1 
2 /* --------------------------------- SHS.CC ------------------------------- */
3 
4 /*
5  * NIST proposed Secure Hash Standard.
6  *
7  * Written 2 September 1992, Peter C. Gutmann.
8  * This implementation placed in the public domain.
9  *
10  * Comments to pgut1@cs.aukuni.ac.nz
11  */
12 
13 // Force C++ compiler to use Java-style EH, so we don't have to link with
14 // libstdc++.
15 #pragma GCC java_exceptions
16 
17 #include <string.h>
18 #include "shs.h"
19 
20 /* The SHS f()-functions */
21 
22 #define f1(x,y,z)   ( ( x & y ) | ( ~x & z ) )		  /* Rounds  0-19 */
23 #define f2(x,y,z)   ( x ^ y ^ z )			  /* Rounds 20-39 */
24 #define f3(x,y,z)   ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
25 #define f4(x,y,z)   ( x ^ y ^ z )			  /* Rounds 60-79 */
26 
27 /* The SHS Mysterious Constants */
28 
29 #define K1  0x5A827999L 	/* Rounds  0-19 */
30 #define K2  0x6ED9EBA1L 	/* Rounds 20-39 */
31 #define K3  0x8F1BBCDCL 	/* Rounds 40-59 */
32 #define K4  0xCA62C1D6L 	/* Rounds 60-79 */
33 
34 /* SHS initial values */
35 
36 #define h0init	0x67452301L
37 #define h1init	0xEFCDAB89L
38 #define h2init	0x98BADCFEL
39 #define h3init	0x10325476L
40 #define h4init	0xC3D2E1F0L
41 
42 /* 32-bit rotate - kludged with shifts */
43 
44 #define S(n,X)	((X << n) | (X >> (32 - n)))
45 
46 /* The initial expanding function */
47 
48 #define expand(count)	W [count] = W [count - 3] ^ W [count - 8] ^ W [count - 14] ^ W [count - 16]
49 
50 /* The four SHS sub-rounds */
51 
52 #define subRound1(count)    \
53 	{ \
54 		temp = S (5, A) + f1 (B, C, D) + E + W [count] + K1; \
55 		E = D; \
56 		D = C; \
57 		C = S (30, B); \
58 		B = A; \
59 		A = temp; \
60 	}
61 
62 #define subRound2(count)    \
63 	{ \
64 		temp = S (5, A) + f2 (B, C, D) + E + W [count] + K2; \
65 		E = D; \
66 		D = C; \
67 		C = S (30, B); \
68 		B = A; \
69 		A = temp; \
70 	}
71 
72 #define subRound3(count)    \
73 	{ \
74 		temp = S (5, A) + f3 (B, C, D) + E + W [count] + K3; \
75 		E = D; \
76 		D = C; \
77 		C = S (30, B); \
78 		B = A; \
79 		A = temp; \
80 	}
81 
82 #define subRound4(count)    \
83 	{ \
84 		temp = S (5, A) + f4 (B, C, D) + E + W [count] + K4; \
85 		E = D; \
86 		D = C; \
87 		C = S (30, B); \
88 		B = A; \
89 		A = temp; \
90 	}
91 
92 /* The two buffers of 5 32-bit words */
93 
94 uint32_t h0, h1, h2, h3, h4;
95 uint32_t A, B, C, D, E;
96 
97 local void byteReverse OF((uint32_t *buffer, int byteCount));
98 void shsTransform OF((SHS_INFO *shsInfo));
99 
100 /* Initialize the SHS values */
101 
shsInit(SHS_INFO * shsInfo)102 void shsInit (SHS_INFO *shsInfo)
103 {
104 	/* Set the h-vars to their initial values */
105 	shsInfo->digest [0] = h0init;
106 	shsInfo->digest [1] = h1init;
107 	shsInfo->digest [2] = h2init;
108 	shsInfo->digest [3] = h3init;
109 	shsInfo->digest [4] = h4init;
110 
111 	/* Initialise bit count */
112 	shsInfo->countLo = shsInfo->countHi = 0L;
113 }
114 
115 /*
116  * Perform the SHS transformation.  Note that this code, like MD5, seems to
117  * break some optimizing compilers - it may be necessary to split it into
118  * sections, eg based on the four subrounds
119  */
120 
shsTransform(SHS_INFO * shsInfo)121 void shsTransform (SHS_INFO *shsInfo)
122 {
123        uint32_t W [80], temp;
124 	int i;
125 
126 	/* Step A.	Copy the data buffer into the local work buffer */
127 	for (i = 0; i < 16; i++)
128 		W [i] = shsInfo->data [i];
129 
130 	/* Step B.	Expand the 16 words into 64 temporary data words */
131 	expand (16); expand (17); expand (18); expand (19); expand (20);
132 	expand (21); expand (22); expand (23); expand (24); expand (25);
133 	expand (26); expand (27); expand (28); expand (29); expand (30);
134 	expand (31); expand (32); expand (33); expand (34); expand (35);
135 	expand (36); expand (37); expand (38); expand (39); expand (40);
136 	expand (41); expand (42); expand (43); expand (44); expand (45);
137 	expand (46); expand (47); expand (48); expand (49); expand (50);
138 	expand (51); expand (52); expand (53); expand (54); expand (55);
139 	expand (56); expand (57); expand (58); expand (59); expand (60);
140 	expand (61); expand (62); expand (63); expand (64); expand (65);
141 	expand (66); expand (67); expand (68); expand (69); expand (70);
142 	expand (71); expand (72); expand (73); expand (74); expand (75);
143 	expand (76); expand (77); expand (78); expand (79);
144 
145 	/* Step C.	Set up first buffer */
146 	A = shsInfo->digest [0];
147 	B = shsInfo->digest [1];
148 	C = shsInfo->digest [2];
149 	D = shsInfo->digest [3];
150 	E = shsInfo->digest [4];
151 
152 	/* Step D.	Serious mangling, divided into four sub-rounds */
153 	subRound1  (0); subRound1  (1); subRound1  (2); subRound1  (3);
154 	subRound1  (4); subRound1  (5); subRound1  (6); subRound1  (7);
155 	subRound1  (8); subRound1  (9); subRound1 (10); subRound1 (11);
156 	subRound1 (12); subRound1 (13); subRound1 (14); subRound1 (15);
157 	subRound1 (16); subRound1 (17); subRound1 (18); subRound1 (19);
158 
159 	subRound2 (20); subRound2 (21); subRound2 (22); subRound2 (23);
160 	subRound2 (24); subRound2 (25); subRound2 (26); subRound2 (27);
161 	subRound2 (28); subRound2 (29); subRound2 (30); subRound2 (31);
162 	subRound2 (32); subRound2 (33); subRound2 (34); subRound2 (35);
163 	subRound2 (36); subRound2 (37); subRound2 (38); subRound2 (39);
164 
165 	subRound3 (40); subRound3 (41); subRound3 (42); subRound3 (43);
166 	subRound3 (44); subRound3 (45); subRound3 (46); subRound3 (47);
167 	subRound3 (48); subRound3 (49); subRound3 (50); subRound3 (51);
168 	subRound3 (52); subRound3 (53); subRound3 (54); subRound3 (55);
169 	subRound3 (56); subRound3 (57); subRound3 (58); subRound3 (59);
170 
171 	subRound4 (60); subRound4 (61); subRound4 (62); subRound4 (63);
172 	subRound4 (64); subRound4 (65); subRound4 (66); subRound4 (67);
173 	subRound4 (68); subRound4 (69); subRound4 (70); subRound4 (71);
174 	subRound4 (72); subRound4 (73); subRound4 (74); subRound4 (75);
175 	subRound4 (76); subRound4 (77); subRound4 (78); subRound4 (79);
176 
177 	/* Step E.	Build message digest */
178 	shsInfo->digest [0] += A;
179 	shsInfo->digest [1] += B;
180 	shsInfo->digest [2] += C;
181 	shsInfo->digest [3] += D;
182 	shsInfo->digest [4] += E;
183 }
184 
byteReverse(uint32_t * buffer,int byteCount)185 local void byteReverse (uint32_t *buffer, int byteCount)
186 {
187        uint32_t value;
188 	int count;
189 
190 	/*
191 	 * Find out what the byte order is on this machine.
192 	 * Big endian is for machines that place the most significant byte
193 	 * first (eg. Sun SPARC). Little endian is for machines that place
194 	 * the least significant byte first (eg. VAX).
195 	 *
196 	 * We figure out the byte order by stuffing a 2 byte string into a
197 	 * short and examining the left byte. '@' = 0x40  and  'P' = 0x50
198 	 * If the left byte is the 'high' byte, then it is 'big endian'.
199 	 * If the left byte is the 'low' byte, then the machine is 'little
200 	 * endian'.
201 	 *
202 	 *                          -- Shawn A. Clifford (sac@eng.ufl.edu)
203 	 */
204 
205 	/*
206 	 * Several bugs fixed       -- Pat Myrto (pat@rwing.uucp)
207 	 */
208 
209 	if ((*(unsigned short *) ("@P") >> 8) == '@')
210 		return;
211 
212        byteCount /= sizeof (uint32_t);
213 	for (count = 0; count < byteCount; count++) {
214 		value = (buffer [count] << 16) | (buffer [count] >> 16);
215 		buffer [count] = ((value & 0xFF00FF00L) >> 8) | ((value & 0x00FF00FFL) << 8);
216 	}
217 }
218 
219 /*
220  * Update SHS for a block of data.  This code assumes that the buffer size is
221  * a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot more
222  * efficient since it does away with the need to handle partial blocks
223  * between calls to shsUpdate()
224  */
225 
shsUpdate(SHS_INFO * shsInfo,uint8_t * buffer,int count)226 void shsUpdate (SHS_INFO *shsInfo, uint8_t *buffer, int count)
227 {
228 	/* Update bitcount */
229        if ((shsInfo->countLo + ((uint32_t) count << 3)) < shsInfo->countLo)
230 		 shsInfo->countHi++;	/* Carry from low to high bitCount */
231        shsInfo->countLo += ((uint32_t) count << 3);
232        shsInfo->countHi += ((uint32_t) count >> 29);
233 
234 	/* Process data in SHS_BLOCKSIZE chunks */
235 	while (count >= SHS_BLOCKSIZE) {
236 		memcpy (shsInfo->data, buffer, SHS_BLOCKSIZE);
237 		byteReverse (shsInfo->data, SHS_BLOCKSIZE);
238 		shsTransform (shsInfo);
239 		buffer += SHS_BLOCKSIZE;
240 		count -= SHS_BLOCKSIZE;
241 	}
242 
243 	/*
244 	 * Handle any remaining bytes of data.
245 	 * This should only happen once on the final lot of data
246 	 */
247 	memcpy (shsInfo->data, buffer, count);
248 }
249 
shsFinal(SHS_INFO * shsInfo)250 void shsFinal (SHS_INFO *shsInfo)
251 {
252 	int count;
253        uint32_t lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi;
254 
255 	/* Compute number of bytes mod 64 */
256 	count = (int) ((shsInfo->countLo >> 3) & 0x3F);
257 
258 	/*
259 	 * Set the first char of padding to 0x80.
260 	 * This is safe since there is always at least one byte free
261 	 */
262        ((uint8_t *) shsInfo->data) [count++] = 0x80;
263 
264 	/* Pad out to 56 mod 64 */
265 	if (count > 56) {
266 		/* Two lots of padding:  Pad the first block to 64 bytes */
267                memset ((uint8_t *) shsInfo->data + count, 0, 64 - count);
268 		byteReverse (shsInfo->data, SHS_BLOCKSIZE);
269 		shsTransform (shsInfo);
270 
271 		/* Now fill the next block with 56 bytes */
272 		memset (shsInfo->data, 0, 56);
273 	} else
274 		/* Pad block to 56 bytes */
275                memset ((uint8_t *) shsInfo->data + count, 0, 56 - count);
276 	byteReverse (shsInfo->data, SHS_BLOCKSIZE);
277 
278 	/* Append length in bits and transform */
279 	shsInfo->data [14] = highBitcount;
280 	shsInfo->data [15] = lowBitcount;
281 
282 	shsTransform (shsInfo);
283 	byteReverse (shsInfo->data, SHS_DIGESTSIZE);
284 }
285