1 /* Integrated Register Allocator (IRA) entry point.
2    Copyright (C) 2006-2013 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* The integrated register allocator (IRA) is a
22    regional register allocator performing graph coloring on a top-down
23    traversal of nested regions.  Graph coloring in a region is based
24    on Chaitin-Briggs algorithm.  It is called integrated because
25    register coalescing, register live range splitting, and choosing a
26    better hard register are done on-the-fly during coloring.  Register
27    coalescing and choosing a cheaper hard register is done by hard
28    register preferencing during hard register assigning.  The live
29    range splitting is a byproduct of the regional register allocation.
30 
31    Major IRA notions are:
32 
33      o *Region* is a part of CFG where graph coloring based on
34        Chaitin-Briggs algorithm is done.  IRA can work on any set of
35        nested CFG regions forming a tree.  Currently the regions are
36        the entire function for the root region and natural loops for
37        the other regions.  Therefore data structure representing a
38        region is called loop_tree_node.
39 
40      o *Allocno class* is a register class used for allocation of
41        given allocno.  It means that only hard register of given
42        register class can be assigned to given allocno.  In reality,
43        even smaller subset of (*profitable*) hard registers can be
44        assigned.  In rare cases, the subset can be even smaller
45        because our modification of Chaitin-Briggs algorithm requires
46        that sets of hard registers can be assigned to allocnos forms a
47        forest, i.e. the sets can be ordered in a way where any
48        previous set is not intersected with given set or is a superset
49        of given set.
50 
51      o *Pressure class* is a register class belonging to a set of
52        register classes containing all of the hard-registers available
53        for register allocation.  The set of all pressure classes for a
54        target is defined in the corresponding machine-description file
55        according some criteria.  Register pressure is calculated only
56        for pressure classes and it affects some IRA decisions as
57        forming allocation regions.
58 
59      o *Allocno* represents the live range of a pseudo-register in a
60        region.  Besides the obvious attributes like the corresponding
61        pseudo-register number, allocno class, conflicting allocnos and
62        conflicting hard-registers, there are a few allocno attributes
63        which are important for understanding the allocation algorithm:
64 
65        - *Live ranges*.  This is a list of ranges of *program points*
66          where the allocno lives.  Program points represent places
67          where a pseudo can be born or become dead (there are
68          approximately two times more program points than the insns)
69          and they are represented by integers starting with 0.  The
70          live ranges are used to find conflicts between allocnos.
71          They also play very important role for the transformation of
72          the IRA internal representation of several regions into a one
73          region representation.  The later is used during the reload
74          pass work because each allocno represents all of the
75          corresponding pseudo-registers.
76 
77        - *Hard-register costs*.  This is a vector of size equal to the
78          number of available hard-registers of the allocno class.  The
79          cost of a callee-clobbered hard-register for an allocno is
80          increased by the cost of save/restore code around the calls
81          through the given allocno's life.  If the allocno is a move
82          instruction operand and another operand is a hard-register of
83          the allocno class, the cost of the hard-register is decreased
84          by the move cost.
85 
86          When an allocno is assigned, the hard-register with minimal
87          full cost is used.  Initially, a hard-register's full cost is
88          the corresponding value from the hard-register's cost vector.
89          If the allocno is connected by a *copy* (see below) to
90          another allocno which has just received a hard-register, the
91          cost of the hard-register is decreased.  Before choosing a
92          hard-register for an allocno, the allocno's current costs of
93          the hard-registers are modified by the conflict hard-register
94          costs of all of the conflicting allocnos which are not
95          assigned yet.
96 
97        - *Conflict hard-register costs*.  This is a vector of the same
98          size as the hard-register costs vector.  To permit an
99          unassigned allocno to get a better hard-register, IRA uses
100          this vector to calculate the final full cost of the
101          available hard-registers.  Conflict hard-register costs of an
102          unassigned allocno are also changed with a change of the
103          hard-register cost of the allocno when a copy involving the
104          allocno is processed as described above.  This is done to
105          show other unassigned allocnos that a given allocno prefers
106          some hard-registers in order to remove the move instruction
107          corresponding to the copy.
108 
109      o *Cap*.  If a pseudo-register does not live in a region but
110        lives in a nested region, IRA creates a special allocno called
111        a cap in the outer region.  A region cap is also created for a
112        subregion cap.
113 
114      o *Copy*.  Allocnos can be connected by copies.  Copies are used
115        to modify hard-register costs for allocnos during coloring.
116        Such modifications reflects a preference to use the same
117        hard-register for the allocnos connected by copies.  Usually
118        copies are created for move insns (in this case it results in
119        register coalescing).  But IRA also creates copies for operands
120        of an insn which should be assigned to the same hard-register
121        due to constraints in the machine description (it usually
122        results in removing a move generated in reload to satisfy
123        the constraints) and copies referring to the allocno which is
124        the output operand of an instruction and the allocno which is
125        an input operand dying in the instruction (creation of such
126        copies results in less register shuffling).  IRA *does not*
127        create copies between the same register allocnos from different
128        regions because we use another technique for propagating
129        hard-register preference on the borders of regions.
130 
131    Allocnos (including caps) for the upper region in the region tree
132    *accumulate* information important for coloring from allocnos with
133    the same pseudo-register from nested regions.  This includes
134    hard-register and memory costs, conflicts with hard-registers,
135    allocno conflicts, allocno copies and more.  *Thus, attributes for
136    allocnos in a region have the same values as if the region had no
137    subregions*.  It means that attributes for allocnos in the
138    outermost region corresponding to the function have the same values
139    as though the allocation used only one region which is the entire
140    function.  It also means that we can look at IRA work as if the
141    first IRA did allocation for all function then it improved the
142    allocation for loops then their subloops and so on.
143 
144    IRA major passes are:
145 
146      o Building IRA internal representation which consists of the
147        following subpasses:
148 
149        * First, IRA builds regions and creates allocnos (file
150          ira-build.c) and initializes most of their attributes.
151 
152        * Then IRA finds an allocno class for each allocno and
153          calculates its initial (non-accumulated) cost of memory and
154          each hard-register of its allocno class (file ira-cost.c).
155 
156        * IRA creates live ranges of each allocno, calulates register
157          pressure for each pressure class in each region, sets up
158          conflict hard registers for each allocno and info about calls
159          the allocno lives through (file ira-lives.c).
160 
161        * IRA removes low register pressure loops from the regions
162          mostly to speed IRA up (file ira-build.c).
163 
164        * IRA propagates accumulated allocno info from lower region
165          allocnos to corresponding upper region allocnos (file
166          ira-build.c).
167 
168        * IRA creates all caps (file ira-build.c).
169 
170        * Having live-ranges of allocnos and their classes, IRA creates
171          conflicting allocnos for each allocno.  Conflicting allocnos
172          are stored as a bit vector or array of pointers to the
173          conflicting allocnos whatever is more profitable (file
174          ira-conflicts.c).  At this point IRA creates allocno copies.
175 
176      o Coloring.  Now IRA has all necessary info to start graph coloring
177        process.  It is done in each region on top-down traverse of the
178        region tree (file ira-color.c).  There are following subpasses:
179 
180        * Finding profitable hard registers of corresponding allocno
181          class for each allocno.  For example, only callee-saved hard
182          registers are frequently profitable for allocnos living
183          through colors.  If the profitable hard register set of
184          allocno does not form a tree based on subset relation, we use
185          some approximation to form the tree.  This approximation is
186          used to figure out trivial colorability of allocnos.  The
187          approximation is a pretty rare case.
188 
189        * Putting allocnos onto the coloring stack.  IRA uses Briggs
190          optimistic coloring which is a major improvement over
191          Chaitin's coloring.  Therefore IRA does not spill allocnos at
192          this point.  There is some freedom in the order of putting
193          allocnos on the stack which can affect the final result of
194          the allocation.  IRA uses some heuristics to improve the
195          order.
196 
197 	 We also use a modification of Chaitin-Briggs algorithm which
198          works for intersected register classes of allocnos.  To
199          figure out trivial colorability of allocnos, the mentioned
200          above tree of hard register sets is used.  To get an idea how
201          the algorithm works in i386 example, let us consider an
202          allocno to which any general hard register can be assigned.
203          If the allocno conflicts with eight allocnos to which only
204          EAX register can be assigned, given allocno is still
205          trivially colorable because all conflicting allocnos might be
206          assigned only to EAX and all other general hard registers are
207          still free.
208 
209 	 To get an idea of the used trivial colorability criterion, it
210 	 is also useful to read article "Graph-Coloring Register
211 	 Allocation for Irregular Architectures" by Michael D. Smith
212 	 and Glen Holloway.  Major difference between the article
213 	 approach and approach used in IRA is that Smith's approach
214 	 takes register classes only from machine description and IRA
215 	 calculate register classes from intermediate code too
216 	 (e.g. an explicit usage of hard registers in RTL code for
217 	 parameter passing can result in creation of additional
218 	 register classes which contain or exclude the hard
219 	 registers).  That makes IRA approach useful for improving
220 	 coloring even for architectures with regular register files
221 	 and in fact some benchmarking shows the improvement for
222 	 regular class architectures is even bigger than for irregular
223 	 ones.  Another difference is that Smith's approach chooses
224 	 intersection of classes of all insn operands in which a given
225 	 pseudo occurs.  IRA can use bigger classes if it is still
226 	 more profitable than memory usage.
227 
228        * Popping the allocnos from the stack and assigning them hard
229          registers.  If IRA can not assign a hard register to an
230          allocno and the allocno is coalesced, IRA undoes the
231          coalescing and puts the uncoalesced allocnos onto the stack in
232          the hope that some such allocnos will get a hard register
233          separately.  If IRA fails to assign hard register or memory
234          is more profitable for it, IRA spills the allocno.  IRA
235          assigns the allocno the hard-register with minimal full
236          allocation cost which reflects the cost of usage of the
237          hard-register for the allocno and cost of usage of the
238          hard-register for allocnos conflicting with given allocno.
239 
240        * Chaitin-Briggs coloring assigns as many pseudos as possible
241          to hard registers.  After coloringh we try to improve
242          allocation with cost point of view.  We improve the
243          allocation by spilling some allocnos and assigning the freed
244          hard registers to other allocnos if it decreases the overall
245          allocation cost.
246 
247        * After allono assigning in the region, IRA modifies the hard
248          register and memory costs for the corresponding allocnos in
249          the subregions to reflect the cost of possible loads, stores,
250          or moves on the border of the region and its subregions.
251          When default regional allocation algorithm is used
252          (-fira-algorithm=mixed), IRA just propagates the assignment
253          for allocnos if the register pressure in the region for the
254          corresponding pressure class is less than number of available
255          hard registers for given pressure class.
256 
257      o Spill/restore code moving.  When IRA performs an allocation
258        by traversing regions in top-down order, it does not know what
259        happens below in the region tree.  Therefore, sometimes IRA
260        misses opportunities to perform a better allocation.  A simple
261        optimization tries to improve allocation in a region having
262        subregions and containing in another region.  If the
263        corresponding allocnos in the subregion are spilled, it spills
264        the region allocno if it is profitable.  The optimization
265        implements a simple iterative algorithm performing profitable
266        transformations while they are still possible.  It is fast in
267        practice, so there is no real need for a better time complexity
268        algorithm.
269 
270      o Code change.  After coloring, two allocnos representing the
271        same pseudo-register outside and inside a region respectively
272        may be assigned to different locations (hard-registers or
273        memory).  In this case IRA creates and uses a new
274        pseudo-register inside the region and adds code to move allocno
275        values on the region's borders.  This is done during top-down
276        traversal of the regions (file ira-emit.c).  In some
277        complicated cases IRA can create a new allocno to move allocno
278        values (e.g. when a swap of values stored in two hard-registers
279        is needed).  At this stage, the new allocno is marked as
280        spilled.  IRA still creates the pseudo-register and the moves
281        on the region borders even when both allocnos were assigned to
282        the same hard-register.  If the reload pass spills a
283        pseudo-register for some reason, the effect will be smaller
284        because another allocno will still be in the hard-register.  In
285        most cases, this is better then spilling both allocnos.  If
286        reload does not change the allocation for the two
287        pseudo-registers, the trivial move will be removed by
288        post-reload optimizations.  IRA does not generate moves for
289        allocnos assigned to the same hard register when the default
290        regional allocation algorithm is used and the register pressure
291        in the region for the corresponding pressure class is less than
292        number of available hard registers for given pressure class.
293        IRA also does some optimizations to remove redundant stores and
294        to reduce code duplication on the region borders.
295 
296      o Flattening internal representation.  After changing code, IRA
297        transforms its internal representation for several regions into
298        one region representation (file ira-build.c).  This process is
299        called IR flattening.  Such process is more complicated than IR
300        rebuilding would be, but is much faster.
301 
302      o After IR flattening, IRA tries to assign hard registers to all
303        spilled allocnos.  This is impelemented by a simple and fast
304        priority coloring algorithm (see function
305        ira_reassign_conflict_allocnos::ira-color.c).  Here new allocnos
306        created during the code change pass can be assigned to hard
307        registers.
308 
309      o At the end IRA calls the reload pass.  The reload pass
310        communicates with IRA through several functions in file
311        ira-color.c to improve its decisions in
312 
313        * sharing stack slots for the spilled pseudos based on IRA info
314          about pseudo-register conflicts.
315 
316        * reassigning hard-registers to all spilled pseudos at the end
317          of each reload iteration.
318 
319        * choosing a better hard-register to spill based on IRA info
320          about pseudo-register live ranges and the register pressure
321          in places where the pseudo-register lives.
322 
323    IRA uses a lot of data representing the target processors.  These
324    data are initilized in file ira.c.
325 
326    If function has no loops (or the loops are ignored when
327    -fira-algorithm=CB is used), we have classic Chaitin-Briggs
328    coloring (only instead of separate pass of coalescing, we use hard
329    register preferencing).  In such case, IRA works much faster
330    because many things are not made (like IR flattening, the
331    spill/restore optimization, and the code change).
332 
333    Literature is worth to read for better understanding the code:
334 
335    o Preston Briggs, Keith D. Cooper, Linda Torczon.  Improvements to
336      Graph Coloring Register Allocation.
337 
338    o David Callahan, Brian Koblenz.  Register allocation via
339      hierarchical graph coloring.
340 
341    o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
342      Coloring Register Allocation: A Study of the Chaitin-Briggs and
343      Callahan-Koblenz Algorithms.
344 
345    o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
346      Register Allocation Based on Graph Fusion.
347 
348    o Michael D. Smith and Glenn Holloway.  Graph-Coloring Register
349      Allocation for Irregular Architectures
350 
351    o Vladimir Makarov. The Integrated Register Allocator for GCC.
352 
353    o Vladimir Makarov.  The top-down register allocator for irregular
354      register file architectures.
355 
356 */
357 
358 
359 #include "config.h"
360 #include "system.h"
361 #include "coretypes.h"
362 #include "tm.h"
363 #include "regs.h"
364 #include "rtl.h"
365 #include "tm_p.h"
366 #include "target.h"
367 #include "flags.h"
368 #include "obstack.h"
369 #include "bitmap.h"
370 #include "hard-reg-set.h"
371 #include "basic-block.h"
372 #include "df.h"
373 #include "expr.h"
374 #include "recog.h"
375 #include "params.h"
376 #include "tree-pass.h"
377 #include "output.h"
378 #include "except.h"
379 #include "reload.h"
380 #include "diagnostic-core.h"
381 #include "function.h"
382 #include "ggc.h"
383 #include "ira-int.h"
384 #include "lra.h"
385 #include "dce.h"
386 #include "dbgcnt.h"
387 
388 struct target_ira default_target_ira;
389 struct target_ira_int default_target_ira_int;
390 #if SWITCHABLE_TARGET
391 struct target_ira *this_target_ira = &default_target_ira;
392 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
393 #endif
394 
395 /* A modified value of flag `-fira-verbose' used internally.  */
396 int internal_flag_ira_verbose;
397 
398 /* Dump file of the allocator if it is not NULL.  */
399 FILE *ira_dump_file;
400 
401 /* The number of elements in the following array.  */
402 int ira_spilled_reg_stack_slots_num;
403 
404 /* The following array contains info about spilled pseudo-registers
405    stack slots used in current function so far.  */
406 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
407 
408 /* Correspondingly overall cost of the allocation, overall cost before
409    reload, cost of the allocnos assigned to hard-registers, cost of
410    the allocnos assigned to memory, cost of loads, stores and register
411    move insns generated for pseudo-register live range splitting (see
412    ira-emit.c).  */
413 int ira_overall_cost, overall_cost_before;
414 int ira_reg_cost, ira_mem_cost;
415 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
416 int ira_move_loops_num, ira_additional_jumps_num;
417 
418 /* All registers that can be eliminated.  */
419 
420 HARD_REG_SET eliminable_regset;
421 
422 /* Value of max_reg_num () before IRA work start.  This value helps
423    us to recognize a situation when new pseudos were created during
424    IRA work.  */
425 static int max_regno_before_ira;
426 
427 /* Temporary hard reg set used for a different calculation.  */
428 static HARD_REG_SET temp_hard_regset;
429 
430 #define last_mode_for_init_move_cost \
431   (this_target_ira_int->x_last_mode_for_init_move_cost)
432 
433 
434 /* The function sets up the map IRA_REG_MODE_HARD_REGSET.  */
435 static void
setup_reg_mode_hard_regset(void)436 setup_reg_mode_hard_regset (void)
437 {
438   int i, m, hard_regno;
439 
440   for (m = 0; m < NUM_MACHINE_MODES; m++)
441     for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
442       {
443 	CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
444 	for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
445 	  if (hard_regno + i < FIRST_PSEUDO_REGISTER)
446 	    SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
447 			      hard_regno + i);
448       }
449 }
450 
451 
452 #define no_unit_alloc_regs \
453   (this_target_ira_int->x_no_unit_alloc_regs)
454 
455 /* The function sets up the three arrays declared above.  */
456 static void
setup_class_hard_regs(void)457 setup_class_hard_regs (void)
458 {
459   int cl, i, hard_regno, n;
460   HARD_REG_SET processed_hard_reg_set;
461 
462   ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
463   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
464     {
465       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
466       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
467       CLEAR_HARD_REG_SET (processed_hard_reg_set);
468       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
469 	{
470 	  ira_non_ordered_class_hard_regs[cl][i] = -1;
471 	  ira_class_hard_reg_index[cl][i] = -1;
472 	}
473       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
474 	{
475 #ifdef REG_ALLOC_ORDER
476 	  hard_regno = reg_alloc_order[i];
477 #else
478 	  hard_regno = i;
479 #endif
480 	  if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
481 	    continue;
482 	  SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
483       	  if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
484 	    ira_class_hard_reg_index[cl][hard_regno] = -1;
485 	  else
486 	    {
487 	      ira_class_hard_reg_index[cl][hard_regno] = n;
488 	      ira_class_hard_regs[cl][n++] = hard_regno;
489 	    }
490 	}
491       ira_class_hard_regs_num[cl] = n;
492       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
493 	if (TEST_HARD_REG_BIT (temp_hard_regset, i))
494 	  ira_non_ordered_class_hard_regs[cl][n++] = i;
495       ira_assert (ira_class_hard_regs_num[cl] == n);
496     }
497 }
498 
499 /* Set up global variables defining info about hard registers for the
500    allocation.  These depend on USE_HARD_FRAME_P whose TRUE value means
501    that we can use the hard frame pointer for the allocation.  */
502 static void
setup_alloc_regs(bool use_hard_frame_p)503 setup_alloc_regs (bool use_hard_frame_p)
504 {
505 #ifdef ADJUST_REG_ALLOC_ORDER
506   ADJUST_REG_ALLOC_ORDER;
507 #endif
508   COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
509   if (! use_hard_frame_p)
510     SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
511   setup_class_hard_regs ();
512 }
513 
514 
515 
516 #define alloc_reg_class_subclasses \
517   (this_target_ira_int->x_alloc_reg_class_subclasses)
518 
519 /* Initialize the table of subclasses of each reg class.  */
520 static void
setup_reg_subclasses(void)521 setup_reg_subclasses (void)
522 {
523   int i, j;
524   HARD_REG_SET temp_hard_regset2;
525 
526   for (i = 0; i < N_REG_CLASSES; i++)
527     for (j = 0; j < N_REG_CLASSES; j++)
528       alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
529 
530   for (i = 0; i < N_REG_CLASSES; i++)
531     {
532       if (i == (int) NO_REGS)
533 	continue;
534 
535       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
536       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
537       if (hard_reg_set_empty_p (temp_hard_regset))
538 	continue;
539       for (j = 0; j < N_REG_CLASSES; j++)
540 	if (i != j)
541 	  {
542 	    enum reg_class *p;
543 
544 	    COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
545 	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
546 	    if (! hard_reg_set_subset_p (temp_hard_regset,
547 					 temp_hard_regset2))
548 	      continue;
549 	    p = &alloc_reg_class_subclasses[j][0];
550 	    while (*p != LIM_REG_CLASSES) p++;
551 	    *p = (enum reg_class) i;
552 	  }
553     }
554 }
555 
556 
557 
558 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST.  */
559 static void
setup_class_subset_and_memory_move_costs(void)560 setup_class_subset_and_memory_move_costs (void)
561 {
562   int cl, cl2, mode, cost;
563   HARD_REG_SET temp_hard_regset2;
564 
565   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
566     ira_memory_move_cost[mode][NO_REGS][0]
567       = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
568   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
569     {
570       if (cl != (int) NO_REGS)
571 	for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
572 	  {
573 	    ira_max_memory_move_cost[mode][cl][0]
574 	      = ira_memory_move_cost[mode][cl][0]
575 	      = memory_move_cost ((enum machine_mode) mode,
576 				  (reg_class_t) cl, false);
577 	    ira_max_memory_move_cost[mode][cl][1]
578 	      = ira_memory_move_cost[mode][cl][1]
579 	      = memory_move_cost ((enum machine_mode) mode,
580 				  (reg_class_t) cl, true);
581 	    /* Costs for NO_REGS are used in cost calculation on the
582 	       1st pass when the preferred register classes are not
583 	       known yet.  In this case we take the best scenario.  */
584 	    if (ira_memory_move_cost[mode][NO_REGS][0]
585 		> ira_memory_move_cost[mode][cl][0])
586 	      ira_max_memory_move_cost[mode][NO_REGS][0]
587 		= ira_memory_move_cost[mode][NO_REGS][0]
588 		= ira_memory_move_cost[mode][cl][0];
589 	    if (ira_memory_move_cost[mode][NO_REGS][1]
590 		> ira_memory_move_cost[mode][cl][1])
591 	      ira_max_memory_move_cost[mode][NO_REGS][1]
592 		= ira_memory_move_cost[mode][NO_REGS][1]
593 		= ira_memory_move_cost[mode][cl][1];
594 	  }
595     }
596   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
597     for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
598       {
599 	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
600 	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
601 	COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
602 	AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
603 	ira_class_subset_p[cl][cl2]
604 	  = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
605 	if (! hard_reg_set_empty_p (temp_hard_regset2)
606 	    && hard_reg_set_subset_p (reg_class_contents[cl2],
607 				      reg_class_contents[cl]))
608 	  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
609 	    {
610 	      cost = ira_memory_move_cost[mode][cl2][0];
611 	      if (cost > ira_max_memory_move_cost[mode][cl][0])
612 		ira_max_memory_move_cost[mode][cl][0] = cost;
613 	      cost = ira_memory_move_cost[mode][cl2][1];
614 	      if (cost > ira_max_memory_move_cost[mode][cl][1])
615 		ira_max_memory_move_cost[mode][cl][1] = cost;
616 	    }
617       }
618   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
619     for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
620       {
621 	ira_memory_move_cost[mode][cl][0]
622 	  = ira_max_memory_move_cost[mode][cl][0];
623 	ira_memory_move_cost[mode][cl][1]
624 	  = ira_max_memory_move_cost[mode][cl][1];
625       }
626   setup_reg_subclasses ();
627 }
628 
629 
630 
631 /* Define the following macro if allocation through malloc if
632    preferable.  */
633 #define IRA_NO_OBSTACK
634 
635 #ifndef IRA_NO_OBSTACK
636 /* Obstack used for storing all dynamic data (except bitmaps) of the
637    IRA.  */
638 static struct obstack ira_obstack;
639 #endif
640 
641 /* Obstack used for storing all bitmaps of the IRA.  */
642 static struct bitmap_obstack ira_bitmap_obstack;
643 
644 /* Allocate memory of size LEN for IRA data.  */
645 void *
ira_allocate(size_t len)646 ira_allocate (size_t len)
647 {
648   void *res;
649 
650 #ifndef IRA_NO_OBSTACK
651   res = obstack_alloc (&ira_obstack, len);
652 #else
653   res = xmalloc (len);
654 #endif
655   return res;
656 }
657 
658 /* Free memory ADDR allocated for IRA data.  */
659 void
ira_free(void * addr ATTRIBUTE_UNUSED)660 ira_free (void *addr ATTRIBUTE_UNUSED)
661 {
662 #ifndef IRA_NO_OBSTACK
663   /* do nothing */
664 #else
665   free (addr);
666 #endif
667 }
668 
669 
670 /* Allocate and returns bitmap for IRA.  */
671 bitmap
ira_allocate_bitmap(void)672 ira_allocate_bitmap (void)
673 {
674   return BITMAP_ALLOC (&ira_bitmap_obstack);
675 }
676 
677 /* Free bitmap B allocated for IRA.  */
678 void
ira_free_bitmap(bitmap b ATTRIBUTE_UNUSED)679 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
680 {
681   /* do nothing */
682 }
683 
684 
685 
686 /* Output information about allocation of all allocnos (except for
687    caps) into file F.  */
688 void
ira_print_disposition(FILE * f)689 ira_print_disposition (FILE *f)
690 {
691   int i, n, max_regno;
692   ira_allocno_t a;
693   basic_block bb;
694 
695   fprintf (f, "Disposition:");
696   max_regno = max_reg_num ();
697   for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
698     for (a = ira_regno_allocno_map[i];
699 	 a != NULL;
700 	 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
701       {
702 	if (n % 4 == 0)
703 	  fprintf (f, "\n");
704 	n++;
705 	fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
706 	if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
707 	  fprintf (f, "b%-3d", bb->index);
708 	else
709 	  fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
710 	if (ALLOCNO_HARD_REGNO (a) >= 0)
711 	  fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
712 	else
713 	  fprintf (f, " mem");
714       }
715   fprintf (f, "\n");
716 }
717 
718 /* Outputs information about allocation of all allocnos into
719    stderr.  */
720 void
ira_debug_disposition(void)721 ira_debug_disposition (void)
722 {
723   ira_print_disposition (stderr);
724 }
725 
726 
727 
728 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
729    register class containing stack registers or NO_REGS if there are
730    no stack registers.  To find this class, we iterate through all
731    register pressure classes and choose the first register pressure
732    class containing all the stack registers and having the biggest
733    size.  */
734 static void
setup_stack_reg_pressure_class(void)735 setup_stack_reg_pressure_class (void)
736 {
737   ira_stack_reg_pressure_class = NO_REGS;
738 #ifdef STACK_REGS
739   {
740     int i, best, size;
741     enum reg_class cl;
742     HARD_REG_SET temp_hard_regset2;
743 
744     CLEAR_HARD_REG_SET (temp_hard_regset);
745     for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
746       SET_HARD_REG_BIT (temp_hard_regset, i);
747     best = 0;
748     for (i = 0; i < ira_pressure_classes_num; i++)
749       {
750 	cl = ira_pressure_classes[i];
751 	COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
752 	AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
753 	size = hard_reg_set_size (temp_hard_regset2);
754 	if (best < size)
755 	  {
756 	    best = size;
757 	    ira_stack_reg_pressure_class = cl;
758 	  }
759       }
760   }
761 #endif
762 }
763 
764 /* Find pressure classes which are register classes for which we
765    calculate register pressure in IRA, register pressure sensitive
766    insn scheduling, and register pressure sensitive loop invariant
767    motion.
768 
769    To make register pressure calculation easy, we always use
770    non-intersected register pressure classes.  A move of hard
771    registers from one register pressure class is not more expensive
772    than load and store of the hard registers.  Most likely an allocno
773    class will be a subset of a register pressure class and in many
774    cases a register pressure class.  That makes usage of register
775    pressure classes a good approximation to find a high register
776    pressure.  */
777 static void
setup_pressure_classes(void)778 setup_pressure_classes (void)
779 {
780   int cost, i, n, curr;
781   int cl, cl2;
782   enum reg_class pressure_classes[N_REG_CLASSES];
783   int m;
784   HARD_REG_SET temp_hard_regset2;
785   bool insert_p;
786 
787   n = 0;
788   for (cl = 0; cl < N_REG_CLASSES; cl++)
789     {
790       if (ira_class_hard_regs_num[cl] == 0)
791 	continue;
792       if (ira_class_hard_regs_num[cl] != 1
793 	  /* A register class without subclasses may contain a few
794 	     hard registers and movement between them is costly
795 	     (e.g. SPARC FPCC registers).  We still should consider it
796 	     as a candidate for a pressure class.  */
797 	  && alloc_reg_class_subclasses[cl][0] < cl)
798 	{
799 	  /* Check that the moves between any hard registers of the
800 	     current class are not more expensive for a legal mode
801 	     than load/store of the hard registers of the current
802 	     class.  Such class is a potential candidate to be a
803 	     register pressure class.  */
804 	  for (m = 0; m < NUM_MACHINE_MODES; m++)
805 	    {
806 	      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
807 	      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
808 	      AND_COMPL_HARD_REG_SET (temp_hard_regset,
809 				      ira_prohibited_class_mode_regs[cl][m]);
810 	      if (hard_reg_set_empty_p (temp_hard_regset))
811 		continue;
812 	      ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
813 	      cost = ira_register_move_cost[m][cl][cl];
814 	      if (cost <= ira_max_memory_move_cost[m][cl][1]
815 		  || cost <= ira_max_memory_move_cost[m][cl][0])
816 		break;
817 	    }
818 	  if (m >= NUM_MACHINE_MODES)
819 	    continue;
820 	}
821       curr = 0;
822       insert_p = true;
823       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
824       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
825       /* Remove so far added pressure classes which are subset of the
826 	 current candidate class.  Prefer GENERAL_REGS as a pressure
827 	 register class to another class containing the same
828 	 allocatable hard registers.  We do this because machine
829 	 dependent cost hooks might give wrong costs for the latter
830 	 class but always give the right cost for the former class
831 	 (GENERAL_REGS).  */
832       for (i = 0; i < n; i++)
833 	{
834 	  cl2 = pressure_classes[i];
835 	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
836 	  AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
837 	  if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
838 	      && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
839 		  || cl2 == (int) GENERAL_REGS))
840 	    {
841 	      pressure_classes[curr++] = (enum reg_class) cl2;
842 	      insert_p = false;
843 	      continue;
844 	    }
845 	  if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
846 	      && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
847 		  || cl == (int) GENERAL_REGS))
848 	    continue;
849 	  if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
850 	    insert_p = false;
851 	  pressure_classes[curr++] = (enum reg_class) cl2;
852 	}
853       /* If the current candidate is a subset of a so far added
854 	 pressure class, don't add it to the list of the pressure
855 	 classes.  */
856       if (insert_p)
857 	pressure_classes[curr++] = (enum reg_class) cl;
858       n = curr;
859     }
860 #ifdef ENABLE_IRA_CHECKING
861   {
862     HARD_REG_SET ignore_hard_regs;
863 
864     /* Check pressure classes correctness: here we check that hard
865        registers from all register pressure classes contains all hard
866        registers available for the allocation.  */
867     CLEAR_HARD_REG_SET (temp_hard_regset);
868     CLEAR_HARD_REG_SET (temp_hard_regset2);
869     COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
870     for (cl = 0; cl < LIM_REG_CLASSES; cl++)
871       {
872 	/* For some targets (like MIPS with MD_REGS), there are some
873 	   classes with hard registers available for allocation but
874 	   not able to hold value of any mode.  */
875 	for (m = 0; m < NUM_MACHINE_MODES; m++)
876 	  if (contains_reg_of_mode[cl][m])
877 	    break;
878 	if (m >= NUM_MACHINE_MODES)
879 	  {
880 	    IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
881 	    continue;
882 	  }
883 	for (i = 0; i < n; i++)
884 	  if ((int) pressure_classes[i] == cl)
885 	    break;
886 	IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
887 	if (i < n)
888 	  IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
889       }
890     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
891       /* Some targets (like SPARC with ICC reg) have alocatable regs
892 	 for which no reg class is defined.  */
893       if (REGNO_REG_CLASS (i) == NO_REGS)
894 	SET_HARD_REG_BIT (ignore_hard_regs, i);
895     AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
896     AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
897     ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
898   }
899 #endif
900   ira_pressure_classes_num = 0;
901   for (i = 0; i < n; i++)
902     {
903       cl = (int) pressure_classes[i];
904       ira_reg_pressure_class_p[cl] = true;
905       ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
906     }
907   setup_stack_reg_pressure_class ();
908 }
909 
910 /* Set up IRA_UNIFORM_CLASS_P.  Uniform class is a register class
911    whose register move cost between any registers of the class is the
912    same as for all its subclasses.  We use the data to speed up the
913    2nd pass of calculations of allocno costs.  */
914 static void
setup_uniform_class_p(void)915 setup_uniform_class_p (void)
916 {
917   int i, cl, cl2, m;
918 
919   for (cl = 0; cl < N_REG_CLASSES; cl++)
920     {
921       ira_uniform_class_p[cl] = false;
922       if (ira_class_hard_regs_num[cl] == 0)
923 	continue;
924       /* We can not use alloc_reg_class_subclasses here because move
925 	 cost hooks does not take into account that some registers are
926 	 unavailable for the subtarget.  E.g. for i686, INT_SSE_REGS
927 	 is element of alloc_reg_class_subclasses for GENERAL_REGS
928 	 because SSE regs are unavailable.  */
929       for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
930 	{
931 	  if (ira_class_hard_regs_num[cl2] == 0)
932 	    continue;
933       	  for (m = 0; m < NUM_MACHINE_MODES; m++)
934 	    if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
935 	      {
936 		ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
937 		if (ira_register_move_cost[m][cl][cl]
938 		    != ira_register_move_cost[m][cl2][cl2])
939 		  break;
940 	      }
941 	  if (m < NUM_MACHINE_MODES)
942 	    break;
943 	}
944       if (cl2 == LIM_REG_CLASSES)
945 	ira_uniform_class_p[cl] = true;
946     }
947 }
948 
949 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
950    IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
951 
952    Target may have many subtargets and not all target hard regiters can
953    be used for allocation, e.g. x86 port in 32-bit mode can not use
954    hard registers introduced in x86-64 like r8-r15).  Some classes
955    might have the same allocatable hard registers, e.g.  INDEX_REGS
956    and GENERAL_REGS in x86 port in 32-bit mode.  To decrease different
957    calculations efforts we introduce allocno classes which contain
958    unique non-empty sets of allocatable hard-registers.
959 
960    Pseudo class cost calculation in ira-costs.c is very expensive.
961    Therefore we are trying to decrease number of classes involved in
962    such calculation.  Register classes used in the cost calculation
963    are called important classes.  They are allocno classes and other
964    non-empty classes whose allocatable hard register sets are inside
965    of an allocno class hard register set.  From the first sight, it
966    looks like that they are just allocno classes.  It is not true.  In
967    example of x86-port in 32-bit mode, allocno classes will contain
968    GENERAL_REGS but not LEGACY_REGS (because allocatable hard
969    registers are the same for the both classes).  The important
970    classes will contain GENERAL_REGS and LEGACY_REGS.  It is done
971    because a machine description insn constraint may refers for
972    LEGACY_REGS and code in ira-costs.c is mostly base on investigation
973    of the insn constraints.  */
974 static void
setup_allocno_and_important_classes(void)975 setup_allocno_and_important_classes (void)
976 {
977   int i, j, n, cl;
978   bool set_p;
979   HARD_REG_SET temp_hard_regset2;
980   static enum reg_class classes[LIM_REG_CLASSES + 1];
981 
982   n = 0;
983   /* Collect classes which contain unique sets of allocatable hard
984      registers.  Prefer GENERAL_REGS to other classes containing the
985      same set of hard registers.  */
986   for (i = 0; i < LIM_REG_CLASSES; i++)
987     {
988       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
989       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
990       for (j = 0; j < n; j++)
991 	{
992 	  cl = classes[j];
993 	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
994 	  AND_COMPL_HARD_REG_SET (temp_hard_regset2,
995 				  no_unit_alloc_regs);
996 	  if (hard_reg_set_equal_p (temp_hard_regset,
997 				    temp_hard_regset2))
998 	    break;
999 	}
1000       if (j >= n)
1001 	classes[n++] = (enum reg_class) i;
1002       else if (i == GENERAL_REGS)
1003 	/* Prefer general regs.  For i386 example, it means that
1004 	   we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1005 	   (all of them consists of the same available hard
1006 	   registers).  */
1007 	classes[j] = (enum reg_class) i;
1008     }
1009   classes[n] = LIM_REG_CLASSES;
1010 
1011   /* Set up classes which can be used for allocnos as classes
1012      conatining non-empty unique sets of allocatable hard
1013      registers.  */
1014   ira_allocno_classes_num = 0;
1015   for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1016     if (ira_class_hard_regs_num[cl] > 0)
1017       ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1018   ira_important_classes_num = 0;
1019   /* Add non-allocno classes containing to non-empty set of
1020      allocatable hard regs.  */
1021   for (cl = 0; cl < N_REG_CLASSES; cl++)
1022     if (ira_class_hard_regs_num[cl] > 0)
1023       {
1024 	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1025 	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1026 	set_p = false;
1027 	for (j = 0; j < ira_allocno_classes_num; j++)
1028 	  {
1029 	    COPY_HARD_REG_SET (temp_hard_regset2,
1030 			       reg_class_contents[ira_allocno_classes[j]]);
1031 	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1032 	    if ((enum reg_class) cl == ira_allocno_classes[j])
1033 	      break;
1034 	    else if (hard_reg_set_subset_p (temp_hard_regset,
1035 					    temp_hard_regset2))
1036 	      set_p = true;
1037 	  }
1038 	if (set_p && j >= ira_allocno_classes_num)
1039 	  ira_important_classes[ira_important_classes_num++]
1040 	    = (enum reg_class) cl;
1041       }
1042   /* Now add allocno classes to the important classes.  */
1043   for (j = 0; j < ira_allocno_classes_num; j++)
1044     ira_important_classes[ira_important_classes_num++]
1045       = ira_allocno_classes[j];
1046   for (cl = 0; cl < N_REG_CLASSES; cl++)
1047     {
1048       ira_reg_allocno_class_p[cl] = false;
1049       ira_reg_pressure_class_p[cl] = false;
1050     }
1051   for (j = 0; j < ira_allocno_classes_num; j++)
1052     ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1053   setup_pressure_classes ();
1054   setup_uniform_class_p ();
1055 }
1056 
1057 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1058    given by array CLASSES of length CLASSES_NUM.  The function is used
1059    make translation any reg class to an allocno class or to an
1060    pressure class.  This translation is necessary for some
1061    calculations when we can use only allocno or pressure classes and
1062    such translation represents an approximate representation of all
1063    classes.
1064 
1065    The translation in case when allocatable hard register set of a
1066    given class is subset of allocatable hard register set of a class
1067    in CLASSES is pretty simple.  We use smallest classes from CLASSES
1068    containing a given class.  If allocatable hard register set of a
1069    given class is not a subset of any corresponding set of a class
1070    from CLASSES, we use the cheapest (with load/store point of view)
1071    class from CLASSES whose set intersects with given class set */
1072 static void
setup_class_translate_array(enum reg_class * class_translate,int classes_num,enum reg_class * classes)1073 setup_class_translate_array (enum reg_class *class_translate,
1074 			     int classes_num, enum reg_class *classes)
1075 {
1076   int cl, mode;
1077   enum reg_class aclass, best_class, *cl_ptr;
1078   int i, cost, min_cost, best_cost;
1079 
1080   for (cl = 0; cl < N_REG_CLASSES; cl++)
1081     class_translate[cl] = NO_REGS;
1082 
1083   for (i = 0; i < classes_num; i++)
1084     {
1085       aclass = classes[i];
1086       for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1087 	   (cl = *cl_ptr) != LIM_REG_CLASSES;
1088 	   cl_ptr++)
1089 	if (class_translate[cl] == NO_REGS)
1090 	  class_translate[cl] = aclass;
1091       class_translate[aclass] = aclass;
1092     }
1093   /* For classes which are not fully covered by one of given classes
1094      (in other words covered by more one given class), use the
1095      cheapest class.  */
1096   for (cl = 0; cl < N_REG_CLASSES; cl++)
1097     {
1098       if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1099 	continue;
1100       best_class = NO_REGS;
1101       best_cost = INT_MAX;
1102       for (i = 0; i < classes_num; i++)
1103 	{
1104 	  aclass = classes[i];
1105 	  COPY_HARD_REG_SET (temp_hard_regset,
1106 			     reg_class_contents[aclass]);
1107 	  AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1108 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1109 	  if (! hard_reg_set_empty_p (temp_hard_regset))
1110 	    {
1111 	      min_cost = INT_MAX;
1112 	      for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1113 		{
1114 		  cost = (ira_memory_move_cost[mode][cl][0]
1115 			  + ira_memory_move_cost[mode][cl][1]);
1116 		  if (min_cost > cost)
1117 		    min_cost = cost;
1118 		}
1119 	      if (best_class == NO_REGS || best_cost > min_cost)
1120 		{
1121 		  best_class = aclass;
1122 		  best_cost = min_cost;
1123 		}
1124 	    }
1125 	}
1126       class_translate[cl] = best_class;
1127     }
1128 }
1129 
1130 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1131    IRA_PRESSURE_CLASS_TRANSLATE.  */
1132 static void
setup_class_translate(void)1133 setup_class_translate (void)
1134 {
1135   setup_class_translate_array (ira_allocno_class_translate,
1136 			       ira_allocno_classes_num, ira_allocno_classes);
1137   setup_class_translate_array (ira_pressure_class_translate,
1138 			       ira_pressure_classes_num, ira_pressure_classes);
1139 }
1140 
1141 /* Order numbers of allocno classes in original target allocno class
1142    array, -1 for non-allocno classes.  */
1143 static int allocno_class_order[N_REG_CLASSES];
1144 
1145 /* The function used to sort the important classes.  */
1146 static int
comp_reg_classes_func(const void * v1p,const void * v2p)1147 comp_reg_classes_func (const void *v1p, const void *v2p)
1148 {
1149   enum reg_class cl1 = *(const enum reg_class *) v1p;
1150   enum reg_class cl2 = *(const enum reg_class *) v2p;
1151   enum reg_class tcl1, tcl2;
1152   int diff;
1153 
1154   tcl1 = ira_allocno_class_translate[cl1];
1155   tcl2 = ira_allocno_class_translate[cl2];
1156   if (tcl1 != NO_REGS && tcl2 != NO_REGS
1157       && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1158     return diff;
1159   return (int) cl1 - (int) cl2;
1160 }
1161 
1162 /* For correct work of function setup_reg_class_relation we need to
1163    reorder important classes according to the order of their allocno
1164    classes.  It places important classes containing the same
1165    allocatable hard register set adjacent to each other and allocno
1166    class with the allocatable hard register set right after the other
1167    important classes with the same set.
1168 
1169    In example from comments of function
1170    setup_allocno_and_important_classes, it places LEGACY_REGS and
1171    GENERAL_REGS close to each other and GENERAL_REGS is after
1172    LEGACY_REGS.  */
1173 static void
reorder_important_classes(void)1174 reorder_important_classes (void)
1175 {
1176   int i;
1177 
1178   for (i = 0; i < N_REG_CLASSES; i++)
1179     allocno_class_order[i] = -1;
1180   for (i = 0; i < ira_allocno_classes_num; i++)
1181     allocno_class_order[ira_allocno_classes[i]] = i;
1182   qsort (ira_important_classes, ira_important_classes_num,
1183 	 sizeof (enum reg_class), comp_reg_classes_func);
1184   for (i = 0; i < ira_important_classes_num; i++)
1185     ira_important_class_nums[ira_important_classes[i]] = i;
1186 }
1187 
1188 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1189    IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1190    IRA_REG_CLASSES_INTERSECT_P.  For the meaning of the relations,
1191    please see corresponding comments in ira-int.h.  */
1192 static void
setup_reg_class_relations(void)1193 setup_reg_class_relations (void)
1194 {
1195   int i, cl1, cl2, cl3;
1196   HARD_REG_SET intersection_set, union_set, temp_set2;
1197   bool important_class_p[N_REG_CLASSES];
1198 
1199   memset (important_class_p, 0, sizeof (important_class_p));
1200   for (i = 0; i < ira_important_classes_num; i++)
1201     important_class_p[ira_important_classes[i]] = true;
1202   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1203     {
1204       ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1205       for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1206 	{
1207 	  ira_reg_classes_intersect_p[cl1][cl2] = false;
1208 	  ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1209 	  ira_reg_class_subset[cl1][cl2] = NO_REGS;
1210 	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1211 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1212 	  COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1213 	  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1214 	  if (hard_reg_set_empty_p (temp_hard_regset)
1215 	      && hard_reg_set_empty_p (temp_set2))
1216 	    {
1217 	      /* The both classes have no allocatable hard registers
1218 		 -- take all class hard registers into account and use
1219 		 reg_class_subunion and reg_class_superunion.  */
1220 	      for (i = 0;; i++)
1221 		{
1222 		  cl3 = reg_class_subclasses[cl1][i];
1223 		  if (cl3 == LIM_REG_CLASSES)
1224 		    break;
1225 		  if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1226 					  (enum reg_class) cl3))
1227 		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1228 		}
1229 	      ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1230 	      ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1231 	      continue;
1232 	    }
1233 	  ira_reg_classes_intersect_p[cl1][cl2]
1234 	    = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1235 	  if (important_class_p[cl1] && important_class_p[cl2]
1236 	      && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1237 	    {
1238 	      /* CL1 and CL2 are important classes and CL1 allocatable
1239 		 hard register set is inside of CL2 allocatable hard
1240 		 registers -- make CL1 a superset of CL2.  */
1241 	      enum reg_class *p;
1242 
1243 	      p = &ira_reg_class_super_classes[cl1][0];
1244 	      while (*p != LIM_REG_CLASSES)
1245 		p++;
1246 	      *p++ = (enum reg_class) cl2;
1247 	      *p = LIM_REG_CLASSES;
1248 	    }
1249 	  ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1250 	  ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1251 	  COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1252 	  AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1253 	  AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1254 	  COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1255 	  IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1256 	  AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1257 	  for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1258 	    {
1259 	      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1260 	      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1261 	      if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1262 		{
1263 		  /* CL3 allocatable hard register set is inside of
1264 		     intersection of allocatable hard register sets
1265 		     of CL1 and CL2.  */
1266 		  if (important_class_p[cl3])
1267 		    {
1268 		      COPY_HARD_REG_SET
1269 			(temp_set2,
1270 			 reg_class_contents
1271 			 [(int) ira_reg_class_intersect[cl1][cl2]]);
1272 		      AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1273 		      if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1274 			  /* If the allocatable hard register sets are
1275 			     the same, prefer GENERAL_REGS or the
1276 			     smallest class for debugging
1277 			     purposes.  */
1278 			  || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1279 			      && (cl3 == GENERAL_REGS
1280 				  || ((ira_reg_class_intersect[cl1][cl2]
1281 				       != GENERAL_REGS)
1282 				      && hard_reg_set_subset_p
1283 				         (reg_class_contents[cl3],
1284 					  reg_class_contents
1285 					  [(int)
1286 					   ira_reg_class_intersect[cl1][cl2]])))))
1287 			ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1288 		    }
1289 		  COPY_HARD_REG_SET
1290 		    (temp_set2,
1291 		     reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1292 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1293 		  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1294 		      /* Ignore unavailable hard registers and prefer
1295 			 smallest class for debugging purposes.  */
1296 		      || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1297 			  && hard_reg_set_subset_p
1298 			     (reg_class_contents[cl3],
1299 			      reg_class_contents
1300 			      [(int) ira_reg_class_subset[cl1][cl2]])))
1301 		    ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1302 		}
1303 	      if (important_class_p[cl3]
1304 		  && hard_reg_set_subset_p (temp_hard_regset, union_set))
1305 		{
1306 		  /* CL3 allocatbale hard register set is inside of
1307 		     union of allocatable hard register sets of CL1
1308 		     and CL2.  */
1309 		  COPY_HARD_REG_SET
1310 		    (temp_set2,
1311 		     reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1312 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1313 	 	  if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1314 		      || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1315 
1316 			  && (! hard_reg_set_equal_p (temp_set2,
1317 						      temp_hard_regset)
1318 			      || cl3 == GENERAL_REGS
1319 			      /* If the allocatable hard register sets are the
1320 				 same, prefer GENERAL_REGS or the smallest
1321 				 class for debugging purposes.  */
1322 			      || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1323 				  && hard_reg_set_subset_p
1324 				     (reg_class_contents[cl3],
1325 				      reg_class_contents
1326 				      [(int) ira_reg_class_subunion[cl1][cl2]])))))
1327 		    ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1328 		}
1329 	      if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1330 		{
1331 		  /* CL3 allocatable hard register set contains union
1332 		     of allocatable hard register sets of CL1 and
1333 		     CL2.  */
1334 		  COPY_HARD_REG_SET
1335 		    (temp_set2,
1336 		     reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1337 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1338 	 	  if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1339 		      || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1340 
1341 			  && (! hard_reg_set_equal_p (temp_set2,
1342 						      temp_hard_regset)
1343 			      || cl3 == GENERAL_REGS
1344 			      /* If the allocatable hard register sets are the
1345 				 same, prefer GENERAL_REGS or the smallest
1346 				 class for debugging purposes.  */
1347 			      || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1348 				  && hard_reg_set_subset_p
1349 				     (reg_class_contents[cl3],
1350 				      reg_class_contents
1351 				      [(int) ira_reg_class_superunion[cl1][cl2]])))))
1352 		    ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1353 		}
1354 	    }
1355 	}
1356     }
1357 }
1358 
1359 /* Output all unifrom and important classes into file F.  */
1360 static void
print_unform_and_important_classes(FILE * f)1361 print_unform_and_important_classes (FILE *f)
1362 {
1363   static const char *const reg_class_names[] = REG_CLASS_NAMES;
1364   int i, cl;
1365 
1366   fprintf (f, "Uniform classes:\n");
1367   for (cl = 0; cl < N_REG_CLASSES; cl++)
1368     if (ira_uniform_class_p[cl])
1369       fprintf (f, " %s", reg_class_names[cl]);
1370   fprintf (f, "\nImportant classes:\n");
1371   for (i = 0; i < ira_important_classes_num; i++)
1372     fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1373   fprintf (f, "\n");
1374 }
1375 
1376 /* Output all possible allocno or pressure classes and their
1377    translation map into file F.  */
1378 static void
print_translated_classes(FILE * f,bool pressure_p)1379 print_translated_classes (FILE *f, bool pressure_p)
1380 {
1381   int classes_num = (pressure_p
1382 		     ? ira_pressure_classes_num : ira_allocno_classes_num);
1383   enum reg_class *classes = (pressure_p
1384 			     ? ira_pressure_classes : ira_allocno_classes);
1385   enum reg_class *class_translate = (pressure_p
1386 				     ? ira_pressure_class_translate
1387 				     : ira_allocno_class_translate);
1388   static const char *const reg_class_names[] = REG_CLASS_NAMES;
1389   int i;
1390 
1391   fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1392   for (i = 0; i < classes_num; i++)
1393     fprintf (f, " %s", reg_class_names[classes[i]]);
1394   fprintf (f, "\nClass translation:\n");
1395   for (i = 0; i < N_REG_CLASSES; i++)
1396     fprintf (f, " %s -> %s\n", reg_class_names[i],
1397 	     reg_class_names[class_translate[i]]);
1398 }
1399 
1400 /* Output all possible allocno and translation classes and the
1401    translation maps into stderr.  */
1402 void
ira_debug_allocno_classes(void)1403 ira_debug_allocno_classes (void)
1404 {
1405   print_unform_and_important_classes (stderr);
1406   print_translated_classes (stderr, false);
1407   print_translated_classes (stderr, true);
1408 }
1409 
1410 /* Set up different arrays concerning class subsets, allocno and
1411    important classes.  */
1412 static void
find_reg_classes(void)1413 find_reg_classes (void)
1414 {
1415   setup_allocno_and_important_classes ();
1416   setup_class_translate ();
1417   reorder_important_classes ();
1418   setup_reg_class_relations ();
1419 }
1420 
1421 
1422 
1423 /* Set up the array above.  */
1424 static void
setup_hard_regno_aclass(void)1425 setup_hard_regno_aclass (void)
1426 {
1427   int i;
1428 
1429   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1430     {
1431 #if 1
1432       ira_hard_regno_allocno_class[i]
1433 	= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1434 	   ? NO_REGS
1435 	   : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1436 #else
1437       int j;
1438       enum reg_class cl;
1439       ira_hard_regno_allocno_class[i] = NO_REGS;
1440       for (j = 0; j < ira_allocno_classes_num; j++)
1441  	{
1442 	  cl = ira_allocno_classes[j];
1443  	  if (ira_class_hard_reg_index[cl][i] >= 0)
1444  	    {
1445 	      ira_hard_regno_allocno_class[i] = cl;
1446  	      break;
1447  	    }
1448  	}
1449 #endif
1450     }
1451 }
1452 
1453 
1454 
1455 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.  */
1456 static void
setup_reg_class_nregs(void)1457 setup_reg_class_nregs (void)
1458 {
1459   int i, cl, cl2, m;
1460 
1461   for (m = 0; m < MAX_MACHINE_MODE; m++)
1462     {
1463       for (cl = 0; cl < N_REG_CLASSES; cl++)
1464 	ira_reg_class_max_nregs[cl][m]
1465 	  = ira_reg_class_min_nregs[cl][m]
1466 	  = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1467       for (cl = 0; cl < N_REG_CLASSES; cl++)
1468 	for (i = 0;
1469 	     (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1470 	     i++)
1471 	  if (ira_reg_class_min_nregs[cl2][m]
1472 	      < ira_reg_class_min_nregs[cl][m])
1473 	    ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1474     }
1475 }
1476 
1477 
1478 
1479 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1480    This function is called once IRA_CLASS_HARD_REGS has been initialized.  */
1481 static void
setup_prohibited_class_mode_regs(void)1482 setup_prohibited_class_mode_regs (void)
1483 {
1484   int j, k, hard_regno, cl, last_hard_regno, count;
1485 
1486   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1487     {
1488       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1489       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1490       for (j = 0; j < NUM_MACHINE_MODES; j++)
1491 	{
1492 	  count = 0;
1493 	  last_hard_regno = -1;
1494 	  CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1495 	  for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1496 	    {
1497 	      hard_regno = ira_class_hard_regs[cl][k];
1498 	      if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1499 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1500 				  hard_regno);
1501 	      else if (in_hard_reg_set_p (temp_hard_regset,
1502 					  (enum machine_mode) j, hard_regno))
1503 		{
1504 		  last_hard_regno = hard_regno;
1505 		  count++;
1506 		}
1507 	    }
1508 	  ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1509 	}
1510     }
1511 }
1512 
1513 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1514    spanning from one register pressure class to another one.  It is
1515    called after defining the pressure classes.  */
1516 static void
clarify_prohibited_class_mode_regs(void)1517 clarify_prohibited_class_mode_regs (void)
1518 {
1519   int j, k, hard_regno, cl, pclass, nregs;
1520 
1521   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1522     for (j = 0; j < NUM_MACHINE_MODES; j++)
1523       {
1524 	CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1525 	for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1526 	  {
1527 	    hard_regno = ira_class_hard_regs[cl][k];
1528 	    if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1529 	      continue;
1530 	    nregs = hard_regno_nregs[hard_regno][j];
1531 	    if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1532 	      {
1533 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1534 				  hard_regno);
1535 		 continue;
1536 	      }
1537 	    pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1538 	    for (nregs-- ;nregs >= 0; nregs--)
1539 	      if (((enum reg_class) pclass
1540 		   != ira_pressure_class_translate[REGNO_REG_CLASS
1541 						   (hard_regno + nregs)]))
1542 		{
1543 		  SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1544 				    hard_regno);
1545 		  break;
1546 		}
1547 	    if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1548 				    hard_regno))
1549 	      add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1550 				   (enum machine_mode) j, hard_regno);
1551 	  }
1552       }
1553 }
1554 
1555 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1556    and IRA_MAY_MOVE_OUT_COST for MODE.  */
1557 void
ira_init_register_move_cost(enum machine_mode mode)1558 ira_init_register_move_cost (enum machine_mode mode)
1559 {
1560   static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1561   bool all_match = true;
1562   unsigned int cl1, cl2;
1563 
1564   ira_assert (ira_register_move_cost[mode] == NULL
1565 	      && ira_may_move_in_cost[mode] == NULL
1566 	      && ira_may_move_out_cost[mode] == NULL);
1567   ira_assert (have_regs_of_mode[mode]);
1568   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1569     if (contains_reg_of_mode[cl1][mode])
1570       for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1571 	{
1572 	  int cost;
1573 	  if (!contains_reg_of_mode[cl2][mode])
1574 	    cost = 65535;
1575 	  else
1576 	    {
1577 	      cost = register_move_cost (mode, (enum reg_class) cl1,
1578 					 (enum reg_class) cl2);
1579 	      ira_assert (cost < 65535);
1580 	    }
1581 	  all_match &= (last_move_cost[cl1][cl2] == cost);
1582 	  last_move_cost[cl1][cl2] = cost;
1583 	}
1584   if (all_match && last_mode_for_init_move_cost != -1)
1585     {
1586       ira_register_move_cost[mode]
1587 	= ira_register_move_cost[last_mode_for_init_move_cost];
1588       ira_may_move_in_cost[mode]
1589 	= ira_may_move_in_cost[last_mode_for_init_move_cost];
1590       ira_may_move_out_cost[mode]
1591 	= ira_may_move_out_cost[last_mode_for_init_move_cost];
1592       return;
1593     }
1594   last_mode_for_init_move_cost = mode;
1595   ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1596   ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1597   ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1598   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1599     if (contains_reg_of_mode[cl1][mode])
1600       for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1601 	{
1602 	  int cost;
1603 	  enum reg_class *p1, *p2;
1604 
1605 	  if (last_move_cost[cl1][cl2] == 65535)
1606 	    {
1607 	      ira_register_move_cost[mode][cl1][cl2] = 65535;
1608 	      ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1609 	      ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1610 	    }
1611 	  else
1612 	    {
1613 	      cost = last_move_cost[cl1][cl2];
1614 
1615 	      for (p2 = &reg_class_subclasses[cl2][0];
1616 		   *p2 != LIM_REG_CLASSES; p2++)
1617 		if (ira_class_hard_regs_num[*p2] > 0
1618 		    && (ira_reg_class_max_nregs[*p2][mode]
1619 			<= ira_class_hard_regs_num[*p2]))
1620 		  cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1621 
1622 	      for (p1 = &reg_class_subclasses[cl1][0];
1623 		   *p1 != LIM_REG_CLASSES; p1++)
1624 		if (ira_class_hard_regs_num[*p1] > 0
1625 		    && (ira_reg_class_max_nregs[*p1][mode]
1626 			<= ira_class_hard_regs_num[*p1]))
1627 		  cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1628 
1629 	      ira_assert (cost <= 65535);
1630 	      ira_register_move_cost[mode][cl1][cl2] = cost;
1631 
1632 	      if (ira_class_subset_p[cl1][cl2])
1633 		ira_may_move_in_cost[mode][cl1][cl2] = 0;
1634 	      else
1635 		ira_may_move_in_cost[mode][cl1][cl2] = cost;
1636 
1637 	      if (ira_class_subset_p[cl2][cl1])
1638 		ira_may_move_out_cost[mode][cl1][cl2] = 0;
1639 	      else
1640 		ira_may_move_out_cost[mode][cl1][cl2] = cost;
1641 	    }
1642 	}
1643     else
1644       for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1645 	{
1646 	  ira_register_move_cost[mode][cl1][cl2] = 65535;
1647 	  ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1648 	  ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1649 	}
1650 }
1651 
1652 
1653 /* This is called once during compiler work.  It sets up
1654    different arrays whose values don't depend on the compiled
1655    function.  */
1656 void
ira_init_once(void)1657 ira_init_once (void)
1658 {
1659   ira_init_costs_once ();
1660   lra_init_once ();
1661 }
1662 
1663 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1664    ira_may_move_out_cost for each mode.  */
1665 static void
free_register_move_costs(void)1666 free_register_move_costs (void)
1667 {
1668   int mode, i;
1669 
1670   /* Reset move_cost and friends, making sure we only free shared
1671      table entries once.  */
1672   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1673     if (ira_register_move_cost[mode])
1674       {
1675 	for (i = 0;
1676 	     i < mode && (ira_register_move_cost[i]
1677 			  != ira_register_move_cost[mode]);
1678 	     i++)
1679 	  ;
1680 	if (i == mode)
1681 	  {
1682 	    free (ira_register_move_cost[mode]);
1683 	    free (ira_may_move_in_cost[mode]);
1684 	    free (ira_may_move_out_cost[mode]);
1685 	  }
1686       }
1687   memset (ira_register_move_cost, 0, sizeof ira_register_move_cost);
1688   memset (ira_may_move_in_cost, 0, sizeof ira_may_move_in_cost);
1689   memset (ira_may_move_out_cost, 0, sizeof ira_may_move_out_cost);
1690   last_mode_for_init_move_cost = -1;
1691 }
1692 
1693 /* This is called every time when register related information is
1694    changed.  */
1695 void
ira_init(void)1696 ira_init (void)
1697 {
1698   free_register_move_costs ();
1699   setup_reg_mode_hard_regset ();
1700   setup_alloc_regs (flag_omit_frame_pointer != 0);
1701   setup_class_subset_and_memory_move_costs ();
1702   setup_reg_class_nregs ();
1703   setup_prohibited_class_mode_regs ();
1704   find_reg_classes ();
1705   clarify_prohibited_class_mode_regs ();
1706   setup_hard_regno_aclass ();
1707   ira_init_costs ();
1708   lra_init ();
1709 }
1710 
1711 /* Function called once at the end of compiler work.  */
1712 void
ira_finish_once(void)1713 ira_finish_once (void)
1714 {
1715   ira_finish_costs_once ();
1716   free_register_move_costs ();
1717   lra_finish_once ();
1718 }
1719 
1720 
1721 #define ira_prohibited_mode_move_regs_initialized_p \
1722   (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1723 
1724 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS.  */
1725 static void
setup_prohibited_mode_move_regs(void)1726 setup_prohibited_mode_move_regs (void)
1727 {
1728   int i, j;
1729   rtx test_reg1, test_reg2, move_pat, move_insn;
1730 
1731   if (ira_prohibited_mode_move_regs_initialized_p)
1732     return;
1733   ira_prohibited_mode_move_regs_initialized_p = true;
1734   test_reg1 = gen_rtx_REG (VOIDmode, 0);
1735   test_reg2 = gen_rtx_REG (VOIDmode, 0);
1736   move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1737   move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1738   for (i = 0; i < NUM_MACHINE_MODES; i++)
1739     {
1740       SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1741       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1742 	{
1743 	  if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1744 	    continue;
1745 	  SET_REGNO_RAW (test_reg1, j);
1746 	  PUT_MODE (test_reg1, (enum machine_mode) i);
1747 	  SET_REGNO_RAW (test_reg2, j);
1748 	  PUT_MODE (test_reg2, (enum machine_mode) i);
1749 	  INSN_CODE (move_insn) = -1;
1750 	  recog_memoized (move_insn);
1751 	  if (INSN_CODE (move_insn) < 0)
1752 	    continue;
1753 	  extract_insn (move_insn);
1754 	  if (! constrain_operands (1))
1755 	    continue;
1756 	  CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1757 	}
1758     }
1759 }
1760 
1761 
1762 
1763 /* Return nonzero if REGNO is a particularly bad choice for reloading X.  */
1764 static bool
ira_bad_reload_regno_1(int regno,rtx x)1765 ira_bad_reload_regno_1 (int regno, rtx x)
1766 {
1767   int x_regno, n, i;
1768   ira_allocno_t a;
1769   enum reg_class pref;
1770 
1771   /* We only deal with pseudo regs.  */
1772   if (! x || GET_CODE (x) != REG)
1773     return false;
1774 
1775   x_regno = REGNO (x);
1776   if (x_regno < FIRST_PSEUDO_REGISTER)
1777     return false;
1778 
1779   /* If the pseudo prefers REGNO explicitly, then do not consider
1780      REGNO a bad spill choice.  */
1781   pref = reg_preferred_class (x_regno);
1782   if (reg_class_size[pref] == 1)
1783     return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1784 
1785   /* If the pseudo conflicts with REGNO, then we consider REGNO a
1786      poor choice for a reload regno.  */
1787   a = ira_regno_allocno_map[x_regno];
1788   n = ALLOCNO_NUM_OBJECTS (a);
1789   for (i = 0; i < n; i++)
1790     {
1791       ira_object_t obj = ALLOCNO_OBJECT (a, i);
1792       if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1793 	return true;
1794     }
1795   return false;
1796 }
1797 
1798 /* Return nonzero if REGNO is a particularly bad choice for reloading
1799    IN or OUT.  */
1800 bool
ira_bad_reload_regno(int regno,rtx in,rtx out)1801 ira_bad_reload_regno (int regno, rtx in, rtx out)
1802 {
1803   return (ira_bad_reload_regno_1 (regno, in)
1804 	  || ira_bad_reload_regno_1 (regno, out));
1805 }
1806 
1807 /* Return TRUE if *LOC contains an asm.  */
1808 static int
insn_contains_asm_1(rtx * loc,void * data ATTRIBUTE_UNUSED)1809 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1810 {
1811   if ( !*loc)
1812     return FALSE;
1813   if (GET_CODE (*loc) == ASM_OPERANDS)
1814     return TRUE;
1815   return FALSE;
1816 }
1817 
1818 
1819 /* Return TRUE if INSN contains an ASM.  */
1820 static bool
insn_contains_asm(rtx insn)1821 insn_contains_asm (rtx insn)
1822 {
1823   return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1824 }
1825 
1826 /* Add register clobbers from asm statements.  */
1827 static void
compute_regs_asm_clobbered(void)1828 compute_regs_asm_clobbered (void)
1829 {
1830   basic_block bb;
1831 
1832   FOR_EACH_BB (bb)
1833     {
1834       rtx insn;
1835       FOR_BB_INSNS_REVERSE (bb, insn)
1836 	{
1837 	  df_ref *def_rec;
1838 
1839 	  if (insn_contains_asm (insn))
1840 	    for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1841 	      {
1842 		df_ref def = *def_rec;
1843 		unsigned int dregno = DF_REF_REGNO (def);
1844 		if (HARD_REGISTER_NUM_P (dregno))
1845 		  add_to_hard_reg_set (&crtl->asm_clobbers,
1846 				       GET_MODE (DF_REF_REAL_REG (def)),
1847 				       dregno);
1848 	      }
1849 	}
1850     }
1851 }
1852 
1853 
1854 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE.
1855    If the function is called from IRA (not from the insn scheduler or
1856    RTL loop invariant motion), FROM_IRA_P is true.  */
1857 void
ira_setup_eliminable_regset(bool from_ira_p)1858 ira_setup_eliminable_regset (bool from_ira_p)
1859 {
1860 #ifdef ELIMINABLE_REGS
1861   int i;
1862   static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1863 #endif
1864   /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1865      sp for alloca.  So we can't eliminate the frame pointer in that
1866      case.  At some point, we should improve this by emitting the
1867      sp-adjusting insns for this case.  */
1868   frame_pointer_needed
1869     = (! flag_omit_frame_pointer
1870        || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1871        /* We need the frame pointer to catch stack overflow exceptions
1872 	  if the stack pointer is moving.  */
1873        || (flag_stack_check && STACK_CHECK_MOVING_SP)
1874        || crtl->accesses_prior_frames
1875        || crtl->stack_realign_needed
1876        || targetm.frame_pointer_required ());
1877 
1878   if (from_ira_p && ira_use_lra_p)
1879     /* It can change FRAME_POINTER_NEEDED.  We call it only from IRA
1880        because it is expensive.  */
1881     lra_init_elimination ();
1882 
1883   if (frame_pointer_needed)
1884     df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1885 
1886   COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1887   CLEAR_HARD_REG_SET (eliminable_regset);
1888 
1889   compute_regs_asm_clobbered ();
1890 
1891   /* Build the regset of all eliminable registers and show we can't
1892      use those that we already know won't be eliminated.  */
1893 #ifdef ELIMINABLE_REGS
1894   for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1895     {
1896       bool cannot_elim
1897 	= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1898 	   || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
1899 
1900       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1901 	{
1902 	    SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1903 
1904 	    if (cannot_elim)
1905 	      SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1906 	}
1907       else if (cannot_elim)
1908 	error ("%s cannot be used in asm here",
1909 	       reg_names[eliminables[i].from]);
1910       else
1911 	df_set_regs_ever_live (eliminables[i].from, true);
1912     }
1913 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1914   if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1915     {
1916       SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1917       if (frame_pointer_needed)
1918 	SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1919     }
1920   else if (frame_pointer_needed)
1921     error ("%s cannot be used in asm here",
1922 	   reg_names[HARD_FRAME_POINTER_REGNUM]);
1923   else
1924     df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1925 #endif
1926 
1927 #else
1928   if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1929     {
1930       SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1931       if (frame_pointer_needed)
1932 	SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1933     }
1934   else if (frame_pointer_needed)
1935     error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1936   else
1937     df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1938 #endif
1939 }
1940 
1941 
1942 
1943 /* Vector of substitutions of register numbers,
1944    used to map pseudo regs into hardware regs.
1945    This is set up as a result of register allocation.
1946    Element N is the hard reg assigned to pseudo reg N,
1947    or is -1 if no hard reg was assigned.
1948    If N is a hard reg number, element N is N.  */
1949 short *reg_renumber;
1950 
1951 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1952    the allocation found by IRA.  */
1953 static void
setup_reg_renumber(void)1954 setup_reg_renumber (void)
1955 {
1956   int regno, hard_regno;
1957   ira_allocno_t a;
1958   ira_allocno_iterator ai;
1959 
1960   caller_save_needed = 0;
1961   FOR_EACH_ALLOCNO (a, ai)
1962     {
1963       if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
1964 	continue;
1965       /* There are no caps at this point.  */
1966       ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1967       if (! ALLOCNO_ASSIGNED_P (a))
1968 	/* It can happen if A is not referenced but partially anticipated
1969 	   somewhere in a region.  */
1970 	ALLOCNO_ASSIGNED_P (a) = true;
1971       ira_free_allocno_updated_costs (a);
1972       hard_regno = ALLOCNO_HARD_REGNO (a);
1973       regno = ALLOCNO_REGNO (a);
1974       reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1975       if (hard_regno >= 0)
1976 	{
1977 	  int i, nwords;
1978 	  enum reg_class pclass;
1979 	  ira_object_t obj;
1980 
1981 	  pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1982 	  nwords = ALLOCNO_NUM_OBJECTS (a);
1983 	  for (i = 0; i < nwords; i++)
1984 	    {
1985 	      obj = ALLOCNO_OBJECT (a, i);
1986 	      IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1987 				      reg_class_contents[pclass]);
1988 	    }
1989 	  if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1990 	      && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
1991 						  call_used_reg_set))
1992 	    {
1993 	      ira_assert (!optimize || flag_caller_saves
1994 			  || (ALLOCNO_CALLS_CROSSED_NUM (a)
1995 			      == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
1996 			  || regno >= ira_reg_equiv_len
1997 			  || ira_equiv_no_lvalue_p (regno));
1998 	      caller_save_needed = 1;
1999 	    }
2000 	}
2001     }
2002 }
2003 
2004 /* Set up allocno assignment flags for further allocation
2005    improvements.  */
2006 static void
setup_allocno_assignment_flags(void)2007 setup_allocno_assignment_flags (void)
2008 {
2009   int hard_regno;
2010   ira_allocno_t a;
2011   ira_allocno_iterator ai;
2012 
2013   FOR_EACH_ALLOCNO (a, ai)
2014     {
2015       if (! ALLOCNO_ASSIGNED_P (a))
2016 	/* It can happen if A is not referenced but partially anticipated
2017 	   somewhere in a region.  */
2018 	ira_free_allocno_updated_costs (a);
2019       hard_regno = ALLOCNO_HARD_REGNO (a);
2020       /* Don't assign hard registers to allocnos which are destination
2021 	 of removed store at the end of loop.  It has no sense to keep
2022 	 the same value in different hard registers.  It is also
2023 	 impossible to assign hard registers correctly to such
2024 	 allocnos because the cost info and info about intersected
2025 	 calls are incorrect for them.  */
2026       ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2027 				|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2028 				|| (ALLOCNO_MEMORY_COST (a)
2029 				    - ALLOCNO_CLASS_COST (a)) < 0);
2030       ira_assert
2031 	(hard_regno < 0
2032 	 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2033 				   reg_class_contents[ALLOCNO_CLASS (a)]));
2034     }
2035 }
2036 
2037 /* Evaluate overall allocation cost and the costs for using hard
2038    registers and memory for allocnos.  */
2039 static void
calculate_allocation_cost(void)2040 calculate_allocation_cost (void)
2041 {
2042   int hard_regno, cost;
2043   ira_allocno_t a;
2044   ira_allocno_iterator ai;
2045 
2046   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2047   FOR_EACH_ALLOCNO (a, ai)
2048     {
2049       hard_regno = ALLOCNO_HARD_REGNO (a);
2050       ira_assert (hard_regno < 0
2051 		  || (ira_hard_reg_in_set_p
2052 		      (hard_regno, ALLOCNO_MODE (a),
2053 		       reg_class_contents[ALLOCNO_CLASS (a)])));
2054       if (hard_regno < 0)
2055 	{
2056 	  cost = ALLOCNO_MEMORY_COST (a);
2057 	  ira_mem_cost += cost;
2058 	}
2059       else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2060 	{
2061 	  cost = (ALLOCNO_HARD_REG_COSTS (a)
2062 		  [ira_class_hard_reg_index
2063 		   [ALLOCNO_CLASS (a)][hard_regno]]);
2064 	  ira_reg_cost += cost;
2065 	}
2066       else
2067 	{
2068 	  cost = ALLOCNO_CLASS_COST (a);
2069 	  ira_reg_cost += cost;
2070 	}
2071       ira_overall_cost += cost;
2072     }
2073 
2074   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2075     {
2076       fprintf (ira_dump_file,
2077 	       "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2078 	       ira_overall_cost, ira_reg_cost, ira_mem_cost,
2079 	       ira_load_cost, ira_store_cost, ira_shuffle_cost);
2080       fprintf (ira_dump_file, "+++       move loops %d, new jumps %d\n",
2081 	       ira_move_loops_num, ira_additional_jumps_num);
2082     }
2083 
2084 }
2085 
2086 #ifdef ENABLE_IRA_CHECKING
2087 /* Check the correctness of the allocation.  We do need this because
2088    of complicated code to transform more one region internal
2089    representation into one region representation.  */
2090 static void
check_allocation(void)2091 check_allocation (void)
2092 {
2093   ira_allocno_t a;
2094   int hard_regno, nregs, conflict_nregs;
2095   ira_allocno_iterator ai;
2096 
2097   FOR_EACH_ALLOCNO (a, ai)
2098     {
2099       int n = ALLOCNO_NUM_OBJECTS (a);
2100       int i;
2101 
2102       if (ALLOCNO_CAP_MEMBER (a) != NULL
2103 	  || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2104 	continue;
2105       nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2106       if (nregs == 1)
2107 	/* We allocated a single hard register.  */
2108 	n = 1;
2109       else if (n > 1)
2110 	/* We allocated multiple hard registers, and we will test
2111 	   conflicts in a granularity of single hard regs.  */
2112 	nregs = 1;
2113 
2114       for (i = 0; i < n; i++)
2115 	{
2116 	  ira_object_t obj = ALLOCNO_OBJECT (a, i);
2117 	  ira_object_t conflict_obj;
2118 	  ira_object_conflict_iterator oci;
2119 	  int this_regno = hard_regno;
2120 	  if (n > 1)
2121 	    {
2122 	      if (REG_WORDS_BIG_ENDIAN)
2123 		this_regno += n - i - 1;
2124 	      else
2125 		this_regno += i;
2126 	    }
2127 	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2128 	    {
2129 	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2130 	      int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2131 	      if (conflict_hard_regno < 0)
2132 		continue;
2133 
2134 	      conflict_nregs
2135 		= (hard_regno_nregs
2136 		   [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2137 
2138 	      if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2139 		  && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2140 		{
2141 		  if (REG_WORDS_BIG_ENDIAN)
2142 		    conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2143 					    - OBJECT_SUBWORD (conflict_obj) - 1);
2144 		  else
2145 		    conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2146 		  conflict_nregs = 1;
2147 		}
2148 
2149 	      if ((conflict_hard_regno <= this_regno
2150 		 && this_regno < conflict_hard_regno + conflict_nregs)
2151 		|| (this_regno <= conflict_hard_regno
2152 		    && conflict_hard_regno < this_regno + nregs))
2153 		{
2154 		  fprintf (stderr, "bad allocation for %d and %d\n",
2155 			   ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2156 		  gcc_unreachable ();
2157 		}
2158 	    }
2159 	}
2160     }
2161 }
2162 #endif
2163 
2164 /* Allocate REG_EQUIV_INIT.  Set up it from IRA_REG_EQUIV which should
2165    be already calculated.  */
2166 static void
setup_reg_equiv_init(void)2167 setup_reg_equiv_init (void)
2168 {
2169   int i;
2170   int max_regno = max_reg_num ();
2171 
2172   for (i = 0; i < max_regno; i++)
2173     reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2174 }
2175 
2176 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO.  INSNS
2177    are insns which were generated for such movement.  It is assumed
2178    that FROM_REGNO and TO_REGNO always have the same value at the
2179    point of any move containing such registers. This function is used
2180    to update equiv info for register shuffles on the region borders
2181    and for caller save/restore insns.  */
2182 void
ira_update_equiv_info_by_shuffle_insn(int to_regno,int from_regno,rtx insns)2183 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx insns)
2184 {
2185   rtx insn, x, note;
2186 
2187   if (! ira_reg_equiv[from_regno].defined_p
2188       && (! ira_reg_equiv[to_regno].defined_p
2189 	  || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2190 	      && ! MEM_READONLY_P (x))))
2191       return;
2192   insn = insns;
2193   if (NEXT_INSN (insn) != NULL_RTX)
2194     {
2195       if (! ira_reg_equiv[to_regno].defined_p)
2196 	{
2197 	  ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2198 	  return;
2199 	}
2200       ira_reg_equiv[to_regno].defined_p = false;
2201       ira_reg_equiv[to_regno].memory
2202 	= ira_reg_equiv[to_regno].constant
2203 	= ira_reg_equiv[to_regno].invariant
2204 	= ira_reg_equiv[to_regno].init_insns = NULL_RTX;
2205       if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2206 	fprintf (ira_dump_file,
2207 		 "      Invalidating equiv info for reg %d\n", to_regno);
2208       return;
2209     }
2210   /* It is possible that FROM_REGNO still has no equivalence because
2211      in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2212      insn was not processed yet.  */
2213   if (ira_reg_equiv[from_regno].defined_p)
2214     {
2215       ira_reg_equiv[to_regno].defined_p = true;
2216       if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2217 	{
2218 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2219 		      && ira_reg_equiv[from_regno].constant == NULL_RTX);
2220 	  ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2221 		      || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2222 	  ira_reg_equiv[to_regno].memory = x;
2223 	  if (! MEM_READONLY_P (x))
2224 	    /* We don't add the insn to insn init list because memory
2225 	       equivalence is just to say what memory is better to use
2226 	       when the pseudo is spilled.  */
2227 	    return;
2228 	}
2229       else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2230 	{
2231 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2232 	  ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2233 		      || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2234 	  ira_reg_equiv[to_regno].constant = x;
2235 	}
2236       else
2237 	{
2238 	  x = ira_reg_equiv[from_regno].invariant;
2239 	  ira_assert (x != NULL_RTX);
2240 	  ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2241 		      || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2242 	  ira_reg_equiv[to_regno].invariant = x;
2243 	}
2244       if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2245 	{
2246 	  note = set_unique_reg_note (insn, REG_EQUIV, x);
2247 	  gcc_assert (note != NULL_RTX);
2248 	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2249 	    {
2250 	      fprintf (ira_dump_file,
2251 		       "      Adding equiv note to insn %u for reg %d ",
2252 		       INSN_UID (insn), to_regno);
2253 	      dump_value_slim (ira_dump_file, x, 1);
2254 	      fprintf (ira_dump_file, "\n");
2255 	    }
2256 	}
2257     }
2258   ira_reg_equiv[to_regno].init_insns
2259     = gen_rtx_INSN_LIST (VOIDmode, insn,
2260 			 ira_reg_equiv[to_regno].init_insns);
2261   if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2262     fprintf (ira_dump_file,
2263 	     "      Adding equiv init move insn %u to reg %d\n",
2264 	     INSN_UID (insn), to_regno);
2265 }
2266 
2267 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2268    by IRA.  */
2269 static void
fix_reg_equiv_init(void)2270 fix_reg_equiv_init (void)
2271 {
2272   int max_regno = max_reg_num ();
2273   int i, new_regno, max;
2274   rtx x, prev, next, insn, set;
2275 
2276   if (max_regno_before_ira < max_regno)
2277     {
2278       max = vec_safe_length (reg_equivs);
2279       grow_reg_equivs ();
2280       for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2281 	for (prev = NULL_RTX, x = reg_equiv_init (i);
2282 	     x != NULL_RTX;
2283 	     x = next)
2284 	  {
2285 	    next = XEXP (x, 1);
2286 	    insn = XEXP (x, 0);
2287 	    set = single_set (insn);
2288 	    ira_assert (set != NULL_RTX
2289 			&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2290 	    if (REG_P (SET_DEST (set))
2291 		&& ((int) REGNO (SET_DEST (set)) == i
2292 		    || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2293 	      new_regno = REGNO (SET_DEST (set));
2294 	    else if (REG_P (SET_SRC (set))
2295 		     && ((int) REGNO (SET_SRC (set)) == i
2296 			 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2297 	      new_regno = REGNO (SET_SRC (set));
2298 	    else
2299  	      gcc_unreachable ();
2300 	    if (new_regno == i)
2301 	      prev = x;
2302 	    else
2303 	      {
2304 		/* Remove the wrong list element.  */
2305 		if (prev == NULL_RTX)
2306 		  reg_equiv_init (i) = next;
2307 		else
2308 		  XEXP (prev, 1) = next;
2309 		XEXP (x, 1) = reg_equiv_init (new_regno);
2310 		reg_equiv_init (new_regno) = x;
2311 	      }
2312 	  }
2313     }
2314 }
2315 
2316 #ifdef ENABLE_IRA_CHECKING
2317 /* Print redundant memory-memory copies.  */
2318 static void
print_redundant_copies(void)2319 print_redundant_copies (void)
2320 {
2321   int hard_regno;
2322   ira_allocno_t a;
2323   ira_copy_t cp, next_cp;
2324   ira_allocno_iterator ai;
2325 
2326   FOR_EACH_ALLOCNO (a, ai)
2327     {
2328       if (ALLOCNO_CAP_MEMBER (a) != NULL)
2329 	/* It is a cap. */
2330 	continue;
2331       hard_regno = ALLOCNO_HARD_REGNO (a);
2332       if (hard_regno >= 0)
2333 	continue;
2334       for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2335 	if (cp->first == a)
2336 	  next_cp = cp->next_first_allocno_copy;
2337 	else
2338 	  {
2339 	    next_cp = cp->next_second_allocno_copy;
2340 	    if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2341 		&& cp->insn != NULL_RTX
2342 		&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2343 	      fprintf (ira_dump_file,
2344 		       "        Redundant move from %d(freq %d):%d\n",
2345 		       INSN_UID (cp->insn), cp->freq, hard_regno);
2346 	  }
2347     }
2348 }
2349 #endif
2350 
2351 /* Setup preferred and alternative classes for new pseudo-registers
2352    created by IRA starting with START.  */
2353 static void
setup_preferred_alternate_classes_for_new_pseudos(int start)2354 setup_preferred_alternate_classes_for_new_pseudos (int start)
2355 {
2356   int i, old_regno;
2357   int max_regno = max_reg_num ();
2358 
2359   for (i = start; i < max_regno; i++)
2360     {
2361       old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2362       ira_assert (i != old_regno);
2363       setup_reg_classes (i, reg_preferred_class (old_regno),
2364 			 reg_alternate_class (old_regno),
2365 			 reg_allocno_class (old_regno));
2366       if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2367 	fprintf (ira_dump_file,
2368 		 "    New r%d: setting preferred %s, alternative %s\n",
2369 		 i, reg_class_names[reg_preferred_class (old_regno)],
2370 		 reg_class_names[reg_alternate_class (old_regno)]);
2371     }
2372 }
2373 
2374 
2375 /* The number of entries allocated in teg_info.  */
2376 static int allocated_reg_info_size;
2377 
2378 /* Regional allocation can create new pseudo-registers.  This function
2379    expands some arrays for pseudo-registers.  */
2380 static void
expand_reg_info(void)2381 expand_reg_info (void)
2382 {
2383   int i;
2384   int size = max_reg_num ();
2385 
2386   resize_reg_info ();
2387   for (i = allocated_reg_info_size; i < size; i++)
2388     setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2389   setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2390   allocated_reg_info_size = size;
2391 }
2392 
2393 /* Return TRUE if there is too high register pressure in the function.
2394    It is used to decide when stack slot sharing is worth to do.  */
2395 static bool
too_high_register_pressure_p(void)2396 too_high_register_pressure_p (void)
2397 {
2398   int i;
2399   enum reg_class pclass;
2400 
2401   for (i = 0; i < ira_pressure_classes_num; i++)
2402     {
2403       pclass = ira_pressure_classes[i];
2404       if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2405 	return true;
2406     }
2407   return false;
2408 }
2409 
2410 
2411 
2412 /* Indicate that hard register number FROM was eliminated and replaced with
2413    an offset from hard register number TO.  The status of hard registers live
2414    at the start of a basic block is updated by replacing a use of FROM with
2415    a use of TO.  */
2416 
2417 void
mark_elimination(int from,int to)2418 mark_elimination (int from, int to)
2419 {
2420   basic_block bb;
2421   bitmap r;
2422 
2423   FOR_EACH_BB (bb)
2424     {
2425       r = DF_LR_IN (bb);
2426       if (bitmap_bit_p (r, from))
2427 	{
2428 	  bitmap_clear_bit (r, from);
2429 	  bitmap_set_bit (r, to);
2430 	}
2431       if (! df_live)
2432         continue;
2433       r = DF_LIVE_IN (bb);
2434       if (bitmap_bit_p (r, from))
2435 	{
2436 	  bitmap_clear_bit (r, from);
2437 	  bitmap_set_bit (r, to);
2438 	}
2439     }
2440 }
2441 
2442 
2443 
2444 /* The length of the following array.  */
2445 int ira_reg_equiv_len;
2446 
2447 /* Info about equiv. info for each register.  */
2448 struct ira_reg_equiv *ira_reg_equiv;
2449 
2450 /* Expand ira_reg_equiv if necessary.  */
2451 void
ira_expand_reg_equiv(void)2452 ira_expand_reg_equiv (void)
2453 {
2454   int old = ira_reg_equiv_len;
2455 
2456   if (ira_reg_equiv_len > max_reg_num ())
2457     return;
2458   ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2459   ira_reg_equiv
2460     = (struct ira_reg_equiv *) xrealloc (ira_reg_equiv,
2461 					 ira_reg_equiv_len
2462 					 * sizeof (struct ira_reg_equiv));
2463   gcc_assert (old < ira_reg_equiv_len);
2464   memset (ira_reg_equiv + old, 0,
2465 	  sizeof (struct ira_reg_equiv) * (ira_reg_equiv_len - old));
2466 }
2467 
2468 static void
init_reg_equiv(void)2469 init_reg_equiv (void)
2470 {
2471   ira_reg_equiv_len = 0;
2472   ira_reg_equiv = NULL;
2473   ira_expand_reg_equiv ();
2474 }
2475 
2476 static void
finish_reg_equiv(void)2477 finish_reg_equiv (void)
2478 {
2479   free (ira_reg_equiv);
2480 }
2481 
2482 
2483 
2484 struct equivalence
2485 {
2486   /* Set when a REG_EQUIV note is found or created.  Use to
2487      keep track of what memory accesses might be created later,
2488      e.g. by reload.  */
2489   rtx replacement;
2490   rtx *src_p;
2491   /* The list of each instruction which initializes this register.  */
2492   rtx init_insns;
2493   /* Loop depth is used to recognize equivalences which appear
2494      to be present within the same loop (or in an inner loop).  */
2495   int loop_depth;
2496   /* Nonzero if this had a preexisting REG_EQUIV note.  */
2497   int is_arg_equivalence;
2498   /* Set when an attempt should be made to replace a register
2499      with the associated src_p entry.  */
2500   char replace;
2501 };
2502 
2503 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2504    structure for that register.  */
2505 static struct equivalence *reg_equiv;
2506 
2507 /* Used for communication between the following two functions: contains
2508    a MEM that we wish to ensure remains unchanged.  */
2509 static rtx equiv_mem;
2510 
2511 /* Set nonzero if EQUIV_MEM is modified.  */
2512 static int equiv_mem_modified;
2513 
2514 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2515    Called via note_stores.  */
2516 static void
validate_equiv_mem_from_store(rtx dest,const_rtx set ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)2517 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2518 			       void *data ATTRIBUTE_UNUSED)
2519 {
2520   if ((REG_P (dest)
2521        && reg_overlap_mentioned_p (dest, equiv_mem))
2522       || (MEM_P (dest)
2523 	  && anti_dependence (equiv_mem, dest)))
2524     equiv_mem_modified = 1;
2525 }
2526 
2527 /* Verify that no store between START and the death of REG invalidates
2528    MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
2529    by storing into an overlapping memory location, or with a non-const
2530    CALL_INSN.
2531 
2532    Return 1 if MEMREF remains valid.  */
2533 static int
validate_equiv_mem(rtx start,rtx reg,rtx memref)2534 validate_equiv_mem (rtx start, rtx reg, rtx memref)
2535 {
2536   rtx insn;
2537   rtx note;
2538 
2539   equiv_mem = memref;
2540   equiv_mem_modified = 0;
2541 
2542   /* If the memory reference has side effects or is volatile, it isn't a
2543      valid equivalence.  */
2544   if (side_effects_p (memref))
2545     return 0;
2546 
2547   for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2548     {
2549       if (! INSN_P (insn))
2550 	continue;
2551 
2552       if (find_reg_note (insn, REG_DEAD, reg))
2553 	return 1;
2554 
2555       /* This used to ignore readonly memory and const/pure calls.  The problem
2556 	 is the equivalent form may reference a pseudo which gets assigned a
2557 	 call clobbered hard reg.  When we later replace REG with its
2558 	 equivalent form, the value in the call-clobbered reg has been
2559 	 changed and all hell breaks loose.  */
2560       if (CALL_P (insn))
2561 	return 0;
2562 
2563       note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2564 
2565       /* If a register mentioned in MEMREF is modified via an
2566 	 auto-increment, we lose the equivalence.  Do the same if one
2567 	 dies; although we could extend the life, it doesn't seem worth
2568 	 the trouble.  */
2569 
2570       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2571 	if ((REG_NOTE_KIND (note) == REG_INC
2572 	     || REG_NOTE_KIND (note) == REG_DEAD)
2573 	    && REG_P (XEXP (note, 0))
2574 	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2575 	  return 0;
2576     }
2577 
2578   return 0;
2579 }
2580 
2581 /* Returns zero if X is known to be invariant.  */
2582 static int
equiv_init_varies_p(rtx x)2583 equiv_init_varies_p (rtx x)
2584 {
2585   RTX_CODE code = GET_CODE (x);
2586   int i;
2587   const char *fmt;
2588 
2589   switch (code)
2590     {
2591     case MEM:
2592       return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2593 
2594     case CONST:
2595     CASE_CONST_ANY:
2596     case SYMBOL_REF:
2597     case LABEL_REF:
2598       return 0;
2599 
2600     case REG:
2601       return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2602 
2603     case ASM_OPERANDS:
2604       if (MEM_VOLATILE_P (x))
2605 	return 1;
2606 
2607       /* Fall through.  */
2608 
2609     default:
2610       break;
2611     }
2612 
2613   fmt = GET_RTX_FORMAT (code);
2614   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2615     if (fmt[i] == 'e')
2616       {
2617 	if (equiv_init_varies_p (XEXP (x, i)))
2618 	  return 1;
2619       }
2620     else if (fmt[i] == 'E')
2621       {
2622 	int j;
2623 	for (j = 0; j < XVECLEN (x, i); j++)
2624 	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
2625 	    return 1;
2626       }
2627 
2628   return 0;
2629 }
2630 
2631 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2632    X is only movable if the registers it uses have equivalent initializations
2633    which appear to be within the same loop (or in an inner loop) and movable
2634    or if they are not candidates for local_alloc and don't vary.  */
2635 static int
equiv_init_movable_p(rtx x,int regno)2636 equiv_init_movable_p (rtx x, int regno)
2637 {
2638   int i, j;
2639   const char *fmt;
2640   enum rtx_code code = GET_CODE (x);
2641 
2642   switch (code)
2643     {
2644     case SET:
2645       return equiv_init_movable_p (SET_SRC (x), regno);
2646 
2647     case CC0:
2648     case CLOBBER:
2649       return 0;
2650 
2651     case PRE_INC:
2652     case PRE_DEC:
2653     case POST_INC:
2654     case POST_DEC:
2655     case PRE_MODIFY:
2656     case POST_MODIFY:
2657       return 0;
2658 
2659     case REG:
2660       return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2661 	       && reg_equiv[REGNO (x)].replace)
2662 	      || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
2663 		  && ! rtx_varies_p (x, 0)));
2664 
2665     case UNSPEC_VOLATILE:
2666       return 0;
2667 
2668     case ASM_OPERANDS:
2669       if (MEM_VOLATILE_P (x))
2670 	return 0;
2671 
2672       /* Fall through.  */
2673 
2674     default:
2675       break;
2676     }
2677 
2678   fmt = GET_RTX_FORMAT (code);
2679   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2680     switch (fmt[i])
2681       {
2682       case 'e':
2683 	if (! equiv_init_movable_p (XEXP (x, i), regno))
2684 	  return 0;
2685 	break;
2686       case 'E':
2687 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2688 	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2689 	    return 0;
2690 	break;
2691       }
2692 
2693   return 1;
2694 }
2695 
2696 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2697    true.  */
2698 static int
contains_replace_regs(rtx x)2699 contains_replace_regs (rtx x)
2700 {
2701   int i, j;
2702   const char *fmt;
2703   enum rtx_code code = GET_CODE (x);
2704 
2705   switch (code)
2706     {
2707     case CONST:
2708     case LABEL_REF:
2709     case SYMBOL_REF:
2710     CASE_CONST_ANY:
2711     case PC:
2712     case CC0:
2713     case HIGH:
2714       return 0;
2715 
2716     case REG:
2717       return reg_equiv[REGNO (x)].replace;
2718 
2719     default:
2720       break;
2721     }
2722 
2723   fmt = GET_RTX_FORMAT (code);
2724   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2725     switch (fmt[i])
2726       {
2727       case 'e':
2728 	if (contains_replace_regs (XEXP (x, i)))
2729 	  return 1;
2730 	break;
2731       case 'E':
2732 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2733 	  if (contains_replace_regs (XVECEXP (x, i, j)))
2734 	    return 1;
2735 	break;
2736       }
2737 
2738   return 0;
2739 }
2740 
2741 /* TRUE if X references a memory location that would be affected by a store
2742    to MEMREF.  */
2743 static int
memref_referenced_p(rtx memref,rtx x)2744 memref_referenced_p (rtx memref, rtx x)
2745 {
2746   int i, j;
2747   const char *fmt;
2748   enum rtx_code code = GET_CODE (x);
2749 
2750   switch (code)
2751     {
2752     case CONST:
2753     case LABEL_REF:
2754     case SYMBOL_REF:
2755     CASE_CONST_ANY:
2756     case PC:
2757     case CC0:
2758     case HIGH:
2759     case LO_SUM:
2760       return 0;
2761 
2762     case REG:
2763       return (reg_equiv[REGNO (x)].replacement
2764 	      && memref_referenced_p (memref,
2765 				      reg_equiv[REGNO (x)].replacement));
2766 
2767     case MEM:
2768       if (true_dependence (memref, VOIDmode, x))
2769 	return 1;
2770       break;
2771 
2772     case SET:
2773       /* If we are setting a MEM, it doesn't count (its address does), but any
2774 	 other SET_DEST that has a MEM in it is referencing the MEM.  */
2775       if (MEM_P (SET_DEST (x)))
2776 	{
2777 	  if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2778 	    return 1;
2779 	}
2780       else if (memref_referenced_p (memref, SET_DEST (x)))
2781 	return 1;
2782 
2783       return memref_referenced_p (memref, SET_SRC (x));
2784 
2785     default:
2786       break;
2787     }
2788 
2789   fmt = GET_RTX_FORMAT (code);
2790   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2791     switch (fmt[i])
2792       {
2793       case 'e':
2794 	if (memref_referenced_p (memref, XEXP (x, i)))
2795 	  return 1;
2796 	break;
2797       case 'E':
2798 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2799 	  if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2800 	    return 1;
2801 	break;
2802       }
2803 
2804   return 0;
2805 }
2806 
2807 /* TRUE if some insn in the range (START, END] references a memory location
2808    that would be affected by a store to MEMREF.  */
2809 static int
memref_used_between_p(rtx memref,rtx start,rtx end)2810 memref_used_between_p (rtx memref, rtx start, rtx end)
2811 {
2812   rtx insn;
2813 
2814   for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2815        insn = NEXT_INSN (insn))
2816     {
2817       if (!NONDEBUG_INSN_P (insn))
2818 	continue;
2819 
2820       if (memref_referenced_p (memref, PATTERN (insn)))
2821 	return 1;
2822 
2823       /* Nonconst functions may access memory.  */
2824       if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2825 	return 1;
2826     }
2827 
2828   return 0;
2829 }
2830 
2831 /* Mark REG as having no known equivalence.
2832    Some instructions might have been processed before and furnished
2833    with REG_EQUIV notes for this register; these notes will have to be
2834    removed.
2835    STORE is the piece of RTL that does the non-constant / conflicting
2836    assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
2837    but needs to be there because this function is called from note_stores.  */
2838 static void
no_equiv(rtx reg,const_rtx store ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)2839 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
2840 	  void *data ATTRIBUTE_UNUSED)
2841 {
2842   int regno;
2843   rtx list;
2844 
2845   if (!REG_P (reg))
2846     return;
2847   regno = REGNO (reg);
2848   list = reg_equiv[regno].init_insns;
2849   if (list == const0_rtx)
2850     return;
2851   reg_equiv[regno].init_insns = const0_rtx;
2852   reg_equiv[regno].replacement = NULL_RTX;
2853   /* This doesn't matter for equivalences made for argument registers, we
2854      should keep their initialization insns.  */
2855   if (reg_equiv[regno].is_arg_equivalence)
2856     return;
2857   ira_reg_equiv[regno].defined_p = false;
2858   ira_reg_equiv[regno].init_insns = NULL_RTX;
2859   for (; list; list =  XEXP (list, 1))
2860     {
2861       rtx insn = XEXP (list, 0);
2862       remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2863     }
2864 }
2865 
2866 /* Check whether the SUBREG is a paradoxical subreg and set the result
2867    in PDX_SUBREGS.  */
2868 
2869 static int
set_paradoxical_subreg(rtx * subreg,void * pdx_subregs)2870 set_paradoxical_subreg (rtx *subreg, void *pdx_subregs)
2871 {
2872   rtx reg;
2873 
2874   if ((*subreg) == NULL_RTX)
2875     return 1;
2876   if (GET_CODE (*subreg) != SUBREG)
2877     return 0;
2878   reg = SUBREG_REG (*subreg);
2879   if (!REG_P (reg))
2880     return 0;
2881 
2882   if (paradoxical_subreg_p (*subreg))
2883     ((bool *)pdx_subregs)[REGNO (reg)] = true;
2884 
2885   return 0;
2886 }
2887 
2888 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2889    equivalent replacement.  */
2890 
2891 static rtx
adjust_cleared_regs(rtx loc,const_rtx old_rtx ATTRIBUTE_UNUSED,void * data)2892 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2893 {
2894   if (REG_P (loc))
2895     {
2896       bitmap cleared_regs = (bitmap) data;
2897       if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2898 	return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2899 					NULL_RTX, adjust_cleared_regs, data);
2900     }
2901   return NULL_RTX;
2902 }
2903 
2904 /* Nonzero if we recorded an equivalence for a LABEL_REF.  */
2905 static int recorded_label_ref;
2906 
2907 /* Find registers that are equivalent to a single value throughout the
2908    compilation (either because they can be referenced in memory or are
2909    set once from a single constant).  Lower their priority for a
2910    register.
2911 
2912    If such a register is only referenced once, try substituting its
2913    value into the using insn.  If it succeeds, we can eliminate the
2914    register completely.
2915 
2916    Initialize init_insns in ira_reg_equiv array.
2917 
2918    Return non-zero if jump label rebuilding should be done.  */
2919 static int
update_equiv_regs(void)2920 update_equiv_regs (void)
2921 {
2922   rtx insn;
2923   basic_block bb;
2924   int loop_depth;
2925   bitmap cleared_regs;
2926   bool *pdx_subregs;
2927 
2928   /* We need to keep track of whether or not we recorded a LABEL_REF so
2929      that we know if the jump optimizer needs to be rerun.  */
2930   recorded_label_ref = 0;
2931 
2932   /* Use pdx_subregs to show whether a reg is used in a paradoxical
2933      subreg.  */
2934   pdx_subregs = XCNEWVEC (bool, max_regno);
2935 
2936   reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2937   grow_reg_equivs ();
2938 
2939   init_alias_analysis ();
2940 
2941   /* Scan insns and set pdx_subregs[regno] if the reg is used in a
2942      paradoxical subreg. Don't set such reg sequivalent to a mem,
2943      because lra will not substitute such equiv memory in order to
2944      prevent access beyond allocated memory for paradoxical memory subreg.  */
2945   FOR_EACH_BB (bb)
2946     FOR_BB_INSNS (bb, insn)
2947       if (NONDEBUG_INSN_P (insn))
2948 	for_each_rtx (&insn, set_paradoxical_subreg, (void *) pdx_subregs);
2949 
2950   /* Scan the insns and find which registers have equivalences.  Do this
2951      in a separate scan of the insns because (due to -fcse-follow-jumps)
2952      a register can be set below its use.  */
2953   FOR_EACH_BB (bb)
2954     {
2955       loop_depth = bb_loop_depth (bb);
2956 
2957       for (insn = BB_HEAD (bb);
2958 	   insn != NEXT_INSN (BB_END (bb));
2959 	   insn = NEXT_INSN (insn))
2960 	{
2961 	  rtx note;
2962 	  rtx set;
2963 	  rtx dest, src;
2964 	  int regno;
2965 
2966 	  if (! INSN_P (insn))
2967 	    continue;
2968 
2969 	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2970 	    if (REG_NOTE_KIND (note) == REG_INC)
2971 	      no_equiv (XEXP (note, 0), note, NULL);
2972 
2973 	  set = single_set (insn);
2974 
2975 	  /* If this insn contains more (or less) than a single SET,
2976 	     only mark all destinations as having no known equivalence.  */
2977 	  if (set == 0)
2978 	    {
2979 	      note_stores (PATTERN (insn), no_equiv, NULL);
2980 	      continue;
2981 	    }
2982 	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2983 	    {
2984 	      int i;
2985 
2986 	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2987 		{
2988 		  rtx part = XVECEXP (PATTERN (insn), 0, i);
2989 		  if (part != set)
2990 		    note_stores (part, no_equiv, NULL);
2991 		}
2992 	    }
2993 
2994 	  dest = SET_DEST (set);
2995 	  src = SET_SRC (set);
2996 
2997 	  /* See if this is setting up the equivalence between an argument
2998 	     register and its stack slot.  */
2999 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3000 	  if (note)
3001 	    {
3002 	      gcc_assert (REG_P (dest));
3003 	      regno = REGNO (dest);
3004 
3005 	      /* Note that we don't want to clear init_insns in
3006 		 ira_reg_equiv even if there are multiple sets of this
3007 		 register.  */
3008 	      reg_equiv[regno].is_arg_equivalence = 1;
3009 
3010 	      /* Record for reload that this is an equivalencing insn.  */
3011 	      if (rtx_equal_p (src, XEXP (note, 0)))
3012 		ira_reg_equiv[regno].init_insns
3013 		  = gen_rtx_INSN_LIST (VOIDmode, insn,
3014 				       ira_reg_equiv[regno].init_insns);
3015 
3016 	      /* Continue normally in case this is a candidate for
3017 		 replacements.  */
3018 	    }
3019 
3020 	  if (!optimize)
3021 	    continue;
3022 
3023 	  /* We only handle the case of a pseudo register being set
3024 	     once, or always to the same value.  */
3025 	  /* ??? The mn10200 port breaks if we add equivalences for
3026 	     values that need an ADDRESS_REGS register and set them equivalent
3027 	     to a MEM of a pseudo.  The actual problem is in the over-conservative
3028 	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3029 	     calculate_needs, but we traditionally work around this problem
3030 	     here by rejecting equivalences when the destination is in a register
3031 	     that's likely spilled.  This is fragile, of course, since the
3032 	     preferred class of a pseudo depends on all instructions that set
3033 	     or use it.  */
3034 
3035 	  if (!REG_P (dest)
3036 	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3037 	      || reg_equiv[regno].init_insns == const0_rtx
3038 	      || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3039 		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3040 	    {
3041 	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
3042 		 also set somewhere else to a constant.  */
3043 	      note_stores (set, no_equiv, NULL);
3044 	      continue;
3045 	    }
3046 
3047 	  /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem.  */
3048 	  if (MEM_P (src) && pdx_subregs[regno])
3049 	    {
3050 	      note_stores (set, no_equiv, NULL);
3051 	      continue;
3052 	    }
3053 
3054 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3055 
3056 	  /* cse sometimes generates function invariants, but doesn't put a
3057 	     REG_EQUAL note on the insn.  Since this note would be redundant,
3058 	     there's no point creating it earlier than here.  */
3059 	  if (! note && ! rtx_varies_p (src, 0))
3060 	    note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3061 
3062 	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3063 	     since it represents a function call */
3064 	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3065 	    note = NULL_RTX;
3066 
3067 	  if (DF_REG_DEF_COUNT (regno) != 1
3068 	      && (! note
3069 		  || rtx_varies_p (XEXP (note, 0), 0)
3070 		  || (reg_equiv[regno].replacement
3071 		      && ! rtx_equal_p (XEXP (note, 0),
3072 					reg_equiv[regno].replacement))))
3073 	    {
3074 	      no_equiv (dest, set, NULL);
3075 	      continue;
3076 	    }
3077 	  /* Record this insn as initializing this register.  */
3078 	  reg_equiv[regno].init_insns
3079 	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3080 
3081 	  /* If this register is known to be equal to a constant, record that
3082 	     it is always equivalent to the constant.  */
3083 	  if (DF_REG_DEF_COUNT (regno) == 1
3084 	      && note && ! rtx_varies_p (XEXP (note, 0), 0))
3085 	    {
3086 	      rtx note_value = XEXP (note, 0);
3087 	      remove_note (insn, note);
3088 	      set_unique_reg_note (insn, REG_EQUIV, note_value);
3089 	    }
3090 
3091 	  /* If this insn introduces a "constant" register, decrease the priority
3092 	     of that register.  Record this insn if the register is only used once
3093 	     more and the equivalence value is the same as our source.
3094 
3095 	     The latter condition is checked for two reasons:  First, it is an
3096 	     indication that it may be more efficient to actually emit the insn
3097 	     as written (if no registers are available, reload will substitute
3098 	     the equivalence).  Secondly, it avoids problems with any registers
3099 	     dying in this insn whose death notes would be missed.
3100 
3101 	     If we don't have a REG_EQUIV note, see if this insn is loading
3102 	     a register used only in one basic block from a MEM.  If so, and the
3103 	     MEM remains unchanged for the life of the register, add a REG_EQUIV
3104 	     note.  */
3105 
3106 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3107 
3108 	  if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3109 	      && MEM_P (SET_SRC (set))
3110 	      && validate_equiv_mem (insn, dest, SET_SRC (set)))
3111 	    note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3112 
3113 	  if (note)
3114 	    {
3115 	      int regno = REGNO (dest);
3116 	      rtx x = XEXP (note, 0);
3117 
3118 	      /* If we haven't done so, record for reload that this is an
3119 		 equivalencing insn.  */
3120 	      if (!reg_equiv[regno].is_arg_equivalence)
3121 		ira_reg_equiv[regno].init_insns
3122 		  = gen_rtx_INSN_LIST (VOIDmode, insn,
3123 				       ira_reg_equiv[regno].init_insns);
3124 
3125 	      /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3126 		 We might end up substituting the LABEL_REF for uses of the
3127 		 pseudo here or later.  That kind of transformation may turn an
3128 		 indirect jump into a direct jump, in which case we must rerun the
3129 		 jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
3130 	      if (GET_CODE (x) == LABEL_REF
3131 		  || (GET_CODE (x) == CONST
3132 		      && GET_CODE (XEXP (x, 0)) == PLUS
3133 		      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3134 		recorded_label_ref = 1;
3135 
3136 	      reg_equiv[regno].replacement = x;
3137 	      reg_equiv[regno].src_p = &SET_SRC (set);
3138 	      reg_equiv[regno].loop_depth = loop_depth;
3139 
3140 	      /* Don't mess with things live during setjmp.  */
3141 	      if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3142 		{
3143 		  /* Note that the statement below does not affect the priority
3144 		     in local-alloc!  */
3145 		  REG_LIVE_LENGTH (regno) *= 2;
3146 
3147 		  /* If the register is referenced exactly twice, meaning it is
3148 		     set once and used once, indicate that the reference may be
3149 		     replaced by the equivalence we computed above.  Do this
3150 		     even if the register is only used in one block so that
3151 		     dependencies can be handled where the last register is
3152 		     used in a different block (i.e. HIGH / LO_SUM sequences)
3153 		     and to reduce the number of registers alive across
3154 		     calls.  */
3155 
3156 		  if (REG_N_REFS (regno) == 2
3157 		      && (rtx_equal_p (x, src)
3158 			  || ! equiv_init_varies_p (src))
3159 		      && NONJUMP_INSN_P (insn)
3160 		      && equiv_init_movable_p (PATTERN (insn), regno))
3161 		    reg_equiv[regno].replace = 1;
3162 		}
3163 	    }
3164 	}
3165     }
3166 
3167   if (!optimize)
3168     goto out;
3169 
3170   /* A second pass, to gather additional equivalences with memory.  This needs
3171      to be done after we know which registers we are going to replace.  */
3172 
3173   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3174     {
3175       rtx set, src, dest;
3176       unsigned regno;
3177 
3178       if (! INSN_P (insn))
3179 	continue;
3180 
3181       set = single_set (insn);
3182       if (! set)
3183 	continue;
3184 
3185       dest = SET_DEST (set);
3186       src = SET_SRC (set);
3187 
3188       /* If this sets a MEM to the contents of a REG that is only used
3189 	 in a single basic block, see if the register is always equivalent
3190 	 to that memory location and if moving the store from INSN to the
3191 	 insn that set REG is safe.  If so, put a REG_EQUIV note on the
3192 	 initializing insn.
3193 
3194 	 Don't add a REG_EQUIV note if the insn already has one.  The existing
3195 	 REG_EQUIV is likely more useful than the one we are adding.
3196 
3197 	 If one of the regs in the address has reg_equiv[REGNO].replace set,
3198 	 then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
3199 	 optimization may move the set of this register immediately before
3200 	 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3201 	 the mention in the REG_EQUIV note would be to an uninitialized
3202 	 pseudo.  */
3203 
3204       if (MEM_P (dest) && REG_P (src)
3205 	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3206 	  && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3207 	  && DF_REG_DEF_COUNT (regno) == 1
3208 	  && reg_equiv[regno].init_insns != 0
3209 	  && reg_equiv[regno].init_insns != const0_rtx
3210 	  && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3211 			      REG_EQUIV, NULL_RTX)
3212 	  && ! contains_replace_regs (XEXP (dest, 0))
3213 	  && ! pdx_subregs[regno])
3214 	{
3215 	  rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
3216 	  if (validate_equiv_mem (init_insn, src, dest)
3217 	      && ! memref_used_between_p (dest, init_insn, insn)
3218 	      /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3219 		 multiple sets.  */
3220 	      && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3221 	    {
3222 	      /* This insn makes the equivalence, not the one initializing
3223 		 the register.  */
3224 	      ira_reg_equiv[regno].init_insns
3225 		= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3226 	      df_notes_rescan (init_insn);
3227 	    }
3228 	}
3229     }
3230 
3231   cleared_regs = BITMAP_ALLOC (NULL);
3232   /* Now scan all regs killed in an insn to see if any of them are
3233      registers only used that once.  If so, see if we can replace the
3234      reference with the equivalent form.  If we can, delete the
3235      initializing reference and this register will go away.  If we
3236      can't replace the reference, and the initializing reference is
3237      within the same loop (or in an inner loop), then move the register
3238      initialization just before the use, so that they are in the same
3239      basic block.  */
3240   FOR_EACH_BB_REVERSE (bb)
3241     {
3242       loop_depth = bb_loop_depth (bb);
3243       for (insn = BB_END (bb);
3244 	   insn != PREV_INSN (BB_HEAD (bb));
3245 	   insn = PREV_INSN (insn))
3246 	{
3247 	  rtx link;
3248 
3249 	  if (! INSN_P (insn))
3250 	    continue;
3251 
3252 	  /* Don't substitute into a non-local goto, this confuses CFG.  */
3253 	  if (JUMP_P (insn)
3254 	      && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3255 	    continue;
3256 
3257 	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3258 	    {
3259 	      if (REG_NOTE_KIND (link) == REG_DEAD
3260 		  /* Make sure this insn still refers to the register.  */
3261 		  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3262 		{
3263 		  int regno = REGNO (XEXP (link, 0));
3264 		  rtx equiv_insn;
3265 
3266 		  if (! reg_equiv[regno].replace
3267 		      || reg_equiv[regno].loop_depth < loop_depth
3268 		      /* There is no sense to move insns if we did
3269 			 register pressure-sensitive scheduling was
3270 			 done because it will not improve allocation
3271 			 but worsen insn schedule with a big
3272 			 probability.  */
3273 		      || (flag_sched_pressure && flag_schedule_insns))
3274 		    continue;
3275 
3276 		  /* reg_equiv[REGNO].replace gets set only when
3277 		     REG_N_REFS[REGNO] is 2, i.e. the register is set
3278 		     once and used once.  (If it were only set, but
3279 		     not used, flow would have deleted the setting
3280 		     insns.)  Hence there can only be one insn in
3281 		     reg_equiv[REGNO].init_insns.  */
3282 		  gcc_assert (reg_equiv[regno].init_insns
3283 			      && !XEXP (reg_equiv[regno].init_insns, 1));
3284 		  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3285 
3286 		  /* We may not move instructions that can throw, since
3287 		     that changes basic block boundaries and we are not
3288 		     prepared to adjust the CFG to match.  */
3289 		  if (can_throw_internal (equiv_insn))
3290 		    continue;
3291 
3292 		  if (asm_noperands (PATTERN (equiv_insn)) < 0
3293 		      && validate_replace_rtx (regno_reg_rtx[regno],
3294 					       *(reg_equiv[regno].src_p), insn))
3295 		    {
3296 		      rtx equiv_link;
3297 		      rtx last_link;
3298 		      rtx note;
3299 
3300 		      /* Find the last note.  */
3301 		      for (last_link = link; XEXP (last_link, 1);
3302 			   last_link = XEXP (last_link, 1))
3303 			;
3304 
3305 		      /* Append the REG_DEAD notes from equiv_insn.  */
3306 		      equiv_link = REG_NOTES (equiv_insn);
3307 		      while (equiv_link)
3308 			{
3309 			  note = equiv_link;
3310 			  equiv_link = XEXP (equiv_link, 1);
3311 			  if (REG_NOTE_KIND (note) == REG_DEAD)
3312 			    {
3313 			      remove_note (equiv_insn, note);
3314 			      XEXP (last_link, 1) = note;
3315 			      XEXP (note, 1) = NULL_RTX;
3316 			      last_link = note;
3317 			    }
3318 			}
3319 
3320 		      remove_death (regno, insn);
3321 		      SET_REG_N_REFS (regno, 0);
3322 		      REG_FREQ (regno) = 0;
3323 		      delete_insn (equiv_insn);
3324 
3325 		      reg_equiv[regno].init_insns
3326 			= XEXP (reg_equiv[regno].init_insns, 1);
3327 
3328 		      ira_reg_equiv[regno].init_insns = NULL_RTX;
3329 		      bitmap_set_bit (cleared_regs, regno);
3330 		    }
3331 		  /* Move the initialization of the register to just before
3332 		     INSN.  Update the flow information.  */
3333 		  else if (prev_nondebug_insn (insn) != equiv_insn)
3334 		    {
3335 		      rtx new_insn;
3336 
3337 		      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3338 		      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3339 		      REG_NOTES (equiv_insn) = 0;
3340 		      /* Rescan it to process the notes.  */
3341 		      df_insn_rescan (new_insn);
3342 
3343 		      /* Make sure this insn is recognized before
3344 			 reload begins, otherwise
3345 			 eliminate_regs_in_insn will die.  */
3346 		      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3347 
3348 		      delete_insn (equiv_insn);
3349 
3350 		      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3351 
3352 		      REG_BASIC_BLOCK (regno) = bb->index;
3353 		      REG_N_CALLS_CROSSED (regno) = 0;
3354 		      REG_FREQ_CALLS_CROSSED (regno) = 0;
3355 		      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3356 		      REG_LIVE_LENGTH (regno) = 2;
3357 
3358 		      if (insn == BB_HEAD (bb))
3359 			BB_HEAD (bb) = PREV_INSN (insn);
3360 
3361 		      ira_reg_equiv[regno].init_insns
3362 			= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3363 		      bitmap_set_bit (cleared_regs, regno);
3364 		    }
3365 		}
3366 	    }
3367 	}
3368     }
3369 
3370   if (!bitmap_empty_p (cleared_regs))
3371     {
3372       FOR_EACH_BB (bb)
3373 	{
3374 	  bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3375 	  bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3376 	  if (! df_live)
3377 	    continue;
3378 	  bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3379 	  bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3380 	}
3381 
3382       /* Last pass - adjust debug insns referencing cleared regs.  */
3383       if (MAY_HAVE_DEBUG_INSNS)
3384 	for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3385 	  if (DEBUG_INSN_P (insn))
3386 	    {
3387 	      rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3388 	      INSN_VAR_LOCATION_LOC (insn)
3389 		= simplify_replace_fn_rtx (old_loc, NULL_RTX,
3390 					   adjust_cleared_regs,
3391 					   (void *) cleared_regs);
3392 	      if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3393 		df_insn_rescan (insn);
3394 	    }
3395     }
3396 
3397   BITMAP_FREE (cleared_regs);
3398 
3399   out:
3400   /* Clean up.  */
3401 
3402   end_alias_analysis ();
3403   free (reg_equiv);
3404   free (pdx_subregs);
3405   return recorded_label_ref;
3406 }
3407 
3408 
3409 
3410 /* Set up fields memory, constant, and invariant from init_insns in
3411    the structures of array ira_reg_equiv.  */
3412 static void
setup_reg_equiv(void)3413 setup_reg_equiv (void)
3414 {
3415   int i;
3416   rtx elem, insn, set, x;
3417 
3418   for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3419     for (elem = ira_reg_equiv[i].init_insns; elem; elem = XEXP (elem, 1))
3420       {
3421 	insn = XEXP (elem, 0);
3422 	set = single_set (insn);
3423 
3424 	/* Init insns can set up equivalence when the reg is a destination or
3425 	   a source (in this case the destination is memory).  */
3426 	if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3427 	  {
3428 	    if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3429 	      x = XEXP (x, 0);
3430 	    else if (REG_P (SET_DEST (set))
3431 		     && REGNO (SET_DEST (set)) == (unsigned int) i)
3432 	      x = SET_SRC (set);
3433 	    else
3434 	      {
3435 		gcc_assert (REG_P (SET_SRC (set))
3436 			    && REGNO (SET_SRC (set)) == (unsigned int) i);
3437 		x = SET_DEST (set);
3438 	      }
3439 	    if (! function_invariant_p (x)
3440 		|| ! flag_pic
3441 		/* A function invariant is often CONSTANT_P but may
3442 		   include a register.  We promise to only pass
3443 		   CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
3444 		|| (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3445 	      {
3446 		/* It can happen that a REG_EQUIV note contains a MEM
3447 		   that is not a legitimate memory operand.  As later
3448 		   stages of reload assume that all addresses found in
3449 		   the lra_regno_equiv_* arrays were originally
3450 		   legitimate, we ignore such REG_EQUIV notes.  */
3451 		if (memory_operand (x, VOIDmode))
3452 		  {
3453 		    ira_reg_equiv[i].defined_p = true;
3454 		    ira_reg_equiv[i].memory = x;
3455 		    continue;
3456 		  }
3457 		else if (function_invariant_p (x))
3458 		  {
3459 		    enum machine_mode mode;
3460 
3461 		    mode = GET_MODE (SET_DEST (set));
3462 		    if (GET_CODE (x) == PLUS
3463 			|| x == frame_pointer_rtx || x == arg_pointer_rtx)
3464 		      /* This is PLUS of frame pointer and a constant,
3465 			 or fp, or argp.  */
3466 		      ira_reg_equiv[i].invariant = x;
3467 		    else if (targetm.legitimate_constant_p (mode, x))
3468 		      ira_reg_equiv[i].constant = x;
3469 		    else
3470 		      {
3471 			ira_reg_equiv[i].memory = force_const_mem (mode, x);
3472 			if (ira_reg_equiv[i].memory == NULL_RTX)
3473 			  {
3474 			    ira_reg_equiv[i].defined_p = false;
3475 			    ira_reg_equiv[i].init_insns = NULL_RTX;
3476 			    break;
3477 			  }
3478 		      }
3479 		    ira_reg_equiv[i].defined_p = true;
3480 		    continue;
3481 		  }
3482 	      }
3483 	  }
3484 	ira_reg_equiv[i].defined_p = false;
3485 	ira_reg_equiv[i].init_insns = NULL_RTX;
3486 	break;
3487       }
3488 }
3489 
3490 
3491 
3492 /* Print chain C to FILE.  */
3493 static void
print_insn_chain(FILE * file,struct insn_chain * c)3494 print_insn_chain (FILE *file, struct insn_chain *c)
3495 {
3496   fprintf (file, "insn=%d, ", INSN_UID(c->insn));
3497   bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3498   bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3499 }
3500 
3501 
3502 /* Print all reload_insn_chains to FILE.  */
3503 static void
print_insn_chains(FILE * file)3504 print_insn_chains (FILE *file)
3505 {
3506   struct insn_chain *c;
3507   for (c = reload_insn_chain; c ; c = c->next)
3508     print_insn_chain (file, c);
3509 }
3510 
3511 /* Return true if pseudo REGNO should be added to set live_throughout
3512    or dead_or_set of the insn chains for reload consideration.  */
3513 static bool
pseudo_for_reload_consideration_p(int regno)3514 pseudo_for_reload_consideration_p (int regno)
3515 {
3516   /* Consider spilled pseudos too for IRA because they still have a
3517      chance to get hard-registers in the reload when IRA is used.  */
3518   return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3519 }
3520 
3521 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3522    REG to the number of nregs, and INIT_VALUE to get the
3523    initialization.  ALLOCNUM need not be the regno of REG.  */
3524 static void
init_live_subregs(bool init_value,sbitmap * live_subregs,bitmap live_subregs_used,int allocnum,rtx reg)3525 init_live_subregs (bool init_value, sbitmap *live_subregs,
3526 		   bitmap live_subregs_used, int allocnum, rtx reg)
3527 {
3528   unsigned int regno = REGNO (SUBREG_REG (reg));
3529   int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3530 
3531   gcc_assert (size > 0);
3532 
3533   /* Been there, done that.  */
3534   if (bitmap_bit_p (live_subregs_used, allocnum))
3535     return;
3536 
3537   /* Create a new one.  */
3538   if (live_subregs[allocnum] == NULL)
3539     live_subregs[allocnum] = sbitmap_alloc (size);
3540 
3541   /* If the entire reg was live before blasting into subregs, we need
3542      to init all of the subregs to ones else init to 0.  */
3543   if (init_value)
3544     bitmap_ones (live_subregs[allocnum]);
3545   else
3546     bitmap_clear (live_subregs[allocnum]);
3547 
3548   bitmap_set_bit (live_subregs_used, allocnum);
3549 }
3550 
3551 /* Walk the insns of the current function and build reload_insn_chain,
3552    and record register life information.  */
3553 static void
build_insn_chain(void)3554 build_insn_chain (void)
3555 {
3556   unsigned int i;
3557   struct insn_chain **p = &reload_insn_chain;
3558   basic_block bb;
3559   struct insn_chain *c = NULL;
3560   struct insn_chain *next = NULL;
3561   bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
3562   bitmap elim_regset = BITMAP_ALLOC (NULL);
3563   /* live_subregs is a vector used to keep accurate information about
3564      which hardregs are live in multiword pseudos.  live_subregs and
3565      live_subregs_used are indexed by pseudo number.  The live_subreg
3566      entry for a particular pseudo is only used if the corresponding
3567      element is non zero in live_subregs_used.  The sbitmap size of
3568      live_subreg[allocno] is number of bytes that the pseudo can
3569      occupy.  */
3570   sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
3571   bitmap live_subregs_used = BITMAP_ALLOC (NULL);
3572 
3573   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3574     if (TEST_HARD_REG_BIT (eliminable_regset, i))
3575       bitmap_set_bit (elim_regset, i);
3576   FOR_EACH_BB_REVERSE (bb)
3577     {
3578       bitmap_iterator bi;
3579       rtx insn;
3580 
3581       CLEAR_REG_SET (live_relevant_regs);
3582       bitmap_clear (live_subregs_used);
3583 
3584       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
3585 	{
3586 	  if (i >= FIRST_PSEUDO_REGISTER)
3587 	    break;
3588 	  bitmap_set_bit (live_relevant_regs, i);
3589 	}
3590 
3591       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
3592 				FIRST_PSEUDO_REGISTER, i, bi)
3593 	{
3594 	  if (pseudo_for_reload_consideration_p (i))
3595 	    bitmap_set_bit (live_relevant_regs, i);
3596 	}
3597 
3598       FOR_BB_INSNS_REVERSE (bb, insn)
3599 	{
3600 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
3601 	    {
3602 	      unsigned int uid = INSN_UID (insn);
3603 	      df_ref *def_rec;
3604 	      df_ref *use_rec;
3605 
3606 	      c = new_insn_chain ();
3607 	      c->next = next;
3608 	      next = c;
3609 	      *p = c;
3610 	      p = &c->prev;
3611 
3612 	      c->insn = insn;
3613 	      c->block = bb->index;
3614 
3615 	      if (NONDEBUG_INSN_P (insn))
3616 		for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3617 		  {
3618 		    df_ref def = *def_rec;
3619 		    unsigned int regno = DF_REF_REGNO (def);
3620 
3621 		    /* Ignore may clobbers because these are generated
3622 		       from calls. However, every other kind of def is
3623 		       added to dead_or_set.  */
3624 		    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
3625 		      {
3626 			if (regno < FIRST_PSEUDO_REGISTER)
3627 			  {
3628 			    if (!fixed_regs[regno])
3629 			      bitmap_set_bit (&c->dead_or_set, regno);
3630 			  }
3631 			else if (pseudo_for_reload_consideration_p (regno))
3632 			  bitmap_set_bit (&c->dead_or_set, regno);
3633 		      }
3634 
3635 		    if ((regno < FIRST_PSEUDO_REGISTER
3636 			 || reg_renumber[regno] >= 0
3637 			 || ira_conflicts_p)
3638 			&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
3639 		      {
3640 			rtx reg = DF_REF_REG (def);
3641 
3642 			/* We can model subregs, but not if they are
3643 			   wrapped in ZERO_EXTRACTS.  */
3644 			if (GET_CODE (reg) == SUBREG
3645 			    && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
3646 			  {
3647 			    unsigned int start = SUBREG_BYTE (reg);
3648 			    unsigned int last = start
3649 			      + GET_MODE_SIZE (GET_MODE (reg));
3650 
3651 			    init_live_subregs
3652 			      (bitmap_bit_p (live_relevant_regs, regno),
3653 			       live_subregs, live_subregs_used, regno, reg);
3654 
3655 			    if (!DF_REF_FLAGS_IS_SET
3656 				(def, DF_REF_STRICT_LOW_PART))
3657 			      {
3658 				/* Expand the range to cover entire words.
3659 				   Bytes added here are "don't care".  */
3660 				start
3661 				  = start / UNITS_PER_WORD * UNITS_PER_WORD;
3662 				last = ((last + UNITS_PER_WORD - 1)
3663 					/ UNITS_PER_WORD * UNITS_PER_WORD);
3664 			      }
3665 
3666 			    /* Ignore the paradoxical bits.  */
3667 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
3668 			      last = SBITMAP_SIZE (live_subregs[regno]);
3669 
3670 			    while (start < last)
3671 			      {
3672 				bitmap_clear_bit (live_subregs[regno], start);
3673 				start++;
3674 			      }
3675 
3676 			    if (bitmap_empty_p (live_subregs[regno]))
3677 			      {
3678 				bitmap_clear_bit (live_subregs_used, regno);
3679 				bitmap_clear_bit (live_relevant_regs, regno);
3680 			      }
3681 			    else
3682 			      /* Set live_relevant_regs here because
3683 				 that bit has to be true to get us to
3684 				 look at the live_subregs fields.  */
3685 			      bitmap_set_bit (live_relevant_regs, regno);
3686 			  }
3687 			else
3688 			  {
3689 			    /* DF_REF_PARTIAL is generated for
3690 			       subregs, STRICT_LOW_PART, and
3691 			       ZERO_EXTRACT.  We handle the subreg
3692 			       case above so here we have to keep from
3693 			       modeling the def as a killing def.  */
3694 			    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
3695 			      {
3696 				bitmap_clear_bit (live_subregs_used, regno);
3697 				bitmap_clear_bit (live_relevant_regs, regno);
3698 			      }
3699 			  }
3700 		      }
3701 		  }
3702 
3703 	      bitmap_and_compl_into (live_relevant_regs, elim_regset);
3704 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
3705 
3706 	      if (NONDEBUG_INSN_P (insn))
3707 		for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3708 		  {
3709 		    df_ref use = *use_rec;
3710 		    unsigned int regno = DF_REF_REGNO (use);
3711 		    rtx reg = DF_REF_REG (use);
3712 
3713 		    /* DF_REF_READ_WRITE on a use means that this use
3714 		       is fabricated from a def that is a partial set
3715 		       to a multiword reg.  Here, we only model the
3716 		       subreg case that is not wrapped in ZERO_EXTRACT
3717 		       precisely so we do not need to look at the
3718 		       fabricated use. */
3719 		    if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3720 			&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
3721 			&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3722 		      continue;
3723 
3724 		    /* Add the last use of each var to dead_or_set.  */
3725 		    if (!bitmap_bit_p (live_relevant_regs, regno))
3726 		      {
3727 			if (regno < FIRST_PSEUDO_REGISTER)
3728 			  {
3729 			    if (!fixed_regs[regno])
3730 			      bitmap_set_bit (&c->dead_or_set, regno);
3731 			  }
3732 			else if (pseudo_for_reload_consideration_p (regno))
3733 			  bitmap_set_bit (&c->dead_or_set, regno);
3734 		      }
3735 
3736 		    if (regno < FIRST_PSEUDO_REGISTER
3737 			|| pseudo_for_reload_consideration_p (regno))
3738 		      {
3739 			if (GET_CODE (reg) == SUBREG
3740 			    && !DF_REF_FLAGS_IS_SET (use,
3741 						     DF_REF_SIGN_EXTRACT
3742 						     | DF_REF_ZERO_EXTRACT))
3743 			  {
3744 			    unsigned int start = SUBREG_BYTE (reg);
3745 			    unsigned int last = start
3746 			      + GET_MODE_SIZE (GET_MODE (reg));
3747 
3748 			    init_live_subregs
3749 			      (bitmap_bit_p (live_relevant_regs, regno),
3750 			       live_subregs, live_subregs_used, regno, reg);
3751 
3752 			    /* Ignore the paradoxical bits.  */
3753 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
3754 			      last = SBITMAP_SIZE (live_subregs[regno]);
3755 
3756 			    while (start < last)
3757 			      {
3758 				bitmap_set_bit (live_subregs[regno], start);
3759 				start++;
3760 			      }
3761 			  }
3762 			else
3763 			  /* Resetting the live_subregs_used is
3764 			     effectively saying do not use the subregs
3765 			     because we are reading the whole
3766 			     pseudo.  */
3767 			  bitmap_clear_bit (live_subregs_used, regno);
3768 			bitmap_set_bit (live_relevant_regs, regno);
3769 		      }
3770 		  }
3771 	    }
3772 	}
3773 
3774       /* FIXME!! The following code is a disaster.  Reload needs to see the
3775 	 labels and jump tables that are just hanging out in between
3776 	 the basic blocks.  See pr33676.  */
3777       insn = BB_HEAD (bb);
3778 
3779       /* Skip over the barriers and cruft.  */
3780       while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3781 		      || BLOCK_FOR_INSN (insn) == bb))
3782 	insn = PREV_INSN (insn);
3783 
3784       /* While we add anything except barriers and notes, the focus is
3785 	 to get the labels and jump tables into the
3786 	 reload_insn_chain.  */
3787       while (insn)
3788 	{
3789 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
3790 	    {
3791 	      if (BLOCK_FOR_INSN (insn))
3792 		break;
3793 
3794 	      c = new_insn_chain ();
3795 	      c->next = next;
3796 	      next = c;
3797 	      *p = c;
3798 	      p = &c->prev;
3799 
3800 	      /* The block makes no sense here, but it is what the old
3801 		 code did.  */
3802 	      c->block = bb->index;
3803 	      c->insn = insn;
3804 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
3805 	    }
3806 	  insn = PREV_INSN (insn);
3807 	}
3808     }
3809 
3810   reload_insn_chain = c;
3811   *p = NULL;
3812 
3813   for (i = 0; i < (unsigned int) max_regno; i++)
3814     if (live_subregs[i] != NULL)
3815       sbitmap_free (live_subregs[i]);
3816   free (live_subregs);
3817   BITMAP_FREE (live_subregs_used);
3818   BITMAP_FREE (live_relevant_regs);
3819   BITMAP_FREE (elim_regset);
3820 
3821   if (dump_file)
3822     print_insn_chains (dump_file);
3823 }
3824 
3825 /* Examine the rtx found in *LOC, which is read or written to as determined
3826    by TYPE.  Return false if we find a reason why an insn containing this
3827    rtx should not be moved (such as accesses to non-constant memory), true
3828    otherwise.  */
3829 static bool
rtx_moveable_p(rtx * loc,enum op_type type)3830 rtx_moveable_p (rtx *loc, enum op_type type)
3831 {
3832   const char *fmt;
3833   rtx x = *loc;
3834   enum rtx_code code = GET_CODE (x);
3835   int i, j;
3836 
3837   code = GET_CODE (x);
3838   switch (code)
3839     {
3840     case CONST:
3841     CASE_CONST_ANY:
3842     case SYMBOL_REF:
3843     case LABEL_REF:
3844       return true;
3845 
3846     case PC:
3847       return type == OP_IN;
3848 
3849     case CC0:
3850       return false;
3851 
3852     case REG:
3853       if (x == frame_pointer_rtx)
3854 	return true;
3855       if (HARD_REGISTER_P (x))
3856 	return false;
3857 
3858       return true;
3859 
3860     case MEM:
3861       if (type == OP_IN && MEM_READONLY_P (x))
3862 	return rtx_moveable_p (&XEXP (x, 0), OP_IN);
3863       return false;
3864 
3865     case SET:
3866       return (rtx_moveable_p (&SET_SRC (x), OP_IN)
3867 	      && rtx_moveable_p (&SET_DEST (x), OP_OUT));
3868 
3869     case STRICT_LOW_PART:
3870       return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
3871 
3872     case ZERO_EXTRACT:
3873     case SIGN_EXTRACT:
3874       return (rtx_moveable_p (&XEXP (x, 0), type)
3875 	      && rtx_moveable_p (&XEXP (x, 1), OP_IN)
3876 	      && rtx_moveable_p (&XEXP (x, 2), OP_IN));
3877 
3878     case CLOBBER:
3879       return rtx_moveable_p (&SET_DEST (x), OP_OUT);
3880 
3881     case UNSPEC_VOLATILE:
3882       /* It is a bad idea to consider insns with with such rtl
3883 	 as moveable ones.  The insn scheduler also considers them as barrier
3884 	 for a reason.  */
3885       return false;
3886 
3887     default:
3888       break;
3889     }
3890 
3891   fmt = GET_RTX_FORMAT (code);
3892   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3893     {
3894       if (fmt[i] == 'e')
3895 	{
3896 	  if (!rtx_moveable_p (&XEXP (x, i), type))
3897 	    return false;
3898 	}
3899       else if (fmt[i] == 'E')
3900 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3901 	  {
3902 	    if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
3903 	      return false;
3904 	  }
3905     }
3906   return true;
3907 }
3908 
3909 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
3910    to give dominance relationships between two insns I1 and I2.  */
3911 static bool
insn_dominated_by_p(rtx i1,rtx i2,int * uid_luid)3912 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
3913 {
3914   basic_block bb1 = BLOCK_FOR_INSN (i1);
3915   basic_block bb2 = BLOCK_FOR_INSN (i2);
3916 
3917   if (bb1 == bb2)
3918     return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
3919   return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
3920 }
3921 
3922 /* Record the range of register numbers added by find_moveable_pseudos.  */
3923 int first_moveable_pseudo, last_moveable_pseudo;
3924 
3925 /* These two vectors hold data for every register added by
3926    find_movable_pseudos, with index 0 holding data for the
3927    first_moveable_pseudo.  */
3928 /* The original home register.  */
3929 static vec<rtx> pseudo_replaced_reg;
3930 
3931 /* Look for instances where we have an instruction that is known to increase
3932    register pressure, and whose result is not used immediately.  If it is
3933    possible to move the instruction downwards to just before its first use,
3934    split its lifetime into two ranges.  We create a new pseudo to compute the
3935    value, and emit a move instruction just before the first use.  If, after
3936    register allocation, the new pseudo remains unallocated, the function
3937    move_unallocated_pseudos then deletes the move instruction and places
3938    the computation just before the first use.
3939 
3940    Such a move is safe and profitable if all the input registers remain live
3941    and unchanged between the original computation and its first use.  In such
3942    a situation, the computation is known to increase register pressure, and
3943    moving it is known to at least not worsen it.
3944 
3945    We restrict moves to only those cases where a register remains unallocated,
3946    in order to avoid interfering too much with the instruction schedule.  As
3947    an exception, we may move insns which only modify their input register
3948    (typically induction variables), as this increases the freedom for our
3949    intended transformation, and does not limit the second instruction
3950    scheduler pass.  */
3951 
3952 static void
find_moveable_pseudos(void)3953 find_moveable_pseudos (void)
3954 {
3955   unsigned i;
3956   int max_regs = max_reg_num ();
3957   int max_uid = get_max_uid ();
3958   basic_block bb;
3959   int *uid_luid = XNEWVEC (int, max_uid);
3960   rtx *closest_uses = XNEWVEC (rtx, max_regs);
3961   /* A set of registers which are live but not modified throughout a block.  */
3962   bitmap_head *bb_transp_live = XNEWVEC (bitmap_head, last_basic_block);
3963   /* A set of registers which only exist in a given basic block.  */
3964   bitmap_head *bb_local = XNEWVEC (bitmap_head, last_basic_block);
3965   /* A set of registers which are set once, in an instruction that can be
3966      moved freely downwards, but are otherwise transparent to a block.  */
3967   bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head, last_basic_block);
3968   bitmap_head live, used, set, interesting, unusable_as_input;
3969   bitmap_iterator bi;
3970   bitmap_initialize (&interesting, 0);
3971 
3972   first_moveable_pseudo = max_regs;
3973   pseudo_replaced_reg.release ();
3974   pseudo_replaced_reg.safe_grow_cleared (max_regs);
3975 
3976   df_analyze ();
3977   calculate_dominance_info (CDI_DOMINATORS);
3978 
3979   i = 0;
3980   bitmap_initialize (&live, 0);
3981   bitmap_initialize (&used, 0);
3982   bitmap_initialize (&set, 0);
3983   bitmap_initialize (&unusable_as_input, 0);
3984   FOR_EACH_BB (bb)
3985     {
3986       rtx insn;
3987       bitmap transp = bb_transp_live + bb->index;
3988       bitmap moveable = bb_moveable_reg_sets + bb->index;
3989       bitmap local = bb_local + bb->index;
3990 
3991       bitmap_initialize (local, 0);
3992       bitmap_initialize (transp, 0);
3993       bitmap_initialize (moveable, 0);
3994       bitmap_copy (&live, df_get_live_out (bb));
3995       bitmap_and_into (&live, df_get_live_in (bb));
3996       bitmap_copy (transp, &live);
3997       bitmap_clear (moveable);
3998       bitmap_clear (&live);
3999       bitmap_clear (&used);
4000       bitmap_clear (&set);
4001       FOR_BB_INSNS (bb, insn)
4002 	if (NONDEBUG_INSN_P (insn))
4003 	  {
4004 	    df_ref *u_rec, *d_rec;
4005 
4006 	    uid_luid[INSN_UID (insn)] = i++;
4007 
4008 	    u_rec = DF_INSN_USES (insn);
4009 	    d_rec = DF_INSN_DEFS (insn);
4010 	    if (d_rec[0] != NULL && d_rec[1] == NULL
4011 		&& u_rec[0] != NULL && u_rec[1] == NULL
4012 		&& DF_REF_REGNO (*u_rec) == DF_REF_REGNO (*d_rec)
4013 		&& !bitmap_bit_p (&set, DF_REF_REGNO (*u_rec))
4014 		&& rtx_moveable_p (&PATTERN (insn), OP_IN))
4015 	      {
4016 		unsigned regno = DF_REF_REGNO (*u_rec);
4017 		bitmap_set_bit (moveable, regno);
4018 		bitmap_set_bit (&set, regno);
4019 		bitmap_set_bit (&used, regno);
4020 		bitmap_clear_bit (transp, regno);
4021 		continue;
4022 	      }
4023 	    while (*u_rec)
4024 	      {
4025 		unsigned regno = DF_REF_REGNO (*u_rec);
4026 		bitmap_set_bit (&used, regno);
4027 		if (bitmap_clear_bit (moveable, regno))
4028 		  bitmap_clear_bit (transp, regno);
4029 		u_rec++;
4030 	      }
4031 
4032 	    while (*d_rec)
4033 	      {
4034 		unsigned regno = DF_REF_REGNO (*d_rec);
4035 		bitmap_set_bit (&set, regno);
4036 		bitmap_clear_bit (transp, regno);
4037 		bitmap_clear_bit (moveable, regno);
4038 		d_rec++;
4039 	      }
4040 	  }
4041     }
4042 
4043   bitmap_clear (&live);
4044   bitmap_clear (&used);
4045   bitmap_clear (&set);
4046 
4047   FOR_EACH_BB (bb)
4048     {
4049       bitmap local = bb_local + bb->index;
4050       rtx insn;
4051 
4052       FOR_BB_INSNS (bb, insn)
4053 	if (NONDEBUG_INSN_P (insn))
4054 	  {
4055 	    rtx def_insn, closest_use, note;
4056 	    df_ref *def_rec, def, use;
4057 	    unsigned regno;
4058 	    bool all_dominated, all_local;
4059 	    enum machine_mode mode;
4060 
4061 	    def_rec = DF_INSN_DEFS (insn);
4062 	    /* There must be exactly one def in this insn.  */
4063 	    def = *def_rec;
4064 	    if (!def || def_rec[1] || !single_set (insn))
4065 	      continue;
4066 	    /* This must be the only definition of the reg.  We also limit
4067 	       which modes we deal with so that we can assume we can generate
4068 	       move instructions.  */
4069 	    regno = DF_REF_REGNO (def);
4070 	    mode = GET_MODE (DF_REF_REG (def));
4071 	    if (DF_REG_DEF_COUNT (regno) != 1
4072 		|| !DF_REF_INSN_INFO (def)
4073 		|| HARD_REGISTER_NUM_P (regno)
4074 		|| DF_REG_EQ_USE_COUNT (regno) > 0
4075 		|| (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4076 	      continue;
4077 	    def_insn = DF_REF_INSN (def);
4078 
4079 	    for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4080 	      if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4081 		break;
4082 
4083 	    if (note)
4084 	      {
4085 		if (dump_file)
4086 		  fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4087 			   regno);
4088 		bitmap_set_bit (&unusable_as_input, regno);
4089 		continue;
4090 	      }
4091 
4092 	    use = DF_REG_USE_CHAIN (regno);
4093 	    all_dominated = true;
4094 	    all_local = true;
4095 	    closest_use = NULL_RTX;
4096 	    for (; use; use = DF_REF_NEXT_REG (use))
4097 	      {
4098 		rtx insn;
4099 		if (!DF_REF_INSN_INFO (use))
4100 		  {
4101 		    all_dominated = false;
4102 		    all_local = false;
4103 		    break;
4104 		  }
4105 		insn = DF_REF_INSN (use);
4106 		if (DEBUG_INSN_P (insn))
4107 		  continue;
4108 		if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4109 		  all_local = false;
4110 		if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4111 		  all_dominated = false;
4112 		if (closest_use != insn && closest_use != const0_rtx)
4113 		  {
4114 		    if (closest_use == NULL_RTX)
4115 		      closest_use = insn;
4116 		    else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4117 		      closest_use = insn;
4118 		    else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4119 		      closest_use = const0_rtx;
4120 		  }
4121 	      }
4122 	    if (!all_dominated)
4123 	      {
4124 		if (dump_file)
4125 		  fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4126 			   regno);
4127 		continue;
4128 	      }
4129 	    if (all_local)
4130 	      bitmap_set_bit (local, regno);
4131 	    if (closest_use == const0_rtx || closest_use == NULL
4132 		|| next_nonnote_nondebug_insn (def_insn) == closest_use)
4133 	      {
4134 		if (dump_file)
4135 		  fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4136 			   closest_use == const0_rtx || closest_use == NULL
4137 			   ? " (no unique first use)" : "");
4138 		continue;
4139 	      }
4140 #ifdef HAVE_cc0
4141 	    if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4142 	      {
4143 		if (dump_file)
4144 		  fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4145 			   regno);
4146 		continue;
4147 	      }
4148 #endif
4149 	    bitmap_set_bit (&interesting, regno);
4150 	    closest_uses[regno] = closest_use;
4151 
4152 	    if (dump_file && (all_local || all_dominated))
4153 	      {
4154 		fprintf (dump_file, "Reg %u:", regno);
4155 		if (all_local)
4156 		  fprintf (dump_file, " local to bb %d", bb->index);
4157 		if (all_dominated)
4158 		  fprintf (dump_file, " def dominates all uses");
4159 		if (closest_use != const0_rtx)
4160 		  fprintf (dump_file, " has unique first use");
4161 		fputs ("\n", dump_file);
4162 	      }
4163 	  }
4164     }
4165 
4166   EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4167     {
4168       df_ref def = DF_REG_DEF_CHAIN (i);
4169       rtx def_insn = DF_REF_INSN (def);
4170       basic_block def_block = BLOCK_FOR_INSN (def_insn);
4171       bitmap def_bb_local = bb_local + def_block->index;
4172       bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4173       bitmap def_bb_transp = bb_transp_live + def_block->index;
4174       bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4175       rtx use_insn = closest_uses[i];
4176       df_ref *def_insn_use_rec = DF_INSN_USES (def_insn);
4177       bool all_ok = true;
4178       bool all_transp = true;
4179 
4180       if (!REG_P (DF_REF_REG (def)))
4181 	continue;
4182 
4183       if (!local_to_bb_p)
4184 	{
4185 	  if (dump_file)
4186 	    fprintf (dump_file, "Reg %u not local to one basic block\n",
4187 		     i);
4188 	  continue;
4189 	}
4190       if (reg_equiv_init (i) != NULL_RTX)
4191 	{
4192 	  if (dump_file)
4193 	    fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4194 		     i);
4195 	  continue;
4196 	}
4197       if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4198 	{
4199 	  if (dump_file)
4200 	    fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4201 		     INSN_UID (def_insn), i);
4202 	  continue;
4203 	}
4204       if (dump_file)
4205 	fprintf (dump_file, "Examining insn %d, def for %d\n",
4206 		 INSN_UID (def_insn), i);
4207       while (*def_insn_use_rec != NULL)
4208 	{
4209 	  df_ref use = *def_insn_use_rec;
4210 	  unsigned regno = DF_REF_REGNO (use);
4211 	  if (bitmap_bit_p (&unusable_as_input, regno))
4212 	    {
4213 	      all_ok = false;
4214 	      if (dump_file)
4215 		fprintf (dump_file, "  found unusable input reg %u.\n", regno);
4216 	      break;
4217 	    }
4218 	  if (!bitmap_bit_p (def_bb_transp, regno))
4219 	    {
4220 	      if (bitmap_bit_p (def_bb_moveable, regno)
4221 		  && !control_flow_insn_p (use_insn)
4222 #ifdef HAVE_cc0
4223 		  && !sets_cc0_p (use_insn)
4224 #endif
4225 		  )
4226 		{
4227 		  if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4228 		    {
4229 		      rtx x = NEXT_INSN (def_insn);
4230 		      while (!modified_in_p (DF_REF_REG (use), x))
4231 			{
4232 			  gcc_assert (x != use_insn);
4233 			  x = NEXT_INSN (x);
4234 			}
4235 		      if (dump_file)
4236 			fprintf (dump_file, "  input reg %u modified but insn %d moveable\n",
4237 				 regno, INSN_UID (x));
4238 		      emit_insn_after (PATTERN (x), use_insn);
4239 		      set_insn_deleted (x);
4240 		    }
4241 		  else
4242 		    {
4243 		      if (dump_file)
4244 			fprintf (dump_file, "  input reg %u modified between def and use\n",
4245 				 regno);
4246 		      all_transp = false;
4247 		    }
4248 		}
4249 	      else
4250 		all_transp = false;
4251 	    }
4252 
4253 	  def_insn_use_rec++;
4254 	}
4255       if (!all_ok)
4256 	continue;
4257       if (!dbg_cnt (ira_move))
4258 	break;
4259       if (dump_file)
4260 	fprintf (dump_file, "  all ok%s\n", all_transp ? " and transp" : "");
4261 
4262       if (all_transp)
4263 	{
4264 	  rtx def_reg = DF_REF_REG (def);
4265 	  rtx newreg = ira_create_new_reg (def_reg);
4266 	  if (validate_change (def_insn, DF_REF_LOC (def), newreg, 0))
4267 	    {
4268 	      unsigned nregno = REGNO (newreg);
4269 	      emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4270 	      nregno -= max_regs;
4271 	      pseudo_replaced_reg[nregno] = def_reg;
4272 	    }
4273 	}
4274     }
4275 
4276   FOR_EACH_BB (bb)
4277     {
4278       bitmap_clear (bb_local + bb->index);
4279       bitmap_clear (bb_transp_live + bb->index);
4280       bitmap_clear (bb_moveable_reg_sets + bb->index);
4281     }
4282   bitmap_clear (&interesting);
4283   bitmap_clear (&unusable_as_input);
4284   free (uid_luid);
4285   free (closest_uses);
4286   free (bb_local);
4287   free (bb_transp_live);
4288   free (bb_moveable_reg_sets);
4289 
4290   last_moveable_pseudo = max_reg_num ();
4291 
4292   fix_reg_equiv_init ();
4293   expand_reg_info ();
4294   regstat_free_n_sets_and_refs ();
4295   regstat_free_ri ();
4296   regstat_init_n_sets_and_refs ();
4297   regstat_compute_ri ();
4298   free_dominance_info (CDI_DOMINATORS);
4299 }
4300 
4301 /* Perform the second half of the transformation started in
4302    find_moveable_pseudos.  We look for instances where the newly introduced
4303    pseudo remains unallocated, and remove it by moving the definition to
4304    just before its use, replacing the move instruction generated by
4305    find_moveable_pseudos.  */
4306 static void
move_unallocated_pseudos(void)4307 move_unallocated_pseudos (void)
4308 {
4309   int i;
4310   for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4311     if (reg_renumber[i] < 0)
4312       {
4313 	int idx = i - first_moveable_pseudo;
4314 	rtx other_reg = pseudo_replaced_reg[idx];
4315 	rtx def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4316 	/* The use must follow all definitions of OTHER_REG, so we can
4317 	   insert the new definition immediately after any of them.  */
4318 	df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4319 	rtx move_insn = DF_REF_INSN (other_def);
4320 	rtx newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4321 	rtx set;
4322 	int success;
4323 
4324 	if (dump_file)
4325 	  fprintf (dump_file, "moving def of %d (insn %d now) ",
4326 		   REGNO (other_reg), INSN_UID (def_insn));
4327 
4328 	delete_insn (move_insn);
4329 	while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4330 	  delete_insn (DF_REF_INSN (other_def));
4331 	delete_insn (def_insn);
4332 
4333 	set = single_set (newinsn);
4334 	success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4335 	gcc_assert (success);
4336 	if (dump_file)
4337 	  fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
4338 		   INSN_UID (newinsn), i);
4339 	SET_REG_N_REFS (i, 0);
4340       }
4341 }
4342 
4343 /* If the backend knows where to allocate pseudos for hard
4344    register initial values, register these allocations now.  */
4345 static void
allocate_initial_values(void)4346 allocate_initial_values (void)
4347 {
4348   if (targetm.allocate_initial_value)
4349     {
4350       rtx hreg, preg, x;
4351       int i, regno;
4352 
4353       for (i = 0; HARD_REGISTER_NUM_P (i); i++)
4354 	{
4355 	  if (! initial_value_entry (i, &hreg, &preg))
4356 	    break;
4357 
4358 	  x = targetm.allocate_initial_value (hreg);
4359 	  regno = REGNO (preg);
4360 	  if (x && REG_N_SETS (regno) <= 1)
4361 	    {
4362 	      if (MEM_P (x))
4363 		reg_equiv_memory_loc (regno) = x;
4364 	      else
4365 		{
4366 		  basic_block bb;
4367 		  int new_regno;
4368 
4369 		  gcc_assert (REG_P (x));
4370 		  new_regno = REGNO (x);
4371 		  reg_renumber[regno] = new_regno;
4372 		  /* Poke the regno right into regno_reg_rtx so that even
4373 		     fixed regs are accepted.  */
4374 		  SET_REGNO (preg, new_regno);
4375 		  /* Update global register liveness information.  */
4376 		  FOR_EACH_BB (bb)
4377 		    {
4378 		      if (REGNO_REG_SET_P(df_get_live_in (bb), regno))
4379 			SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
4380 		      if (REGNO_REG_SET_P(df_get_live_out (bb), regno))
4381 			SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
4382 		    }
4383 		}
4384 	    }
4385 	}
4386 
4387       gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
4388 						  &hreg, &preg));
4389     }
4390 }
4391 
4392 
4393 /* True when we use LRA instead of reload pass for the current
4394    function.  */
4395 bool ira_use_lra_p;
4396 
4397 /* True if we have allocno conflicts.  It is false for non-optimized
4398    mode or when the conflict table is too big.  */
4399 bool ira_conflicts_p;
4400 
4401 /* Saved between IRA and reload.  */
4402 static int saved_flag_ira_share_spill_slots;
4403 
4404 /* This is the main entry of IRA.  */
4405 static void
ira(FILE * f)4406 ira (FILE *f)
4407 {
4408   bool loops_p;
4409   int ira_max_point_before_emit;
4410   int rebuild_p;
4411   bool saved_flag_caller_saves = flag_caller_saves;
4412   enum ira_region saved_flag_ira_region = flag_ira_region;
4413 
4414   ira_conflicts_p = optimize > 0;
4415 
4416   ira_use_lra_p = targetm.lra_p ();
4417   /* If there are too many pseudos and/or basic blocks (e.g. 10K
4418      pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
4419      use simplified and faster algorithms in LRA.  */
4420   lra_simple_p
4421     = (ira_use_lra_p && max_reg_num () >= (1 << 26) / last_basic_block);
4422   if (lra_simple_p)
4423     {
4424       /* It permits to skip live range splitting in LRA.  */
4425       flag_caller_saves = false;
4426       /* There is no sense to do regional allocation when we use
4427 	 simplified LRA.  */
4428       flag_ira_region = IRA_REGION_ONE;
4429       ira_conflicts_p = false;
4430     }
4431 
4432 #ifndef IRA_NO_OBSTACK
4433   gcc_obstack_init (&ira_obstack);
4434 #endif
4435   bitmap_obstack_initialize (&ira_bitmap_obstack);
4436 
4437   if (flag_caller_saves)
4438     init_caller_save ();
4439 
4440   if (flag_ira_verbose < 10)
4441     {
4442       internal_flag_ira_verbose = flag_ira_verbose;
4443       ira_dump_file = f;
4444     }
4445   else
4446     {
4447       internal_flag_ira_verbose = flag_ira_verbose - 10;
4448       ira_dump_file = stderr;
4449     }
4450 
4451   setup_prohibited_mode_move_regs ();
4452 
4453   df_note_add_problem ();
4454 
4455   /* DF_LIVE can't be used in the register allocator, too many other
4456      parts of the compiler depend on using the "classic" liveness
4457      interpretation of the DF_LR problem.  See PR38711.
4458      Remove the problem, so that we don't spend time updating it in
4459      any of the df_analyze() calls during IRA/LRA.  */
4460   if (optimize > 1)
4461     df_remove_problem (df_live);
4462   gcc_checking_assert (df_live == NULL);
4463 
4464 #ifdef ENABLE_CHECKING
4465   df->changeable_flags |= DF_VERIFY_SCHEDULED;
4466 #endif
4467   df_analyze ();
4468   df_clear_flags (DF_NO_INSN_RESCAN);
4469   regstat_init_n_sets_and_refs ();
4470   regstat_compute_ri ();
4471 
4472   /* If we are not optimizing, then this is the only place before
4473      register allocation where dataflow is done.  And that is needed
4474      to generate these warnings.  */
4475   if (warn_clobbered)
4476     generate_setjmp_warnings ();
4477 
4478   /* Determine if the current function is a leaf before running IRA
4479      since this can impact optimizations done by the prologue and
4480      epilogue thus changing register elimination offsets.  */
4481   crtl->is_leaf = leaf_function_p ();
4482 
4483   if (resize_reg_info () && flag_ira_loop_pressure)
4484     ira_set_pseudo_classes (true, ira_dump_file);
4485 
4486   init_reg_equiv ();
4487   rebuild_p = update_equiv_regs ();
4488   setup_reg_equiv ();
4489   setup_reg_equiv_init ();
4490 
4491   if (optimize && rebuild_p)
4492     {
4493       timevar_push (TV_JUMP);
4494       rebuild_jump_labels (get_insns ());
4495       if (purge_all_dead_edges ())
4496 	delete_unreachable_blocks ();
4497       timevar_pop (TV_JUMP);
4498     }
4499 
4500   allocated_reg_info_size = max_reg_num ();
4501 
4502   if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
4503     df_analyze ();
4504 
4505   /* It is not worth to do such improvement when we use a simple
4506      allocation because of -O0 usage or because the function is too
4507      big.  */
4508   if (ira_conflicts_p)
4509     find_moveable_pseudos ();
4510 
4511   max_regno_before_ira = max_reg_num ();
4512   ira_setup_eliminable_regset (true);
4513 
4514   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
4515   ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
4516   ira_move_loops_num = ira_additional_jumps_num = 0;
4517 
4518   ira_assert (current_loops == NULL);
4519   if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
4520     loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
4521 
4522   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
4523     fprintf (ira_dump_file, "Building IRA IR\n");
4524   loops_p = ira_build ();
4525 
4526   ira_assert (ira_conflicts_p || !loops_p);
4527 
4528   saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
4529   if (too_high_register_pressure_p () || cfun->calls_setjmp)
4530     /* It is just wasting compiler's time to pack spilled pseudos into
4531        stack slots in this case -- prohibit it.  We also do this if
4532        there is setjmp call because a variable not modified between
4533        setjmp and longjmp the compiler is required to preserve its
4534        value and sharing slots does not guarantee it.  */
4535     flag_ira_share_spill_slots = FALSE;
4536 
4537   ira_color ();
4538 
4539   ira_max_point_before_emit = ira_max_point;
4540 
4541   ira_initiate_emit_data ();
4542 
4543   ira_emit (loops_p);
4544 
4545   max_regno = max_reg_num ();
4546   if (ira_conflicts_p)
4547     {
4548       if (! loops_p)
4549 	{
4550 	  if (! ira_use_lra_p)
4551 	    ira_initiate_assign ();
4552 	}
4553       else
4554 	{
4555 	  expand_reg_info ();
4556 
4557 	  if (ira_use_lra_p)
4558 	    {
4559 	      ira_allocno_t a;
4560 	      ira_allocno_iterator ai;
4561 
4562 	      FOR_EACH_ALLOCNO (a, ai)
4563 		ALLOCNO_REGNO (a) = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
4564 	    }
4565 	  else
4566 	    {
4567 	      if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
4568 		fprintf (ira_dump_file, "Flattening IR\n");
4569 	      ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
4570 	    }
4571 	  /* New insns were generated: add notes and recalculate live
4572 	     info.  */
4573 	  df_analyze ();
4574 
4575 	  /* ??? Rebuild the loop tree, but why?  Does the loop tree
4576 	     change if new insns were generated?  Can that be handled
4577 	     by updating the loop tree incrementally?  */
4578 	  loop_optimizer_finalize ();
4579 	  free_dominance_info (CDI_DOMINATORS);
4580 	  loop_optimizer_init (AVOID_CFG_MODIFICATIONS
4581 			       | LOOPS_HAVE_RECORDED_EXITS);
4582 
4583 	  if (! ira_use_lra_p)
4584 	    {
4585 	      setup_allocno_assignment_flags ();
4586 	      ira_initiate_assign ();
4587 	      ira_reassign_conflict_allocnos (max_regno);
4588 	    }
4589 	}
4590     }
4591 
4592   ira_finish_emit_data ();
4593 
4594   setup_reg_renumber ();
4595 
4596   calculate_allocation_cost ();
4597 
4598 #ifdef ENABLE_IRA_CHECKING
4599   if (ira_conflicts_p)
4600     check_allocation ();
4601 #endif
4602 
4603   if (max_regno != max_regno_before_ira)
4604     {
4605       regstat_free_n_sets_and_refs ();
4606       regstat_free_ri ();
4607       regstat_init_n_sets_and_refs ();
4608       regstat_compute_ri ();
4609     }
4610 
4611   overall_cost_before = ira_overall_cost;
4612   if (! ira_conflicts_p)
4613     grow_reg_equivs ();
4614   else
4615     {
4616       fix_reg_equiv_init ();
4617 
4618 #ifdef ENABLE_IRA_CHECKING
4619       print_redundant_copies ();
4620 #endif
4621 
4622       ira_spilled_reg_stack_slots_num = 0;
4623       ira_spilled_reg_stack_slots
4624 	= ((struct ira_spilled_reg_stack_slot *)
4625 	   ira_allocate (max_regno
4626 			 * sizeof (struct ira_spilled_reg_stack_slot)));
4627       memset (ira_spilled_reg_stack_slots, 0,
4628 	      max_regno * sizeof (struct ira_spilled_reg_stack_slot));
4629     }
4630   allocate_initial_values ();
4631 
4632   /* See comment for find_moveable_pseudos call.  */
4633   if (ira_conflicts_p)
4634     move_unallocated_pseudos ();
4635 
4636   /* Restore original values.  */
4637   if (lra_simple_p)
4638     {
4639       flag_caller_saves = saved_flag_caller_saves;
4640       flag_ira_region = saved_flag_ira_region;
4641     }
4642 }
4643 
4644 static void
do_reload(void)4645 do_reload (void)
4646 {
4647   basic_block bb;
4648   bool need_dce;
4649 
4650   if (flag_ira_verbose < 10)
4651     ira_dump_file = dump_file;
4652 
4653   timevar_push (TV_RELOAD);
4654   if (ira_use_lra_p)
4655     {
4656       if (current_loops != NULL)
4657 	{
4658 	  loop_optimizer_finalize ();
4659 	  free_dominance_info (CDI_DOMINATORS);
4660 	}
4661       FOR_ALL_BB (bb)
4662 	bb->loop_father = NULL;
4663       current_loops = NULL;
4664 
4665       if (ira_conflicts_p)
4666 	ira_free (ira_spilled_reg_stack_slots);
4667 
4668       ira_destroy ();
4669 
4670       lra (ira_dump_file);
4671       /* ???!!! Move it before lra () when we use ira_reg_equiv in
4672 	 LRA.  */
4673       vec_free (reg_equivs);
4674       reg_equivs = NULL;
4675       need_dce = false;
4676     }
4677   else
4678     {
4679       df_set_flags (DF_NO_INSN_RESCAN);
4680       build_insn_chain ();
4681 
4682       need_dce = reload (get_insns (), ira_conflicts_p);
4683 
4684     }
4685 
4686   timevar_pop (TV_RELOAD);
4687 
4688   timevar_push (TV_IRA);
4689 
4690   if (ira_conflicts_p && ! ira_use_lra_p)
4691     {
4692       ira_free (ira_spilled_reg_stack_slots);
4693       ira_finish_assign ();
4694     }
4695 
4696   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
4697       && overall_cost_before != ira_overall_cost)
4698     fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
4699 
4700   flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
4701 
4702   if (! ira_use_lra_p)
4703     {
4704       ira_destroy ();
4705       if (current_loops != NULL)
4706 	{
4707 	  loop_optimizer_finalize ();
4708 	  free_dominance_info (CDI_DOMINATORS);
4709 	}
4710       FOR_ALL_BB (bb)
4711 	bb->loop_father = NULL;
4712       current_loops = NULL;
4713 
4714       regstat_free_ri ();
4715       regstat_free_n_sets_and_refs ();
4716     }
4717 
4718   if (optimize)
4719     cleanup_cfg (CLEANUP_EXPENSIVE);
4720 
4721   finish_reg_equiv ();
4722 
4723   bitmap_obstack_release (&ira_bitmap_obstack);
4724 #ifndef IRA_NO_OBSTACK
4725   obstack_free (&ira_obstack, NULL);
4726 #endif
4727 
4728   /* The code after the reload has changed so much that at this point
4729      we might as well just rescan everything.  Note that
4730      df_rescan_all_insns is not going to help here because it does not
4731      touch the artificial uses and defs.  */
4732   df_finish_pass (true);
4733   df_scan_alloc (NULL);
4734   df_scan_blocks ();
4735 
4736   if (optimize > 1)
4737     {
4738       df_live_add_problem ();
4739       df_live_set_all_dirty ();
4740     }
4741 
4742   if (optimize)
4743     df_analyze ();
4744 
4745   if (need_dce && optimize)
4746     run_fast_dce ();
4747 
4748   /* Diagnose uses of the hard frame pointer when it is used as a global
4749      register.  Often we can get away with letting the user appropriate
4750      the frame pointer, but we should let them know when code generation
4751      makes that impossible.  */
4752   if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
4753     {
4754       tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
4755       error_at (DECL_SOURCE_LOCATION (current_function_decl),
4756                 "frame pointer required, but reserved");
4757       inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
4758     }
4759 
4760   timevar_pop (TV_IRA);
4761 }
4762 
4763 /* Run the integrated register allocator.  */
4764 static unsigned int
rest_of_handle_ira(void)4765 rest_of_handle_ira (void)
4766 {
4767   ira (dump_file);
4768   return 0;
4769 }
4770 
4771 struct rtl_opt_pass pass_ira =
4772 {
4773  {
4774   RTL_PASS,
4775   "ira",                                /* name */
4776   OPTGROUP_NONE,                        /* optinfo_flags */
4777   NULL,                                 /* gate */
4778   rest_of_handle_ira,		        /* execute */
4779   NULL,                                 /* sub */
4780   NULL,                                 /* next */
4781   0,                                    /* static_pass_number */
4782   TV_IRA,	                        /* tv_id */
4783   0,                                    /* properties_required */
4784   0,                                    /* properties_provided */
4785   0,                                    /* properties_destroyed */
4786   0,                                    /* todo_flags_start */
4787   0,                                    /* todo_flags_finish */
4788  }
4789 };
4790 
4791 static unsigned int
rest_of_handle_reload(void)4792 rest_of_handle_reload (void)
4793 {
4794   do_reload ();
4795   return 0;
4796 }
4797 
4798 struct rtl_opt_pass pass_reload =
4799 {
4800  {
4801   RTL_PASS,
4802   "reload",                             /* name */
4803   OPTGROUP_NONE,                        /* optinfo_flags */
4804   NULL,                                 /* gate */
4805   rest_of_handle_reload,	        /* execute */
4806   NULL,                                 /* sub */
4807   NULL,                                 /* next */
4808   0,                                    /* static_pass_number */
4809   TV_RELOAD,	                        /* tv_id */
4810   0,                                    /* properties_required */
4811   0,                                    /* properties_provided */
4812   0,                                    /* properties_destroyed */
4813   0,                                    /* todo_flags_start */
4814   TODO_ggc_collect                      /* todo_flags_finish */
4815  }
4816 };
4817