1
2 /* --------------------------------- SHS.CC ------------------------------- */
3
4 /*
5 * NIST proposed Secure Hash Standard.
6 *
7 * Written 2 September 1992, Peter C. Gutmann.
8 * This implementation placed in the public domain.
9 *
10 * Comments to pgut1@cs.aukuni.ac.nz
11 */
12
13 // Force C++ compiler to use Java-style EH, so we don't have to link with
14 // libstdc++.
15 #pragma GCC java_exceptions
16
17 #include <string.h>
18 #include "shs.h"
19
20 /* The SHS f()-functions */
21
22 #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */
23 #define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
24 #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
25 #define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
26
27 /* The SHS Mysterious Constants */
28
29 #define K1 0x5A827999L /* Rounds 0-19 */
30 #define K2 0x6ED9EBA1L /* Rounds 20-39 */
31 #define K3 0x8F1BBCDCL /* Rounds 40-59 */
32 #define K4 0xCA62C1D6L /* Rounds 60-79 */
33
34 /* SHS initial values */
35
36 #define h0init 0x67452301L
37 #define h1init 0xEFCDAB89L
38 #define h2init 0x98BADCFEL
39 #define h3init 0x10325476L
40 #define h4init 0xC3D2E1F0L
41
42 /* 32-bit rotate - kludged with shifts */
43
44 #define S(n,X) ((X << n) | (X >> (32 - n)))
45
46 /* The initial expanding function */
47
48 #define expand(count) W [count] = W [count - 3] ^ W [count - 8] ^ W [count - 14] ^ W [count - 16]
49
50 /* The four SHS sub-rounds */
51
52 #define subRound1(count) \
53 { \
54 temp = S (5, A) + f1 (B, C, D) + E + W [count] + K1; \
55 E = D; \
56 D = C; \
57 C = S (30, B); \
58 B = A; \
59 A = temp; \
60 }
61
62 #define subRound2(count) \
63 { \
64 temp = S (5, A) + f2 (B, C, D) + E + W [count] + K2; \
65 E = D; \
66 D = C; \
67 C = S (30, B); \
68 B = A; \
69 A = temp; \
70 }
71
72 #define subRound3(count) \
73 { \
74 temp = S (5, A) + f3 (B, C, D) + E + W [count] + K3; \
75 E = D; \
76 D = C; \
77 C = S (30, B); \
78 B = A; \
79 A = temp; \
80 }
81
82 #define subRound4(count) \
83 { \
84 temp = S (5, A) + f4 (B, C, D) + E + W [count] + K4; \
85 E = D; \
86 D = C; \
87 C = S (30, B); \
88 B = A; \
89 A = temp; \
90 }
91
92 /* The two buffers of 5 32-bit words */
93
94 uint32_t h0, h1, h2, h3, h4;
95 uint32_t A, B, C, D, E;
96
97 local void byteReverse OF((uint32_t *buffer, int byteCount));
98 void shsTransform OF((SHS_INFO *shsInfo));
99
100 /* Initialize the SHS values */
101
shsInit(SHS_INFO * shsInfo)102 void shsInit (SHS_INFO *shsInfo)
103 {
104 /* Set the h-vars to their initial values */
105 shsInfo->digest [0] = h0init;
106 shsInfo->digest [1] = h1init;
107 shsInfo->digest [2] = h2init;
108 shsInfo->digest [3] = h3init;
109 shsInfo->digest [4] = h4init;
110
111 /* Initialise bit count */
112 shsInfo->countLo = shsInfo->countHi = 0L;
113 }
114
115 /*
116 * Perform the SHS transformation. Note that this code, like MD5, seems to
117 * break some optimizing compilers - it may be necessary to split it into
118 * sections, eg based on the four subrounds
119 */
120
shsTransform(SHS_INFO * shsInfo)121 void shsTransform (SHS_INFO *shsInfo)
122 {
123 uint32_t W [80], temp;
124 int i;
125
126 /* Step A. Copy the data buffer into the local work buffer */
127 for (i = 0; i < 16; i++)
128 W [i] = shsInfo->data [i];
129
130 /* Step B. Expand the 16 words into 64 temporary data words */
131 expand (16); expand (17); expand (18); expand (19); expand (20);
132 expand (21); expand (22); expand (23); expand (24); expand (25);
133 expand (26); expand (27); expand (28); expand (29); expand (30);
134 expand (31); expand (32); expand (33); expand (34); expand (35);
135 expand (36); expand (37); expand (38); expand (39); expand (40);
136 expand (41); expand (42); expand (43); expand (44); expand (45);
137 expand (46); expand (47); expand (48); expand (49); expand (50);
138 expand (51); expand (52); expand (53); expand (54); expand (55);
139 expand (56); expand (57); expand (58); expand (59); expand (60);
140 expand (61); expand (62); expand (63); expand (64); expand (65);
141 expand (66); expand (67); expand (68); expand (69); expand (70);
142 expand (71); expand (72); expand (73); expand (74); expand (75);
143 expand (76); expand (77); expand (78); expand (79);
144
145 /* Step C. Set up first buffer */
146 A = shsInfo->digest [0];
147 B = shsInfo->digest [1];
148 C = shsInfo->digest [2];
149 D = shsInfo->digest [3];
150 E = shsInfo->digest [4];
151
152 /* Step D. Serious mangling, divided into four sub-rounds */
153 subRound1 (0); subRound1 (1); subRound1 (2); subRound1 (3);
154 subRound1 (4); subRound1 (5); subRound1 (6); subRound1 (7);
155 subRound1 (8); subRound1 (9); subRound1 (10); subRound1 (11);
156 subRound1 (12); subRound1 (13); subRound1 (14); subRound1 (15);
157 subRound1 (16); subRound1 (17); subRound1 (18); subRound1 (19);
158
159 subRound2 (20); subRound2 (21); subRound2 (22); subRound2 (23);
160 subRound2 (24); subRound2 (25); subRound2 (26); subRound2 (27);
161 subRound2 (28); subRound2 (29); subRound2 (30); subRound2 (31);
162 subRound2 (32); subRound2 (33); subRound2 (34); subRound2 (35);
163 subRound2 (36); subRound2 (37); subRound2 (38); subRound2 (39);
164
165 subRound3 (40); subRound3 (41); subRound3 (42); subRound3 (43);
166 subRound3 (44); subRound3 (45); subRound3 (46); subRound3 (47);
167 subRound3 (48); subRound3 (49); subRound3 (50); subRound3 (51);
168 subRound3 (52); subRound3 (53); subRound3 (54); subRound3 (55);
169 subRound3 (56); subRound3 (57); subRound3 (58); subRound3 (59);
170
171 subRound4 (60); subRound4 (61); subRound4 (62); subRound4 (63);
172 subRound4 (64); subRound4 (65); subRound4 (66); subRound4 (67);
173 subRound4 (68); subRound4 (69); subRound4 (70); subRound4 (71);
174 subRound4 (72); subRound4 (73); subRound4 (74); subRound4 (75);
175 subRound4 (76); subRound4 (77); subRound4 (78); subRound4 (79);
176
177 /* Step E. Build message digest */
178 shsInfo->digest [0] += A;
179 shsInfo->digest [1] += B;
180 shsInfo->digest [2] += C;
181 shsInfo->digest [3] += D;
182 shsInfo->digest [4] += E;
183 }
184
byteReverse(uint32_t * buffer,int byteCount)185 local void byteReverse (uint32_t *buffer, int byteCount)
186 {
187 uint32_t value;
188 int count;
189
190 /*
191 * Find out what the byte order is on this machine.
192 * Big endian is for machines that place the most significant byte
193 * first (eg. Sun SPARC). Little endian is for machines that place
194 * the least significant byte first (eg. VAX).
195 *
196 * We figure out the byte order by stuffing a 2 byte string into a
197 * short and examining the left byte. '@' = 0x40 and 'P' = 0x50
198 * If the left byte is the 'high' byte, then it is 'big endian'.
199 * If the left byte is the 'low' byte, then the machine is 'little
200 * endian'.
201 *
202 * -- Shawn A. Clifford (sac@eng.ufl.edu)
203 */
204
205 /*
206 * Several bugs fixed -- Pat Myrto (pat@rwing.uucp)
207 */
208
209 if ((*(unsigned short *) ("@P") >> 8) == '@')
210 return;
211
212 byteCount /= sizeof (uint32_t);
213 for (count = 0; count < byteCount; count++) {
214 value = (buffer [count] << 16) | (buffer [count] >> 16);
215 buffer [count] = ((value & 0xFF00FF00L) >> 8) | ((value & 0x00FF00FFL) << 8);
216 }
217 }
218
219 /*
220 * Update SHS for a block of data. This code assumes that the buffer size is
221 * a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot more
222 * efficient since it does away with the need to handle partial blocks
223 * between calls to shsUpdate()
224 */
225
shsUpdate(SHS_INFO * shsInfo,uint8_t * buffer,int count)226 void shsUpdate (SHS_INFO *shsInfo, uint8_t *buffer, int count)
227 {
228 /* Update bitcount */
229 if ((shsInfo->countLo + ((uint32_t) count << 3)) < shsInfo->countLo)
230 shsInfo->countHi++; /* Carry from low to high bitCount */
231 shsInfo->countLo += ((uint32_t) count << 3);
232 shsInfo->countHi += ((uint32_t) count >> 29);
233
234 /* Process data in SHS_BLOCKSIZE chunks */
235 while (count >= SHS_BLOCKSIZE) {
236 memcpy (shsInfo->data, buffer, SHS_BLOCKSIZE);
237 byteReverse (shsInfo->data, SHS_BLOCKSIZE);
238 shsTransform (shsInfo);
239 buffer += SHS_BLOCKSIZE;
240 count -= SHS_BLOCKSIZE;
241 }
242
243 /*
244 * Handle any remaining bytes of data.
245 * This should only happen once on the final lot of data
246 */
247 memcpy (shsInfo->data, buffer, count);
248 }
249
shsFinal(SHS_INFO * shsInfo)250 void shsFinal (SHS_INFO *shsInfo)
251 {
252 int count;
253 uint32_t lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi;
254
255 /* Compute number of bytes mod 64 */
256 count = (int) ((shsInfo->countLo >> 3) & 0x3F);
257
258 /*
259 * Set the first char of padding to 0x80.
260 * This is safe since there is always at least one byte free
261 */
262 ((uint8_t *) shsInfo->data) [count++] = 0x80;
263
264 /* Pad out to 56 mod 64 */
265 if (count > 56) {
266 /* Two lots of padding: Pad the first block to 64 bytes */
267 memset ((uint8_t *) shsInfo->data + count, 0, 64 - count);
268 byteReverse (shsInfo->data, SHS_BLOCKSIZE);
269 shsTransform (shsInfo);
270
271 /* Now fill the next block with 56 bytes */
272 memset (shsInfo->data, 0, 56);
273 } else
274 /* Pad block to 56 bytes */
275 memset ((uint8_t *) shsInfo->data + count, 0, 56 - count);
276 byteReverse (shsInfo->data, SHS_BLOCKSIZE);
277
278 /* Append length in bits and transform */
279 shsInfo->data [14] = highBitcount;
280 shsInfo->data [15] = lowBitcount;
281
282 shsTransform (shsInfo);
283 byteReverse (shsInfo->data, SHS_DIGESTSIZE);
284 }
285