count package declarations in later declarative items.
212
213   procedure Check_Dynamically_Tagged_Expression
214     (Expr        : Node_Id;
215      Typ         : Entity_Id;
216      Related_Nod : Node_Id);
217   --  Check wrong use of dynamically tagged expression
218
219   procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
220   --  Verify that the full declaration of type T has been seen. If not, place
221   --  error message on node N. Used in object declarations, type conversions
222   --  and qualified expressions.
223
224   procedure Check_Nested_Access (Ent : Entity_Id);
225   --  Check whether Ent denotes an entity declared in an uplevel scope, which
226   --  is accessed inside a nested procedure, and set Has_Up_Level_Access flag
227   --  accordingly. This is currently only enabled for VM_Target /= No_VM.
228
229   procedure Check_Potentially_Blocking_Operation (N : Node_Id);
230   --  N is one of the statement forms that is a potentially blocking
231   --  operation. If it appears within a protected action, emit warning.
232
233   procedure Check_Unprotected_Access
234     (Context : Node_Id;
235      Expr    : Node_Id);
236   --  Check whether the expression is a pointer to a protected component,
237   --  and the context is external to the protected operation, to warn against
238   --  a possible unlocked access to data.
239
240   procedure Check_VMS (Construct : Node_Id);
241   --  Check that this the target is OpenVMS, and if so, return with no effect,
242   --  otherwise post an error noting this can only be used with OpenVMS ports.
243   --  The argument is the construct in question and is used to post the error
244   --  message.
245
246   procedure Collect_Interfaces
247     (T               : Entity_Id;
248      Ifaces_List     : out Elist_Id;
249      Exclude_Parents : Boolean := False;
250      Use_Full_View   : Boolean := True);
251   --  Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
252   --  directly or indirectly implemented by T. Exclude_Parents is used to
253   --  avoid the addition of inherited interfaces to the generated list.
254   --  Use_Full_View is used to collect the interfaces using the full-view
255   --  (if available).
256
257   procedure Collect_Interface_Components
258     (Tagged_Type     : Entity_Id;
259      Components_List : out Elist_Id);
260   --  Ada 2005 (AI-251): Collect all the tag components associated with the
261   --  secondary dispatch tables of a tagged type.
262
263   procedure Collect_Interfaces_Info
264     (T               : Entity_Id;
265      Ifaces_List     : out Elist_Id;
266      Components_List : out Elist_Id;
267      Tags_List       : out Elist_Id);
268   --  Ada 2005 (AI-251): Collect all the interfaces associated with T plus
269   --  the record component and tag associated with each of these interfaces.
270   --  On exit Ifaces_List, Components_List and Tags_List have the same number
271   --  of elements, and elements at the same position on these tables provide
272   --  information on the same interface type.
273
274   procedure Collect_Parents
275     (T             : Entity_Id;
276      List          : out Elist_Id;
277      Use_Full_View : Boolean := True);
278   --  Collect all the parents of Typ. Use_Full_View is used to collect them
279   --  using the full-view of private parents (if available).
280
281   function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
282   --  Called upon type derivation and extension. We scan the declarative part
283   --  in which the type appears, and collect subprograms that have one
284   --  subsidiary subtype of the type. These subprograms can only appear after
285   --  the type itself.
286
287   function Compile_Time_Constraint_Error
288     (N    : Node_Id;
289      Msg  : String;
290      Ent  : Entity_Id  := Empty;
291      Loc  : Source_Ptr := No_Location;
292      Warn : Boolean    := False) return Node_Id;
293   --  This is similar to Apply_Compile_Time_Constraint_Error in that it
294   --  generates a warning (or error) message in the same manner, but it does
295   --  not replace any nodes. For convenience, the function always returns its
296   --  first argument. The message is a warning if the message ends with ?, or
297   --  we are operating in Ada 83 mode, or the Warn parameter is set to True.
298
299   procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
300   --  Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
301   --  Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
302
303   function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
304   --  Utility to create a parameter profile for a new subprogram spec, when
305   --  the subprogram has a body that acts as spec. This is done for some cases
306   --  of inlining, and for private protected ops. Also used to create bodies
307   --  for stubbed subprograms.
308
309   function Copy_Component_List
310     (R_Typ : Entity_Id;
311      Loc   : Source_Ptr) return List_Id;
312   --  Copy components from record type R_Typ that come from source. Used to
313   --  create a new compatible record type. Loc is the source location assigned
314   --  to the created nodes.
315
316   function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
317   --  If a type is a generic actual type, return the corresponding formal in
318   --  the generic parent unit. There is no direct link in the tree for this
319   --  attribute, except in the case of formal private and derived types.
320   --  Possible optimization???
321
322   function Current_Entity (N : Node_Id) return Entity_Id;
323   pragma Inline (Current_Entity);
324   --  Find the currently visible definition for a given identifier, that is to
325   --  say the first entry in the visibility chain for the Chars of N.
326
327   function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
328   --  Find whether there is a previous definition for identifier N in the
329   --  current scope. Because declarations for a scope are not necessarily
330   --  contiguous (e.g. for packages) the first entry on the visibility chain
331   --  for N is not necessarily in the current scope.
332
333   function Current_Scope return Entity_Id;
334   --  Get entity representing current scope
335
336   function Current_Subprogram return Entity_Id;
337   --  Returns current enclosing subprogram. If Current_Scope is a subprogram,
338   --  then that is what is returned, otherwise the Enclosing_Subprogram of the
339   --  Current_Scope is returned. The returned value is Empty if this is called
340   --  from a library package which is not within any subprogram.
341
342   function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
343   --  Same as Type_Access_Level, except that if the type is the type of an Ada
344   --  2012 stand-alone object of an anonymous access type, then return the
345   --  static accesssibility level of the object. In that case, the dynamic
346   --  accessibility level of the object may take on values in a range. The low
347   --  bound of of that range is returned by Type_Access_Level; this function
348   --  yields the high bound of that range. Also differs from Type_Access_Level
349   --  in the case of a descendant of a generic formal type (returns Int'Last
350   --  instead of 0).
351
352   function Defining_Entity (N : Node_Id) return Entity_Id;
353   --  Given a declaration N, returns the associated defining entity. If the
354   --  declaration has a specification, the entity is obtained from the
355   --  specification. If the declaration has a defining unit name, then the
356   --  defining entity is obtained from the defining unit name ignoring any
357   --  child unit prefixes.
358
359   function Denotes_Discriminant
360     (N                : Node_Id;
361      Check_Concurrent : Boolean := False) return Boolean;
362   --  Returns True if node N is an Entity_Name node for a discriminant. If the
363   --  flag Check_Concurrent is true, function also returns true when N denotes
364   --  the discriminal of the discriminant of a concurrent type. This is needed
365   --  to disable some optimizations on private components of protected types,
366   --  and constraint checks on entry families constrained by discriminants.
367
368   function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
369   --  Detect suspicious overlapping between actuals in a call, when both are
370   --  writable (RM 2012 6.4.1(6.4/3))
371
372   function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
373   --  Functions to detect suspicious overlapping between actuals in a call,
374   --  when one of them is writable. The predicates are those proposed in
375   --  AI05-0144, to detect dangerous order dependence in complex calls.
376   --  I would add a parameter Warn which enables more extensive testing of
377   --  cases as we find appropriate when we are only warning ??? Or perhaps
378   --  return an indication of (Error, Warn, OK) ???
379
380   function Denotes_Variable (N : Node_Id) return Boolean;
381   --  Returns True if node N denotes a single variable without parentheses
382
383   function Depends_On_Discriminant (N : Node_Id) return Boolean;
384   --  Returns True if N denotes a discriminant or if N is a range, a subtype
385   --  indication or a scalar subtype where one of the bounds is a
386   --  discriminant.
387
388   function Designate_Same_Unit
389     (Name1 : Node_Id;
390      Name2 : Node_Id) return  Boolean;
391   --  Return true if Name1 and Name2 designate the same unit name; each of
392   --  these names is supposed to be a selected component name, an expanded
393   --  name, a defining program unit name or an identifier.
394
395   function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
396   --  Expr should be an expression of an access type. Builds an integer
397   --  literal except in cases involving anonymous access types where
398   --  accessibility levels are tracked at runtime (access parameters and Ada
399   --  2012 stand-alone objects).
400
401   function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
402   --  Same as Einfo.Extra_Accessibility except thtat object renames
403   --  are looked through.
404
405   function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
406   --  Returns the enclosing N_Compilation_Unit Node that is the root of a
407   --  subtree containing N.
408
409   function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
410   --  Returns the closest ancestor of Typ that is a CPP type.
411
412   function Enclosing_Generic_Body
413     (N : Node_Id) return Node_Id;
414   --  Returns the Node_Id associated with the innermost enclosing generic
415   --  body, if any. If none, then returns Empty.
416
417   function Enclosing_Generic_Unit
418     (N : Node_Id) return Node_Id;
419   --  Returns the Node_Id associated with the innermost enclosing generic
420   --  unit, if any. If none, then returns Empty.
421
422   function Enclosing_Lib_Unit_Entity
423     (E : Entity_Id := Current_Scope) return Entity_Id;
424   --  Returns the entity of enclosing library unit node which is the
425   --  root of the current scope (which must not be Standard_Standard, and the
426   --  caller is responsible for ensuring this condition) or other specified
427   --  entity.
428
429   function Enclosing_Package (E : Entity_Id) return Entity_Id;
430   --  Utility function to return the Ada entity of the package enclosing
431   --  the entity E, if any. Returns Empty if no enclosing package.
432
433   function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
434   --  Utility function to return the Ada entity of the subprogram enclosing
435   --  the entity E, if any. Returns Empty if no enclosing subprogram.
436
437   procedure Ensure_Freeze_Node (E : Entity_Id);
438   --  Make sure a freeze node is allocated for entity E. If necessary, build
439   --  and initialize a new freeze node and set Has_Delayed_Freeze True for E.
440
441   procedure Enter_Name (Def_Id : Entity_Id);
442   --  Insert new name in symbol table of current scope with check for
443   --  duplications (error message is issued if a conflict is found).
444   --  Note: Enter_Name is not used for overloadable entities, instead these
445   --  are entered using Sem_Ch6.Enter_Overloadable_Entity.
446
447   procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
448   --  This procedure is called after issuing a message complaining about an
449   --  inappropriate use of limited type T. If useful, it adds additional
450   --  continuation lines to the message explaining why type T is limited.
451   --  Messages are placed at node N.
452
453   procedure Find_Actual
454     (N      : Node_Id;
455      Formal : out Entity_Id;
456      Call   : out Node_Id);
457   --  Determines if the node N is an actual parameter of a function of a
458   --  procedure call. If so, then Formal points to the entity for the formal
459   --  (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
460   --  Call is set to the node for the corresponding call. If the node N is not
461   --  an actual parameter then Formal and Call are set to Empty.
462
463   function Find_Corresponding_Discriminant
464     (Id   : Node_Id;
465      Typ  : Entity_Id) return Entity_Id;
466   --  Because discriminants may have different names in a generic unit and in
467   --  an instance, they are resolved positionally when possible. A reference
468   --  to a discriminant carries the discriminant that it denotes when it is
469   --  analyzed. Subsequent uses of this id on a different type denotes the
470   --  discriminant at the same position in this new type.
471
472   procedure Find_Overlaid_Entity
473     (N : Node_Id;
474      Ent : out Entity_Id;
475      Off : out Boolean);
476   --  The node N should be an address representation clause. Determines if
477   --  the target expression is the address of an entity with an optional
478   --  offset. If so, set Ent to the entity and, if there is an offset, set
479   --  Off to True, otherwise to False. If N is not an address representation
480   --  clause, or if it is not possible to determine that the address is of
481   --  this form, then set Ent to Empty.
482
483   function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
484   --  Return the type of formal parameter Param as determined by its
485   --  specification.
486
487   function Find_Static_Alternative (N : Node_Id) return Node_Id;
488   --  N is a case statement whose expression is a compile-time value.
489   --  Determine the alternative chosen, so that the code of non-selected
490   --  alternatives, and the warnings that may apply to them, are removed.
491
492   function Find_Body_Discriminal
493     (Spec_Discriminant : Entity_Id) return Entity_Id;
494   --  Given a discriminant of the record type that implements a task or
495   --  protected type, return the discriminal of the corresponding discriminant
496   --  of the actual concurrent type.
497
498   function First_Actual (Node : Node_Id) return Node_Id;
499   --  Node is an N_Function_Call or N_Procedure_Call_Statement node. The
500   --  result returned is the first actual parameter in declaration order
501   --  (not the order of parameters as they appeared in the source, which
502   --  can be quite different as a result of the use of named parameters).
503   --  Empty is returned for a call with no parameters. The procedure for
504   --  iterating through the actuals in declaration order is to use this
505   --  function to find the first actual, and then use Next_Actual to obtain
506   --  the next actual in declaration order. Note that the value returned
507   --  is always the expression (not the N_Parameter_Association nodes,
508   --  even if named association is used).
509
510   procedure Gather_Components
511     (Typ           : Entity_Id;
512      Comp_List     : Node_Id;
513      Governed_By   : List_Id;
514      Into          : Elist_Id;
515      Report_Errors : out Boolean);
516   --  The purpose of this procedure is to gather the valid components in a
517   --  record type according to the values of its discriminants, in order to
518   --  validate the components of a record aggregate.
519   --
520   --    Typ is the type of the aggregate when its constrained discriminants
521   --      need to be collected, otherwise it is Empty.
522   --
523   --    Comp_List is an N_Component_List node.
524   --
525   --    Governed_By is a list of N_Component_Association nodes, where each
526   --     choice list contains the name of a discriminant and the expression
527   --     field gives its value. The values of the discriminants governing
528   --     the (possibly nested) variant parts in Comp_List are found in this
529   --     Component_Association List.
530   --
531   --    Into is the list where the valid components are appended. Note that
532   --     Into need not be an Empty list. If it's not, components are attached
533   --     to its tail.
534   --
535   --    Report_Errors is set to True if the values of the discriminants are
536   --     non-static.
537   --
538   --  This procedure is also used when building a record subtype. If the
539   --  discriminant constraint of the subtype is static, the components of the
540   --  subtype are only those of the variants selected by the values of the
541   --  discriminants. Otherwise all components of the parent must be included
542   --  in the subtype for semantic analysis.
543
544   function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
545   --  Given a node for an expression, obtain the actual subtype of the
546   --  expression. In the case of a parameter where the formal is an
547   --  unconstrained array or discriminated type, this will be the previously
548   --  constructed subtype of the actual. Note that this is not quite the
549   --  "Actual Subtype" of the RM, since it is always a constrained type, i.e.
550   --  it is the subtype of the value of the actual. The actual subtype is also
551   --  returned in other cases where it has already been constructed for an
552   --  object. Otherwise the expression type is returned unchanged, except for
553   --  the case of an unconstrained array type, where an actual subtype is
554   --  created, using Insert_Actions if necessary to insert any associated
555   --  actions.
556
557   function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
558   --  This is like Get_Actual_Subtype, except that it never constructs an
559   --  actual subtype. If an actual subtype is already available, i.e. the
560   --  Actual_Subtype field of the corresponding entity is set, then it is
561   --  returned. Otherwise the Etype of the node is returned.
562
563   function Get_Body_From_Stub (N : Node_Id) return Node_Id;
564   --  Return the body node for a stub (subprogram or package)
565
566   function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
567   --  This is used to construct the string literal node representing a
568   --  default external name, i.e. one that is constructed from the name of an
569   --  entity, or (in the case of extended DEC import/export pragmas, an
570   --  identifier provided as the external name. Letters in the name are
571   --  according to the setting of Opt.External_Name_Default_Casing.
572
573   function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
574   --  If expression N references a part of an object, return this object.
575   --  Otherwise return Empty. Expression N should have been resolved already.
576
577   function Get_Ensures_From_CTC_Pragma (N : Node_Id) return Node_Id;
578   --  Return the Ensures component of Contract_Case or Test_Case pragma N, or
579   --  Empty otherwise.
580
581   function Get_Generic_Entity (N : Node_Id) return Entity_Id;
582   --  Returns the true generic entity in an instantiation. If the name in the
583   --  instantiation is a renaming, the function returns the renamed generic.
584
585   procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
586   --  This procedure assigns to L and H respectively the values of the low and
587   --  high bounds of node N, which must be a range, subtype indication, or the
588   --  name of a scalar subtype. The result in L, H may be set to Error if
589   --  there was an earlier error in the range.
590
591   function Get_Enum_Lit_From_Pos
592     (T   : Entity_Id;
593      Pos : Uint;
594      Loc : Source_Ptr) return Node_Id;
595   --  This function returns an identifier denoting the E_Enumeration_Literal
596   --  entity for the specified value from the enumeration type or subtype T.
597   --  The second argument is the Pos value, which is assumed to be in range.
598   --  The third argument supplies a source location for constructed nodes
599   --  returned by this function.
600
601   procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
602   --  Retrieve the fully expanded name of the library unit declared by
603   --  Decl_Node into the name buffer.
604
605   function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
606   pragma Inline (Get_Name_Entity_Id);
607   --  An entity value is associated with each name in the name table. The
608   --  Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
609   --  is the innermost visible entity with the given name. See the body of
610   --  Sem_Ch8 for further details on handling of entity visibility.
611
612   function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
613   --  Return the Name component of Contract_Case or Test_Case pragma N
614
615   function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
616   pragma Inline (Get_Pragma_Id);
617   --  Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
618
619   function Get_Referenced_Object (N : Node_Id) return Node_Id;
620   --  Given a node, return the renamed object if the node represents a renamed
621   --  object, otherwise return the node unchanged. The node may represent an
622   --  arbitrary expression.
623
624   function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
625   --  Given an entity for an exception, package, subprogram or generic unit,
626   --  returns the ultimately renamed entity if this is a renaming. If this is
627   --  not a renamed entity, returns its argument. It is an error to call this
628   --  with any other kind of entity.
629
630   function Get_Requires_From_CTC_Pragma (N : Node_Id) return Node_Id;
631   --  Return the Requires component of Contract_Case or Test_Case pragma N, or
632   --  Empty otherwise.
633
634   function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
635   --  Nod is either a procedure call statement, or a function call, or an
636   --  accept statement node. This procedure finds the Entity_Id of the related
637   --  subprogram or entry and returns it, or if no subprogram can be found,
638   --  returns Empty.
639
640   function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
641   --  Given the entity for a subprogram (E_Function or E_Procedure), return
642   --  the corresponding N_Subprogram_Body node. If the corresponding body
643   --  is missing (as for an imported subprogram), return Empty.
644
645   function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
646   pragma Inline (Get_Task_Body_Procedure);
647   --  Given an entity for a task type or subtype, retrieves the
648   --  Task_Body_Procedure field from the corresponding task type declaration.
649
650   function Has_Access_Values (T : Entity_Id) return Boolean;
651   --  Returns true if type or subtype T is an access type, or has a component
652   --  (at any recursive level) that is an access type. This is a conservative
653   --  predicate, if it is not known whether or not T contains access values
654   --  (happens for generic formals in some cases), then False is returned.
655   --  Note that tagged types return False. Even though the tag is implemented
656   --  as an access type internally, this function tests only for access types
657   --  known to the programmer. See also Has_Tagged_Component.
658
659   type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
660   --  Result of Has_Compatible_Alignment test, description found below. Note
661   --  that the values are arranged in increasing order of problematicness.
662
663   function Has_Compatible_Alignment
664     (Obj  : Entity_Id;
665      Expr : Node_Id) return Alignment_Result;
666   --  Obj is an object entity, and expr is a node for an object reference. If
667   --  the alignment of the object referenced by Expr is known to be compatible
668   --  with the alignment of Obj (i.e. is larger or the same), then the result
669   --  is Known_Compatible. If the alignment of the object referenced by Expr
670   --  is known to be less than the alignment of Obj, then Known_Incompatible
671   --  is returned. If neither condition can be reliably established at compile
672   --  time, then Unknown is returned. This is used to determine if alignment
673   --  checks are required for address clauses, and also whether copies must
674   --  be made when objects are passed by reference.
675   --
676   --  Note: Known_Incompatible does not mean that at run time the alignment
677   --  of Expr is known to be wrong for Obj, just that it can be determined
678   --  that alignments have been explicitly or implicitly specified which are
679   --  incompatible (whereas Unknown means that even this is not known). The
680   --  appropriate reaction of a caller to Known_Incompatible is to treat it as
681   --  Unknown, but issue a warning that there may be an alignment error.
682
683   function Has_Declarations (N : Node_Id) return Boolean;
684   --  Determines if the node can have declarations
685
686   function Has_Denormals (E : Entity_Id) return Boolean;
687   --  Determines if the floating-point type E supports denormal numbers.
688   --  Returns False if E is not a floating-point type.
689
690   function Has_Discriminant_Dependent_Constraint
691     (Comp : Entity_Id) return Boolean;
692   --  Returns True if and only if Comp has a constrained subtype that depends
693   --  on a discriminant.
694
695   function Has_Infinities (E : Entity_Id) return Boolean;
696   --  Determines if the range of the floating-point type E includes
697   --  infinities. Returns False if E is not a floating-point type.
698
699   function Has_Interfaces
700     (T             : Entity_Id;
701      Use_Full_View : Boolean := True) return Boolean;
702   --  Where T is a concurrent type or a record type, returns true if T covers
703   --  any abstract interface types. In case of private types the argument
704   --  Use_Full_View controls if the check is done using its full view (if
705   --  available).
706
707   function Has_Null_Exclusion (N : Node_Id) return Boolean;
708   --  Determine whether node N has a null exclusion
709
710   function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
711   --  Predicate to determine whether a controlled type has a user-defined
712   --  Initialize primitive (and, in Ada 2012, whether that primitive is
713   --  non-null), which causes the type to not have preelaborable
714   --  initialization.
715
716   function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
717   --  Return True iff type E has preelaborable initialization as defined in
718   --  Ada 2005 (see AI-161 for details of the definition of this attribute).
719
720   function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
721   --  Check if a type has a (sub)component of a private type that has not
722   --  yet received a full declaration.
723
724   function Has_Signed_Zeros (E : Entity_Id) return Boolean;
725   --  Determines if the floating-point type E supports signed zeros.
726   --  Returns False if E is not a floating-point type.
727
728   function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
729   --  Return whether an array type has static bounds
730
731   function Has_Stream (T : Entity_Id) return Boolean;
732   --  Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
733   --  case of a composite type, has a component for which this predicate is
734   --  True, and if so returns True. Otherwise a result of False means that
735   --  there is no Stream type in sight. For a private type, the test is
736   --  applied to the underlying type (or returns False if there is no
737   --  underlying type).
738
739   function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
740   --  Returns true if the last character of E is Suffix. Used in Assertions.
741
742   function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
743   --  Returns the name of E adding Suffix
744
745   function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
746   --  Returns the name of E without Suffix
747
748   function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
749   --  Returns True if Typ is a composite type (array or record) which is
750   --  either itself a tagged type, or has a component (recursively) which is
751   --  a tagged type. Returns False for non-composite type, or if no tagged
752   --  component is present. This function is used to check if "=" has to be
753   --  expanded into a bunch component comparisons.
754
755   function Implementation_Kind (Subp : Entity_Id) return Name_Id;
756   --  Subp is a subprogram marked with pragma Implemented. Return the specific
757   --  implementation requirement which the pragma imposes. The return value is
758   --  either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
759
760   function Implements_Interface
761     (Typ_Ent         : Entity_Id;
762      Iface_Ent       : Entity_Id;
763      Exclude_Parents : Boolean := False) return Boolean;
764   --  Returns true if the Typ_Ent implements interface Iface_Ent
765
766   function In_Instance return Boolean;
767   --  Returns True if the current scope is within a generic instance
768
769   function In_Instance_Body return Boolean;
770   --  Returns True if current scope is within the body of an instance, where
771   --  several semantic checks (e.g. accessibility checks) are relaxed.
772
773   function In_Instance_Not_Visible return Boolean;
774   --  Returns True if current scope is with the private part or the body of
775   --  an instance. Other semantic checks are suppressed in this context.
776
777   function In_Instance_Visible_Part return Boolean;
778   --  Returns True if current scope is within the visible part of a package
779   --  instance, where several additional semantic checks apply.
780
781   function In_Package_Body return Boolean;
782   --  Returns True if current scope is within a package body
783
784   function In_Parameter_Specification (N : Node_Id) return Boolean;
785   --  Returns True if node N belongs to a parameter specification
786
787   function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
788   --  Returns True if N denotes a component or subcomponent in a record or
789   --  array that has Reverse_Storage_Order.
790
791   function In_Subprogram_Or_Concurrent_Unit return Boolean;
792   --  Determines if the current scope is within a subprogram compilation unit
793   --  (inside a subprogram declaration, subprogram body, or generic
794   --  subprogram declaration) or within a task or protected body. The test is
795   --  for appearing anywhere within such a construct (that is it does not need
796   --  to be directly within).
797
798   function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
799   --  Determine whether a declaration occurs within the visible part of a
800   --  package specification. The package must be on the scope stack, and the
801   --  corresponding private part must not.
802
803   function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id;
804   --  Given the entity of a type, retrieve the incomplete or private view of
805   --  the same type. Note that Typ may not have a partial view to begin with,
806   --  in that case the function returns Empty.
807
808   procedure Insert_Explicit_Dereference (N : Node_Id);
809   --  In a context that requires a composite or subprogram type and where a
810   --  prefix is an access type, rewrite the access type node N (which is the
811   --  prefix, e.g. of an indexed component) as an explicit dereference.
812
813   procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
814   --  Examine all deferred constants in the declaration list Decls and check
815   --  whether they have been completed by a full constant declaration or an
816   --  Import pragma. Emit the error message if that is not the case.
817
818   function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
819   --  Determines if N is an actual parameter of out mode in a subprogram call
820
821   function Is_Actual_Parameter (N : Node_Id) return Boolean;
822   --  Determines if N is an actual parameter in a subprogram call
823
824   function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
825   --  Determines if N is an actual parameter of a formal of tagged type in a
826   --  subprogram call.
827
828   function Is_Aliased_View (Obj : Node_Id) return Boolean;
829   --  Determine if Obj is an aliased view, i.e. the name of an object to which
830   --  'Access or 'Unchecked_Access can apply. Note that this routine uses the
831   --  rules of the language, it does not take into account the restriction
832   --  No_Implicit_Aliasing, so it can return True if the restriction is active
833   --  and Obj violates the restriction. The caller is responsible for calling
834   --  Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
835   --  requirement for obeying the restriction in the call context.
836
837   function Is_Ancestor_Package
838     (E1 : Entity_Id;
839      E2 : Entity_Id) return Boolean;
840   --  Determine whether package E1 is an ancestor of E2
841
842   function Is_Atomic_Object (N : Node_Id) return Boolean;
843   --  Determines if the given node denotes an atomic object in the sense of
844   --  the legality checks described in RM C.6(12).
845
846   function Is_Bounded_String (T : Entity_Id) return Boolean;
847   --  True if T is a bounded string type. Used to make sure "=" composes
848   --  properly for bounded string types.
849
850   function Is_Controlling_Limited_Procedure
851     (Proc_Nam : Entity_Id) return Boolean;
852   --  Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
853   --  of a limited interface with a controlling first parameter.
854
855   function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
856   --  Returns True if N is a call to a CPP constructor
857
858   function Is_Dependent_Component_Of_Mutable_Object
859     (Object : Node_Id) return Boolean;
860   --  Returns True if Object is the name of a subcomponent that depends on
861   --  discriminants of a variable whose nominal subtype is unconstrained and
862   --  not indefinite, and the variable is not aliased. Otherwise returns
863   --  False. The nodes passed to this function are assumed to denote objects.
864
865   function Is_Dereferenced (N : Node_Id) return Boolean;
866   --  N is a subexpression node of an access type. This function returns true
867   --  if N appears as the prefix of a node that does a dereference of the
868   --  access value (selected/indexed component, explicit dereference or a
869   --  slice), and false otherwise.
870
871   function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
872   --  Returns True if type T1 is a descendent of type T2, and false otherwise.
873   --  This is the RM definition, a type is a descendent of another type if it
874   --  is the same type or is derived from a descendent of the other type.
875
876   function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
877   --  First determine whether type T is an interface and then check whether
878   --  it is of protected, synchronized or task kind.
879
880   function Is_Expression_Function (Subp : Entity_Id) return Boolean;
881   --  Predicate to determine whether a function entity comes from a rewritten
882   --  expression function, and should be inlined unconditionally.
883
884   function Is_False (U : Uint) return Boolean;
885   pragma Inline (Is_False);
886   --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
887   --  operand (i.e. is either 0 for False, or 1 for True). This function tests
888   --  if it is False (i.e. zero).
889
890   function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
891   --  Returns True iff the number U is a model number of the fixed-point type
892   --  T, i.e. if it is an exact multiple of Small.
893
894   function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
895   --  Typ is a type entity. This function returns true if this type is fully
896   --  initialized, meaning that an object of the type is fully initialized.
897   --  Note that initialization resulting from use of pragma Normalized_Scalars
898   --  does not count. Note that this is only used for the purpose of issuing
899   --  warnings for objects that are potentially referenced uninitialized. This
900   --  means that the result returned is not crucial, but should err on the
901   --  side of thinking things are fully initialized if it does not know.
902
903   function Is_Inherited_Operation (E : Entity_Id) return Boolean;
904   --  E is a subprogram. Return True is E is an implicit operation inherited
905   --  by a derived type declaration.
906
907   function Is_Inherited_Operation_For_Type
908     (E   : Entity_Id;
909      Typ : Entity_Id) return Boolean;
910   --  E is a subprogram. Return True is E is an implicit operation inherited
911   --  by the derived type declaration for type Typ.
912
913   function Is_Iterator (Typ : Entity_Id) return Boolean;
914   --  AI05-0139-2: Check whether Typ is one of the predefined interfaces in
915   --  Ada.Iterator_Interfaces, or it is derived from one.
916
917   function Is_LHS (N : Node_Id) return Boolean;
918   --  Returns True iff N is used as Name in an assignment statement
919
920   function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
921   --  A library-level declaration is one that is accessible from Standard,
922   --  i.e. a library unit or an entity declared in a library package.
923
924   function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
925   --  Determine whether a given arbitrary type is a limited class-wide type
926
927   function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
928   --  Determines whether Expr is a reference to a variable or IN OUT mode
929   --  parameter of the current enclosing subprogram.
930   --  Why are OUT parameters not considered here ???
931
932   function Is_Object_Reference (N : Node_Id) return Boolean;
933   --  Determines if the tree referenced by N represents an object. Both
934   --  variable and constant objects return True (compare Is_Variable).
935
936   function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
937   --  Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
938   --  Note that the Is_Variable function is not quite the right test because
939   --  this is a case in which conversions whose expression is a variable (in
940   --  the Is_Variable sense) with a non-tagged type target are considered view
941   --  conversions and hence variables.
942
943   function Is_Partially_Initialized_Type
944     (Typ              : Entity_Id;
945      Include_Implicit : Boolean := True) return Boolean;
946   --  Typ is a type entity. This function returns true if this type is partly
947   --  initialized, meaning that an object of the type is at least partly
948   --  initialized (in particular in the record case, that at least one
949   --  component has an initialization expression). Note that initialization
950   --  resulting from the use of pragma Normalized_Scalars does not count.
951   --  Include_Implicit controls whether implicit initialization of access
952   --  values to null, and of discriminant values, is counted as making the
953   --  type be partially initialized. For the default setting of True, these
954   --  implicit cases do count, and discriminated types or types containing
955   --  access values not explicitly initialized will return True. Otherwise
956   --  if Include_Implicit is False, these cases do not count as making the
957   --  type be partially initialized.
958
959   function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
960   --  Determines if type T is a potentially persistent type. A potentially
961   --  persistent type is defined (recursively) as a scalar type, a non-tagged
962   --  record whose components are all of a potentially persistent type, or an
963   --  array with all static constraints whose component type is potentially
964   --  persistent. A private type is potentially persistent if the full type
965   --  is potentially persistent.
966
967   function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
968   --  Return True if node N denotes a protected type name which represents
969   --  the current instance of a protected object according to RM 9.4(21/2).
970
971   function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
972   --  Return True if a compilation unit is the specification or the
973   --  body of a remote call interface package.
974
975   function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
976   --  Return True if E is a remote access-to-class-wide type
977
978   function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
979   --  Return True if E is a remote access to subprogram type
980
981   function Is_Remote_Call (N : Node_Id) return Boolean;
982   --  Return True if N denotes a potentially remote call
983
984   function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
985   --  Return True if Proc_Nam is a procedure renaming of an entry
986
987   function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
988   --  AI05-0139-2: Check whether Typ is derived from the predefined interface
989   --  Ada.Iterator_Interfaces.Reversible_Iterator.
990
991   function Is_Selector_Name (N : Node_Id) return Boolean;
992   --  Given an N_Identifier node N, determines if it is a Selector_Name.
993   --  As described in Sinfo, Selector_Names are special because they
994   --  represent use of the N_Identifier node for a true identifier, when
995   --  normally such nodes represent a direct name.
996
997   function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean;
998   --  Determines if the tree referenced by N represents an initialization
999   --  expression in SPARK, suitable for initializing an object in an object
1000   --  declaration.
1001
1002   function Is_SPARK_Object_Reference (N : Node_Id) return Boolean;
1003   --  Determines if the tree referenced by N represents an object in SPARK
1004
1005   function Is_Statement (N : Node_Id) return Boolean;
1006   pragma Inline (Is_Statement);
1007   --  Check if the node N is a statement node. Note that this includes
1008   --  the case of procedure call statements (unlike the direct use of
1009   --  the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1010   --  Note that a label is *not* a statement, and will return False.
1011
1012   function Is_Subprogram_Stub_Without_Prior_Declaration
1013     (N : Node_Id) return Boolean;
1014   --  Return True if N is a subprogram stub with no prior subprogram
1015   --  declaration.
1016
1017   function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1018   --  Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1019
1020   function Is_Transfer (N : Node_Id) return Boolean;
1021   --  Returns True if the node N is a statement which is known to cause an
1022   --  unconditional transfer of control at runtime, i.e. the following
1023   --  statement definitely will not be executed.
1024
1025   function Is_True (U : Uint) return Boolean;
1026   pragma Inline (Is_True);
1027   --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
1028   --  operand (i.e. is either 0 for False, or 1 for True). This function tests
1029   --  if it is True (i.e. non-zero).
1030
1031   function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1032   pragma Inline (Is_Universal_Numeric_Type);
1033   --  True if T is Universal_Integer or Universal_Real
1034
1035   function Is_Value_Type (T : Entity_Id) return Boolean;
1036   --  Returns true if type T represents a value type. This is only relevant to
1037   --  CIL, will always return false for other targets. A value type is a CIL
1038   --  object that is accessed directly, as opposed to the other CIL objects
1039   --  that are accessed through managed pointers.
1040
1041   function Is_VMS_Operator (Op : Entity_Id) return Boolean;
1042   --  Determine whether an operator is one of the intrinsics defined
1043   --  in the DEC system extension.
1044
1045   function Is_Delegate (T : Entity_Id) return Boolean;
1046   --  Returns true if type T represents a delegate. A Delegate is the CIL
1047   --  object used to represent access-to-subprogram types. This is only
1048   --  relevant to CIL, will always return false for other targets.
1049
1050   function Is_Variable
1051     (N                 : Node_Id;
1052      Use_Original_Node : Boolean := True) return Boolean;
1053   --  Determines if the tree referenced by N represents a variable, i.e. can
1054   --  appear on the left side of an assignment. There is one situation (formal
1055   --  parameters) in which non-tagged type conversions are also considered
1056   --  variables, but Is_Variable returns False for such cases, since it has
1057   --  no knowledge of the context. Note that this is the point at which
1058   --  Assignment_OK is checked, and True is returned for any tree thus marked.
1059   --  Use_Original_Node is used to perform the test on Original_Node (N). By
1060   --  default is True since this routine is commonly invoked as part of the
1061   --  semantic analysis and it must not be disturbed by the rewriten nodes.
1062
1063   function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1064   --  Check whether T is derived from a visibly controlled type. This is true
1065   --  if the root type is declared in Ada.Finalization. If T is derived
1066   --  instead from a private type whose full view is controlled, an explicit
1067   --  Initialize/Adjust/Finalize subprogram does not override the inherited
1068   --  one.
1069
1070   function Is_Volatile_Object (N : Node_Id) return Boolean;
1071   --  Determines if the given node denotes an volatile object in the sense of
1072   --  the legality checks described in RM C.6(12). Note that the test here is
1073   --  for something actually declared as volatile, not for an object that gets
1074   --  treated as volatile (see Einfo.Treat_As_Volatile).
1075
1076   function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1077   --  Applies to Itypes. True if the Itype is attached to a declaration for
1078   --  the type through its Parent field, which may or not be present in the
1079   --  tree.
1080
1081   procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1082   --  This procedure is called to clear all constant indications from all
1083   --  entities in the current scope and in any parent scopes if the current
1084   --  scope is a block or a package (and that recursion continues to the top
1085   --  scope that is not a block or a package). This is used when the
1086   --  sequential flow-of-control assumption is violated (occurrence of a
1087   --  label, head of a loop, or start of an exception handler). The effect of
1088   --  the call is to clear the Current_Value field (but we do not need to
1089   --  clear the Is_True_Constant flag, since that only gets reset if there
1090   --  really is an assignment somewhere in the entity scope). This procedure
1091   --  also calls Kill_All_Checks, since this is a special case of needing to
1092   --  forget saved values. This procedure also clears the Is_Known_Null and
1093   --  Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1094   --  parameters since these are also not known to be trustable any more.
1095   --
1096   --  The Last_Assignment_Only flag is set True to clear only Last_Assignment
1097   --  fields and leave other fields unchanged. This is used when we encounter
1098   --  an unconditional flow of control change (return, goto, raise). In such
1099   --  cases we don't need to clear the current values, since it may be that
1100   --  the flow of control change occurs in a conditional context, and if it
1101   --  is not taken, then it is just fine to keep the current values. But the
1102   --  Last_Assignment field is different, if we have a sequence assign-to-v,
1103   --  conditional-return, assign-to-v, we do not want to complain that the
1104   --  second assignment clobbers the first.
1105
1106   procedure Kill_Current_Values
1107     (Ent                  : Entity_Id;
1108      Last_Assignment_Only : Boolean := False);
1109   --  This performs the same processing as described above for the form with
1110   --  no argument, but for the specific entity given. The call has no effect
1111   --  if the entity Ent is not for an object. Last_Assignment_Only has the
1112   --  same meaning as for the call with no Ent.
1113
1114   procedure Kill_Size_Check_Code (E : Entity_Id);
1115   --  Called when an address clause or pragma Import is applied to an entity.
1116   --  If the entity is a variable or a constant, and size check code is
1117   --  present, this size check code is killed, since the object will not be
1118   --  allocated by the program.
1119
1120   function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1121   --  The node N is an entity reference. This function determines whether the
1122   --  reference is for sure an assignment of the entity, returning True if
1123   --  so. This differs from May_Be_Lvalue in that it defaults in the other
1124   --  direction. Cases which may possibly be assignments but are not known to
1125   --  be may return True from May_Be_Lvalue, but False from this function.
1126
1127   function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1128   --  HSS is a handled statement sequence. This function returns the last
1129   --  statement in Statements (HSS) that has Comes_From_Source set. If no
1130   --  such statement exists, Empty is returned.
1131
1132   function Matching_Static_Array_Bounds
1133     (L_Typ : Node_Id;
1134      R_Typ : Node_Id) return Boolean;
1135   --  L_Typ and R_Typ are two array types. Returns True when they have the
1136   --  same number of dimensions, and the same static bounds for each index
1137   --  position.
1138
1139   procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1140   --  Given a node which designates the context of analysis and an origin in
1141   --  the tree, traverse from Root_Nod and mark all allocators as either
1142   --  dynamic or static depending on Context_Nod. Any erroneous marking is
1143   --  cleaned up during resolution.
1144
1145   function May_Be_Lvalue (N : Node_Id) return Boolean;
1146   --  Determines if N could be an lvalue (e.g. an assignment left hand side).
1147   --  An lvalue is defined as any expression which appears in a context where
1148   --  a name is required by the syntax, and the identity, rather than merely
1149   --  the value of the node is needed (for example, the prefix of an Access
1150   --  attribute is in this category). Note that, as implied by the name, this
1151   --  test is conservative. If it cannot be sure that N is NOT an lvalue, then
1152   --  it returns True. It tries hard to get the answer right, but it is hard
1153   --  to guarantee this in all cases. Note that it is more possible to give
1154   --  correct answer if the tree is fully analyzed.
1155
1156   function Must_Inline (Subp : Entity_Id) return Boolean;
1157   --  Return true if Subp must be inlined by the frontend
1158
1159   function Needs_One_Actual (E : Entity_Id) return Boolean;
1160   --  Returns True if a function has defaults for all but its first
1161   --  formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1162   --  results from an indexing of a function call written in prefix form.
1163
1164   function New_Copy_List_Tree (List : List_Id) return List_Id;
1165   --  Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1166   --  below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1167   --  nodes (entities) either directly or indirectly using this function.
1168
1169   function New_Copy_Tree
1170     (Source    : Node_Id;
1171      Map       : Elist_Id   := No_Elist;
1172      New_Sloc  : Source_Ptr := No_Location;
1173      New_Scope : Entity_Id  := Empty) return Node_Id;
1174   --  Given a node that is the root of a subtree, Copy_Tree copies the entire
1175   --  syntactic subtree, including recursively any descendents whose parent
1176   --  field references a copied node (descendents not linked to a copied node
1177   --  by the parent field are not copied, instead the copied tree references
1178   --  the same descendent as the original in this case, which is appropriate
1179   --  for non-syntactic fields such as Etype). The parent pointers in the
1180   --  copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1181   --  The one exception to the rule of not copying semantic fields is that
1182   --  any implicit types attached to the subtree are duplicated, so that
1183   --  the copy contains a distinct set of implicit type entities. Thus this
1184   --  function is used when it is necessary to duplicate an analyzed tree,
1185   --  declared in the same or some other compilation unit. This function is
1186   --  declared here rather than in atree because it uses semantic information
1187   --  in particular concerning the structure of itypes and the generation of
1188   --  public symbols.
1189
1190   --  The Map argument, if set to a non-empty Elist, specifies a set of
1191   --  mappings to be applied to entities in the tree. The map has the form:
1192   --
1193   --     old entity 1
1194   --     new entity to replace references to entity 1
1195   --     old entity 2
1196   --     new entity to replace references to entity 2
1197   --     ...
1198   --
1199   --  The call destroys the contents of Map in this case
1200   --
1201   --  The parameter New_Sloc, if set to a value other than No_Location, is
1202   --  used as the Sloc value for all nodes in the new copy. If New_Sloc is
1203   --  set to its default value No_Location, then the Sloc values of the
1204   --  nodes in the copy are simply copied from the corresponding original.
1205   --
1206   --  The Comes_From_Source indication is unchanged if New_Sloc is set to
1207   --  the default No_Location value, but is reset if New_Sloc is given, since
1208   --  in this case the result clearly is neither a source node or an exact
1209   --  copy of a source node.
1210   --
1211   --  The parameter New_Scope, if set to a value other than Empty, is the
1212   --  value to use as the Scope for any Itypes that are copied. The most
1213   --  typical value for this parameter, if given, is Current_Scope.
1214
1215   function New_External_Entity
1216     (Kind         : Entity_Kind;
1217      Scope_Id     : Entity_Id;
1218      Sloc_Value   : Source_Ptr;
1219      Related_Id   : Entity_Id;
1220      Suffix       : Character;
1221      Suffix_Index : Nat := 0;
1222      Prefix       : Character := ' ') return Entity_Id;
1223   --  This function creates an N_Defining_Identifier node for an internal
1224   --  created entity, such as an implicit type or subtype, or a record
1225   --  initialization procedure. The entity name is constructed with a call
1226   --  to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1227   --  that the generated name may be referenced as a public entry, and the
1228   --  Is_Public flag is set if needed (using Set_Public_Status). If the
1229   --  entity is for a type or subtype, the size/align fields are initialized
1230   --  to unknown (Uint_0).
1231
1232   function New_Internal_Entity
1233     (Kind       : Entity_Kind;
1234      Scope_Id   : Entity_Id;
1235      Sloc_Value : Source_Ptr;
1236      Id_Char    : Character) return Entity_Id;
1237   --  This function is similar to New_External_Entity, except that the
1238   --  name is constructed by New_Internal_Name (Id_Char). This is used
1239   --  when the resulting entity does not have to be referenced as a
1240   --  public entity (and in this case Is_Public is not set).
1241
1242   procedure Next_Actual (Actual_Id : in out Node_Id);
1243   pragma Inline (Next_Actual);
1244   --  Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1245   --  inline this procedural form, but not the functional form that follows.
1246
1247   function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1248   --  Find next actual parameter in declaration order. As described for
1249   --  First_Actual, this is the next actual in the declaration order, not
1250   --  the call order, so this does not correspond to simply taking the
1251   --  next entry of the Parameter_Associations list. The argument is an
1252   --  actual previously returned by a call to First_Actual or Next_Actual.
1253   --  Note that the result produced is always an expression, not a parameter
1254   --  association node, even if named notation was used.
1255
1256   function No_Scalar_Parts (T : Entity_Id) return Boolean;
1257   --  Tests if type T can be determined at compile time to have no scalar
1258   --  parts in the sense of the Valid_Scalars attribute. Returns True if
1259   --  this is the case, meaning that the result of Valid_Scalars is True.
1260
1261   procedure Normalize_Actuals
1262     (N       : Node_Id;
1263      S       : Entity_Id;
1264      Report  : Boolean;
1265      Success : out Boolean);
1266   --  Reorders lists of actuals according to names of formals, value returned
1267   --  in Success indicates success of reordering. For more details, see body.
1268   --  Errors are reported only if Report is set to True.
1269
1270   procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1271   --  This routine is called if the sub-expression N maybe the target of
1272   --  an assignment (e.g. it is the left side of an assignment, used as
1273   --  an out parameters, or used as prefixes of access attributes). It
1274   --  sets May_Be_Modified in the associated entity if there is one,
1275   --  taking into account the rule that in the case of renamed objects,
1276   --  it is the flag in the renamed object that must be set.
1277   --
1278   --  The parameter Sure is set True if the modification is sure to occur
1279   --  (e.g. target of assignment, or out parameter), and to False if the
1280   --  modification is only potential (e.g. address of entity taken).
1281
1282   function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1283   --  [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1284   --  or overrides an inherited dispatching primitive S2, the original
1285   --  corresponding operation of S is the original corresponding operation of
1286   --  S2. Otherwise, it is S itself.
1287
1288   function Object_Access_Level (Obj : Node_Id) return Uint;
1289   --  Return the accessibility level of the view of the object Obj.
1290   --  For convenience, qualified expressions applied to object names
1291   --  are also allowed as actuals for this function.
1292
1293   function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1294   --  Returns True if the names of both entities correspond with matching
1295   --  primitives. This routine includes support for the case in which one
1296   --  or both entities correspond with entities built by Derive_Subprogram
1297   --  with a special name to avoid being overridden (i.e. return true in case
1298   --  of entities with names "nameP" and "name" or vice versa).
1299
1300   function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1301   --  Returns some private component (if any) of the given Type_Id.
1302   --  Used to enforce the rules on visibility of operations on composite
1303   --  types, that depend on the full view of the component type. For a
1304   --  record type there may be several such components, we just return
1305   --  the first one.
1306
1307   procedure Process_End_Label
1308     (N   : Node_Id;
1309      Typ : Character;
1310      Ent : Entity_Id);
1311   --  N is a node whose End_Label is to be processed, generating all
1312   --  appropriate cross-reference entries, and performing style checks
1313   --  for any identifier references in the end label. Typ is either
1314   --  'e' or 't indicating the type of the cross-reference entity
1315   --  (e for spec, t for body, see Lib.Xref spec for details). The
1316   --  parameter Ent gives the entity to which the End_Label refers,
1317   --  and to which cross-references are to be generated.
1318
1319   function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1320   --  Returns True if the expression Expr contains any references to a
1321   --  generic type. This can only happen within a generic template.
1322
1323   procedure Remove_Homonym (E : Entity_Id);
1324   --  Removes E from the homonym chain
1325
1326   function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1327   --  This is used to construct the second argument in a call to Rep_To_Pos
1328   --  which is Standard_True if range checks are enabled (E is an entity to
1329   --  which the Range_Checks_Suppressed test is applied), and Standard_False
1330   --  if range checks are suppressed. Loc is the location for the node that
1331   --  is returned (which is a New_Occurrence of the appropriate entity).
1332   --
1333   --  Note: one might think that it would be fine to always use True and
1334   --  to ignore the suppress in this case, but it is generally better to
1335   --  believe a request to suppress exceptions if possible, and further
1336   --  more there is at least one case in the generated code (the code for
1337   --  array assignment in a loop) that depends on this suppression.
1338
1339   procedure Require_Entity (N : Node_Id);
1340   --  N is a node which should have an entity value if it is an entity name.
1341   --  If not, then check if there were previous errors. If so, just fill
1342   --  in with Any_Id and ignore. Otherwise signal a program error exception.
1343   --  This is used as a defense mechanism against ill-formed trees caused by
1344   --  previous errors (particularly in -gnatq mode).
1345
1346   function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1347   --  Id is a type entity. The result is True when temporaries of this type
1348   --  need to be wrapped in a transient scope to be reclaimed properly when a
1349   --  secondary stack is in use. Examples of types requiring such wrapping are
1350   --  controlled types and variable-sized types including unconstrained
1351   --  arrays.
1352
1353   procedure Reset_Analyzed_Flags (N : Node_Id);
1354   --  Reset the Analyzed flags in all nodes of the tree whose root is N
1355
1356   function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
1357   --  Return true if Subp is a function that returns an unconstrained type
1358
1359   function Safe_To_Capture_Value
1360     (N    : Node_Id;
1361      Ent  : Entity_Id;
1362      Cond : Boolean := False) return Boolean;
1363   --  The caller is interested in capturing a value (either the current value,
1364   --  or an indication that the value is non-null) for the given entity Ent.
1365   --  This value can only be captured if sequential execution semantics can be
1366   --  properly guaranteed so that a subsequent reference will indeed be sure
1367   --  that this current value indication is correct. The node N is the
1368   --  construct which resulted in the possible capture of the value (this
1369   --  is used to check if we are in a conditional).
1370   --
1371   --  Cond is used to skip the test for being inside a conditional. It is used
1372   --  in the case of capturing values from if/while tests, which already do a
1373   --  proper job of handling scoping issues without this help.
1374   --
1375   --  The only entities whose values can be captured are OUT and IN OUT formal
1376   --  parameters, and variables unless Cond is True, in which case we also
1377   --  allow IN formals, loop parameters and constants, where we cannot ever
1378   --  capture actual value information, but we can capture conditional tests.
1379
1380   function Same_Name (N1, N2 : Node_Id) return Boolean;
1381   --  Determine if two (possibly expanded) names are the same name. This is
1382   --  a purely syntactic test, and N1 and N2 need not be analyzed.
1383
1384   function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1385   --  Determine if Node1 and Node2 are known to designate the same object.
1386   --  This is a semantic test and both nodes must be fully analyzed. A result
1387   --  of True is decisively correct. A result of False does not necessarily
1388   --  mean that different objects are designated, just that this could not
1389   --  be reliably determined at compile time.
1390
1391   function Same_Type (T1, T2 : Entity_Id) return Boolean;
1392   --  Determines if T1 and T2 represent exactly the same type. Two types
1393   --  are the same if they are identical, or if one is an unconstrained
1394   --  subtype of the other, or they are both common subtypes of the same
1395   --  type with identical constraints. The result returned is conservative.
1396   --  It is True if the types are known to be the same, but a result of
1397   --  False is indecisive (e.g. the compiler may not be able to tell that
1398   --  two constraints are identical).
1399
1400   function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1401   --  Determines if Node1 and Node2 are known to be the same value, which is
1402   --  true if they are both compile time known values and have the same value,
1403   --  or if they are the same object (in the sense of function Same_Object).
1404   --  A result of False does not necessarily mean they have different values,
1405   --  just that it is not possible to determine they have the same value.
1406
1407   function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1408   --  Determines if the entity Scope1 is the same as Scope2, or if it is
1409   --  inside it, where both entities represent scopes. Note that scopes
1410   --  are only partially ordered, so Scope_Within_Or_Same (A,B) and
1411   --  Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1412
1413   function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1414   --  Like Scope_Within_Or_Same, except that this function returns
1415   --  False in the case where Scope1 and Scope2 are the same scope.
1416
1417   procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1418   --  Same as Basic_Set_Convention, but with an extra check for access types.
1419   --  In particular, if E is an access-to-subprogram type, and Val is a
1420   --  foreign convention, then we set Can_Use_Internal_Rep to False on E.
1421
1422   procedure Set_Current_Entity (E : Entity_Id);
1423   pragma Inline (Set_Current_Entity);
1424   --  Establish the entity E as the currently visible definition of its
1425   --  associated name (i.e. the Node_Id associated with its name).
1426
1427   procedure Set_Debug_Info_Needed (T : Entity_Id);
1428   --  Sets the Debug_Info_Needed flag on entity T , and also on any entities
1429   --  that are needed by T (for an object, the type of the object is needed,
1430   --  and for a type, various subsidiary types are needed -- see body for
1431   --  details). Never has any effect on T if the Debug_Info_Off flag is set.
1432   --  This routine should always be used instead of Set_Needs_Debug_Info to
1433   --  ensure that subsidiary entities are properly handled.
1434
1435   procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id);
1436   --  This procedure has the same calling sequence as Set_Entity, but
1437   --  if Style_Check is set, then it calls a style checking routine which
1438   --  can check identifier spelling style.
1439
1440   procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1441   pragma Inline (Set_Name_Entity_Id);
1442   --  Sets the Entity_Id value associated with the given name, which is the
1443   --  Id of the innermost visible entity with the given name. See the body
1444   --  of package Sem_Ch8 for further details on the handling of visibility.
1445
1446   procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1447   --  The arguments may be parameter associations, whose descendants
1448   --  are the optional formal name and the actual parameter. Positional
1449   --  parameters are already members of a list, and do not need to be
1450   --  chained separately. See also First_Actual and Next_Actual.
1451
1452   procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1453   pragma Inline (Set_Optimize_Alignment_Flags);
1454   --  Sets Optimize_Alignment_Space/Time flags in E from current settings
1455
1456   procedure Set_Public_Status (Id : Entity_Id);
1457   --  If an entity (visible or otherwise) is defined in a library
1458   --  package, or a package that is itself public, then this subprogram
1459   --  labels the entity public as well.
1460
1461   procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1462   --  N is the node for either a left hand side (Out_Param set to False),
1463   --  or an Out or In_Out parameter (Out_Param set to True). If there is
1464   --  an assignable entity being referenced, then the appropriate flag
1465   --  (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1466   --  if Out_Param is True) is set True, and the other flag set False.
1467
1468   procedure Set_Scope_Is_Transient (V : Boolean := True);
1469   --  Set the flag Is_Transient of the current scope
1470
1471   procedure Set_Size_Info (T1, T2 : Entity_Id);
1472   pragma Inline (Set_Size_Info);
1473   --  Copies the Esize field and Has_Biased_Representation flag from sub(type)
1474   --  entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1475   --  in the fixed-point and discrete cases, and also copies the alignment
1476   --  value from T2 to T1. It does NOT copy the RM_Size field, which must be
1477   --  separately set if this is required to be copied also.
1478
1479   function Scope_Is_Transient return Boolean;
1480   --  True if the current scope is transient
1481
1482   function Static_Boolean (N : Node_Id) return Uint;
1483   --  This function analyzes the given expression node and then resolves it
1484   --  as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1485   --  returned corresponding to the value, otherwise an error message is
1486   --  output and No_Uint is returned.
1487
1488   function Static_Integer (N : Node_Id) return Uint;
1489   --  This function analyzes the given expression node and then resolves it
1490   --  as any integer type. If the result is static, then the value of the
1491   --  universal expression is returned, otherwise an error message is output
1492   --  and a value of No_Uint is returned.
1493
1494   function Statically_Different (E1, E2 : Node_Id) return Boolean;
1495   --  Return True if it can be statically determined that the Expressions
1496   --  E1 and E2 refer to different objects
1497
1498   function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1499   --  Return the accessibility level of the view denoted by Subp
1500
1501   function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
1502   --  Return True if Typ supports the GCC built-in atomic operations (i.e. if
1503   --  Typ is properly sized and aligned).
1504
1505   procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1506   --  Print debugging information on entry to each unit being analyzed
1507
1508   procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1509   --  Move a list of entities from one scope to another, and recompute
1510   --  Is_Public based upon the new scope.
1511
1512   function Type_Access_Level (Typ : Entity_Id) return Uint;
1513   --  Return the accessibility level of Typ
1514
1515   function Type_Without_Stream_Operation
1516     (T  : Entity_Id;
1517      Op : TSS_Name_Type := TSS_Null) return Entity_Id;
1518   --  AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
1519   --  is active then we cannot generate stream subprograms for composite types
1520   --  with elementary subcomponents that lack user-defined stream subprograms.
1521   --  This predicate determines whether a type has such an elementary
1522   --  subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
1523   --  prevents the construction of a composite stream operation. If Op is
1524   --  specified we check only for the given stream operation.
1525
1526   function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
1527   --  Return the entity which represents declaration N, so that different
1528   --  views of the same entity have the same unique defining entity:
1529   --  * package spec and body;
1530   --  * subprogram declaration, subprogram stub and subprogram body;
1531   --  * private view and full view of a type;
1532   --  * private view and full view of a deferred constant.
1533   --  In other cases, return the defining entity for N.
1534
1535   function Unique_Entity (E : Entity_Id) return Entity_Id;
1536   --  Return the unique entity for entity E, which would be returned by
1537   --  Unique_Defining_Entity if applied to the enclosing declaration of E.
1538
1539   function Unique_Name (E : Entity_Id) return String;
1540   --  Return a unique name for entity E, which could be used to identify E
1541   --  across compilation units.
1542
1543   function Unit_Is_Visible (U : Entity_Id) return Boolean;
1544   --  Determine whether a compilation unit is visible in the current context,
1545   --  because there is a with_clause that makes the unit available. Used to
1546   --  provide better messages on common visiblity errors on operators.
1547
1548   function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1549   --  Yields Universal_Integer or Universal_Real if this is a candidate
1550
1551   function Unqualify (Expr : Node_Id) return Node_Id;
1552   pragma Inline (Unqualify);
1553   --  Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
1554   --  returns X. If Expr is not a qualified expression, returns Expr.
1555
1556   function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
1557   --  [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
1558   --  of a type extension or private extension declaration. If the full-view
1559   --  of private parents and progenitors is available then it is used to
1560   --  generate the list of visible ancestors; otherwise their partial
1561   --  view is added to the resulting list.
1562
1563   function Within_Init_Proc return Boolean;
1564   --  Determines if Current_Scope is within an init proc
1565
1566   procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1567   --  Output error message for incorrectly typed expression. Expr is the node
1568   --  for the incorrectly typed construct (Etype (Expr) is the type found),
1569   --  and Expected_Type is the entity for the expected type. Note that Expr
1570   --  does not have to be a subexpression, anything with an Etype field may
1571   --  be used.
1572
1573end Sem_Util;
1574