1 /* Analyze RTL for GNU compiler.
2    Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "df.h"
37 #include "tree.h"
38 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
39 #include "addresses.h"
40 
41 /* Forward declarations */
42 static void set_of_1 (rtx, const_rtx, void *);
43 static bool covers_regno_p (const_rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
48 
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
50                                                    const_rtx, enum machine_mode,
51                                                    unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
53 					     const_rtx, enum machine_mode,
54                                              unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
56                                                 enum machine_mode,
57                                                 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
59                                           enum machine_mode, unsigned int);
60 
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62    -1 if a code has no such operand.  */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
64 
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66    If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67    SIGN_EXTEND then while narrowing we also have to enforce the
68    representation and sign-extend the value to mode DESTINATION_REP.
69 
70    If the value is already sign-extended to DESTINATION_REP mode we
71    can just switch to DESTINATION mode on it.  For each pair of
72    integral modes SOURCE and DESTINATION, when truncating from SOURCE
73    to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74    contains the number of high-order bits in SOURCE that have to be
75    copies of the sign-bit so that we can do this mode-switch to
76    DESTINATION.  */
77 
78 static unsigned int
79 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
80 
81 /* Return 1 if the value of X is unstable
82    (would be different at a different point in the program).
83    The frame pointer, arg pointer, etc. are considered stable
84    (within one function) and so is anything marked `unchanging'.  */
85 
86 int
rtx_unstable_p(const_rtx x)87 rtx_unstable_p (const_rtx x)
88 {
89   const RTX_CODE code = GET_CODE (x);
90   int i;
91   const char *fmt;
92 
93   switch (code)
94     {
95     case MEM:
96       return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
97 
98     case CONST:
99     CASE_CONST_ANY:
100     case SYMBOL_REF:
101     case LABEL_REF:
102       return 0;
103 
104     case REG:
105       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
106       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
107 	  /* The arg pointer varies if it is not a fixed register.  */
108 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
109 	return 0;
110       /* ??? When call-clobbered, the value is stable modulo the restore
111 	 that must happen after a call.  This currently screws up local-alloc
112 	 into believing that the restore is not needed.  */
113       if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
114 	return 0;
115       return 1;
116 
117     case ASM_OPERANDS:
118       if (MEM_VOLATILE_P (x))
119 	return 1;
120 
121       /* Fall through.  */
122 
123     default:
124       break;
125     }
126 
127   fmt = GET_RTX_FORMAT (code);
128   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
129     if (fmt[i] == 'e')
130       {
131 	if (rtx_unstable_p (XEXP (x, i)))
132 	  return 1;
133       }
134     else if (fmt[i] == 'E')
135       {
136 	int j;
137 	for (j = 0; j < XVECLEN (x, i); j++)
138 	  if (rtx_unstable_p (XVECEXP (x, i, j)))
139 	    return 1;
140       }
141 
142   return 0;
143 }
144 
145 /* Return 1 if X has a value that can vary even between two
146    executions of the program.  0 means X can be compared reliably
147    against certain constants or near-constants.
148    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
149    zero, we are slightly more conservative.
150    The frame pointer and the arg pointer are considered constant.  */
151 
152 bool
rtx_varies_p(const_rtx x,bool for_alias)153 rtx_varies_p (const_rtx x, bool for_alias)
154 {
155   RTX_CODE code;
156   int i;
157   const char *fmt;
158 
159   if (!x)
160     return 0;
161 
162   code = GET_CODE (x);
163   switch (code)
164     {
165     case MEM:
166       return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
167 
168     case CONST:
169     CASE_CONST_ANY:
170     case SYMBOL_REF:
171     case LABEL_REF:
172       return 0;
173 
174     case REG:
175       /* Note that we have to test for the actual rtx used for the frame
176 	 and arg pointers and not just the register number in case we have
177 	 eliminated the frame and/or arg pointer and are using it
178 	 for pseudos.  */
179       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
180 	  /* The arg pointer varies if it is not a fixed register.  */
181 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
182 	return 0;
183       if (x == pic_offset_table_rtx
184 	  /* ??? When call-clobbered, the value is stable modulo the restore
185 	     that must happen after a call.  This currently screws up
186 	     local-alloc into believing that the restore is not needed, so we
187 	     must return 0 only if we are called from alias analysis.  */
188 	  && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
189 	return 0;
190       return 1;
191 
192     case LO_SUM:
193       /* The operand 0 of a LO_SUM is considered constant
194 	 (in fact it is related specifically to operand 1)
195 	 during alias analysis.  */
196       return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
197 	     || rtx_varies_p (XEXP (x, 1), for_alias);
198 
199     case ASM_OPERANDS:
200       if (MEM_VOLATILE_P (x))
201 	return 1;
202 
203       /* Fall through.  */
204 
205     default:
206       break;
207     }
208 
209   fmt = GET_RTX_FORMAT (code);
210   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
211     if (fmt[i] == 'e')
212       {
213 	if (rtx_varies_p (XEXP (x, i), for_alias))
214 	  return 1;
215       }
216     else if (fmt[i] == 'E')
217       {
218 	int j;
219 	for (j = 0; j < XVECLEN (x, i); j++)
220 	  if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
221 	    return 1;
222       }
223 
224   return 0;
225 }
226 
227 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
228    bytes can cause a trap.  MODE is the mode of the MEM (not that of X) and
229    UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
230    references on strict alignment machines.  */
231 
232 static int
rtx_addr_can_trap_p_1(const_rtx x,HOST_WIDE_INT offset,HOST_WIDE_INT size,enum machine_mode mode,bool unaligned_mems)233 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
234 		       enum machine_mode mode, bool unaligned_mems)
235 {
236   enum rtx_code code = GET_CODE (x);
237 
238   /* The offset must be a multiple of the mode size if we are considering
239      unaligned memory references on strict alignment machines.  */
240   if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
241     {
242       HOST_WIDE_INT actual_offset = offset;
243 
244 #ifdef SPARC_STACK_BOUNDARY_HACK
245       /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
246 	     the real alignment of %sp.  However, when it does this, the
247 	     alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
248       if (SPARC_STACK_BOUNDARY_HACK
249 	  && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
250 	actual_offset -= STACK_POINTER_OFFSET;
251 #endif
252 
253       if (actual_offset % GET_MODE_SIZE (mode) != 0)
254 	return 1;
255     }
256 
257   switch (code)
258     {
259     case SYMBOL_REF:
260       if (SYMBOL_REF_WEAK (x))
261 	return 1;
262       if (!CONSTANT_POOL_ADDRESS_P (x))
263 	{
264 	  tree decl;
265 	  HOST_WIDE_INT decl_size;
266 
267 	  if (offset < 0)
268 	    return 1;
269 	  if (size == 0)
270 	    size = GET_MODE_SIZE (mode);
271 	  if (size == 0)
272 	    return offset != 0;
273 
274 	  /* If the size of the access or of the symbol is unknown,
275 	     assume the worst.  */
276 	  decl = SYMBOL_REF_DECL (x);
277 
278 	  /* Else check that the access is in bounds.  TODO: restructure
279 	     expr_size/tree_expr_size/int_expr_size and just use the latter.  */
280 	  if (!decl)
281 	    decl_size = -1;
282 	  else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
283 	    decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
284 			 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
285 			 : -1);
286 	  else if (TREE_CODE (decl) == STRING_CST)
287 	    decl_size = TREE_STRING_LENGTH (decl);
288 	  else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
289 	    decl_size = int_size_in_bytes (TREE_TYPE (decl));
290 	  else
291 	    decl_size = -1;
292 
293 	  return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
294         }
295 
296       return 0;
297 
298     case LABEL_REF:
299       return 0;
300 
301     case REG:
302       /* Stack references are assumed not to trap, but we need to deal with
303 	 nonsensical offsets.  */
304       if (x == frame_pointer_rtx)
305 	{
306 	  HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
307 	  if (size == 0)
308 	    size = GET_MODE_SIZE (mode);
309 	  if (FRAME_GROWS_DOWNWARD)
310 	    {
311 	      if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
312 		return 1;
313 	    }
314 	  else
315 	    {
316 	      if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
317 		return 1;
318 	    }
319 	  return 0;
320 	}
321       /* ??? Need to add a similar guard for nonsensical offsets.  */
322       if (x == hard_frame_pointer_rtx
323 	  || x == stack_pointer_rtx
324 	  /* The arg pointer varies if it is not a fixed register.  */
325 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
326 	return 0;
327       /* All of the virtual frame registers are stack references.  */
328       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
329 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
330 	return 0;
331       return 1;
332 
333     case CONST:
334       return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
335 				    mode, unaligned_mems);
336 
337     case PLUS:
338       /* An address is assumed not to trap if:
339          - it is the pic register plus a constant.  */
340       if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
341 	return 0;
342 
343       /* - or it is an address that can't trap plus a constant integer.  */
344       if (CONST_INT_P (XEXP (x, 1))
345 	  && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
346 				     size, mode, unaligned_mems))
347 	return 0;
348 
349       return 1;
350 
351     case LO_SUM:
352     case PRE_MODIFY:
353       return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
354 				    mode, unaligned_mems);
355 
356     case PRE_DEC:
357     case PRE_INC:
358     case POST_DEC:
359     case POST_INC:
360     case POST_MODIFY:
361       return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
362 				    mode, unaligned_mems);
363 
364     default:
365       break;
366     }
367 
368   /* If it isn't one of the case above, it can cause a trap.  */
369   return 1;
370 }
371 
372 /* Return nonzero if the use of X as an address in a MEM can cause a trap.  */
373 
374 int
rtx_addr_can_trap_p(const_rtx x)375 rtx_addr_can_trap_p (const_rtx x)
376 {
377   return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
378 }
379 
380 /* Return true if X is an address that is known to not be zero.  */
381 
382 bool
nonzero_address_p(const_rtx x)383 nonzero_address_p (const_rtx x)
384 {
385   const enum rtx_code code = GET_CODE (x);
386 
387   switch (code)
388     {
389     case SYMBOL_REF:
390       return !SYMBOL_REF_WEAK (x);
391 
392     case LABEL_REF:
393       return true;
394 
395     case REG:
396       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
397       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
398 	  || x == stack_pointer_rtx
399 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
400 	return true;
401       /* All of the virtual frame registers are stack references.  */
402       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
403 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
404 	return true;
405       return false;
406 
407     case CONST:
408       return nonzero_address_p (XEXP (x, 0));
409 
410     case PLUS:
411       /* Handle PIC references.  */
412       if (XEXP (x, 0) == pic_offset_table_rtx
413 	       && CONSTANT_P (XEXP (x, 1)))
414 	return true;
415       return false;
416 
417     case PRE_MODIFY:
418       /* Similar to the above; allow positive offsets.  Further, since
419 	 auto-inc is only allowed in memories, the register must be a
420 	 pointer.  */
421       if (CONST_INT_P (XEXP (x, 1))
422 	  && INTVAL (XEXP (x, 1)) > 0)
423 	return true;
424       return nonzero_address_p (XEXP (x, 0));
425 
426     case PRE_INC:
427       /* Similarly.  Further, the offset is always positive.  */
428       return true;
429 
430     case PRE_DEC:
431     case POST_DEC:
432     case POST_INC:
433     case POST_MODIFY:
434       return nonzero_address_p (XEXP (x, 0));
435 
436     case LO_SUM:
437       return nonzero_address_p (XEXP (x, 1));
438 
439     default:
440       break;
441     }
442 
443   /* If it isn't one of the case above, might be zero.  */
444   return false;
445 }
446 
447 /* Return 1 if X refers to a memory location whose address
448    cannot be compared reliably with constant addresses,
449    or if X refers to a BLKmode memory object.
450    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
451    zero, we are slightly more conservative.  */
452 
453 bool
rtx_addr_varies_p(const_rtx x,bool for_alias)454 rtx_addr_varies_p (const_rtx x, bool for_alias)
455 {
456   enum rtx_code code;
457   int i;
458   const char *fmt;
459 
460   if (x == 0)
461     return 0;
462 
463   code = GET_CODE (x);
464   if (code == MEM)
465     return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
466 
467   fmt = GET_RTX_FORMAT (code);
468   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
469     if (fmt[i] == 'e')
470       {
471 	if (rtx_addr_varies_p (XEXP (x, i), for_alias))
472 	  return 1;
473       }
474     else if (fmt[i] == 'E')
475       {
476 	int j;
477 	for (j = 0; j < XVECLEN (x, i); j++)
478 	  if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
479 	    return 1;
480       }
481   return 0;
482 }
483 
484 /* Return the CALL in X if there is one.  */
485 
486 rtx
get_call_rtx_from(rtx x)487 get_call_rtx_from (rtx x)
488 {
489   if (INSN_P (x))
490     x = PATTERN (x);
491   if (GET_CODE (x) == PARALLEL)
492     x = XVECEXP (x, 0, 0);
493   if (GET_CODE (x) == SET)
494     x = SET_SRC (x);
495   if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
496     return x;
497   return NULL_RTX;
498 }
499 
500 /* Return the value of the integer term in X, if one is apparent;
501    otherwise return 0.
502    Only obvious integer terms are detected.
503    This is used in cse.c with the `related_value' field.  */
504 
505 HOST_WIDE_INT
get_integer_term(const_rtx x)506 get_integer_term (const_rtx x)
507 {
508   if (GET_CODE (x) == CONST)
509     x = XEXP (x, 0);
510 
511   if (GET_CODE (x) == MINUS
512       && CONST_INT_P (XEXP (x, 1)))
513     return - INTVAL (XEXP (x, 1));
514   if (GET_CODE (x) == PLUS
515       && CONST_INT_P (XEXP (x, 1)))
516     return INTVAL (XEXP (x, 1));
517   return 0;
518 }
519 
520 /* If X is a constant, return the value sans apparent integer term;
521    otherwise return 0.
522    Only obvious integer terms are detected.  */
523 
524 rtx
get_related_value(const_rtx x)525 get_related_value (const_rtx x)
526 {
527   if (GET_CODE (x) != CONST)
528     return 0;
529   x = XEXP (x, 0);
530   if (GET_CODE (x) == PLUS
531       && CONST_INT_P (XEXP (x, 1)))
532     return XEXP (x, 0);
533   else if (GET_CODE (x) == MINUS
534 	   && CONST_INT_P (XEXP (x, 1)))
535     return XEXP (x, 0);
536   return 0;
537 }
538 
539 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
540    to somewhere in the same object or object_block as SYMBOL.  */
541 
542 bool
offset_within_block_p(const_rtx symbol,HOST_WIDE_INT offset)543 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
544 {
545   tree decl;
546 
547   if (GET_CODE (symbol) != SYMBOL_REF)
548     return false;
549 
550   if (offset == 0)
551     return true;
552 
553   if (offset > 0)
554     {
555       if (CONSTANT_POOL_ADDRESS_P (symbol)
556 	  && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
557 	return true;
558 
559       decl = SYMBOL_REF_DECL (symbol);
560       if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
561 	return true;
562     }
563 
564   if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
565       && SYMBOL_REF_BLOCK (symbol)
566       && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
567       && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
568 	  < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
569     return true;
570 
571   return false;
572 }
573 
574 /* Split X into a base and a constant offset, storing them in *BASE_OUT
575    and *OFFSET_OUT respectively.  */
576 
577 void
split_const(rtx x,rtx * base_out,rtx * offset_out)578 split_const (rtx x, rtx *base_out, rtx *offset_out)
579 {
580   if (GET_CODE (x) == CONST)
581     {
582       x = XEXP (x, 0);
583       if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
584 	{
585 	  *base_out = XEXP (x, 0);
586 	  *offset_out = XEXP (x, 1);
587 	  return;
588 	}
589     }
590   *base_out = x;
591   *offset_out = const0_rtx;
592 }
593 
594 /* Return the number of places FIND appears within X.  If COUNT_DEST is
595    zero, we do not count occurrences inside the destination of a SET.  */
596 
597 int
count_occurrences(const_rtx x,const_rtx find,int count_dest)598 count_occurrences (const_rtx x, const_rtx find, int count_dest)
599 {
600   int i, j;
601   enum rtx_code code;
602   const char *format_ptr;
603   int count;
604 
605   if (x == find)
606     return 1;
607 
608   code = GET_CODE (x);
609 
610   switch (code)
611     {
612     case REG:
613     CASE_CONST_ANY:
614     case SYMBOL_REF:
615     case CODE_LABEL:
616     case PC:
617     case CC0:
618       return 0;
619 
620     case EXPR_LIST:
621       count = count_occurrences (XEXP (x, 0), find, count_dest);
622       if (XEXP (x, 1))
623 	count += count_occurrences (XEXP (x, 1), find, count_dest);
624       return count;
625 
626     case MEM:
627       if (MEM_P (find) && rtx_equal_p (x, find))
628 	return 1;
629       break;
630 
631     case SET:
632       if (SET_DEST (x) == find && ! count_dest)
633 	return count_occurrences (SET_SRC (x), find, count_dest);
634       break;
635 
636     default:
637       break;
638     }
639 
640   format_ptr = GET_RTX_FORMAT (code);
641   count = 0;
642 
643   for (i = 0; i < GET_RTX_LENGTH (code); i++)
644     {
645       switch (*format_ptr++)
646 	{
647 	case 'e':
648 	  count += count_occurrences (XEXP (x, i), find, count_dest);
649 	  break;
650 
651 	case 'E':
652 	  for (j = 0; j < XVECLEN (x, i); j++)
653 	    count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
654 	  break;
655 	}
656     }
657   return count;
658 }
659 
660 
661 /* Return TRUE if OP is a register or subreg of a register that
662    holds an unsigned quantity.  Otherwise, return FALSE.  */
663 
664 bool
unsigned_reg_p(rtx op)665 unsigned_reg_p (rtx op)
666 {
667   if (REG_P (op)
668       && REG_EXPR (op)
669       && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
670     return true;
671 
672   if (GET_CODE (op) == SUBREG
673       && SUBREG_PROMOTED_UNSIGNED_P (op))
674     return true;
675 
676   return false;
677 }
678 
679 
680 /* Nonzero if register REG appears somewhere within IN.
681    Also works if REG is not a register; in this case it checks
682    for a subexpression of IN that is Lisp "equal" to REG.  */
683 
684 int
reg_mentioned_p(const_rtx reg,const_rtx in)685 reg_mentioned_p (const_rtx reg, const_rtx in)
686 {
687   const char *fmt;
688   int i;
689   enum rtx_code code;
690 
691   if (in == 0)
692     return 0;
693 
694   if (reg == in)
695     return 1;
696 
697   if (GET_CODE (in) == LABEL_REF)
698     return reg == XEXP (in, 0);
699 
700   code = GET_CODE (in);
701 
702   switch (code)
703     {
704       /* Compare registers by number.  */
705     case REG:
706       return REG_P (reg) && REGNO (in) == REGNO (reg);
707 
708       /* These codes have no constituent expressions
709 	 and are unique.  */
710     case SCRATCH:
711     case CC0:
712     case PC:
713       return 0;
714 
715     CASE_CONST_ANY:
716       /* These are kept unique for a given value.  */
717       return 0;
718 
719     default:
720       break;
721     }
722 
723   if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
724     return 1;
725 
726   fmt = GET_RTX_FORMAT (code);
727 
728   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
729     {
730       if (fmt[i] == 'E')
731 	{
732 	  int j;
733 	  for (j = XVECLEN (in, i) - 1; j >= 0; j--)
734 	    if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
735 	      return 1;
736 	}
737       else if (fmt[i] == 'e'
738 	       && reg_mentioned_p (reg, XEXP (in, i)))
739 	return 1;
740     }
741   return 0;
742 }
743 
744 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
745    no CODE_LABEL insn.  */
746 
747 int
no_labels_between_p(const_rtx beg,const_rtx end)748 no_labels_between_p (const_rtx beg, const_rtx end)
749 {
750   rtx p;
751   if (beg == end)
752     return 0;
753   for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
754     if (LABEL_P (p))
755       return 0;
756   return 1;
757 }
758 
759 /* Nonzero if register REG is used in an insn between
760    FROM_INSN and TO_INSN (exclusive of those two).  */
761 
762 int
reg_used_between_p(const_rtx reg,const_rtx from_insn,const_rtx to_insn)763 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
764 {
765   rtx insn;
766 
767   if (from_insn == to_insn)
768     return 0;
769 
770   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
771     if (NONDEBUG_INSN_P (insn)
772 	&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
773 	   || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
774       return 1;
775   return 0;
776 }
777 
778 /* Nonzero if the old value of X, a register, is referenced in BODY.  If X
779    is entirely replaced by a new value and the only use is as a SET_DEST,
780    we do not consider it a reference.  */
781 
782 int
reg_referenced_p(const_rtx x,const_rtx body)783 reg_referenced_p (const_rtx x, const_rtx body)
784 {
785   int i;
786 
787   switch (GET_CODE (body))
788     {
789     case SET:
790       if (reg_overlap_mentioned_p (x, SET_SRC (body)))
791 	return 1;
792 
793       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
794 	 of a REG that occupies all of the REG, the insn references X if
795 	 it is mentioned in the destination.  */
796       if (GET_CODE (SET_DEST (body)) != CC0
797 	  && GET_CODE (SET_DEST (body)) != PC
798 	  && !REG_P (SET_DEST (body))
799 	  && ! (GET_CODE (SET_DEST (body)) == SUBREG
800 		&& REG_P (SUBREG_REG (SET_DEST (body)))
801 		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
802 		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
803 		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
804 			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
805 	  && reg_overlap_mentioned_p (x, SET_DEST (body)))
806 	return 1;
807       return 0;
808 
809     case ASM_OPERANDS:
810       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
811 	if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
812 	  return 1;
813       return 0;
814 
815     case CALL:
816     case USE:
817     case IF_THEN_ELSE:
818       return reg_overlap_mentioned_p (x, body);
819 
820     case TRAP_IF:
821       return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
822 
823     case PREFETCH:
824       return reg_overlap_mentioned_p (x, XEXP (body, 0));
825 
826     case UNSPEC:
827     case UNSPEC_VOLATILE:
828       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
829 	if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
830 	  return 1;
831       return 0;
832 
833     case PARALLEL:
834       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
835 	if (reg_referenced_p (x, XVECEXP (body, 0, i)))
836 	  return 1;
837       return 0;
838 
839     case CLOBBER:
840       if (MEM_P (XEXP (body, 0)))
841 	if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
842 	  return 1;
843       return 0;
844 
845     case COND_EXEC:
846       if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
847 	return 1;
848       return reg_referenced_p (x, COND_EXEC_CODE (body));
849 
850     default:
851       return 0;
852     }
853 }
854 
855 /* Nonzero if register REG is set or clobbered in an insn between
856    FROM_INSN and TO_INSN (exclusive of those two).  */
857 
858 int
reg_set_between_p(const_rtx reg,const_rtx from_insn,const_rtx to_insn)859 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
860 {
861   const_rtx insn;
862 
863   if (from_insn == to_insn)
864     return 0;
865 
866   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
867     if (INSN_P (insn) && reg_set_p (reg, insn))
868       return 1;
869   return 0;
870 }
871 
872 /* Internals of reg_set_between_p.  */
873 int
reg_set_p(const_rtx reg,const_rtx insn)874 reg_set_p (const_rtx reg, const_rtx insn)
875 {
876   /* After delay slot handling, call and branch insns might be in a
877      sequence.  Check all the elements there.  */
878   if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
879     {
880       for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
881 	if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
882 	  return true;
883 
884       return false;
885     }
886 
887   /* We can be passed an insn or part of one.  If we are passed an insn,
888      check if a side-effect of the insn clobbers REG.  */
889   if (INSN_P (insn)
890       && (FIND_REG_INC_NOTE (insn, reg)
891 	  || (CALL_P (insn)
892 	      && ((REG_P (reg)
893 		   && REGNO (reg) < FIRST_PSEUDO_REGISTER
894 		   && overlaps_hard_reg_set_p (regs_invalidated_by_call,
895 					       GET_MODE (reg), REGNO (reg)))
896 		  || MEM_P (reg)
897 		  || find_reg_fusage (insn, CLOBBER, reg)))))
898     return true;
899 
900   return set_of (reg, insn) != NULL_RTX;
901 }
902 
903 /* Similar to reg_set_between_p, but check all registers in X.  Return 0
904    only if none of them are modified between START and END.  Return 1 if
905    X contains a MEM; this routine does use memory aliasing.  */
906 
907 int
modified_between_p(const_rtx x,const_rtx start,const_rtx end)908 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
909 {
910   const enum rtx_code code = GET_CODE (x);
911   const char *fmt;
912   int i, j;
913   rtx insn;
914 
915   if (start == end)
916     return 0;
917 
918   switch (code)
919     {
920     CASE_CONST_ANY:
921     case CONST:
922     case SYMBOL_REF:
923     case LABEL_REF:
924       return 0;
925 
926     case PC:
927     case CC0:
928       return 1;
929 
930     case MEM:
931       if (modified_between_p (XEXP (x, 0), start, end))
932 	return 1;
933       if (MEM_READONLY_P (x))
934 	return 0;
935       for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
936 	if (memory_modified_in_insn_p (x, insn))
937 	  return 1;
938       return 0;
939       break;
940 
941     case REG:
942       return reg_set_between_p (x, start, end);
943 
944     default:
945       break;
946     }
947 
948   fmt = GET_RTX_FORMAT (code);
949   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
950     {
951       if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
952 	return 1;
953 
954       else if (fmt[i] == 'E')
955 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
956 	  if (modified_between_p (XVECEXP (x, i, j), start, end))
957 	    return 1;
958     }
959 
960   return 0;
961 }
962 
963 /* Similar to reg_set_p, but check all registers in X.  Return 0 only if none
964    of them are modified in INSN.  Return 1 if X contains a MEM; this routine
965    does use memory aliasing.  */
966 
967 int
modified_in_p(const_rtx x,const_rtx insn)968 modified_in_p (const_rtx x, const_rtx insn)
969 {
970   const enum rtx_code code = GET_CODE (x);
971   const char *fmt;
972   int i, j;
973 
974   switch (code)
975     {
976     CASE_CONST_ANY:
977     case CONST:
978     case SYMBOL_REF:
979     case LABEL_REF:
980       return 0;
981 
982     case PC:
983     case CC0:
984       return 1;
985 
986     case MEM:
987       if (modified_in_p (XEXP (x, 0), insn))
988 	return 1;
989       if (MEM_READONLY_P (x))
990 	return 0;
991       if (memory_modified_in_insn_p (x, insn))
992 	return 1;
993       return 0;
994       break;
995 
996     case REG:
997       return reg_set_p (x, insn);
998 
999     default:
1000       break;
1001     }
1002 
1003   fmt = GET_RTX_FORMAT (code);
1004   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1005     {
1006       if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1007 	return 1;
1008 
1009       else if (fmt[i] == 'E')
1010 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1011 	  if (modified_in_p (XVECEXP (x, i, j), insn))
1012 	    return 1;
1013     }
1014 
1015   return 0;
1016 }
1017 
1018 /* Helper function for set_of.  */
1019 struct set_of_data
1020   {
1021     const_rtx found;
1022     const_rtx pat;
1023   };
1024 
1025 static void
set_of_1(rtx x,const_rtx pat,void * data1)1026 set_of_1 (rtx x, const_rtx pat, void *data1)
1027 {
1028   struct set_of_data *const data = (struct set_of_data *) (data1);
1029   if (rtx_equal_p (x, data->pat)
1030       || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1031     data->found = pat;
1032 }
1033 
1034 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1035    (either directly or via STRICT_LOW_PART and similar modifiers).  */
1036 const_rtx
set_of(const_rtx pat,const_rtx insn)1037 set_of (const_rtx pat, const_rtx insn)
1038 {
1039   struct set_of_data data;
1040   data.found = NULL_RTX;
1041   data.pat = pat;
1042   note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1043   return data.found;
1044 }
1045 
1046 /* This function, called through note_stores, collects sets and
1047    clobbers of hard registers in a HARD_REG_SET, which is pointed to
1048    by DATA.  */
1049 void
record_hard_reg_sets(rtx x,const_rtx pat ATTRIBUTE_UNUSED,void * data)1050 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1051 {
1052   HARD_REG_SET *pset = (HARD_REG_SET *)data;
1053   if (REG_P (x) && HARD_REGISTER_P (x))
1054     add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1055 }
1056 
1057 /* Examine INSN, and compute the set of hard registers written by it.
1058    Store it in *PSET.  Should only be called after reload.  */
1059 void
find_all_hard_reg_sets(const_rtx insn,HARD_REG_SET * pset)1060 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1061 {
1062   rtx link;
1063 
1064   CLEAR_HARD_REG_SET (*pset);
1065   note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1066   if (CALL_P (insn))
1067     IOR_HARD_REG_SET (*pset, call_used_reg_set);
1068   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1069     if (REG_NOTE_KIND (link) == REG_INC)
1070       record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1071 }
1072 
1073 /* A for_each_rtx subroutine of record_hard_reg_uses.  */
1074 static int
record_hard_reg_uses_1(rtx * px,void * data)1075 record_hard_reg_uses_1 (rtx *px, void *data)
1076 {
1077   rtx x = *px;
1078   HARD_REG_SET *pused = (HARD_REG_SET *)data;
1079 
1080   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1081     {
1082       int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1083       while (nregs-- > 0)
1084 	SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1085     }
1086   return 0;
1087 }
1088 
1089 /* Like record_hard_reg_sets, but called through note_uses.  */
1090 void
record_hard_reg_uses(rtx * px,void * data)1091 record_hard_reg_uses (rtx *px, void *data)
1092 {
1093   for_each_rtx (px, record_hard_reg_uses_1, data);
1094 }
1095 
1096 /* Given an INSN, return a SET expression if this insn has only a single SET.
1097    It may also have CLOBBERs, USEs, or SET whose output
1098    will not be used, which we ignore.  */
1099 
1100 rtx
single_set_2(const_rtx insn,const_rtx pat)1101 single_set_2 (const_rtx insn, const_rtx pat)
1102 {
1103   rtx set = NULL;
1104   int set_verified = 1;
1105   int i;
1106 
1107   if (GET_CODE (pat) == PARALLEL)
1108     {
1109       for (i = 0; i < XVECLEN (pat, 0); i++)
1110 	{
1111 	  rtx sub = XVECEXP (pat, 0, i);
1112 	  switch (GET_CODE (sub))
1113 	    {
1114 	    case USE:
1115 	    case CLOBBER:
1116 	      break;
1117 
1118 	    case SET:
1119 	      /* We can consider insns having multiple sets, where all
1120 		 but one are dead as single set insns.  In common case
1121 		 only single set is present in the pattern so we want
1122 		 to avoid checking for REG_UNUSED notes unless necessary.
1123 
1124 		 When we reach set first time, we just expect this is
1125 		 the single set we are looking for and only when more
1126 		 sets are found in the insn, we check them.  */
1127 	      if (!set_verified)
1128 		{
1129 		  if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1130 		      && !side_effects_p (set))
1131 		    set = NULL;
1132 		  else
1133 		    set_verified = 1;
1134 		}
1135 	      if (!set)
1136 		set = sub, set_verified = 0;
1137 	      else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1138 		       || side_effects_p (sub))
1139 		return NULL_RTX;
1140 	      break;
1141 
1142 	    default:
1143 	      return NULL_RTX;
1144 	    }
1145 	}
1146     }
1147   return set;
1148 }
1149 
1150 /* Given an INSN, return nonzero if it has more than one SET, else return
1151    zero.  */
1152 
1153 int
multiple_sets(const_rtx insn)1154 multiple_sets (const_rtx insn)
1155 {
1156   int found;
1157   int i;
1158 
1159   /* INSN must be an insn.  */
1160   if (! INSN_P (insn))
1161     return 0;
1162 
1163   /* Only a PARALLEL can have multiple SETs.  */
1164   if (GET_CODE (PATTERN (insn)) == PARALLEL)
1165     {
1166       for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1167 	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1168 	  {
1169 	    /* If we have already found a SET, then return now.  */
1170 	    if (found)
1171 	      return 1;
1172 	    else
1173 	      found = 1;
1174 	  }
1175     }
1176 
1177   /* Either zero or one SET.  */
1178   return 0;
1179 }
1180 
1181 /* Return nonzero if the destination of SET equals the source
1182    and there are no side effects.  */
1183 
1184 int
set_noop_p(const_rtx set)1185 set_noop_p (const_rtx set)
1186 {
1187   rtx src = SET_SRC (set);
1188   rtx dst = SET_DEST (set);
1189 
1190   if (dst == pc_rtx && src == pc_rtx)
1191     return 1;
1192 
1193   if (MEM_P (dst) && MEM_P (src))
1194     return rtx_equal_p (dst, src) && !side_effects_p (dst);
1195 
1196   if (GET_CODE (dst) == ZERO_EXTRACT)
1197     return rtx_equal_p (XEXP (dst, 0), src)
1198 	   && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1199 	   && !side_effects_p (src);
1200 
1201   if (GET_CODE (dst) == STRICT_LOW_PART)
1202     dst = XEXP (dst, 0);
1203 
1204   if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1205     {
1206       if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1207 	return 0;
1208       src = SUBREG_REG (src);
1209       dst = SUBREG_REG (dst);
1210     }
1211 
1212   return (REG_P (src) && REG_P (dst)
1213 	  && REGNO (src) == REGNO (dst));
1214 }
1215 
1216 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1217    value to itself.  */
1218 
1219 int
noop_move_p(const_rtx insn)1220 noop_move_p (const_rtx insn)
1221 {
1222   rtx pat = PATTERN (insn);
1223 
1224   if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1225     return 1;
1226 
1227   /* Insns carrying these notes are useful later on.  */
1228   if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1229     return 0;
1230 
1231   if (GET_CODE (pat) == SET && set_noop_p (pat))
1232     return 1;
1233 
1234   if (GET_CODE (pat) == PARALLEL)
1235     {
1236       int i;
1237       /* If nothing but SETs of registers to themselves,
1238 	 this insn can also be deleted.  */
1239       for (i = 0; i < XVECLEN (pat, 0); i++)
1240 	{
1241 	  rtx tem = XVECEXP (pat, 0, i);
1242 
1243 	  if (GET_CODE (tem) == USE
1244 	      || GET_CODE (tem) == CLOBBER)
1245 	    continue;
1246 
1247 	  if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1248 	    return 0;
1249 	}
1250 
1251       return 1;
1252     }
1253   return 0;
1254 }
1255 
1256 
1257 /* Return the last thing that X was assigned from before *PINSN.  If VALID_TO
1258    is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1259    If the object was modified, if we hit a partial assignment to X, or hit a
1260    CODE_LABEL first, return X.  If we found an assignment, update *PINSN to
1261    point to it.  ALLOW_HWREG is set to 1 if hardware registers are allowed to
1262    be the src.  */
1263 
1264 rtx
find_last_value(rtx x,rtx * pinsn,rtx valid_to,int allow_hwreg)1265 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1266 {
1267   rtx p;
1268 
1269   for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1270        p = PREV_INSN (p))
1271     if (INSN_P (p))
1272       {
1273 	rtx set = single_set (p);
1274 	rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1275 
1276 	if (set && rtx_equal_p (x, SET_DEST (set)))
1277 	  {
1278 	    rtx src = SET_SRC (set);
1279 
1280 	    if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1281 	      src = XEXP (note, 0);
1282 
1283 	    if ((valid_to == NULL_RTX
1284 		 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1285 		/* Reject hard registers because we don't usually want
1286 		   to use them; we'd rather use a pseudo.  */
1287 		&& (! (REG_P (src)
1288 		      && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1289 	      {
1290 		*pinsn = p;
1291 		return src;
1292 	      }
1293 	  }
1294 
1295 	/* If set in non-simple way, we don't have a value.  */
1296 	if (reg_set_p (x, p))
1297 	  break;
1298       }
1299 
1300   return x;
1301 }
1302 
1303 /* Return nonzero if register in range [REGNO, ENDREGNO)
1304    appears either explicitly or implicitly in X
1305    other than being stored into.
1306 
1307    References contained within the substructure at LOC do not count.
1308    LOC may be zero, meaning don't ignore anything.  */
1309 
1310 int
refers_to_regno_p(unsigned int regno,unsigned int endregno,const_rtx x,rtx * loc)1311 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1312 		   rtx *loc)
1313 {
1314   int i;
1315   unsigned int x_regno;
1316   RTX_CODE code;
1317   const char *fmt;
1318 
1319  repeat:
1320   /* The contents of a REG_NONNEG note is always zero, so we must come here
1321      upon repeat in case the last REG_NOTE is a REG_NONNEG note.  */
1322   if (x == 0)
1323     return 0;
1324 
1325   code = GET_CODE (x);
1326 
1327   switch (code)
1328     {
1329     case REG:
1330       x_regno = REGNO (x);
1331 
1332       /* If we modifying the stack, frame, or argument pointer, it will
1333 	 clobber a virtual register.  In fact, we could be more precise,
1334 	 but it isn't worth it.  */
1335       if ((x_regno == STACK_POINTER_REGNUM
1336 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1337 	   || x_regno == ARG_POINTER_REGNUM
1338 #endif
1339 	   || x_regno == FRAME_POINTER_REGNUM)
1340 	  && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1341 	return 1;
1342 
1343       return endregno > x_regno && regno < END_REGNO (x);
1344 
1345     case SUBREG:
1346       /* If this is a SUBREG of a hard reg, we can see exactly which
1347 	 registers are being modified.  Otherwise, handle normally.  */
1348       if (REG_P (SUBREG_REG (x))
1349 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1350 	{
1351 	  unsigned int inner_regno = subreg_regno (x);
1352 	  unsigned int inner_endregno
1353 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1354 			     ? subreg_nregs (x) : 1);
1355 
1356 	  return endregno > inner_regno && regno < inner_endregno;
1357 	}
1358       break;
1359 
1360     case CLOBBER:
1361     case SET:
1362       if (&SET_DEST (x) != loc
1363 	  /* Note setting a SUBREG counts as referring to the REG it is in for
1364 	     a pseudo but not for hard registers since we can
1365 	     treat each word individually.  */
1366 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
1367 	       && loc != &SUBREG_REG (SET_DEST (x))
1368 	       && REG_P (SUBREG_REG (SET_DEST (x)))
1369 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1370 	       && refers_to_regno_p (regno, endregno,
1371 				     SUBREG_REG (SET_DEST (x)), loc))
1372 	      || (!REG_P (SET_DEST (x))
1373 		  && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1374 	return 1;
1375 
1376       if (code == CLOBBER || loc == &SET_SRC (x))
1377 	return 0;
1378       x = SET_SRC (x);
1379       goto repeat;
1380 
1381     default:
1382       break;
1383     }
1384 
1385   /* X does not match, so try its subexpressions.  */
1386 
1387   fmt = GET_RTX_FORMAT (code);
1388   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1389     {
1390       if (fmt[i] == 'e' && loc != &XEXP (x, i))
1391 	{
1392 	  if (i == 0)
1393 	    {
1394 	      x = XEXP (x, 0);
1395 	      goto repeat;
1396 	    }
1397 	  else
1398 	    if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1399 	      return 1;
1400 	}
1401       else if (fmt[i] == 'E')
1402 	{
1403 	  int j;
1404 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1405 	    if (loc != &XVECEXP (x, i, j)
1406 		&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1407 	      return 1;
1408 	}
1409     }
1410   return 0;
1411 }
1412 
1413 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
1414    we check if any register number in X conflicts with the relevant register
1415    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
1416    contains a MEM (we don't bother checking for memory addresses that can't
1417    conflict because we expect this to be a rare case.  */
1418 
1419 int
reg_overlap_mentioned_p(const_rtx x,const_rtx in)1420 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1421 {
1422   unsigned int regno, endregno;
1423 
1424   /* If either argument is a constant, then modifying X can not
1425      affect IN.  Here we look at IN, we can profitably combine
1426      CONSTANT_P (x) with the switch statement below.  */
1427   if (CONSTANT_P (in))
1428     return 0;
1429 
1430  recurse:
1431   switch (GET_CODE (x))
1432     {
1433     case STRICT_LOW_PART:
1434     case ZERO_EXTRACT:
1435     case SIGN_EXTRACT:
1436       /* Overly conservative.  */
1437       x = XEXP (x, 0);
1438       goto recurse;
1439 
1440     case SUBREG:
1441       regno = REGNO (SUBREG_REG (x));
1442       if (regno < FIRST_PSEUDO_REGISTER)
1443 	regno = subreg_regno (x);
1444       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1445 			  ? subreg_nregs (x) : 1);
1446       goto do_reg;
1447 
1448     case REG:
1449       regno = REGNO (x);
1450       endregno = END_REGNO (x);
1451     do_reg:
1452       return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1453 
1454     case MEM:
1455       {
1456 	const char *fmt;
1457 	int i;
1458 
1459 	if (MEM_P (in))
1460 	  return 1;
1461 
1462 	fmt = GET_RTX_FORMAT (GET_CODE (in));
1463 	for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1464 	  if (fmt[i] == 'e')
1465 	    {
1466 	      if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1467 		return 1;
1468 	    }
1469 	  else if (fmt[i] == 'E')
1470 	    {
1471 	      int j;
1472 	      for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1473 		if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1474 		  return 1;
1475 	    }
1476 
1477 	return 0;
1478       }
1479 
1480     case SCRATCH:
1481     case PC:
1482     case CC0:
1483       return reg_mentioned_p (x, in);
1484 
1485     case PARALLEL:
1486       {
1487 	int i;
1488 
1489 	/* If any register in here refers to it we return true.  */
1490 	for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1491 	  if (XEXP (XVECEXP (x, 0, i), 0) != 0
1492 	      && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1493 	    return 1;
1494 	return 0;
1495       }
1496 
1497     default:
1498       gcc_assert (CONSTANT_P (x));
1499       return 0;
1500     }
1501 }
1502 
1503 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1504    (X would be the pattern of an insn).  DATA is an arbitrary pointer,
1505    ignored by note_stores, but passed to FUN.
1506 
1507    FUN receives three arguments:
1508    1. the REG, MEM, CC0 or PC being stored in or clobbered,
1509    2. the SET or CLOBBER rtx that does the store,
1510    3. the pointer DATA provided to note_stores.
1511 
1512   If the item being stored in or clobbered is a SUBREG of a hard register,
1513   the SUBREG will be passed.  */
1514 
1515 void
note_stores(const_rtx x,void (* fun)(rtx,const_rtx,void *),void * data)1516 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1517 {
1518   int i;
1519 
1520   if (GET_CODE (x) == COND_EXEC)
1521     x = COND_EXEC_CODE (x);
1522 
1523   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1524     {
1525       rtx dest = SET_DEST (x);
1526 
1527       while ((GET_CODE (dest) == SUBREG
1528 	      && (!REG_P (SUBREG_REG (dest))
1529 		  || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1530 	     || GET_CODE (dest) == ZERO_EXTRACT
1531 	     || GET_CODE (dest) == STRICT_LOW_PART)
1532 	dest = XEXP (dest, 0);
1533 
1534       /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1535 	 each of whose first operand is a register.  */
1536       if (GET_CODE (dest) == PARALLEL)
1537 	{
1538 	  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1539 	    if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1540 	      (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1541 	}
1542       else
1543 	(*fun) (dest, x, data);
1544     }
1545 
1546   else if (GET_CODE (x) == PARALLEL)
1547     for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1548       note_stores (XVECEXP (x, 0, i), fun, data);
1549 }
1550 
1551 /* Like notes_stores, but call FUN for each expression that is being
1552    referenced in PBODY, a pointer to the PATTERN of an insn.  We only call
1553    FUN for each expression, not any interior subexpressions.  FUN receives a
1554    pointer to the expression and the DATA passed to this function.
1555 
1556    Note that this is not quite the same test as that done in reg_referenced_p
1557    since that considers something as being referenced if it is being
1558    partially set, while we do not.  */
1559 
1560 void
note_uses(rtx * pbody,void (* fun)(rtx *,void *),void * data)1561 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1562 {
1563   rtx body = *pbody;
1564   int i;
1565 
1566   switch (GET_CODE (body))
1567     {
1568     case COND_EXEC:
1569       (*fun) (&COND_EXEC_TEST (body), data);
1570       note_uses (&COND_EXEC_CODE (body), fun, data);
1571       return;
1572 
1573     case PARALLEL:
1574       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1575 	note_uses (&XVECEXP (body, 0, i), fun, data);
1576       return;
1577 
1578     case SEQUENCE:
1579       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1580 	note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1581       return;
1582 
1583     case USE:
1584       (*fun) (&XEXP (body, 0), data);
1585       return;
1586 
1587     case ASM_OPERANDS:
1588       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1589 	(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1590       return;
1591 
1592     case TRAP_IF:
1593       (*fun) (&TRAP_CONDITION (body), data);
1594       return;
1595 
1596     case PREFETCH:
1597       (*fun) (&XEXP (body, 0), data);
1598       return;
1599 
1600     case UNSPEC:
1601     case UNSPEC_VOLATILE:
1602       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1603 	(*fun) (&XVECEXP (body, 0, i), data);
1604       return;
1605 
1606     case CLOBBER:
1607       if (MEM_P (XEXP (body, 0)))
1608 	(*fun) (&XEXP (XEXP (body, 0), 0), data);
1609       return;
1610 
1611     case SET:
1612       {
1613 	rtx dest = SET_DEST (body);
1614 
1615 	/* For sets we replace everything in source plus registers in memory
1616 	   expression in store and operands of a ZERO_EXTRACT.  */
1617 	(*fun) (&SET_SRC (body), data);
1618 
1619 	if (GET_CODE (dest) == ZERO_EXTRACT)
1620 	  {
1621 	    (*fun) (&XEXP (dest, 1), data);
1622 	    (*fun) (&XEXP (dest, 2), data);
1623 	  }
1624 
1625 	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1626 	  dest = XEXP (dest, 0);
1627 
1628 	if (MEM_P (dest))
1629 	  (*fun) (&XEXP (dest, 0), data);
1630       }
1631       return;
1632 
1633     default:
1634       /* All the other possibilities never store.  */
1635       (*fun) (pbody, data);
1636       return;
1637     }
1638 }
1639 
1640 /* Return nonzero if X's old contents don't survive after INSN.
1641    This will be true if X is (cc0) or if X is a register and
1642    X dies in INSN or because INSN entirely sets X.
1643 
1644    "Entirely set" means set directly and not through a SUBREG, or
1645    ZERO_EXTRACT, so no trace of the old contents remains.
1646    Likewise, REG_INC does not count.
1647 
1648    REG may be a hard or pseudo reg.  Renumbering is not taken into account,
1649    but for this use that makes no difference, since regs don't overlap
1650    during their lifetimes.  Therefore, this function may be used
1651    at any time after deaths have been computed.
1652 
1653    If REG is a hard reg that occupies multiple machine registers, this
1654    function will only return 1 if each of those registers will be replaced
1655    by INSN.  */
1656 
1657 int
dead_or_set_p(const_rtx insn,const_rtx x)1658 dead_or_set_p (const_rtx insn, const_rtx x)
1659 {
1660   unsigned int regno, end_regno;
1661   unsigned int i;
1662 
1663   /* Can't use cc0_rtx below since this file is used by genattrtab.c.  */
1664   if (GET_CODE (x) == CC0)
1665     return 1;
1666 
1667   gcc_assert (REG_P (x));
1668 
1669   regno = REGNO (x);
1670   end_regno = END_REGNO (x);
1671   for (i = regno; i < end_regno; i++)
1672     if (! dead_or_set_regno_p (insn, i))
1673       return 0;
1674 
1675   return 1;
1676 }
1677 
1678 /* Return TRUE iff DEST is a register or subreg of a register and
1679    doesn't change the number of words of the inner register, and any
1680    part of the register is TEST_REGNO.  */
1681 
1682 static bool
covers_regno_no_parallel_p(const_rtx dest,unsigned int test_regno)1683 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1684 {
1685   unsigned int regno, endregno;
1686 
1687   if (GET_CODE (dest) == SUBREG
1688       && (((GET_MODE_SIZE (GET_MODE (dest))
1689 	    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1690 	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1691 	       + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1692     dest = SUBREG_REG (dest);
1693 
1694   if (!REG_P (dest))
1695     return false;
1696 
1697   regno = REGNO (dest);
1698   endregno = END_REGNO (dest);
1699   return (test_regno >= regno && test_regno < endregno);
1700 }
1701 
1702 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1703    any member matches the covers_regno_no_parallel_p criteria.  */
1704 
1705 static bool
covers_regno_p(const_rtx dest,unsigned int test_regno)1706 covers_regno_p (const_rtx dest, unsigned int test_regno)
1707 {
1708   if (GET_CODE (dest) == PARALLEL)
1709     {
1710       /* Some targets place small structures in registers for return
1711 	 values of functions, and those registers are wrapped in
1712 	 PARALLELs that we may see as the destination of a SET.  */
1713       int i;
1714 
1715       for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1716 	{
1717 	  rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1718 	  if (inner != NULL_RTX
1719 	      && covers_regno_no_parallel_p (inner, test_regno))
1720 	    return true;
1721 	}
1722 
1723       return false;
1724     }
1725   else
1726     return covers_regno_no_parallel_p (dest, test_regno);
1727 }
1728 
1729 /* Utility function for dead_or_set_p to check an individual register. */
1730 
1731 int
dead_or_set_regno_p(const_rtx insn,unsigned int test_regno)1732 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1733 {
1734   const_rtx pattern;
1735 
1736   /* See if there is a death note for something that includes TEST_REGNO.  */
1737   if (find_regno_note (insn, REG_DEAD, test_regno))
1738     return 1;
1739 
1740   if (CALL_P (insn)
1741       && find_regno_fusage (insn, CLOBBER, test_regno))
1742     return 1;
1743 
1744   pattern = PATTERN (insn);
1745 
1746   /* If a COND_EXEC is not executed, the value survives.  */
1747   if (GET_CODE (pattern) == COND_EXEC)
1748     return 0;
1749 
1750   if (GET_CODE (pattern) == SET)
1751     return covers_regno_p (SET_DEST (pattern), test_regno);
1752   else if (GET_CODE (pattern) == PARALLEL)
1753     {
1754       int i;
1755 
1756       for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1757 	{
1758 	  rtx body = XVECEXP (pattern, 0, i);
1759 
1760 	  if (GET_CODE (body) == COND_EXEC)
1761 	    body = COND_EXEC_CODE (body);
1762 
1763 	  if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1764 	      && covers_regno_p (SET_DEST (body), test_regno))
1765 	    return 1;
1766 	}
1767     }
1768 
1769   return 0;
1770 }
1771 
1772 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1773    If DATUM is nonzero, look for one whose datum is DATUM.  */
1774 
1775 rtx
find_reg_note(const_rtx insn,enum reg_note kind,const_rtx datum)1776 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1777 {
1778   rtx link;
1779 
1780   gcc_checking_assert (insn);
1781 
1782   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1783   if (! INSN_P (insn))
1784     return 0;
1785   if (datum == 0)
1786     {
1787       for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1788 	if (REG_NOTE_KIND (link) == kind)
1789 	  return link;
1790       return 0;
1791     }
1792 
1793   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1794     if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1795       return link;
1796   return 0;
1797 }
1798 
1799 /* Return the reg-note of kind KIND in insn INSN which applies to register
1800    number REGNO, if any.  Return 0 if there is no such reg-note.  Note that
1801    the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1802    it might be the case that the note overlaps REGNO.  */
1803 
1804 rtx
find_regno_note(const_rtx insn,enum reg_note kind,unsigned int regno)1805 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1806 {
1807   rtx link;
1808 
1809   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1810   if (! INSN_P (insn))
1811     return 0;
1812 
1813   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1814     if (REG_NOTE_KIND (link) == kind
1815 	/* Verify that it is a register, so that scratch and MEM won't cause a
1816 	   problem here.  */
1817 	&& REG_P (XEXP (link, 0))
1818 	&& REGNO (XEXP (link, 0)) <= regno
1819 	&& END_REGNO (XEXP (link, 0)) > regno)
1820       return link;
1821   return 0;
1822 }
1823 
1824 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1825    has such a note.  */
1826 
1827 rtx
find_reg_equal_equiv_note(const_rtx insn)1828 find_reg_equal_equiv_note (const_rtx insn)
1829 {
1830   rtx link;
1831 
1832   if (!INSN_P (insn))
1833     return 0;
1834 
1835   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1836     if (REG_NOTE_KIND (link) == REG_EQUAL
1837 	|| REG_NOTE_KIND (link) == REG_EQUIV)
1838       {
1839 	/* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1840 	   insns that have multiple sets.  Checking single_set to
1841 	   make sure of this is not the proper check, as explained
1842 	   in the comment in set_unique_reg_note.
1843 
1844 	   This should be changed into an assert.  */
1845 	if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1846 	  return 0;
1847 	return link;
1848       }
1849   return NULL;
1850 }
1851 
1852 /* Check whether INSN is a single_set whose source is known to be
1853    equivalent to a constant.  Return that constant if so, otherwise
1854    return null.  */
1855 
1856 rtx
find_constant_src(const_rtx insn)1857 find_constant_src (const_rtx insn)
1858 {
1859   rtx note, set, x;
1860 
1861   set = single_set (insn);
1862   if (set)
1863     {
1864       x = avoid_constant_pool_reference (SET_SRC (set));
1865       if (CONSTANT_P (x))
1866 	return x;
1867     }
1868 
1869   note = find_reg_equal_equiv_note (insn);
1870   if (note && CONSTANT_P (XEXP (note, 0)))
1871     return XEXP (note, 0);
1872 
1873   return NULL_RTX;
1874 }
1875 
1876 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1877    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1878 
1879 int
find_reg_fusage(const_rtx insn,enum rtx_code code,const_rtx datum)1880 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1881 {
1882   /* If it's not a CALL_INSN, it can't possibly have a
1883      CALL_INSN_FUNCTION_USAGE field, so don't bother checking.  */
1884   if (!CALL_P (insn))
1885     return 0;
1886 
1887   gcc_assert (datum);
1888 
1889   if (!REG_P (datum))
1890     {
1891       rtx link;
1892 
1893       for (link = CALL_INSN_FUNCTION_USAGE (insn);
1894 	   link;
1895 	   link = XEXP (link, 1))
1896 	if (GET_CODE (XEXP (link, 0)) == code
1897 	    && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1898 	  return 1;
1899     }
1900   else
1901     {
1902       unsigned int regno = REGNO (datum);
1903 
1904       /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1905 	 to pseudo registers, so don't bother checking.  */
1906 
1907       if (regno < FIRST_PSEUDO_REGISTER)
1908 	{
1909 	  unsigned int end_regno = END_HARD_REGNO (datum);
1910 	  unsigned int i;
1911 
1912 	  for (i = regno; i < end_regno; i++)
1913 	    if (find_regno_fusage (insn, code, i))
1914 	      return 1;
1915 	}
1916     }
1917 
1918   return 0;
1919 }
1920 
1921 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1922    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1923 
1924 int
find_regno_fusage(const_rtx insn,enum rtx_code code,unsigned int regno)1925 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1926 {
1927   rtx link;
1928 
1929   /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1930      to pseudo registers, so don't bother checking.  */
1931 
1932   if (regno >= FIRST_PSEUDO_REGISTER
1933       || !CALL_P (insn) )
1934     return 0;
1935 
1936   for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1937     {
1938       rtx op, reg;
1939 
1940       if (GET_CODE (op = XEXP (link, 0)) == code
1941 	  && REG_P (reg = XEXP (op, 0))
1942 	  && REGNO (reg) <= regno
1943 	  && END_HARD_REGNO (reg) > regno)
1944 	return 1;
1945     }
1946 
1947   return 0;
1948 }
1949 
1950 
1951 /* Allocate a register note with kind KIND and datum DATUM.  LIST is
1952    stored as the pointer to the next register note.  */
1953 
1954 rtx
alloc_reg_note(enum reg_note kind,rtx datum,rtx list)1955 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1956 {
1957   rtx note;
1958 
1959   switch (kind)
1960     {
1961     case REG_CC_SETTER:
1962     case REG_CC_USER:
1963     case REG_LABEL_TARGET:
1964     case REG_LABEL_OPERAND:
1965     case REG_TM:
1966       /* These types of register notes use an INSN_LIST rather than an
1967 	 EXPR_LIST, so that copying is done right and dumps look
1968 	 better.  */
1969       note = alloc_INSN_LIST (datum, list);
1970       PUT_REG_NOTE_KIND (note, kind);
1971       break;
1972 
1973     default:
1974       note = alloc_EXPR_LIST (kind, datum, list);
1975       break;
1976     }
1977 
1978   return note;
1979 }
1980 
1981 /* Add register note with kind KIND and datum DATUM to INSN.  */
1982 
1983 void
add_reg_note(rtx insn,enum reg_note kind,rtx datum)1984 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1985 {
1986   REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1987 }
1988 
1989 /* Remove register note NOTE from the REG_NOTES of INSN.  */
1990 
1991 void
remove_note(rtx insn,const_rtx note)1992 remove_note (rtx insn, const_rtx note)
1993 {
1994   rtx link;
1995 
1996   if (note == NULL_RTX)
1997     return;
1998 
1999   if (REG_NOTES (insn) == note)
2000     REG_NOTES (insn) = XEXP (note, 1);
2001   else
2002     for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2003       if (XEXP (link, 1) == note)
2004 	{
2005 	  XEXP (link, 1) = XEXP (note, 1);
2006 	  break;
2007 	}
2008 
2009   switch (REG_NOTE_KIND (note))
2010     {
2011     case REG_EQUAL:
2012     case REG_EQUIV:
2013       df_notes_rescan (insn);
2014       break;
2015     default:
2016       break;
2017     }
2018 }
2019 
2020 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.  */
2021 
2022 void
remove_reg_equal_equiv_notes(rtx insn)2023 remove_reg_equal_equiv_notes (rtx insn)
2024 {
2025   rtx *loc;
2026 
2027   loc = &REG_NOTES (insn);
2028   while (*loc)
2029     {
2030       enum reg_note kind = REG_NOTE_KIND (*loc);
2031       if (kind == REG_EQUAL || kind == REG_EQUIV)
2032 	*loc = XEXP (*loc, 1);
2033       else
2034 	loc = &XEXP (*loc, 1);
2035     }
2036 }
2037 
2038 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO.  */
2039 
2040 void
remove_reg_equal_equiv_notes_for_regno(unsigned int regno)2041 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2042 {
2043   df_ref eq_use;
2044 
2045   if (!df)
2046     return;
2047 
2048   /* This loop is a little tricky.  We cannot just go down the chain because
2049      it is being modified by some actions in the loop.  So we just iterate
2050      over the head.  We plan to drain the list anyway.  */
2051   while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2052     {
2053       rtx insn = DF_REF_INSN (eq_use);
2054       rtx note = find_reg_equal_equiv_note (insn);
2055 
2056       /* This assert is generally triggered when someone deletes a REG_EQUAL
2057 	 or REG_EQUIV note by hacking the list manually rather than calling
2058 	 remove_note.  */
2059       gcc_assert (note);
2060 
2061       remove_note (insn, note);
2062     }
2063 }
2064 
2065 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2066    return 1 if it is found.  A simple equality test is used to determine if
2067    NODE matches.  */
2068 
2069 int
in_expr_list_p(const_rtx listp,const_rtx node)2070 in_expr_list_p (const_rtx listp, const_rtx node)
2071 {
2072   const_rtx x;
2073 
2074   for (x = listp; x; x = XEXP (x, 1))
2075     if (node == XEXP (x, 0))
2076       return 1;
2077 
2078   return 0;
2079 }
2080 
2081 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2082    remove that entry from the list if it is found.
2083 
2084    A simple equality test is used to determine if NODE matches.  */
2085 
2086 void
remove_node_from_expr_list(const_rtx node,rtx * listp)2087 remove_node_from_expr_list (const_rtx node, rtx *listp)
2088 {
2089   rtx temp = *listp;
2090   rtx prev = NULL_RTX;
2091 
2092   while (temp)
2093     {
2094       if (node == XEXP (temp, 0))
2095 	{
2096 	  /* Splice the node out of the list.  */
2097 	  if (prev)
2098 	    XEXP (prev, 1) = XEXP (temp, 1);
2099 	  else
2100 	    *listp = XEXP (temp, 1);
2101 
2102 	  return;
2103 	}
2104 
2105       prev = temp;
2106       temp = XEXP (temp, 1);
2107     }
2108 }
2109 
2110 /* Nonzero if X contains any volatile instructions.  These are instructions
2111    which may cause unpredictable machine state instructions, and thus no
2112    instructions or register uses should be moved or combined across them.
2113    This includes only volatile asms and UNSPEC_VOLATILE instructions.  */
2114 
2115 int
volatile_insn_p(const_rtx x)2116 volatile_insn_p (const_rtx x)
2117 {
2118   const RTX_CODE code = GET_CODE (x);
2119   switch (code)
2120     {
2121     case LABEL_REF:
2122     case SYMBOL_REF:
2123     case CONST:
2124     CASE_CONST_ANY:
2125     case CC0:
2126     case PC:
2127     case REG:
2128     case SCRATCH:
2129     case CLOBBER:
2130     case ADDR_VEC:
2131     case ADDR_DIFF_VEC:
2132     case CALL:
2133     case MEM:
2134       return 0;
2135 
2136     case UNSPEC_VOLATILE:
2137       return 1;
2138 
2139     case ASM_INPUT:
2140     case ASM_OPERANDS:
2141       if (MEM_VOLATILE_P (x))
2142 	return 1;
2143 
2144     default:
2145       break;
2146     }
2147 
2148   /* Recursively scan the operands of this expression.  */
2149 
2150   {
2151     const char *const fmt = GET_RTX_FORMAT (code);
2152     int i;
2153 
2154     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2155       {
2156 	if (fmt[i] == 'e')
2157 	  {
2158 	    if (volatile_insn_p (XEXP (x, i)))
2159 	      return 1;
2160 	  }
2161 	else if (fmt[i] == 'E')
2162 	  {
2163 	    int j;
2164 	    for (j = 0; j < XVECLEN (x, i); j++)
2165 	      if (volatile_insn_p (XVECEXP (x, i, j)))
2166 		return 1;
2167 	  }
2168       }
2169   }
2170   return 0;
2171 }
2172 
2173 /* Nonzero if X contains any volatile memory references
2174    UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions.  */
2175 
2176 int
volatile_refs_p(const_rtx x)2177 volatile_refs_p (const_rtx x)
2178 {
2179   const RTX_CODE code = GET_CODE (x);
2180   switch (code)
2181     {
2182     case LABEL_REF:
2183     case SYMBOL_REF:
2184     case CONST:
2185     CASE_CONST_ANY:
2186     case CC0:
2187     case PC:
2188     case REG:
2189     case SCRATCH:
2190     case CLOBBER:
2191     case ADDR_VEC:
2192     case ADDR_DIFF_VEC:
2193       return 0;
2194 
2195     case UNSPEC_VOLATILE:
2196       return 1;
2197 
2198     case MEM:
2199     case ASM_INPUT:
2200     case ASM_OPERANDS:
2201       if (MEM_VOLATILE_P (x))
2202 	return 1;
2203 
2204     default:
2205       break;
2206     }
2207 
2208   /* Recursively scan the operands of this expression.  */
2209 
2210   {
2211     const char *const fmt = GET_RTX_FORMAT (code);
2212     int i;
2213 
2214     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2215       {
2216 	if (fmt[i] == 'e')
2217 	  {
2218 	    if (volatile_refs_p (XEXP (x, i)))
2219 	      return 1;
2220 	  }
2221 	else if (fmt[i] == 'E')
2222 	  {
2223 	    int j;
2224 	    for (j = 0; j < XVECLEN (x, i); j++)
2225 	      if (volatile_refs_p (XVECEXP (x, i, j)))
2226 		return 1;
2227 	  }
2228       }
2229   }
2230   return 0;
2231 }
2232 
2233 /* Similar to above, except that it also rejects register pre- and post-
2234    incrementing.  */
2235 
2236 int
side_effects_p(const_rtx x)2237 side_effects_p (const_rtx x)
2238 {
2239   const RTX_CODE code = GET_CODE (x);
2240   switch (code)
2241     {
2242     case LABEL_REF:
2243     case SYMBOL_REF:
2244     case CONST:
2245     CASE_CONST_ANY:
2246     case CC0:
2247     case PC:
2248     case REG:
2249     case SCRATCH:
2250     case ADDR_VEC:
2251     case ADDR_DIFF_VEC:
2252     case VAR_LOCATION:
2253       return 0;
2254 
2255     case CLOBBER:
2256       /* Reject CLOBBER with a non-VOID mode.  These are made by combine.c
2257 	 when some combination can't be done.  If we see one, don't think
2258 	 that we can simplify the expression.  */
2259       return (GET_MODE (x) != VOIDmode);
2260 
2261     case PRE_INC:
2262     case PRE_DEC:
2263     case POST_INC:
2264     case POST_DEC:
2265     case PRE_MODIFY:
2266     case POST_MODIFY:
2267     case CALL:
2268     case UNSPEC_VOLATILE:
2269       return 1;
2270 
2271     case MEM:
2272     case ASM_INPUT:
2273     case ASM_OPERANDS:
2274       if (MEM_VOLATILE_P (x))
2275 	return 1;
2276 
2277     default:
2278       break;
2279     }
2280 
2281   /* Recursively scan the operands of this expression.  */
2282 
2283   {
2284     const char *fmt = GET_RTX_FORMAT (code);
2285     int i;
2286 
2287     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2288       {
2289 	if (fmt[i] == 'e')
2290 	  {
2291 	    if (side_effects_p (XEXP (x, i)))
2292 	      return 1;
2293 	  }
2294 	else if (fmt[i] == 'E')
2295 	  {
2296 	    int j;
2297 	    for (j = 0; j < XVECLEN (x, i); j++)
2298 	      if (side_effects_p (XVECEXP (x, i, j)))
2299 		return 1;
2300 	  }
2301       }
2302   }
2303   return 0;
2304 }
2305 
2306 /* Return nonzero if evaluating rtx X might cause a trap.
2307    FLAGS controls how to consider MEMs.  A nonzero means the context
2308    of the access may have changed from the original, such that the
2309    address may have become invalid.  */
2310 
2311 int
may_trap_p_1(const_rtx x,unsigned flags)2312 may_trap_p_1 (const_rtx x, unsigned flags)
2313 {
2314   int i;
2315   enum rtx_code code;
2316   const char *fmt;
2317 
2318   /* We make no distinction currently, but this function is part of
2319      the internal target-hooks ABI so we keep the parameter as
2320      "unsigned flags".  */
2321   bool code_changed = flags != 0;
2322 
2323   if (x == 0)
2324     return 0;
2325   code = GET_CODE (x);
2326   switch (code)
2327     {
2328       /* Handle these cases quickly.  */
2329     CASE_CONST_ANY:
2330     case SYMBOL_REF:
2331     case LABEL_REF:
2332     case CONST:
2333     case PC:
2334     case CC0:
2335     case REG:
2336     case SCRATCH:
2337       return 0;
2338 
2339     case UNSPEC:
2340       return targetm.unspec_may_trap_p (x, flags);
2341 
2342     case UNSPEC_VOLATILE:
2343     case ASM_INPUT:
2344     case TRAP_IF:
2345       return 1;
2346 
2347     case ASM_OPERANDS:
2348       return MEM_VOLATILE_P (x);
2349 
2350       /* Memory ref can trap unless it's a static var or a stack slot.  */
2351     case MEM:
2352       /* Recognize specific pattern of stack checking probes.  */
2353       if (flag_stack_check
2354 	  && MEM_VOLATILE_P (x)
2355 	  && XEXP (x, 0) == stack_pointer_rtx)
2356 	return 1;
2357       if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2358 	     reference; moving it out of context such as when moving code
2359 	     when optimizing, might cause its address to become invalid.  */
2360 	  code_changed
2361 	  || !MEM_NOTRAP_P (x))
2362 	{
2363 	  HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2364 	  return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2365 					GET_MODE (x), code_changed);
2366 	}
2367 
2368       return 0;
2369 
2370       /* Division by a non-constant might trap.  */
2371     case DIV:
2372     case MOD:
2373     case UDIV:
2374     case UMOD:
2375       if (HONOR_SNANS (GET_MODE (x)))
2376 	return 1;
2377       if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2378 	return flag_trapping_math;
2379       if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2380 	return 1;
2381       break;
2382 
2383     case EXPR_LIST:
2384       /* An EXPR_LIST is used to represent a function call.  This
2385 	 certainly may trap.  */
2386       return 1;
2387 
2388     case GE:
2389     case GT:
2390     case LE:
2391     case LT:
2392     case LTGT:
2393     case COMPARE:
2394       /* Some floating point comparisons may trap.  */
2395       if (!flag_trapping_math)
2396 	break;
2397       /* ??? There is no machine independent way to check for tests that trap
2398 	 when COMPARE is used, though many targets do make this distinction.
2399 	 For instance, sparc uses CCFPE for compares which generate exceptions
2400 	 and CCFP for compares which do not generate exceptions.  */
2401       if (HONOR_NANS (GET_MODE (x)))
2402 	return 1;
2403       /* But often the compare has some CC mode, so check operand
2404 	 modes as well.  */
2405       if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2406 	  || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2407 	return 1;
2408       break;
2409 
2410     case EQ:
2411     case NE:
2412       if (HONOR_SNANS (GET_MODE (x)))
2413 	return 1;
2414       /* Often comparison is CC mode, so check operand modes.  */
2415       if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2416 	  || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2417 	return 1;
2418       break;
2419 
2420     case FIX:
2421       /* Conversion of floating point might trap.  */
2422       if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2423 	return 1;
2424       break;
2425 
2426     case NEG:
2427     case ABS:
2428     case SUBREG:
2429       /* These operations don't trap even with floating point.  */
2430       break;
2431 
2432     default:
2433       /* Any floating arithmetic may trap.  */
2434       if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2435 	return 1;
2436     }
2437 
2438   fmt = GET_RTX_FORMAT (code);
2439   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2440     {
2441       if (fmt[i] == 'e')
2442 	{
2443 	  if (may_trap_p_1 (XEXP (x, i), flags))
2444 	    return 1;
2445 	}
2446       else if (fmt[i] == 'E')
2447 	{
2448 	  int j;
2449 	  for (j = 0; j < XVECLEN (x, i); j++)
2450 	    if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2451 	      return 1;
2452 	}
2453     }
2454   return 0;
2455 }
2456 
2457 /* Return nonzero if evaluating rtx X might cause a trap.  */
2458 
2459 int
may_trap_p(const_rtx x)2460 may_trap_p (const_rtx x)
2461 {
2462   return may_trap_p_1 (x, 0);
2463 }
2464 
2465 /* Same as above, but additionally return nonzero if evaluating rtx X might
2466    cause a fault.  We define a fault for the purpose of this function as a
2467    erroneous execution condition that cannot be encountered during the normal
2468    execution of a valid program; the typical example is an unaligned memory
2469    access on a strict alignment machine.  The compiler guarantees that it
2470    doesn't generate code that will fault from a valid program, but this
2471    guarantee doesn't mean anything for individual instructions.  Consider
2472    the following example:
2473 
2474       struct S { int d; union { char *cp; int *ip; }; };
2475 
2476       int foo(struct S *s)
2477       {
2478 	if (s->d == 1)
2479 	  return *s->ip;
2480 	else
2481 	  return *s->cp;
2482       }
2483 
2484    on a strict alignment machine.  In a valid program, foo will never be
2485    invoked on a structure for which d is equal to 1 and the underlying
2486    unique field of the union not aligned on a 4-byte boundary, but the
2487    expression *s->ip might cause a fault if considered individually.
2488 
2489    At the RTL level, potentially problematic expressions will almost always
2490    verify may_trap_p; for example, the above dereference can be emitted as
2491    (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2492    However, suppose that foo is inlined in a caller that causes s->cp to
2493    point to a local character variable and guarantees that s->d is not set
2494    to 1; foo may have been effectively translated into pseudo-RTL as:
2495 
2496       if ((reg:SI) == 1)
2497 	(set (reg:SI) (mem:SI (%fp - 7)))
2498       else
2499 	(set (reg:QI) (mem:QI (%fp - 7)))
2500 
2501    Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2502    memory reference to a stack slot, but it will certainly cause a fault
2503    on a strict alignment machine.  */
2504 
2505 int
may_trap_or_fault_p(const_rtx x)2506 may_trap_or_fault_p (const_rtx x)
2507 {
2508   return may_trap_p_1 (x, 1);
2509 }
2510 
2511 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2512    i.e., an inequality.  */
2513 
2514 int
inequality_comparisons_p(const_rtx x)2515 inequality_comparisons_p (const_rtx x)
2516 {
2517   const char *fmt;
2518   int len, i;
2519   const enum rtx_code code = GET_CODE (x);
2520 
2521   switch (code)
2522     {
2523     case REG:
2524     case SCRATCH:
2525     case PC:
2526     case CC0:
2527     CASE_CONST_ANY:
2528     case CONST:
2529     case LABEL_REF:
2530     case SYMBOL_REF:
2531       return 0;
2532 
2533     case LT:
2534     case LTU:
2535     case GT:
2536     case GTU:
2537     case LE:
2538     case LEU:
2539     case GE:
2540     case GEU:
2541       return 1;
2542 
2543     default:
2544       break;
2545     }
2546 
2547   len = GET_RTX_LENGTH (code);
2548   fmt = GET_RTX_FORMAT (code);
2549 
2550   for (i = 0; i < len; i++)
2551     {
2552       if (fmt[i] == 'e')
2553 	{
2554 	  if (inequality_comparisons_p (XEXP (x, i)))
2555 	    return 1;
2556 	}
2557       else if (fmt[i] == 'E')
2558 	{
2559 	  int j;
2560 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2561 	    if (inequality_comparisons_p (XVECEXP (x, i, j)))
2562 	      return 1;
2563 	}
2564     }
2565 
2566   return 0;
2567 }
2568 
2569 /* Replace any occurrence of FROM in X with TO.  The function does
2570    not enter into CONST_DOUBLE for the replace.
2571 
2572    Note that copying is not done so X must not be shared unless all copies
2573    are to be modified.  */
2574 
2575 rtx
replace_rtx(rtx x,rtx from,rtx to)2576 replace_rtx (rtx x, rtx from, rtx to)
2577 {
2578   int i, j;
2579   const char *fmt;
2580 
2581   if (x == from)
2582     return to;
2583 
2584   /* Allow this function to make replacements in EXPR_LISTs.  */
2585   if (x == 0)
2586     return 0;
2587 
2588   if (GET_CODE (x) == SUBREG)
2589     {
2590       rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2591 
2592       if (CONST_INT_P (new_rtx))
2593 	{
2594 	  x = simplify_subreg (GET_MODE (x), new_rtx,
2595 			       GET_MODE (SUBREG_REG (x)),
2596 			       SUBREG_BYTE (x));
2597 	  gcc_assert (x);
2598 	}
2599       else
2600 	SUBREG_REG (x) = new_rtx;
2601 
2602       return x;
2603     }
2604   else if (GET_CODE (x) == ZERO_EXTEND)
2605     {
2606       rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2607 
2608       if (CONST_INT_P (new_rtx))
2609 	{
2610 	  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2611 					new_rtx, GET_MODE (XEXP (x, 0)));
2612 	  gcc_assert (x);
2613 	}
2614       else
2615 	XEXP (x, 0) = new_rtx;
2616 
2617       return x;
2618     }
2619 
2620   fmt = GET_RTX_FORMAT (GET_CODE (x));
2621   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2622     {
2623       if (fmt[i] == 'e')
2624 	XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2625       else if (fmt[i] == 'E')
2626 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2627 	  XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2628     }
2629 
2630   return x;
2631 }
2632 
2633 /* Replace occurrences of the old label in *X with the new one.
2634    DATA is a REPLACE_LABEL_DATA containing the old and new labels.  */
2635 
2636 int
replace_label(rtx * x,void * data)2637 replace_label (rtx *x, void *data)
2638 {
2639   rtx l = *x;
2640   rtx old_label = ((replace_label_data *) data)->r1;
2641   rtx new_label = ((replace_label_data *) data)->r2;
2642   bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2643 
2644   if (l == NULL_RTX)
2645     return 0;
2646 
2647   if (GET_CODE (l) == SYMBOL_REF
2648       && CONSTANT_POOL_ADDRESS_P (l))
2649     {
2650       rtx c = get_pool_constant (l);
2651       if (rtx_referenced_p (old_label, c))
2652 	{
2653 	  rtx new_c, new_l;
2654 	  replace_label_data *d = (replace_label_data *) data;
2655 
2656 	  /* Create a copy of constant C; replace the label inside
2657 	     but do not update LABEL_NUSES because uses in constant pool
2658 	     are not counted.  */
2659 	  new_c = copy_rtx (c);
2660 	  d->update_label_nuses = false;
2661 	  for_each_rtx (&new_c, replace_label, data);
2662 	  d->update_label_nuses = update_label_nuses;
2663 
2664 	  /* Add the new constant NEW_C to constant pool and replace
2665 	     the old reference to constant by new reference.  */
2666 	  new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2667 	  *x = replace_rtx (l, l, new_l);
2668 	}
2669       return 0;
2670     }
2671 
2672   /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2673      field.  This is not handled by for_each_rtx because it doesn't
2674      handle unprinted ('0') fields.  */
2675   if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2676     JUMP_LABEL (l) = new_label;
2677 
2678   if ((GET_CODE (l) == LABEL_REF
2679        || GET_CODE (l) == INSN_LIST)
2680       && XEXP (l, 0) == old_label)
2681     {
2682       XEXP (l, 0) = new_label;
2683       if (update_label_nuses)
2684 	{
2685 	  ++LABEL_NUSES (new_label);
2686 	  --LABEL_NUSES (old_label);
2687 	}
2688       return 0;
2689     }
2690 
2691   return 0;
2692 }
2693 
2694 /* When *BODY is equal to X or X is directly referenced by *BODY
2695    return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2696    too, otherwise FOR_EACH_RTX continues traversing *BODY.  */
2697 
2698 static int
rtx_referenced_p_1(rtx * body,void * x)2699 rtx_referenced_p_1 (rtx *body, void *x)
2700 {
2701   rtx y = (rtx) x;
2702 
2703   if (*body == NULL_RTX)
2704     return y == NULL_RTX;
2705 
2706   /* Return true if a label_ref *BODY refers to label Y.  */
2707   if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2708     return XEXP (*body, 0) == y;
2709 
2710   /* If *BODY is a reference to pool constant traverse the constant.  */
2711   if (GET_CODE (*body) == SYMBOL_REF
2712       && CONSTANT_POOL_ADDRESS_P (*body))
2713     return rtx_referenced_p (y, get_pool_constant (*body));
2714 
2715   /* By default, compare the RTL expressions.  */
2716   return rtx_equal_p (*body, y);
2717 }
2718 
2719 /* Return true if X is referenced in BODY.  */
2720 
2721 int
rtx_referenced_p(rtx x,rtx body)2722 rtx_referenced_p (rtx x, rtx body)
2723 {
2724   return for_each_rtx (&body, rtx_referenced_p_1, x);
2725 }
2726 
2727 /* If INSN is a tablejump return true and store the label (before jump table) to
2728    *LABELP and the jump table to *TABLEP.  LABELP and TABLEP may be NULL.  */
2729 
2730 bool
tablejump_p(const_rtx insn,rtx * labelp,rtx * tablep)2731 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2732 {
2733   rtx label, table;
2734 
2735   if (!JUMP_P (insn))
2736     return false;
2737 
2738   label = JUMP_LABEL (insn);
2739   if (label != NULL_RTX && !ANY_RETURN_P (label)
2740       && (table = next_active_insn (label)) != NULL_RTX
2741       && JUMP_TABLE_DATA_P (table))
2742     {
2743       if (labelp)
2744 	*labelp = label;
2745       if (tablep)
2746 	*tablep = table;
2747       return true;
2748     }
2749   return false;
2750 }
2751 
2752 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2753    constant that is not in the constant pool and not in the condition
2754    of an IF_THEN_ELSE.  */
2755 
2756 static int
computed_jump_p_1(const_rtx x)2757 computed_jump_p_1 (const_rtx x)
2758 {
2759   const enum rtx_code code = GET_CODE (x);
2760   int i, j;
2761   const char *fmt;
2762 
2763   switch (code)
2764     {
2765     case LABEL_REF:
2766     case PC:
2767       return 0;
2768 
2769     case CONST:
2770     CASE_CONST_ANY:
2771     case SYMBOL_REF:
2772     case REG:
2773       return 1;
2774 
2775     case MEM:
2776       return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2777 		&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2778 
2779     case IF_THEN_ELSE:
2780       return (computed_jump_p_1 (XEXP (x, 1))
2781 	      || computed_jump_p_1 (XEXP (x, 2)));
2782 
2783     default:
2784       break;
2785     }
2786 
2787   fmt = GET_RTX_FORMAT (code);
2788   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2789     {
2790       if (fmt[i] == 'e'
2791 	  && computed_jump_p_1 (XEXP (x, i)))
2792 	return 1;
2793 
2794       else if (fmt[i] == 'E')
2795 	for (j = 0; j < XVECLEN (x, i); j++)
2796 	  if (computed_jump_p_1 (XVECEXP (x, i, j)))
2797 	    return 1;
2798     }
2799 
2800   return 0;
2801 }
2802 
2803 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2804 
2805    Tablejumps and casesi insns are not considered indirect jumps;
2806    we can recognize them by a (use (label_ref)).  */
2807 
2808 int
computed_jump_p(const_rtx insn)2809 computed_jump_p (const_rtx insn)
2810 {
2811   int i;
2812   if (JUMP_P (insn))
2813     {
2814       rtx pat = PATTERN (insn);
2815 
2816       /* If we have a JUMP_LABEL set, we're not a computed jump.  */
2817       if (JUMP_LABEL (insn) != NULL)
2818 	return 0;
2819 
2820       if (GET_CODE (pat) == PARALLEL)
2821 	{
2822 	  int len = XVECLEN (pat, 0);
2823 	  int has_use_labelref = 0;
2824 
2825 	  for (i = len - 1; i >= 0; i--)
2826 	    if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2827 		&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2828 		    == LABEL_REF))
2829 	      has_use_labelref = 1;
2830 
2831 	  if (! has_use_labelref)
2832 	    for (i = len - 1; i >= 0; i--)
2833 	      if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2834 		  && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2835 		  && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2836 		return 1;
2837 	}
2838       else if (GET_CODE (pat) == SET
2839 	       && SET_DEST (pat) == pc_rtx
2840 	       && computed_jump_p_1 (SET_SRC (pat)))
2841 	return 1;
2842     }
2843   return 0;
2844 }
2845 
2846 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2847    calls.  Processes the subexpressions of EXP and passes them to F.  */
2848 static int
for_each_rtx_1(rtx exp,int n,rtx_function f,void * data)2849 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2850 {
2851   int result, i, j;
2852   const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2853   rtx *x;
2854 
2855   for (; format[n] != '\0'; n++)
2856     {
2857       switch (format[n])
2858 	{
2859 	case 'e':
2860 	  /* Call F on X.  */
2861 	  x = &XEXP (exp, n);
2862 	  result = (*f) (x, data);
2863 	  if (result == -1)
2864 	    /* Do not traverse sub-expressions.  */
2865 	    continue;
2866 	  else if (result != 0)
2867 	    /* Stop the traversal.  */
2868 	    return result;
2869 
2870 	  if (*x == NULL_RTX)
2871 	    /* There are no sub-expressions.  */
2872 	    continue;
2873 
2874 	  i = non_rtx_starting_operands[GET_CODE (*x)];
2875 	  if (i >= 0)
2876 	    {
2877 	      result = for_each_rtx_1 (*x, i, f, data);
2878 	      if (result != 0)
2879 		return result;
2880 	    }
2881 	  break;
2882 
2883 	case 'V':
2884 	case 'E':
2885 	  if (XVEC (exp, n) == 0)
2886 	    continue;
2887 	  for (j = 0; j < XVECLEN (exp, n); ++j)
2888 	    {
2889 	      /* Call F on X.  */
2890 	      x = &XVECEXP (exp, n, j);
2891 	      result = (*f) (x, data);
2892 	      if (result == -1)
2893 		/* Do not traverse sub-expressions.  */
2894 		continue;
2895 	      else if (result != 0)
2896 		/* Stop the traversal.  */
2897 		return result;
2898 
2899 	      if (*x == NULL_RTX)
2900 		/* There are no sub-expressions.  */
2901 		continue;
2902 
2903 	      i = non_rtx_starting_operands[GET_CODE (*x)];
2904 	      if (i >= 0)
2905 		{
2906 		  result = for_each_rtx_1 (*x, i, f, data);
2907 		  if (result != 0)
2908 		    return result;
2909 	        }
2910 	    }
2911 	  break;
2912 
2913 	default:
2914 	  /* Nothing to do.  */
2915 	  break;
2916 	}
2917     }
2918 
2919   return 0;
2920 }
2921 
2922 /* Traverse X via depth-first search, calling F for each
2923    sub-expression (including X itself).  F is also passed the DATA.
2924    If F returns -1, do not traverse sub-expressions, but continue
2925    traversing the rest of the tree.  If F ever returns any other
2926    nonzero value, stop the traversal, and return the value returned
2927    by F.  Otherwise, return 0.  This function does not traverse inside
2928    tree structure that contains RTX_EXPRs, or into sub-expressions
2929    whose format code is `0' since it is not known whether or not those
2930    codes are actually RTL.
2931 
2932    This routine is very general, and could (should?) be used to
2933    implement many of the other routines in this file.  */
2934 
2935 int
for_each_rtx(rtx * x,rtx_function f,void * data)2936 for_each_rtx (rtx *x, rtx_function f, void *data)
2937 {
2938   int result;
2939   int i;
2940 
2941   /* Call F on X.  */
2942   result = (*f) (x, data);
2943   if (result == -1)
2944     /* Do not traverse sub-expressions.  */
2945     return 0;
2946   else if (result != 0)
2947     /* Stop the traversal.  */
2948     return result;
2949 
2950   if (*x == NULL_RTX)
2951     /* There are no sub-expressions.  */
2952     return 0;
2953 
2954   i = non_rtx_starting_operands[GET_CODE (*x)];
2955   if (i < 0)
2956     return 0;
2957 
2958   return for_each_rtx_1 (*x, i, f, data);
2959 }
2960 
2961 
2962 
2963 /* Data structure that holds the internal state communicated between
2964    for_each_inc_dec, for_each_inc_dec_find_mem and
2965    for_each_inc_dec_find_inc_dec.  */
2966 
2967 struct for_each_inc_dec_ops {
2968   /* The function to be called for each autoinc operation found.  */
2969   for_each_inc_dec_fn fn;
2970   /* The opaque argument to be passed to it.  */
2971   void *arg;
2972   /* The MEM we're visiting, if any.  */
2973   rtx mem;
2974 };
2975 
2976 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2977 
2978 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2979    operands of the equivalent add insn and pass the result to the
2980    operator specified by *D.  */
2981 
2982 static int
for_each_inc_dec_find_inc_dec(rtx * r,void * d)2983 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2984 {
2985   rtx x = *r;
2986   struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2987 
2988   switch (GET_CODE (x))
2989     {
2990     case PRE_INC:
2991     case POST_INC:
2992       {
2993 	int size = GET_MODE_SIZE (GET_MODE (data->mem));
2994 	rtx r1 = XEXP (x, 0);
2995 	rtx c = gen_int_mode (size, GET_MODE (r1));
2996 	return data->fn (data->mem, x, r1, r1, c, data->arg);
2997       }
2998 
2999     case PRE_DEC:
3000     case POST_DEC:
3001       {
3002 	int size = GET_MODE_SIZE (GET_MODE (data->mem));
3003 	rtx r1 = XEXP (x, 0);
3004 	rtx c = gen_int_mode (-size, GET_MODE (r1));
3005 	return data->fn (data->mem, x, r1, r1, c, data->arg);
3006       }
3007 
3008     case PRE_MODIFY:
3009     case POST_MODIFY:
3010       {
3011 	rtx r1 = XEXP (x, 0);
3012 	rtx add = XEXP (x, 1);
3013 	return data->fn (data->mem, x, r1, add, NULL, data->arg);
3014       }
3015 
3016     case MEM:
3017       {
3018 	rtx save = data->mem;
3019 	int ret = for_each_inc_dec_find_mem (r, d);
3020 	data->mem = save;
3021 	return ret;
3022       }
3023 
3024     default:
3025       return 0;
3026     }
3027 }
3028 
3029 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3030    address, extract the operands of the equivalent add insn and pass
3031    the result to the operator specified by *D.  */
3032 
3033 static int
for_each_inc_dec_find_mem(rtx * r,void * d)3034 for_each_inc_dec_find_mem (rtx *r, void *d)
3035 {
3036   rtx x = *r;
3037   if (x != NULL_RTX && MEM_P (x))
3038     {
3039       struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3040       int result;
3041 
3042       data->mem = x;
3043 
3044       result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3045 			     data);
3046       if (result)
3047 	return result;
3048 
3049       return -1;
3050     }
3051   return 0;
3052 }
3053 
3054 /* Traverse *X looking for MEMs, and for autoinc operations within
3055    them.  For each such autoinc operation found, call FN, passing it
3056    the innermost enclosing MEM, the operation itself, the RTX modified
3057    by the operation, two RTXs (the second may be NULL) that, once
3058    added, represent the value to be held by the modified RTX
3059    afterwards, and ARG.  FN is to return -1 to skip looking for other
3060    autoinc operations within the visited operation, 0 to continue the
3061    traversal, or any other value to have it returned to the caller of
3062    for_each_inc_dec.  */
3063 
3064 int
for_each_inc_dec(rtx * x,for_each_inc_dec_fn fn,void * arg)3065 for_each_inc_dec (rtx *x,
3066 		  for_each_inc_dec_fn fn,
3067 		  void *arg)
3068 {
3069   struct for_each_inc_dec_ops data;
3070 
3071   data.fn = fn;
3072   data.arg = arg;
3073   data.mem = NULL;
3074 
3075   return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3076 }
3077 
3078 
3079 /* Searches X for any reference to REGNO, returning the rtx of the
3080    reference found if any.  Otherwise, returns NULL_RTX.  */
3081 
3082 rtx
regno_use_in(unsigned int regno,rtx x)3083 regno_use_in (unsigned int regno, rtx x)
3084 {
3085   const char *fmt;
3086   int i, j;
3087   rtx tem;
3088 
3089   if (REG_P (x) && REGNO (x) == regno)
3090     return x;
3091 
3092   fmt = GET_RTX_FORMAT (GET_CODE (x));
3093   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3094     {
3095       if (fmt[i] == 'e')
3096 	{
3097 	  if ((tem = regno_use_in (regno, XEXP (x, i))))
3098 	    return tem;
3099 	}
3100       else if (fmt[i] == 'E')
3101 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3102 	  if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3103 	    return tem;
3104     }
3105 
3106   return NULL_RTX;
3107 }
3108 
3109 /* Return a value indicating whether OP, an operand of a commutative
3110    operation, is preferred as the first or second operand.  The higher
3111    the value, the stronger the preference for being the first operand.
3112    We use negative values to indicate a preference for the first operand
3113    and positive values for the second operand.  */
3114 
3115 int
commutative_operand_precedence(rtx op)3116 commutative_operand_precedence (rtx op)
3117 {
3118   enum rtx_code code = GET_CODE (op);
3119 
3120   /* Constants always come the second operand.  Prefer "nice" constants.  */
3121   if (code == CONST_INT)
3122     return -8;
3123   if (code == CONST_DOUBLE)
3124     return -7;
3125   if (code == CONST_FIXED)
3126     return -7;
3127   op = avoid_constant_pool_reference (op);
3128   code = GET_CODE (op);
3129 
3130   switch (GET_RTX_CLASS (code))
3131     {
3132     case RTX_CONST_OBJ:
3133       if (code == CONST_INT)
3134         return -6;
3135       if (code == CONST_DOUBLE)
3136         return -5;
3137       if (code == CONST_FIXED)
3138         return -5;
3139       return -4;
3140 
3141     case RTX_EXTRA:
3142       /* SUBREGs of objects should come second.  */
3143       if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3144         return -3;
3145       return 0;
3146 
3147     case RTX_OBJ:
3148       /* Complex expressions should be the first, so decrease priority
3149          of objects.  Prefer pointer objects over non pointer objects.  */
3150       if ((REG_P (op) && REG_POINTER (op))
3151 	  || (MEM_P (op) && MEM_POINTER (op)))
3152 	return -1;
3153       return -2;
3154 
3155     case RTX_COMM_ARITH:
3156       /* Prefer operands that are themselves commutative to be first.
3157          This helps to make things linear.  In particular,
3158          (and (and (reg) (reg)) (not (reg))) is canonical.  */
3159       return 4;
3160 
3161     case RTX_BIN_ARITH:
3162       /* If only one operand is a binary expression, it will be the first
3163          operand.  In particular,  (plus (minus (reg) (reg)) (neg (reg)))
3164          is canonical, although it will usually be further simplified.  */
3165       return 2;
3166 
3167     case RTX_UNARY:
3168       /* Then prefer NEG and NOT.  */
3169       if (code == NEG || code == NOT)
3170         return 1;
3171 
3172     default:
3173       return 0;
3174     }
3175 }
3176 
3177 /* Return 1 iff it is necessary to swap operands of commutative operation
3178    in order to canonicalize expression.  */
3179 
3180 bool
swap_commutative_operands_p(rtx x,rtx y)3181 swap_commutative_operands_p (rtx x, rtx y)
3182 {
3183   return (commutative_operand_precedence (x)
3184 	  < commutative_operand_precedence (y));
3185 }
3186 
3187 /* Return 1 if X is an autoincrement side effect and the register is
3188    not the stack pointer.  */
3189 int
auto_inc_p(const_rtx x)3190 auto_inc_p (const_rtx x)
3191 {
3192   switch (GET_CODE (x))
3193     {
3194     case PRE_INC:
3195     case POST_INC:
3196     case PRE_DEC:
3197     case POST_DEC:
3198     case PRE_MODIFY:
3199     case POST_MODIFY:
3200       /* There are no REG_INC notes for SP.  */
3201       if (XEXP (x, 0) != stack_pointer_rtx)
3202 	return 1;
3203     default:
3204       break;
3205     }
3206   return 0;
3207 }
3208 
3209 /* Return nonzero if IN contains a piece of rtl that has the address LOC.  */
3210 int
loc_mentioned_in_p(rtx * loc,const_rtx in)3211 loc_mentioned_in_p (rtx *loc, const_rtx in)
3212 {
3213   enum rtx_code code;
3214   const char *fmt;
3215   int i, j;
3216 
3217   if (!in)
3218     return 0;
3219 
3220   code = GET_CODE (in);
3221   fmt = GET_RTX_FORMAT (code);
3222   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3223     {
3224       if (fmt[i] == 'e')
3225 	{
3226 	  if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3227 	    return 1;
3228 	}
3229       else if (fmt[i] == 'E')
3230 	for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3231 	  if (loc == &XVECEXP (in, i, j)
3232 	      || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3233 	    return 1;
3234     }
3235   return 0;
3236 }
3237 
3238 /* Helper function for subreg_lsb.  Given a subreg's OUTER_MODE, INNER_MODE,
3239    and SUBREG_BYTE, return the bit offset where the subreg begins
3240    (counting from the least significant bit of the operand).  */
3241 
3242 unsigned int
subreg_lsb_1(enum machine_mode outer_mode,enum machine_mode inner_mode,unsigned int subreg_byte)3243 subreg_lsb_1 (enum machine_mode outer_mode,
3244 	      enum machine_mode inner_mode,
3245 	      unsigned int subreg_byte)
3246 {
3247   unsigned int bitpos;
3248   unsigned int byte;
3249   unsigned int word;
3250 
3251   /* A paradoxical subreg begins at bit position 0.  */
3252   if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3253     return 0;
3254 
3255   if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3256     /* If the subreg crosses a word boundary ensure that
3257        it also begins and ends on a word boundary.  */
3258     gcc_assert (!((subreg_byte % UNITS_PER_WORD
3259 		  + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3260 		  && (subreg_byte % UNITS_PER_WORD
3261 		      || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3262 
3263   if (WORDS_BIG_ENDIAN)
3264     word = (GET_MODE_SIZE (inner_mode)
3265 	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3266   else
3267     word = subreg_byte / UNITS_PER_WORD;
3268   bitpos = word * BITS_PER_WORD;
3269 
3270   if (BYTES_BIG_ENDIAN)
3271     byte = (GET_MODE_SIZE (inner_mode)
3272 	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3273   else
3274     byte = subreg_byte % UNITS_PER_WORD;
3275   bitpos += byte * BITS_PER_UNIT;
3276 
3277   return bitpos;
3278 }
3279 
3280 /* Given a subreg X, return the bit offset where the subreg begins
3281    (counting from the least significant bit of the reg).  */
3282 
3283 unsigned int
subreg_lsb(const_rtx x)3284 subreg_lsb (const_rtx x)
3285 {
3286   return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3287 		       SUBREG_BYTE (x));
3288 }
3289 
3290 /* Fill in information about a subreg of a hard register.
3291    xregno - A regno of an inner hard subreg_reg (or what will become one).
3292    xmode  - The mode of xregno.
3293    offset - The byte offset.
3294    ymode  - The mode of a top level SUBREG (or what may become one).
3295    info   - Pointer to structure to fill in.  */
3296 void
subreg_get_info(unsigned int xregno,enum machine_mode xmode,unsigned int offset,enum machine_mode ymode,struct subreg_info * info)3297 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3298 		 unsigned int offset, enum machine_mode ymode,
3299 		 struct subreg_info *info)
3300 {
3301   int nregs_xmode, nregs_ymode;
3302   int mode_multiple, nregs_multiple;
3303   int offset_adj, y_offset, y_offset_adj;
3304   int regsize_xmode, regsize_ymode;
3305   bool rknown;
3306 
3307   gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3308 
3309   rknown = false;
3310 
3311   /* If there are holes in a non-scalar mode in registers, we expect
3312      that it is made up of its units concatenated together.  */
3313   if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3314     {
3315       enum machine_mode xmode_unit;
3316 
3317       nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3318       if (GET_MODE_INNER (xmode) == VOIDmode)
3319 	xmode_unit = xmode;
3320       else
3321 	xmode_unit = GET_MODE_INNER (xmode);
3322       gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3323       gcc_assert (nregs_xmode
3324 		  == (GET_MODE_NUNITS (xmode)
3325 		      * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3326       gcc_assert (hard_regno_nregs[xregno][xmode]
3327 		  == (hard_regno_nregs[xregno][xmode_unit]
3328 		      * GET_MODE_NUNITS (xmode)));
3329 
3330       /* You can only ask for a SUBREG of a value with holes in the middle
3331 	 if you don't cross the holes.  (Such a SUBREG should be done by
3332 	 picking a different register class, or doing it in memory if
3333 	 necessary.)  An example of a value with holes is XCmode on 32-bit
3334 	 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3335 	 3 for each part, but in memory it's two 128-bit parts.
3336 	 Padding is assumed to be at the end (not necessarily the 'high part')
3337 	 of each unit.  */
3338       if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3339 	   < GET_MODE_NUNITS (xmode))
3340 	  && (offset / GET_MODE_SIZE (xmode_unit)
3341 	      != ((offset + GET_MODE_SIZE (ymode) - 1)
3342 		  / GET_MODE_SIZE (xmode_unit))))
3343 	{
3344 	  info->representable_p = false;
3345 	  rknown = true;
3346 	}
3347     }
3348   else
3349     nregs_xmode = hard_regno_nregs[xregno][xmode];
3350 
3351   nregs_ymode = hard_regno_nregs[xregno][ymode];
3352 
3353   /* Paradoxical subregs are otherwise valid.  */
3354   if (!rknown
3355       && offset == 0
3356       && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3357     {
3358       info->representable_p = true;
3359       /* If this is a big endian paradoxical subreg, which uses more
3360 	 actual hard registers than the original register, we must
3361 	 return a negative offset so that we find the proper highpart
3362 	 of the register.  */
3363       if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3364 	  ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3365 	info->offset = nregs_xmode - nregs_ymode;
3366       else
3367 	info->offset = 0;
3368       info->nregs = nregs_ymode;
3369       return;
3370     }
3371 
3372   /* If registers store different numbers of bits in the different
3373      modes, we cannot generally form this subreg.  */
3374   if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3375       && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3376       && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3377       && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3378     {
3379       regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3380       regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3381       if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3382 	{
3383 	  info->representable_p = false;
3384 	  info->nregs
3385 	    = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3386 	  info->offset = offset / regsize_xmode;
3387 	  return;
3388 	}
3389       if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3390 	{
3391 	  info->representable_p = false;
3392 	  info->nregs
3393 	    = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3394 	  info->offset = offset / regsize_xmode;
3395 	  return;
3396 	}
3397     }
3398 
3399   /* Lowpart subregs are otherwise valid.  */
3400   if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3401     {
3402       info->representable_p = true;
3403       rknown = true;
3404 
3405       if (offset == 0 || nregs_xmode == nregs_ymode)
3406 	{
3407 	  info->offset = 0;
3408 	  info->nregs = nregs_ymode;
3409 	  return;
3410 	}
3411     }
3412 
3413   /* This should always pass, otherwise we don't know how to verify
3414      the constraint.  These conditions may be relaxed but
3415      subreg_regno_offset would need to be redesigned.  */
3416   gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3417   gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3418 
3419   if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3420       && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3421     {
3422       HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3423       HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3424       HOST_WIDE_INT off_low = offset & (ysize - 1);
3425       HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3426       offset = (xsize - ysize - off_high) | off_low;
3427     }
3428   /* The XMODE value can be seen as a vector of NREGS_XMODE
3429      values.  The subreg must represent a lowpart of given field.
3430      Compute what field it is.  */
3431   offset_adj = offset;
3432   offset_adj -= subreg_lowpart_offset (ymode,
3433 				       mode_for_size (GET_MODE_BITSIZE (xmode)
3434 						      / nregs_xmode,
3435 						      MODE_INT, 0));
3436 
3437   /* Size of ymode must not be greater than the size of xmode.  */
3438   mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3439   gcc_assert (mode_multiple != 0);
3440 
3441   y_offset = offset / GET_MODE_SIZE (ymode);
3442   y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3443   nregs_multiple = nregs_xmode / nregs_ymode;
3444 
3445   gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3446   gcc_assert ((mode_multiple % nregs_multiple) == 0);
3447 
3448   if (!rknown)
3449     {
3450       info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3451       rknown = true;
3452     }
3453   info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3454   info->nregs = nregs_ymode;
3455 }
3456 
3457 /* This function returns the regno offset of a subreg expression.
3458    xregno - A regno of an inner hard subreg_reg (or what will become one).
3459    xmode  - The mode of xregno.
3460    offset - The byte offset.
3461    ymode  - The mode of a top level SUBREG (or what may become one).
3462    RETURN - The regno offset which would be used.  */
3463 unsigned int
subreg_regno_offset(unsigned int xregno,enum machine_mode xmode,unsigned int offset,enum machine_mode ymode)3464 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3465 		     unsigned int offset, enum machine_mode ymode)
3466 {
3467   struct subreg_info info;
3468   subreg_get_info (xregno, xmode, offset, ymode, &info);
3469   return info.offset;
3470 }
3471 
3472 /* This function returns true when the offset is representable via
3473    subreg_offset in the given regno.
3474    xregno - A regno of an inner hard subreg_reg (or what will become one).
3475    xmode  - The mode of xregno.
3476    offset - The byte offset.
3477    ymode  - The mode of a top level SUBREG (or what may become one).
3478    RETURN - Whether the offset is representable.  */
3479 bool
subreg_offset_representable_p(unsigned int xregno,enum machine_mode xmode,unsigned int offset,enum machine_mode ymode)3480 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3481 			       unsigned int offset, enum machine_mode ymode)
3482 {
3483   struct subreg_info info;
3484   subreg_get_info (xregno, xmode, offset, ymode, &info);
3485   return info.representable_p;
3486 }
3487 
3488 /* Return the number of a YMODE register to which
3489 
3490        (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3491 
3492    can be simplified.  Return -1 if the subreg can't be simplified.
3493 
3494    XREGNO is a hard register number.  */
3495 
3496 int
simplify_subreg_regno(unsigned int xregno,enum machine_mode xmode,unsigned int offset,enum machine_mode ymode)3497 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3498 		       unsigned int offset, enum machine_mode ymode)
3499 {
3500   struct subreg_info info;
3501   unsigned int yregno;
3502 
3503 #ifdef CANNOT_CHANGE_MODE_CLASS
3504   /* Give the backend a chance to disallow the mode change.  */
3505   if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3506       && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3507       && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3508       /* We can use mode change in LRA for some transformations.  */
3509       && ! lra_in_progress)
3510     return -1;
3511 #endif
3512 
3513   /* We shouldn't simplify stack-related registers.  */
3514   if ((!reload_completed || frame_pointer_needed)
3515       && xregno == FRAME_POINTER_REGNUM)
3516     return -1;
3517 
3518   if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3519       && xregno == ARG_POINTER_REGNUM)
3520     return -1;
3521 
3522   if (xregno == STACK_POINTER_REGNUM
3523       /* We should convert hard stack register in LRA if it is
3524 	 possible.  */
3525       && ! lra_in_progress)
3526     return -1;
3527 
3528   /* Try to get the register offset.  */
3529   subreg_get_info (xregno, xmode, offset, ymode, &info);
3530   if (!info.representable_p)
3531     return -1;
3532 
3533   /* Make sure that the offsetted register value is in range.  */
3534   yregno = xregno + info.offset;
3535   if (!HARD_REGISTER_NUM_P (yregno))
3536     return -1;
3537 
3538   /* See whether (reg:YMODE YREGNO) is valid.
3539 
3540      ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3541      This is a kludge to work around how complex FP arguments are passed
3542      on IA-64 and should be fixed.  See PR target/49226.  */
3543   if (!HARD_REGNO_MODE_OK (yregno, ymode)
3544       && HARD_REGNO_MODE_OK (xregno, xmode))
3545     return -1;
3546 
3547   return (int) yregno;
3548 }
3549 
3550 /* Return the final regno that a subreg expression refers to.  */
3551 unsigned int
subreg_regno(const_rtx x)3552 subreg_regno (const_rtx x)
3553 {
3554   unsigned int ret;
3555   rtx subreg = SUBREG_REG (x);
3556   int regno = REGNO (subreg);
3557 
3558   ret = regno + subreg_regno_offset (regno,
3559 				     GET_MODE (subreg),
3560 				     SUBREG_BYTE (x),
3561 				     GET_MODE (x));
3562   return ret;
3563 
3564 }
3565 
3566 /* Return the number of registers that a subreg expression refers
3567    to.  */
3568 unsigned int
subreg_nregs(const_rtx x)3569 subreg_nregs (const_rtx x)
3570 {
3571   return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3572 }
3573 
3574 /* Return the number of registers that a subreg REG with REGNO
3575    expression refers to.  This is a copy of the rtlanal.c:subreg_nregs
3576    changed so that the regno can be passed in. */
3577 
3578 unsigned int
subreg_nregs_with_regno(unsigned int regno,const_rtx x)3579 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3580 {
3581   struct subreg_info info;
3582   rtx subreg = SUBREG_REG (x);
3583 
3584   subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3585 		   &info);
3586   return info.nregs;
3587 }
3588 
3589 
3590 struct parms_set_data
3591 {
3592   int nregs;
3593   HARD_REG_SET regs;
3594 };
3595 
3596 /* Helper function for noticing stores to parameter registers.  */
3597 static void
parms_set(rtx x,const_rtx pat ATTRIBUTE_UNUSED,void * data)3598 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3599 {
3600   struct parms_set_data *const d = (struct parms_set_data *) data;
3601   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3602       && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3603     {
3604       CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3605       d->nregs--;
3606     }
3607 }
3608 
3609 /* Look backward for first parameter to be loaded.
3610    Note that loads of all parameters will not necessarily be
3611    found if CSE has eliminated some of them (e.g., an argument
3612    to the outer function is passed down as a parameter).
3613    Do not skip BOUNDARY.  */
3614 rtx
find_first_parameter_load(rtx call_insn,rtx boundary)3615 find_first_parameter_load (rtx call_insn, rtx boundary)
3616 {
3617   struct parms_set_data parm;
3618   rtx p, before, first_set;
3619 
3620   /* Since different machines initialize their parameter registers
3621      in different orders, assume nothing.  Collect the set of all
3622      parameter registers.  */
3623   CLEAR_HARD_REG_SET (parm.regs);
3624   parm.nregs = 0;
3625   for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3626     if (GET_CODE (XEXP (p, 0)) == USE
3627 	&& REG_P (XEXP (XEXP (p, 0), 0)))
3628       {
3629 	gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3630 
3631 	/* We only care about registers which can hold function
3632 	   arguments.  */
3633 	if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3634 	  continue;
3635 
3636 	SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3637 	parm.nregs++;
3638       }
3639   before = call_insn;
3640   first_set = call_insn;
3641 
3642   /* Search backward for the first set of a register in this set.  */
3643   while (parm.nregs && before != boundary)
3644     {
3645       before = PREV_INSN (before);
3646 
3647       /* It is possible that some loads got CSEed from one call to
3648          another.  Stop in that case.  */
3649       if (CALL_P (before))
3650 	break;
3651 
3652       /* Our caller needs either ensure that we will find all sets
3653          (in case code has not been optimized yet), or take care
3654          for possible labels in a way by setting boundary to preceding
3655          CODE_LABEL.  */
3656       if (LABEL_P (before))
3657 	{
3658 	  gcc_assert (before == boundary);
3659 	  break;
3660 	}
3661 
3662       if (INSN_P (before))
3663 	{
3664 	  int nregs_old = parm.nregs;
3665 	  note_stores (PATTERN (before), parms_set, &parm);
3666 	  /* If we found something that did not set a parameter reg,
3667 	     we're done.  Do not keep going, as that might result
3668 	     in hoisting an insn before the setting of a pseudo
3669 	     that is used by the hoisted insn. */
3670 	  if (nregs_old != parm.nregs)
3671 	    first_set = before;
3672 	  else
3673 	    break;
3674 	}
3675     }
3676   return first_set;
3677 }
3678 
3679 /* Return true if we should avoid inserting code between INSN and preceding
3680    call instruction.  */
3681 
3682 bool
keep_with_call_p(const_rtx insn)3683 keep_with_call_p (const_rtx insn)
3684 {
3685   rtx set;
3686 
3687   if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3688     {
3689       if (REG_P (SET_DEST (set))
3690 	  && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3691 	  && fixed_regs[REGNO (SET_DEST (set))]
3692 	  && general_operand (SET_SRC (set), VOIDmode))
3693 	return true;
3694       if (REG_P (SET_SRC (set))
3695 	  && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3696 	  && REG_P (SET_DEST (set))
3697 	  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3698 	return true;
3699       /* There may be a stack pop just after the call and before the store
3700 	 of the return register.  Search for the actual store when deciding
3701 	 if we can break or not.  */
3702       if (SET_DEST (set) == stack_pointer_rtx)
3703 	{
3704 	  /* This CONST_CAST is okay because next_nonnote_insn just
3705 	     returns its argument and we assign it to a const_rtx
3706 	     variable.  */
3707 	  const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3708 	  if (i2 && keep_with_call_p (i2))
3709 	    return true;
3710 	}
3711     }
3712   return false;
3713 }
3714 
3715 /* Return true if LABEL is a target of JUMP_INSN.  This applies only
3716    to non-complex jumps.  That is, direct unconditional, conditional,
3717    and tablejumps, but not computed jumps or returns.  It also does
3718    not apply to the fallthru case of a conditional jump.  */
3719 
3720 bool
label_is_jump_target_p(const_rtx label,const_rtx jump_insn)3721 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3722 {
3723   rtx tmp = JUMP_LABEL (jump_insn);
3724 
3725   if (label == tmp)
3726     return true;
3727 
3728   if (tablejump_p (jump_insn, NULL, &tmp))
3729     {
3730       rtvec vec = XVEC (PATTERN (tmp),
3731 			GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3732       int i, veclen = GET_NUM_ELEM (vec);
3733 
3734       for (i = 0; i < veclen; ++i)
3735 	if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3736 	  return true;
3737     }
3738 
3739   if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3740     return true;
3741 
3742   return false;
3743 }
3744 
3745 
3746 /* Return an estimate of the cost of computing rtx X.
3747    One use is in cse, to decide which expression to keep in the hash table.
3748    Another is in rtl generation, to pick the cheapest way to multiply.
3749    Other uses like the latter are expected in the future.
3750 
3751    X appears as operand OPNO in an expression with code OUTER_CODE.
3752    SPEED specifies whether costs optimized for speed or size should
3753    be returned.  */
3754 
3755 int
rtx_cost(rtx x,enum rtx_code outer_code,int opno,bool speed)3756 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3757 {
3758   int i, j;
3759   enum rtx_code code;
3760   const char *fmt;
3761   int total;
3762   int factor;
3763 
3764   if (x == 0)
3765     return 0;
3766 
3767   /* A size N times larger than UNITS_PER_WORD likely needs N times as
3768      many insns, taking N times as long.  */
3769   factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3770   if (factor == 0)
3771     factor = 1;
3772 
3773   /* Compute the default costs of certain things.
3774      Note that targetm.rtx_costs can override the defaults.  */
3775 
3776   code = GET_CODE (x);
3777   switch (code)
3778     {
3779     case MULT:
3780       /* Multiplication has time-complexity O(N*N), where N is the
3781 	 number of units (translated from digits) when using
3782 	 schoolbook long multiplication.  */
3783       total = factor * factor * COSTS_N_INSNS (5);
3784       break;
3785     case DIV:
3786     case UDIV:
3787     case MOD:
3788     case UMOD:
3789       /* Similarly, complexity for schoolbook long division.  */
3790       total = factor * factor * COSTS_N_INSNS (7);
3791       break;
3792     case USE:
3793       /* Used in combine.c as a marker.  */
3794       total = 0;
3795       break;
3796     case SET:
3797       /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3798 	 the mode for the factor.  */
3799       factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3800       if (factor == 0)
3801 	factor = 1;
3802       /* Pass through.  */
3803     default:
3804       total = factor * COSTS_N_INSNS (1);
3805     }
3806 
3807   switch (code)
3808     {
3809     case REG:
3810       return 0;
3811 
3812     case SUBREG:
3813       total = 0;
3814       /* If we can't tie these modes, make this expensive.  The larger
3815 	 the mode, the more expensive it is.  */
3816       if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3817 	return COSTS_N_INSNS (2 + factor);
3818       break;
3819 
3820     default:
3821       if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3822 	return total;
3823       break;
3824     }
3825 
3826   /* Sum the costs of the sub-rtx's, plus cost of this operation,
3827      which is already in total.  */
3828 
3829   fmt = GET_RTX_FORMAT (code);
3830   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3831     if (fmt[i] == 'e')
3832       total += rtx_cost (XEXP (x, i), code, i, speed);
3833     else if (fmt[i] == 'E')
3834       for (j = 0; j < XVECLEN (x, i); j++)
3835 	total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3836 
3837   return total;
3838 }
3839 
3840 /* Fill in the structure C with information about both speed and size rtx
3841    costs for X, which is operand OPNO in an expression with code OUTER.  */
3842 
3843 void
get_full_rtx_cost(rtx x,enum rtx_code outer,int opno,struct full_rtx_costs * c)3844 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3845 		   struct full_rtx_costs *c)
3846 {
3847   c->speed = rtx_cost (x, outer, opno, true);
3848   c->size = rtx_cost (x, outer, opno, false);
3849 }
3850 
3851 
3852 /* Return cost of address expression X.
3853    Expect that X is properly formed address reference.
3854 
3855    SPEED parameter specify whether costs optimized for speed or size should
3856    be returned.  */
3857 
3858 int
address_cost(rtx x,enum machine_mode mode,addr_space_t as,bool speed)3859 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3860 {
3861   /* We may be asked for cost of various unusual addresses, such as operands
3862      of push instruction.  It is not worthwhile to complicate writing
3863      of the target hook by such cases.  */
3864 
3865   if (!memory_address_addr_space_p (mode, x, as))
3866     return 1000;
3867 
3868   return targetm.address_cost (x, mode, as, speed);
3869 }
3870 
3871 /* If the target doesn't override, compute the cost as with arithmetic.  */
3872 
3873 int
default_address_cost(rtx x,enum machine_mode,addr_space_t,bool speed)3874 default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
3875 {
3876   return rtx_cost (x, MEM, 0, speed);
3877 }
3878 
3879 
3880 unsigned HOST_WIDE_INT
nonzero_bits(const_rtx x,enum machine_mode mode)3881 nonzero_bits (const_rtx x, enum machine_mode mode)
3882 {
3883   return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3884 }
3885 
3886 unsigned int
num_sign_bit_copies(const_rtx x,enum machine_mode mode)3887 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3888 {
3889   return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3890 }
3891 
3892 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3893    It avoids exponential behavior in nonzero_bits1 when X has
3894    identical subexpressions on the first or the second level.  */
3895 
3896 static unsigned HOST_WIDE_INT
cached_nonzero_bits(const_rtx x,enum machine_mode mode,const_rtx known_x,enum machine_mode known_mode,unsigned HOST_WIDE_INT known_ret)3897 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3898 		     enum machine_mode known_mode,
3899 		     unsigned HOST_WIDE_INT known_ret)
3900 {
3901   if (x == known_x && mode == known_mode)
3902     return known_ret;
3903 
3904   /* Try to find identical subexpressions.  If found call
3905      nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3906      precomputed value for the subexpression as KNOWN_RET.  */
3907 
3908   if (ARITHMETIC_P (x))
3909     {
3910       rtx x0 = XEXP (x, 0);
3911       rtx x1 = XEXP (x, 1);
3912 
3913       /* Check the first level.  */
3914       if (x0 == x1)
3915 	return nonzero_bits1 (x, mode, x0, mode,
3916 			      cached_nonzero_bits (x0, mode, known_x,
3917 						   known_mode, known_ret));
3918 
3919       /* Check the second level.  */
3920       if (ARITHMETIC_P (x0)
3921 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3922 	return nonzero_bits1 (x, mode, x1, mode,
3923 			      cached_nonzero_bits (x1, mode, known_x,
3924 						   known_mode, known_ret));
3925 
3926       if (ARITHMETIC_P (x1)
3927 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3928 	return nonzero_bits1 (x, mode, x0, mode,
3929 			      cached_nonzero_bits (x0, mode, known_x,
3930 						   known_mode, known_ret));
3931     }
3932 
3933   return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3934 }
3935 
3936 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3937    We don't let nonzero_bits recur into num_sign_bit_copies, because that
3938    is less useful.  We can't allow both, because that results in exponential
3939    run time recursion.  There is a nullstone testcase that triggered
3940    this.  This macro avoids accidental uses of num_sign_bit_copies.  */
3941 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3942 
3943 /* Given an expression, X, compute which bits in X can be nonzero.
3944    We don't care about bits outside of those defined in MODE.
3945 
3946    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3947    an arithmetic operation, we can do better.  */
3948 
3949 static unsigned HOST_WIDE_INT
nonzero_bits1(const_rtx x,enum machine_mode mode,const_rtx known_x,enum machine_mode known_mode,unsigned HOST_WIDE_INT known_ret)3950 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3951 	       enum machine_mode known_mode,
3952 	       unsigned HOST_WIDE_INT known_ret)
3953 {
3954   unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3955   unsigned HOST_WIDE_INT inner_nz;
3956   enum rtx_code code;
3957   enum machine_mode inner_mode;
3958   unsigned int mode_width = GET_MODE_PRECISION (mode);
3959 
3960   /* For floating-point and vector values, assume all bits are needed.  */
3961   if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3962       || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3963     return nonzero;
3964 
3965   /* If X is wider than MODE, use its mode instead.  */
3966   if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3967     {
3968       mode = GET_MODE (x);
3969       nonzero = GET_MODE_MASK (mode);
3970       mode_width = GET_MODE_PRECISION (mode);
3971     }
3972 
3973   if (mode_width > HOST_BITS_PER_WIDE_INT)
3974     /* Our only callers in this case look for single bit values.  So
3975        just return the mode mask.  Those tests will then be false.  */
3976     return nonzero;
3977 
3978 #ifndef WORD_REGISTER_OPERATIONS
3979   /* If MODE is wider than X, but both are a single word for both the host
3980      and target machines, we can compute this from which bits of the
3981      object might be nonzero in its own mode, taking into account the fact
3982      that on many CISC machines, accessing an object in a wider mode
3983      causes the high-order bits to become undefined.  So they are
3984      not known to be zero.  */
3985 
3986   if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3987       && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3988       && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3989       && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3990     {
3991       nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3992 				      known_x, known_mode, known_ret);
3993       nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3994       return nonzero;
3995     }
3996 #endif
3997 
3998   code = GET_CODE (x);
3999   switch (code)
4000     {
4001     case REG:
4002 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4003       /* If pointers extend unsigned and this is a pointer in Pmode, say that
4004 	 all the bits above ptr_mode are known to be zero.  */
4005       /* As we do not know which address space the pointer is referring to,
4006 	 we can do this only if the target does not support different pointer
4007 	 or address modes depending on the address space.  */
4008       if (target_default_pointer_address_modes_p ()
4009 	  && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4010 	  && REG_POINTER (x))
4011 	nonzero &= GET_MODE_MASK (ptr_mode);
4012 #endif
4013 
4014       /* Include declared information about alignment of pointers.  */
4015       /* ??? We don't properly preserve REG_POINTER changes across
4016 	 pointer-to-integer casts, so we can't trust it except for
4017 	 things that we know must be pointers.  See execute/960116-1.c.  */
4018       if ((x == stack_pointer_rtx
4019 	   || x == frame_pointer_rtx
4020 	   || x == arg_pointer_rtx)
4021 	  && REGNO_POINTER_ALIGN (REGNO (x)))
4022 	{
4023 	  unsigned HOST_WIDE_INT alignment
4024 	    = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4025 
4026 #ifdef PUSH_ROUNDING
4027 	  /* If PUSH_ROUNDING is defined, it is possible for the
4028 	     stack to be momentarily aligned only to that amount,
4029 	     so we pick the least alignment.  */
4030 	  if (x == stack_pointer_rtx && PUSH_ARGS)
4031 	    alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4032 			     alignment);
4033 #endif
4034 
4035 	  nonzero &= ~(alignment - 1);
4036 	}
4037 
4038       {
4039 	unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4040 	rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4041 					      known_mode, known_ret,
4042 					      &nonzero_for_hook);
4043 
4044 	if (new_rtx)
4045 	  nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4046 						   known_mode, known_ret);
4047 
4048 	return nonzero_for_hook;
4049       }
4050 
4051     case CONST_INT:
4052 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4053       /* If X is negative in MODE, sign-extend the value.  */
4054       if (INTVAL (x) > 0
4055 	  && mode_width < BITS_PER_WORD
4056 	  && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4057 	     != 0)
4058 	return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
4059 #endif
4060 
4061       return UINTVAL (x);
4062 
4063     case MEM:
4064 #ifdef LOAD_EXTEND_OP
4065       /* In many, if not most, RISC machines, reading a byte from memory
4066 	 zeros the rest of the register.  Noticing that fact saves a lot
4067 	 of extra zero-extends.  */
4068       if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4069 	nonzero &= GET_MODE_MASK (GET_MODE (x));
4070 #endif
4071       break;
4072 
4073     case EQ:  case NE:
4074     case UNEQ:  case LTGT:
4075     case GT:  case GTU:  case UNGT:
4076     case LT:  case LTU:  case UNLT:
4077     case GE:  case GEU:  case UNGE:
4078     case LE:  case LEU:  case UNLE:
4079     case UNORDERED: case ORDERED:
4080       /* If this produces an integer result, we know which bits are set.
4081 	 Code here used to clear bits outside the mode of X, but that is
4082 	 now done above.  */
4083       /* Mind that MODE is the mode the caller wants to look at this
4084 	 operation in, and not the actual operation mode.  We can wind
4085 	 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4086 	 that describes the results of a vector compare.  */
4087       if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4088 	  && mode_width <= HOST_BITS_PER_WIDE_INT)
4089 	nonzero = STORE_FLAG_VALUE;
4090       break;
4091 
4092     case NEG:
4093 #if 0
4094       /* Disabled to avoid exponential mutual recursion between nonzero_bits
4095 	 and num_sign_bit_copies.  */
4096       if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4097 	  == GET_MODE_PRECISION (GET_MODE (x)))
4098 	nonzero = 1;
4099 #endif
4100 
4101       if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4102 	nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4103       break;
4104 
4105     case ABS:
4106 #if 0
4107       /* Disabled to avoid exponential mutual recursion between nonzero_bits
4108 	 and num_sign_bit_copies.  */
4109       if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4110 	  == GET_MODE_PRECISION (GET_MODE (x)))
4111 	nonzero = 1;
4112 #endif
4113       break;
4114 
4115     case TRUNCATE:
4116       nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4117 				       known_x, known_mode, known_ret)
4118 		  & GET_MODE_MASK (mode));
4119       break;
4120 
4121     case ZERO_EXTEND:
4122       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4123 				      known_x, known_mode, known_ret);
4124       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4125 	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4126       break;
4127 
4128     case SIGN_EXTEND:
4129       /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4130 	 Otherwise, show all the bits in the outer mode but not the inner
4131 	 may be nonzero.  */
4132       inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4133 				      known_x, known_mode, known_ret);
4134       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4135 	{
4136 	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4137 	  if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4138 	    inner_nz |= (GET_MODE_MASK (mode)
4139 			 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4140 	}
4141 
4142       nonzero &= inner_nz;
4143       break;
4144 
4145     case AND:
4146       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4147 				       known_x, known_mode, known_ret)
4148       		 & cached_nonzero_bits (XEXP (x, 1), mode,
4149 					known_x, known_mode, known_ret);
4150       break;
4151 
4152     case XOR:   case IOR:
4153     case UMIN:  case UMAX:  case SMIN:  case SMAX:
4154       {
4155 	unsigned HOST_WIDE_INT nonzero0
4156 	   = cached_nonzero_bits (XEXP (x, 0), mode,
4157 				  known_x, known_mode, known_ret);
4158 
4159 	/* Don't call nonzero_bits for the second time if it cannot change
4160 	   anything.  */
4161 	if ((nonzero & nonzero0) != nonzero)
4162 	  nonzero &= nonzero0
4163       		     | cached_nonzero_bits (XEXP (x, 1), mode,
4164 					    known_x, known_mode, known_ret);
4165       }
4166       break;
4167 
4168     case PLUS:  case MINUS:
4169     case MULT:
4170     case DIV:   case UDIV:
4171     case MOD:   case UMOD:
4172       /* We can apply the rules of arithmetic to compute the number of
4173 	 high- and low-order zero bits of these operations.  We start by
4174 	 computing the width (position of the highest-order nonzero bit)
4175 	 and the number of low-order zero bits for each value.  */
4176       {
4177 	unsigned HOST_WIDE_INT nz0
4178 	  = cached_nonzero_bits (XEXP (x, 0), mode,
4179 				 known_x, known_mode, known_ret);
4180 	unsigned HOST_WIDE_INT nz1
4181 	  = cached_nonzero_bits (XEXP (x, 1), mode,
4182 				 known_x, known_mode, known_ret);
4183 	int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4184 	int width0 = floor_log2 (nz0) + 1;
4185 	int width1 = floor_log2 (nz1) + 1;
4186 	int low0 = floor_log2 (nz0 & -nz0);
4187 	int low1 = floor_log2 (nz1 & -nz1);
4188 	unsigned HOST_WIDE_INT op0_maybe_minusp
4189 	  = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4190 	unsigned HOST_WIDE_INT op1_maybe_minusp
4191 	  = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4192 	unsigned int result_width = mode_width;
4193 	int result_low = 0;
4194 
4195 	switch (code)
4196 	  {
4197 	  case PLUS:
4198 	    result_width = MAX (width0, width1) + 1;
4199 	    result_low = MIN (low0, low1);
4200 	    break;
4201 	  case MINUS:
4202 	    result_low = MIN (low0, low1);
4203 	    break;
4204 	  case MULT:
4205 	    result_width = width0 + width1;
4206 	    result_low = low0 + low1;
4207 	    break;
4208 	  case DIV:
4209 	    if (width1 == 0)
4210 	      break;
4211 	    if (!op0_maybe_minusp && !op1_maybe_minusp)
4212 	      result_width = width0;
4213 	    break;
4214 	  case UDIV:
4215 	    if (width1 == 0)
4216 	      break;
4217 	    result_width = width0;
4218 	    break;
4219 	  case MOD:
4220 	    if (width1 == 0)
4221 	      break;
4222 	    if (!op0_maybe_minusp && !op1_maybe_minusp)
4223 	      result_width = MIN (width0, width1);
4224 	    result_low = MIN (low0, low1);
4225 	    break;
4226 	  case UMOD:
4227 	    if (width1 == 0)
4228 	      break;
4229 	    result_width = MIN (width0, width1);
4230 	    result_low = MIN (low0, low1);
4231 	    break;
4232 	  default:
4233 	    gcc_unreachable ();
4234 	  }
4235 
4236 	if (result_width < mode_width)
4237 	  nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4238 
4239 	if (result_low > 0)
4240 	  nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4241       }
4242       break;
4243 
4244     case ZERO_EXTRACT:
4245       if (CONST_INT_P (XEXP (x, 1))
4246 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4247 	nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4248       break;
4249 
4250     case SUBREG:
4251       /* If this is a SUBREG formed for a promoted variable that has
4252 	 been zero-extended, we know that at least the high-order bits
4253 	 are zero, though others might be too.  */
4254 
4255       if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4256 	nonzero = GET_MODE_MASK (GET_MODE (x))
4257 		  & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4258 					 known_x, known_mode, known_ret);
4259 
4260       inner_mode = GET_MODE (SUBREG_REG (x));
4261       /* If the inner mode is a single word for both the host and target
4262 	 machines, we can compute this from which bits of the inner
4263 	 object might be nonzero.  */
4264       if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4265 	  && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4266 	{
4267 	  nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4268 					  known_x, known_mode, known_ret);
4269 
4270 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4271 	  /* If this is a typical RISC machine, we only have to worry
4272 	     about the way loads are extended.  */
4273 	  if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4274 	       ? val_signbit_known_set_p (inner_mode, nonzero)
4275 	       : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4276 	      || !MEM_P (SUBREG_REG (x)))
4277 #endif
4278 	    {
4279 	      /* On many CISC machines, accessing an object in a wider mode
4280 		 causes the high-order bits to become undefined.  So they are
4281 		 not known to be zero.  */
4282 	      if (GET_MODE_PRECISION (GET_MODE (x))
4283 		  > GET_MODE_PRECISION (inner_mode))
4284 		nonzero |= (GET_MODE_MASK (GET_MODE (x))
4285 			    & ~GET_MODE_MASK (inner_mode));
4286 	    }
4287 	}
4288       break;
4289 
4290     case ASHIFTRT:
4291     case LSHIFTRT:
4292     case ASHIFT:
4293     case ROTATE:
4294       /* The nonzero bits are in two classes: any bits within MODE
4295 	 that aren't in GET_MODE (x) are always significant.  The rest of the
4296 	 nonzero bits are those that are significant in the operand of
4297 	 the shift when shifted the appropriate number of bits.  This
4298 	 shows that high-order bits are cleared by the right shift and
4299 	 low-order bits by left shifts.  */
4300       if (CONST_INT_P (XEXP (x, 1))
4301 	  && INTVAL (XEXP (x, 1)) >= 0
4302 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4303 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4304 	{
4305 	  enum machine_mode inner_mode = GET_MODE (x);
4306 	  unsigned int width = GET_MODE_PRECISION (inner_mode);
4307 	  int count = INTVAL (XEXP (x, 1));
4308 	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4309 	  unsigned HOST_WIDE_INT op_nonzero
4310 	    = cached_nonzero_bits (XEXP (x, 0), mode,
4311 				   known_x, known_mode, known_ret);
4312 	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4313 	  unsigned HOST_WIDE_INT outer = 0;
4314 
4315 	  if (mode_width > width)
4316 	    outer = (op_nonzero & nonzero & ~mode_mask);
4317 
4318 	  if (code == LSHIFTRT)
4319 	    inner >>= count;
4320 	  else if (code == ASHIFTRT)
4321 	    {
4322 	      inner >>= count;
4323 
4324 	      /* If the sign bit may have been nonzero before the shift, we
4325 		 need to mark all the places it could have been copied to
4326 		 by the shift as possibly nonzero.  */
4327 	      if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4328 		inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4329 			   << (width - count);
4330 	    }
4331 	  else if (code == ASHIFT)
4332 	    inner <<= count;
4333 	  else
4334 	    inner = ((inner << (count % width)
4335 		      | (inner >> (width - (count % width)))) & mode_mask);
4336 
4337 	  nonzero &= (outer | inner);
4338 	}
4339       break;
4340 
4341     case FFS:
4342     case POPCOUNT:
4343       /* This is at most the number of bits in the mode.  */
4344       nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4345       break;
4346 
4347     case CLZ:
4348       /* If CLZ has a known value at zero, then the nonzero bits are
4349 	 that value, plus the number of bits in the mode minus one.  */
4350       if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4351 	nonzero
4352 	  |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4353       else
4354 	nonzero = -1;
4355       break;
4356 
4357     case CTZ:
4358       /* If CTZ has a known value at zero, then the nonzero bits are
4359 	 that value, plus the number of bits in the mode minus one.  */
4360       if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4361 	nonzero
4362 	  |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4363       else
4364 	nonzero = -1;
4365       break;
4366 
4367     case CLRSB:
4368       /* This is at most the number of bits in the mode minus 1.  */
4369       nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4370       break;
4371 
4372     case PARITY:
4373       nonzero = 1;
4374       break;
4375 
4376     case IF_THEN_ELSE:
4377       {
4378 	unsigned HOST_WIDE_INT nonzero_true
4379 	  = cached_nonzero_bits (XEXP (x, 1), mode,
4380 				 known_x, known_mode, known_ret);
4381 
4382 	/* Don't call nonzero_bits for the second time if it cannot change
4383 	   anything.  */
4384 	if ((nonzero & nonzero_true) != nonzero)
4385 	  nonzero &= nonzero_true
4386       		     | cached_nonzero_bits (XEXP (x, 2), mode,
4387 					    known_x, known_mode, known_ret);
4388       }
4389       break;
4390 
4391     default:
4392       break;
4393     }
4394 
4395   return nonzero;
4396 }
4397 
4398 /* See the macro definition above.  */
4399 #undef cached_num_sign_bit_copies
4400 
4401 
4402 /* The function cached_num_sign_bit_copies is a wrapper around
4403    num_sign_bit_copies1.  It avoids exponential behavior in
4404    num_sign_bit_copies1 when X has identical subexpressions on the
4405    first or the second level.  */
4406 
4407 static unsigned int
cached_num_sign_bit_copies(const_rtx x,enum machine_mode mode,const_rtx known_x,enum machine_mode known_mode,unsigned int known_ret)4408 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4409 			    enum machine_mode known_mode,
4410 			    unsigned int known_ret)
4411 {
4412   if (x == known_x && mode == known_mode)
4413     return known_ret;
4414 
4415   /* Try to find identical subexpressions.  If found call
4416      num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4417      the precomputed value for the subexpression as KNOWN_RET.  */
4418 
4419   if (ARITHMETIC_P (x))
4420     {
4421       rtx x0 = XEXP (x, 0);
4422       rtx x1 = XEXP (x, 1);
4423 
4424       /* Check the first level.  */
4425       if (x0 == x1)
4426 	return
4427 	  num_sign_bit_copies1 (x, mode, x0, mode,
4428 				cached_num_sign_bit_copies (x0, mode, known_x,
4429 							    known_mode,
4430 							    known_ret));
4431 
4432       /* Check the second level.  */
4433       if (ARITHMETIC_P (x0)
4434 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4435 	return
4436 	  num_sign_bit_copies1 (x, mode, x1, mode,
4437 				cached_num_sign_bit_copies (x1, mode, known_x,
4438 							    known_mode,
4439 							    known_ret));
4440 
4441       if (ARITHMETIC_P (x1)
4442 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4443 	return
4444 	  num_sign_bit_copies1 (x, mode, x0, mode,
4445 				cached_num_sign_bit_copies (x0, mode, known_x,
4446 							    known_mode,
4447 							    known_ret));
4448     }
4449 
4450   return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4451 }
4452 
4453 /* Return the number of bits at the high-order end of X that are known to
4454    be equal to the sign bit.  X will be used in mode MODE; if MODE is
4455    VOIDmode, X will be used in its own mode.  The returned value  will always
4456    be between 1 and the number of bits in MODE.  */
4457 
4458 static unsigned int
num_sign_bit_copies1(const_rtx x,enum machine_mode mode,const_rtx known_x,enum machine_mode known_mode,unsigned int known_ret)4459 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4460 		      enum machine_mode known_mode,
4461 		      unsigned int known_ret)
4462 {
4463   enum rtx_code code = GET_CODE (x);
4464   unsigned int bitwidth = GET_MODE_PRECISION (mode);
4465   int num0, num1, result;
4466   unsigned HOST_WIDE_INT nonzero;
4467 
4468   /* If we weren't given a mode, use the mode of X.  If the mode is still
4469      VOIDmode, we don't know anything.  Likewise if one of the modes is
4470      floating-point.  */
4471 
4472   if (mode == VOIDmode)
4473     mode = GET_MODE (x);
4474 
4475   if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4476       || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4477     return 1;
4478 
4479   /* For a smaller object, just ignore the high bits.  */
4480   if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4481     {
4482       num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4483 					 known_x, known_mode, known_ret);
4484       return MAX (1,
4485 		  num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4486     }
4487 
4488   if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4489     {
4490 #ifndef WORD_REGISTER_OPERATIONS
4491       /* If this machine does not do all register operations on the entire
4492 	 register and MODE is wider than the mode of X, we can say nothing
4493 	 at all about the high-order bits.  */
4494       return 1;
4495 #else
4496       /* Likewise on machines that do, if the mode of the object is smaller
4497 	 than a word and loads of that size don't sign extend, we can say
4498 	 nothing about the high order bits.  */
4499       if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4500 #ifdef LOAD_EXTEND_OP
4501 	  && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4502 #endif
4503 	  )
4504 	return 1;
4505 #endif
4506     }
4507 
4508   switch (code)
4509     {
4510     case REG:
4511 
4512 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4513       /* If pointers extend signed and this is a pointer in Pmode, say that
4514 	 all the bits above ptr_mode are known to be sign bit copies.  */
4515       /* As we do not know which address space the pointer is referring to,
4516 	 we can do this only if the target does not support different pointer
4517 	 or address modes depending on the address space.  */
4518       if (target_default_pointer_address_modes_p ()
4519 	  && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4520 	  && mode == Pmode && REG_POINTER (x))
4521 	return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4522 #endif
4523 
4524       {
4525 	unsigned int copies_for_hook = 1, copies = 1;
4526 	rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4527 						     known_mode, known_ret,
4528 						     &copies_for_hook);
4529 
4530 	if (new_rtx)
4531 	  copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4532 					       known_mode, known_ret);
4533 
4534 	if (copies > 1 || copies_for_hook > 1)
4535 	  return MAX (copies, copies_for_hook);
4536 
4537 	/* Else, use nonzero_bits to guess num_sign_bit_copies (see below).  */
4538       }
4539       break;
4540 
4541     case MEM:
4542 #ifdef LOAD_EXTEND_OP
4543       /* Some RISC machines sign-extend all loads of smaller than a word.  */
4544       if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4545 	return MAX (1, ((int) bitwidth
4546 			- (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4547 #endif
4548       break;
4549 
4550     case CONST_INT:
4551       /* If the constant is negative, take its 1's complement and remask.
4552 	 Then see how many zero bits we have.  */
4553       nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4554       if (bitwidth <= HOST_BITS_PER_WIDE_INT
4555 	  && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4556 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
4557 
4558       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4559 
4560     case SUBREG:
4561       /* If this is a SUBREG for a promoted object that is sign-extended
4562 	 and we are looking at it in a wider mode, we know that at least the
4563 	 high-order bits are known to be sign bit copies.  */
4564 
4565       if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4566 	{
4567 	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4568 					     known_x, known_mode, known_ret);
4569 	  return MAX ((int) bitwidth
4570 		      - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4571 		      num0);
4572 	}
4573 
4574       /* For a smaller object, just ignore the high bits.  */
4575       if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4576 	{
4577 	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4578 					     known_x, known_mode, known_ret);
4579 	  return MAX (1, (num0
4580 			  - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4581 				   - bitwidth)));
4582 	}
4583 
4584 #ifdef WORD_REGISTER_OPERATIONS
4585 #ifdef LOAD_EXTEND_OP
4586       /* For paradoxical SUBREGs on machines where all register operations
4587 	 affect the entire register, just look inside.  Note that we are
4588 	 passing MODE to the recursive call, so the number of sign bit copies
4589 	 will remain relative to that mode, not the inner mode.  */
4590 
4591       /* This works only if loads sign extend.  Otherwise, if we get a
4592 	 reload for the inner part, it may be loaded from the stack, and
4593 	 then we lose all sign bit copies that existed before the store
4594 	 to the stack.  */
4595 
4596       if (paradoxical_subreg_p (x)
4597 	  && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4598 	  && MEM_P (SUBREG_REG (x)))
4599 	return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4600 					   known_x, known_mode, known_ret);
4601 #endif
4602 #endif
4603       break;
4604 
4605     case SIGN_EXTRACT:
4606       if (CONST_INT_P (XEXP (x, 1)))
4607 	return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4608       break;
4609 
4610     case SIGN_EXTEND:
4611       return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4612 	      + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4613 					    known_x, known_mode, known_ret));
4614 
4615     case TRUNCATE:
4616       /* For a smaller object, just ignore the high bits.  */
4617       num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4618 					 known_x, known_mode, known_ret);
4619       return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4620 				    - bitwidth)));
4621 
4622     case NOT:
4623       return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4624 					 known_x, known_mode, known_ret);
4625 
4626     case ROTATE:       case ROTATERT:
4627       /* If we are rotating left by a number of bits less than the number
4628 	 of sign bit copies, we can just subtract that amount from the
4629 	 number.  */
4630       if (CONST_INT_P (XEXP (x, 1))
4631 	  && INTVAL (XEXP (x, 1)) >= 0
4632 	  && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4633 	{
4634 	  num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4635 					     known_x, known_mode, known_ret);
4636 	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4637 				 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4638 	}
4639       break;
4640 
4641     case NEG:
4642       /* In general, this subtracts one sign bit copy.  But if the value
4643 	 is known to be positive, the number of sign bit copies is the
4644 	 same as that of the input.  Finally, if the input has just one bit
4645 	 that might be nonzero, all the bits are copies of the sign bit.  */
4646       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4647 					 known_x, known_mode, known_ret);
4648       if (bitwidth > HOST_BITS_PER_WIDE_INT)
4649 	return num0 > 1 ? num0 - 1 : 1;
4650 
4651       nonzero = nonzero_bits (XEXP (x, 0), mode);
4652       if (nonzero == 1)
4653 	return bitwidth;
4654 
4655       if (num0 > 1
4656 	  && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4657 	num0--;
4658 
4659       return num0;
4660 
4661     case IOR:   case AND:   case XOR:
4662     case SMIN:  case SMAX:  case UMIN:  case UMAX:
4663       /* Logical operations will preserve the number of sign-bit copies.
4664 	 MIN and MAX operations always return one of the operands.  */
4665       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4666 					 known_x, known_mode, known_ret);
4667       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4668 					 known_x, known_mode, known_ret);
4669 
4670       /* If num1 is clearing some of the top bits then regardless of
4671 	 the other term, we are guaranteed to have at least that many
4672 	 high-order zero bits.  */
4673       if (code == AND
4674 	  && num1 > 1
4675 	  && bitwidth <= HOST_BITS_PER_WIDE_INT
4676 	  && CONST_INT_P (XEXP (x, 1))
4677 	  && (UINTVAL (XEXP (x, 1))
4678 	      & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4679 	return num1;
4680 
4681       /* Similarly for IOR when setting high-order bits.  */
4682       if (code == IOR
4683 	  && num1 > 1
4684 	  && bitwidth <= HOST_BITS_PER_WIDE_INT
4685 	  && CONST_INT_P (XEXP (x, 1))
4686 	  && (UINTVAL (XEXP (x, 1))
4687 	      & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4688 	return num1;
4689 
4690       return MIN (num0, num1);
4691 
4692     case PLUS:  case MINUS:
4693       /* For addition and subtraction, we can have a 1-bit carry.  However,
4694 	 if we are subtracting 1 from a positive number, there will not
4695 	 be such a carry.  Furthermore, if the positive number is known to
4696 	 be 0 or 1, we know the result is either -1 or 0.  */
4697 
4698       if (code == PLUS && XEXP (x, 1) == constm1_rtx
4699 	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
4700 	{
4701 	  nonzero = nonzero_bits (XEXP (x, 0), mode);
4702 	  if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4703 	    return (nonzero == 1 || nonzero == 0 ? bitwidth
4704 		    : bitwidth - floor_log2 (nonzero) - 1);
4705 	}
4706 
4707       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4708 					 known_x, known_mode, known_ret);
4709       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4710 					 known_x, known_mode, known_ret);
4711       result = MAX (1, MIN (num0, num1) - 1);
4712 
4713       return result;
4714 
4715     case MULT:
4716       /* The number of bits of the product is the sum of the number of
4717 	 bits of both terms.  However, unless one of the terms if known
4718 	 to be positive, we must allow for an additional bit since negating
4719 	 a negative number can remove one sign bit copy.  */
4720 
4721       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4722 					 known_x, known_mode, known_ret);
4723       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4724 					 known_x, known_mode, known_ret);
4725 
4726       result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4727       if (result > 0
4728 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4729 	      || (((nonzero_bits (XEXP (x, 0), mode)
4730 		    & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4731 		  && ((nonzero_bits (XEXP (x, 1), mode)
4732 		       & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4733 		      != 0))))
4734 	result--;
4735 
4736       return MAX (1, result);
4737 
4738     case UDIV:
4739       /* The result must be <= the first operand.  If the first operand
4740 	 has the high bit set, we know nothing about the number of sign
4741 	 bit copies.  */
4742       if (bitwidth > HOST_BITS_PER_WIDE_INT)
4743 	return 1;
4744       else if ((nonzero_bits (XEXP (x, 0), mode)
4745 		& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4746 	return 1;
4747       else
4748 	return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4749 					   known_x, known_mode, known_ret);
4750 
4751     case UMOD:
4752       /* The result must be <= the second operand.  If the second operand
4753 	 has (or just might have) the high bit set, we know nothing about
4754 	 the number of sign bit copies.  */
4755       if (bitwidth > HOST_BITS_PER_WIDE_INT)
4756 	return 1;
4757       else if ((nonzero_bits (XEXP (x, 1), mode)
4758 		& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4759 	return 1;
4760       else
4761 	return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4762 					   known_x, known_mode, known_ret);
4763 
4764     case DIV:
4765       /* Similar to unsigned division, except that we have to worry about
4766 	 the case where the divisor is negative, in which case we have
4767 	 to add 1.  */
4768       result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4769 					   known_x, known_mode, known_ret);
4770       if (result > 1
4771 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4772 	      || (nonzero_bits (XEXP (x, 1), mode)
4773 		  & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4774 	result--;
4775 
4776       return result;
4777 
4778     case MOD:
4779       result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4780 					   known_x, known_mode, known_ret);
4781       if (result > 1
4782 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4783 	      || (nonzero_bits (XEXP (x, 1), mode)
4784 		  & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4785 	result--;
4786 
4787       return result;
4788 
4789     case ASHIFTRT:
4790       /* Shifts by a constant add to the number of bits equal to the
4791 	 sign bit.  */
4792       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4793 					 known_x, known_mode, known_ret);
4794       if (CONST_INT_P (XEXP (x, 1))
4795 	  && INTVAL (XEXP (x, 1)) > 0
4796 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4797 	num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4798 
4799       return num0;
4800 
4801     case ASHIFT:
4802       /* Left shifts destroy copies.  */
4803       if (!CONST_INT_P (XEXP (x, 1))
4804 	  || INTVAL (XEXP (x, 1)) < 0
4805 	  || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4806 	  || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4807 	return 1;
4808 
4809       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4810 					 known_x, known_mode, known_ret);
4811       return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4812 
4813     case IF_THEN_ELSE:
4814       num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4815 					 known_x, known_mode, known_ret);
4816       num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4817 					 known_x, known_mode, known_ret);
4818       return MIN (num0, num1);
4819 
4820     case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
4821     case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
4822     case GEU: case GTU: case LEU: case LTU:
4823     case UNORDERED: case ORDERED:
4824       /* If the constant is negative, take its 1's complement and remask.
4825 	 Then see how many zero bits we have.  */
4826       nonzero = STORE_FLAG_VALUE;
4827       if (bitwidth <= HOST_BITS_PER_WIDE_INT
4828 	  && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4829 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
4830 
4831       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4832 
4833     default:
4834       break;
4835     }
4836 
4837   /* If we haven't been able to figure it out by one of the above rules,
4838      see if some of the high-order bits are known to be zero.  If so,
4839      count those bits and return one less than that amount.  If we can't
4840      safely compute the mask for this mode, always return BITWIDTH.  */
4841 
4842   bitwidth = GET_MODE_PRECISION (mode);
4843   if (bitwidth > HOST_BITS_PER_WIDE_INT)
4844     return 1;
4845 
4846   nonzero = nonzero_bits (x, mode);
4847   return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4848 	 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4849 }
4850 
4851 /* Calculate the rtx_cost of a single instruction.  A return value of
4852    zero indicates an instruction pattern without a known cost.  */
4853 
4854 int
insn_rtx_cost(rtx pat,bool speed)4855 insn_rtx_cost (rtx pat, bool speed)
4856 {
4857   int i, cost;
4858   rtx set;
4859 
4860   /* Extract the single set rtx from the instruction pattern.
4861      We can't use single_set since we only have the pattern.  */
4862   if (GET_CODE (pat) == SET)
4863     set = pat;
4864   else if (GET_CODE (pat) == PARALLEL)
4865     {
4866       set = NULL_RTX;
4867       for (i = 0; i < XVECLEN (pat, 0); i++)
4868 	{
4869 	  rtx x = XVECEXP (pat, 0, i);
4870 	  if (GET_CODE (x) == SET)
4871 	    {
4872 	      if (set)
4873 		return 0;
4874 	      set = x;
4875 	    }
4876 	}
4877       if (!set)
4878 	return 0;
4879     }
4880   else
4881     return 0;
4882 
4883   cost = set_src_cost (SET_SRC (set), speed);
4884   return cost > 0 ? cost : COSTS_N_INSNS (1);
4885 }
4886 
4887 /* Given an insn INSN and condition COND, return the condition in a
4888    canonical form to simplify testing by callers.  Specifically:
4889 
4890    (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4891    (2) Both operands will be machine operands; (cc0) will have been replaced.
4892    (3) If an operand is a constant, it will be the second operand.
4893    (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4894        for GE, GEU, and LEU.
4895 
4896    If the condition cannot be understood, or is an inequality floating-point
4897    comparison which needs to be reversed, 0 will be returned.
4898 
4899    If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4900 
4901    If EARLIEST is nonzero, it is a pointer to a place where the earliest
4902    insn used in locating the condition was found.  If a replacement test
4903    of the condition is desired, it should be placed in front of that
4904    insn and we will be sure that the inputs are still valid.
4905 
4906    If WANT_REG is nonzero, we wish the condition to be relative to that
4907    register, if possible.  Therefore, do not canonicalize the condition
4908    further.  If ALLOW_CC_MODE is nonzero, allow the condition returned
4909    to be a compare to a CC mode register.
4910 
4911    If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4912    and at INSN.  */
4913 
4914 rtx
canonicalize_condition(rtx insn,rtx cond,int reverse,rtx * earliest,rtx want_reg,int allow_cc_mode,int valid_at_insn_p)4915 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4916 			rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4917 {
4918   enum rtx_code code;
4919   rtx prev = insn;
4920   const_rtx set;
4921   rtx tem;
4922   rtx op0, op1;
4923   int reverse_code = 0;
4924   enum machine_mode mode;
4925   basic_block bb = BLOCK_FOR_INSN (insn);
4926 
4927   code = GET_CODE (cond);
4928   mode = GET_MODE (cond);
4929   op0 = XEXP (cond, 0);
4930   op1 = XEXP (cond, 1);
4931 
4932   if (reverse)
4933     code = reversed_comparison_code (cond, insn);
4934   if (code == UNKNOWN)
4935     return 0;
4936 
4937   if (earliest)
4938     *earliest = insn;
4939 
4940   /* If we are comparing a register with zero, see if the register is set
4941      in the previous insn to a COMPARE or a comparison operation.  Perform
4942      the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4943      in cse.c  */
4944 
4945   while ((GET_RTX_CLASS (code) == RTX_COMPARE
4946 	  || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4947 	 && op1 == CONST0_RTX (GET_MODE (op0))
4948 	 && op0 != want_reg)
4949     {
4950       /* Set nonzero when we find something of interest.  */
4951       rtx x = 0;
4952 
4953 #ifdef HAVE_cc0
4954       /* If comparison with cc0, import actual comparison from compare
4955 	 insn.  */
4956       if (op0 == cc0_rtx)
4957 	{
4958 	  if ((prev = prev_nonnote_insn (prev)) == 0
4959 	      || !NONJUMP_INSN_P (prev)
4960 	      || (set = single_set (prev)) == 0
4961 	      || SET_DEST (set) != cc0_rtx)
4962 	    return 0;
4963 
4964 	  op0 = SET_SRC (set);
4965 	  op1 = CONST0_RTX (GET_MODE (op0));
4966 	  if (earliest)
4967 	    *earliest = prev;
4968 	}
4969 #endif
4970 
4971       /* If this is a COMPARE, pick up the two things being compared.  */
4972       if (GET_CODE (op0) == COMPARE)
4973 	{
4974 	  op1 = XEXP (op0, 1);
4975 	  op0 = XEXP (op0, 0);
4976 	  continue;
4977 	}
4978       else if (!REG_P (op0))
4979 	break;
4980 
4981       /* Go back to the previous insn.  Stop if it is not an INSN.  We also
4982 	 stop if it isn't a single set or if it has a REG_INC note because
4983 	 we don't want to bother dealing with it.  */
4984 
4985       prev = prev_nonnote_nondebug_insn (prev);
4986 
4987       if (prev == 0
4988 	  || !NONJUMP_INSN_P (prev)
4989 	  || FIND_REG_INC_NOTE (prev, NULL_RTX)
4990 	  /* In cfglayout mode, there do not have to be labels at the
4991 	     beginning of a block, or jumps at the end, so the previous
4992 	     conditions would not stop us when we reach bb boundary.  */
4993 	  || BLOCK_FOR_INSN (prev) != bb)
4994 	break;
4995 
4996       set = set_of (op0, prev);
4997 
4998       if (set
4999 	  && (GET_CODE (set) != SET
5000 	      || !rtx_equal_p (SET_DEST (set), op0)))
5001 	break;
5002 
5003       /* If this is setting OP0, get what it sets it to if it looks
5004 	 relevant.  */
5005       if (set)
5006 	{
5007 	  enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
5008 #ifdef FLOAT_STORE_FLAG_VALUE
5009 	  REAL_VALUE_TYPE fsfv;
5010 #endif
5011 
5012 	  /* ??? We may not combine comparisons done in a CCmode with
5013 	     comparisons not done in a CCmode.  This is to aid targets
5014 	     like Alpha that have an IEEE compliant EQ instruction, and
5015 	     a non-IEEE compliant BEQ instruction.  The use of CCmode is
5016 	     actually artificial, simply to prevent the combination, but
5017 	     should not affect other platforms.
5018 
5019 	     However, we must allow VOIDmode comparisons to match either
5020 	     CCmode or non-CCmode comparison, because some ports have
5021 	     modeless comparisons inside branch patterns.
5022 
5023 	     ??? This mode check should perhaps look more like the mode check
5024 	     in simplify_comparison in combine.  */
5025 
5026 	  if ((GET_CODE (SET_SRC (set)) == COMPARE
5027 	       || (((code == NE
5028 		     || (code == LT
5029 			 && val_signbit_known_set_p (inner_mode,
5030 						     STORE_FLAG_VALUE))
5031 #ifdef FLOAT_STORE_FLAG_VALUE
5032 		     || (code == LT
5033 			 && SCALAR_FLOAT_MODE_P (inner_mode)
5034 			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5035 			     REAL_VALUE_NEGATIVE (fsfv)))
5036 #endif
5037 		     ))
5038 		   && COMPARISON_P (SET_SRC (set))))
5039 	      && (((GET_MODE_CLASS (mode) == MODE_CC)
5040 		   == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5041 		  || mode == VOIDmode || inner_mode == VOIDmode))
5042 	    x = SET_SRC (set);
5043 	  else if (((code == EQ
5044 		     || (code == GE
5045 			 && val_signbit_known_set_p (inner_mode,
5046 						     STORE_FLAG_VALUE))
5047 #ifdef FLOAT_STORE_FLAG_VALUE
5048 		     || (code == GE
5049 			 && SCALAR_FLOAT_MODE_P (inner_mode)
5050 			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5051 			     REAL_VALUE_NEGATIVE (fsfv)))
5052 #endif
5053 		     ))
5054 		   && COMPARISON_P (SET_SRC (set))
5055 		   && (((GET_MODE_CLASS (mode) == MODE_CC)
5056 			== (GET_MODE_CLASS (inner_mode) == MODE_CC))
5057 		       || mode == VOIDmode || inner_mode == VOIDmode))
5058 
5059 	    {
5060 	      reverse_code = 1;
5061 	      x = SET_SRC (set);
5062 	    }
5063 	  else
5064 	    break;
5065 	}
5066 
5067       else if (reg_set_p (op0, prev))
5068 	/* If this sets OP0, but not directly, we have to give up.  */
5069 	break;
5070 
5071       if (x)
5072 	{
5073 	  /* If the caller is expecting the condition to be valid at INSN,
5074 	     make sure X doesn't change before INSN.  */
5075 	  if (valid_at_insn_p)
5076 	    if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5077 	      break;
5078 	  if (COMPARISON_P (x))
5079 	    code = GET_CODE (x);
5080 	  if (reverse_code)
5081 	    {
5082 	      code = reversed_comparison_code (x, prev);
5083 	      if (code == UNKNOWN)
5084 		return 0;
5085 	      reverse_code = 0;
5086 	    }
5087 
5088 	  op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5089 	  if (earliest)
5090 	    *earliest = prev;
5091 	}
5092     }
5093 
5094   /* If constant is first, put it last.  */
5095   if (CONSTANT_P (op0))
5096     code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5097 
5098   /* If OP0 is the result of a comparison, we weren't able to find what
5099      was really being compared, so fail.  */
5100   if (!allow_cc_mode
5101       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5102     return 0;
5103 
5104   /* Canonicalize any ordered comparison with integers involving equality
5105      if we can do computations in the relevant mode and we do not
5106      overflow.  */
5107 
5108   if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5109       && CONST_INT_P (op1)
5110       && GET_MODE (op0) != VOIDmode
5111       && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5112     {
5113       HOST_WIDE_INT const_val = INTVAL (op1);
5114       unsigned HOST_WIDE_INT uconst_val = const_val;
5115       unsigned HOST_WIDE_INT max_val
5116 	= (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5117 
5118       switch (code)
5119 	{
5120 	case LE:
5121 	  if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5122 	    code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5123 	  break;
5124 
5125 	/* When cross-compiling, const_val might be sign-extended from
5126 	   BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5127 	case GE:
5128 	  if ((const_val & max_val)
5129 	      != ((unsigned HOST_WIDE_INT) 1
5130 		  << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5131 	    code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5132 	  break;
5133 
5134 	case LEU:
5135 	  if (uconst_val < max_val)
5136 	    code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5137 	  break;
5138 
5139 	case GEU:
5140 	  if (uconst_val != 0)
5141 	    code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5142 	  break;
5143 
5144 	default:
5145 	  break;
5146 	}
5147     }
5148 
5149   /* Never return CC0; return zero instead.  */
5150   if (CC0_P (op0))
5151     return 0;
5152 
5153   return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5154 }
5155 
5156 /* Given a jump insn JUMP, return the condition that will cause it to branch
5157    to its JUMP_LABEL.  If the condition cannot be understood, or is an
5158    inequality floating-point comparison which needs to be reversed, 0 will
5159    be returned.
5160 
5161    If EARLIEST is nonzero, it is a pointer to a place where the earliest
5162    insn used in locating the condition was found.  If a replacement test
5163    of the condition is desired, it should be placed in front of that
5164    insn and we will be sure that the inputs are still valid.  If EARLIEST
5165    is null, the returned condition will be valid at INSN.
5166 
5167    If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5168    compare CC mode register.
5169 
5170    VALID_AT_INSN_P is the same as for canonicalize_condition.  */
5171 
5172 rtx
get_condition(rtx jump,rtx * earliest,int allow_cc_mode,int valid_at_insn_p)5173 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5174 {
5175   rtx cond;
5176   int reverse;
5177   rtx set;
5178 
5179   /* If this is not a standard conditional jump, we can't parse it.  */
5180   if (!JUMP_P (jump)
5181       || ! any_condjump_p (jump))
5182     return 0;
5183   set = pc_set (jump);
5184 
5185   cond = XEXP (SET_SRC (set), 0);
5186 
5187   /* If this branches to JUMP_LABEL when the condition is false, reverse
5188      the condition.  */
5189   reverse
5190     = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5191       && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5192 
5193   return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5194 				 allow_cc_mode, valid_at_insn_p);
5195 }
5196 
5197 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5198    TARGET_MODE_REP_EXTENDED.
5199 
5200    Note that we assume that the property of
5201    TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5202    narrower than mode B.  I.e., if A is a mode narrower than B then in
5203    order to be able to operate on it in mode B, mode A needs to
5204    satisfy the requirements set by the representation of mode B.  */
5205 
5206 static void
init_num_sign_bit_copies_in_rep(void)5207 init_num_sign_bit_copies_in_rep (void)
5208 {
5209   enum machine_mode mode, in_mode;
5210 
5211   for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5212        in_mode = GET_MODE_WIDER_MODE (mode))
5213     for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5214 	 mode = GET_MODE_WIDER_MODE (mode))
5215       {
5216 	enum machine_mode i;
5217 
5218 	/* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5219 	   extends to the next widest mode.  */
5220 	gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5221 		    || GET_MODE_WIDER_MODE (mode) == in_mode);
5222 
5223 	/* We are in in_mode.  Count how many bits outside of mode
5224 	   have to be copies of the sign-bit.  */
5225 	for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5226 	  {
5227 	    enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5228 
5229 	    if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5230 		/* We can only check sign-bit copies starting from the
5231 		   top-bit.  In order to be able to check the bits we
5232 		   have already seen we pretend that subsequent bits
5233 		   have to be sign-bit copies too.  */
5234 		|| num_sign_bit_copies_in_rep [in_mode][mode])
5235 	      num_sign_bit_copies_in_rep [in_mode][mode]
5236 		+= GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5237 	  }
5238       }
5239 }
5240 
5241 /* Suppose that truncation from the machine mode of X to MODE is not a
5242    no-op.  See if there is anything special about X so that we can
5243    assume it already contains a truncated value of MODE.  */
5244 
5245 bool
truncated_to_mode(enum machine_mode mode,const_rtx x)5246 truncated_to_mode (enum machine_mode mode, const_rtx x)
5247 {
5248   /* This register has already been used in MODE without explicit
5249      truncation.  */
5250   if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5251     return true;
5252 
5253   /* See if we already satisfy the requirements of MODE.  If yes we
5254      can just switch to MODE.  */
5255   if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5256       && (num_sign_bit_copies (x, GET_MODE (x))
5257 	  >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5258     return true;
5259 
5260   return false;
5261 }
5262 
5263 /* Initialize non_rtx_starting_operands, which is used to speed up
5264    for_each_rtx.  */
5265 void
init_rtlanal(void)5266 init_rtlanal (void)
5267 {
5268   int i;
5269   for (i = 0; i < NUM_RTX_CODE; i++)
5270     {
5271       const char *format = GET_RTX_FORMAT (i);
5272       const char *first = strpbrk (format, "eEV");
5273       non_rtx_starting_operands[i] = first ? first - format : -1;
5274     }
5275 
5276   init_num_sign_bit_copies_in_rep ();
5277 }
5278 
5279 /* Check whether this is a constant pool constant.  */
5280 bool
constant_pool_constant_p(rtx x)5281 constant_pool_constant_p (rtx x)
5282 {
5283   x = avoid_constant_pool_reference (x);
5284   return CONST_DOUBLE_P (x);
5285 }
5286 
5287 /* If M is a bitmask that selects a field of low-order bits within an item but
5288    not the entire word, return the length of the field.  Return -1 otherwise.
5289    M is used in machine mode MODE.  */
5290 
5291 int
low_bitmask_len(enum machine_mode mode,unsigned HOST_WIDE_INT m)5292 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5293 {
5294   if (mode != VOIDmode)
5295     {
5296       if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5297 	return -1;
5298       m &= GET_MODE_MASK (mode);
5299     }
5300 
5301   return exact_log2 (m + 1);
5302 }
5303 
5304 /* Return the mode of MEM's address.  */
5305 
5306 enum machine_mode
get_address_mode(rtx mem)5307 get_address_mode (rtx mem)
5308 {
5309   enum machine_mode mode;
5310 
5311   gcc_assert (MEM_P (mem));
5312   mode = GET_MODE (XEXP (mem, 0));
5313   if (mode != VOIDmode)
5314     return mode;
5315   return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5316 }
5317 
5318 /* Split up a CONST_DOUBLE or integer constant rtx
5319    into two rtx's for single words,
5320    storing in *FIRST the word that comes first in memory in the target
5321    and in *SECOND the other.  */
5322 
5323 void
split_double(rtx value,rtx * first,rtx * second)5324 split_double (rtx value, rtx *first, rtx *second)
5325 {
5326   if (CONST_INT_P (value))
5327     {
5328       if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5329 	{
5330 	  /* In this case the CONST_INT holds both target words.
5331 	     Extract the bits from it into two word-sized pieces.
5332 	     Sign extend each half to HOST_WIDE_INT.  */
5333 	  unsigned HOST_WIDE_INT low, high;
5334 	  unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5335 	  unsigned bits_per_word = BITS_PER_WORD;
5336 
5337 	  /* Set sign_bit to the most significant bit of a word.  */
5338 	  sign_bit = 1;
5339 	  sign_bit <<= bits_per_word - 1;
5340 
5341 	  /* Set mask so that all bits of the word are set.  We could
5342 	     have used 1 << BITS_PER_WORD instead of basing the
5343 	     calculation on sign_bit.  However, on machines where
5344 	     HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5345 	     compiler warning, even though the code would never be
5346 	     executed.  */
5347 	  mask = sign_bit << 1;
5348 	  mask--;
5349 
5350 	  /* Set sign_extend as any remaining bits.  */
5351 	  sign_extend = ~mask;
5352 
5353 	  /* Pick the lower word and sign-extend it.  */
5354 	  low = INTVAL (value);
5355 	  low &= mask;
5356 	  if (low & sign_bit)
5357 	    low |= sign_extend;
5358 
5359 	  /* Pick the higher word, shifted to the least significant
5360 	     bits, and sign-extend it.  */
5361 	  high = INTVAL (value);
5362 	  high >>= bits_per_word - 1;
5363 	  high >>= 1;
5364 	  high &= mask;
5365 	  if (high & sign_bit)
5366 	    high |= sign_extend;
5367 
5368 	  /* Store the words in the target machine order.  */
5369 	  if (WORDS_BIG_ENDIAN)
5370 	    {
5371 	      *first = GEN_INT (high);
5372 	      *second = GEN_INT (low);
5373 	    }
5374 	  else
5375 	    {
5376 	      *first = GEN_INT (low);
5377 	      *second = GEN_INT (high);
5378 	    }
5379 	}
5380       else
5381 	{
5382 	  /* The rule for using CONST_INT for a wider mode
5383 	     is that we regard the value as signed.
5384 	     So sign-extend it.  */
5385 	  rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5386 	  if (WORDS_BIG_ENDIAN)
5387 	    {
5388 	      *first = high;
5389 	      *second = value;
5390 	    }
5391 	  else
5392 	    {
5393 	      *first = value;
5394 	      *second = high;
5395 	    }
5396 	}
5397     }
5398   else if (!CONST_DOUBLE_P (value))
5399     {
5400       if (WORDS_BIG_ENDIAN)
5401 	{
5402 	  *first = const0_rtx;
5403 	  *second = value;
5404 	}
5405       else
5406 	{
5407 	  *first = value;
5408 	  *second = const0_rtx;
5409 	}
5410     }
5411   else if (GET_MODE (value) == VOIDmode
5412 	   /* This is the old way we did CONST_DOUBLE integers.  */
5413 	   || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5414     {
5415       /* In an integer, the words are defined as most and least significant.
5416 	 So order them by the target's convention.  */
5417       if (WORDS_BIG_ENDIAN)
5418 	{
5419 	  *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5420 	  *second = GEN_INT (CONST_DOUBLE_LOW (value));
5421 	}
5422       else
5423 	{
5424 	  *first = GEN_INT (CONST_DOUBLE_LOW (value));
5425 	  *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5426 	}
5427     }
5428   else
5429     {
5430       REAL_VALUE_TYPE r;
5431       long l[2];
5432       REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5433 
5434       /* Note, this converts the REAL_VALUE_TYPE to the target's
5435 	 format, splits up the floating point double and outputs
5436 	 exactly 32 bits of it into each of l[0] and l[1] --
5437 	 not necessarily BITS_PER_WORD bits.  */
5438       REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5439 
5440       /* If 32 bits is an entire word for the target, but not for the host,
5441 	 then sign-extend on the host so that the number will look the same
5442 	 way on the host that it would on the target.  See for instance
5443 	 simplify_unary_operation.  The #if is needed to avoid compiler
5444 	 warnings.  */
5445 
5446 #if HOST_BITS_PER_LONG > 32
5447       if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5448 	{
5449 	  if (l[0] & ((long) 1 << 31))
5450 	    l[0] |= ((long) (-1) << 32);
5451 	  if (l[1] & ((long) 1 << 31))
5452 	    l[1] |= ((long) (-1) << 32);
5453 	}
5454 #endif
5455 
5456       *first = GEN_INT (l[0]);
5457       *second = GEN_INT (l[1]);
5458     }
5459 }
5460 
5461 /* Strip outer address "mutations" from LOC and return a pointer to the
5462    inner value.  If OUTER_CODE is nonnull, store the code of the innermost
5463    stripped expression there.
5464 
5465    "Mutations" either convert between modes or apply some kind of
5466    alignment.  */
5467 
5468 rtx *
strip_address_mutations(rtx * loc,enum rtx_code * outer_code)5469 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5470 {
5471   for (;;)
5472     {
5473       enum rtx_code code = GET_CODE (*loc);
5474       if (GET_RTX_CLASS (code) == RTX_UNARY)
5475 	/* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5476 	   used to convert between pointer sizes.  */
5477 	loc = &XEXP (*loc, 0);
5478       else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5479 	/* (and ... (const_int -X)) is used to align to X bytes.  */
5480 	loc = &XEXP (*loc, 0);
5481       else if (code == SUBREG
5482                && !OBJECT_P (SUBREG_REG (*loc))
5483                && subreg_lowpart_p (*loc))
5484 	/* (subreg (operator ...) ...) inside and is used for mode
5485 	   conversion too.  */
5486 	loc = &SUBREG_REG (*loc);
5487       else
5488 	return loc;
5489       if (outer_code)
5490 	*outer_code = code;
5491     }
5492 }
5493 
5494 /* Return true if X must be a base rather than an index.  */
5495 
5496 static bool
must_be_base_p(rtx x)5497 must_be_base_p (rtx x)
5498 {
5499   return GET_CODE (x) == LO_SUM;
5500 }
5501 
5502 /* Return true if X must be an index rather than a base.  */
5503 
5504 static bool
must_be_index_p(rtx x)5505 must_be_index_p (rtx x)
5506 {
5507   return GET_CODE (x) == MULT || GET_CODE (x) == ASHIFT;
5508 }
5509 
5510 /* Set the segment part of address INFO to LOC, given that INNER is the
5511    unmutated value.  */
5512 
5513 static void
set_address_segment(struct address_info * info,rtx * loc,rtx * inner)5514 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5515 {
5516   gcc_checking_assert (GET_CODE (*inner) == UNSPEC);
5517 
5518   gcc_assert (!info->segment);
5519   info->segment = loc;
5520   info->segment_term = inner;
5521 }
5522 
5523 /* Set the base part of address INFO to LOC, given that INNER is the
5524    unmutated value.  */
5525 
5526 static void
set_address_base(struct address_info * info,rtx * loc,rtx * inner)5527 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5528 {
5529   if (GET_CODE (*inner) == LO_SUM)
5530     inner = strip_address_mutations (&XEXP (*inner, 0));
5531   gcc_checking_assert (REG_P (*inner)
5532 		       || MEM_P (*inner)
5533 		       || GET_CODE (*inner) == SUBREG);
5534 
5535   gcc_assert (!info->base);
5536   info->base = loc;
5537   info->base_term = inner;
5538 }
5539 
5540 /* Set the index part of address INFO to LOC, given that INNER is the
5541    unmutated value.  */
5542 
5543 static void
set_address_index(struct address_info * info,rtx * loc,rtx * inner)5544 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5545 {
5546   if ((GET_CODE (*inner) == MULT || GET_CODE (*inner) == ASHIFT)
5547       && CONSTANT_P (XEXP (*inner, 1)))
5548     inner = strip_address_mutations (&XEXP (*inner, 0));
5549   gcc_checking_assert (REG_P (*inner)
5550 		       || MEM_P (*inner)
5551 		       || GET_CODE (*inner) == SUBREG);
5552 
5553   gcc_assert (!info->index);
5554   info->index = loc;
5555   info->index_term = inner;
5556 }
5557 
5558 /* Set the displacement part of address INFO to LOC, given that INNER
5559    is the constant term.  */
5560 
5561 static void
set_address_disp(struct address_info * info,rtx * loc,rtx * inner)5562 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5563 {
5564   gcc_checking_assert (CONSTANT_P (*inner));
5565 
5566   gcc_assert (!info->disp);
5567   info->disp = loc;
5568   info->disp_term = inner;
5569 }
5570 
5571 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address.  Set up the
5572    rest of INFO accordingly.  */
5573 
5574 static void
decompose_incdec_address(struct address_info * info)5575 decompose_incdec_address (struct address_info *info)
5576 {
5577   info->autoinc_p = true;
5578 
5579   rtx *base = &XEXP (*info->inner, 0);
5580   set_address_base (info, base, base);
5581   gcc_checking_assert (info->base == info->base_term);
5582 
5583   /* These addresses are only valid when the size of the addressed
5584      value is known.  */
5585   gcc_checking_assert (info->mode != VOIDmode);
5586 }
5587 
5588 /* INFO->INNER describes a {PRE,POST}_MODIFY address.  Set up the rest
5589    of INFO accordingly.  */
5590 
5591 static void
decompose_automod_address(struct address_info * info)5592 decompose_automod_address (struct address_info *info)
5593 {
5594   info->autoinc_p = true;
5595 
5596   rtx *base = &XEXP (*info->inner, 0);
5597   set_address_base (info, base, base);
5598   gcc_checking_assert (info->base == info->base_term);
5599 
5600   rtx plus = XEXP (*info->inner, 1);
5601   gcc_assert (GET_CODE (plus) == PLUS);
5602 
5603   info->base_term2 = &XEXP (plus, 0);
5604   gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5605 
5606   rtx *step = &XEXP (plus, 1);
5607   rtx *inner_step = strip_address_mutations (step);
5608   if (CONSTANT_P (*inner_step))
5609     set_address_disp (info, step, inner_step);
5610   else
5611     set_address_index (info, step, inner_step);
5612 }
5613 
5614 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5615    values in [PTR, END).  Return a pointer to the end of the used array.  */
5616 
5617 static rtx **
extract_plus_operands(rtx * loc,rtx ** ptr,rtx ** end)5618 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5619 {
5620   rtx x = *loc;
5621   if (GET_CODE (x) == PLUS)
5622     {
5623       ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5624       ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5625     }
5626   else
5627     {
5628       gcc_assert (ptr != end);
5629       *ptr++ = loc;
5630     }
5631   return ptr;
5632 }
5633 
5634 /* Evaluate the likelihood of X being a base or index value, returning
5635    positive if it is likely to be a base, negative if it is likely to be
5636    an index, and 0 if we can't tell.  Make the magnitude of the return
5637    value reflect the amount of confidence we have in the answer.
5638 
5639    MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1.  */
5640 
5641 static int
baseness(rtx x,enum machine_mode mode,addr_space_t as,enum rtx_code outer_code,enum rtx_code index_code)5642 baseness (rtx x, enum machine_mode mode, addr_space_t as,
5643 	  enum rtx_code outer_code, enum rtx_code index_code)
5644 {
5645   /* See whether we can be certain.  */
5646   if (must_be_base_p (x))
5647     return 3;
5648   if (must_be_index_p (x))
5649     return -3;
5650 
5651   /* Believe *_POINTER unless the address shape requires otherwise.  */
5652   if (REG_P (x) && REG_POINTER (x))
5653     return 2;
5654   if (MEM_P (x) && MEM_POINTER (x))
5655     return 2;
5656 
5657   if (REG_P (x) && HARD_REGISTER_P (x))
5658     {
5659       /* X is a hard register.  If it only fits one of the base
5660 	 or index classes, choose that interpretation.  */
5661       int regno = REGNO (x);
5662       bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5663       bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5664       if (base_p != index_p)
5665 	return base_p ? 1 : -1;
5666     }
5667   return 0;
5668 }
5669 
5670 /* INFO->INNER describes a normal, non-automodified address.
5671    Fill in the rest of INFO accordingly.  */
5672 
5673 static void
decompose_normal_address(struct address_info * info)5674 decompose_normal_address (struct address_info *info)
5675 {
5676   /* Treat the address as the sum of up to four values.  */
5677   rtx *ops[4];
5678   size_t n_ops = extract_plus_operands (info->inner, ops,
5679 					ops + ARRAY_SIZE (ops)) - ops;
5680 
5681   /* If there is more than one component, any base component is in a PLUS.  */
5682   if (n_ops > 1)
5683     info->base_outer_code = PLUS;
5684 
5685   /* Separate the parts that contain a REG or MEM from those that don't.
5686      Record the latter in INFO and leave the former in OPS.  */
5687   rtx *inner_ops[4];
5688   size_t out = 0;
5689   for (size_t in = 0; in < n_ops; ++in)
5690     {
5691       rtx *loc = ops[in];
5692       rtx *inner = strip_address_mutations (loc);
5693       if (CONSTANT_P (*inner))
5694 	set_address_disp (info, loc, inner);
5695       else if (GET_CODE (*inner) == UNSPEC)
5696 	set_address_segment (info, loc, inner);
5697       else
5698 	{
5699 	  ops[out] = loc;
5700 	  inner_ops[out] = inner;
5701 	  ++out;
5702 	}
5703     }
5704 
5705   /* Classify the remaining OPS members as bases and indexes.  */
5706   if (out == 1)
5707     {
5708       /* Assume that the remaining value is a base unless the shape
5709 	 requires otherwise.  */
5710       if (!must_be_index_p (*inner_ops[0]))
5711 	set_address_base (info, ops[0], inner_ops[0]);
5712       else
5713 	set_address_index (info, ops[0], inner_ops[0]);
5714     }
5715   else if (out == 2)
5716     {
5717       /* In the event of a tie, assume the base comes first.  */
5718       if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5719 		    GET_CODE (*ops[1]))
5720 	  >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5721 		       GET_CODE (*ops[0])))
5722 	{
5723 	  set_address_base (info, ops[0], inner_ops[0]);
5724 	  set_address_index (info, ops[1], inner_ops[1]);
5725 	}
5726       else
5727 	{
5728 	  set_address_base (info, ops[1], inner_ops[1]);
5729 	  set_address_index (info, ops[0], inner_ops[0]);
5730 	}
5731     }
5732   else
5733     gcc_assert (out == 0);
5734 }
5735 
5736 /* Describe address *LOC in *INFO.  MODE is the mode of the addressed value,
5737    or VOIDmode if not known.  AS is the address space associated with LOC.
5738    OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise.  */
5739 
5740 void
decompose_address(struct address_info * info,rtx * loc,enum machine_mode mode,addr_space_t as,enum rtx_code outer_code)5741 decompose_address (struct address_info *info, rtx *loc, enum machine_mode mode,
5742 		   addr_space_t as, enum rtx_code outer_code)
5743 {
5744   memset (info, 0, sizeof (*info));
5745   info->mode = mode;
5746   info->as = as;
5747   info->addr_outer_code = outer_code;
5748   info->outer = loc;
5749   info->inner = strip_address_mutations (loc, &outer_code);
5750   info->base_outer_code = outer_code;
5751   switch (GET_CODE (*info->inner))
5752     {
5753     case PRE_DEC:
5754     case PRE_INC:
5755     case POST_DEC:
5756     case POST_INC:
5757       decompose_incdec_address (info);
5758       break;
5759 
5760     case PRE_MODIFY:
5761     case POST_MODIFY:
5762       decompose_automod_address (info);
5763       break;
5764 
5765     default:
5766       decompose_normal_address (info);
5767       break;
5768     }
5769 }
5770 
5771 /* Describe address operand LOC in INFO.  */
5772 
5773 void
decompose_lea_address(struct address_info * info,rtx * loc)5774 decompose_lea_address (struct address_info *info, rtx *loc)
5775 {
5776   decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
5777 }
5778 
5779 /* Describe the address of MEM X in INFO.  */
5780 
5781 void
decompose_mem_address(struct address_info * info,rtx x)5782 decompose_mem_address (struct address_info *info, rtx x)
5783 {
5784   gcc_assert (MEM_P (x));
5785   decompose_address (info, &XEXP (x, 0), GET_MODE (x),
5786 		     MEM_ADDR_SPACE (x), MEM);
5787 }
5788 
5789 /* Update INFO after a change to the address it describes.  */
5790 
5791 void
update_address(struct address_info * info)5792 update_address (struct address_info *info)
5793 {
5794   decompose_address (info, info->outer, info->mode, info->as,
5795 		     info->addr_outer_code);
5796 }
5797 
5798 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5799    more complicated than that.  */
5800 
5801 HOST_WIDE_INT
get_index_scale(const struct address_info * info)5802 get_index_scale (const struct address_info *info)
5803 {
5804   rtx index = *info->index;
5805   if (GET_CODE (index) == MULT
5806       && CONST_INT_P (XEXP (index, 1))
5807       && info->index_term == &XEXP (index, 0))
5808     return INTVAL (XEXP (index, 1));
5809 
5810   if (GET_CODE (index) == ASHIFT
5811       && CONST_INT_P (XEXP (index, 1))
5812       && info->index_term == &XEXP (index, 0))
5813     return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
5814 
5815   if (info->index == info->index_term)
5816     return 1;
5817 
5818   return 0;
5819 }
5820 
5821 /* Return the "index code" of INFO, in the form required by
5822    ok_for_base_p_1.  */
5823 
5824 enum rtx_code
get_index_code(const struct address_info * info)5825 get_index_code (const struct address_info *info)
5826 {
5827   if (info->index)
5828     return GET_CODE (*info->index);
5829 
5830   if (info->disp)
5831     return GET_CODE (*info->disp);
5832 
5833   return SCRATCH;
5834 }
5835