1 /* Definitions of target machine GNU compiler.  IA-64 version.
2    Copyright (C) 1999-2013 Free Software Foundation, Inc.
3    Contributed by James E. Wilson <wilson@cygnus.com> and
4    		  David Mosberger <davidm@hpl.hp.com>.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* ??? Look at ABI group documents for list of preprocessor macros and
23    other features required for ABI compliance.  */
24 
25 /* ??? Functions containing a non-local goto target save many registers.  Why?
26    See for instance execute/920428-2.c.  */
27 
28 
29 /* Run-time target specifications */
30 
31 /* Target CPU builtins.  */
32 #define TARGET_CPU_CPP_BUILTINS()		\
33 do {						\
34 	builtin_assert("cpu=ia64");		\
35 	builtin_assert("machine=ia64");		\
36 	builtin_define("__ia64");		\
37 	builtin_define("__ia64__");		\
38 	builtin_define("__itanium__");		\
39 	if (TARGET_BIG_ENDIAN)			\
40 	  builtin_define("__BIG_ENDIAN__");	\
41 } while (0)
42 
43 #ifndef SUBTARGET_EXTRA_SPECS
44 #define SUBTARGET_EXTRA_SPECS
45 #endif
46 
47 #define EXTRA_SPECS \
48   { "asm_extra", ASM_EXTRA_SPEC }, \
49   SUBTARGET_EXTRA_SPECS
50 
51 #define CC1_SPEC "%(cc1_cpu) "
52 
53 #define ASM_EXTRA_SPEC ""
54 
55 /* Variables which are this size or smaller are put in the sdata/sbss
56    sections.  */
57 extern unsigned int ia64_section_threshold;
58 
59 /* If the assembler supports thread-local storage, assume that the
60    system does as well.  If a particular target system has an
61    assembler that supports TLS -- but the rest of the system does not
62    support TLS -- that system should explicit define TARGET_HAVE_TLS
63    to false in its own configuration file.  */
64 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
65 #define TARGET_HAVE_TLS true
66 #endif
67 
68 #define TARGET_TLS14		(ia64_tls_size == 14)
69 #define TARGET_TLS22		(ia64_tls_size == 22)
70 #define TARGET_TLS64		(ia64_tls_size == 64)
71 
72 #define TARGET_HPUX		0
73 #define TARGET_HPUX_LD		0
74 
75 #define TARGET_ABI_OPEN_VMS 0
76 
77 #ifndef TARGET_ILP32
78 #define TARGET_ILP32 0
79 #endif
80 
81 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
82 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
83 #endif
84 
85 /* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
86    TARGET_INLINE_SQRT.  */
87 
88 enum ia64_inline_type
89 {
90   INL_NO = 0,
91   INL_MIN_LAT = 1,
92   INL_MAX_THR = 2
93 };
94 
95 /* Default target_flags if no switches are specified  */
96 
97 #ifndef TARGET_DEFAULT
98 #define TARGET_DEFAULT (MASK_DWARF2_ASM)
99 #endif
100 
101 #ifndef TARGET_CPU_DEFAULT
102 #define TARGET_CPU_DEFAULT 0
103 #endif
104 
105 /* Driver configuration */
106 
107 /* A C string constant that tells the GCC driver program options to pass to
108    `cc1'.  It can also specify how to translate options you give to GCC into
109    options for GCC to pass to the `cc1'.  */
110 
111 #undef CC1_SPEC
112 #define CC1_SPEC "%{G*}"
113 
114 /* A C string constant that tells the GCC driver program options to pass to
115    `cc1plus'.  It can also specify how to translate options you give to GCC
116    into options for GCC to pass to the `cc1plus'.  */
117 
118 /* #define CC1PLUS_SPEC "" */
119 
120 /* Storage Layout */
121 
122 /* Define this macro to have the value 1 if the most significant bit in a byte
123    has the lowest number; otherwise define it to have the value zero.  */
124 
125 #define BITS_BIG_ENDIAN 0
126 
127 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
128 
129 /* Define this macro to have the value 1 if, in a multiword object, the most
130    significant word has the lowest number.  */
131 
132 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
133 
134 #define UNITS_PER_WORD 8
135 
136 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
137 
138 /* A C expression whose value is zero if pointers that need to be extended
139    from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
140    they are zero-extended and negative one if there is a ptr_extend operation.
141 
142    You need not define this macro if the `POINTER_SIZE' is equal to the width
143    of `Pmode'.  */
144 /* Need this for 32-bit pointers, see hpux.h for setting it.  */
145 /* #define POINTERS_EXTEND_UNSIGNED */
146 
147 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
148    which has the specified mode and signedness is to be stored in a register.
149    This macro is only called when TYPE is a scalar type.  */
150 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)				\
151 do									\
152   {									\
153     if (GET_MODE_CLASS (MODE) == MODE_INT				\
154 	&& GET_MODE_SIZE (MODE) < 4)					\
155       (MODE) = SImode;							\
156   }									\
157 while (0)
158 
159 #define PARM_BOUNDARY 64
160 
161 /* Define this macro if you wish to preserve a certain alignment for the stack
162    pointer.  The definition is a C expression for the desired alignment
163    (measured in bits).  */
164 
165 #define STACK_BOUNDARY 128
166 
167 /* Align frames on double word boundaries */
168 #ifndef IA64_STACK_ALIGN
169 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
170 #endif
171 
172 #define FUNCTION_BOUNDARY 128
173 
174 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
175    128-bit integers all require 128-bit alignment.  */
176 #define BIGGEST_ALIGNMENT 128
177 
178 /* If defined, a C expression to compute the alignment for a static variable.
179    TYPE is the data type, and ALIGN is the alignment that the object
180    would ordinarily have.  The value of this macro is used instead of that
181    alignment to align the object.  */
182 
183 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
184   (TREE_CODE (TYPE) == ARRAY_TYPE		\
185    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
186    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
187 
188 /* If defined, a C expression to compute the alignment given to a constant that
189    is being placed in memory.  CONSTANT is the constant and ALIGN is the
190    alignment that the object would ordinarily have.  The value of this macro is
191    used instead of that alignment to align the object.  */
192 
193 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
194   (TREE_CODE (EXP) == STRING_CST	\
195    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
196 
197 #define STRICT_ALIGNMENT 1
198 
199 /* Define this if you wish to imitate the way many other C compilers handle
200    alignment of bitfields and the structures that contain them.
201    The behavior is that the type written for a bit-field (`int', `short', or
202    other integer type) imposes an alignment for the entire structure, as if the
203    structure really did contain an ordinary field of that type.  In addition,
204    the bit-field is placed within the structure so that it would fit within such
205    a field, not crossing a boundary for it.  */
206 #define PCC_BITFIELD_TYPE_MATTERS 1
207 
208 /* An integer expression for the size in bits of the largest integer machine
209    mode that should actually be used.  */
210 
211 /* Allow pairs of registers to be used, which is the intent of the default.  */
212 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
213 
214 /* By default, the C++ compiler will use function addresses in the
215    vtable entries.  Setting this nonzero tells the compiler to use
216    function descriptors instead.  The value of this macro says how
217    many words wide the descriptor is (normally 2).  It is assumed
218    that the address of a function descriptor may be treated as a
219    pointer to a function.
220 
221    For reasons known only to HP, the vtable entries (as opposed to
222    normal function descriptors) are 16 bytes wide in 32-bit mode as
223    well, even though the 3rd and 4th words are unused.  */
224 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
225 
226 /* Due to silliness in the HPUX linker, vtable entries must be
227    8-byte aligned even in 32-bit mode.  Rather than create multiple
228    ABIs, force this restriction on everyone else too.  */
229 #define TARGET_VTABLE_ENTRY_ALIGN  64
230 
231 /* Due to the above, we need extra padding for the data entries below 0
232    to retain the alignment of the descriptors.  */
233 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
234 
235 /* Layout of Source Language Data Types */
236 
237 #define INT_TYPE_SIZE 32
238 
239 #define SHORT_TYPE_SIZE 16
240 
241 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
242 
243 #define LONG_LONG_TYPE_SIZE 64
244 
245 #define FLOAT_TYPE_SIZE 32
246 
247 #define DOUBLE_TYPE_SIZE 64
248 
249 /* long double is XFmode normally, and TFmode for HPUX.  It should be
250    TFmode for VMS as well but we only support up to DFmode now.  */
251 #define LONG_DOUBLE_TYPE_SIZE \
252   (TARGET_HPUX ? 128 \
253    : TARGET_ABI_OPEN_VMS ? 64 \
254    : 80)
255 
256 /* We always want the XFmode operations from libgcc2.c, except on VMS
257    where this yields references to unimplemented "insns".  */
258 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE  (TARGET_ABI_OPEN_VMS ? 64 : 80)
259 
260 
261 /* On HP-UX, we use the l suffix for TFmode in libgcc2.c.  */
262 #define LIBGCC2_TF_CEXT l
263 
264 #define DEFAULT_SIGNED_CHAR 1
265 
266 /* A C expression for a string describing the name of the data type to use for
267    size values.  The typedef name `size_t' is defined using the contents of the
268    string.  */
269 /* ??? Needs to be defined for P64 code.  */
270 /* #define SIZE_TYPE */
271 
272 /* A C expression for a string describing the name of the data type to use for
273    the result of subtracting two pointers.  The typedef name `ptrdiff_t' is
274    defined using the contents of the string.  See `SIZE_TYPE' above for more
275    information.  */
276 /* ??? Needs to be defined for P64 code.  */
277 /* #define PTRDIFF_TYPE */
278 
279 /* A C expression for a string describing the name of the data type to use for
280    wide characters.  The typedef name `wchar_t' is defined using the contents
281    of the string.  See `SIZE_TYPE' above for more information.  */
282 /* #define WCHAR_TYPE */
283 
284 /* A C expression for the size in bits of the data type for wide characters.
285    This is used in `cpp', which cannot make use of `WCHAR_TYPE'.  */
286 /* #define WCHAR_TYPE_SIZE */
287 
288 
289 /* Register Basics */
290 
291 /* Number of hardware registers known to the compiler.
292    We have 128 general registers, 128 floating point registers,
293    64 predicate registers, 8 branch registers, one frame pointer,
294    and several "application" registers.  */
295 
296 #define FIRST_PSEUDO_REGISTER 334
297 
298 /* Ranges for the various kinds of registers.  */
299 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
300 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
301 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
302 #define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
303 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
304 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
305 #define GENERAL_REGNO_P(REGNO) \
306   (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
307 
308 #define GR_REG(REGNO) ((REGNO) + 0)
309 #define FR_REG(REGNO) ((REGNO) + 128)
310 #define PR_REG(REGNO) ((REGNO) + 256)
311 #define BR_REG(REGNO) ((REGNO) + 320)
312 #define OUT_REG(REGNO) ((REGNO) + 120)
313 #define IN_REG(REGNO) ((REGNO) + 112)
314 #define LOC_REG(REGNO) ((REGNO) + 32)
315 
316 #define AR_CCV_REGNUM	329
317 #define AR_UNAT_REGNUM  330
318 #define AR_PFS_REGNUM	331
319 #define AR_LC_REGNUM	332
320 #define AR_EC_REGNUM	333
321 
322 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
323 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
324 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
325 
326 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
327 			     || (REGNO) == AR_UNAT_REGNUM)
328 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
329 			     && (REGNO) < FIRST_PSEUDO_REGISTER)
330 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
331 			   && (REGNO) < FIRST_PSEUDO_REGISTER)
332 
333 
334 /* ??? Don't really need two sets of macros.  I like this one better because
335    it is less typing.  */
336 #define R_GR(REGNO) GR_REG (REGNO)
337 #define R_FR(REGNO) FR_REG (REGNO)
338 #define R_PR(REGNO) PR_REG (REGNO)
339 #define R_BR(REGNO) BR_REG (REGNO)
340 
341 /* An initializer that says which registers are used for fixed purposes all
342    throughout the compiled code and are therefore not available for general
343    allocation.
344 
345    r0: constant 0
346    r1: global pointer (gp)
347    r12: stack pointer (sp)
348    r13: thread pointer (tp)
349    f0: constant 0.0
350    f1: constant 1.0
351    p0: constant true
352    fp: eliminable frame pointer */
353 
354 /* The last 16 stacked regs are reserved for the 8 input and 8 output
355    registers.  */
356 
357 #define FIXED_REGISTERS \
358 { /* General registers.  */				\
359   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,	\
360   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
361   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
362   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
363   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
364   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
365   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
366   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
367   /* Floating-point registers.  */			\
368   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
369   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
370   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
371   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
372   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
373   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
374   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
375   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
376   /* Predicate registers.  */				\
377   1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
378   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
379   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
380   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
381   /* Branch registers.  */				\
382   0, 0, 0, 0, 0, 0, 0, 0,				\
383   /*FP CCV UNAT PFS LC EC */				\
384      1,  1,   1,  1, 1, 1				\
385  }
386 
387 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
388    (in general) by function calls as well as for fixed registers.  This
389    macro therefore identifies the registers that are not available for
390    general allocation of values that must live across function calls.  */
391 
392 #define CALL_USED_REGISTERS \
393 { /* General registers.  */				\
394   1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
395   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
396   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
397   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
398   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
399   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
400   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
401   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
402   /* Floating-point registers.  */			\
403   1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
404   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
405   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
406   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
407   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
408   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
409   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
410   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
411   /* Predicate registers.  */				\
412   1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
413   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
414   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
415   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
416   /* Branch registers.  */				\
417   1, 0, 0, 0, 0, 0, 1, 1,				\
418   /*FP CCV UNAT PFS LC EC */				\
419      1,  1,   1,  1, 1, 1				\
420 }
421 
422 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
423    problem which makes CALL_USED_REGISTERS *always* include
424    all the FIXED_REGISTERS.  Until this problem has been
425    resolved this macro can be used to overcome this situation.
426    In particular, block_propagate() requires this list
427    be accurate, or we can remove registers which should be live.
428    This macro is used in regs_invalidated_by_call.  */
429 
430 #define CALL_REALLY_USED_REGISTERS \
431 { /* General registers.  */				\
432   0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,	\
433   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
434   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
435   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
436   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
437   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
438   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
439   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
440   /* Floating-point registers.  */			\
441   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
442   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
443   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
444   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
445   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
446   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
447   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
448   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
449   /* Predicate registers.  */				\
450   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
451   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
452   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
453   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
454   /* Branch registers.  */				\
455   1, 0, 0, 0, 0, 0, 1, 1,				\
456   /*FP CCV UNAT PFS LC EC */				\
457      0,  1,   0,  1, 0, 0				\
458 }
459 
460 
461 /* Define this macro if the target machine has register windows.  This C
462    expression returns the register number as seen by the called function
463    corresponding to the register number OUT as seen by the calling function.
464    Return OUT if register number OUT is not an outbound register.  */
465 
466 #define INCOMING_REGNO(OUT) \
467   ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
468 
469 /* Define this macro if the target machine has register windows.  This C
470    expression returns the register number as seen by the calling function
471    corresponding to the register number IN as seen by the called function.
472    Return IN if register number IN is not an inbound register.  */
473 
474 #define OUTGOING_REGNO(IN) \
475   ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
476 
477 /* Define this macro if the target machine has register windows.  This
478    C expression returns true if the register is call-saved but is in the
479    register window.  */
480 
481 #define LOCAL_REGNO(REGNO) \
482   (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
483 
484 /* We define CCImode in ia64-modes.def so we need a selector.  */
485 
486 #define SELECT_CC_MODE(OP,X,Y)  CCmode
487 
488 /* Order of allocation of registers */
489 
490 /* If defined, an initializer for a vector of integers, containing the numbers
491    of hard registers in the order in which GCC should prefer to use them
492    (from most preferred to least).
493 
494    If this macro is not defined, registers are used lowest numbered first (all
495    else being equal).
496 
497    One use of this macro is on machines where the highest numbered registers
498    must always be saved and the save-multiple-registers instruction supports
499    only sequences of consecutive registers.  On such machines, define
500    `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
501    allocatable register first.  */
502 
503 /* ??? Should the GR return value registers come before or after the rest
504    of the caller-save GRs?  */
505 
506 #define REG_ALLOC_ORDER							   \
507 {									   \
508   /* Caller-saved general registers.  */				   \
509   R_GR (14), R_GR (15), R_GR (16), R_GR (17),				   \
510   R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23),	   \
511   R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29),	   \
512   R_GR (30), R_GR (31),							   \
513   /* Output registers.  */						   \
514   R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125),  \
515   R_GR (126), R_GR (127),						   \
516   /* Caller-saved general registers, also used for return values.  */	   \
517   R_GR (8), R_GR (9), R_GR (10), R_GR (11),				   \
518   /* addl caller-saved general registers.  */				   \
519   R_GR (2), R_GR (3),							   \
520   /* Caller-saved FP registers.  */					   \
521   R_FR (6), R_FR (7),							   \
522   /* Caller-saved FP registers, used for parameters and return values.  */ \
523   R_FR (8), R_FR (9), R_FR (10), R_FR (11),				   \
524   R_FR (12), R_FR (13), R_FR (14), R_FR (15),				   \
525   /* Rotating caller-saved FP registers.  */				   \
526   R_FR (32), R_FR (33), R_FR (34), R_FR (35),				   \
527   R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41),	   \
528   R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47),	   \
529   R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53),	   \
530   R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59),	   \
531   R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65),	   \
532   R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71),	   \
533   R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77),	   \
534   R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83),	   \
535   R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89),	   \
536   R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95),	   \
537   R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101),	   \
538   R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107),  \
539   R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113),  \
540   R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119),  \
541   R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125),  \
542   R_FR (126), R_FR (127),						   \
543   /* Caller-saved predicate registers.  */				   \
544   R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11),		   \
545   R_PR (12), R_PR (13), R_PR (14), R_PR (15),				   \
546   /* Rotating caller-saved predicate registers.  */			   \
547   R_PR (16), R_PR (17),							   \
548   R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23),	   \
549   R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29),	   \
550   R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35),	   \
551   R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41),	   \
552   R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47),	   \
553   R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53),	   \
554   R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59),	   \
555   R_PR (60), R_PR (61), R_PR (62), R_PR (63),				   \
556   /* Caller-saved branch registers.  */					   \
557   R_BR (6), R_BR (7),							   \
558 									   \
559   /* Stacked callee-saved general registers.  */			   \
560   R_GR (32), R_GR (33), R_GR (34), R_GR (35),				   \
561   R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41),	   \
562   R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47),	   \
563   R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53),	   \
564   R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59),	   \
565   R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65),	   \
566   R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71),	   \
567   R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77),	   \
568   R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83),	   \
569   R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89),	   \
570   R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95),	   \
571   R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101),	   \
572   R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107),  \
573   R_GR (108),								   \
574   /* Input registers.  */						   \
575   R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117),  \
576   R_GR (118), R_GR (119),						   \
577   /* Callee-saved general registers.  */				   \
578   R_GR (4), R_GR (5), R_GR (6), R_GR (7),				   \
579   /* Callee-saved FP registers.  */					   \
580   R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17),		   \
581   R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23),	   \
582   R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29),	   \
583   R_FR (30), R_FR (31),							   \
584   /* Callee-saved predicate registers.  */				   \
585   R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5),			   \
586   /* Callee-saved branch registers.  */					   \
587   R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5),			   \
588 									   \
589   /* ??? Stacked registers reserved for fp, rp, and ar.pfs.  */		   \
590   R_GR (109), R_GR (110), R_GR (111),					   \
591 									   \
592   /* Special general registers.  */					   \
593   R_GR (0), R_GR (1), R_GR (12), R_GR (13),				   \
594   /* Special FP registers.  */						   \
595   R_FR (0), R_FR (1),							   \
596   /* Special predicate registers.  */					   \
597   R_PR (0),								   \
598   /* Special branch registers.  */					   \
599   R_BR (0),								   \
600   /* Other fixed registers.  */						   \
601   FRAME_POINTER_REGNUM, 						   \
602   AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM,		   \
603   AR_EC_REGNUM		  						   \
604 }
605 
606 /* How Values Fit in Registers */
607 
608 /* A C expression for the number of consecutive hard registers, starting at
609    register number REGNO, required to hold a value of mode MODE.  */
610 
611 /* ??? We say that BImode PR values require two registers.  This allows us to
612    easily store the normal and inverted values.  We use CCImode to indicate
613    a single predicate register.  */
614 
615 #define HARD_REGNO_NREGS(REGNO, MODE)					\
616   ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64			\
617    : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2				\
618    : (PR_REGNO_P (REGNO) || GR_REGNO_P (REGNO)) && (MODE) == CCImode ? 1\
619    : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1				\
620    : FR_REGNO_P (REGNO) && (MODE) == RFmode ? 1				\
621    : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2				\
622    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
623 
624 /* A C expression that is nonzero if it is permissible to store a value of mode
625    MODE in hard register number REGNO (or in several registers starting with
626    that one).  */
627 
628 #define HARD_REGNO_MODE_OK(REGNO, MODE)				\
629   (FR_REGNO_P (REGNO) ?						\
630      GET_MODE_CLASS (MODE) != MODE_CC &&			\
631      (MODE) != BImode &&					\
632      (MODE) != TFmode 						\
633    : PR_REGNO_P (REGNO) ?					\
634      (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC	\
635    : GR_REGNO_P (REGNO) ?					\
636      (MODE) != XFmode && (MODE) != XCmode && (MODE) != RFmode	\
637    : AR_REGNO_P (REGNO) ? (MODE) == DImode			\
638    : BR_REGNO_P (REGNO) ? (MODE) == DImode			\
639    : 0)
640 
641 /* A C expression that is nonzero if it is desirable to choose register
642    allocation so as to avoid move instructions between a value of mode MODE1
643    and a value of mode MODE2.
644 
645    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
646    ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
647    zero.  */
648 /* Don't tie integer and FP modes, as that causes us to get integer registers
649    allocated for FP instructions.  XFmode only supported in FP registers so
650    we can't tie it with any other modes.  */
651 #define MODES_TIEABLE_P(MODE1, MODE2)			\
652   (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)	\
653    && ((((MODE1) == XFmode) || ((MODE1) == XCmode) || ((MODE1) == RFmode))	\
654        == (((MODE2) == XFmode) || ((MODE2) == XCmode) || ((MODE2) == RFmode)))	\
655    && (((MODE1) == BImode) == ((MODE2) == BImode)))
656 
657 /* Specify the modes required to caller save a given hard regno.
658    We need to ensure floating pt regs are not saved as DImode.  */
659 
660 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
661   ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? RFmode        \
662    : choose_hard_reg_mode ((REGNO), (NREGS), false))
663 
664 /* Handling Leaf Functions */
665 
666 /* A C initializer for a vector, indexed by hard register number, which
667    contains 1 for a register that is allowable in a candidate for leaf function
668    treatment.  */
669 /* ??? This might be useful.  */
670 /* #define LEAF_REGISTERS */
671 
672 /* A C expression whose value is the register number to which REGNO should be
673    renumbered, when a function is treated as a leaf function.  */
674 /* ??? This might be useful.  */
675 /* #define LEAF_REG_REMAP(REGNO) */
676 
677 
678 /* Register Classes */
679 
680 /* An enumeral type that must be defined with all the register class names as
681    enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
682    register class, followed by one more enumeral value, `LIM_REG_CLASSES',
683    which is not a register class but rather tells how many classes there
684    are.  */
685 /* ??? When compiling without optimization, it is possible for the only use of
686    a pseudo to be a parameter load from the stack with a REG_EQUIV note.
687    Regclass handles this case specially and does not assign any costs to the
688    pseudo.  The pseudo then ends up using the last class before ALL_REGS.
689    Thus we must not let either PR_REGS or BR_REGS be the last class.  The
690    testcase for this is gcc.c-torture/execute/va-arg-7.c.  */
691 enum reg_class
692 {
693   NO_REGS,
694   PR_REGS,
695   BR_REGS,
696   AR_M_REGS,
697   AR_I_REGS,
698   ADDL_REGS,
699   GR_REGS,
700   FP_REGS,
701   FR_REGS,
702   GR_AND_BR_REGS,
703   GR_AND_FR_REGS,
704   ALL_REGS,
705   LIM_REG_CLASSES
706 };
707 
708 #define GENERAL_REGS GR_REGS
709 
710 /* The number of distinct register classes.  */
711 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
712 
713 /* An initializer containing the names of the register classes as C string
714    constants.  These names are used in writing some of the debugging dumps.  */
715 #define REG_CLASS_NAMES \
716 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
717   "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
718   "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
719 
720 /* An initializer containing the contents of the register classes, as integers
721    which are bit masks.  The Nth integer specifies the contents of class N.
722    The way the integer MASK is interpreted is that register R is in the class
723    if `MASK & (1 << R)' is 1.  */
724 #define REG_CLASS_CONTENTS \
725 { 							\
726   /* NO_REGS.  */					\
727   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
728     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
729     0x00000000, 0x00000000, 0x0000 },			\
730   /* PR_REGS.  */					\
731   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
732     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
733     0xFFFFFFFF, 0xFFFFFFFF, 0x0000 },			\
734   /* BR_REGS.  */					\
735   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
736     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
737     0x00000000, 0x00000000, 0x00FF },			\
738   /* AR_M_REGS.  */					\
739   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
740     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
741     0x00000000, 0x00000000, 0x0600 },			\
742   /* AR_I_REGS.  */					\
743   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
744     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
745     0x00000000, 0x00000000, 0x3800 },			\
746   /* ADDL_REGS.  */					\
747   { 0x0000000F, 0x00000000, 0x00000000, 0x00000000,	\
748     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
749     0x00000000, 0x00000000, 0x0000 },			\
750   /* GR_REGS.  */					\
751   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
752     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
753     0x00000000, 0x00000000, 0x0100 },			\
754   /* FP_REGS.  */					\
755   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
756     0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF,	\
757     0x00000000, 0x00000000, 0x0000 },			\
758   /* FR_REGS.  */					\
759   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
760     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
761     0x00000000, 0x00000000, 0x0000 },			\
762   /* GR_AND_BR_REGS.  */				\
763   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
764     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
765     0x00000000, 0x00000000, 0x01FF },			\
766   /* GR_AND_FR_REGS.  */				\
767   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
768     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
769     0x00000000, 0x00000000, 0x0100 },			\
770   /* ALL_REGS.  */					\
771   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
772     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
773     0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF },			\
774 }
775 
776 /* A C expression whose value is a register class containing hard register
777    REGNO.  In general there is more than one such class; choose a class which
778    is "minimal", meaning that no smaller class also contains the register.  */
779 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
780    may call here with private (invalid) register numbers, such as
781    REG_VOLATILE.  */
782 #define REGNO_REG_CLASS(REGNO) \
783 (ADDL_REGNO_P (REGNO) ? ADDL_REGS	\
784  : GENERAL_REGNO_P (REGNO) ? GR_REGS	\
785  : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
786 			&& (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
787  : PR_REGNO_P (REGNO) ? PR_REGS		\
788  : BR_REGNO_P (REGNO) ? BR_REGS		\
789  : AR_M_REGNO_P (REGNO) ? AR_M_REGS	\
790  : AR_I_REGNO_P (REGNO) ? AR_I_REGS	\
791  : NO_REGS)
792 
793 /* A macro whose definition is the name of the class to which a valid base
794    register must belong.  A base register is one used in an address which is
795    the register value plus a displacement.  */
796 #define BASE_REG_CLASS GENERAL_REGS
797 
798 /* A macro whose definition is the name of the class to which a valid index
799    register must belong.  An index register is one used in an address where its
800    value is either multiplied by a scale factor or added to another register
801    (as well as added to a displacement).  This is needed for POST_MODIFY.  */
802 #define INDEX_REG_CLASS GENERAL_REGS
803 
804 /* A C expression which is nonzero if register number NUM is suitable for use
805    as a base register in operand addresses.  It may be either a suitable hard
806    register or a pseudo register that has been allocated such a hard reg.  */
807 #define REGNO_OK_FOR_BASE_P(REGNO) \
808   (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
809 
810 /* A C expression which is nonzero if register number NUM is suitable for use
811    as an index register in operand addresses.  It may be either a suitable hard
812    register or a pseudo register that has been allocated such a hard reg.
813    This is needed for POST_MODIFY.  */
814 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
815 
816 /* You should define this macro to indicate to the reload phase that it may
817    need to allocate at least one register for a reload in addition to the
818    register to contain the data.  Specifically, if copying X to a register
819    CLASS in MODE requires an intermediate register, you should define this
820    to return the largest register class all of whose registers can be used
821    as intermediate registers or scratch registers.  */
822 
823 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
824  ia64_secondary_reload_class (CLASS, MODE, X)
825 
826 /* Certain machines have the property that some registers cannot be copied to
827    some other registers without using memory.  Define this macro on those
828    machines to be a C expression that is nonzero if objects of mode M in
829    registers of CLASS1 can only be copied to registers of class CLASS2 by
830    storing a register of CLASS1 into memory and loading that memory location
831    into a register of CLASS2.  */
832 
833 #if 0
834 /* ??? May need this, but since we've disallowed XFmode in GR_REGS,
835    I'm not quite sure how it could be invoked.  The normal problems
836    with unions should be solved with the addressof fiddling done by
837    movxf and friends.  */
838 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
839   (((MODE) == XFmode || (MODE) == XCmode)				\
840    && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS)			\
841        || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
842 #endif
843 
844 /* A C expression for the maximum number of consecutive registers of
845    class CLASS needed to hold a value of mode MODE.
846    This is closely related to the macro `HARD_REGNO_NREGS'.  */
847 
848 #define CLASS_MAX_NREGS(CLASS, MODE) \
849   ((MODE) == BImode && (CLASS) == PR_REGS ? 2			\
850    : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
851    : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == RFmode) ? 1 \
852    : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
853    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
854 
855 /* In BR regs, we can't change the DImode at all.
856    In FP regs, we can't change FP values to integer values and vice versa,
857    but we can change e.g. DImode to SImode, and V2SFmode into DImode.  */
858 
859 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) 		\
860   (reg_classes_intersect_p (CLASS, BR_REGS)			\
861    ? (FROM) != (TO)						\
862    : (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO)	\
863       ? reg_classes_intersect_p (CLASS, FR_REGS)		\
864       : 0))
865 
866 /* Basic Stack Layout */
867 
868 /* Define this macro if pushing a word onto the stack moves the stack pointer
869    to a smaller address.  */
870 #define STACK_GROWS_DOWNWARD 1
871 
872 /* Define this macro to nonzero if the addresses of local variable slots
873    are at negative offsets from the frame pointer.  */
874 #define FRAME_GROWS_DOWNWARD 0
875 
876 /* Offset from the frame pointer to the first local variable slot to
877    be allocated.  */
878 #define STARTING_FRAME_OFFSET 0
879 
880 /* Offset from the stack pointer register to the first location at which
881    outgoing arguments are placed.  If not specified, the default value of zero
882    is used.  This is the proper value for most machines.  */
883 /* IA64 has a 16 byte scratch area that is at the bottom of the stack.  */
884 #define STACK_POINTER_OFFSET 16
885 
886 /* Offset from the argument pointer register to the first argument's address.
887    On some machines it may depend on the data type of the function.  */
888 #define FIRST_PARM_OFFSET(FUNDECL) 0
889 
890 /* A C expression whose value is RTL representing the value of the return
891    address for the frame COUNT steps up from the current frame, after the
892    prologue.  */
893 
894 /* ??? Frames other than zero would likely require interpreting the frame
895    unwind info, so we don't try to support them.  We would also need to define
896    DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush).  */
897 
898 #define RETURN_ADDR_RTX(COUNT, FRAME) \
899   ia64_return_addr_rtx (COUNT, FRAME)
900 
901 /* A C expression whose value is RTL representing the location of the incoming
902    return address at the beginning of any function, before the prologue.  This
903    RTL is either a `REG', indicating that the return value is saved in `REG',
904    or a `MEM' representing a location in the stack.  This enables DWARF2
905    unwind info for C++ EH.  */
906 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
907 
908 /* A C expression whose value is an integer giving the offset, in bytes, from
909    the value of the stack pointer register to the top of the stack frame at the
910    beginning of any function, before the prologue.  The top of the frame is
911    defined to be the value of the stack pointer in the previous frame, just
912    before the call instruction.  */
913 /* The CFA is past the red zone, not at the entry-point stack
914    pointer.  */
915 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
916 
917 /* We shorten debug info by using CFA-16 as DW_AT_frame_base.  */
918 #define CFA_FRAME_BASE_OFFSET(FUNDECL) (-INCOMING_FRAME_SP_OFFSET)
919 
920 
921 /* Register That Address the Stack Frame.  */
922 
923 /* The register number of the stack pointer register, which must also be a
924    fixed register according to `FIXED_REGISTERS'.  On most machines, the
925    hardware determines which register this is.  */
926 
927 #define STACK_POINTER_REGNUM 12
928 
929 /* The register number of the frame pointer register, which is used to access
930    automatic variables in the stack frame.  On some machines, the hardware
931    determines which register this is.  On other machines, you can choose any
932    register you wish for this purpose.  */
933 
934 #define FRAME_POINTER_REGNUM 328
935 
936 /* Base register for access to local variables of the function.  */
937 #define HARD_FRAME_POINTER_REGNUM  LOC_REG (79)
938 
939 /* The register number of the arg pointer register, which is used to access the
940    function's argument list.  */
941 /* r0 won't otherwise be used, so put the always eliminated argument pointer
942    in it.  */
943 #define ARG_POINTER_REGNUM R_GR(0)
944 
945 /* Due to the way varargs and argument spilling happens, the argument
946    pointer is not 16-byte aligned like the stack pointer.  */
947 #define INIT_EXPANDERS					\
948   do {							\
949     ia64_init_expanders ();                             \
950     if (crtl->emit.regno_pointer_align)	\
951       REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64;	\
952   } while (0)
953 
954 /* Register numbers used for passing a function's static chain pointer.  */
955 /* ??? The ABI sez the static chain should be passed as a normal parameter.  */
956 #define STATIC_CHAIN_REGNUM 15
957 
958 /* Eliminating the Frame Pointer and the Arg Pointer */
959 
960 /* If defined, this macro specifies a table of register pairs used to eliminate
961    unneeded registers that point into the stack frame.  */
962 
963 #define ELIMINABLE_REGS							\
964 {									\
965   {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
966   {ARG_POINTER_REGNUM,	 HARD_FRAME_POINTER_REGNUM},			\
967   {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
968   {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},			\
969 }
970 
971 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
972    specifies the initial difference between the specified pair of
973    registers.  This macro must be defined if `ELIMINABLE_REGS' is
974    defined.  */
975 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
976   ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
977 
978 /* Passing Function Arguments on the Stack */
979 
980 /* If defined, the maximum amount of space required for outgoing arguments will
981    be computed and placed into the variable
982    `crtl->outgoing_args_size'.  */
983 
984 #define ACCUMULATE_OUTGOING_ARGS 1
985 
986 
987 /* Function Arguments in Registers */
988 
989 #define MAX_ARGUMENT_SLOTS 8
990 #define MAX_INT_RETURN_SLOTS 4
991 #define GR_ARG_FIRST IN_REG (0)
992 #define GR_RET_FIRST GR_REG (8)
993 #define GR_RET_LAST  GR_REG (11)
994 #define FR_ARG_FIRST FR_REG (8)
995 #define FR_RET_FIRST FR_REG (8)
996 #define FR_RET_LAST  FR_REG (15)
997 #define AR_ARG_FIRST OUT_REG (0)
998 
999 /* A C type for declaring a variable that is used as the first argument of
1000    `FUNCTION_ARG' and other related values.  For some target machines, the type
1001    `int' suffices and can hold the number of bytes of argument so far.  */
1002 
1003 enum ivms_arg_type {I64, FF, FD, FG, FS, FT};
1004 /* VMS floating point formats VAX F, VAX D, VAX G, IEEE S, IEEE T.  */
1005 
1006 typedef struct ia64_args
1007 {
1008   int words;			/* # words of arguments so far  */
1009   int int_regs;			/* # GR registers used so far  */
1010   int fp_regs;			/* # FR registers used so far  */
1011   int prototype;		/* whether function prototyped  */
1012   enum ivms_arg_type atypes[8]; /* which VMS float type or if not float */
1013 } CUMULATIVE_ARGS;
1014 
1015 /* A C statement (sans semicolon) for initializing the variable CUM for the
1016    state at the beginning of the argument list.  */
1017 
1018 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1019 do {									\
1020   (CUM).words = 0;							\
1021   (CUM).int_regs = 0;							\
1022   (CUM).fp_regs = 0;							\
1023   (CUM).prototype = ((FNTYPE) && prototype_p (FNTYPE)) || (LIBNAME);	\
1024   (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64;	        \
1025   (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64;            \
1026   (CUM).atypes[6] = (CUM).atypes[7] = I64;                              \
1027 } while (0)
1028 
1029 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1030    arguments for the function being compiled.  If this macro is undefined,
1031    `INIT_CUMULATIVE_ARGS' is used instead.  */
1032 
1033 /* We set prototype to true so that we never try to return a PARALLEL from
1034    function_arg.  */
1035 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1036 do {									\
1037   (CUM).words = 0;							\
1038   (CUM).int_regs = 0;							\
1039   (CUM).fp_regs = 0;							\
1040   (CUM).prototype = 1;							\
1041   (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64;	        \
1042   (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64;            \
1043   (CUM).atypes[6] = (CUM).atypes[7] = I64;                              \
1044 } while (0)
1045 
1046 /* A C expression that is nonzero if REGNO is the number of a hard register in
1047    which function arguments are sometimes passed.  This does *not* include
1048    implicit arguments such as the static chain and the structure-value address.
1049    On many machines, no registers can be used for this purpose since all
1050    function arguments are pushed on the stack.  */
1051 #define FUNCTION_ARG_REGNO_P(REGNO) \
1052 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1053  || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1054 
1055 
1056 /* How Large Values are Returned */
1057 
1058 #define DEFAULT_PCC_STRUCT_RETURN 0
1059 
1060 
1061 /* Caller-Saves Register Allocation */
1062 
1063 /* A C expression to determine whether it is worthwhile to consider placing a
1064    pseudo-register in a call-clobbered hard register and saving and restoring
1065    it around each function call.  The expression should be 1 when this is worth
1066    doing, and 0 otherwise.
1067 
1068    If you don't define this macro, a default is used which is good on most
1069    machines: `4 * CALLS < REFS'.  */
1070 /* ??? Investigate.  */
1071 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1072 
1073 
1074 /* Function Entry and Exit */
1075 
1076 /* Define this macro as a C expression that is nonzero if the return
1077    instruction or the function epilogue ignores the value of the stack pointer;
1078    in other words, if it is safe to delete an instruction to adjust the stack
1079    pointer before a return from the function.  */
1080 
1081 #define EXIT_IGNORE_STACK 1
1082 
1083 /* Define this macro as a C expression that is nonzero for registers
1084    used by the epilogue or the `return' pattern.  */
1085 
1086 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1087 
1088 /* Nonzero for registers used by the exception handling mechanism.  */
1089 
1090 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1091 
1092 /* Output part N of a function descriptor for DECL.  For ia64, both
1093    words are emitted with a single relocation, so ignore N > 0.  */
1094 #define ASM_OUTPUT_FDESC(FILE, DECL, PART)				\
1095 do {									\
1096   if ((PART) == 0)							\
1097     {									\
1098       if (TARGET_ILP32)							\
1099         fputs ("\tdata8.ua @iplt(", FILE);				\
1100       else								\
1101         fputs ("\tdata16.ua @iplt(", FILE);				\
1102       mark_decl_referenced (DECL);					\
1103       assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0));	\
1104       fputs (")\n", FILE);						\
1105       if (TARGET_ILP32)							\
1106 	fputs ("\tdata8.ua 0\n", FILE);					\
1107     }									\
1108 } while (0)
1109 
1110 /* Generating Code for Profiling.  */
1111 
1112 /* A C statement or compound statement to output to FILE some assembler code to
1113    call the profiling subroutine `mcount'.  */
1114 
1115 #undef FUNCTION_PROFILER
1116 #define FUNCTION_PROFILER(FILE, LABELNO) \
1117   ia64_output_function_profiler(FILE, LABELNO)
1118 
1119 /* Neither hpux nor linux use profile counters.  */
1120 #define NO_PROFILE_COUNTERS 1
1121 
1122 /* Trampolines for Nested Functions.  */
1123 
1124 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1125    the function containing a non-local goto target.  */
1126 
1127 #define STACK_SAVEAREA_MODE(LEVEL) \
1128   ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1129 
1130 /* A C expression for the size in bytes of the trampoline, as an integer.  */
1131 
1132 #define TRAMPOLINE_SIZE		32
1133 
1134 /* Alignment required for trampolines, in bits.  */
1135 
1136 #define TRAMPOLINE_ALIGNMENT	64
1137 
1138 /* Addressing Modes */
1139 
1140 /* Define this macro if the machine supports post-increment addressing.  */
1141 
1142 #define HAVE_POST_INCREMENT 1
1143 #define HAVE_POST_DECREMENT 1
1144 #define HAVE_POST_MODIFY_DISP 1
1145 #define HAVE_POST_MODIFY_REG 1
1146 
1147 /* A C expression that is 1 if the RTX X is a constant which is a valid
1148    address.  */
1149 
1150 #define CONSTANT_ADDRESS_P(X) 0
1151 
1152 /* The max number of registers that can appear in a valid memory address.  */
1153 
1154 #define MAX_REGS_PER_ADDRESS 2
1155 
1156 
1157 /* Condition Code Status */
1158 
1159 /* One some machines not all possible comparisons are defined, but you can
1160    convert an invalid comparison into a valid one.  */
1161 /* ??? Investigate.  See the alpha definition.  */
1162 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1163 
1164 
1165 /* Describing Relative Costs of Operations */
1166 
1167 /* A C expression for the cost of a branch instruction.  A value of 1 is the
1168    default; other values are interpreted relative to that.  Used by the
1169    if-conversion code as max instruction count.  */
1170 /* ??? This requires investigation.  The primary effect might be how
1171    many additional insn groups we run into, vs how good the dynamic
1172    branch predictor is.  */
1173 
1174 #define BRANCH_COST(speed_p, predictable_p) 6
1175 
1176 /* Define this macro as a C expression which is nonzero if accessing less than
1177    a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1178    word of memory.  */
1179 
1180 #define SLOW_BYTE_ACCESS 1
1181 
1182 /* Define this macro if it is as good or better to call a constant function
1183    address than to call an address kept in a register.
1184 
1185    Indirect function calls are more expensive that direct function calls, so
1186    don't cse function addresses.  */
1187 
1188 #define NO_FUNCTION_CSE
1189 
1190 
1191 /* Dividing the output into sections.  */
1192 
1193 /* A C expression whose value is a string containing the assembler operation
1194    that should precede instructions and read-only data.  */
1195 
1196 #define TEXT_SECTION_ASM_OP "\t.text"
1197 
1198 /* A C expression whose value is a string containing the assembler operation to
1199    identify the following data as writable initialized data.  */
1200 
1201 #define DATA_SECTION_ASM_OP "\t.data"
1202 
1203 /* If defined, a C expression whose value is a string containing the assembler
1204    operation to identify the following data as uninitialized global data.  */
1205 
1206 #define BSS_SECTION_ASM_OP "\t.bss"
1207 
1208 #define IA64_DEFAULT_GVALUE 8
1209 
1210 /* Position Independent Code.  */
1211 
1212 /* The register number of the register used to address a table of static data
1213    addresses in memory.  */
1214 
1215 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1216    gen_rtx_REG (DImode, 1).  */
1217 
1218 /* ??? Should we set flag_pic?  Probably need to define
1219    LEGITIMIZE_PIC_OPERAND_P to make that work.  */
1220 
1221 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1222 
1223 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1224    clobbered by calls.  */
1225 
1226 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
1227 
1228 
1229 /* The Overall Framework of an Assembler File.  */
1230 
1231 /* A C string constant describing how to begin a comment in the target
1232    assembler language.  The compiler assumes that the comment will end at the
1233    end of the line.  */
1234 
1235 #define ASM_COMMENT_START "//"
1236 
1237 /* A C string constant for text to be output before each `asm' statement or
1238    group of consecutive ones.  */
1239 
1240 #define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1241 
1242 /* A C string constant for text to be output after each `asm' statement or
1243    group of consecutive ones.  */
1244 
1245 #define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1246 
1247 /* Output and Generation of Labels.  */
1248 
1249 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1250    assembler definition of a label named NAME.  */
1251 
1252 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1253    why ia64_asm_output_label exists.  */
1254 
1255 extern int ia64_asm_output_label;
1256 #define ASM_OUTPUT_LABEL(STREAM, NAME)					\
1257 do {									\
1258   ia64_asm_output_label = 1;						\
1259   assemble_name (STREAM, NAME);						\
1260   fputs (":\n", STREAM);						\
1261   ia64_asm_output_label = 0;						\
1262 } while (0)
1263 
1264 /* Globalizing directive for a label.  */
1265 #define GLOBAL_ASM_OP "\t.global "
1266 
1267 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1268    necessary for declaring the name of an external symbol named NAME which is
1269    referenced in this compilation but not defined.  */
1270 
1271 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1272   ia64_asm_output_external (FILE, DECL, NAME)
1273 
1274 /* A C statement to store into the string STRING a label whose name is made
1275    from the string PREFIX and the number NUM.  */
1276 
1277 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1278 do {									\
1279   sprintf (LABEL, "*.%s%d", PREFIX, NUM);				\
1280 } while (0)
1281 
1282 /* ??? Not sure if using a ? in the name for Intel as is safe.  */
1283 
1284 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1285 
1286 /* A C statement to output to the stdio stream STREAM assembler code which
1287    defines (equates) the symbol NAME to have the value VALUE.  */
1288 
1289 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1290 do {									\
1291   assemble_name (STREAM, NAME);						\
1292   fputs (" = ", STREAM);						\
1293   if (ISDIGIT (*VALUE))							\
1294     ia64_asm_output_label = 1;						\
1295   assemble_name (STREAM, VALUE);					\
1296   fputc ('\n', STREAM);							\
1297   ia64_asm_output_label = 0;						\
1298 } while (0)
1299 
1300 
1301 /* Macros Controlling Initialization Routines.  */
1302 
1303 /* This is handled by sysv4.h.  */
1304 
1305 
1306 /* Output of Assembler Instructions.  */
1307 
1308 /* A C initializer containing the assembler's names for the machine registers,
1309    each one as a C string constant.  */
1310 
1311 #define REGISTER_NAMES \
1312 {									\
1313   /* General registers.  */						\
1314   "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9",		\
1315   "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19",	\
1316   "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29",	\
1317   "r30", "r31",								\
1318   /* Local registers.  */						\
1319   "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",	\
1320   "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",	\
1321   "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",	\
1322   "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",	\
1323   "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",	\
1324   "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",	\
1325   "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",	\
1326   "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",	\
1327   "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",	\
1328   "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79",	\
1329   /* Input registers.  */						\
1330   "in0",  "in1",  "in2",  "in3",  "in4",  "in5",  "in6",  "in7",	\
1331   /* Output registers.  */						\
1332   "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7",	\
1333   /* Floating-point registers.  */					\
1334   "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",		\
1335   "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19",	\
1336   "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29",	\
1337   "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",	\
1338   "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49",	\
1339   "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59",	\
1340   "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69",	\
1341   "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",	\
1342   "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89",	\
1343   "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99",	\
1344   "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1345   "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1346   "f120","f121","f122","f123","f124","f125","f126","f127",		\
1347   /* Predicate registers.  */						\
1348   "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9",		\
1349   "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19",	\
1350   "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29",	\
1351   "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",	\
1352   "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49",	\
1353   "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59",	\
1354   "p60", "p61", "p62", "p63",						\
1355   /* Branch registers.  */						\
1356   "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",			\
1357   /* Frame pointer.  Application registers.  */				\
1358   "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec",	\
1359 }
1360 
1361 /* If defined, a C initializer for an array of structures containing a name and
1362    a register number.  This macro defines additional names for hard registers,
1363    thus allowing the `asm' option in declarations to refer to registers using
1364    alternate names.  */
1365 
1366 #define ADDITIONAL_REGISTER_NAMES \
1367 {									\
1368   { "gp", R_GR (1) },							\
1369   { "sp", R_GR (12) },							\
1370   { "in0", IN_REG (0) },						\
1371   { "in1", IN_REG (1) },						\
1372   { "in2", IN_REG (2) },						\
1373   { "in3", IN_REG (3) },						\
1374   { "in4", IN_REG (4) },						\
1375   { "in5", IN_REG (5) },						\
1376   { "in6", IN_REG (6) },						\
1377   { "in7", IN_REG (7) },						\
1378   { "out0", OUT_REG (0) },						\
1379   { "out1", OUT_REG (1) },						\
1380   { "out2", OUT_REG (2) },						\
1381   { "out3", OUT_REG (3) },						\
1382   { "out4", OUT_REG (4) },						\
1383   { "out5", OUT_REG (5) },						\
1384   { "out6", OUT_REG (6) },						\
1385   { "out7", OUT_REG (7) },						\
1386   { "loc0", LOC_REG (0) },						\
1387   { "loc1", LOC_REG (1) },						\
1388   { "loc2", LOC_REG (2) },						\
1389   { "loc3", LOC_REG (3) },						\
1390   { "loc4", LOC_REG (4) },						\
1391   { "loc5", LOC_REG (5) },						\
1392   { "loc6", LOC_REG (6) },						\
1393   { "loc7", LOC_REG (7) },						\
1394   { "loc8", LOC_REG (8) }, 						\
1395   { "loc9", LOC_REG (9) }, 						\
1396   { "loc10", LOC_REG (10) }, 						\
1397   { "loc11", LOC_REG (11) }, 						\
1398   { "loc12", LOC_REG (12) }, 						\
1399   { "loc13", LOC_REG (13) }, 						\
1400   { "loc14", LOC_REG (14) }, 						\
1401   { "loc15", LOC_REG (15) }, 						\
1402   { "loc16", LOC_REG (16) }, 						\
1403   { "loc17", LOC_REG (17) }, 						\
1404   { "loc18", LOC_REG (18) }, 						\
1405   { "loc19", LOC_REG (19) }, 						\
1406   { "loc20", LOC_REG (20) }, 						\
1407   { "loc21", LOC_REG (21) }, 						\
1408   { "loc22", LOC_REG (22) }, 						\
1409   { "loc23", LOC_REG (23) }, 						\
1410   { "loc24", LOC_REG (24) }, 						\
1411   { "loc25", LOC_REG (25) }, 						\
1412   { "loc26", LOC_REG (26) }, 						\
1413   { "loc27", LOC_REG (27) }, 						\
1414   { "loc28", LOC_REG (28) }, 						\
1415   { "loc29", LOC_REG (29) }, 						\
1416   { "loc30", LOC_REG (30) }, 						\
1417   { "loc31", LOC_REG (31) }, 						\
1418   { "loc32", LOC_REG (32) }, 						\
1419   { "loc33", LOC_REG (33) }, 						\
1420   { "loc34", LOC_REG (34) }, 						\
1421   { "loc35", LOC_REG (35) }, 						\
1422   { "loc36", LOC_REG (36) }, 						\
1423   { "loc37", LOC_REG (37) }, 						\
1424   { "loc38", LOC_REG (38) }, 						\
1425   { "loc39", LOC_REG (39) }, 						\
1426   { "loc40", LOC_REG (40) }, 						\
1427   { "loc41", LOC_REG (41) }, 						\
1428   { "loc42", LOC_REG (42) }, 						\
1429   { "loc43", LOC_REG (43) }, 						\
1430   { "loc44", LOC_REG (44) }, 						\
1431   { "loc45", LOC_REG (45) }, 						\
1432   { "loc46", LOC_REG (46) }, 						\
1433   { "loc47", LOC_REG (47) }, 						\
1434   { "loc48", LOC_REG (48) }, 						\
1435   { "loc49", LOC_REG (49) }, 						\
1436   { "loc50", LOC_REG (50) }, 						\
1437   { "loc51", LOC_REG (51) }, 						\
1438   { "loc52", LOC_REG (52) }, 						\
1439   { "loc53", LOC_REG (53) }, 						\
1440   { "loc54", LOC_REG (54) }, 						\
1441   { "loc55", LOC_REG (55) }, 						\
1442   { "loc56", LOC_REG (56) }, 						\
1443   { "loc57", LOC_REG (57) }, 						\
1444   { "loc58", LOC_REG (58) }, 						\
1445   { "loc59", LOC_REG (59) }, 						\
1446   { "loc60", LOC_REG (60) }, 						\
1447   { "loc61", LOC_REG (61) }, 						\
1448   { "loc62", LOC_REG (62) }, 						\
1449   { "loc63", LOC_REG (63) }, 						\
1450   { "loc64", LOC_REG (64) }, 						\
1451   { "loc65", LOC_REG (65) }, 						\
1452   { "loc66", LOC_REG (66) }, 						\
1453   { "loc67", LOC_REG (67) }, 						\
1454   { "loc68", LOC_REG (68) }, 						\
1455   { "loc69", LOC_REG (69) }, 						\
1456   { "loc70", LOC_REG (70) }, 						\
1457   { "loc71", LOC_REG (71) }, 						\
1458   { "loc72", LOC_REG (72) }, 						\
1459   { "loc73", LOC_REG (73) }, 						\
1460   { "loc74", LOC_REG (74) }, 						\
1461   { "loc75", LOC_REG (75) }, 						\
1462   { "loc76", LOC_REG (76) }, 						\
1463   { "loc77", LOC_REG (77) }, 						\
1464   { "loc78", LOC_REG (78) }, 						\
1465   { "loc79", LOC_REG (79) }, 						\
1466 }
1467 
1468 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1469    `%I' options of `asm_fprintf' (see `final.c').  */
1470 
1471 #define REGISTER_PREFIX ""
1472 #define LOCAL_LABEL_PREFIX "."
1473 #define USER_LABEL_PREFIX ""
1474 #define IMMEDIATE_PREFIX ""
1475 
1476 
1477 /* Output of dispatch tables.  */
1478 
1479 /* This macro should be provided on machines where the addresses in a dispatch
1480    table are relative to the table's own address.  */
1481 
1482 /* ??? Depends on the pointer size.  */
1483 
1484 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)	\
1485   do {								\
1486   if (CASE_VECTOR_MODE == SImode)				\
1487     fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE);		\
1488   else								\
1489     fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE);		\
1490   } while (0)
1491 
1492 /* Jump tables only need 4 or 8 byte alignment.  */
1493 
1494 #define ADDR_VEC_ALIGN(ADDR_VEC) (CASE_VECTOR_MODE == SImode ? 2 : 3)
1495 
1496 
1497 /* Assembler Commands for Exception Regions.  */
1498 
1499 /* Select a format to encode pointers in exception handling data.  CODE
1500    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1501    true if the symbol may be affected by dynamic relocations.  */
1502 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)	\
1503   (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel)	\
1504    | ((GLOBAL) ? DW_EH_PE_indirect : 0)			\
1505    | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1506 
1507 /* Handle special EH pointer encodings.  Absolute, pc-relative, and
1508    indirect are handled automatically.  */
1509 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1510   do {									\
1511     const char *reltag = NULL;						\
1512     if (((ENCODING) & 0xF0) == DW_EH_PE_textrel)			\
1513       reltag = "@segrel(";						\
1514     else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel)			\
1515       reltag = "@gprel(";						\
1516     if (reltag)								\
1517       {									\
1518 	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
1519 	fputs (reltag, FILE);						\
1520 	assemble_name (FILE, XSTR (ADDR, 0));				\
1521 	fputc (')', FILE);						\
1522 	goto DONE;							\
1523       }									\
1524   } while (0)
1525 
1526 
1527 /* Assembler Commands for Alignment.  */
1528 
1529 /* ??? Investigate.  */
1530 
1531 /* The alignment (log base 2) to put in front of LABEL, which follows
1532    a BARRIER.  */
1533 
1534 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1535 
1536 /* The desired alignment for the location counter at the beginning
1537    of a loop.  */
1538 
1539 /* #define LOOP_ALIGN(LABEL) */
1540 
1541 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1542    section because it fails put zeros in the bytes that are skipped.  */
1543 
1544 #define ASM_NO_SKIP_IN_TEXT 1
1545 
1546 /* A C statement to output to the stdio stream STREAM an assembler command to
1547    advance the location counter to a multiple of 2 to the POWER bytes.  */
1548 
1549 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1550   fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1551 
1552 
1553 /* Macros Affecting all Debug Formats.  */
1554 
1555 /* This is handled in sysv4.h.  */
1556 
1557 
1558 /* Specific Options for DBX Output.  */
1559 
1560 /* This is handled by dbxelf.h.  */
1561 
1562 
1563 /* Open ended Hooks for DBX Output.  */
1564 
1565 /* Likewise.  */
1566 
1567 
1568 /* File names in DBX format.  */
1569 
1570 /* Likewise.  */
1571 
1572 
1573 /* Macros for SDB and Dwarf Output.  */
1574 
1575 /* Define this macro if GCC should produce dwarf version 2 format debugging
1576    output in response to the `-g' option.  */
1577 
1578 #define DWARF2_DEBUGGING_INFO 1
1579 
1580 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1581 
1582 /* Use tags for debug info labels, so that they don't break instruction
1583    bundles.  This also avoids getting spurious DV warnings from the
1584    assembler.  This is similar to (*targetm.asm_out.internal_label), except that we
1585    add brackets around the label.  */
1586 
1587 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1588   fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1589 
1590 /* Use section-relative relocations for debugging offsets.  Unlike other
1591    targets that fake this by putting the section VMA at 0, IA-64 has
1592    proper relocations for them.  */
1593 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL, SECTION)	\
1594   do {								\
1595     fputs (integer_asm_op (SIZE, FALSE), FILE);			\
1596     fputs ("@secrel(", FILE);					\
1597     assemble_name (FILE, LABEL);				\
1598     fputc (')', FILE);						\
1599   } while (0)
1600 
1601 /* Emit a PC-relative relocation.  */
1602 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1603   do {							\
1604     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1605     fputs ("@pcrel(", FILE);				\
1606     assemble_name (FILE, LABEL);			\
1607     fputc (')', FILE);					\
1608   } while (0)
1609 
1610 /* Register Renaming Parameters.  */
1611 
1612 /* A C expression that is nonzero if hard register number REGNO2 can be
1613    considered for use as a rename register for REGNO1 */
1614 
1615 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1616   ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1617 
1618 
1619 /* Miscellaneous Parameters.  */
1620 
1621 /* Flag to mark data that is in the small address area (addressable
1622    via "addl", that is, within a 2MByte offset of 0.  */
1623 #define SYMBOL_FLAG_SMALL_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
1624 #define SYMBOL_REF_SMALL_ADDR_P(X)	\
1625 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1626 
1627 /* An alias for a machine mode name.  This is the machine mode that elements of
1628    a jump-table should have.  */
1629 
1630 #define CASE_VECTOR_MODE ptr_mode
1631 
1632 /* Define as C expression which evaluates to nonzero if the tablejump
1633    instruction expects the table to contain offsets from the address of the
1634    table.  */
1635 
1636 #define CASE_VECTOR_PC_RELATIVE 1
1637 
1638 /* Define this macro if operations between registers with integral mode smaller
1639    than a word are always performed on the entire register.  */
1640 
1641 #define WORD_REGISTER_OPERATIONS
1642 
1643 /* Define this macro to be a C expression indicating when insns that read
1644    memory in MODE, an integral mode narrower than a word, set the bits outside
1645    of MODE to be either the sign-extension or the zero-extension of the data
1646    read.  */
1647 
1648 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1649 
1650 /* The maximum number of bytes that a single instruction can move quickly from
1651    memory to memory.  */
1652 #define MOVE_MAX 8
1653 
1654 /* A C expression which is nonzero if on this machine it is safe to "convert"
1655    an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1656    than INPREC) by merely operating on it as if it had only OUTPREC bits.  */
1657 
1658 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1659 
1660 /* A C expression describing the value returned by a comparison operator with
1661    an integral mode and stored by a store-flag instruction (`sCOND') when the
1662    condition is true.  */
1663 
1664 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1.  */
1665 
1666 /* An alias for the machine mode for pointers.  */
1667 
1668 /* ??? This would change if we had ILP32 support.  */
1669 
1670 #define Pmode DImode
1671 
1672 /* An alias for the machine mode used for memory references to functions being
1673    called, in `call' RTL expressions.  */
1674 
1675 #define FUNCTION_MODE Pmode
1676 
1677 /* A C expression for the maximum number of instructions to execute via
1678    conditional execution instructions instead of a branch.  A value of
1679    BRANCH_COST+1 is the default if the machine does not use
1680    cc0, and 1 if it does use cc0.  */
1681 /* ??? Investigate.  */
1682 #define MAX_CONDITIONAL_EXECUTE 12
1683 
1684 extern int ia64_final_schedule;
1685 
1686 #define TARGET_UNWIND_TABLES_DEFAULT true
1687 
1688 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
1689 
1690 /* This function contains machine specific function data.  */
1691 struct GTY(()) machine_function
1692 {
1693   /* The new stack pointer when unwinding from EH.  */
1694   rtx ia64_eh_epilogue_sp;
1695 
1696   /* The new bsp value when unwinding from EH.  */
1697   rtx ia64_eh_epilogue_bsp;
1698 
1699   /* The GP value save register.  */
1700   rtx ia64_gp_save;
1701 
1702   /* The number of varargs registers to save.  */
1703   int n_varargs;
1704 
1705   /* The number of the next unwind state to copy.  */
1706   int state_num;
1707 };
1708 
1709 #define DONT_USE_BUILTIN_SETJMP
1710 
1711 /* Output any profiling code before the prologue.  */
1712 
1713 #undef  PROFILE_BEFORE_PROLOGUE
1714 #define PROFILE_BEFORE_PROLOGUE 1
1715 
1716 /* Initialize library function table. */
1717 #undef TARGET_INIT_LIBFUNCS
1718 #define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
1719 
1720 
1721 /* Switch on code for querying unit reservations.  */
1722 #define CPU_UNITS_QUERY 1
1723 
1724 /* End of ia64.h */
1725