1 /* Definitions of target machine for GNU compiler, for IBM S/390
2    Copyright (C) 1999-2013 Free Software Foundation, Inc.
3    Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4                   Ulrich Weigand (uweigand@de.ibm.com).
5                   Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #ifndef _S390_H
24 #define _S390_H
25 
26 /* Optional architectural facilities supported by the processor.  */
27 
28 enum processor_flags
29 {
30   PF_IEEE_FLOAT = 1,
31   PF_ZARCH = 2,
32   PF_LONG_DISPLACEMENT = 4,
33   PF_EXTIMM = 8,
34   PF_DFP = 16,
35   PF_Z10 = 32,
36   PF_Z196 = 64,
37   PF_ZEC12 = 128,
38   PF_TX = 256
39 };
40 
41 /* This is necessary to avoid a warning about comparing different enum
42    types.  */
43 #define s390_tune_attr ((enum attr_cpu)s390_tune)
44 
45 /* These flags indicate that the generated code should run on a cpu
46    providing the respective hardware facility regardless of the
47    current cpu mode (ESA or z/Architecture).  */
48 
49 #define TARGET_CPU_IEEE_FLOAT \
50 	(s390_arch_flags & PF_IEEE_FLOAT)
51 #define TARGET_CPU_ZARCH \
52 	(s390_arch_flags & PF_ZARCH)
53 #define TARGET_CPU_LONG_DISPLACEMENT \
54 	(s390_arch_flags & PF_LONG_DISPLACEMENT)
55 #define TARGET_CPU_EXTIMM \
56  	(s390_arch_flags & PF_EXTIMM)
57 #define TARGET_CPU_DFP \
58  	(s390_arch_flags & PF_DFP)
59 #define TARGET_CPU_Z10 \
60  	(s390_arch_flags & PF_Z10)
61 #define TARGET_CPU_Z196 \
62  	(s390_arch_flags & PF_Z196)
63 #define TARGET_CPU_ZEC12 \
64  	(s390_arch_flags & PF_ZEC12)
65 #define TARGET_CPU_HTM \
66  	(s390_arch_flags & PF_TX)
67 
68 /* These flags indicate that the generated code should run on a cpu
69    providing the respective hardware facility when run in
70    z/Architecture mode.  */
71 
72 #define TARGET_LONG_DISPLACEMENT \
73        (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
74 #define TARGET_EXTIMM \
75        (TARGET_ZARCH && TARGET_CPU_EXTIMM)
76 #define TARGET_DFP \
77        (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
78 #define TARGET_Z10 \
79        (TARGET_ZARCH && TARGET_CPU_Z10)
80 #define TARGET_Z196 \
81        (TARGET_ZARCH && TARGET_CPU_Z196)
82 #define TARGET_ZEC12 \
83        (TARGET_ZARCH && TARGET_CPU_ZEC12)
84 #define TARGET_HTM (TARGET_OPT_HTM)
85 
86 
87 #define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
88 
89 /* Run-time target specification.  */
90 
91 /* Defaults for option flags defined only on some subtargets.  */
92 #ifndef TARGET_TPF_PROFILING
93 #define TARGET_TPF_PROFILING 0
94 #endif
95 
96 /* This will be overridden by OS headers.  */
97 #define TARGET_TPF 0
98 
99 /* Target CPU builtins.  */
100 #define TARGET_CPU_CPP_BUILTINS()					\
101   do									\
102     {									\
103       builtin_assert ("cpu=s390");					\
104       builtin_assert ("machine=s390");					\
105       builtin_define ("__s390__");					\
106       if (TARGET_ZARCH)							\
107 	builtin_define ("__zarch__");					\
108       if (TARGET_64BIT)							\
109         builtin_define ("__s390x__");					\
110       if (TARGET_LONG_DOUBLE_128)					\
111         builtin_define ("__LONG_DOUBLE_128__");				\
112       if (TARGET_HTM)							\
113 	builtin_define ("__HTM__");					\
114     }									\
115   while (0)
116 
117 #ifdef DEFAULT_TARGET_64BIT
118 #define TARGET_DEFAULT             (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP | MASK_OPT_HTM)
119 #else
120 #define TARGET_DEFAULT             0
121 #endif
122 
123 /* Support for configure-time defaults.  */
124 #define OPTION_DEFAULT_SPECS 					\
125   { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" },			\
126   { "arch", "%{!march=*:-march=%(VALUE)}" },			\
127   { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
128 
129 /* Defaulting rules.  */
130 #ifdef DEFAULT_TARGET_64BIT
131 #define DRIVER_SELF_SPECS					\
132   "%{!m31:%{!m64:-m64}}",					\
133   "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}",		\
134   "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
135 #else
136 #define DRIVER_SELF_SPECS					\
137   "%{!m31:%{!m64:-m31}}",					\
138   "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}",		\
139   "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
140 #endif
141 
142 /* Constants needed to control the TEST DATA CLASS (TDC) instruction.  */
143 #define S390_TDC_POSITIVE_ZERO                     (1 << 11)
144 #define S390_TDC_NEGATIVE_ZERO                     (1 << 10)
145 #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER    (1 << 9)
146 #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER    (1 << 8)
147 #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER  (1 << 7)
148 #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER  (1 << 6)
149 #define S390_TDC_POSITIVE_INFINITY                 (1 << 5)
150 #define S390_TDC_NEGATIVE_INFINITY                 (1 << 4)
151 #define S390_TDC_POSITIVE_QUIET_NAN                (1 << 3)
152 #define S390_TDC_NEGATIVE_QUIET_NAN                (1 << 2)
153 #define S390_TDC_POSITIVE_SIGNALING_NAN            (1 << 1)
154 #define S390_TDC_NEGATIVE_SIGNALING_NAN            (1 << 0)
155 
156 /* The following values are different for DFP.  */
157 #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
158 #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
159 #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER   (1 << 7)
160 #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER   (1 << 6)
161 
162 /* For signbit, the BFP-DFP-difference makes no difference. */
163 #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
164                           | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
165                           | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
166                           | S390_TDC_NEGATIVE_INFINITY \
167                           | S390_TDC_NEGATIVE_QUIET_NAN \
168 			  | S390_TDC_NEGATIVE_SIGNALING_NAN )
169 
170 #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
171 			  | S390_TDC_NEGATIVE_INFINITY )
172 
173 /* This is used by float.h to define the float_t and double_t data
174    types.  For historical reasons both are double on s390 what cannot
175    be changed anymore.  */
176 #define TARGET_FLT_EVAL_METHOD 1
177 
178 /* Target machine storage layout.  */
179 
180 /* Everything is big-endian.  */
181 #define BITS_BIG_ENDIAN 1
182 #define BYTES_BIG_ENDIAN 1
183 #define WORDS_BIG_ENDIAN 1
184 
185 #define STACK_SIZE_MODE (Pmode)
186 
187 #ifndef IN_LIBGCC2
188 
189 /* Width of a word, in units (bytes).  */
190   #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
191 
192 /* Width of a pointer.  To be used instead of UNITS_PER_WORD in
193    ABI-relevant contexts.  This always matches
194    GET_MODE_SIZE (Pmode).  */
195   #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
196   #define MIN_UNITS_PER_WORD 4
197   #define MAX_BITS_PER_WORD 64
198 #else
199 
200   /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
201      the library should export TImode functions or not.  Thus, we have
202      to redefine UNITS_PER_WORD depending on __s390x__ for libgcc.  */
203   #ifdef __s390x__
204     #define UNITS_PER_WORD 8
205   #else
206     #define UNITS_PER_WORD 4
207   #endif
208 #endif
209 
210 /* Width of a pointer, in bits.  */
211 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
212 
213 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
214 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
215 
216 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
217 #define STACK_BOUNDARY 64
218 
219 /* Allocation boundary (in *bits*) for the code of a function.  */
220 #define FUNCTION_BOUNDARY 64
221 
222 /* There is no point aligning anything to a rounder boundary than this.  */
223 #define BIGGEST_ALIGNMENT 64
224 
225 /* Alignment of field after `int : 0' in a structure.  */
226 #define EMPTY_FIELD_BOUNDARY 32
227 
228 /* Alignment on even addresses for LARL instruction.  */
229 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
230 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
231 
232 /* Alignment is not required by the hardware.  */
233 #define STRICT_ALIGNMENT 0
234 
235 /* Mode of stack savearea.
236    FUNCTION is VOIDmode because calling convention maintains SP.
237    BLOCK needs Pmode for SP.
238    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
239 #define STACK_SAVEAREA_MODE(LEVEL)      \
240   (LEVEL == SAVE_FUNCTION ? VOIDmode    \
241   : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
242 
243 
244 /* Type layout.  */
245 
246 /* Sizes in bits of the source language data types.  */
247 #define SHORT_TYPE_SIZE 16
248 #define INT_TYPE_SIZE 32
249 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
250 #define LONG_LONG_TYPE_SIZE 64
251 #define FLOAT_TYPE_SIZE 32
252 #define DOUBLE_TYPE_SIZE 64
253 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
254 
255 /* Define this to set long double type size to use in libgcc2.c, which can
256    not depend on target_flags.  */
257 #ifdef __LONG_DOUBLE_128__
258 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
259 #else
260 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
261 #endif
262 
263 /* Work around target_flags dependency in ada/targtyps.c.  */
264 #define WIDEST_HARDWARE_FP_SIZE 64
265 
266 /* We use "unsigned char" as default.  */
267 #define DEFAULT_SIGNED_CHAR 0
268 
269 
270 /* Register usage.  */
271 
272 /* We have 16 general purpose registers (registers 0-15),
273    and 16 floating point registers (registers 16-31).
274    (On non-IEEE machines, we have only 4 fp registers.)
275 
276    Amongst the general purpose registers, some are used
277    for specific purposes:
278    GPR 11: Hard frame pointer (if needed)
279    GPR 12: Global offset table pointer (if needed)
280    GPR 13: Literal pool base register
281    GPR 14: Return address register
282    GPR 15: Stack pointer
283 
284    Registers 32-35 are 'fake' hard registers that do not
285    correspond to actual hardware:
286    Reg 32: Argument pointer
287    Reg 33: Condition code
288    Reg 34: Frame pointer
289    Reg 35: Return address pointer
290 
291    Registers 36 and 37 are mapped to access registers
292    0 and 1, used to implement thread-local storage.  */
293 
294 #define FIRST_PSEUDO_REGISTER 38
295 
296 /* Standard register usage.  */
297 #define GENERAL_REGNO_P(N)	((int)(N) >= 0 && (N) < 16)
298 #define ADDR_REGNO_P(N)		((N) >= 1 && (N) < 16)
299 #define FP_REGNO_P(N)		((N) >= 16 && (N) < 32)
300 #define CC_REGNO_P(N)		((N) == 33)
301 #define FRAME_REGNO_P(N)	((N) == 32 || (N) == 34 || (N) == 35)
302 #define ACCESS_REGNO_P(N)	((N) == 36 || (N) == 37)
303 
304 #define GENERAL_REG_P(X)	(REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
305 #define ADDR_REG_P(X)		(REG_P (X) && ADDR_REGNO_P (REGNO (X)))
306 #define FP_REG_P(X)		(REG_P (X) && FP_REGNO_P (REGNO (X)))
307 #define CC_REG_P(X)		(REG_P (X) && CC_REGNO_P (REGNO (X)))
308 #define FRAME_REG_P(X)		(REG_P (X) && FRAME_REGNO_P (REGNO (X)))
309 #define ACCESS_REG_P(X)		(REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
310 
311 /* Set up fixed registers and calling convention:
312 
313    GPRs 0-5 are always call-clobbered,
314    GPRs 6-15 are always call-saved.
315    GPR 12 is fixed if used as GOT pointer.
316    GPR 13 is always fixed (as literal pool pointer).
317    GPR 14 is always fixed on S/390 machines (as return address).
318    GPR 15 is always fixed (as stack pointer).
319    The 'fake' hard registers are call-clobbered and fixed.
320    The access registers are call-saved and fixed.
321 
322    On 31-bit, FPRs 18-19 are call-clobbered;
323    on 64-bit, FPRs 24-31 are call-clobbered.
324    The remaining FPRs are call-saved.  */
325 
326 #define FIXED_REGISTERS				\
327 { 0, 0, 0, 0, 					\
328   0, 0, 0, 0, 					\
329   0, 0, 0, 0, 					\
330   0, 1, 1, 1,					\
331   0, 0, 0, 0, 					\
332   0, 0, 0, 0, 					\
333   0, 0, 0, 0, 					\
334   0, 0, 0, 0, 					\
335   1, 1, 1, 1,					\
336   1, 1 }
337 
338 #define CALL_USED_REGISTERS			\
339 { 1, 1, 1, 1, 					\
340   1, 1, 0, 0, 					\
341   0, 0, 0, 0, 					\
342   0, 1, 1, 1,					\
343   1, 1, 1, 1, 					\
344   1, 1, 1, 1, 					\
345   1, 1, 1, 1, 					\
346   1, 1, 1, 1, 					\
347   1, 1, 1, 1,					\
348   1, 1 }
349 
350 #define CALL_REALLY_USED_REGISTERS		\
351 { 1, 1, 1, 1, 					\
352   1, 1, 0, 0, 					\
353   0, 0, 0, 0, 					\
354   0, 0, 0, 0,					\
355   1, 1, 1, 1, 					\
356   1, 1, 1, 1, 					\
357   1, 1, 1, 1, 					\
358   1, 1, 1, 1, 					\
359   1, 1, 1, 1,					\
360   0, 0 }
361 
362 /* Preferred register allocation order.  */
363 #define REG_ALLOC_ORDER                                         \
364 {  1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13,            \
365    16, 17, 18, 19, 20, 21, 22, 23,                              \
366    24, 25, 26, 27, 28, 29, 30, 31,                              \
367    15, 32, 33, 34, 35, 36, 37 }
368 
369 
370 /* Fitting values into registers.  */
371 
372 /* Integer modes <= word size fit into any GPR.
373    Integer modes > word size fit into successive GPRs, starting with
374    an even-numbered register.
375    SImode and DImode fit into FPRs as well.
376 
377    Floating point modes <= word size fit into any FPR or GPR.
378    Floating point modes > word size (i.e. DFmode on 32-bit) fit
379    into any FPR, or an even-odd GPR pair.
380    TFmode fits only into an even-odd FPR pair.
381 
382    Complex floating point modes fit either into two FPRs, or into
383    successive GPRs (again starting with an even number).
384    TCmode fits only into two successive even-odd FPR pairs.
385 
386    Condition code modes fit only into the CC register.  */
387 
388 /* Because all registers in a class have the same size HARD_REGNO_NREGS
389    is equivalent to CLASS_MAX_NREGS.  */
390 #define HARD_REGNO_NREGS(REGNO, MODE)                           \
391   s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
392 
393 #define HARD_REGNO_MODE_OK(REGNO, MODE)         \
394   s390_hard_regno_mode_ok ((REGNO), (MODE))
395 
396 #define HARD_REGNO_RENAME_OK(FROM, TO)          \
397   s390_hard_regno_rename_ok (FROM, TO)
398 
399 #define MODES_TIEABLE_P(MODE1, MODE2)		\
400    (((MODE1) == SFmode || (MODE1) == DFmode)	\
401    == ((MODE2) == SFmode || (MODE2) == DFmode))
402 
403 /* When generating code that runs in z/Architecture mode,
404    but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
405    the ABI guarantees only that the lower 4 bytes are
406    saved across calls, however.  */
407 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)		\
408   (!TARGET_64BIT && TARGET_ZARCH				\
409    && GET_MODE_SIZE (MODE) > 4					\
410    && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32))
411 
412 /* Maximum number of registers to represent a value of mode MODE
413    in a register of class CLASS.  */
414 #define CLASS_MAX_NREGS(CLASS, MODE)   					\
415   s390_class_max_nregs ((CLASS), (MODE))
416 
417 /* If a 4-byte value is loaded into a FPR, it is placed into the
418    *upper* half of the register, not the lower.  Therefore, we
419    cannot use SUBREGs to switch between modes in FP registers.
420    Likewise for access registers, since they have only half the
421    word size on 64-bit.  */
422 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		        \
423   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)			        \
424    ? ((reg_classes_intersect_p (FP_REGS, CLASS)				\
425        && (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8))		\
426       || reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
427 
428 /* Register classes.  */
429 
430 /* We use the following register classes:
431    GENERAL_REGS     All general purpose registers
432    ADDR_REGS        All general purpose registers except %r0
433                     (These registers can be used in address generation)
434    FP_REGS          All floating point registers
435    CC_REGS          The condition code register
436    ACCESS_REGS      The access registers
437 
438    GENERAL_FP_REGS  Union of GENERAL_REGS and FP_REGS
439    ADDR_FP_REGS     Union of ADDR_REGS and FP_REGS
440    GENERAL_CC_REGS  Union of GENERAL_REGS and CC_REGS
441    ADDR_CC_REGS     Union of ADDR_REGS and CC_REGS
442 
443    NO_REGS          No registers
444    ALL_REGS         All registers
445 
446    Note that the 'fake' frame pointer and argument pointer registers
447    are included amongst the address registers here.  */
448 
449 enum reg_class
450 {
451   NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
452   ADDR_CC_REGS, GENERAL_CC_REGS,
453   FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
454   ALL_REGS, LIM_REG_CLASSES
455 };
456 #define N_REG_CLASSES (int) LIM_REG_CLASSES
457 
458 #define REG_CLASS_NAMES							\
459 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS",	\
460   "ADDR_CC_REGS", "GENERAL_CC_REGS",					\
461   "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
462 
463 /* Class -> register mapping.  */
464 #define REG_CLASS_CONTENTS \
465 {				       			\
466   { 0x00000000, 0x00000000 },	/* NO_REGS */		\
467   { 0x00000000, 0x00000002 },	/* CC_REGS */		\
468   { 0x0000fffe, 0x0000000d },	/* ADDR_REGS */		\
469   { 0x0000ffff, 0x0000000d },	/* GENERAL_REGS */	\
470   { 0x00000000, 0x00000030 },	/* ACCESS_REGS */	\
471   { 0x0000fffe, 0x0000000f },	/* ADDR_CC_REGS */	\
472   { 0x0000ffff, 0x0000000f },	/* GENERAL_CC_REGS */	\
473   { 0xffff0000, 0x00000000 },	/* FP_REGS */		\
474   { 0xfffffffe, 0x0000000d },	/* ADDR_FP_REGS */	\
475   { 0xffffffff, 0x0000000d },	/* GENERAL_FP_REGS */	\
476   { 0xffffffff, 0x0000003f },	/* ALL_REGS */		\
477 }
478 
479 /* In some case register allocation order is not enough for IRA to
480    generate a good code.  The following macro (if defined) increases
481    cost of REGNO for a pseudo approximately by pseudo usage frequency
482    multiplied by the macro value.
483 
484    We avoid usage of BASE_REGNUM by nonzero macro value because the
485    reload can decide not to use the hard register because some
486    constant was forced to be in memory.  */
487 #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno)	\
488   (regno == BASE_REGNUM ? 0.0 : 0.5)
489 
490 /* Register -> class mapping.  */
491 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
492 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
493 
494 /* ADDR_REGS can be used as base or index register.  */
495 #define INDEX_REG_CLASS ADDR_REGS
496 #define BASE_REG_CLASS ADDR_REGS
497 
498 /* Check whether REGNO is a hard register of the suitable class
499    or a pseudo register currently allocated to one such.  */
500 #define REGNO_OK_FOR_INDEX_P(REGNO)					\
501     (((REGNO) < FIRST_PSEUDO_REGISTER 					\
502       && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) 			\
503      || ADDR_REGNO_P (reg_renumber[REGNO]))
504 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
505 
506 
507 /* We need secondary memory to move data between GPRs and FPRs.  With
508    DFP the ldgr lgdr instructions are available.  But these
509    instructions do not handle GPR pairs so it is not possible for 31
510    bit.  */
511 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
512  ((CLASS1) != (CLASS2)                                \
513   && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS)     \
514   && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8))
515 
516 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
517    because the movsi and movsf patterns don't handle r/f moves.  */
518 #define SECONDARY_MEMORY_NEEDED_MODE(MODE)		\
519  (GET_MODE_BITSIZE (MODE) < 32				\
520   ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)	\
521   : MODE)
522 
523 
524 /* Stack layout and calling conventions.  */
525 
526 /* Our stack grows from higher to lower addresses.  However, local variables
527    are accessed by positive offsets, and function arguments are stored at
528    increasing addresses.  */
529 #define STACK_GROWS_DOWNWARD
530 #define FRAME_GROWS_DOWNWARD 1
531 /* #undef ARGS_GROW_DOWNWARD */
532 
533 /* The basic stack layout looks like this: the stack pointer points
534    to the register save area for called functions.  Above that area
535    is the location to place outgoing arguments.  Above those follow
536    dynamic allocations (alloca), and finally the local variables.  */
537 
538 /* Offset from stack-pointer to first location of outgoing args.  */
539 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
540 
541 /* Offset within stack frame to start allocating local variables at.  */
542 #define STARTING_FRAME_OFFSET 0
543 
544 /* Offset from the stack pointer register to an item dynamically
545    allocated on the stack, e.g., by `alloca'.  */
546 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
547   (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
548 
549 /* Offset of first parameter from the argument pointer register value.
550    We have a fake argument pointer register that points directly to
551    the argument area.  */
552 #define FIRST_PARM_OFFSET(FNDECL) 0
553 
554 /* Defining this macro makes __builtin_frame_address(0) and
555    __builtin_return_address(0) work with -fomit-frame-pointer.  */
556 #define INITIAL_FRAME_ADDRESS_RTX                                             \
557   (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
558 
559 /* The return address of the current frame is retrieved
560    from the initial value of register RETURN_REGNUM.
561    For frames farther back, we use the stack slot where
562    the corresponding RETURN_REGNUM register was saved.  */
563 #define DYNAMIC_CHAIN_ADDRESS(FRAME)                                          \
564   (TARGET_PACKED_STACK ?                                                      \
565    plus_constant (Pmode, (FRAME),					      \
566 		  STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
567 
568 /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
569    builtin_frame_address.  Otherwise arg pointer -
570    STACK_POINTER_OFFSET would be returned for
571    __builtin_frame_address(0) what might result in an address pointing
572    somewhere into the middle of the local variables since the packed
573    stack layout generally does not need all the bytes in the register
574    save area.  */
575 #define FRAME_ADDR_RTX(FRAME)			\
576   DYNAMIC_CHAIN_ADDRESS ((FRAME))
577 
578 #define RETURN_ADDR_RTX(COUNT, FRAME)					      \
579   s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
580 
581 /* In 31-bit mode, we need to mask off the high bit of return addresses.  */
582 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
583 
584 
585 /* Exception handling.  */
586 
587 /* Describe calling conventions for DWARF-2 exception handling.  */
588 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, RETURN_REGNUM)
589 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
590 #define DWARF_FRAME_RETURN_COLUMN  14
591 
592 /* Describe how we implement __builtin_eh_return.  */
593 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
594 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
595 
596 /* Select a format to encode pointers in exception handling data.  */
597 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)			    \
598   (flag_pic								    \
599     ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
600    : DW_EH_PE_absptr)
601 
602 /* Register save slot alignment.  */
603 #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
604 
605 /* Let the assembler generate debug line info.  */
606 #define DWARF2_ASM_LINE_DEBUG_INFO 1
607 
608 
609 /* Frame registers.  */
610 
611 #define STACK_POINTER_REGNUM 15
612 #define FRAME_POINTER_REGNUM 34
613 #define HARD_FRAME_POINTER_REGNUM 11
614 #define ARG_POINTER_REGNUM 32
615 #define RETURN_ADDRESS_POINTER_REGNUM 35
616 
617 /* The static chain must be call-clobbered, but not used for
618    function argument passing.  As register 1 is clobbered by
619    the trampoline code, we only have one option.  */
620 #define STATIC_CHAIN_REGNUM 0
621 
622 /* Number of hardware registers that go into the DWARF-2 unwind info.
623    To avoid ABI incompatibility, this number must not change even as
624    'fake' hard registers are added or removed.  */
625 #define DWARF_FRAME_REGISTERS 34
626 
627 
628 /* Frame pointer and argument pointer elimination.  */
629 
630 #define ELIMINABLE_REGS						\
631 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },		\
632  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },		\
633  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },			\
634  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },		\
635  { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM },	\
636  { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },	\
637  { BASE_REGNUM, BASE_REGNUM }}
638 
639 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
640   (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
641 
642 
643 /* Stack arguments.  */
644 
645 /* We need current_function_outgoing_args to be valid.  */
646 #define ACCUMULATE_OUTGOING_ARGS 1
647 
648 
649 /* Register arguments.  */
650 
651 typedef struct s390_arg_structure
652 {
653   int gprs;			/* gpr so far */
654   int fprs;			/* fpr so far */
655 }
656 CUMULATIVE_ARGS;
657 
658 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
659   ((CUM).gprs=0, (CUM).fprs=0)
660 
661 /* Arguments can be placed in general registers 2 to 6, or in floating
662    point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
663    bit.  */
664 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
665   (N) == 16 || (N) == 17 || (TARGET_64BIT && ((N) == 18 || (N) == 19)))
666 
667 
668 /* Only gpr 2 and fpr 0 are ever used as return registers.  */
669 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
670 
671 
672 /* Function entry and exit.  */
673 
674 /* When returning from a function, the stack pointer does not matter.  */
675 #define EXIT_IGNORE_STACK       1
676 
677 
678 /* Profiling.  */
679 
680 #define FUNCTION_PROFILER(FILE, LABELNO) 			\
681   s390_function_profiler ((FILE), ((LABELNO)))
682 
683 #define PROFILE_BEFORE_PROLOGUE 1
684 
685 
686 /* Trampolines for nested functions.  */
687 
688 #define TRAMPOLINE_SIZE		(TARGET_64BIT ? 32 : 16)
689 #define TRAMPOLINE_ALIGNMENT	BITS_PER_WORD
690 
691 /* Addressing modes, and classification of registers for them.  */
692 
693 /* Recognize any constant value that is a valid address.  */
694 #define CONSTANT_ADDRESS_P(X) 0
695 
696 /* Maximum number of registers that can appear in a valid memory address.  */
697 #define MAX_REGS_PER_ADDRESS 2
698 
699 /* This definition replaces the formerly used 'm' constraint with a
700    different constraint letter in order to avoid changing semantics of
701    the 'm' constraint when accepting new address formats in
702    TARGET_LEGITIMATE_ADDRESS_P.  The constraint letter defined here
703    must not be used in insn definitions or inline assemblies.  */
704 #define TARGET_MEM_CONSTRAINT 'e'
705 
706 /* Try a machine-dependent way of reloading an illegitimate address
707    operand.  If we find one, push the reload and jump to WIN.  This
708    macro is used in only one place: `find_reloads_address' in reload.c.  */
709 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN)	\
710 do {									\
711   rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE));	\
712   if (new_rtx)								\
713     {									\
714       (AD) = new_rtx;							\
715       goto WIN;								\
716     }									\
717 } while (0)
718 
719 /* Helper macro for s390.c and s390.md to check for symbolic constants.  */
720 #define SYMBOLIC_CONST(X)       \
721 (GET_CODE (X) == SYMBOL_REF                                             \
722  || GET_CODE (X) == LABEL_REF                                           \
723  || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
724 
725 #define TLS_SYMBOLIC_CONST(X)	\
726 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X))	\
727  || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
728 
729 
730 /* Condition codes.  */
731 
732 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
733    return the mode to be used for the comparison.  */
734 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
735 
736 /* Relative costs of operations.  */
737 
738 /* A C expression for the cost of a branch instruction.  A value of 1
739    is the default; other values are interpreted relative to that.  */
740 #define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
741 
742 /* Nonzero if access to memory by bytes is slow and undesirable.  */
743 #define SLOW_BYTE_ACCESS 1
744 
745 /* An integer expression for the size in bits of the largest integer machine
746    mode that should actually be used.  We allow pairs of registers.  */
747 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
748 
749 /* The maximum number of bytes that a single instruction can move quickly
750    between memory and registers or between two memory locations.  */
751 #define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
752 #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
753 #define MAX_MOVE_MAX 16
754 
755 /* Determine whether to use move_by_pieces or block move insn.  */
756 #define MOVE_BY_PIECES_P(SIZE, ALIGN)		\
757   ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4	\
758     || (TARGET_ZARCH && (SIZE) == 8) )
759 
760 /* Determine whether to use clear_by_pieces or block clear insn.  */
761 #define CLEAR_BY_PIECES_P(SIZE, ALIGN)		\
762   ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4	\
763     || (TARGET_ZARCH && (SIZE) == 8) )
764 
765 /* This macro is used to determine whether store_by_pieces should be
766    called to "memcpy" storage when the source is a constant string.  */
767 #define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
768 
769 /* Likewise to decide whether to "memset" storage with byte values
770    other than zero.  */
771 #define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P (SIZE, ALIGN)
772 
773 /* Don't perform CSE on function addresses.  */
774 #define NO_FUNCTION_CSE
775 
776 /* This value is used in tree-sra to decide whether it might benefical
777    to split a struct move into several word-size moves.  For S/390
778    only small values make sense here since struct moves are relatively
779    cheap thanks to mvc so the small default value chosen for archs
780    with memmove patterns should be ok.  But this value is multiplied
781    in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
782    here to compensate for that factor since mvc costs exactly the same
783    on 31 and 64 bit.  */
784 #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
785 
786 
787 /* Sections.  */
788 
789 /* Output before read-only data.  */
790 #define TEXT_SECTION_ASM_OP ".text"
791 
792 /* Output before writable (initialized) data.  */
793 #define DATA_SECTION_ASM_OP ".data"
794 
795 /* Output before writable (uninitialized) data.  */
796 #define BSS_SECTION_ASM_OP ".bss"
797 
798 /* S/390 constant pool breaks the devices in crtstuff.c to control section
799    in where code resides.  We have to write it as asm code.  */
800 #ifndef __s390x__
801 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
802     asm (SECTION_OP "\n\
803 	bras\t%r2,1f\n\
804 0:	.long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
805 1:	l\t%r3,0(%r2)\n\
806 	bas\t%r14,0(%r3,%r2)\n\
807 	.previous");
808 #endif
809 
810 
811 /* Position independent code.  */
812 
813 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
814 
815 #define LEGITIMATE_PIC_OPERAND_P(X)  legitimate_pic_operand_p (X)
816 
817 
818 /* Assembler file format.  */
819 
820 /* Character to start a comment.  */
821 #define ASM_COMMENT_START "#"
822 
823 /* Declare an uninitialized external linkage data object.  */
824 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
825   asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
826 
827 /* Globalizing directive for a label.  */
828 #define GLOBAL_ASM_OP ".globl "
829 
830 /* Advance the location counter to a multiple of 2**LOG bytes.  */
831 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
832   if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
833 
834 /* Advance the location counter by SIZE bytes.  */
835 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
836   fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
837 
838 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h.  */
839 #define LOCAL_LABEL_PREFIX "."
840 
841 #define LABEL_ALIGN(LABEL) \
842   s390_label_align (LABEL)
843 
844 /* How to refer to registers in assembler output.  This sequence is
845    indexed by compiler's hard-register-number (see above).  */
846 #define REGISTER_NAMES							\
847 { "%r0",  "%r1",  "%r2",  "%r3",  "%r4",  "%r5",  "%r6",  "%r7",	\
848   "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",	\
849   "%f0",  "%f2",  "%f4",  "%f6",  "%f1",  "%f3",  "%f5",  "%f7",	\
850   "%f8",  "%f10", "%f12", "%f14", "%f9",  "%f11", "%f13", "%f15",	\
851   "%ap",  "%cc",  "%fp",  "%rp",  "%a0",  "%a1"				\
852 }
853 
854 /* Print operand X (an rtx) in assembler syntax to file FILE.  */
855 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
856 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
857 
858 /* Output an element of a case-vector that is absolute.  */
859 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)				\
860 do {									\
861   char buf[32];								\
862   fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE));		\
863   ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));			\
864   assemble_name ((FILE), buf);						\
865   fputc ('\n', (FILE));							\
866 } while (0)
867 
868 /* Output an element of a case-vector that is relative.  */
869 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
870 do {									\
871   char buf[32];								\
872   fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE));		\
873   ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));			\
874   assemble_name ((FILE), buf);						\
875   fputc ('-', (FILE));							\
876   ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL));			\
877   assemble_name ((FILE), buf);						\
878   fputc ('\n', (FILE));							\
879 } while (0)
880 
881 #undef ASM_OUTPUT_FUNCTION_LABEL
882 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
883   s390_asm_output_function_label (FILE, NAME, DECL)
884 
885 /* Miscellaneous parameters.  */
886 
887 /* Specify the machine mode that this machine uses for the index in the
888    tablejump instruction.  */
889 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
890 
891 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
892    is done just by pretending it is already truncated.  */
893 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1
894 
895 /* Specify the machine mode that pointers have.
896    After generation of rtl, the compiler makes no further distinction
897    between pointers and any other objects of this machine mode.  */
898 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
899 
900 /* This is -1 for "pointer mode" extend.  See ptr_extend in s390.md.  */
901 #define POINTERS_EXTEND_UNSIGNED -1
902 
903 /* A function address in a call instruction is a byte address (for
904    indexing purposes) so give the MEM rtx a byte's mode.  */
905 #define FUNCTION_MODE QImode
906 
907 /* Specify the value which is used when clz operand is zero.  */
908 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
909 
910 /* Machine-specific symbol_ref flags.  */
911 #define SYMBOL_FLAG_ALIGN1	          (SYMBOL_FLAG_MACH_DEP << 0)
912 #define SYMBOL_REF_ALIGN1_P(X)		\
913   ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
914 #define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
915 #define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
916   ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
917 
918 /* Check whether integer displacement is in range.  */
919 #define DISP_IN_RANGE(d) \
920   (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
921                            : ((d) >= 0 && (d) <= 4095))
922 
923 /* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c.  */
924 #define READ_CAN_USE_WRITE_PREFETCH 1
925 
926 extern const int processor_flags_table[];
927 #endif
928