1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2    Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "except.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "optabs.h"
34 #include "libfuncs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40 #include "target.h"
41 #include "common/common-target.h"
42 #include "output.h"
43 
44 static rtx break_out_memory_refs (rtx);
45 
46 
47 /* Truncate and perhaps sign-extend C as appropriate for MODE.  */
48 
49 HOST_WIDE_INT
trunc_int_for_mode(HOST_WIDE_INT c,enum machine_mode mode)50 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
51 {
52   int width = GET_MODE_PRECISION (mode);
53 
54   /* You want to truncate to a _what_?  */
55   gcc_assert (SCALAR_INT_MODE_P (mode));
56 
57   /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
58   if (mode == BImode)
59     return c & 1 ? STORE_FLAG_VALUE : 0;
60 
61   /* Sign-extend for the requested mode.  */
62 
63   if (width < HOST_BITS_PER_WIDE_INT)
64     {
65       HOST_WIDE_INT sign = 1;
66       sign <<= width - 1;
67       c &= (sign << 1) - 1;
68       c ^= sign;
69       c -= sign;
70     }
71 
72   return c;
73 }
74 
75 /* Return an rtx for the sum of X and the integer C, given that X has
76    mode MODE.  */
77 
78 rtx
plus_constant(enum machine_mode mode,rtx x,HOST_WIDE_INT c)79 plus_constant (enum machine_mode mode, rtx x, HOST_WIDE_INT c)
80 {
81   RTX_CODE code;
82   rtx y;
83   rtx tem;
84   int all_constant = 0;
85 
86   gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
87 
88   if (c == 0)
89     return x;
90 
91  restart:
92 
93   code = GET_CODE (x);
94   y = x;
95 
96   switch (code)
97     {
98     case CONST_INT:
99       if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
100 	{
101 	  double_int di_x = double_int::from_shwi (INTVAL (x));
102 	  double_int di_c = double_int::from_shwi (c);
103 
104 	  bool overflow;
105 	  double_int v = di_x.add_with_sign (di_c, false, &overflow);
106 	  if (overflow)
107 	    gcc_unreachable ();
108 
109 	  return immed_double_int_const (v, mode);
110 	}
111 
112       return gen_int_mode (INTVAL (x) + c, mode);
113 
114     case CONST_DOUBLE:
115       {
116 	double_int di_x = double_int::from_pair (CONST_DOUBLE_HIGH (x),
117 						 CONST_DOUBLE_LOW (x));
118 	double_int di_c = double_int::from_shwi (c);
119 
120 	bool overflow;
121 	double_int v = di_x.add_with_sign (di_c, false, &overflow);
122 	if (overflow)
123 	  /* Sorry, we have no way to represent overflows this wide.
124 	     To fix, add constant support wider than CONST_DOUBLE.  */
125 	  gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
126 
127 	return immed_double_int_const (v, mode);
128       }
129 
130     case MEM:
131       /* If this is a reference to the constant pool, try replacing it with
132 	 a reference to a new constant.  If the resulting address isn't
133 	 valid, don't return it because we have no way to validize it.  */
134       if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
135 	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
136 	{
137 	  tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
138 	  tem = force_const_mem (GET_MODE (x), tem);
139 	  if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
140 	    return tem;
141 	}
142       break;
143 
144     case CONST:
145       /* If adding to something entirely constant, set a flag
146 	 so that we can add a CONST around the result.  */
147       x = XEXP (x, 0);
148       all_constant = 1;
149       goto restart;
150 
151     case SYMBOL_REF:
152     case LABEL_REF:
153       all_constant = 1;
154       break;
155 
156     case PLUS:
157       /* The interesting case is adding the integer to a sum.  Look
158 	 for constant term in the sum and combine with C.  For an
159 	 integer constant term or a constant term that is not an
160 	 explicit integer, we combine or group them together anyway.
161 
162 	 We may not immediately return from the recursive call here, lest
163 	 all_constant gets lost.  */
164 
165       if (CONSTANT_P (XEXP (x, 1)))
166 	{
167 	  x = gen_rtx_PLUS (mode, XEXP (x, 0),
168 			    plus_constant (mode, XEXP (x, 1), c));
169 	  c = 0;
170 	}
171       else if (find_constant_term_loc (&y))
172 	{
173 	  /* We need to be careful since X may be shared and we can't
174 	     modify it in place.  */
175 	  rtx copy = copy_rtx (x);
176 	  rtx *const_loc = find_constant_term_loc (&copy);
177 
178 	  *const_loc = plus_constant (mode, *const_loc, c);
179 	  x = copy;
180 	  c = 0;
181 	}
182       break;
183 
184     default:
185       break;
186     }
187 
188   if (c != 0)
189     x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190 
191   if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192     return x;
193   else if (all_constant)
194     return gen_rtx_CONST (mode, x);
195   else
196     return x;
197 }
198 
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200    Add all the removed constant terms into *CONSTPTR.
201    X itself is not altered.  The result != X if and only if
202    it is not isomorphic to X.  */
203 
204 rtx
eliminate_constant_term(rtx x,rtx * constptr)205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207   rtx x0, x1;
208   rtx tem;
209 
210   if (GET_CODE (x) != PLUS)
211     return x;
212 
213   /* First handle constants appearing at this level explicitly.  */
214   if (CONST_INT_P (XEXP (x, 1))
215       && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 						XEXP (x, 1)))
217       && CONST_INT_P (tem))
218     {
219       *constptr = tem;
220       return eliminate_constant_term (XEXP (x, 0), constptr);
221     }
222 
223   tem = const0_rtx;
224   x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225   x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226   if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227       && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 						*constptr, tem))
229       && CONST_INT_P (tem))
230     {
231       *constptr = tem;
232       return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233     }
234 
235   return x;
236 }
237 
238 /* Return an rtx for the size in bytes of the value of EXP.  */
239 
240 rtx
expr_size(tree exp)241 expr_size (tree exp)
242 {
243   tree size;
244 
245   if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246     size = TREE_OPERAND (exp, 1);
247   else
248     {
249       size = tree_expr_size (exp);
250       gcc_assert (size);
251       gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
252     }
253 
254   return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
255 }
256 
257 /* Return a wide integer for the size in bytes of the value of EXP, or -1
258    if the size can vary or is larger than an integer.  */
259 
260 HOST_WIDE_INT
int_expr_size(tree exp)261 int_expr_size (tree exp)
262 {
263   tree size;
264 
265   if (TREE_CODE (exp) == WITH_SIZE_EXPR)
266     size = TREE_OPERAND (exp, 1);
267   else
268     {
269       size = tree_expr_size (exp);
270       gcc_assert (size);
271     }
272 
273   if (size == 0 || !host_integerp (size, 0))
274     return -1;
275 
276   return tree_low_cst (size, 0);
277 }
278 
279 /* Return a copy of X in which all memory references
280    and all constants that involve symbol refs
281    have been replaced with new temporary registers.
282    Also emit code to load the memory locations and constants
283    into those registers.
284 
285    If X contains no such constants or memory references,
286    X itself (not a copy) is returned.
287 
288    If a constant is found in the address that is not a legitimate constant
289    in an insn, it is left alone in the hope that it might be valid in the
290    address.
291 
292    X may contain no arithmetic except addition, subtraction and multiplication.
293    Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
294 
295 static rtx
break_out_memory_refs(rtx x)296 break_out_memory_refs (rtx x)
297 {
298   if (MEM_P (x)
299       || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
300 	  && GET_MODE (x) != VOIDmode))
301     x = force_reg (GET_MODE (x), x);
302   else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
303 	   || GET_CODE (x) == MULT)
304     {
305       rtx op0 = break_out_memory_refs (XEXP (x, 0));
306       rtx op1 = break_out_memory_refs (XEXP (x, 1));
307 
308       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
309 	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
310     }
311 
312   return x;
313 }
314 
315 /* Given X, a memory address in address space AS' pointer mode, convert it to
316    an address in the address space's address mode, or vice versa (TO_MODE says
317    which way).  We take advantage of the fact that pointers are not allowed to
318    overflow by commuting arithmetic operations over conversions so that address
319    arithmetic insns can be used.  */
320 
321 rtx
convert_memory_address_addr_space(enum machine_mode to_mode ATTRIBUTE_UNUSED,rtx x,addr_space_t as ATTRIBUTE_UNUSED)322 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
323 				   rtx x, addr_space_t as ATTRIBUTE_UNUSED)
324 {
325 #ifndef POINTERS_EXTEND_UNSIGNED
326   gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
327   return x;
328 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
329   enum machine_mode pointer_mode, address_mode, from_mode;
330   rtx temp;
331   enum rtx_code code;
332 
333   /* If X already has the right mode, just return it.  */
334   if (GET_MODE (x) == to_mode)
335     return x;
336 
337   pointer_mode = targetm.addr_space.pointer_mode (as);
338   address_mode = targetm.addr_space.address_mode (as);
339   from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
340 
341   /* Here we handle some special cases.  If none of them apply, fall through
342      to the default case.  */
343   switch (GET_CODE (x))
344     {
345     CASE_CONST_SCALAR_INT:
346       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
347 	code = TRUNCATE;
348       else if (POINTERS_EXTEND_UNSIGNED < 0)
349 	break;
350       else if (POINTERS_EXTEND_UNSIGNED > 0)
351 	code = ZERO_EXTEND;
352       else
353 	code = SIGN_EXTEND;
354       temp = simplify_unary_operation (code, to_mode, x, from_mode);
355       if (temp)
356 	return temp;
357       break;
358 
359     case SUBREG:
360       if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
361 	  && GET_MODE (SUBREG_REG (x)) == to_mode)
362 	return SUBREG_REG (x);
363       break;
364 
365     case LABEL_REF:
366       temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
367       LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
368       return temp;
369       break;
370 
371     case SYMBOL_REF:
372       temp = shallow_copy_rtx (x);
373       PUT_MODE (temp, to_mode);
374       return temp;
375       break;
376 
377     case CONST:
378       return gen_rtx_CONST (to_mode,
379 			    convert_memory_address_addr_space
380 			      (to_mode, XEXP (x, 0), as));
381       break;
382 
383     case PLUS:
384     case MULT:
385       /* FIXME: For addition, we used to permute the conversion and
386 	 addition operation only if one operand is a constant and
387 	 converting the constant does not change it or if one operand
388 	 is a constant and we are using a ptr_extend instruction
389 	 (POINTERS_EXTEND_UNSIGNED < 0) even if the resulting address
390 	 may overflow/underflow.  We relax the condition to include
391 	 zero-extend (POINTERS_EXTEND_UNSIGNED > 0) since the other
392 	 parts of the compiler depend on it.  See PR 49721.
393 
394 	 We can always safely permute them if we are making the address
395 	 narrower.  */
396       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
397 	  || (GET_CODE (x) == PLUS
398 	      && CONST_INT_P (XEXP (x, 1))
399 	      && (POINTERS_EXTEND_UNSIGNED != 0
400 		  || XEXP (x, 1) == convert_memory_address_addr_space
401 		  			(to_mode, XEXP (x, 1), as))))
402 	return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
403 			       convert_memory_address_addr_space
404 				 (to_mode, XEXP (x, 0), as),
405 			       XEXP (x, 1));
406       break;
407 
408     default:
409       break;
410     }
411 
412   return convert_modes (to_mode, from_mode,
413 			x, POINTERS_EXTEND_UNSIGNED);
414 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
415 }
416 
417 /* Return something equivalent to X but valid as a memory address for something
418    of mode MODE in the named address space AS.  When X is not itself valid,
419    this works by copying X or subexpressions of it into registers.  */
420 
421 rtx
memory_address_addr_space(enum machine_mode mode,rtx x,addr_space_t as)422 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
423 {
424   rtx oldx = x;
425   enum machine_mode address_mode = targetm.addr_space.address_mode (as);
426 
427   x = convert_memory_address_addr_space (address_mode, x, as);
428 
429   /* By passing constant addresses through registers
430      we get a chance to cse them.  */
431   if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
432     x = force_reg (address_mode, x);
433 
434   /* We get better cse by rejecting indirect addressing at this stage.
435      Let the combiner create indirect addresses where appropriate.
436      For now, generate the code so that the subexpressions useful to share
437      are visible.  But not if cse won't be done!  */
438   else
439     {
440       if (! cse_not_expected && !REG_P (x))
441 	x = break_out_memory_refs (x);
442 
443       /* At this point, any valid address is accepted.  */
444       if (memory_address_addr_space_p (mode, x, as))
445 	goto done;
446 
447       /* If it was valid before but breaking out memory refs invalidated it,
448 	 use it the old way.  */
449       if (memory_address_addr_space_p (mode, oldx, as))
450 	{
451 	  x = oldx;
452 	  goto done;
453 	}
454 
455       /* Perform machine-dependent transformations on X
456 	 in certain cases.  This is not necessary since the code
457 	 below can handle all possible cases, but machine-dependent
458 	 transformations can make better code.  */
459       {
460 	rtx orig_x = x;
461 	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
462 	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
463 	  goto done;
464       }
465 
466       /* PLUS and MULT can appear in special ways
467 	 as the result of attempts to make an address usable for indexing.
468 	 Usually they are dealt with by calling force_operand, below.
469 	 But a sum containing constant terms is special
470 	 if removing them makes the sum a valid address:
471 	 then we generate that address in a register
472 	 and index off of it.  We do this because it often makes
473 	 shorter code, and because the addresses thus generated
474 	 in registers often become common subexpressions.  */
475       if (GET_CODE (x) == PLUS)
476 	{
477 	  rtx constant_term = const0_rtx;
478 	  rtx y = eliminate_constant_term (x, &constant_term);
479 	  if (constant_term == const0_rtx
480 	      || ! memory_address_addr_space_p (mode, y, as))
481 	    x = force_operand (x, NULL_RTX);
482 	  else
483 	    {
484 	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
485 	      if (! memory_address_addr_space_p (mode, y, as))
486 		x = force_operand (x, NULL_RTX);
487 	      else
488 		x = y;
489 	    }
490 	}
491 
492       else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
493 	x = force_operand (x, NULL_RTX);
494 
495       /* If we have a register that's an invalid address,
496 	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
497       else if (REG_P (x))
498 	x = copy_to_reg (x);
499 
500       /* Last resort: copy the value to a register, since
501 	 the register is a valid address.  */
502       else
503 	x = force_reg (address_mode, x);
504     }
505 
506  done:
507 
508   gcc_assert (memory_address_addr_space_p (mode, x, as));
509   /* If we didn't change the address, we are done.  Otherwise, mark
510      a reg as a pointer if we have REG or REG + CONST_INT.  */
511   if (oldx == x)
512     return x;
513   else if (REG_P (x))
514     mark_reg_pointer (x, BITS_PER_UNIT);
515   else if (GET_CODE (x) == PLUS
516 	   && REG_P (XEXP (x, 0))
517 	   && CONST_INT_P (XEXP (x, 1)))
518     mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
519 
520   /* OLDX may have been the address on a temporary.  Update the address
521      to indicate that X is now used.  */
522   update_temp_slot_address (oldx, x);
523 
524   return x;
525 }
526 
527 /* Convert a mem ref into one with a valid memory address.
528    Pass through anything else unchanged.  */
529 
530 rtx
validize_mem(rtx ref)531 validize_mem (rtx ref)
532 {
533   if (!MEM_P (ref))
534     return ref;
535   ref = use_anchored_address (ref);
536   if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
537 				   MEM_ADDR_SPACE (ref)))
538     return ref;
539 
540   /* Don't alter REF itself, since that is probably a stack slot.  */
541   return replace_equiv_address (ref, XEXP (ref, 0));
542 }
543 
544 /* If X is a memory reference to a member of an object block, try rewriting
545    it to use an anchor instead.  Return the new memory reference on success
546    and the old one on failure.  */
547 
548 rtx
use_anchored_address(rtx x)549 use_anchored_address (rtx x)
550 {
551   rtx base;
552   HOST_WIDE_INT offset;
553   enum machine_mode mode;
554 
555   if (!flag_section_anchors)
556     return x;
557 
558   if (!MEM_P (x))
559     return x;
560 
561   /* Split the address into a base and offset.  */
562   base = XEXP (x, 0);
563   offset = 0;
564   if (GET_CODE (base) == CONST
565       && GET_CODE (XEXP (base, 0)) == PLUS
566       && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
567     {
568       offset += INTVAL (XEXP (XEXP (base, 0), 1));
569       base = XEXP (XEXP (base, 0), 0);
570     }
571 
572   /* Check whether BASE is suitable for anchors.  */
573   if (GET_CODE (base) != SYMBOL_REF
574       || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
575       || SYMBOL_REF_ANCHOR_P (base)
576       || SYMBOL_REF_BLOCK (base) == NULL
577       || !targetm.use_anchors_for_symbol_p (base))
578     return x;
579 
580   /* Decide where BASE is going to be.  */
581   place_block_symbol (base);
582 
583   /* Get the anchor we need to use.  */
584   offset += SYMBOL_REF_BLOCK_OFFSET (base);
585   base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
586 			     SYMBOL_REF_TLS_MODEL (base));
587 
588   /* Work out the offset from the anchor.  */
589   offset -= SYMBOL_REF_BLOCK_OFFSET (base);
590 
591   /* If we're going to run a CSE pass, force the anchor into a register.
592      We will then be able to reuse registers for several accesses, if the
593      target costs say that that's worthwhile.  */
594   mode = GET_MODE (base);
595   if (!cse_not_expected)
596     base = force_reg (mode, base);
597 
598   return replace_equiv_address (x, plus_constant (mode, base, offset));
599 }
600 
601 /* Copy the value or contents of X to a new temp reg and return that reg.  */
602 
603 rtx
copy_to_reg(rtx x)604 copy_to_reg (rtx x)
605 {
606   rtx temp = gen_reg_rtx (GET_MODE (x));
607 
608   /* If not an operand, must be an address with PLUS and MULT so
609      do the computation.  */
610   if (! general_operand (x, VOIDmode))
611     x = force_operand (x, temp);
612 
613   if (x != temp)
614     emit_move_insn (temp, x);
615 
616   return temp;
617 }
618 
619 /* Like copy_to_reg but always give the new register mode Pmode
620    in case X is a constant.  */
621 
622 rtx
copy_addr_to_reg(rtx x)623 copy_addr_to_reg (rtx x)
624 {
625   return copy_to_mode_reg (Pmode, x);
626 }
627 
628 /* Like copy_to_reg but always give the new register mode MODE
629    in case X is a constant.  */
630 
631 rtx
copy_to_mode_reg(enum machine_mode mode,rtx x)632 copy_to_mode_reg (enum machine_mode mode, rtx x)
633 {
634   rtx temp = gen_reg_rtx (mode);
635 
636   /* If not an operand, must be an address with PLUS and MULT so
637      do the computation.  */
638   if (! general_operand (x, VOIDmode))
639     x = force_operand (x, temp);
640 
641   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
642   if (x != temp)
643     emit_move_insn (temp, x);
644   return temp;
645 }
646 
647 /* Load X into a register if it is not already one.
648    Use mode MODE for the register.
649    X should be valid for mode MODE, but it may be a constant which
650    is valid for all integer modes; that's why caller must specify MODE.
651 
652    The caller must not alter the value in the register we return,
653    since we mark it as a "constant" register.  */
654 
655 rtx
force_reg(enum machine_mode mode,rtx x)656 force_reg (enum machine_mode mode, rtx x)
657 {
658   rtx temp, insn, set;
659 
660   if (REG_P (x))
661     return x;
662 
663   if (general_operand (x, mode))
664     {
665       temp = gen_reg_rtx (mode);
666       insn = emit_move_insn (temp, x);
667     }
668   else
669     {
670       temp = force_operand (x, NULL_RTX);
671       if (REG_P (temp))
672 	insn = get_last_insn ();
673       else
674 	{
675 	  rtx temp2 = gen_reg_rtx (mode);
676 	  insn = emit_move_insn (temp2, temp);
677 	  temp = temp2;
678 	}
679     }
680 
681   /* Let optimizers know that TEMP's value never changes
682      and that X can be substituted for it.  Don't get confused
683      if INSN set something else (such as a SUBREG of TEMP).  */
684   if (CONSTANT_P (x)
685       && (set = single_set (insn)) != 0
686       && SET_DEST (set) == temp
687       && ! rtx_equal_p (x, SET_SRC (set)))
688     set_unique_reg_note (insn, REG_EQUAL, x);
689 
690   /* Let optimizers know that TEMP is a pointer, and if so, the
691      known alignment of that pointer.  */
692   {
693     unsigned align = 0;
694     if (GET_CODE (x) == SYMBOL_REF)
695       {
696         align = BITS_PER_UNIT;
697 	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
698 	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
699       }
700     else if (GET_CODE (x) == LABEL_REF)
701       align = BITS_PER_UNIT;
702     else if (GET_CODE (x) == CONST
703 	     && GET_CODE (XEXP (x, 0)) == PLUS
704 	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
705 	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
706       {
707 	rtx s = XEXP (XEXP (x, 0), 0);
708 	rtx c = XEXP (XEXP (x, 0), 1);
709 	unsigned sa, ca;
710 
711 	sa = BITS_PER_UNIT;
712 	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
713 	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
714 
715 	if (INTVAL (c) == 0)
716 	  align = sa;
717 	else
718 	  {
719 	    ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
720 	    align = MIN (sa, ca);
721 	  }
722       }
723 
724     if (align || (MEM_P (x) && MEM_POINTER (x)))
725       mark_reg_pointer (temp, align);
726   }
727 
728   return temp;
729 }
730 
731 /* If X is a memory ref, copy its contents to a new temp reg and return
732    that reg.  Otherwise, return X.  */
733 
734 rtx
force_not_mem(rtx x)735 force_not_mem (rtx x)
736 {
737   rtx temp;
738 
739   if (!MEM_P (x) || GET_MODE (x) == BLKmode)
740     return x;
741 
742   temp = gen_reg_rtx (GET_MODE (x));
743 
744   if (MEM_POINTER (x))
745     REG_POINTER (temp) = 1;
746 
747   emit_move_insn (temp, x);
748   return temp;
749 }
750 
751 /* Copy X to TARGET (if it's nonzero and a reg)
752    or to a new temp reg and return that reg.
753    MODE is the mode to use for X in case it is a constant.  */
754 
755 rtx
copy_to_suggested_reg(rtx x,rtx target,enum machine_mode mode)756 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
757 {
758   rtx temp;
759 
760   if (target && REG_P (target))
761     temp = target;
762   else
763     temp = gen_reg_rtx (mode);
764 
765   emit_move_insn (temp, x);
766   return temp;
767 }
768 
769 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
770    PUNSIGNEDP points to the signedness of the type and may be adjusted
771    to show what signedness to use on extension operations.
772 
773    FOR_RETURN is nonzero if the caller is promoting the return value
774    of FNDECL, else it is for promoting args.  */
775 
776 enum machine_mode
promote_function_mode(const_tree type,enum machine_mode mode,int * punsignedp,const_tree funtype,int for_return)777 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
778 		       const_tree funtype, int for_return)
779 {
780   /* Called without a type node for a libcall.  */
781   if (type == NULL_TREE)
782     {
783       if (INTEGRAL_MODE_P (mode))
784 	return targetm.calls.promote_function_mode (NULL_TREE, mode,
785 						    punsignedp, funtype,
786 						    for_return);
787       else
788 	return mode;
789     }
790 
791   switch (TREE_CODE (type))
792     {
793     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
794     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
795     case POINTER_TYPE:   case REFERENCE_TYPE:
796       return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
797 						  for_return);
798 
799     default:
800       return mode;
801     }
802 }
803 /* Return the mode to use to store a scalar of TYPE and MODE.
804    PUNSIGNEDP points to the signedness of the type and may be adjusted
805    to show what signedness to use on extension operations.  */
806 
807 enum machine_mode
promote_mode(const_tree type ATTRIBUTE_UNUSED,enum machine_mode mode,int * punsignedp ATTRIBUTE_UNUSED)808 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
809 	      int *punsignedp ATTRIBUTE_UNUSED)
810 {
811 #ifdef PROMOTE_MODE
812   enum tree_code code;
813   int unsignedp;
814 #endif
815 
816   /* For libcalls this is invoked without TYPE from the backends
817      TARGET_PROMOTE_FUNCTION_MODE hooks.  Don't do anything in that
818      case.  */
819   if (type == NULL_TREE)
820     return mode;
821 
822   /* FIXME: this is the same logic that was there until GCC 4.4, but we
823      probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
824      is not defined.  The affected targets are M32C, S390, SPARC.  */
825 #ifdef PROMOTE_MODE
826   code = TREE_CODE (type);
827   unsignedp = *punsignedp;
828 
829   switch (code)
830     {
831     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
832     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
833       PROMOTE_MODE (mode, unsignedp, type);
834       *punsignedp = unsignedp;
835       return mode;
836       break;
837 
838 #ifdef POINTERS_EXTEND_UNSIGNED
839     case REFERENCE_TYPE:
840     case POINTER_TYPE:
841       *punsignedp = POINTERS_EXTEND_UNSIGNED;
842       return targetm.addr_space.address_mode
843 	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
844       break;
845 #endif
846 
847     default:
848       return mode;
849     }
850 #else
851   return mode;
852 #endif
853 }
854 
855 
856 /* Use one of promote_mode or promote_function_mode to find the promoted
857    mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
858    of DECL after promotion.  */
859 
860 enum machine_mode
promote_decl_mode(const_tree decl,int * punsignedp)861 promote_decl_mode (const_tree decl, int *punsignedp)
862 {
863   tree type = TREE_TYPE (decl);
864   int unsignedp = TYPE_UNSIGNED (type);
865   enum machine_mode mode = DECL_MODE (decl);
866   enum machine_mode pmode;
867 
868   if (TREE_CODE (decl) == RESULT_DECL
869       || TREE_CODE (decl) == PARM_DECL)
870     pmode = promote_function_mode (type, mode, &unsignedp,
871                                    TREE_TYPE (current_function_decl), 2);
872   else
873     pmode = promote_mode (type, mode, &unsignedp);
874 
875   if (punsignedp)
876     *punsignedp = unsignedp;
877   return pmode;
878 }
879 
880 
881 /* Controls the behaviour of {anti_,}adjust_stack.  */
882 static bool suppress_reg_args_size;
883 
884 /* A helper for adjust_stack and anti_adjust_stack.  */
885 
886 static void
adjust_stack_1(rtx adjust,bool anti_p)887 adjust_stack_1 (rtx adjust, bool anti_p)
888 {
889   rtx temp, insn;
890 
891 #ifndef STACK_GROWS_DOWNWARD
892   /* Hereafter anti_p means subtract_p.  */
893   anti_p = !anti_p;
894 #endif
895 
896   temp = expand_binop (Pmode,
897 		       anti_p ? sub_optab : add_optab,
898 		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
899 		       OPTAB_LIB_WIDEN);
900 
901   if (temp != stack_pointer_rtx)
902     insn = emit_move_insn (stack_pointer_rtx, temp);
903   else
904     {
905       insn = get_last_insn ();
906       temp = single_set (insn);
907       gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
908     }
909 
910   if (!suppress_reg_args_size)
911     add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
912 }
913 
914 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
915    This pops when ADJUST is positive.  ADJUST need not be constant.  */
916 
917 void
adjust_stack(rtx adjust)918 adjust_stack (rtx adjust)
919 {
920   if (adjust == const0_rtx)
921     return;
922 
923   /* We expect all variable sized adjustments to be multiple of
924      PREFERRED_STACK_BOUNDARY.  */
925   if (CONST_INT_P (adjust))
926     stack_pointer_delta -= INTVAL (adjust);
927 
928   adjust_stack_1 (adjust, false);
929 }
930 
931 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
932    This pushes when ADJUST is positive.  ADJUST need not be constant.  */
933 
934 void
anti_adjust_stack(rtx adjust)935 anti_adjust_stack (rtx adjust)
936 {
937   if (adjust == const0_rtx)
938     return;
939 
940   /* We expect all variable sized adjustments to be multiple of
941      PREFERRED_STACK_BOUNDARY.  */
942   if (CONST_INT_P (adjust))
943     stack_pointer_delta += INTVAL (adjust);
944 
945   adjust_stack_1 (adjust, true);
946 }
947 
948 /* Round the size of a block to be pushed up to the boundary required
949    by this machine.  SIZE is the desired size, which need not be constant.  */
950 
951 static rtx
round_push(rtx size)952 round_push (rtx size)
953 {
954   rtx align_rtx, alignm1_rtx;
955 
956   if (!SUPPORTS_STACK_ALIGNMENT
957       || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
958     {
959       int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
960 
961       if (align == 1)
962 	return size;
963 
964       if (CONST_INT_P (size))
965 	{
966 	  HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
967 
968 	  if (INTVAL (size) != new_size)
969 	    size = GEN_INT (new_size);
970 	  return size;
971 	}
972 
973       align_rtx = GEN_INT (align);
974       alignm1_rtx = GEN_INT (align - 1);
975     }
976   else
977     {
978       /* If crtl->preferred_stack_boundary might still grow, use
979 	 virtual_preferred_stack_boundary_rtx instead.  This will be
980 	 substituted by the right value in vregs pass and optimized
981 	 during combine.  */
982       align_rtx = virtual_preferred_stack_boundary_rtx;
983       alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
984 				   NULL_RTX);
985     }
986 
987   /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
988      but we know it can't.  So add ourselves and then do
989      TRUNC_DIV_EXPR.  */
990   size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
991 		       NULL_RTX, 1, OPTAB_LIB_WIDEN);
992   size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
993 			NULL_RTX, 1);
994   size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
995 
996   return size;
997 }
998 
999 /* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
1000    to a previously-created save area.  If no save area has been allocated,
1001    this function will allocate one.  If a save area is specified, it
1002    must be of the proper mode.  */
1003 
1004 void
emit_stack_save(enum save_level save_level,rtx * psave)1005 emit_stack_save (enum save_level save_level, rtx *psave)
1006 {
1007   rtx sa = *psave;
1008   /* The default is that we use a move insn and save in a Pmode object.  */
1009   rtx (*fcn) (rtx, rtx) = gen_move_insn;
1010   enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1011 
1012   /* See if this machine has anything special to do for this kind of save.  */
1013   switch (save_level)
1014     {
1015 #ifdef HAVE_save_stack_block
1016     case SAVE_BLOCK:
1017       if (HAVE_save_stack_block)
1018 	fcn = gen_save_stack_block;
1019       break;
1020 #endif
1021 #ifdef HAVE_save_stack_function
1022     case SAVE_FUNCTION:
1023       if (HAVE_save_stack_function)
1024 	fcn = gen_save_stack_function;
1025       break;
1026 #endif
1027 #ifdef HAVE_save_stack_nonlocal
1028     case SAVE_NONLOCAL:
1029       if (HAVE_save_stack_nonlocal)
1030 	fcn = gen_save_stack_nonlocal;
1031       break;
1032 #endif
1033     default:
1034       break;
1035     }
1036 
1037   /* If there is no save area and we have to allocate one, do so.  Otherwise
1038      verify the save area is the proper mode.  */
1039 
1040   if (sa == 0)
1041     {
1042       if (mode != VOIDmode)
1043 	{
1044 	  if (save_level == SAVE_NONLOCAL)
1045 	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1046 	  else
1047 	    *psave = sa = gen_reg_rtx (mode);
1048 	}
1049     }
1050 
1051   do_pending_stack_adjust ();
1052   if (sa != 0)
1053     sa = validize_mem (sa);
1054   emit_insn (fcn (sa, stack_pointer_rtx));
1055 }
1056 
1057 /* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
1058    area made by emit_stack_save.  If it is zero, we have nothing to do.  */
1059 
1060 void
emit_stack_restore(enum save_level save_level,rtx sa)1061 emit_stack_restore (enum save_level save_level, rtx sa)
1062 {
1063   /* The default is that we use a move insn.  */
1064   rtx (*fcn) (rtx, rtx) = gen_move_insn;
1065 
1066   /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1067      STACK_POINTER and HARD_FRAME_POINTER.
1068      If stack_realign_fp, the x86 backend emits a prologue that aligns only
1069      STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1070      aligned variables, which is reflected in ix86_can_eliminate.
1071      We normally still have the realigned STACK_POINTER that we can use.
1072      But if there is a stack restore still present at reload, it can trigger
1073      mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1074      FRAME_POINTER into a hard reg.
1075      To prevent this situation, we force need_drap if we emit a stack
1076      restore.  */
1077   if (SUPPORTS_STACK_ALIGNMENT)
1078     crtl->need_drap = true;
1079 
1080   /* See if this machine has anything special to do for this kind of save.  */
1081   switch (save_level)
1082     {
1083 #ifdef HAVE_restore_stack_block
1084     case SAVE_BLOCK:
1085       if (HAVE_restore_stack_block)
1086 	fcn = gen_restore_stack_block;
1087       break;
1088 #endif
1089 #ifdef HAVE_restore_stack_function
1090     case SAVE_FUNCTION:
1091       if (HAVE_restore_stack_function)
1092 	fcn = gen_restore_stack_function;
1093       break;
1094 #endif
1095 #ifdef HAVE_restore_stack_nonlocal
1096     case SAVE_NONLOCAL:
1097       if (HAVE_restore_stack_nonlocal)
1098 	fcn = gen_restore_stack_nonlocal;
1099       break;
1100 #endif
1101     default:
1102       break;
1103     }
1104 
1105   if (sa != 0)
1106     {
1107       sa = validize_mem (sa);
1108       /* These clobbers prevent the scheduler from moving
1109 	 references to variable arrays below the code
1110 	 that deletes (pops) the arrays.  */
1111       emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1112       emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1113     }
1114 
1115   discard_pending_stack_adjust ();
1116 
1117   emit_insn (fcn (stack_pointer_rtx, sa));
1118 }
1119 
1120 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1121    function.  This function should be called whenever we allocate or
1122    deallocate dynamic stack space.  */
1123 
1124 void
update_nonlocal_goto_save_area(void)1125 update_nonlocal_goto_save_area (void)
1126 {
1127   tree t_save;
1128   rtx r_save;
1129 
1130   /* The nonlocal_goto_save_area object is an array of N pointers.  The
1131      first one is used for the frame pointer save; the rest are sized by
1132      STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1133      of the stack save area slots.  */
1134   t_save = build4 (ARRAY_REF,
1135 		   TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1136 		   cfun->nonlocal_goto_save_area,
1137 		   integer_one_node, NULL_TREE, NULL_TREE);
1138   r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1139 
1140   emit_stack_save (SAVE_NONLOCAL, &r_save);
1141 }
1142 
1143 /* Return an rtx representing the address of an area of memory dynamically
1144    pushed on the stack.
1145 
1146    Any required stack pointer alignment is preserved.
1147 
1148    SIZE is an rtx representing the size of the area.
1149 
1150    SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1151    parameter may be zero.  If so, a proper value will be extracted
1152    from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1153 
1154    REQUIRED_ALIGN is the alignment (in bits) required for the region
1155    of memory.
1156 
1157    If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1158    stack space allocated by the generated code cannot be added with itself
1159    in the course of the execution of the function.  It is always safe to
1160    pass FALSE here and the following criterion is sufficient in order to
1161    pass TRUE: every path in the CFG that starts at the allocation point and
1162    loops to it executes the associated deallocation code.  */
1163 
1164 rtx
allocate_dynamic_stack_space(rtx size,unsigned size_align,unsigned required_align,bool cannot_accumulate)1165 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1166 			      unsigned required_align, bool cannot_accumulate)
1167 {
1168   HOST_WIDE_INT stack_usage_size = -1;
1169   rtx final_label, final_target, target;
1170   unsigned extra_align = 0;
1171   bool must_align;
1172 
1173   /* If we're asking for zero bytes, it doesn't matter what we point
1174      to since we can't dereference it.  But return a reasonable
1175      address anyway.  */
1176   if (size == const0_rtx)
1177     return virtual_stack_dynamic_rtx;
1178 
1179   /* Otherwise, show we're calling alloca or equivalent.  */
1180   cfun->calls_alloca = 1;
1181 
1182   /* If stack usage info is requested, look into the size we are passed.
1183      We need to do so this early to avoid the obfuscation that may be
1184      introduced later by the various alignment operations.  */
1185   if (flag_stack_usage_info)
1186     {
1187       if (CONST_INT_P (size))
1188 	stack_usage_size = INTVAL (size);
1189       else if (REG_P (size))
1190         {
1191 	  /* Look into the last emitted insn and see if we can deduce
1192 	     something for the register.  */
1193 	  rtx insn, set, note;
1194 	  insn = get_last_insn ();
1195 	  if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1196 	    {
1197 	      if (CONST_INT_P (SET_SRC (set)))
1198 		stack_usage_size = INTVAL (SET_SRC (set));
1199 	      else if ((note = find_reg_equal_equiv_note (insn))
1200 		       && CONST_INT_P (XEXP (note, 0)))
1201 		stack_usage_size = INTVAL (XEXP (note, 0));
1202 	    }
1203 	}
1204 
1205       /* If the size is not constant, we can't say anything.  */
1206       if (stack_usage_size == -1)
1207 	{
1208 	  current_function_has_unbounded_dynamic_stack_size = 1;
1209 	  stack_usage_size = 0;
1210 	}
1211     }
1212 
1213   /* Ensure the size is in the proper mode.  */
1214   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1215     size = convert_to_mode (Pmode, size, 1);
1216 
1217   /* Adjust SIZE_ALIGN, if needed.  */
1218   if (CONST_INT_P (size))
1219     {
1220       unsigned HOST_WIDE_INT lsb;
1221 
1222       lsb = INTVAL (size);
1223       lsb &= -lsb;
1224 
1225       /* Watch out for overflow truncating to "unsigned".  */
1226       if (lsb > UINT_MAX / BITS_PER_UNIT)
1227 	size_align = 1u << (HOST_BITS_PER_INT - 1);
1228       else
1229 	size_align = (unsigned)lsb * BITS_PER_UNIT;
1230     }
1231   else if (size_align < BITS_PER_UNIT)
1232     size_align = BITS_PER_UNIT;
1233 
1234   /* We can't attempt to minimize alignment necessary, because we don't
1235      know the final value of preferred_stack_boundary yet while executing
1236      this code.  */
1237   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1238     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1239 
1240   /* We will need to ensure that the address we return is aligned to
1241      REQUIRED_ALIGN.  If STACK_DYNAMIC_OFFSET is defined, we don't
1242      always know its final value at this point in the compilation (it
1243      might depend on the size of the outgoing parameter lists, for
1244      example), so we must align the value to be returned in that case.
1245      (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1246      STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1247      We must also do an alignment operation on the returned value if
1248      the stack pointer alignment is less strict than REQUIRED_ALIGN.
1249 
1250      If we have to align, we must leave space in SIZE for the hole
1251      that might result from the alignment operation.  */
1252 
1253   must_align = (crtl->preferred_stack_boundary < required_align);
1254   if (must_align)
1255     {
1256       if (required_align > PREFERRED_STACK_BOUNDARY)
1257 	extra_align = PREFERRED_STACK_BOUNDARY;
1258       else if (required_align > STACK_BOUNDARY)
1259 	extra_align = STACK_BOUNDARY;
1260       else
1261 	extra_align = BITS_PER_UNIT;
1262     }
1263 
1264   /* ??? STACK_POINTER_OFFSET is always defined now.  */
1265 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1266   must_align = true;
1267   extra_align = BITS_PER_UNIT;
1268 #endif
1269 
1270   if (must_align)
1271     {
1272       unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1273 
1274       size = plus_constant (Pmode, size, extra);
1275       size = force_operand (size, NULL_RTX);
1276 
1277       if (flag_stack_usage_info)
1278 	stack_usage_size += extra;
1279 
1280       if (extra && size_align > extra_align)
1281 	size_align = extra_align;
1282     }
1283 
1284   /* Round the size to a multiple of the required stack alignment.
1285      Since the stack if presumed to be rounded before this allocation,
1286      this will maintain the required alignment.
1287 
1288      If the stack grows downward, we could save an insn by subtracting
1289      SIZE from the stack pointer and then aligning the stack pointer.
1290      The problem with this is that the stack pointer may be unaligned
1291      between the execution of the subtraction and alignment insns and
1292      some machines do not allow this.  Even on those that do, some
1293      signal handlers malfunction if a signal should occur between those
1294      insns.  Since this is an extremely rare event, we have no reliable
1295      way of knowing which systems have this problem.  So we avoid even
1296      momentarily mis-aligning the stack.  */
1297   if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1298     {
1299       size = round_push (size);
1300 
1301       if (flag_stack_usage_info)
1302 	{
1303 	  int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1304 	  stack_usage_size = (stack_usage_size + align - 1) / align * align;
1305 	}
1306     }
1307 
1308   target = gen_reg_rtx (Pmode);
1309 
1310   /* The size is supposed to be fully adjusted at this point so record it
1311      if stack usage info is requested.  */
1312   if (flag_stack_usage_info)
1313     {
1314       current_function_dynamic_stack_size += stack_usage_size;
1315 
1316       /* ??? This is gross but the only safe stance in the absence
1317 	 of stack usage oriented flow analysis.  */
1318       if (!cannot_accumulate)
1319 	current_function_has_unbounded_dynamic_stack_size = 1;
1320     }
1321 
1322   final_label = NULL_RTX;
1323   final_target = NULL_RTX;
1324 
1325   /* If we are splitting the stack, we need to ask the backend whether
1326      there is enough room on the current stack.  If there isn't, or if
1327      the backend doesn't know how to tell is, then we need to call a
1328      function to allocate memory in some other way.  This memory will
1329      be released when we release the current stack segment.  The
1330      effect is that stack allocation becomes less efficient, but at
1331      least it doesn't cause a stack overflow.  */
1332   if (flag_split_stack)
1333     {
1334       rtx available_label, ask, space, func;
1335 
1336       available_label = NULL_RTX;
1337 
1338 #ifdef HAVE_split_stack_space_check
1339       if (HAVE_split_stack_space_check)
1340 	{
1341 	  available_label = gen_label_rtx ();
1342 
1343 	  /* This instruction will branch to AVAILABLE_LABEL if there
1344 	     are SIZE bytes available on the stack.  */
1345 	  emit_insn (gen_split_stack_space_check (size, available_label));
1346 	}
1347 #endif
1348 
1349       /* The __morestack_allocate_stack_space function will allocate
1350 	 memory using malloc.  If the alignment of the memory returned
1351 	 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1352 	 make sure we allocate enough space.  */
1353       if (MALLOC_ABI_ALIGNMENT >= required_align)
1354 	ask = size;
1355       else
1356 	{
1357 	  ask = expand_binop (Pmode, add_optab, size,
1358 			      GEN_INT (required_align / BITS_PER_UNIT - 1),
1359 			      NULL_RTX, 1, OPTAB_LIB_WIDEN);
1360 	  must_align = true;
1361 	}
1362 
1363       func = init_one_libfunc ("__morestack_allocate_stack_space");
1364 
1365       space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1366 				       1, ask, Pmode);
1367 
1368       if (available_label == NULL_RTX)
1369 	return space;
1370 
1371       final_target = gen_reg_rtx (Pmode);
1372 
1373       emit_move_insn (final_target, space);
1374 
1375       final_label = gen_label_rtx ();
1376       emit_jump (final_label);
1377 
1378       emit_label (available_label);
1379     }
1380 
1381   do_pending_stack_adjust ();
1382 
1383  /* We ought to be called always on the toplevel and stack ought to be aligned
1384     properly.  */
1385   gcc_assert (!(stack_pointer_delta
1386 		% (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1387 
1388   /* If needed, check that we have the required amount of stack.  Take into
1389      account what has already been checked.  */
1390   if (STACK_CHECK_MOVING_SP)
1391     ;
1392   else if (flag_stack_check == GENERIC_STACK_CHECK)
1393     probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1394 		       size);
1395   else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1396     probe_stack_range (STACK_CHECK_PROTECT, size);
1397 
1398   /* Don't let anti_adjust_stack emit notes.  */
1399   suppress_reg_args_size = true;
1400 
1401   /* Perform the required allocation from the stack.  Some systems do
1402      this differently than simply incrementing/decrementing from the
1403      stack pointer, such as acquiring the space by calling malloc().  */
1404 #ifdef HAVE_allocate_stack
1405   if (HAVE_allocate_stack)
1406     {
1407       struct expand_operand ops[2];
1408       /* We don't have to check against the predicate for operand 0 since
1409 	 TARGET is known to be a pseudo of the proper mode, which must
1410 	 be valid for the operand.  */
1411       create_fixed_operand (&ops[0], target);
1412       create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1413       expand_insn (CODE_FOR_allocate_stack, 2, ops);
1414     }
1415   else
1416 #endif
1417     {
1418       int saved_stack_pointer_delta;
1419 
1420 #ifndef STACK_GROWS_DOWNWARD
1421       emit_move_insn (target, virtual_stack_dynamic_rtx);
1422 #endif
1423 
1424       /* Check stack bounds if necessary.  */
1425       if (crtl->limit_stack)
1426 	{
1427 	  rtx available;
1428 	  rtx space_available = gen_label_rtx ();
1429 #ifdef STACK_GROWS_DOWNWARD
1430 	  available = expand_binop (Pmode, sub_optab,
1431 				    stack_pointer_rtx, stack_limit_rtx,
1432 				    NULL_RTX, 1, OPTAB_WIDEN);
1433 #else
1434 	  available = expand_binop (Pmode, sub_optab,
1435 				    stack_limit_rtx, stack_pointer_rtx,
1436 				    NULL_RTX, 1, OPTAB_WIDEN);
1437 #endif
1438 	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1439 				   space_available);
1440 #ifdef HAVE_trap
1441 	  if (HAVE_trap)
1442 	    emit_insn (gen_trap ());
1443 	  else
1444 #endif
1445 	    error ("stack limits not supported on this target");
1446 	  emit_barrier ();
1447 	  emit_label (space_available);
1448 	}
1449 
1450       saved_stack_pointer_delta = stack_pointer_delta;
1451 
1452       if (flag_stack_check && STACK_CHECK_MOVING_SP)
1453 	anti_adjust_stack_and_probe (size, false);
1454       else
1455 	anti_adjust_stack (size);
1456 
1457       /* Even if size is constant, don't modify stack_pointer_delta.
1458 	 The constant size alloca should preserve
1459 	 crtl->preferred_stack_boundary alignment.  */
1460       stack_pointer_delta = saved_stack_pointer_delta;
1461 
1462 #ifdef STACK_GROWS_DOWNWARD
1463       emit_move_insn (target, virtual_stack_dynamic_rtx);
1464 #endif
1465     }
1466 
1467   suppress_reg_args_size = false;
1468 
1469   /* Finish up the split stack handling.  */
1470   if (final_label != NULL_RTX)
1471     {
1472       gcc_assert (flag_split_stack);
1473       emit_move_insn (final_target, target);
1474       emit_label (final_label);
1475       target = final_target;
1476     }
1477 
1478   if (must_align)
1479     {
1480       /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1481 	 but we know it can't.  So add ourselves and then do
1482 	 TRUNC_DIV_EXPR.  */
1483       target = expand_binop (Pmode, add_optab, target,
1484 			     GEN_INT (required_align / BITS_PER_UNIT - 1),
1485 			     NULL_RTX, 1, OPTAB_LIB_WIDEN);
1486       target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1487 			      GEN_INT (required_align / BITS_PER_UNIT),
1488 			      NULL_RTX, 1);
1489       target = expand_mult (Pmode, target,
1490 			    GEN_INT (required_align / BITS_PER_UNIT),
1491 			    NULL_RTX, 1);
1492     }
1493 
1494   /* Now that we've committed to a return value, mark its alignment.  */
1495   mark_reg_pointer (target, required_align);
1496 
1497   /* Record the new stack level for nonlocal gotos.  */
1498   if (cfun->nonlocal_goto_save_area != 0)
1499     update_nonlocal_goto_save_area ();
1500 
1501   return target;
1502 }
1503 
1504 /* A front end may want to override GCC's stack checking by providing a
1505    run-time routine to call to check the stack, so provide a mechanism for
1506    calling that routine.  */
1507 
1508 static GTY(()) rtx stack_check_libfunc;
1509 
1510 void
set_stack_check_libfunc(const char * libfunc_name)1511 set_stack_check_libfunc (const char *libfunc_name)
1512 {
1513   gcc_assert (stack_check_libfunc == NULL_RTX);
1514   stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1515 }
1516 
1517 /* Emit one stack probe at ADDRESS, an address within the stack.  */
1518 
1519 void
emit_stack_probe(rtx address)1520 emit_stack_probe (rtx address)
1521 {
1522 #ifdef HAVE_probe_stack_address
1523   if (HAVE_probe_stack_address)
1524     emit_insn (gen_probe_stack_address (address));
1525   else
1526 #endif
1527     {
1528       rtx memref = gen_rtx_MEM (word_mode, address);
1529 
1530       MEM_VOLATILE_P (memref) = 1;
1531 
1532       /* See if we have an insn to probe the stack.  */
1533 #ifdef HAVE_probe_stack
1534       if (HAVE_probe_stack)
1535         emit_insn (gen_probe_stack (memref));
1536       else
1537 #endif
1538         emit_move_insn (memref, const0_rtx);
1539     }
1540 }
1541 
1542 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1543    FIRST is a constant and size is a Pmode RTX.  These are offsets from
1544    the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
1545    or subtract them from the stack pointer.  */
1546 
1547 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1548 
1549 #ifdef STACK_GROWS_DOWNWARD
1550 #define STACK_GROW_OP MINUS
1551 #define STACK_GROW_OPTAB sub_optab
1552 #define STACK_GROW_OFF(off) -(off)
1553 #else
1554 #define STACK_GROW_OP PLUS
1555 #define STACK_GROW_OPTAB add_optab
1556 #define STACK_GROW_OFF(off) (off)
1557 #endif
1558 
1559 void
probe_stack_range(HOST_WIDE_INT first,rtx size)1560 probe_stack_range (HOST_WIDE_INT first, rtx size)
1561 {
1562   /* First ensure SIZE is Pmode.  */
1563   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1564     size = convert_to_mode (Pmode, size, 1);
1565 
1566   /* Next see if we have a function to check the stack.  */
1567   if (stack_check_libfunc)
1568     {
1569       rtx addr = memory_address (Pmode,
1570 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1571 					         stack_pointer_rtx,
1572 					         plus_constant (Pmode,
1573 								size, first)));
1574       emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1575 			 Pmode);
1576     }
1577 
1578   /* Next see if we have an insn to check the stack.  */
1579 #ifdef HAVE_check_stack
1580   else if (HAVE_check_stack)
1581     {
1582       struct expand_operand ops[1];
1583       rtx addr = memory_address (Pmode,
1584 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1585 					         stack_pointer_rtx,
1586 					         plus_constant (Pmode,
1587 								size, first)));
1588       bool success;
1589       create_input_operand (&ops[0], addr, Pmode);
1590       success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1591       gcc_assert (success);
1592     }
1593 #endif
1594 
1595   /* Otherwise we have to generate explicit probes.  If we have a constant
1596      small number of them to generate, that's the easy case.  */
1597   else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1598     {
1599       HOST_WIDE_INT isize = INTVAL (size), i;
1600       rtx addr;
1601 
1602       /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1603 	 it exceeds SIZE.  If only one probe is needed, this will not
1604 	 generate any code.  Then probe at FIRST + SIZE.  */
1605       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1606 	{
1607 	  addr = memory_address (Pmode,
1608 				 plus_constant (Pmode, stack_pointer_rtx,
1609 				 		STACK_GROW_OFF (first + i)));
1610 	  emit_stack_probe (addr);
1611 	}
1612 
1613       addr = memory_address (Pmode,
1614 			     plus_constant (Pmode, stack_pointer_rtx,
1615 					    STACK_GROW_OFF (first + isize)));
1616       emit_stack_probe (addr);
1617     }
1618 
1619   /* In the variable case, do the same as above, but in a loop.  Note that we
1620      must be extra careful with variables wrapping around because we might be
1621      at the very top (or the very bottom) of the address space and we have to
1622      be able to handle this case properly; in particular, we use an equality
1623      test for the loop condition.  */
1624   else
1625     {
1626       rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1627       rtx loop_lab = gen_label_rtx ();
1628       rtx end_lab = gen_label_rtx ();
1629 
1630 
1631       /* Step 1: round SIZE to the previous multiple of the interval.  */
1632 
1633       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1634       rounded_size
1635 	= simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1636       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1637 
1638 
1639       /* Step 2: compute initial and final value of the loop counter.  */
1640 
1641       /* TEST_ADDR = SP + FIRST.  */
1642       test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1643 					 	 stack_pointer_rtx,
1644 					 	 GEN_INT (first)), NULL_RTX);
1645 
1646       /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
1647       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1648 						 test_addr,
1649 						 rounded_size_op), NULL_RTX);
1650 
1651 
1652       /* Step 3: the loop
1653 
1654 	 while (TEST_ADDR != LAST_ADDR)
1655 	   {
1656 	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1657 	     probe at TEST_ADDR
1658 	   }
1659 
1660 	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1661 	 until it is equal to ROUNDED_SIZE.  */
1662 
1663       emit_label (loop_lab);
1664 
1665       /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
1666       emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1667 			       end_lab);
1668 
1669       /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
1670       temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1671 			   GEN_INT (PROBE_INTERVAL), test_addr,
1672 			   1, OPTAB_WIDEN);
1673 
1674       gcc_assert (temp == test_addr);
1675 
1676       /* Probe at TEST_ADDR.  */
1677       emit_stack_probe (test_addr);
1678 
1679       emit_jump (loop_lab);
1680 
1681       emit_label (end_lab);
1682 
1683 
1684       /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1685 	 that SIZE is equal to ROUNDED_SIZE.  */
1686 
1687       /* TEMP = SIZE - ROUNDED_SIZE.  */
1688       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1689       if (temp != const0_rtx)
1690 	{
1691 	  rtx addr;
1692 
1693 	  if (CONST_INT_P (temp))
1694 	    {
1695 	      /* Use [base + disp} addressing mode if supported.  */
1696 	      HOST_WIDE_INT offset = INTVAL (temp);
1697 	      addr = memory_address (Pmode,
1698 				     plus_constant (Pmode, last_addr,
1699 						    STACK_GROW_OFF (offset)));
1700 	    }
1701 	  else
1702 	    {
1703 	      /* Manual CSE if the difference is not known at compile-time.  */
1704 	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1705 	      addr = memory_address (Pmode,
1706 				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1707 						     last_addr, temp));
1708 	    }
1709 
1710 	  emit_stack_probe (addr);
1711 	}
1712     }
1713 }
1714 
1715 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1716    while probing it.  This pushes when SIZE is positive.  SIZE need not
1717    be constant.  If ADJUST_BACK is true, adjust back the stack pointer
1718    by plus SIZE at the end.  */
1719 
1720 void
anti_adjust_stack_and_probe(rtx size,bool adjust_back)1721 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1722 {
1723   /* We skip the probe for the first interval + a small dope of 4 words and
1724      probe that many bytes past the specified size to maintain a protection
1725      area at the botton of the stack.  */
1726   const int dope = 4 * UNITS_PER_WORD;
1727 
1728   /* First ensure SIZE is Pmode.  */
1729   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1730     size = convert_to_mode (Pmode, size, 1);
1731 
1732   /* If we have a constant small number of probes to generate, that's the
1733      easy case.  */
1734   if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1735     {
1736       HOST_WIDE_INT isize = INTVAL (size), i;
1737       bool first_probe = true;
1738 
1739       /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1740 	 values of N from 1 until it exceeds SIZE.  If only one probe is
1741 	 needed, this will not generate any code.  Then adjust and probe
1742 	 to PROBE_INTERVAL + SIZE.  */
1743       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1744 	{
1745 	  if (first_probe)
1746 	    {
1747 	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1748 	      first_probe = false;
1749 	    }
1750 	  else
1751 	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1752 	  emit_stack_probe (stack_pointer_rtx);
1753 	}
1754 
1755       if (first_probe)
1756 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1757       else
1758 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1759       emit_stack_probe (stack_pointer_rtx);
1760     }
1761 
1762   /* In the variable case, do the same as above, but in a loop.  Note that we
1763      must be extra careful with variables wrapping around because we might be
1764      at the very top (or the very bottom) of the address space and we have to
1765      be able to handle this case properly; in particular, we use an equality
1766      test for the loop condition.  */
1767   else
1768     {
1769       rtx rounded_size, rounded_size_op, last_addr, temp;
1770       rtx loop_lab = gen_label_rtx ();
1771       rtx end_lab = gen_label_rtx ();
1772 
1773 
1774       /* Step 1: round SIZE to the previous multiple of the interval.  */
1775 
1776       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1777       rounded_size
1778 	= simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1779       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1780 
1781 
1782       /* Step 2: compute initial and final value of the loop counter.  */
1783 
1784       /* SP = SP_0 + PROBE_INTERVAL.  */
1785       anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1786 
1787       /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
1788       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1789 						 stack_pointer_rtx,
1790 						 rounded_size_op), NULL_RTX);
1791 
1792 
1793       /* Step 3: the loop
1794 
1795 	 while (SP != LAST_ADDR)
1796 	   {
1797 	     SP = SP + PROBE_INTERVAL
1798 	     probe at SP
1799 	   }
1800 
1801 	 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1802 	 values of N from 1 until it is equal to ROUNDED_SIZE.  */
1803 
1804       emit_label (loop_lab);
1805 
1806       /* Jump to END_LAB if SP == LAST_ADDR.  */
1807       emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1808 			       Pmode, 1, end_lab);
1809 
1810       /* SP = SP + PROBE_INTERVAL and probe at SP.  */
1811       anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1812       emit_stack_probe (stack_pointer_rtx);
1813 
1814       emit_jump (loop_lab);
1815 
1816       emit_label (end_lab);
1817 
1818 
1819       /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1820 	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */
1821 
1822       /* TEMP = SIZE - ROUNDED_SIZE.  */
1823       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1824       if (temp != const0_rtx)
1825 	{
1826 	  /* Manual CSE if the difference is not known at compile-time.  */
1827 	  if (GET_CODE (temp) != CONST_INT)
1828 	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1829 	  anti_adjust_stack (temp);
1830 	  emit_stack_probe (stack_pointer_rtx);
1831 	}
1832     }
1833 
1834   /* Adjust back and account for the additional first interval.  */
1835   if (adjust_back)
1836     adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1837   else
1838     adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1839 }
1840 
1841 /* Return an rtx representing the register or memory location
1842    in which a scalar value of data type VALTYPE
1843    was returned by a function call to function FUNC.
1844    FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1845    function is known, otherwise 0.
1846    OUTGOING is 1 if on a machine with register windows this function
1847    should return the register in which the function will put its result
1848    and 0 otherwise.  */
1849 
1850 rtx
hard_function_value(const_tree valtype,const_tree func,const_tree fntype,int outgoing ATTRIBUTE_UNUSED)1851 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1852 		     int outgoing ATTRIBUTE_UNUSED)
1853 {
1854   rtx val;
1855 
1856   val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1857 
1858   if (REG_P (val)
1859       && GET_MODE (val) == BLKmode)
1860     {
1861       unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1862       enum machine_mode tmpmode;
1863 
1864       /* int_size_in_bytes can return -1.  We don't need a check here
1865 	 since the value of bytes will then be large enough that no
1866 	 mode will match anyway.  */
1867 
1868       for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1869 	   tmpmode != VOIDmode;
1870 	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1871 	{
1872 	  /* Have we found a large enough mode?  */
1873 	  if (GET_MODE_SIZE (tmpmode) >= bytes)
1874 	    break;
1875 	}
1876 
1877       /* No suitable mode found.  */
1878       gcc_assert (tmpmode != VOIDmode);
1879 
1880       PUT_MODE (val, tmpmode);
1881     }
1882   return val;
1883 }
1884 
1885 /* Return an rtx representing the register or memory location
1886    in which a scalar value of mode MODE was returned by a library call.  */
1887 
1888 rtx
hard_libcall_value(enum machine_mode mode,rtx fun)1889 hard_libcall_value (enum machine_mode mode, rtx fun)
1890 {
1891   return targetm.calls.libcall_value (mode, fun);
1892 }
1893 
1894 /* Look up the tree code for a given rtx code
1895    to provide the arithmetic operation for REAL_ARITHMETIC.
1896    The function returns an int because the caller may not know
1897    what `enum tree_code' means.  */
1898 
1899 int
rtx_to_tree_code(enum rtx_code code)1900 rtx_to_tree_code (enum rtx_code code)
1901 {
1902   enum tree_code tcode;
1903 
1904   switch (code)
1905     {
1906     case PLUS:
1907       tcode = PLUS_EXPR;
1908       break;
1909     case MINUS:
1910       tcode = MINUS_EXPR;
1911       break;
1912     case MULT:
1913       tcode = MULT_EXPR;
1914       break;
1915     case DIV:
1916       tcode = RDIV_EXPR;
1917       break;
1918     case SMIN:
1919       tcode = MIN_EXPR;
1920       break;
1921     case SMAX:
1922       tcode = MAX_EXPR;
1923       break;
1924     default:
1925       tcode = LAST_AND_UNUSED_TREE_CODE;
1926       break;
1927     }
1928   return ((int) tcode);
1929 }
1930 
1931 #include "gt-explow.h"
1932