1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              S E M _ C H 3                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;   use Aspects;
27with Atree;     use Atree;
28with Checks;    use Checks;
29with Contracts; use Contracts;
30with Debug;     use Debug;
31with Elists;    use Elists;
32with Einfo;     use Einfo;
33with Errout;    use Errout;
34with Eval_Fat;  use Eval_Fat;
35with Exp_Ch3;   use Exp_Ch3;
36with Exp_Ch9;   use Exp_Ch9;
37with Exp_Disp;  use Exp_Disp;
38with Exp_Dist;  use Exp_Dist;
39with Exp_Tss;   use Exp_Tss;
40with Exp_Util;  use Exp_Util;
41with Fname;     use Fname;
42with Freeze;    use Freeze;
43with Ghost;     use Ghost;
44with Itypes;    use Itypes;
45with Layout;    use Layout;
46with Lib;       use Lib;
47with Lib.Xref;  use Lib.Xref;
48with Namet;     use Namet;
49with Nmake;     use Nmake;
50with Opt;       use Opt;
51with Restrict;  use Restrict;
52with Rident;    use Rident;
53with Rtsfind;   use Rtsfind;
54with Sem;       use Sem;
55with Sem_Aux;   use Sem_Aux;
56with Sem_Case;  use Sem_Case;
57with Sem_Cat;   use Sem_Cat;
58with Sem_Ch6;   use Sem_Ch6;
59with Sem_Ch7;   use Sem_Ch7;
60with Sem_Ch8;   use Sem_Ch8;
61with Sem_Ch13;  use Sem_Ch13;
62with Sem_Dim;   use Sem_Dim;
63with Sem_Disp;  use Sem_Disp;
64with Sem_Dist;  use Sem_Dist;
65with Sem_Elim;  use Sem_Elim;
66with Sem_Eval;  use Sem_Eval;
67with Sem_Mech;  use Sem_Mech;
68with Sem_Res;   use Sem_Res;
69with Sem_Smem;  use Sem_Smem;
70with Sem_Type;  use Sem_Type;
71with Sem_Util;  use Sem_Util;
72with Sem_Warn;  use Sem_Warn;
73with Stand;     use Stand;
74with Sinfo;     use Sinfo;
75with Sinput;    use Sinput;
76with Snames;    use Snames;
77with Targparm;  use Targparm;
78with Tbuild;    use Tbuild;
79with Ttypes;    use Ttypes;
80with Uintp;     use Uintp;
81with Urealp;    use Urealp;
82
83package body Sem_Ch3 is
84
85   -----------------------
86   -- Local Subprograms --
87   -----------------------
88
89   procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90   --  Ada 2005 (AI-251): Add the tag components corresponding to all the
91   --  abstract interface types implemented by a record type or a derived
92   --  record type.
93
94   procedure Build_Derived_Type
95     (N             : Node_Id;
96      Parent_Type   : Entity_Id;
97      Derived_Type  : Entity_Id;
98      Is_Completion : Boolean;
99      Derive_Subps  : Boolean := True);
100   --  Create and decorate a Derived_Type given the Parent_Type entity. N is
101   --  the N_Full_Type_Declaration node containing the derived type definition.
102   --  Parent_Type is the entity for the parent type in the derived type
103   --  definition and Derived_Type the actual derived type. Is_Completion must
104   --  be set to False if Derived_Type is the N_Defining_Identifier node in N
105   --  (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106   --  completion of a private type declaration. If Is_Completion is set to
107   --  True, N is the completion of a private type declaration and Derived_Type
108   --  is different from the defining identifier inside N (i.e. Derived_Type /=
109   --  Defining_Identifier (N)). Derive_Subps indicates whether the parent
110   --  subprograms should be derived. The only case where this parameter is
111   --  False is when Build_Derived_Type is recursively called to process an
112   --  implicit derived full type for a type derived from a private type (in
113   --  that case the subprograms must only be derived for the private view of
114   --  the type).
115   --
116   --  ??? These flags need a bit of re-examination and re-documentation:
117   --  ???  are they both necessary (both seem related to the recursion)?
118
119   procedure Build_Derived_Access_Type
120     (N            : Node_Id;
121      Parent_Type  : Entity_Id;
122      Derived_Type : Entity_Id);
123   --  Subsidiary procedure to Build_Derived_Type. For a derived access type,
124   --  create an implicit base if the parent type is constrained or if the
125   --  subtype indication has a constraint.
126
127   procedure Build_Derived_Array_Type
128     (N            : Node_Id;
129      Parent_Type  : Entity_Id;
130      Derived_Type : Entity_Id);
131   --  Subsidiary procedure to Build_Derived_Type. For a derived array type,
132   --  create an implicit base if the parent type is constrained or if the
133   --  subtype indication has a constraint.
134
135   procedure Build_Derived_Concurrent_Type
136     (N            : Node_Id;
137      Parent_Type  : Entity_Id;
138      Derived_Type : Entity_Id);
139   --  Subsidiary procedure to Build_Derived_Type. For a derived task or
140   --  protected type, inherit entries and protected subprograms, check
141   --  legality of discriminant constraints if any.
142
143   procedure Build_Derived_Enumeration_Type
144     (N            : Node_Id;
145      Parent_Type  : Entity_Id;
146      Derived_Type : Entity_Id);
147   --  Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148   --  type, we must create a new list of literals. Types derived from
149   --  Character and [Wide_]Wide_Character are special-cased.
150
151   procedure Build_Derived_Numeric_Type
152     (N            : Node_Id;
153      Parent_Type  : Entity_Id;
154      Derived_Type : Entity_Id);
155   --  Subsidiary procedure to Build_Derived_Type. For numeric types, create
156   --  an anonymous base type, and propagate constraint to subtype if needed.
157
158   procedure Build_Derived_Private_Type
159     (N             : Node_Id;
160      Parent_Type   : Entity_Id;
161      Derived_Type  : Entity_Id;
162      Is_Completion : Boolean;
163      Derive_Subps  : Boolean := True);
164   --  Subsidiary procedure to Build_Derived_Type. This procedure is complex
165   --  because the parent may or may not have a completion, and the derivation
166   --  may itself be a completion.
167
168   procedure Build_Derived_Record_Type
169     (N            : Node_Id;
170      Parent_Type  : Entity_Id;
171      Derived_Type : Entity_Id;
172      Derive_Subps : Boolean := True);
173   --  Subsidiary procedure used for tagged and untagged record types
174   --  by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175   --  All parameters are as in Build_Derived_Type except that N, in
176   --  addition to being an N_Full_Type_Declaration node, can also be an
177   --  N_Private_Extension_Declaration node. See the definition of this routine
178   --  for much more info. Derive_Subps indicates whether subprograms should be
179   --  derived from the parent type. The only case where Derive_Subps is False
180   --  is for an implicit derived full type for a type derived from a private
181   --  type (see Build_Derived_Type).
182
183   procedure Build_Discriminal (Discrim : Entity_Id);
184   --  Create the discriminal corresponding to discriminant Discrim, that is
185   --  the parameter corresponding to Discrim to be used in initialization
186   --  procedures for the type where Discrim is a discriminant. Discriminals
187   --  are not used during semantic analysis, and are not fully defined
188   --  entities until expansion. Thus they are not given a scope until
189   --  initialization procedures are built.
190
191   function Build_Discriminant_Constraints
192     (T           : Entity_Id;
193      Def         : Node_Id;
194      Derived_Def : Boolean := False) return Elist_Id;
195   --  Validate discriminant constraints and return the list of the constraints
196   --  in order of discriminant declarations, where T is the discriminated
197   --  unconstrained type. Def is the N_Subtype_Indication node where the
198   --  discriminants constraints for T are specified. Derived_Def is True
199   --  when building the discriminant constraints in a derived type definition
200   --  of the form "type D (...) is new T (xxx)". In this case T is the parent
201   --  type and Def is the constraint "(xxx)" on T and this routine sets the
202   --  Corresponding_Discriminant field of the discriminants in the derived
203   --  type D to point to the corresponding discriminants in the parent type T.
204
205   procedure Build_Discriminated_Subtype
206     (T           : Entity_Id;
207      Def_Id      : Entity_Id;
208      Elist       : Elist_Id;
209      Related_Nod : Node_Id;
210      For_Access  : Boolean := False);
211   --  Subsidiary procedure to Constrain_Discriminated_Type and to
212   --  Process_Incomplete_Dependents. Given
213   --
214   --     T (a possibly discriminated base type)
215   --     Def_Id (a very partially built subtype for T),
216   --
217   --  the call completes Def_Id to be the appropriate E_*_Subtype.
218   --
219   --  The Elist is the list of discriminant constraints if any (it is set
220   --  to No_Elist if T is not a discriminated type, and to an empty list if
221   --  T has discriminants but there are no discriminant constraints). The
222   --  Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223   --  The For_Access says whether or not this subtype is really constraining
224   --  an access type. That is its sole purpose is the designated type of an
225   --  access type -- in which case a Private_Subtype Is_For_Access_Subtype
226   --  is built to avoid freezing T when the access subtype is frozen.
227
228   function Build_Scalar_Bound
229     (Bound : Node_Id;
230      Par_T : Entity_Id;
231      Der_T : Entity_Id) return Node_Id;
232   --  The bounds of a derived scalar type are conversions of the bounds of
233   --  the parent type. Optimize the representation if the bounds are literals.
234   --  Needs a more complete spec--what are the parameters exactly, and what
235   --  exactly is the returned value, and how is Bound affected???
236
237   procedure Build_Underlying_Full_View
238     (N   : Node_Id;
239      Typ : Entity_Id;
240      Par : Entity_Id);
241   --  If the completion of a private type is itself derived from a private
242   --  type, or if the full view of a private subtype is itself private, the
243   --  back-end has no way to compute the actual size of this type. We build
244   --  an internal subtype declaration of the proper parent type to convey
245   --  this information. This extra mechanism is needed because a full
246   --  view cannot itself have a full view (it would get clobbered during
247   --  view exchanges).
248
249   procedure Check_Access_Discriminant_Requires_Limited
250     (D   : Node_Id;
251      Loc : Node_Id);
252   --  Check the restriction that the type to which an access discriminant
253   --  belongs must be a concurrent type or a descendant of a type with
254   --  the reserved word 'limited' in its declaration.
255
256   procedure Check_Anonymous_Access_Components
257      (Typ_Decl  : Node_Id;
258       Typ       : Entity_Id;
259       Prev      : Entity_Id;
260       Comp_List : Node_Id);
261   --  Ada 2005 AI-382: an access component in a record definition can refer to
262   --  the enclosing record, in which case it denotes the type itself, and not
263   --  the current instance of the type. We create an anonymous access type for
264   --  the component, and flag it as an access to a component, so accessibility
265   --  checks are properly performed on it. The declaration of the access type
266   --  is placed ahead of that of the record to prevent order-of-elaboration
267   --  circularity issues in Gigi. We create an incomplete type for the record
268   --  declaration, which is the designated type of the anonymous access.
269
270   procedure Check_Delta_Expression (E : Node_Id);
271   --  Check that the expression represented by E is suitable for use as a
272   --  delta expression, i.e. it is of real type and is static.
273
274   procedure Check_Digits_Expression (E : Node_Id);
275   --  Check that the expression represented by E is suitable for use as a
276   --  digits expression, i.e. it is of integer type, positive and static.
277
278   procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279   --  Validate the initialization of an object declaration. T is the required
280   --  type, and Exp is the initialization expression.
281
282   procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283   --  Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284
285   procedure Check_Or_Process_Discriminants
286     (N    : Node_Id;
287      T    : Entity_Id;
288      Prev : Entity_Id := Empty);
289   --  If N is the full declaration of the completion T of an incomplete or
290   --  private type, check its discriminants (which are already known to be
291   --  conformant with those of the partial view, see Find_Type_Name),
292   --  otherwise process them. Prev is the entity of the partial declaration,
293   --  if any.
294
295   procedure Check_Real_Bound (Bound : Node_Id);
296   --  Check given bound for being of real type and static. If not, post an
297   --  appropriate message, and rewrite the bound with the real literal zero.
298
299   procedure Constant_Redeclaration
300     (Id : Entity_Id;
301      N  : Node_Id;
302      T  : out Entity_Id);
303   --  Various checks on legality of full declaration of deferred constant.
304   --  Id is the entity for the redeclaration, N is the N_Object_Declaration,
305   --  node. The caller has not yet set any attributes of this entity.
306
307   function Contain_Interface
308     (Iface  : Entity_Id;
309      Ifaces : Elist_Id) return Boolean;
310   --  Ada 2005: Determine whether Iface is present in the list Ifaces
311
312   procedure Convert_Scalar_Bounds
313     (N            : Node_Id;
314      Parent_Type  : Entity_Id;
315      Derived_Type : Entity_Id;
316      Loc          : Source_Ptr);
317   --  For derived scalar types, convert the bounds in the type definition to
318   --  the derived type, and complete their analysis. Given a constraint of the
319   --  form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320   --  T'Base, the parent_type. The bounds of the derived type (the anonymous
321   --  base) are copies of Lo and Hi. Finally, the bounds of the derived
322   --  subtype are conversions of those bounds to the derived_type, so that
323   --  their typing is consistent.
324
325   procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326   --  Copies attributes from array base type T2 to array base type T1. Copies
327   --  only attributes that apply to base types, but not subtypes.
328
329   procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330   --  Copies attributes from array subtype T2 to array subtype T1. Copies
331   --  attributes that apply to both subtypes and base types.
332
333   procedure Create_Constrained_Components
334     (Subt        : Entity_Id;
335      Decl_Node   : Node_Id;
336      Typ         : Entity_Id;
337      Constraints : Elist_Id);
338   --  Build the list of entities for a constrained discriminated record
339   --  subtype. If a component depends on a discriminant, replace its subtype
340   --  using the discriminant values in the discriminant constraint. Subt
341   --  is the defining identifier for the subtype whose list of constrained
342   --  entities we will create. Decl_Node is the type declaration node where
343   --  we will attach all the itypes created. Typ is the base discriminated
344   --  type for the subtype Subt. Constraints is the list of discriminant
345   --  constraints for Typ.
346
347   function Constrain_Component_Type
348     (Comp            : Entity_Id;
349      Constrained_Typ : Entity_Id;
350      Related_Node    : Node_Id;
351      Typ             : Entity_Id;
352      Constraints     : Elist_Id) return Entity_Id;
353   --  Given a discriminated base type Typ, a list of discriminant constraints,
354   --  Constraints, for Typ and a component Comp of Typ, create and return the
355   --  type corresponding to Etype (Comp) where all discriminant references
356   --  are replaced with the corresponding constraint. If Etype (Comp) contains
357   --  no discriminant references then it is returned as-is. Constrained_Typ
358   --  is the final constrained subtype to which the constrained component
359   --  belongs. Related_Node is the node where we attach all created itypes.
360
361   procedure Constrain_Access
362     (Def_Id      : in out Entity_Id;
363      S           : Node_Id;
364      Related_Nod : Node_Id);
365   --  Apply a list of constraints to an access type. If Def_Id is empty, it is
366   --  an anonymous type created for a subtype indication. In that case it is
367   --  created in the procedure and attached to Related_Nod.
368
369   procedure Constrain_Array
370     (Def_Id      : in out Entity_Id;
371      SI          : Node_Id;
372      Related_Nod : Node_Id;
373      Related_Id  : Entity_Id;
374      Suffix      : Character);
375   --  Apply a list of index constraints to an unconstrained array type. The
376   --  first parameter is the entity for the resulting subtype. A value of
377   --  Empty for Def_Id indicates that an implicit type must be created, but
378   --  creation is delayed (and must be done by this procedure) because other
379   --  subsidiary implicit types must be created first (which is why Def_Id
380   --  is an in/out parameter). The second parameter is a subtype indication
381   --  node for the constrained array to be created (e.g. something of the
382   --  form string (1 .. 10)). Related_Nod gives the place where this type
383   --  has to be inserted in the tree. The Related_Id and Suffix parameters
384   --  are used to build the associated Implicit type name.
385
386   procedure Constrain_Concurrent
387     (Def_Id      : in out Entity_Id;
388      SI          : Node_Id;
389      Related_Nod : Node_Id;
390      Related_Id  : Entity_Id;
391      Suffix      : Character);
392   --  Apply list of discriminant constraints to an unconstrained concurrent
393   --  type.
394   --
395   --    SI is the N_Subtype_Indication node containing the constraint and
396   --    the unconstrained type to constrain.
397   --
398   --    Def_Id is the entity for the resulting constrained subtype. A value
399   --    of Empty for Def_Id indicates that an implicit type must be created,
400   --    but creation is delayed (and must be done by this procedure) because
401   --    other subsidiary implicit types must be created first (which is why
402   --    Def_Id is an in/out parameter).
403   --
404   --    Related_Nod gives the place where this type has to be inserted
405   --    in the tree.
406   --
407   --  The last two arguments are used to create its external name if needed.
408
409   function Constrain_Corresponding_Record
410     (Prot_Subt   : Entity_Id;
411      Corr_Rec    : Entity_Id;
412      Related_Nod : Node_Id) return Entity_Id;
413   --  When constraining a protected type or task type with discriminants,
414   --  constrain the corresponding record with the same discriminant values.
415
416   procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417   --  Constrain a decimal fixed point type with a digits constraint and/or a
418   --  range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
419
420   procedure Constrain_Discriminated_Type
421     (Def_Id      : Entity_Id;
422      S           : Node_Id;
423      Related_Nod : Node_Id;
424      For_Access  : Boolean := False);
425   --  Process discriminant constraints of composite type. Verify that values
426   --  have been provided for all discriminants, that the original type is
427   --  unconstrained, and that the types of the supplied expressions match
428   --  the discriminant types. The first three parameters are like in routine
429   --  Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430   --  of For_Access.
431
432   procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433   --  Constrain an enumeration type with a range constraint. This is identical
434   --  to Constrain_Integer, but for the Ekind of the resulting subtype.
435
436   procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437   --  Constrain a floating point type with either a digits constraint
438   --  and/or a range constraint, building a E_Floating_Point_Subtype.
439
440   procedure Constrain_Index
441     (Index        : Node_Id;
442      S            : Node_Id;
443      Related_Nod  : Node_Id;
444      Related_Id   : Entity_Id;
445      Suffix       : Character;
446      Suffix_Index : Nat);
447   --  Process an index constraint S in a constrained array declaration. The
448   --  constraint can be a subtype name, or a range with or without an explicit
449   --  subtype mark. The index is the corresponding index of the unconstrained
450   --  array. The Related_Id and Suffix parameters are used to build the
451   --  associated Implicit type name.
452
453   procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454   --  Build subtype of a signed or modular integer type
455
456   procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457   --  Constrain an ordinary fixed point type with a range constraint, and
458   --  build an E_Ordinary_Fixed_Point_Subtype entity.
459
460   procedure Copy_And_Swap (Priv, Full : Entity_Id);
461   --  Copy the Priv entity into the entity of its full declaration then swap
462   --  the two entities in such a manner that the former private type is now
463   --  seen as a full type.
464
465   procedure Decimal_Fixed_Point_Type_Declaration
466     (T   : Entity_Id;
467      Def : Node_Id);
468   --  Create a new decimal fixed point type, and apply the constraint to
469   --  obtain a subtype of this new type.
470
471   procedure Complete_Private_Subtype
472     (Priv        : Entity_Id;
473      Full        : Entity_Id;
474      Full_Base   : Entity_Id;
475      Related_Nod : Node_Id);
476   --  Complete the implicit full view of a private subtype by setting the
477   --  appropriate semantic fields. If the full view of the parent is a record
478   --  type, build constrained components of subtype.
479
480   procedure Derive_Progenitor_Subprograms
481     (Parent_Type : Entity_Id;
482      Tagged_Type : Entity_Id);
483   --  Ada 2005 (AI-251): To complete type derivation, collect the primitive
484   --  operations of progenitors of Tagged_Type, and replace the subsidiary
485   --  subtypes with Tagged_Type, to build the specs of the inherited interface
486   --  primitives. The derived primitives are aliased to those of the
487   --  interface. This routine takes care also of transferring to the full view
488   --  subprograms associated with the partial view of Tagged_Type that cover
489   --  interface primitives.
490
491   procedure Derived_Standard_Character
492     (N             : Node_Id;
493      Parent_Type   : Entity_Id;
494      Derived_Type  : Entity_Id);
495   --  Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496   --  derivations from types Standard.Character and Standard.Wide_Character.
497
498   procedure Derived_Type_Declaration
499     (T             : Entity_Id;
500      N             : Node_Id;
501      Is_Completion : Boolean);
502   --  Process a derived type declaration. Build_Derived_Type is invoked
503   --  to process the actual derived type definition. Parameters N and
504   --  Is_Completion have the same meaning as in Build_Derived_Type.
505   --  T is the N_Defining_Identifier for the entity defined in the
506   --  N_Full_Type_Declaration node N, that is T is the derived type.
507
508   procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509   --  Insert each literal in symbol table, as an overloadable identifier. Each
510   --  enumeration type is mapped into a sequence of integers, and each literal
511   --  is defined as a constant with integer value. If any of the literals are
512   --  character literals, the type is a character type, which means that
513   --  strings are legal aggregates for arrays of components of the type.
514
515   function Expand_To_Stored_Constraint
516     (Typ        : Entity_Id;
517      Constraint : Elist_Id) return Elist_Id;
518   --  Given a constraint (i.e. a list of expressions) on the discriminants of
519   --  Typ, expand it into a constraint on the stored discriminants and return
520   --  the new list of expressions constraining the stored discriminants.
521
522   function Find_Type_Of_Object
523     (Obj_Def     : Node_Id;
524      Related_Nod : Node_Id) return Entity_Id;
525   --  Get type entity for object referenced by Obj_Def, attaching the implicit
526   --  types generated to Related_Nod.
527
528   procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529   --  Create a new float and apply the constraint to obtain subtype of it
530
531   function Has_Range_Constraint (N : Node_Id) return Boolean;
532   --  Given an N_Subtype_Indication node N, return True if a range constraint
533   --  is present, either directly, or as part of a digits or delta constraint.
534   --  In addition, a digits constraint in the decimal case returns True, since
535   --  it establishes a default range if no explicit range is present.
536
537   function Inherit_Components
538     (N             : Node_Id;
539      Parent_Base   : Entity_Id;
540      Derived_Base  : Entity_Id;
541      Is_Tagged     : Boolean;
542      Inherit_Discr : Boolean;
543      Discs         : Elist_Id) return Elist_Id;
544   --  Called from Build_Derived_Record_Type to inherit the components of
545   --  Parent_Base (a base type) into the Derived_Base (the derived base type).
546   --  For more information on derived types and component inheritance please
547   --  consult the comment above the body of Build_Derived_Record_Type.
548   --
549   --    N is the original derived type declaration
550   --
551   --    Is_Tagged is set if we are dealing with tagged types
552   --
553   --    If Inherit_Discr is set, Derived_Base inherits its discriminants from
554   --    Parent_Base, otherwise no discriminants are inherited.
555   --
556   --    Discs gives the list of constraints that apply to Parent_Base in the
557   --    derived type declaration. If Discs is set to No_Elist, then we have
558   --    the following situation:
559   --
560   --      type Parent (D1..Dn : ..) is [tagged] record ...;
561   --      type Derived is new Parent [with ...];
562   --
563   --    which gets treated as
564   --
565   --      type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
566   --
567   --  For untagged types the returned value is an association list. The list
568   --  starts from the association (Parent_Base => Derived_Base), and then it
569   --  contains a sequence of the associations of the form
570   --
571   --    (Old_Component => New_Component),
572   --
573   --  where Old_Component is the Entity_Id of a component in Parent_Base and
574   --  New_Component is the Entity_Id of the corresponding component in
575   --  Derived_Base. For untagged records, this association list is needed when
576   --  copying the record declaration for the derived base. In the tagged case
577   --  the value returned is irrelevant.
578
579   procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580   --  Propagate static and dynamic predicate flags from a parent to the
581   --  subtype in a subtype declaration with and without constraints.
582
583   function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584   --  Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585   --  Determine whether subprogram Subp is a procedure subject to pragma
586   --  Extensions_Visible with value False and has at least one controlling
587   --  parameter of mode OUT.
588
589   function Is_Valid_Constraint_Kind
590     (T_Kind          : Type_Kind;
591      Constraint_Kind : Node_Kind) return Boolean;
592   --  Returns True if it is legal to apply the given kind of constraint to the
593   --  given kind of type (index constraint to an array type, for example).
594
595   procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596   --  Create new modular type. Verify that modulus is in bounds
597
598   procedure New_Concatenation_Op (Typ : Entity_Id);
599   --  Create an abbreviated declaration for an operator in order to
600   --  materialize concatenation on array types.
601
602   procedure Ordinary_Fixed_Point_Type_Declaration
603     (T   : Entity_Id;
604      Def : Node_Id);
605   --  Create a new ordinary fixed point type, and apply the constraint to
606   --  obtain subtype of it.
607
608   procedure Prepare_Private_Subtype_Completion
609     (Id          : Entity_Id;
610      Related_Nod : Node_Id);
611   --  Id is a subtype of some private type. Creates the full declaration
612   --  associated with Id whenever possible, i.e. when the full declaration
613   --  of the base type is already known. Records each subtype into
614   --  Private_Dependents of the base type.
615
616   procedure Process_Incomplete_Dependents
617     (N      : Node_Id;
618      Full_T : Entity_Id;
619      Inc_T  : Entity_Id);
620   --  Process all entities that depend on an incomplete type. There include
621   --  subtypes, subprogram types that mention the incomplete type in their
622   --  profiles, and subprogram with access parameters that designate the
623   --  incomplete type.
624
625   --  Inc_T is the defining identifier of an incomplete type declaration, its
626   --  Ekind is E_Incomplete_Type.
627   --
628   --    N is the corresponding N_Full_Type_Declaration for Inc_T.
629   --
630   --    Full_T is N's defining identifier.
631   --
632   --  Subtypes of incomplete types with discriminants are completed when the
633   --  parent type is. This is simpler than private subtypes, because they can
634   --  only appear in the same scope, and there is no need to exchange views.
635   --  Similarly, access_to_subprogram types may have a parameter or a return
636   --  type that is an incomplete type, and that must be replaced with the
637   --  full type.
638   --
639   --  If the full type is tagged, subprogram with access parameters that
640   --  designated the incomplete may be primitive operations of the full type,
641   --  and have to be processed accordingly.
642
643   procedure Process_Real_Range_Specification (Def : Node_Id);
644   --  Given the type definition for a real type, this procedure processes and
645   --  checks the real range specification of this type definition if one is
646   --  present. If errors are found, error messages are posted, and the
647   --  Real_Range_Specification of Def is reset to Empty.
648
649   procedure Propagate_Default_Init_Cond_Attributes
650     (From_Typ             : Entity_Id;
651      To_Typ               : Entity_Id;
652      Parent_To_Derivation : Boolean := False;
653      Private_To_Full_View : Boolean := False);
654   --  Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
655   --  all attributes related to pragma Default_Initial_Condition from From_Typ
656   --  to To_Typ. Flag Parent_To_Derivation should be set when the context is
657   --  the creation of a derived type. Flag Private_To_Full_View should be set
658   --  when processing both views of a private type.
659
660   procedure Record_Type_Declaration
661     (T    : Entity_Id;
662      N    : Node_Id;
663      Prev : Entity_Id);
664   --  Process a record type declaration (for both untagged and tagged
665   --  records). Parameters T and N are exactly like in procedure
666   --  Derived_Type_Declaration, except that no flag Is_Completion is needed
667   --  for this routine. If this is the completion of an incomplete type
668   --  declaration, Prev is the entity of the incomplete declaration, used for
669   --  cross-referencing. Otherwise Prev = T.
670
671   procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
672   --  This routine is used to process the actual record type definition (both
673   --  for untagged and tagged records). Def is a record type definition node.
674   --  This procedure analyzes the components in this record type definition.
675   --  Prev_T is the entity for the enclosing record type. It is provided so
676   --  that its Has_Task flag can be set if any of the component have Has_Task
677   --  set. If the declaration is the completion of an incomplete type
678   --  declaration, Prev_T is the original incomplete type, whose full view is
679   --  the record type.
680
681   procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
682   --  Subsidiary to Build_Derived_Record_Type. For untagged records, we
683   --  build a copy of the declaration tree of the parent, and we create
684   --  independently the list of components for the derived type. Semantic
685   --  information uses the component entities, but record representation
686   --  clauses are validated on the declaration tree. This procedure replaces
687   --  discriminants and components in the declaration with those that have
688   --  been created by Inherit_Components.
689
690   procedure Set_Fixed_Range
691     (E   : Entity_Id;
692      Loc : Source_Ptr;
693      Lo  : Ureal;
694      Hi  : Ureal);
695   --  Build a range node with the given bounds and set it as the Scalar_Range
696   --  of the given fixed-point type entity. Loc is the source location used
697   --  for the constructed range. See body for further details.
698
699   procedure Set_Scalar_Range_For_Subtype
700     (Def_Id : Entity_Id;
701      R      : Node_Id;
702      Subt   : Entity_Id);
703   --  This routine is used to set the scalar range field for a subtype given
704   --  Def_Id, the entity for the subtype, and R, the range expression for the
705   --  scalar range. Subt provides the parent subtype to be used to analyze,
706   --  resolve, and check the given range.
707
708   procedure Set_Default_SSO (T : Entity_Id);
709   --  T is the entity for an array or record being declared. This procedure
710   --  sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
711   --  to the setting of Opt.Default_SSO.
712
713   procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
714   --  Create a new signed integer entity, and apply the constraint to obtain
715   --  the required first named subtype of this type.
716
717   procedure Set_Stored_Constraint_From_Discriminant_Constraint
718     (E : Entity_Id);
719   --  E is some record type. This routine computes E's Stored_Constraint
720   --  from its Discriminant_Constraint.
721
722   procedure Diagnose_Interface (N : Node_Id;  E : Entity_Id);
723   --  Check that an entity in a list of progenitors is an interface,
724   --  emit error otherwise.
725
726   -----------------------
727   -- Access_Definition --
728   -----------------------
729
730   function Access_Definition
731     (Related_Nod : Node_Id;
732      N           : Node_Id) return Entity_Id
733   is
734      Anon_Type           : Entity_Id;
735      Anon_Scope          : Entity_Id;
736      Desig_Type          : Entity_Id;
737      Enclosing_Prot_Type : Entity_Id := Empty;
738
739   begin
740      Check_SPARK_05_Restriction ("access type is not allowed", N);
741
742      if Is_Entry (Current_Scope)
743        and then Is_Task_Type (Etype (Scope (Current_Scope)))
744      then
745         Error_Msg_N ("task entries cannot have access parameters", N);
746         return Empty;
747      end if;
748
749      --  Ada 2005: For an object declaration the corresponding anonymous
750      --  type is declared in the current scope.
751
752      --  If the access definition is the return type of another access to
753      --  function, scope is the current one, because it is the one of the
754      --  current type declaration, except for the pathological case below.
755
756      if Nkind_In (Related_Nod, N_Object_Declaration,
757                                N_Access_Function_Definition)
758      then
759         Anon_Scope := Current_Scope;
760
761         --  A pathological case: function returning access functions that
762         --  return access functions, etc. Each anonymous access type created
763         --  is in the enclosing scope of the outermost function.
764
765         declare
766            Par : Node_Id;
767
768         begin
769            Par := Related_Nod;
770            while Nkind_In (Par, N_Access_Function_Definition,
771                                 N_Access_Definition)
772            loop
773               Par := Parent (Par);
774            end loop;
775
776            if Nkind (Par) = N_Function_Specification then
777               Anon_Scope := Scope (Defining_Entity (Par));
778            end if;
779         end;
780
781      --  For the anonymous function result case, retrieve the scope of the
782      --  function specification's associated entity rather than using the
783      --  current scope. The current scope will be the function itself if the
784      --  formal part is currently being analyzed, but will be the parent scope
785      --  in the case of a parameterless function, and we always want to use
786      --  the function's parent scope. Finally, if the function is a child
787      --  unit, we must traverse the tree to retrieve the proper entity.
788
789      elsif Nkind (Related_Nod) = N_Function_Specification
790        and then Nkind (Parent (N)) /= N_Parameter_Specification
791      then
792         --  If the current scope is a protected type, the anonymous access
793         --  is associated with one of the protected operations, and must
794         --  be available in the scope that encloses the protected declaration.
795         --  Otherwise the type is in the scope enclosing the subprogram.
796
797         --  If the function has formals, The return type of a subprogram
798         --  declaration is analyzed in the scope of the subprogram (see
799         --  Process_Formals) and thus the protected type, if present, is
800         --  the scope of the current function scope.
801
802         if Ekind (Current_Scope) = E_Protected_Type then
803            Enclosing_Prot_Type := Current_Scope;
804
805         elsif Ekind (Current_Scope) = E_Function
806           and then Ekind (Scope (Current_Scope)) = E_Protected_Type
807         then
808            Enclosing_Prot_Type := Scope (Current_Scope);
809         end if;
810
811         if Present (Enclosing_Prot_Type) then
812            Anon_Scope := Scope (Enclosing_Prot_Type);
813
814         else
815            Anon_Scope := Scope (Defining_Entity (Related_Nod));
816         end if;
817
818      --  For an access type definition, if the current scope is a child
819      --  unit it is the scope of the type.
820
821      elsif Is_Compilation_Unit (Current_Scope) then
822         Anon_Scope := Current_Scope;
823
824      --  For access formals, access components, and access discriminants, the
825      --  scope is that of the enclosing declaration,
826
827      else
828         Anon_Scope := Scope (Current_Scope);
829      end if;
830
831      Anon_Type :=
832        Create_Itype
833          (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
834
835      if All_Present (N)
836        and then Ada_Version >= Ada_2005
837      then
838         Error_Msg_N ("ALL is not permitted for anonymous access types", N);
839      end if;
840
841      --  Ada 2005 (AI-254): In case of anonymous access to subprograms call
842      --  the corresponding semantic routine
843
844      if Present (Access_To_Subprogram_Definition (N)) then
845
846         --  Compiler runtime units are compiled in Ada 2005 mode when building
847         --  the runtime library but must also be compilable in Ada 95 mode
848         --  (when bootstrapping the compiler).
849
850         Check_Compiler_Unit ("anonymous access to subprogram", N);
851
852         Access_Subprogram_Declaration
853           (T_Name => Anon_Type,
854            T_Def  => Access_To_Subprogram_Definition (N));
855
856         if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
857            Set_Ekind
858              (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
859         else
860            Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
861         end if;
862
863         Set_Can_Use_Internal_Rep
864           (Anon_Type, not Always_Compatible_Rep_On_Target);
865
866         --  If the anonymous access is associated with a protected operation,
867         --  create a reference to it after the enclosing protected definition
868         --  because the itype will be used in the subsequent bodies.
869
870         --  If the anonymous access itself is protected, a full type
871         --  declaratiton will be created for it, so that the equivalent
872         --  record type can be constructed. For further details, see
873         --  Replace_Anonymous_Access_To_Protected-Subprogram.
874
875         if Ekind (Current_Scope) = E_Protected_Type
876           and then not Protected_Present (Access_To_Subprogram_Definition (N))
877         then
878            Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
879         end if;
880
881         return Anon_Type;
882      end if;
883
884      Find_Type (Subtype_Mark (N));
885      Desig_Type := Entity (Subtype_Mark (N));
886
887      Set_Directly_Designated_Type (Anon_Type, Desig_Type);
888      Set_Etype (Anon_Type, Anon_Type);
889
890      --  Make sure the anonymous access type has size and alignment fields
891      --  set, as required by gigi. This is necessary in the case of the
892      --  Task_Body_Procedure.
893
894      if not Has_Private_Component (Desig_Type) then
895         Layout_Type (Anon_Type);
896      end if;
897
898      --  Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
899      --  from Ada 95 semantics. In Ada 2005, anonymous access must specify if
900      --  the null value is allowed. In Ada 95 the null value is never allowed.
901
902      if Ada_Version >= Ada_2005 then
903         Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
904      else
905         Set_Can_Never_Be_Null (Anon_Type, True);
906      end if;
907
908      --  The anonymous access type is as public as the discriminated type or
909      --  subprogram that defines it. It is imported (for back-end purposes)
910      --  if the designated type is.
911
912      Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
913
914      --  Ada 2005 (AI-231): Propagate the access-constant attribute
915
916      Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
917
918      --  The context is either a subprogram declaration, object declaration,
919      --  or an access discriminant, in a private or a full type declaration.
920      --  In the case of a subprogram, if the designated type is incomplete,
921      --  the operation will be a primitive operation of the full type, to be
922      --  updated subsequently. If the type is imported through a limited_with
923      --  clause, the subprogram is not a primitive operation of the type
924      --  (which is declared elsewhere in some other scope).
925
926      if Ekind (Desig_Type) = E_Incomplete_Type
927        and then not From_Limited_With (Desig_Type)
928        and then Is_Overloadable (Current_Scope)
929      then
930         Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
931         Set_Has_Delayed_Freeze (Current_Scope);
932      end if;
933
934      --  Ada 2005: If the designated type is an interface that may contain
935      --  tasks, create a Master entity for the declaration. This must be done
936      --  before expansion of the full declaration, because the declaration may
937      --  include an expression that is an allocator, whose expansion needs the
938      --  proper Master for the created tasks.
939
940      if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
941      then
942         if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
943         then
944            Build_Class_Wide_Master (Anon_Type);
945
946         --  Similarly, if the type is an anonymous access that designates
947         --  tasks, create a master entity for it in the current context.
948
949         elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
950         then
951            Build_Master_Entity (Defining_Identifier (Related_Nod));
952            Build_Master_Renaming (Anon_Type);
953         end if;
954      end if;
955
956      --  For a private component of a protected type, it is imperative that
957      --  the back-end elaborate the type immediately after the protected
958      --  declaration, because this type will be used in the declarations
959      --  created for the component within each protected body, so we must
960      --  create an itype reference for it now.
961
962      if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
963         Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
964
965      --  Similarly, if the access definition is the return result of a
966      --  function, create an itype reference for it because it will be used
967      --  within the function body. For a regular function that is not a
968      --  compilation unit, insert reference after the declaration. For a
969      --  protected operation, insert it after the enclosing protected type
970      --  declaration. In either case, do not create a reference for a type
971      --  obtained through a limited_with clause, because this would introduce
972      --  semantic dependencies.
973
974      --  Similarly, do not create a reference if the designated type is a
975      --  generic formal, because no use of it will reach the backend.
976
977      elsif Nkind (Related_Nod) = N_Function_Specification
978        and then not From_Limited_With (Desig_Type)
979        and then not Is_Generic_Type (Desig_Type)
980      then
981         if Present (Enclosing_Prot_Type) then
982            Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
983
984         elsif Is_List_Member (Parent (Related_Nod))
985           and then Nkind (Parent (N)) /= N_Parameter_Specification
986         then
987            Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
988         end if;
989
990      --  Finally, create an itype reference for an object declaration of an
991      --  anonymous access type. This is strictly necessary only for deferred
992      --  constants, but in any case will avoid out-of-scope problems in the
993      --  back-end.
994
995      elsif Nkind (Related_Nod) = N_Object_Declaration then
996         Build_Itype_Reference (Anon_Type, Related_Nod);
997      end if;
998
999      return Anon_Type;
1000   end Access_Definition;
1001
1002   -----------------------------------
1003   -- Access_Subprogram_Declaration --
1004   -----------------------------------
1005
1006   procedure Access_Subprogram_Declaration
1007     (T_Name : Entity_Id;
1008      T_Def  : Node_Id)
1009   is
1010      procedure Check_For_Premature_Usage (Def : Node_Id);
1011      --  Check that type T_Name is not used, directly or recursively, as a
1012      --  parameter or a return type in Def. Def is either a subtype, an
1013      --  access_definition, or an access_to_subprogram_definition.
1014
1015      -------------------------------
1016      -- Check_For_Premature_Usage --
1017      -------------------------------
1018
1019      procedure Check_For_Premature_Usage (Def : Node_Id) is
1020         Param : Node_Id;
1021
1022      begin
1023         --  Check for a subtype mark
1024
1025         if Nkind (Def) in N_Has_Etype then
1026            if Etype (Def) = T_Name then
1027               Error_Msg_N
1028                 ("type& cannot be used before end of its declaration", Def);
1029            end if;
1030
1031         --  If this is not a subtype, then this is an access_definition
1032
1033         elsif Nkind (Def) = N_Access_Definition then
1034            if Present (Access_To_Subprogram_Definition (Def)) then
1035               Check_For_Premature_Usage
1036                 (Access_To_Subprogram_Definition (Def));
1037            else
1038               Check_For_Premature_Usage (Subtype_Mark (Def));
1039            end if;
1040
1041         --  The only cases left are N_Access_Function_Definition and
1042         --  N_Access_Procedure_Definition.
1043
1044         else
1045            if Present (Parameter_Specifications (Def)) then
1046               Param := First (Parameter_Specifications (Def));
1047               while Present (Param) loop
1048                  Check_For_Premature_Usage (Parameter_Type (Param));
1049                  Param := Next (Param);
1050               end loop;
1051            end if;
1052
1053            if Nkind (Def) = N_Access_Function_Definition then
1054               Check_For_Premature_Usage (Result_Definition (Def));
1055            end if;
1056         end if;
1057      end Check_For_Premature_Usage;
1058
1059      --  Local variables
1060
1061      Formals    : constant List_Id := Parameter_Specifications (T_Def);
1062      Formal     : Entity_Id;
1063      D_Ityp     : Node_Id;
1064      Desig_Type : constant Entity_Id :=
1065                     Create_Itype (E_Subprogram_Type, Parent (T_Def));
1066
1067   --  Start of processing for Access_Subprogram_Declaration
1068
1069   begin
1070      Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1071
1072      --  Associate the Itype node with the inner full-type declaration or
1073      --  subprogram spec or entry body. This is required to handle nested
1074      --  anonymous declarations. For example:
1075
1076      --      procedure P
1077      --       (X : access procedure
1078      --                     (Y : access procedure
1079      --                                   (Z : access T)))
1080
1081      D_Ityp := Associated_Node_For_Itype (Desig_Type);
1082      while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1083                                   N_Private_Type_Declaration,
1084                                   N_Private_Extension_Declaration,
1085                                   N_Procedure_Specification,
1086                                   N_Function_Specification,
1087                                   N_Entry_Body)
1088
1089                   or else
1090                 Nkind_In (D_Ityp, N_Object_Declaration,
1091                                   N_Object_Renaming_Declaration,
1092                                   N_Formal_Object_Declaration,
1093                                   N_Formal_Type_Declaration,
1094                                   N_Task_Type_Declaration,
1095                                   N_Protected_Type_Declaration))
1096      loop
1097         D_Ityp := Parent (D_Ityp);
1098         pragma Assert (D_Ityp /= Empty);
1099      end loop;
1100
1101      Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1102
1103      if Nkind_In (D_Ityp, N_Procedure_Specification,
1104                           N_Function_Specification)
1105      then
1106         Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1107
1108      elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1109                              N_Object_Declaration,
1110                              N_Object_Renaming_Declaration,
1111                              N_Formal_Type_Declaration)
1112      then
1113         Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1114      end if;
1115
1116      if Nkind (T_Def) = N_Access_Function_Definition then
1117         if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1118            declare
1119               Acc : constant Node_Id := Result_Definition (T_Def);
1120
1121            begin
1122               if Present (Access_To_Subprogram_Definition (Acc))
1123                 and then
1124                   Protected_Present (Access_To_Subprogram_Definition (Acc))
1125               then
1126                  Set_Etype
1127                    (Desig_Type,
1128                       Replace_Anonymous_Access_To_Protected_Subprogram
1129                         (T_Def));
1130
1131               else
1132                  Set_Etype
1133                    (Desig_Type,
1134                       Access_Definition (T_Def, Result_Definition (T_Def)));
1135               end if;
1136            end;
1137
1138         else
1139            Analyze (Result_Definition (T_Def));
1140
1141            declare
1142               Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1143
1144            begin
1145               --  If a null exclusion is imposed on the result type, then
1146               --  create a null-excluding itype (an access subtype) and use
1147               --  it as the function's Etype.
1148
1149               if Is_Access_Type (Typ)
1150                 and then Null_Exclusion_In_Return_Present (T_Def)
1151               then
1152                  Set_Etype (Desig_Type,
1153                    Create_Null_Excluding_Itype
1154                      (T           => Typ,
1155                       Related_Nod => T_Def,
1156                       Scope_Id    => Current_Scope));
1157
1158               else
1159                  if From_Limited_With (Typ) then
1160
1161                     --  AI05-151: Incomplete types are allowed in all basic
1162                     --  declarations, including access to subprograms.
1163
1164                     if Ada_Version >= Ada_2012 then
1165                        null;
1166
1167                     else
1168                        Error_Msg_NE
1169                         ("illegal use of incomplete type&",
1170                          Result_Definition (T_Def), Typ);
1171                     end if;
1172
1173                  elsif Ekind (Current_Scope) = E_Package
1174                    and then In_Private_Part (Current_Scope)
1175                  then
1176                     if Ekind (Typ) = E_Incomplete_Type then
1177                        Append_Elmt (Desig_Type, Private_Dependents (Typ));
1178
1179                     elsif Is_Class_Wide_Type (Typ)
1180                       and then Ekind (Etype (Typ)) = E_Incomplete_Type
1181                     then
1182                        Append_Elmt
1183                          (Desig_Type, Private_Dependents (Etype (Typ)));
1184                     end if;
1185                  end if;
1186
1187                  Set_Etype (Desig_Type, Typ);
1188               end if;
1189            end;
1190         end if;
1191
1192         if not (Is_Type (Etype (Desig_Type))) then
1193            Error_Msg_N
1194              ("expect type in function specification",
1195               Result_Definition (T_Def));
1196         end if;
1197
1198      else
1199         Set_Etype (Desig_Type, Standard_Void_Type);
1200      end if;
1201
1202      if Present (Formals) then
1203         Push_Scope (Desig_Type);
1204
1205         --  Some special tests here. These special tests can be removed
1206         --  if and when Itypes always have proper parent pointers to their
1207         --  declarations???
1208
1209         --  Special test 1) Link defining_identifier of formals. Required by
1210         --  First_Formal to provide its functionality.
1211
1212         declare
1213            F : Node_Id;
1214
1215         begin
1216            F := First (Formals);
1217
1218            --  In ASIS mode, the access_to_subprogram may be analyzed twice,
1219            --  when it is part of an unconstrained type and subtype expansion
1220            --  is disabled. To avoid back-end problems with shared profiles,
1221            --  use previous subprogram type as the designated type, and then
1222            --  remove scope added above.
1223
1224            if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1225            then
1226               Set_Etype                    (T_Name, T_Name);
1227               Init_Size_Align              (T_Name);
1228               Set_Directly_Designated_Type (T_Name,
1229                 Scope (Defining_Identifier (F)));
1230               End_Scope;
1231               return;
1232            end if;
1233
1234            while Present (F) loop
1235               if No (Parent (Defining_Identifier (F))) then
1236                  Set_Parent (Defining_Identifier (F), F);
1237               end if;
1238
1239               Next (F);
1240            end loop;
1241         end;
1242
1243         Process_Formals (Formals, Parent (T_Def));
1244
1245         --  Special test 2) End_Scope requires that the parent pointer be set
1246         --  to something reasonable, but Itypes don't have parent pointers. So
1247         --  we set it and then unset it ???
1248
1249         Set_Parent (Desig_Type, T_Name);
1250         End_Scope;
1251         Set_Parent (Desig_Type, Empty);
1252      end if;
1253
1254      --  Check for premature usage of the type being defined
1255
1256      Check_For_Premature_Usage (T_Def);
1257
1258      --  The return type and/or any parameter type may be incomplete. Mark the
1259      --  subprogram_type as depending on the incomplete type, so that it can
1260      --  be updated when the full type declaration is seen. This only applies
1261      --  to incomplete types declared in some enclosing scope, not to limited
1262      --  views from other packages.
1263
1264      --  Prior to Ada 2012, access to functions can only have in_parameters.
1265
1266      if Present (Formals) then
1267         Formal := First_Formal (Desig_Type);
1268         while Present (Formal) loop
1269            if Ekind (Formal) /= E_In_Parameter
1270              and then Nkind (T_Def) = N_Access_Function_Definition
1271              and then Ada_Version < Ada_2012
1272            then
1273               Error_Msg_N ("functions can only have IN parameters", Formal);
1274            end if;
1275
1276            if Ekind (Etype (Formal)) = E_Incomplete_Type
1277              and then In_Open_Scopes (Scope (Etype (Formal)))
1278            then
1279               Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1280               Set_Has_Delayed_Freeze (Desig_Type);
1281            end if;
1282
1283            Next_Formal (Formal);
1284         end loop;
1285      end if;
1286
1287      --  Check whether an indirect call without actuals may be possible. This
1288      --  is used when resolving calls whose result is then indexed.
1289
1290      May_Need_Actuals (Desig_Type);
1291
1292      --  If the return type is incomplete, this is legal as long as the type
1293      --  is declared in the current scope and will be completed in it (rather
1294      --  than being part of limited view).
1295
1296      if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1297        and then not Has_Delayed_Freeze (Desig_Type)
1298        and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1299      then
1300         Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1301         Set_Has_Delayed_Freeze (Desig_Type);
1302      end if;
1303
1304      Check_Delayed_Subprogram (Desig_Type);
1305
1306      if Protected_Present (T_Def) then
1307         Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1308         Set_Convention (Desig_Type, Convention_Protected);
1309      else
1310         Set_Ekind (T_Name, E_Access_Subprogram_Type);
1311      end if;
1312
1313      Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1314
1315      Set_Etype                    (T_Name, T_Name);
1316      Init_Size_Align              (T_Name);
1317      Set_Directly_Designated_Type (T_Name, Desig_Type);
1318
1319      Generate_Reference_To_Formals (T_Name);
1320
1321      --  Ada 2005 (AI-231): Propagate the null-excluding attribute
1322
1323      Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1324
1325      Check_Restriction (No_Access_Subprograms, T_Def);
1326   end Access_Subprogram_Declaration;
1327
1328   ----------------------------
1329   -- Access_Type_Declaration --
1330   ----------------------------
1331
1332   procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1333      P : constant Node_Id := Parent (Def);
1334      S : constant Node_Id := Subtype_Indication (Def);
1335
1336      Full_Desig : Entity_Id;
1337
1338   begin
1339      Check_SPARK_05_Restriction ("access type is not allowed", Def);
1340
1341      --  Check for permissible use of incomplete type
1342
1343      if Nkind (S) /= N_Subtype_Indication then
1344         Analyze (S);
1345
1346         if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1347            Set_Directly_Designated_Type (T, Entity (S));
1348
1349            --  If the designated type is a limited view, we cannot tell if
1350            --  the full view contains tasks, and there is no way to handle
1351            --  that full view in a client. We create a master entity for the
1352            --  scope, which will be used when a client determines that one
1353            --  is needed.
1354
1355            if From_Limited_With (Entity (S))
1356              and then not Is_Class_Wide_Type (Entity (S))
1357            then
1358               Set_Ekind (T, E_Access_Type);
1359               Build_Master_Entity (T);
1360               Build_Master_Renaming (T);
1361            end if;
1362
1363         else
1364            Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1365         end if;
1366
1367         --  If the access definition is of the form: ACCESS NOT NULL ..
1368         --  the subtype indication must be of an access type. Create
1369         --  a null-excluding subtype of it.
1370
1371         if Null_Excluding_Subtype (Def) then
1372            if not Is_Access_Type (Entity (S)) then
1373               Error_Msg_N ("null exclusion must apply to access type", Def);
1374
1375            else
1376               declare
1377                  Loc  : constant Source_Ptr := Sloc (S);
1378                  Decl : Node_Id;
1379                  Nam  : constant Entity_Id := Make_Temporary (Loc, 'S');
1380
1381               begin
1382                  Decl :=
1383                    Make_Subtype_Declaration (Loc,
1384                      Defining_Identifier => Nam,
1385                      Subtype_Indication  =>
1386                        New_Occurrence_Of (Entity (S), Loc));
1387                  Set_Null_Exclusion_Present (Decl);
1388                  Insert_Before (Parent (Def), Decl);
1389                  Analyze (Decl);
1390                  Set_Entity (S, Nam);
1391               end;
1392            end if;
1393         end if;
1394
1395      else
1396         Set_Directly_Designated_Type (T,
1397           Process_Subtype (S, P, T, 'P'));
1398      end if;
1399
1400      if All_Present (Def) or Constant_Present (Def) then
1401         Set_Ekind (T, E_General_Access_Type);
1402      else
1403         Set_Ekind (T, E_Access_Type);
1404      end if;
1405
1406      Full_Desig := Designated_Type (T);
1407
1408      if Base_Type (Full_Desig) = T then
1409         Error_Msg_N ("access type cannot designate itself", S);
1410
1411      --  In Ada 2005, the type may have a limited view through some unit in
1412      --  its own context, allowing the following circularity that cannot be
1413      --  detected earlier.
1414
1415      elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1416      then
1417         Error_Msg_N
1418           ("access type cannot designate its own classwide type", S);
1419
1420         --  Clean up indication of tagged status to prevent cascaded errors
1421
1422         Set_Is_Tagged_Type (T, False);
1423      end if;
1424
1425      Set_Etype (T, T);
1426
1427      --  If the type has appeared already in a with_type clause, it is frozen
1428      --  and the pointer size is already set. Else, initialize.
1429
1430      if not From_Limited_With (T) then
1431         Init_Size_Align (T);
1432      end if;
1433
1434      --  Note that Has_Task is always false, since the access type itself
1435      --  is not a task type. See Einfo for more description on this point.
1436      --  Exactly the same consideration applies to Has_Controlled_Component
1437      --  and to Has_Protected.
1438
1439      Set_Has_Task                 (T, False);
1440      Set_Has_Controlled_Component (T, False);
1441      Set_Has_Protected            (T, False);
1442
1443      --  Initialize field Finalization_Master explicitly to Empty, to avoid
1444      --  problems where an incomplete view of this entity has been previously
1445      --  established by a limited with and an overlaid version of this field
1446      --  (Stored_Constraint) was initialized for the incomplete view.
1447
1448      --  This reset is performed in most cases except where the access type
1449      --  has been created for the purposes of allocating or deallocating a
1450      --  build-in-place object. Such access types have explicitly set pools
1451      --  and finalization masters.
1452
1453      if No (Associated_Storage_Pool (T)) then
1454         Set_Finalization_Master (T, Empty);
1455      end if;
1456
1457      --  Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1458      --  attributes
1459
1460      Set_Can_Never_Be_Null  (T, Null_Exclusion_Present (Def));
1461      Set_Is_Access_Constant (T, Constant_Present (Def));
1462   end Access_Type_Declaration;
1463
1464   ----------------------------------
1465   -- Add_Interface_Tag_Components --
1466   ----------------------------------
1467
1468   procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1469      Loc      : constant Source_Ptr := Sloc (N);
1470      L        : List_Id;
1471      Last_Tag : Node_Id;
1472
1473      procedure Add_Tag (Iface : Entity_Id);
1474      --  Add tag for one of the progenitor interfaces
1475
1476      -------------
1477      -- Add_Tag --
1478      -------------
1479
1480      procedure Add_Tag (Iface : Entity_Id) is
1481         Decl   : Node_Id;
1482         Def    : Node_Id;
1483         Tag    : Entity_Id;
1484         Offset : Entity_Id;
1485
1486      begin
1487         pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1488
1489         --  This is a reasonable place to propagate predicates
1490
1491         if Has_Predicates (Iface) then
1492            Set_Has_Predicates (Typ);
1493         end if;
1494
1495         Def :=
1496           Make_Component_Definition (Loc,
1497             Aliased_Present    => True,
1498             Subtype_Indication =>
1499               New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1500
1501         Tag := Make_Temporary (Loc, 'V');
1502
1503         Decl :=
1504           Make_Component_Declaration (Loc,
1505             Defining_Identifier  => Tag,
1506             Component_Definition => Def);
1507
1508         Analyze_Component_Declaration (Decl);
1509
1510         Set_Analyzed (Decl);
1511         Set_Ekind               (Tag, E_Component);
1512         Set_Is_Tag              (Tag);
1513         Set_Is_Aliased          (Tag);
1514         Set_Related_Type        (Tag, Iface);
1515         Init_Component_Location (Tag);
1516
1517         pragma Assert (Is_Frozen (Iface));
1518
1519         Set_DT_Entry_Count    (Tag,
1520           DT_Entry_Count (First_Entity (Iface)));
1521
1522         if No (Last_Tag) then
1523            Prepend (Decl, L);
1524         else
1525            Insert_After (Last_Tag, Decl);
1526         end if;
1527
1528         Last_Tag := Decl;
1529
1530         --  If the ancestor has discriminants we need to give special support
1531         --  to store the offset_to_top value of the secondary dispatch tables.
1532         --  For this purpose we add a supplementary component just after the
1533         --  field that contains the tag associated with each secondary DT.
1534
1535         if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1536            Def :=
1537              Make_Component_Definition (Loc,
1538                Subtype_Indication =>
1539                  New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1540
1541            Offset := Make_Temporary (Loc, 'V');
1542
1543            Decl :=
1544              Make_Component_Declaration (Loc,
1545                Defining_Identifier  => Offset,
1546                Component_Definition => Def);
1547
1548            Analyze_Component_Declaration (Decl);
1549
1550            Set_Analyzed (Decl);
1551            Set_Ekind               (Offset, E_Component);
1552            Set_Is_Aliased          (Offset);
1553            Set_Related_Type        (Offset, Iface);
1554            Init_Component_Location (Offset);
1555            Insert_After (Last_Tag, Decl);
1556            Last_Tag := Decl;
1557         end if;
1558      end Add_Tag;
1559
1560      --  Local variables
1561
1562      Elmt : Elmt_Id;
1563      Ext  : Node_Id;
1564      Comp : Node_Id;
1565
1566   --  Start of processing for Add_Interface_Tag_Components
1567
1568   begin
1569      if not RTE_Available (RE_Interface_Tag) then
1570         Error_Msg
1571           ("(Ada 2005) interface types not supported by this run-time!",
1572            Sloc (N));
1573         return;
1574      end if;
1575
1576      if Ekind (Typ) /= E_Record_Type
1577        or else (Is_Concurrent_Record_Type (Typ)
1578                  and then Is_Empty_List (Abstract_Interface_List (Typ)))
1579        or else (not Is_Concurrent_Record_Type (Typ)
1580                  and then No (Interfaces (Typ))
1581                  and then Is_Empty_Elmt_List (Interfaces (Typ)))
1582      then
1583         return;
1584      end if;
1585
1586      --  Find the current last tag
1587
1588      if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1589         Ext := Record_Extension_Part (Type_Definition (N));
1590      else
1591         pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1592         Ext := Type_Definition (N);
1593      end if;
1594
1595      Last_Tag := Empty;
1596
1597      if not (Present (Component_List (Ext))) then
1598         Set_Null_Present (Ext, False);
1599         L := New_List;
1600         Set_Component_List (Ext,
1601           Make_Component_List (Loc,
1602             Component_Items => L,
1603             Null_Present => False));
1604      else
1605         if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1606            L := Component_Items
1607                   (Component_List
1608                     (Record_Extension_Part
1609                       (Type_Definition (N))));
1610         else
1611            L := Component_Items
1612                   (Component_List
1613                     (Type_Definition (N)));
1614         end if;
1615
1616         --  Find the last tag component
1617
1618         Comp := First (L);
1619         while Present (Comp) loop
1620            if Nkind (Comp) = N_Component_Declaration
1621              and then Is_Tag (Defining_Identifier (Comp))
1622            then
1623               Last_Tag := Comp;
1624            end if;
1625
1626            Next (Comp);
1627         end loop;
1628      end if;
1629
1630      --  At this point L references the list of components and Last_Tag
1631      --  references the current last tag (if any). Now we add the tag
1632      --  corresponding with all the interfaces that are not implemented
1633      --  by the parent.
1634
1635      if Present (Interfaces (Typ)) then
1636         Elmt := First_Elmt (Interfaces (Typ));
1637         while Present (Elmt) loop
1638            Add_Tag (Node (Elmt));
1639            Next_Elmt (Elmt);
1640         end loop;
1641      end if;
1642   end Add_Interface_Tag_Components;
1643
1644   -------------------------------------
1645   -- Add_Internal_Interface_Entities --
1646   -------------------------------------
1647
1648   procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1649      Elmt          : Elmt_Id;
1650      Iface         : Entity_Id;
1651      Iface_Elmt    : Elmt_Id;
1652      Iface_Prim    : Entity_Id;
1653      Ifaces_List   : Elist_Id;
1654      New_Subp      : Entity_Id := Empty;
1655      Prim          : Entity_Id;
1656      Restore_Scope : Boolean := False;
1657
1658   begin
1659      pragma Assert (Ada_Version >= Ada_2005
1660        and then Is_Record_Type (Tagged_Type)
1661        and then Is_Tagged_Type (Tagged_Type)
1662        and then Has_Interfaces (Tagged_Type)
1663        and then not Is_Interface (Tagged_Type));
1664
1665      --  Ensure that the internal entities are added to the scope of the type
1666
1667      if Scope (Tagged_Type) /= Current_Scope then
1668         Push_Scope (Scope (Tagged_Type));
1669         Restore_Scope := True;
1670      end if;
1671
1672      Collect_Interfaces (Tagged_Type, Ifaces_List);
1673
1674      Iface_Elmt := First_Elmt (Ifaces_List);
1675      while Present (Iface_Elmt) loop
1676         Iface := Node (Iface_Elmt);
1677
1678         --  Originally we excluded here from this processing interfaces that
1679         --  are parents of Tagged_Type because their primitives are located
1680         --  in the primary dispatch table (and hence no auxiliary internal
1681         --  entities are required to handle secondary dispatch tables in such
1682         --  case). However, these auxiliary entities are also required to
1683         --  handle derivations of interfaces in formals of generics (see
1684         --  Derive_Subprograms).
1685
1686         Elmt := First_Elmt (Primitive_Operations (Iface));
1687         while Present (Elmt) loop
1688            Iface_Prim := Node (Elmt);
1689
1690            if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1691               Prim :=
1692                 Find_Primitive_Covering_Interface
1693                   (Tagged_Type => Tagged_Type,
1694                    Iface_Prim  => Iface_Prim);
1695
1696               if No (Prim) and then Serious_Errors_Detected > 0 then
1697                  goto Continue;
1698               end if;
1699
1700               pragma Assert (Present (Prim));
1701
1702               --  Ada 2012 (AI05-0197): If the name of the covering primitive
1703               --  differs from the name of the interface primitive then it is
1704               --  a private primitive inherited from a parent type. In such
1705               --  case, given that Tagged_Type covers the interface, the
1706               --  inherited private primitive becomes visible. For such
1707               --  purpose we add a new entity that renames the inherited
1708               --  private primitive.
1709
1710               if Chars (Prim) /= Chars (Iface_Prim) then
1711                  pragma Assert (Has_Suffix (Prim, 'P'));
1712                  Derive_Subprogram
1713                    (New_Subp     => New_Subp,
1714                     Parent_Subp  => Iface_Prim,
1715                     Derived_Type => Tagged_Type,
1716                     Parent_Type  => Iface);
1717                  Set_Alias (New_Subp, Prim);
1718                  Set_Is_Abstract_Subprogram
1719                    (New_Subp, Is_Abstract_Subprogram (Prim));
1720               end if;
1721
1722               Derive_Subprogram
1723                 (New_Subp     => New_Subp,
1724                  Parent_Subp  => Iface_Prim,
1725                  Derived_Type => Tagged_Type,
1726                  Parent_Type  => Iface);
1727
1728               --  Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1729               --  associated with interface types. These entities are
1730               --  only registered in the list of primitives of its
1731               --  corresponding tagged type because they are only used
1732               --  to fill the contents of the secondary dispatch tables.
1733               --  Therefore they are removed from the homonym chains.
1734
1735               Set_Is_Hidden (New_Subp);
1736               Set_Is_Internal (New_Subp);
1737               Set_Alias (New_Subp, Prim);
1738               Set_Is_Abstract_Subprogram
1739                 (New_Subp, Is_Abstract_Subprogram (Prim));
1740               Set_Interface_Alias (New_Subp, Iface_Prim);
1741
1742               --  If the returned type is an interface then propagate it to
1743               --  the returned type. Needed by the thunk to generate the code
1744               --  which displaces "this" to reference the corresponding
1745               --  secondary dispatch table in the returned object.
1746
1747               if Is_Interface (Etype (Iface_Prim)) then
1748                  Set_Etype (New_Subp, Etype (Iface_Prim));
1749               end if;
1750
1751               --  Internal entities associated with interface types are only
1752               --  registered in the list of primitives of the tagged type.
1753               --  They are only used to fill the contents of the secondary
1754               --  dispatch tables. Therefore they are not needed in the
1755               --  homonym chains.
1756
1757               Remove_Homonym (New_Subp);
1758
1759               --  Hidden entities associated with interfaces must have set
1760               --  the Has_Delay_Freeze attribute to ensure that, in case
1761               --  of locally defined tagged types (or compiling with static
1762               --  dispatch tables generation disabled) the corresponding
1763               --  entry of the secondary dispatch table is filled when such
1764               --  an entity is frozen. This is an expansion activity that must
1765               --  be suppressed for ASIS because it leads to gigi elaboration
1766               --  issues in annotate mode.
1767
1768               if not ASIS_Mode then
1769                  Set_Has_Delayed_Freeze (New_Subp);
1770               end if;
1771            end if;
1772
1773            <<Continue>>
1774            Next_Elmt (Elmt);
1775         end loop;
1776
1777         Next_Elmt (Iface_Elmt);
1778      end loop;
1779
1780      if Restore_Scope then
1781         Pop_Scope;
1782      end if;
1783   end Add_Internal_Interface_Entities;
1784
1785   -----------------------------------
1786   -- Analyze_Component_Declaration --
1787   -----------------------------------
1788
1789   procedure Analyze_Component_Declaration (N : Node_Id) is
1790      Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1791      Id  : constant Entity_Id  := Defining_Identifier (N);
1792      E   : constant Node_Id    := Expression (N);
1793      Typ : constant Node_Id    :=
1794              Subtype_Indication (Component_Definition (N));
1795      T   : Entity_Id;
1796      P   : Entity_Id;
1797
1798      function Contains_POC (Constr : Node_Id) return Boolean;
1799      --  Determines whether a constraint uses the discriminant of a record
1800      --  type thus becoming a per-object constraint (POC).
1801
1802      function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1803      --  Typ is the type of the current component, check whether this type is
1804      --  a limited type. Used to validate declaration against that of
1805      --  enclosing record.
1806
1807      ------------------
1808      -- Contains_POC --
1809      ------------------
1810
1811      function Contains_POC (Constr : Node_Id) return Boolean is
1812      begin
1813         --  Prevent cascaded errors
1814
1815         if Error_Posted (Constr) then
1816            return False;
1817         end if;
1818
1819         case Nkind (Constr) is
1820            when N_Attribute_Reference =>
1821               return Attribute_Name (Constr) = Name_Access
1822                 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1823
1824            when N_Discriminant_Association =>
1825               return Denotes_Discriminant (Expression (Constr));
1826
1827            when N_Identifier =>
1828               return Denotes_Discriminant (Constr);
1829
1830            when N_Index_Or_Discriminant_Constraint =>
1831               declare
1832                  IDC : Node_Id;
1833
1834               begin
1835                  IDC := First (Constraints (Constr));
1836                  while Present (IDC) loop
1837
1838                     --  One per-object constraint is sufficient
1839
1840                     if Contains_POC (IDC) then
1841                        return True;
1842                     end if;
1843
1844                     Next (IDC);
1845                  end loop;
1846
1847                  return False;
1848               end;
1849
1850            when N_Range =>
1851               return Denotes_Discriminant (Low_Bound (Constr))
1852                        or else
1853                      Denotes_Discriminant (High_Bound (Constr));
1854
1855            when N_Range_Constraint =>
1856               return Denotes_Discriminant (Range_Expression (Constr));
1857
1858            when others =>
1859               return False;
1860
1861         end case;
1862      end Contains_POC;
1863
1864      ----------------------
1865      -- Is_Known_Limited --
1866      ----------------------
1867
1868      function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1869         P : constant Entity_Id := Etype (Typ);
1870         R : constant Entity_Id := Root_Type (Typ);
1871
1872      begin
1873         if Is_Limited_Record (Typ) then
1874            return True;
1875
1876         --  If the root type is limited (and not a limited interface)
1877         --  so is the current type
1878
1879         elsif Is_Limited_Record (R)
1880           and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1881         then
1882            return True;
1883
1884         --  Else the type may have a limited interface progenitor, but a
1885         --  limited record parent.
1886
1887         elsif R /= P and then Is_Limited_Record (P) then
1888            return True;
1889
1890         else
1891            return False;
1892         end if;
1893      end Is_Known_Limited;
1894
1895   --  Start of processing for Analyze_Component_Declaration
1896
1897   begin
1898      Generate_Definition (Id);
1899      Enter_Name (Id);
1900
1901      if Present (Typ) then
1902         T := Find_Type_Of_Object
1903                (Subtype_Indication (Component_Definition (N)), N);
1904
1905         if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1906            Check_SPARK_05_Restriction ("subtype mark required", Typ);
1907         end if;
1908
1909      --  Ada 2005 (AI-230): Access Definition case
1910
1911      else
1912         pragma Assert (Present
1913                          (Access_Definition (Component_Definition (N))));
1914
1915         T := Access_Definition
1916                (Related_Nod => N,
1917                 N => Access_Definition (Component_Definition (N)));
1918         Set_Is_Local_Anonymous_Access (T);
1919
1920         --  Ada 2005 (AI-254)
1921
1922         if Present (Access_To_Subprogram_Definition
1923                      (Access_Definition (Component_Definition (N))))
1924           and then Protected_Present (Access_To_Subprogram_Definition
1925                                        (Access_Definition
1926                                          (Component_Definition (N))))
1927         then
1928            T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1929         end if;
1930      end if;
1931
1932      --  If the subtype is a constrained subtype of the enclosing record,
1933      --  (which must have a partial view) the back-end does not properly
1934      --  handle the recursion. Rewrite the component declaration with an
1935      --  explicit subtype indication, which is acceptable to Gigi. We can copy
1936      --  the tree directly because side effects have already been removed from
1937      --  discriminant constraints.
1938
1939      if Ekind (T) = E_Access_Subtype
1940        and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1941        and then Comes_From_Source (T)
1942        and then Nkind (Parent (T)) = N_Subtype_Declaration
1943        and then Etype (Directly_Designated_Type (T)) = Current_Scope
1944      then
1945         Rewrite
1946           (Subtype_Indication (Component_Definition (N)),
1947             New_Copy_Tree (Subtype_Indication (Parent (T))));
1948         T := Find_Type_Of_Object
1949                 (Subtype_Indication (Component_Definition (N)), N);
1950      end if;
1951
1952      --  If the component declaration includes a default expression, then we
1953      --  check that the component is not of a limited type (RM 3.7(5)),
1954      --  and do the special preanalysis of the expression (see section on
1955      --  "Handling of Default and Per-Object Expressions" in the spec of
1956      --  package Sem).
1957
1958      if Present (E) then
1959         Check_SPARK_05_Restriction ("default expression is not allowed", E);
1960         Preanalyze_Default_Expression (E, T);
1961         Check_Initialization (T, E);
1962
1963         if Ada_Version >= Ada_2005
1964           and then Ekind (T) = E_Anonymous_Access_Type
1965           and then Etype (E) /= Any_Type
1966         then
1967            --  Check RM 3.9.2(9): "if the expected type for an expression is
1968            --  an anonymous access-to-specific tagged type, then the object
1969            --  designated by the expression shall not be dynamically tagged
1970            --  unless it is a controlling operand in a call on a dispatching
1971            --  operation"
1972
1973            if Is_Tagged_Type (Directly_Designated_Type (T))
1974              and then
1975                Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1976              and then
1977                Ekind (Directly_Designated_Type (Etype (E))) =
1978                  E_Class_Wide_Type
1979            then
1980               Error_Msg_N
1981                 ("access to specific tagged type required (RM 3.9.2(9))", E);
1982            end if;
1983
1984            --  (Ada 2005: AI-230): Accessibility check for anonymous
1985            --  components
1986
1987            if Type_Access_Level (Etype (E)) >
1988               Deepest_Type_Access_Level (T)
1989            then
1990               Error_Msg_N
1991                 ("expression has deeper access level than component " &
1992                  "(RM 3.10.2 (12.2))", E);
1993            end if;
1994
1995            --  The initialization expression is a reference to an access
1996            --  discriminant. The type of the discriminant is always deeper
1997            --  than any access type.
1998
1999            if Ekind (Etype (E)) = E_Anonymous_Access_Type
2000              and then Is_Entity_Name (E)
2001              and then Ekind (Entity (E)) = E_In_Parameter
2002              and then Present (Discriminal_Link (Entity (E)))
2003            then
2004               Error_Msg_N
2005                 ("discriminant has deeper accessibility level than target",
2006                  E);
2007            end if;
2008         end if;
2009      end if;
2010
2011      --  The parent type may be a private view with unknown discriminants,
2012      --  and thus unconstrained. Regular components must be constrained.
2013
2014      if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2015         if Is_Class_Wide_Type (T) then
2016            Error_Msg_N
2017               ("class-wide subtype with unknown discriminants" &
2018                 " in component declaration",
2019                 Subtype_Indication (Component_Definition (N)));
2020         else
2021            Error_Msg_N
2022              ("unconstrained subtype in component declaration",
2023               Subtype_Indication (Component_Definition (N)));
2024         end if;
2025
2026      --  Components cannot be abstract, except for the special case of
2027      --  the _Parent field (case of extending an abstract tagged type)
2028
2029      elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2030         Error_Msg_N ("type of a component cannot be abstract", N);
2031      end if;
2032
2033      Set_Etype (Id, T);
2034      Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2035
2036      --  The component declaration may have a per-object constraint, set
2037      --  the appropriate flag in the defining identifier of the subtype.
2038
2039      if Present (Subtype_Indication (Component_Definition (N))) then
2040         declare
2041            Sindic : constant Node_Id :=
2042                       Subtype_Indication (Component_Definition (N));
2043         begin
2044            if Nkind (Sindic) = N_Subtype_Indication
2045              and then Present (Constraint (Sindic))
2046              and then Contains_POC (Constraint (Sindic))
2047            then
2048               Set_Has_Per_Object_Constraint (Id);
2049            end if;
2050         end;
2051      end if;
2052
2053      --  Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2054      --  out some static checks.
2055
2056      if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2057         Null_Exclusion_Static_Checks (N);
2058      end if;
2059
2060      --  If this component is private (or depends on a private type), flag the
2061      --  record type to indicate that some operations are not available.
2062
2063      P := Private_Component (T);
2064
2065      if Present (P) then
2066
2067         --  Check for circular definitions
2068
2069         if P = Any_Type then
2070            Set_Etype (Id, Any_Type);
2071
2072         --  There is a gap in the visibility of operations only if the
2073         --  component type is not defined in the scope of the record type.
2074
2075         elsif Scope (P) = Scope (Current_Scope) then
2076            null;
2077
2078         elsif Is_Limited_Type (P) then
2079            Set_Is_Limited_Composite (Current_Scope);
2080
2081         else
2082            Set_Is_Private_Composite (Current_Scope);
2083         end if;
2084      end if;
2085
2086      if P /= Any_Type
2087        and then Is_Limited_Type (T)
2088        and then Chars (Id) /= Name_uParent
2089        and then Is_Tagged_Type (Current_Scope)
2090      then
2091         if Is_Derived_Type (Current_Scope)
2092           and then not Is_Known_Limited (Current_Scope)
2093         then
2094            Error_Msg_N
2095              ("extension of nonlimited type cannot have limited components",
2096               N);
2097
2098            if Is_Interface (Root_Type (Current_Scope)) then
2099               Error_Msg_N
2100                 ("\limitedness is not inherited from limited interface", N);
2101               Error_Msg_N ("\add LIMITED to type indication", N);
2102            end if;
2103
2104            Explain_Limited_Type (T, N);
2105            Set_Etype (Id, Any_Type);
2106            Set_Is_Limited_Composite (Current_Scope, False);
2107
2108         elsif not Is_Derived_Type (Current_Scope)
2109           and then not Is_Limited_Record (Current_Scope)
2110           and then not Is_Concurrent_Type (Current_Scope)
2111         then
2112            Error_Msg_N
2113              ("nonlimited tagged type cannot have limited components", N);
2114            Explain_Limited_Type (T, N);
2115            Set_Etype (Id, Any_Type);
2116            Set_Is_Limited_Composite (Current_Scope, False);
2117         end if;
2118      end if;
2119
2120      --  If the component is an unconstrained task or protected type with
2121      --  discriminants, the component and the enclosing record are limited
2122      --  and the component is constrained by its default values. Compute
2123      --  its actual subtype, else it may be allocated the maximum size by
2124      --  the backend, and possibly overflow.
2125
2126      if Is_Concurrent_Type (T)
2127        and then not Is_Constrained (T)
2128        and then Has_Discriminants (T)
2129        and then not Has_Discriminants (Current_Scope)
2130      then
2131         declare
2132            Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2133
2134         begin
2135            Set_Etype (Id, Act_T);
2136
2137            --  Rewrite component definition to use the constrained subtype
2138
2139            Rewrite (Component_Definition (N),
2140              Make_Component_Definition (Loc,
2141                Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2142         end;
2143      end if;
2144
2145      Set_Original_Record_Component (Id, Id);
2146
2147      if Has_Aspects (N) then
2148         Analyze_Aspect_Specifications (N, Id);
2149      end if;
2150
2151      Analyze_Dimension (N);
2152   end Analyze_Component_Declaration;
2153
2154   --------------------------
2155   -- Analyze_Declarations --
2156   --------------------------
2157
2158   procedure Analyze_Declarations (L : List_Id) is
2159      Decl : Node_Id;
2160
2161      procedure Adjust_Decl;
2162      --  Adjust Decl not to include implicit label declarations, since these
2163      --  have strange Sloc values that result in elaboration check problems.
2164      --  (They have the sloc of the label as found in the source, and that
2165      --  is ahead of the current declarative part).
2166
2167      procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2168      --  Determine whether Body_Decl denotes the body of a late controlled
2169      --  primitive (either Initialize, Adjust or Finalize). If this is the
2170      --  case, add a proper spec if the body lacks one. The spec is inserted
2171      --  before Body_Decl and immedately analyzed.
2172
2173      procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2174      --  Spec_Id is the entity of a package that may define abstract states.
2175      --  If the states have visible refinement, remove the visibility of each
2176      --  constituent at the end of the package body declarations.
2177
2178      -----------------
2179      -- Adjust_Decl --
2180      -----------------
2181
2182      procedure Adjust_Decl is
2183      begin
2184         while Present (Prev (Decl))
2185           and then Nkind (Decl) = N_Implicit_Label_Declaration
2186         loop
2187            Prev (Decl);
2188         end loop;
2189      end Adjust_Decl;
2190
2191      --------------------------------------
2192      -- Handle_Late_Controlled_Primitive --
2193      --------------------------------------
2194
2195      procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2196         Body_Spec : constant Node_Id    := Specification (Body_Decl);
2197         Body_Id   : constant Entity_Id  := Defining_Entity (Body_Spec);
2198         Loc       : constant Source_Ptr := Sloc (Body_Id);
2199         Params    : constant List_Id    :=
2200                       Parameter_Specifications (Body_Spec);
2201         Spec      : Node_Id;
2202         Spec_Id   : Entity_Id;
2203         Typ       : Node_Id;
2204
2205      begin
2206         --  Consider only procedure bodies whose name matches one of the three
2207         --  controlled primitives.
2208
2209         if Nkind (Body_Spec) /= N_Procedure_Specification
2210           or else not Nam_In (Chars (Body_Id), Name_Adjust,
2211                                                Name_Finalize,
2212                                                Name_Initialize)
2213         then
2214            return;
2215
2216         --  A controlled primitive must have exactly one formal which is not
2217         --  an anonymous access type.
2218
2219         elsif List_Length (Params) /= 1 then
2220            return;
2221         end if;
2222
2223         Typ := Parameter_Type (First (Params));
2224
2225         if Nkind (Typ) = N_Access_Definition then
2226            return;
2227         end if;
2228
2229         Find_Type (Typ);
2230
2231         --  The type of the formal must be derived from [Limited_]Controlled
2232
2233         if not Is_Controlled (Entity (Typ)) then
2234            return;
2235         end if;
2236
2237         --  Check whether a specification exists for this body. We do not
2238         --  analyze the spec of the body in full, because it will be analyzed
2239         --  again when the body is properly analyzed, and we cannot create
2240         --  duplicate entries in the formals chain. We look for an explicit
2241         --  specification because the body may be an overriding operation and
2242         --  an inherited spec may be present.
2243
2244         Spec_Id := Current_Entity (Body_Id);
2245
2246         while Present (Spec_Id) loop
2247            if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2248              and then Scope (Spec_Id) = Current_Scope
2249              and then Present (First_Formal (Spec_Id))
2250              and then No (Next_Formal (First_Formal (Spec_Id)))
2251              and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2252              and then Comes_From_Source (Spec_Id)
2253            then
2254               return;
2255            end if;
2256
2257            Spec_Id := Homonym (Spec_Id);
2258         end loop;
2259
2260         --  At this point the body is known to be a late controlled primitive.
2261         --  Generate a matching spec and insert it before the body. Note the
2262         --  use of Copy_Separate_Tree - we want an entirely separate semantic
2263         --  tree in this case.
2264
2265         Spec := Copy_Separate_Tree (Body_Spec);
2266
2267         --  Ensure that the subprogram declaration does not inherit the null
2268         --  indicator from the body as we now have a proper spec/body pair.
2269
2270         Set_Null_Present (Spec, False);
2271
2272         Insert_Before_And_Analyze (Body_Decl,
2273           Make_Subprogram_Declaration (Loc, Specification => Spec));
2274      end Handle_Late_Controlled_Primitive;
2275
2276      --------------------------------
2277      -- Remove_Visible_Refinements --
2278      --------------------------------
2279
2280      procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2281         State_Elmt : Elmt_Id;
2282      begin
2283         if Present (Abstract_States (Spec_Id)) then
2284            State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2285            while Present (State_Elmt) loop
2286               Set_Has_Visible_Refinement (Node (State_Elmt), False);
2287               Next_Elmt (State_Elmt);
2288            end loop;
2289         end if;
2290      end Remove_Visible_Refinements;
2291
2292      --  Local variables
2293
2294      Context     : Node_Id   := Empty;
2295      Freeze_From : Entity_Id := Empty;
2296      Next_Decl   : Node_Id;
2297
2298      Body_Seen : Boolean := False;
2299      --  Flag set when the first body [stub] is encountered
2300
2301   --  Start of processing for Analyze_Declarations
2302
2303   begin
2304      if Restriction_Check_Required (SPARK_05) then
2305         Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2306      end if;
2307
2308      Decl := First (L);
2309      while Present (Decl) loop
2310
2311         --  Package spec cannot contain a package declaration in SPARK
2312
2313         if Nkind (Decl) = N_Package_Declaration
2314           and then Nkind (Parent (L)) = N_Package_Specification
2315         then
2316            Check_SPARK_05_Restriction
2317              ("package specification cannot contain a package declaration",
2318               Decl);
2319         end if;
2320
2321         --  Complete analysis of declaration
2322
2323         Analyze (Decl);
2324         Next_Decl := Next (Decl);
2325
2326         if No (Freeze_From) then
2327            Freeze_From := First_Entity (Current_Scope);
2328         end if;
2329
2330         --  At the end of a declarative part, freeze remaining entities
2331         --  declared in it. The end of the visible declarations of package
2332         --  specification is not the end of a declarative part if private
2333         --  declarations are present. The end of a package declaration is a
2334         --  freezing point only if it a library package. A task definition or
2335         --  protected type definition is not a freeze point either. Finally,
2336         --  we do not freeze entities in generic scopes, because there is no
2337         --  code generated for them and freeze nodes will be generated for
2338         --  the instance.
2339
2340         --  The end of a package instantiation is not a freeze point, but
2341         --  for now we make it one, because the generic body is inserted
2342         --  (currently) immediately after. Generic instantiations will not
2343         --  be a freeze point once delayed freezing of bodies is implemented.
2344         --  (This is needed in any case for early instantiations ???).
2345
2346         if No (Next_Decl) then
2347            if Nkind_In (Parent (L), N_Component_List,
2348                                     N_Task_Definition,
2349                                     N_Protected_Definition)
2350            then
2351               null;
2352
2353            elsif Nkind (Parent (L)) /= N_Package_Specification then
2354               if Nkind (Parent (L)) = N_Package_Body then
2355                  Freeze_From := First_Entity (Current_Scope);
2356               end if;
2357
2358               --  There may have been several freezing points previously,
2359               --  for example object declarations or subprogram bodies, but
2360               --  at the end of a declarative part we check freezing from
2361               --  the beginning, even though entities may already be frozen,
2362               --  in order to perform visibility checks on delayed aspects.
2363
2364               Adjust_Decl;
2365               Freeze_All (First_Entity (Current_Scope), Decl);
2366               Freeze_From := Last_Entity (Current_Scope);
2367
2368            elsif Scope (Current_Scope) /= Standard_Standard
2369              and then not Is_Child_Unit (Current_Scope)
2370              and then No (Generic_Parent (Parent (L)))
2371            then
2372               null;
2373
2374            elsif L /= Visible_Declarations (Parent (L))
2375               or else No (Private_Declarations (Parent (L)))
2376               or else Is_Empty_List (Private_Declarations (Parent (L)))
2377            then
2378               Adjust_Decl;
2379               Freeze_All (First_Entity (Current_Scope), Decl);
2380               Freeze_From := Last_Entity (Current_Scope);
2381
2382            --  At the end of the visible declarations the expressions in
2383            --  aspects of all entities declared so far must be resolved.
2384            --  The entities themselves might be frozen later, and the
2385            --  generated pragmas and attribute definition clauses analyzed
2386            --  in full at that point, but name resolution must take place
2387            --  now.
2388            --  In addition to being the proper semantics, this is mandatory
2389            --  within generic units, because global name capture requires
2390            --  those expressions to be analyzed, given that the generated
2391            --  pragmas do not appear in the original generic tree.
2392
2393            elsif Serious_Errors_Detected = 0 then
2394               declare
2395                  E : Entity_Id;
2396
2397               begin
2398                  E := First_Entity (Current_Scope);
2399                  while Present (E) loop
2400                     Resolve_Aspect_Expressions (E);
2401                     Next_Entity (E);
2402                  end loop;
2403               end;
2404            end if;
2405
2406         --  If next node is a body then freeze all types before the body.
2407         --  An exception occurs for some expander-generated bodies. If these
2408         --  are generated at places where in general language rules would not
2409         --  allow a freeze point, then we assume that the expander has
2410         --  explicitly checked that all required types are properly frozen,
2411         --  and we do not cause general freezing here. This special circuit
2412         --  is used when the encountered body is marked as having already
2413         --  been analyzed.
2414
2415         --  In all other cases (bodies that come from source, and expander
2416         --  generated bodies that have not been analyzed yet), freeze all
2417         --  types now. Note that in the latter case, the expander must take
2418         --  care to attach the bodies at a proper place in the tree so as to
2419         --  not cause unwanted freezing at that point.
2420
2421         elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2422
2423            --  When a controlled type is frozen, the expander generates stream
2424            --  and controlled type support routines. If the freeze is caused
2425            --  by the stand alone body of Initialize, Adjust and Finalize, the
2426            --  expander will end up using the wrong version of these routines
2427            --  as the body has not been processed yet. To remedy this, detect
2428            --  a late controlled primitive and create a proper spec for it.
2429            --  This ensures that the primitive will override its inherited
2430            --  counterpart before the freeze takes place.
2431
2432            --  If the declaration we just processed is a body, do not attempt
2433            --  to examine Next_Decl as the late primitive idiom can only apply
2434            --  to the first encountered body.
2435
2436            --  The spec of the late primitive is not generated in ASIS mode to
2437            --  ensure a consistent list of primitives that indicates the true
2438            --  semantic structure of the program (which is not relevant when
2439            --  generating executable code.
2440
2441            --  ??? a cleaner approach may be possible and/or this solution
2442            --  could be extended to general-purpose late primitives, TBD.
2443
2444            if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2445            then
2446               Body_Seen := True;
2447
2448               if Nkind (Next_Decl) = N_Subprogram_Body then
2449                  Handle_Late_Controlled_Primitive (Next_Decl);
2450               end if;
2451            end if;
2452
2453            Adjust_Decl;
2454            Freeze_All (Freeze_From, Decl);
2455            Freeze_From := Last_Entity (Current_Scope);
2456         end if;
2457
2458         Decl := Next_Decl;
2459      end loop;
2460
2461      --  Analyze the contracts of packages and their bodies
2462
2463      if Present (L) then
2464         Context := Parent (L);
2465
2466         if Nkind (Context) = N_Package_Specification then
2467
2468            --  When a package has private declarations, its contract must be
2469            --  analyzed at the end of the said declarations. This way both the
2470            --  analysis and freeze actions are properly synchronized in case
2471            --  of private type use within the contract.
2472
2473            if L = Private_Declarations (Context) then
2474               Analyze_Package_Contract (Defining_Entity (Context));
2475
2476               --  Build the bodies of the default initial condition procedures
2477               --  for all types subject to pragma Default_Initial_Condition.
2478               --  From a purely Ada stand point, this is a freezing activity,
2479               --  however freezing is not available under GNATprove_Mode. To
2480               --  accomodate both scenarios, the bodies are build at the end
2481               --  of private declaration analysis.
2482
2483               Build_Default_Init_Cond_Procedure_Bodies (L);
2484
2485            --  Otherwise the contract is analyzed at the end of the visible
2486            --  declarations.
2487
2488            elsif L = Visible_Declarations (Context)
2489              and then No (Private_Declarations (Context))
2490            then
2491               Analyze_Package_Contract (Defining_Entity (Context));
2492            end if;
2493
2494         elsif Nkind (Context) = N_Package_Body then
2495            Analyze_Package_Body_Contract (Defining_Entity (Context));
2496         end if;
2497
2498         --  Analyze the contracts of various constructs now due to the delayed
2499         --  visibility needs of their aspects and pragmas.
2500
2501         Analyze_Contracts (L);
2502
2503         if Nkind (Context) = N_Package_Body then
2504
2505            --  Ensure that all abstract states and objects declared in the
2506            --  state space of a package body are utilized as constituents.
2507
2508            Check_Unused_Body_States (Defining_Entity (Context));
2509
2510            --  State refinements are visible up to the end of the package body
2511            --  declarations. Hide the state refinements from visibility to
2512            --  restore the original state conditions.
2513
2514            Remove_Visible_Refinements (Corresponding_Spec (Context));
2515         end if;
2516      end if;
2517   end Analyze_Declarations;
2518
2519   -----------------------------------
2520   -- Analyze_Full_Type_Declaration --
2521   -----------------------------------
2522
2523   procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2524      Def    : constant Node_Id   := Type_Definition (N);
2525      Def_Id : constant Entity_Id := Defining_Identifier (N);
2526      T      : Entity_Id;
2527      Prev   : Entity_Id;
2528
2529      Is_Remote : constant Boolean :=
2530                    (Is_Remote_Types (Current_Scope)
2531                       or else Is_Remote_Call_Interface (Current_Scope))
2532                      and then not (In_Private_Part (Current_Scope)
2533                                     or else In_Package_Body (Current_Scope));
2534
2535      procedure Check_Nonoverridable_Aspects;
2536      --  Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2537      --  be overridden, and can only be confirmed on derivation.
2538
2539      procedure Check_Ops_From_Incomplete_Type;
2540      --  If there is a tagged incomplete partial view of the type, traverse
2541      --  the primitives of the incomplete view and change the type of any
2542      --  controlling formals and result to indicate the full view. The
2543      --  primitives will be added to the full type's primitive operations
2544      --  list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2545      --  is called from Process_Incomplete_Dependents).
2546
2547      ----------------------------------
2548      -- Check_Nonoverridable_Aspects --
2549      ----------------------------------
2550
2551      procedure Check_Nonoverridable_Aspects is
2552         Prev_Aspects   : constant List_Id :=
2553                            Aspect_Specifications (Parent (Def_Id));
2554         Par_Type       : Entity_Id;
2555
2556         function Has_Aspect_Spec
2557           (Specs : List_Id;
2558            Aspect_Name : Name_Id) return Boolean;
2559         --  Check whether a list of aspect specifications includes an entry
2560         --  for a specific aspect. The list is either that of a partial or
2561         --  a full view.
2562
2563         ---------------------
2564         -- Has_Aspect_Spec --
2565         ---------------------
2566
2567         function Has_Aspect_Spec
2568           (Specs : List_Id;
2569            Aspect_Name : Name_Id) return Boolean
2570         is
2571            Spec : Node_Id;
2572         begin
2573            Spec := First (Specs);
2574            while Present (Spec) loop
2575               if Chars (Identifier (Spec)) = Aspect_Name then
2576                  return True;
2577               end if;
2578               Next (Spec);
2579            end loop;
2580            return False;
2581         end Has_Aspect_Spec;
2582
2583      --  Start of processing for Check_Nonoverridable_Aspects
2584
2585      begin
2586
2587         --  Get parent type of derived type. Note that Prev is the entity
2588         --  in the partial declaration, but its contents are now those of
2589         --  full view, while Def_Id reflects the partial view.
2590
2591         if Is_Private_Type (Def_Id) then
2592            Par_Type := Etype (Full_View (Def_Id));
2593         else
2594            Par_Type := Etype (Def_Id);
2595         end if;
2596
2597         --  If there is an inherited Implicit_Dereference, verify that it is
2598         --  made explicit in the partial view.
2599
2600         if Has_Discriminants (Base_Type (Par_Type))
2601           and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2602           and then Present (Discriminant_Specifications (Parent (Prev)))
2603           and then Present (Get_Reference_Discriminant (Par_Type))
2604         then
2605            if
2606              not Has_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference)
2607            then
2608               Error_Msg_N
2609                 ("type does not inherit implicit dereference", Prev);
2610
2611            else
2612               --  If one of the views has the aspect specified, verify that it
2613               --  is consistent with that of the parent.
2614
2615               declare
2616                  Par_Discr : constant Entity_Id :=
2617                                Get_Reference_Discriminant (Par_Type);
2618                  Cur_Discr : constant Entity_Id :=
2619                                Get_Reference_Discriminant (Prev);
2620               begin
2621                  if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2622                     Error_Msg_N ("aspect incosistent with that of parent", N);
2623                  end if;
2624               end;
2625            end if;
2626         end if;
2627
2628         --  TBD : other nonoverridable aspects.
2629      end Check_Nonoverridable_Aspects;
2630
2631      ------------------------------------
2632      -- Check_Ops_From_Incomplete_Type --
2633      ------------------------------------
2634
2635      procedure Check_Ops_From_Incomplete_Type is
2636         Elmt   : Elmt_Id;
2637         Formal : Entity_Id;
2638         Op     : Entity_Id;
2639
2640      begin
2641         if Prev /= T
2642           and then Ekind (Prev) = E_Incomplete_Type
2643           and then Is_Tagged_Type (Prev)
2644           and then Is_Tagged_Type (T)
2645         then
2646            Elmt := First_Elmt (Primitive_Operations (Prev));
2647            while Present (Elmt) loop
2648               Op := Node (Elmt);
2649
2650               Formal := First_Formal (Op);
2651               while Present (Formal) loop
2652                  if Etype (Formal) = Prev then
2653                     Set_Etype (Formal, T);
2654                  end if;
2655
2656                  Next_Formal (Formal);
2657               end loop;
2658
2659               if Etype (Op) = Prev then
2660                  Set_Etype (Op, T);
2661               end if;
2662
2663               Next_Elmt (Elmt);
2664            end loop;
2665         end if;
2666      end Check_Ops_From_Incomplete_Type;
2667
2668   --  Start of processing for Analyze_Full_Type_Declaration
2669
2670   begin
2671      Prev := Find_Type_Name (N);
2672
2673      --  The full view, if present, now points to the current type. If there
2674      --  is an incomplete partial view, set a link to it, to simplify the
2675      --  retrieval of primitive operations of the type.
2676
2677      --  Ada 2005 (AI-50217): If the type was previously decorated when
2678      --  imported through a LIMITED WITH clause, it appears as incomplete
2679      --  but has no full view.
2680
2681      if Ekind (Prev) = E_Incomplete_Type
2682        and then Present (Full_View (Prev))
2683      then
2684         T := Full_View (Prev);
2685         Set_Incomplete_View (N, Parent (Prev));
2686      else
2687         T := Prev;
2688      end if;
2689
2690      Set_Is_Pure (T, Is_Pure (Current_Scope));
2691
2692      --  We set the flag Is_First_Subtype here. It is needed to set the
2693      --  corresponding flag for the Implicit class-wide-type created
2694      --  during tagged types processing.
2695
2696      Set_Is_First_Subtype (T, True);
2697
2698      --  Only composite types other than array types are allowed to have
2699      --  discriminants.
2700
2701      case Nkind (Def) is
2702
2703         --  For derived types, the rule will be checked once we've figured
2704         --  out the parent type.
2705
2706         when N_Derived_Type_Definition =>
2707            null;
2708
2709         --  For record types, discriminants are allowed, unless we are in
2710         --  SPARK.
2711
2712         when N_Record_Definition =>
2713            if Present (Discriminant_Specifications (N)) then
2714               Check_SPARK_05_Restriction
2715                 ("discriminant type is not allowed",
2716                  Defining_Identifier
2717                    (First (Discriminant_Specifications (N))));
2718            end if;
2719
2720         when others =>
2721            if Present (Discriminant_Specifications (N)) then
2722               Error_Msg_N
2723                 ("elementary or array type cannot have discriminants",
2724                  Defining_Identifier
2725                    (First (Discriminant_Specifications (N))));
2726            end if;
2727      end case;
2728
2729      --  Elaborate the type definition according to kind, and generate
2730      --  subsidiary (implicit) subtypes where needed. We skip this if it was
2731      --  already done (this happens during the reanalysis that follows a call
2732      --  to the high level optimizer).
2733
2734      if not Analyzed (T) then
2735         Set_Analyzed (T);
2736
2737         case Nkind (Def) is
2738            when N_Access_To_Subprogram_Definition =>
2739               Access_Subprogram_Declaration (T, Def);
2740
2741               --  If this is a remote access to subprogram, we must create the
2742               --  equivalent fat pointer type, and related subprograms.
2743
2744               if Is_Remote then
2745                  Process_Remote_AST_Declaration (N);
2746               end if;
2747
2748               --  Validate categorization rule against access type declaration
2749               --  usually a violation in Pure unit, Shared_Passive unit.
2750
2751               Validate_Access_Type_Declaration (T, N);
2752
2753            when N_Access_To_Object_Definition =>
2754               Access_Type_Declaration (T, Def);
2755
2756               --  Validate categorization rule against access type declaration
2757               --  usually a violation in Pure unit, Shared_Passive unit.
2758
2759               Validate_Access_Type_Declaration (T, N);
2760
2761               --  If we are in a Remote_Call_Interface package and define a
2762               --  RACW, then calling stubs and specific stream attributes
2763               --  must be added.
2764
2765               if Is_Remote
2766                 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2767               then
2768                  Add_RACW_Features (Def_Id);
2769               end if;
2770
2771            when N_Array_Type_Definition =>
2772               Array_Type_Declaration (T, Def);
2773
2774            when N_Derived_Type_Definition =>
2775               Derived_Type_Declaration (T, N, T /= Def_Id);
2776
2777            when N_Enumeration_Type_Definition =>
2778               Enumeration_Type_Declaration (T, Def);
2779
2780            when N_Floating_Point_Definition =>
2781               Floating_Point_Type_Declaration (T, Def);
2782
2783            when N_Decimal_Fixed_Point_Definition =>
2784               Decimal_Fixed_Point_Type_Declaration (T, Def);
2785
2786            when N_Ordinary_Fixed_Point_Definition =>
2787               Ordinary_Fixed_Point_Type_Declaration (T, Def);
2788
2789            when N_Signed_Integer_Type_Definition =>
2790               Signed_Integer_Type_Declaration (T, Def);
2791
2792            when N_Modular_Type_Definition =>
2793               Modular_Type_Declaration (T, Def);
2794
2795            when N_Record_Definition =>
2796               Record_Type_Declaration (T, N, Prev);
2797
2798            --  If declaration has a parse error, nothing to elaborate.
2799
2800            when N_Error =>
2801               null;
2802
2803            when others =>
2804               raise Program_Error;
2805
2806         end case;
2807      end if;
2808
2809      if Etype (T) = Any_Type then
2810         return;
2811      end if;
2812
2813      --  Controlled type is not allowed in SPARK
2814
2815      if Is_Visibly_Controlled (T) then
2816         Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2817      end if;
2818
2819      --  A type declared within a Ghost region is automatically Ghost
2820      --  (SPARK RM 6.9(2)).
2821
2822      if Ghost_Mode > None then
2823         Set_Is_Ghost_Entity (T);
2824      end if;
2825
2826      --  Some common processing for all types
2827
2828      Set_Depends_On_Private (T, Has_Private_Component (T));
2829      Check_Ops_From_Incomplete_Type;
2830
2831      --  Both the declared entity, and its anonymous base type if one was
2832      --  created, need freeze nodes allocated.
2833
2834      declare
2835         B : constant Entity_Id := Base_Type (T);
2836
2837      begin
2838         --  In the case where the base type differs from the first subtype, we
2839         --  pre-allocate a freeze node, and set the proper link to the first
2840         --  subtype. Freeze_Entity will use this preallocated freeze node when
2841         --  it freezes the entity.
2842
2843         --  This does not apply if the base type is a generic type, whose
2844         --  declaration is independent of the current derived definition.
2845
2846         if B /= T and then not Is_Generic_Type (B) then
2847            Ensure_Freeze_Node (B);
2848            Set_First_Subtype_Link (Freeze_Node (B), T);
2849         end if;
2850
2851         --  A type that is imported through a limited_with clause cannot
2852         --  generate any code, and thus need not be frozen. However, an access
2853         --  type with an imported designated type needs a finalization list,
2854         --  which may be referenced in some other package that has non-limited
2855         --  visibility on the designated type. Thus we must create the
2856         --  finalization list at the point the access type is frozen, to
2857         --  prevent unsatisfied references at link time.
2858
2859         if not From_Limited_With (T) or else Is_Access_Type (T) then
2860            Set_Has_Delayed_Freeze (T);
2861         end if;
2862      end;
2863
2864      --  Case where T is the full declaration of some private type which has
2865      --  been swapped in Defining_Identifier (N).
2866
2867      if T /= Def_Id and then Is_Private_Type (Def_Id) then
2868         Process_Full_View (N, T, Def_Id);
2869
2870         --  Record the reference. The form of this is a little strange, since
2871         --  the full declaration has been swapped in. So the first parameter
2872         --  here represents the entity to which a reference is made which is
2873         --  the "real" entity, i.e. the one swapped in, and the second
2874         --  parameter provides the reference location.
2875
2876         --  Also, we want to kill Has_Pragma_Unreferenced temporarily here
2877         --  since we don't want a complaint about the full type being an
2878         --  unwanted reference to the private type
2879
2880         declare
2881            B : constant Boolean := Has_Pragma_Unreferenced (T);
2882         begin
2883            Set_Has_Pragma_Unreferenced (T, False);
2884            Generate_Reference (T, T, 'c');
2885            Set_Has_Pragma_Unreferenced (T, B);
2886         end;
2887
2888         Set_Completion_Referenced (Def_Id);
2889
2890      --  For completion of incomplete type, process incomplete dependents
2891      --  and always mark the full type as referenced (it is the incomplete
2892      --  type that we get for any real reference).
2893
2894      elsif Ekind (Prev) = E_Incomplete_Type then
2895         Process_Incomplete_Dependents (N, T, Prev);
2896         Generate_Reference (Prev, Def_Id, 'c');
2897         Set_Completion_Referenced (Def_Id);
2898
2899      --  If not private type or incomplete type completion, this is a real
2900      --  definition of a new entity, so record it.
2901
2902      else
2903         Generate_Definition (Def_Id);
2904      end if;
2905
2906      --  Propagate any pending access types whose finalization masters need to
2907      --  be fully initialized from the partial to the full view. Guard against
2908      --  an illegal full view that remains unanalyzed.
2909
2910      if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
2911         Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
2912      end if;
2913
2914      if Chars (Scope (Def_Id)) = Name_System
2915        and then Chars (Def_Id) = Name_Address
2916        and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2917      then
2918         Set_Is_Descendent_Of_Address (Def_Id);
2919         Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2920         Set_Is_Descendent_Of_Address (Prev);
2921      end if;
2922
2923      Set_Optimize_Alignment_Flags (Def_Id);
2924      Check_Eliminated (Def_Id);
2925
2926      --  If the declaration is a completion and aspects are present, apply
2927      --  them to the entity for the type which is currently the partial
2928      --  view, but which is the one that will be frozen.
2929
2930      if Has_Aspects (N) then
2931
2932         --  In most cases the partial view is a private type, and both views
2933         --  appear in different declarative parts. In the unusual case where
2934         --  the partial view is incomplete, perform the analysis on the
2935         --  full view, to prevent freezing anomalies with the corresponding
2936         --  class-wide type, which otherwise might be frozen before the
2937         --  dispatch table is built.
2938
2939         if Prev /= Def_Id
2940           and then Ekind (Prev) /= E_Incomplete_Type
2941         then
2942            Analyze_Aspect_Specifications (N, Prev);
2943
2944         --  Normal case
2945
2946         else
2947            Analyze_Aspect_Specifications (N, Def_Id);
2948         end if;
2949      end if;
2950
2951      if Is_Derived_Type (Prev)
2952        and then Def_Id /= Prev
2953      then
2954         Check_Nonoverridable_Aspects;
2955      end if;
2956   end Analyze_Full_Type_Declaration;
2957
2958   ----------------------------------
2959   -- Analyze_Incomplete_Type_Decl --
2960   ----------------------------------
2961
2962   procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2963      F : constant Boolean := Is_Pure (Current_Scope);
2964      T : Entity_Id;
2965
2966   begin
2967      Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2968
2969      Generate_Definition (Defining_Identifier (N));
2970
2971      --  Process an incomplete declaration. The identifier must not have been
2972      --  declared already in the scope. However, an incomplete declaration may
2973      --  appear in the private part of a package, for a private type that has
2974      --  already been declared.
2975
2976      --  In this case, the discriminants (if any) must match
2977
2978      T := Find_Type_Name (N);
2979
2980      Set_Ekind (T, E_Incomplete_Type);
2981      Init_Size_Align (T);
2982      Set_Is_First_Subtype (T, True);
2983      Set_Etype (T, T);
2984
2985      --  An incomplete type declared within a Ghost region is automatically
2986      --  Ghost (SPARK RM 6.9(2)).
2987
2988      if Ghost_Mode > None then
2989         Set_Is_Ghost_Entity (T);
2990      end if;
2991
2992      --  Ada 2005 (AI-326): Minimum decoration to give support to tagged
2993      --  incomplete types.
2994
2995      if Tagged_Present (N) then
2996         Set_Is_Tagged_Type (T, True);
2997         Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2998         Make_Class_Wide_Type (T);
2999         Set_Direct_Primitive_Operations (T, New_Elmt_List);
3000      end if;
3001
3002      Set_Stored_Constraint (T, No_Elist);
3003
3004      if Present (Discriminant_Specifications (N)) then
3005         Push_Scope (T);
3006         Process_Discriminants (N);
3007         End_Scope;
3008      end if;
3009
3010      --  If the type has discriminants, nontrivial subtypes may be declared
3011      --  before the full view of the type. The full views of those subtypes
3012      --  will be built after the full view of the type.
3013
3014      Set_Private_Dependents (T, New_Elmt_List);
3015      Set_Is_Pure            (T, F);
3016   end Analyze_Incomplete_Type_Decl;
3017
3018   -----------------------------------
3019   -- Analyze_Interface_Declaration --
3020   -----------------------------------
3021
3022   procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3023      CW : constant Entity_Id := Class_Wide_Type (T);
3024
3025   begin
3026      Set_Is_Tagged_Type (T);
3027      Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3028
3029      Set_Is_Limited_Record (T, Limited_Present (Def)
3030                                  or else Task_Present (Def)
3031                                  or else Protected_Present (Def)
3032                                  or else Synchronized_Present (Def));
3033
3034      --  Type is abstract if full declaration carries keyword, or if previous
3035      --  partial view did.
3036
3037      Set_Is_Abstract_Type (T);
3038      Set_Is_Interface (T);
3039
3040      --  Type is a limited interface if it includes the keyword limited, task,
3041      --  protected, or synchronized.
3042
3043      Set_Is_Limited_Interface
3044        (T, Limited_Present (Def)
3045              or else Protected_Present (Def)
3046              or else Synchronized_Present (Def)
3047              or else Task_Present (Def));
3048
3049      Set_Interfaces (T, New_Elmt_List);
3050      Set_Direct_Primitive_Operations (T, New_Elmt_List);
3051
3052      --  Complete the decoration of the class-wide entity if it was already
3053      --  built (i.e. during the creation of the limited view)
3054
3055      if Present (CW) then
3056         Set_Is_Interface (CW);
3057         Set_Is_Limited_Interface      (CW, Is_Limited_Interface (T));
3058      end if;
3059
3060      --  Check runtime support for synchronized interfaces
3061
3062      if (Is_Task_Interface (T)
3063           or else Is_Protected_Interface (T)
3064           or else Is_Synchronized_Interface (T))
3065        and then not RTE_Available (RE_Select_Specific_Data)
3066      then
3067         Error_Msg_CRT ("synchronized interfaces", T);
3068      end if;
3069   end Analyze_Interface_Declaration;
3070
3071   -----------------------------
3072   -- Analyze_Itype_Reference --
3073   -----------------------------
3074
3075   --  Nothing to do. This node is placed in the tree only for the benefit of
3076   --  back end processing, and has no effect on the semantic processing.
3077
3078   procedure Analyze_Itype_Reference (N : Node_Id) is
3079   begin
3080      pragma Assert (Is_Itype (Itype (N)));
3081      null;
3082   end Analyze_Itype_Reference;
3083
3084   --------------------------------
3085   -- Analyze_Number_Declaration --
3086   --------------------------------
3087
3088   procedure Analyze_Number_Declaration (N : Node_Id) is
3089      E     : constant Node_Id   := Expression (N);
3090      Id    : constant Entity_Id := Defining_Identifier (N);
3091      Index : Interp_Index;
3092      It    : Interp;
3093      T     : Entity_Id;
3094
3095   begin
3096      Generate_Definition (Id);
3097      Enter_Name (Id);
3098
3099      --  A number declared within a Ghost region is automatically Ghost
3100      --  (SPARK RM 6.9(2)).
3101
3102      if Ghost_Mode > None then
3103         Set_Is_Ghost_Entity (Id);
3104      end if;
3105
3106      --  This is an optimization of a common case of an integer literal
3107
3108      if Nkind (E) = N_Integer_Literal then
3109         Set_Is_Static_Expression (E, True);
3110         Set_Etype                (E, Universal_Integer);
3111
3112         Set_Etype     (Id, Universal_Integer);
3113         Set_Ekind     (Id, E_Named_Integer);
3114         Set_Is_Frozen (Id, True);
3115         return;
3116      end if;
3117
3118      Set_Is_Pure (Id, Is_Pure (Current_Scope));
3119
3120      --  Process expression, replacing error by integer zero, to avoid
3121      --  cascaded errors or aborts further along in the processing
3122
3123      --  Replace Error by integer zero, which seems least likely to cause
3124      --  cascaded errors.
3125
3126      if E = Error then
3127         Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3128         Set_Error_Posted (E);
3129      end if;
3130
3131      Analyze (E);
3132
3133      --  Verify that the expression is static and numeric. If
3134      --  the expression is overloaded, we apply the preference
3135      --  rule that favors root numeric types.
3136
3137      if not Is_Overloaded (E) then
3138         T := Etype (E);
3139         if Has_Dynamic_Predicate_Aspect (T) then
3140            Error_Msg_N
3141              ("subtype has dynamic predicate, "
3142               & "not allowed in number declaration", N);
3143         end if;
3144
3145      else
3146         T := Any_Type;
3147
3148         Get_First_Interp (E, Index, It);
3149         while Present (It.Typ) loop
3150            if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3151              and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3152            then
3153               if T = Any_Type then
3154                  T := It.Typ;
3155
3156               elsif It.Typ = Universal_Real
3157                       or else
3158                     It.Typ = Universal_Integer
3159               then
3160                  --  Choose universal interpretation over any other
3161
3162                  T := It.Typ;
3163                  exit;
3164               end if;
3165            end if;
3166
3167            Get_Next_Interp (Index, It);
3168         end loop;
3169      end if;
3170
3171      if Is_Integer_Type (T)  then
3172         Resolve (E, T);
3173         Set_Etype (Id, Universal_Integer);
3174         Set_Ekind (Id, E_Named_Integer);
3175
3176      elsif Is_Real_Type (T) then
3177
3178         --  Because the real value is converted to universal_real, this is a
3179         --  legal context for a universal fixed expression.
3180
3181         if T = Universal_Fixed then
3182            declare
3183               Loc  : constant Source_Ptr := Sloc (N);
3184               Conv : constant Node_Id := Make_Type_Conversion (Loc,
3185                        Subtype_Mark =>
3186                          New_Occurrence_Of (Universal_Real, Loc),
3187                        Expression => Relocate_Node (E));
3188
3189            begin
3190               Rewrite (E, Conv);
3191               Analyze (E);
3192            end;
3193
3194         elsif T = Any_Fixed then
3195            Error_Msg_N ("illegal context for mixed mode operation", E);
3196
3197            --  Expression is of the form : universal_fixed * integer. Try to
3198            --  resolve as universal_real.
3199
3200            T := Universal_Real;
3201            Set_Etype (E, T);
3202         end if;
3203
3204         Resolve (E, T);
3205         Set_Etype (Id, Universal_Real);
3206         Set_Ekind (Id, E_Named_Real);
3207
3208      else
3209         Wrong_Type (E, Any_Numeric);
3210         Resolve (E, T);
3211
3212         Set_Etype               (Id, T);
3213         Set_Ekind               (Id, E_Constant);
3214         Set_Never_Set_In_Source (Id, True);
3215         Set_Is_True_Constant    (Id, True);
3216         return;
3217      end if;
3218
3219      if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3220         Set_Etype (E, Etype (Id));
3221      end if;
3222
3223      if not Is_OK_Static_Expression (E) then
3224         Flag_Non_Static_Expr
3225           ("non-static expression used in number declaration!", E);
3226         Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3227         Set_Etype (E, Any_Type);
3228      end if;
3229
3230      Analyze_Dimension (N);
3231   end Analyze_Number_Declaration;
3232
3233   --------------------------------
3234   -- Analyze_Object_Declaration --
3235   --------------------------------
3236
3237   procedure Analyze_Object_Declaration (N : Node_Id) is
3238      Loc   : constant Source_Ptr := Sloc (N);
3239      Id    : constant Entity_Id  := Defining_Identifier (N);
3240      Act_T : Entity_Id;
3241      T     : Entity_Id;
3242
3243      E : Node_Id := Expression (N);
3244      --  E is set to Expression (N) throughout this routine. When
3245      --  Expression (N) is modified, E is changed accordingly.
3246
3247      Prev_Entity : Entity_Id := Empty;
3248
3249      function Count_Tasks (T : Entity_Id) return Uint;
3250      --  This function is called when a non-generic library level object of a
3251      --  task type is declared. Its function is to count the static number of
3252      --  tasks declared within the type (it is only called if Has_Task is set
3253      --  for T). As a side effect, if an array of tasks with non-static bounds
3254      --  or a variant record type is encountered, Check_Restriction is called
3255      --  indicating the count is unknown.
3256
3257      function Delayed_Aspect_Present return Boolean;
3258      --  If the declaration has an expression that is an aggregate, and it
3259      --  has aspects that require delayed analysis, the resolution of the
3260      --  aggregate must be deferred to the freeze point of the objet. This
3261      --  special processing was created for address clauses, but it must
3262      --  also apply to Alignment. This must be done before the aspect
3263      --  specifications are analyzed because we must handle the aggregate
3264      --  before the analysis of the object declaration is complete.
3265
3266      --  Any other relevant delayed aspects on object declarations ???
3267
3268      -----------------
3269      -- Count_Tasks --
3270      -----------------
3271
3272      function Count_Tasks (T : Entity_Id) return Uint is
3273         C : Entity_Id;
3274         X : Node_Id;
3275         V : Uint;
3276
3277      begin
3278         if Is_Task_Type (T) then
3279            return Uint_1;
3280
3281         elsif Is_Record_Type (T) then
3282            if Has_Discriminants (T) then
3283               Check_Restriction (Max_Tasks, N);
3284               return Uint_0;
3285
3286            else
3287               V := Uint_0;
3288               C := First_Component (T);
3289               while Present (C) loop
3290                  V := V + Count_Tasks (Etype (C));
3291                  Next_Component (C);
3292               end loop;
3293
3294               return V;
3295            end if;
3296
3297         elsif Is_Array_Type (T) then
3298            X := First_Index (T);
3299            V := Count_Tasks (Component_Type (T));
3300            while Present (X) loop
3301               C := Etype (X);
3302
3303               if not Is_OK_Static_Subtype (C) then
3304                  Check_Restriction (Max_Tasks, N);
3305                  return Uint_0;
3306               else
3307                  V := V * (UI_Max (Uint_0,
3308                                    Expr_Value (Type_High_Bound (C)) -
3309                                    Expr_Value (Type_Low_Bound (C)) + Uint_1));
3310               end if;
3311
3312               Next_Index (X);
3313            end loop;
3314
3315            return V;
3316
3317         else
3318            return Uint_0;
3319         end if;
3320      end Count_Tasks;
3321
3322      ----------------------------
3323      -- Delayed_Aspect_Present --
3324      ----------------------------
3325
3326      function Delayed_Aspect_Present return Boolean is
3327         A    : Node_Id;
3328         A_Id : Aspect_Id;
3329
3330      begin
3331         if Present (Aspect_Specifications (N)) then
3332            A    := First (Aspect_Specifications (N));
3333            A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3334            while Present (A) loop
3335               if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3336                  return True;
3337               end if;
3338
3339               Next (A);
3340            end loop;
3341         end if;
3342
3343         return False;
3344      end Delayed_Aspect_Present;
3345
3346      --  Local variables
3347
3348      Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
3349      Related_Id      : Entity_Id;
3350
3351   --  Start of processing for Analyze_Object_Declaration
3352
3353   begin
3354      --  There are three kinds of implicit types generated by an
3355      --  object declaration:
3356
3357      --   1. Those generated by the original Object Definition
3358
3359      --   2. Those generated by the Expression
3360
3361      --   3. Those used to constrain the Object Definition with the
3362      --      expression constraints when the definition is unconstrained.
3363
3364      --  They must be generated in this order to avoid order of elaboration
3365      --  issues. Thus the first step (after entering the name) is to analyze
3366      --  the object definition.
3367
3368      if Constant_Present (N) then
3369         Prev_Entity := Current_Entity_In_Scope (Id);
3370
3371         if Present (Prev_Entity)
3372           and then
3373             --  If the homograph is an implicit subprogram, it is overridden
3374             --  by the current declaration.
3375
3376             ((Is_Overloadable (Prev_Entity)
3377                and then Is_Inherited_Operation (Prev_Entity))
3378
3379               --  The current object is a discriminal generated for an entry
3380               --  family index. Even though the index is a constant, in this
3381               --  particular context there is no true constant redeclaration.
3382               --  Enter_Name will handle the visibility.
3383
3384               or else
3385                 (Is_Discriminal (Id)
3386                   and then Ekind (Discriminal_Link (Id)) =
3387                                              E_Entry_Index_Parameter)
3388
3389               --  The current object is the renaming for a generic declared
3390               --  within the instance.
3391
3392               or else
3393                 (Ekind (Prev_Entity) = E_Package
3394                   and then Nkind (Parent (Prev_Entity)) =
3395                                               N_Package_Renaming_Declaration
3396                   and then not Comes_From_Source (Prev_Entity)
3397                   and then
3398                     Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3399         then
3400            Prev_Entity := Empty;
3401         end if;
3402      end if;
3403
3404      --  The object declaration is Ghost when it is subject to pragma Ghost or
3405      --  completes a deferred Ghost constant. Set the mode now to ensure that
3406      --  any nodes generated during analysis and expansion are properly marked
3407      --  as Ghost.
3408
3409      Set_Ghost_Mode (N, Prev_Entity);
3410
3411      if Present (Prev_Entity) then
3412         Constant_Redeclaration (Id, N, T);
3413
3414         Generate_Reference (Prev_Entity, Id, 'c');
3415         Set_Completion_Referenced (Id);
3416
3417         if Error_Posted (N) then
3418
3419            --  Type mismatch or illegal redeclaration, Do not analyze
3420            --  expression to avoid cascaded errors.
3421
3422            T := Find_Type_Of_Object (Object_Definition (N), N);
3423            Set_Etype (Id, T);
3424            Set_Ekind (Id, E_Variable);
3425            goto Leave;
3426         end if;
3427
3428      --  In the normal case, enter identifier at the start to catch premature
3429      --  usage in the initialization expression.
3430
3431      else
3432         Generate_Definition (Id);
3433         Enter_Name (Id);
3434
3435         Mark_Coextensions (N, Object_Definition (N));
3436
3437         T := Find_Type_Of_Object (Object_Definition (N), N);
3438
3439         if Nkind (Object_Definition (N)) = N_Access_Definition
3440           and then Present
3441                      (Access_To_Subprogram_Definition (Object_Definition (N)))
3442           and then Protected_Present
3443                      (Access_To_Subprogram_Definition (Object_Definition (N)))
3444         then
3445            T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3446         end if;
3447
3448         if Error_Posted (Id) then
3449            Set_Etype (Id, T);
3450            Set_Ekind (Id, E_Variable);
3451            goto Leave;
3452         end if;
3453      end if;
3454
3455      --  Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3456      --  out some static checks
3457
3458      if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3459
3460         --  In case of aggregates we must also take care of the correct
3461         --  initialization of nested aggregates bug this is done at the
3462         --  point of the analysis of the aggregate (see sem_aggr.adb).
3463
3464         if Present (Expression (N))
3465           and then Nkind (Expression (N)) = N_Aggregate
3466         then
3467            null;
3468
3469         else
3470            declare
3471               Save_Typ : constant Entity_Id := Etype (Id);
3472            begin
3473               Set_Etype (Id, T); --  Temp. decoration for static checks
3474               Null_Exclusion_Static_Checks (N);
3475               Set_Etype (Id, Save_Typ);
3476            end;
3477         end if;
3478      end if;
3479
3480      --  Object is marked pure if it is in a pure scope
3481
3482      Set_Is_Pure (Id, Is_Pure (Current_Scope));
3483
3484      --  If deferred constant, make sure context is appropriate. We detect
3485      --  a deferred constant as a constant declaration with no expression.
3486      --  A deferred constant can appear in a package body if its completion
3487      --  is by means of an interface pragma.
3488
3489      if Constant_Present (N) and then No (E) then
3490
3491         --  A deferred constant may appear in the declarative part of the
3492         --  following constructs:
3493
3494         --     blocks
3495         --     entry bodies
3496         --     extended return statements
3497         --     package specs
3498         --     package bodies
3499         --     subprogram bodies
3500         --     task bodies
3501
3502         --  When declared inside a package spec, a deferred constant must be
3503         --  completed by a full constant declaration or pragma Import. In all
3504         --  other cases, the only proper completion is pragma Import. Extended
3505         --  return statements are flagged as invalid contexts because they do
3506         --  not have a declarative part and so cannot accommodate the pragma.
3507
3508         if Ekind (Current_Scope) = E_Return_Statement then
3509            Error_Msg_N
3510              ("invalid context for deferred constant declaration (RM 7.4)",
3511               N);
3512            Error_Msg_N
3513              ("\declaration requires an initialization expression",
3514                N);
3515            Set_Constant_Present (N, False);
3516
3517         --  In Ada 83, deferred constant must be of private type
3518
3519         elsif not Is_Private_Type (T) then
3520            if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3521               Error_Msg_N
3522                 ("(Ada 83) deferred constant must be private type", N);
3523            end if;
3524         end if;
3525
3526      --  If not a deferred constant, then the object declaration freezes
3527      --  its type, unless the object is of an anonymous type and has delayed
3528      --  aspects. In that case the type is frozen when the object itself is.
3529
3530      else
3531         Check_Fully_Declared (T, N);
3532
3533         if Has_Delayed_Aspects (Id)
3534           and then Is_Array_Type (T)
3535           and then Is_Itype (T)
3536         then
3537            Set_Has_Delayed_Freeze (T);
3538         else
3539            Freeze_Before (N, T);
3540         end if;
3541      end if;
3542
3543      --  If the object was created by a constrained array definition, then
3544      --  set the link in both the anonymous base type and anonymous subtype
3545      --  that are built to represent the array type to point to the object.
3546
3547      if Nkind (Object_Definition (Declaration_Node (Id))) =
3548                        N_Constrained_Array_Definition
3549      then
3550         Set_Related_Array_Object (T, Id);
3551         Set_Related_Array_Object (Base_Type (T), Id);
3552      end if;
3553
3554      --  Special checks for protected objects not at library level
3555
3556      if Is_Protected_Type (T)
3557        and then not Is_Library_Level_Entity (Id)
3558      then
3559         Check_Restriction (No_Local_Protected_Objects, Id);
3560
3561         --  Protected objects with interrupt handlers must be at library level
3562
3563         --  Ada 2005: This test is not needed (and the corresponding clause
3564         --  in the RM is removed) because accessibility checks are sufficient
3565         --  to make handlers not at the library level illegal.
3566
3567         --  AI05-0303: The AI is in fact a binding interpretation, and thus
3568         --  applies to the '95 version of the language as well.
3569
3570         if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3571            Error_Msg_N
3572              ("interrupt object can only be declared at library level", Id);
3573         end if;
3574      end if;
3575
3576      --  The actual subtype of the object is the nominal subtype, unless
3577      --  the nominal one is unconstrained and obtained from the expression.
3578
3579      Act_T := T;
3580
3581      --  These checks should be performed before the initialization expression
3582      --  is considered, so that the Object_Definition node is still the same
3583      --  as in source code.
3584
3585      --  In SPARK, the nominal subtype is always given by a subtype mark
3586      --  and must not be unconstrained. (The only exception to this is the
3587      --  acceptance of declarations of constants of type String.)
3588
3589      if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3590      then
3591         Check_SPARK_05_Restriction
3592           ("subtype mark required", Object_Definition (N));
3593
3594      elsif Is_Array_Type (T)
3595        and then not Is_Constrained (T)
3596        and then T /= Standard_String
3597      then
3598         Check_SPARK_05_Restriction
3599           ("subtype mark of constrained type expected",
3600            Object_Definition (N));
3601      end if;
3602
3603      --  There are no aliased objects in SPARK
3604
3605      if Aliased_Present (N) then
3606         Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3607      end if;
3608
3609      --  Process initialization expression if present and not in error
3610
3611      if Present (E) and then E /= Error then
3612
3613         --  Generate an error in case of CPP class-wide object initialization.
3614         --  Required because otherwise the expansion of the class-wide
3615         --  assignment would try to use 'size to initialize the object
3616         --  (primitive that is not available in CPP tagged types).
3617
3618         if Is_Class_Wide_Type (Act_T)
3619           and then
3620             (Is_CPP_Class (Root_Type (Etype (Act_T)))
3621               or else
3622                 (Present (Full_View (Root_Type (Etype (Act_T))))
3623                   and then
3624                     Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3625         then
3626            Error_Msg_N
3627              ("predefined assignment not available for 'C'P'P tagged types",
3628               E);
3629         end if;
3630
3631         Mark_Coextensions (N, E);
3632         Analyze (E);
3633
3634         --  In case of errors detected in the analysis of the expression,
3635         --  decorate it with the expected type to avoid cascaded errors
3636
3637         if No (Etype (E)) then
3638            Set_Etype (E, T);
3639         end if;
3640
3641         --  If an initialization expression is present, then we set the
3642         --  Is_True_Constant flag. It will be reset if this is a variable
3643         --  and it is indeed modified.
3644
3645         Set_Is_True_Constant (Id, True);
3646
3647         --  If we are analyzing a constant declaration, set its completion
3648         --  flag after analyzing and resolving the expression.
3649
3650         if Constant_Present (N) then
3651            Set_Has_Completion (Id);
3652         end if;
3653
3654         --  Set type and resolve (type may be overridden later on). Note:
3655         --  Ekind (Id) must still be E_Void at this point so that incorrect
3656         --  early usage within E is properly diagnosed.
3657
3658         Set_Etype (Id, T);
3659
3660         --  If the expression is an aggregate we must look ahead to detect
3661         --  the possible presence of an address clause, and defer resolution
3662         --  and expansion of the aggregate to the freeze point of the entity.
3663
3664         --  This is not always legal because the aggregate may contain other
3665         --  references that need freezing, e.g. references to other entities
3666         --  with address clauses. In any case, when compiling with -gnatI the
3667         --  presence of the address clause must be ignored.
3668
3669         if Comes_From_Source (N)
3670           and then Expander_Active
3671           and then Nkind (E) = N_Aggregate
3672           and then
3673             ((Present (Following_Address_Clause (N))
3674                            and then not Ignore_Rep_Clauses)
3675              or else Delayed_Aspect_Present)
3676         then
3677            Set_Etype (E, T);
3678
3679         else
3680            Resolve (E, T);
3681         end if;
3682
3683         --  No further action needed if E is a call to an inlined function
3684         --  which returns an unconstrained type and it has been expanded into
3685         --  a procedure call. In that case N has been replaced by an object
3686         --  declaration without initializing expression and it has been
3687         --  analyzed (see Expand_Inlined_Call).
3688
3689         if Back_End_Inlining
3690           and then Expander_Active
3691           and then Nkind (E) = N_Function_Call
3692           and then Nkind (Name (E)) in N_Has_Entity
3693           and then Is_Inlined (Entity (Name (E)))
3694           and then not Is_Constrained (Etype (E))
3695           and then Analyzed (N)
3696           and then No (Expression (N))
3697         then
3698            Ghost_Mode := Save_Ghost_Mode;
3699            return;
3700         end if;
3701
3702         --  If E is null and has been replaced by an N_Raise_Constraint_Error
3703         --  node (which was marked already-analyzed), we need to set the type
3704         --  to something other than Any_Access in order to keep gigi happy.
3705
3706         if Etype (E) = Any_Access then
3707            Set_Etype (E, T);
3708         end if;
3709
3710         --  If the object is an access to variable, the initialization
3711         --  expression cannot be an access to constant.
3712
3713         if Is_Access_Type (T)
3714           and then not Is_Access_Constant (T)
3715           and then Is_Access_Type (Etype (E))
3716           and then Is_Access_Constant (Etype (E))
3717         then
3718            Error_Msg_N
3719              ("access to variable cannot be initialized with an "
3720               & "access-to-constant expression", E);
3721         end if;
3722
3723         if not Assignment_OK (N) then
3724            Check_Initialization (T, E);
3725         end if;
3726
3727         Check_Unset_Reference (E);
3728
3729         --  If this is a variable, then set current value. If this is a
3730         --  declared constant of a scalar type with a static expression,
3731         --  indicate that it is always valid.
3732
3733         if not Constant_Present (N) then
3734            if Compile_Time_Known_Value (E) then
3735               Set_Current_Value (Id, E);
3736            end if;
3737
3738         elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3739            Set_Is_Known_Valid (Id);
3740         end if;
3741
3742         --  Deal with setting of null flags
3743
3744         if Is_Access_Type (T) then
3745            if Known_Non_Null (E) then
3746               Set_Is_Known_Non_Null (Id, True);
3747            elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3748               Set_Is_Known_Null (Id, True);
3749            end if;
3750         end if;
3751
3752         --  Check incorrect use of dynamically tagged expressions
3753
3754         if Is_Tagged_Type (T) then
3755            Check_Dynamically_Tagged_Expression
3756              (Expr        => E,
3757               Typ         => T,
3758               Related_Nod => N);
3759         end if;
3760
3761         Apply_Scalar_Range_Check (E, T);
3762         Apply_Static_Length_Check (E, T);
3763
3764         if Nkind (Original_Node (N)) = N_Object_Declaration
3765           and then Comes_From_Source (Original_Node (N))
3766
3767           --  Only call test if needed
3768
3769           and then Restriction_Check_Required (SPARK_05)
3770           and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3771         then
3772            Check_SPARK_05_Restriction
3773              ("initialization expression is not appropriate", E);
3774         end if;
3775
3776         --  A formal parameter of a specific tagged type whose related
3777         --  subprogram is subject to pragma Extensions_Visible with value
3778         --  "False" cannot be implicitly converted to a class-wide type by
3779         --  means of an initialization expression (SPARK RM 6.1.7(3)).
3780
3781         if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3782            Error_Msg_N
3783              ("formal parameter with Extensions_Visible False cannot be "
3784               & "implicitly converted to class-wide type", E);
3785         end if;
3786      end if;
3787
3788      --  If the No_Streams restriction is set, check that the type of the
3789      --  object is not, and does not contain, any subtype derived from
3790      --  Ada.Streams.Root_Stream_Type. Note that we guard the call to
3791      --  Has_Stream just for efficiency reasons. There is no point in
3792      --  spending time on a Has_Stream check if the restriction is not set.
3793
3794      if Restriction_Check_Required (No_Streams) then
3795         if Has_Stream (T) then
3796            Check_Restriction (No_Streams, N);
3797         end if;
3798      end if;
3799
3800      --  Deal with predicate check before we start to do major rewriting. It
3801      --  is OK to initialize and then check the initialized value, since the
3802      --  object goes out of scope if we get a predicate failure. Note that we
3803      --  do this in the analyzer and not the expander because the analyzer
3804      --  does some substantial rewriting in some cases.
3805
3806      --  We need a predicate check if the type has predicates, and if either
3807      --  there is an initializing expression, or for default initialization
3808      --  when we have at least one case of an explicit default initial value
3809      --  and then this is not an internal declaration whose initialization
3810      --  comes later (as for an aggregate expansion).
3811
3812      if not Suppress_Assignment_Checks (N)
3813        and then Present (Predicate_Function (T))
3814        and then not No_Initialization (N)
3815        and then
3816          (Present (E)
3817            or else
3818              Is_Partially_Initialized_Type (T, Include_Implicit => False))
3819      then
3820         --  If the type has a static predicate and the expression is known at
3821         --  compile time, see if the expression satisfies the predicate.
3822
3823         if Present (E) then
3824            Check_Expression_Against_Static_Predicate (E, T);
3825         end if;
3826
3827         Insert_After (N,
3828           Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3829      end if;
3830
3831      --  Case of unconstrained type
3832
3833      if not Is_Definite_Subtype (T) then
3834
3835         --  In SPARK, a declaration of unconstrained type is allowed
3836         --  only for constants of type string.
3837
3838         if Is_String_Type (T) and then not Constant_Present (N) then
3839            Check_SPARK_05_Restriction
3840              ("declaration of object of unconstrained type not allowed", N);
3841         end if;
3842
3843         --  Nothing to do in deferred constant case
3844
3845         if Constant_Present (N) and then No (E) then
3846            null;
3847
3848         --  Case of no initialization present
3849
3850         elsif No (E) then
3851            if No_Initialization (N) then
3852               null;
3853
3854            elsif Is_Class_Wide_Type (T) then
3855               Error_Msg_N
3856                 ("initialization required in class-wide declaration ", N);
3857
3858            else
3859               Error_Msg_N
3860                 ("unconstrained subtype not allowed (need initialization)",
3861                  Object_Definition (N));
3862
3863               if Is_Record_Type (T) and then Has_Discriminants (T) then
3864                  Error_Msg_N
3865                    ("\provide initial value or explicit discriminant values",
3866                     Object_Definition (N));
3867
3868                  Error_Msg_NE
3869                    ("\or give default discriminant values for type&",
3870                     Object_Definition (N), T);
3871
3872               elsif Is_Array_Type (T) then
3873                  Error_Msg_N
3874                    ("\provide initial value or explicit array bounds",
3875                     Object_Definition (N));
3876               end if;
3877            end if;
3878
3879         --  Case of initialization present but in error. Set initial
3880         --  expression as absent (but do not make above complaints)
3881
3882         elsif E = Error then
3883            Set_Expression (N, Empty);
3884            E := Empty;
3885
3886         --  Case of initialization present
3887
3888         else
3889            --  Check restrictions in Ada 83
3890
3891            if not Constant_Present (N) then
3892
3893               --  Unconstrained variables not allowed in Ada 83 mode
3894
3895               if Ada_Version = Ada_83
3896                 and then Comes_From_Source (Object_Definition (N))
3897               then
3898                  Error_Msg_N
3899                    ("(Ada 83) unconstrained variable not allowed",
3900                     Object_Definition (N));
3901               end if;
3902            end if;
3903
3904            --  Now we constrain the variable from the initializing expression
3905
3906            --  If the expression is an aggregate, it has been expanded into
3907            --  individual assignments. Retrieve the actual type from the
3908            --  expanded construct.
3909
3910            if Is_Array_Type (T)
3911              and then No_Initialization (N)
3912              and then Nkind (Original_Node (E)) = N_Aggregate
3913            then
3914               Act_T := Etype (E);
3915
3916            --  In case of class-wide interface object declarations we delay
3917            --  the generation of the equivalent record type declarations until
3918            --  its expansion because there are cases in they are not required.
3919
3920            elsif Is_Interface (T) then
3921               null;
3922
3923            --  In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3924            --  we should prevent the generation of another Itype with the
3925            --  same name as the one already generated, or we end up with
3926            --  two identical types in GNATprove.
3927
3928            elsif GNATprove_Mode then
3929               null;
3930
3931            --  If the type is an unchecked union, no subtype can be built from
3932            --  the expression. Rewrite declaration as a renaming, which the
3933            --  back-end can handle properly. This is a rather unusual case,
3934            --  because most unchecked_union declarations have default values
3935            --  for discriminants and are thus not indefinite.
3936
3937            elsif Is_Unchecked_Union (T) then
3938               if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3939                  Set_Ekind (Id, E_Constant);
3940               else
3941                  Set_Ekind (Id, E_Variable);
3942               end if;
3943
3944               --  An object declared within a Ghost region is automatically
3945               --  Ghost (SPARK RM 6.9(2)).
3946
3947               if Ghost_Mode > None then
3948                  Set_Is_Ghost_Entity (Id);
3949
3950                  --  The Ghost policy in effect at the point of declaration
3951                  --  and at the point of completion must match
3952                  --  (SPARK RM 6.9(14)).
3953
3954                  if Present (Prev_Entity)
3955                    and then Is_Ghost_Entity (Prev_Entity)
3956                  then
3957                     Check_Ghost_Completion (Prev_Entity, Id);
3958                  end if;
3959               end if;
3960
3961               Rewrite (N,
3962                 Make_Object_Renaming_Declaration (Loc,
3963                   Defining_Identifier => Id,
3964                   Subtype_Mark        => New_Occurrence_Of (T, Loc),
3965                   Name                => E));
3966
3967               Set_Renamed_Object (Id, E);
3968               Freeze_Before (N, T);
3969               Set_Is_Frozen (Id);
3970
3971               Ghost_Mode := Save_Ghost_Mode;
3972               return;
3973
3974            else
3975               --  Ensure that the generated subtype has a unique external name
3976               --  when the related object is public. This guarantees that the
3977               --  subtype and its bounds will not be affected by switches or
3978               --  pragmas that may offset the internal counter due to extra
3979               --  generated code.
3980
3981               if Is_Public (Id) then
3982                  Related_Id := Id;
3983               else
3984                  Related_Id := Empty;
3985               end if;
3986
3987               Expand_Subtype_From_Expr
3988                 (N             => N,
3989                  Unc_Type      => T,
3990                  Subtype_Indic => Object_Definition (N),
3991                  Exp           => E,
3992                  Related_Id    => Related_Id);
3993
3994               Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3995            end if;
3996
3997            Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3998
3999            if Aliased_Present (N) then
4000               Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4001            end if;
4002
4003            Freeze_Before (N, Act_T);
4004            Freeze_Before (N, T);
4005         end if;
4006
4007      elsif Is_Array_Type (T)
4008        and then No_Initialization (N)
4009        and then Nkind (Original_Node (E)) = N_Aggregate
4010      then
4011         if not Is_Entity_Name (Object_Definition (N)) then
4012            Act_T := Etype (E);
4013            Check_Compile_Time_Size (Act_T);
4014
4015            if Aliased_Present (N) then
4016               Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4017            end if;
4018         end if;
4019
4020         --  When the given object definition and the aggregate are specified
4021         --  independently, and their lengths might differ do a length check.
4022         --  This cannot happen if the aggregate is of the form (others =>...)
4023
4024         if not Is_Constrained (T) then
4025            null;
4026
4027         elsif Nkind (E) = N_Raise_Constraint_Error then
4028
4029            --  Aggregate is statically illegal. Place back in declaration
4030
4031            Set_Expression (N, E);
4032            Set_No_Initialization (N, False);
4033
4034         elsif T = Etype (E) then
4035            null;
4036
4037         elsif Nkind (E) = N_Aggregate
4038           and then Present (Component_Associations (E))
4039           and then Present (Choices (First (Component_Associations (E))))
4040           and then Nkind (First
4041            (Choices (First (Component_Associations (E))))) = N_Others_Choice
4042         then
4043            null;
4044
4045         else
4046            Apply_Length_Check (E, T);
4047         end if;
4048
4049      --  If the type is limited unconstrained with defaulted discriminants and
4050      --  there is no expression, then the object is constrained by the
4051      --  defaults, so it is worthwhile building the corresponding subtype.
4052
4053      elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4054        and then not Is_Constrained (T)
4055        and then Has_Discriminants (T)
4056      then
4057         if No (E) then
4058            Act_T := Build_Default_Subtype (T, N);
4059         else
4060            --  Ada 2005: A limited object may be initialized by means of an
4061            --  aggregate. If the type has default discriminants it has an
4062            --  unconstrained nominal type, Its actual subtype will be obtained
4063            --  from the aggregate, and not from the default discriminants.
4064
4065            Act_T := Etype (E);
4066         end if;
4067
4068         Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4069
4070      elsif Nkind (E) = N_Function_Call
4071        and then Constant_Present (N)
4072        and then Has_Unconstrained_Elements (Etype (E))
4073      then
4074         --  The back-end has problems with constants of a discriminated type
4075         --  with defaults, if the initial value is a function call. We
4076         --  generate an intermediate temporary that will receive a reference
4077         --  to the result of the call. The initialization expression then
4078         --  becomes a dereference of that temporary.
4079
4080         Remove_Side_Effects (E);
4081
4082      --  If this is a constant declaration of an unconstrained type and
4083      --  the initialization is an aggregate, we can use the subtype of the
4084      --  aggregate for the declared entity because it is immutable.
4085
4086      elsif not Is_Constrained (T)
4087        and then Has_Discriminants (T)
4088        and then Constant_Present (N)
4089        and then not Has_Unchecked_Union (T)
4090        and then Nkind (E) = N_Aggregate
4091      then
4092         Act_T := Etype (E);
4093      end if;
4094
4095      --  Check No_Wide_Characters restriction
4096
4097      Check_Wide_Character_Restriction (T, Object_Definition (N));
4098
4099      --  Indicate this is not set in source. Certainly true for constants, and
4100      --  true for variables so far (will be reset for a variable if and when
4101      --  we encounter a modification in the source).
4102
4103      Set_Never_Set_In_Source (Id);
4104
4105      --  Now establish the proper kind and type of the object
4106
4107      if Constant_Present (N) then
4108         Set_Ekind            (Id, E_Constant);
4109         Set_Is_True_Constant (Id);
4110
4111      else
4112         Set_Ekind (Id, E_Variable);
4113
4114         --  A variable is set as shared passive if it appears in a shared
4115         --  passive package, and is at the outer level. This is not done for
4116         --  entities generated during expansion, because those are always
4117         --  manipulated locally.
4118
4119         if Is_Shared_Passive (Current_Scope)
4120           and then Is_Library_Level_Entity (Id)
4121           and then Comes_From_Source (Id)
4122         then
4123            Set_Is_Shared_Passive (Id);
4124            Check_Shared_Var (Id, T, N);
4125         end if;
4126
4127         --  Set Has_Initial_Value if initializing expression present. Note
4128         --  that if there is no initializing expression, we leave the state
4129         --  of this flag unchanged (usually it will be False, but notably in
4130         --  the case of exception choice variables, it will already be true).
4131
4132         if Present (E) then
4133            Set_Has_Initial_Value (Id);
4134         end if;
4135      end if;
4136
4137      --  Initialize alignment and size and capture alignment setting
4138
4139      Init_Alignment               (Id);
4140      Init_Esize                   (Id);
4141      Set_Optimize_Alignment_Flags (Id);
4142
4143      --  An object declared within a Ghost region is automatically Ghost
4144      --  (SPARK RM 6.9(2)).
4145
4146      if Ghost_Mode > None
4147        or else (Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity))
4148      then
4149         Set_Is_Ghost_Entity (Id);
4150
4151         --  The Ghost policy in effect at the point of declaration and at the
4152         --  point of completion must match (SPARK RM 6.9(14)).
4153
4154         if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4155            Check_Ghost_Completion (Prev_Entity, Id);
4156         end if;
4157      end if;
4158
4159      --  Deal with aliased case
4160
4161      if Aliased_Present (N) then
4162         Set_Is_Aliased (Id);
4163
4164         --  If the object is aliased and the type is unconstrained with
4165         --  defaulted discriminants and there is no expression, then the
4166         --  object is constrained by the defaults, so it is worthwhile
4167         --  building the corresponding subtype.
4168
4169         --  Ada 2005 (AI-363): If the aliased object is discriminated and
4170         --  unconstrained, then only establish an actual subtype if the
4171         --  nominal subtype is indefinite. In definite cases the object is
4172         --  unconstrained in Ada 2005.
4173
4174         if No (E)
4175           and then Is_Record_Type (T)
4176           and then not Is_Constrained (T)
4177           and then Has_Discriminants (T)
4178           and then (Ada_Version < Ada_2005
4179                      or else not Is_Definite_Subtype (T))
4180         then
4181            Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4182         end if;
4183      end if;
4184
4185      --  Now we can set the type of the object
4186
4187      Set_Etype (Id, Act_T);
4188
4189      --  Non-constant object is marked to be treated as volatile if type is
4190      --  volatile and we clear the Current_Value setting that may have been
4191      --  set above. Doing so for constants isn't required and might interfere
4192      --  with possible uses of the object as a static expression in contexts
4193      --  incompatible with volatility (e.g. as a case-statement alternative).
4194
4195      if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4196         Set_Treat_As_Volatile (Id);
4197         Set_Current_Value (Id, Empty);
4198      end if;
4199
4200      --  Deal with controlled types
4201
4202      if Has_Controlled_Component (Etype (Id))
4203        or else Is_Controlled (Etype (Id))
4204      then
4205         if not Is_Library_Level_Entity (Id) then
4206            Check_Restriction (No_Nested_Finalization, N);
4207         else
4208            Validate_Controlled_Object (Id);
4209         end if;
4210      end if;
4211
4212      if Has_Task (Etype (Id)) then
4213         Check_Restriction (No_Tasking, N);
4214
4215         --  Deal with counting max tasks
4216
4217         --  Nothing to do if inside a generic
4218
4219         if Inside_A_Generic then
4220            null;
4221
4222         --  If library level entity, then count tasks
4223
4224         elsif Is_Library_Level_Entity (Id) then
4225            Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4226
4227         --  If not library level entity, then indicate we don't know max
4228         --  tasks and also check task hierarchy restriction and blocking
4229         --  operation (since starting a task is definitely blocking).
4230
4231         else
4232            Check_Restriction (Max_Tasks, N);
4233            Check_Restriction (No_Task_Hierarchy, N);
4234            Check_Potentially_Blocking_Operation (N);
4235         end if;
4236
4237         --  A rather specialized test. If we see two tasks being declared
4238         --  of the same type in the same object declaration, and the task
4239         --  has an entry with an address clause, we know that program error
4240         --  will be raised at run time since we can't have two tasks with
4241         --  entries at the same address.
4242
4243         if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4244            declare
4245               E : Entity_Id;
4246
4247            begin
4248               E := First_Entity (Etype (Id));
4249               while Present (E) loop
4250                  if Ekind (E) = E_Entry
4251                    and then Present (Get_Attribute_Definition_Clause
4252                                        (E, Attribute_Address))
4253                  then
4254                     Error_Msg_Warn := SPARK_Mode /= On;
4255                     Error_Msg_N
4256                       ("more than one task with same entry address<<", N);
4257                     Error_Msg_N ("\Program_Error [<<", N);
4258                     Insert_Action (N,
4259                       Make_Raise_Program_Error (Loc,
4260                         Reason => PE_Duplicated_Entry_Address));
4261                     exit;
4262                  end if;
4263
4264                  Next_Entity (E);
4265               end loop;
4266            end;
4267         end if;
4268      end if;
4269
4270      --  Some simple constant-propagation: if the expression is a constant
4271      --  string initialized with a literal, share the literal. This avoids
4272      --  a run-time copy.
4273
4274      if Present (E)
4275        and then Is_Entity_Name (E)
4276        and then Ekind (Entity (E)) = E_Constant
4277        and then Base_Type (Etype (E)) = Standard_String
4278      then
4279         declare
4280            Val : constant Node_Id := Constant_Value (Entity (E));
4281         begin
4282            if Present (Val) and then Nkind (Val) = N_String_Literal then
4283               Rewrite (E, New_Copy (Val));
4284            end if;
4285         end;
4286      end if;
4287
4288      --  Another optimization: if the nominal subtype is unconstrained and
4289      --  the expression is a function call that returns an unconstrained
4290      --  type, rewrite the declaration as a renaming of the result of the
4291      --  call. The exceptions below are cases where the copy is expected,
4292      --  either by the back end (Aliased case) or by the semantics, as for
4293      --  initializing controlled types or copying tags for classwide types.
4294
4295      if Present (E)
4296        and then Nkind (E) = N_Explicit_Dereference
4297        and then Nkind (Original_Node (E)) = N_Function_Call
4298        and then not Is_Library_Level_Entity (Id)
4299        and then not Is_Constrained (Underlying_Type (T))
4300        and then not Is_Aliased (Id)
4301        and then not Is_Class_Wide_Type (T)
4302        and then not Is_Controlled_Active (T)
4303        and then not Has_Controlled_Component (Base_Type (T))
4304        and then Expander_Active
4305      then
4306         Rewrite (N,
4307           Make_Object_Renaming_Declaration (Loc,
4308             Defining_Identifier => Id,
4309             Access_Definition   => Empty,
4310             Subtype_Mark        => New_Occurrence_Of
4311                                      (Base_Type (Etype (Id)), Loc),
4312             Name                => E));
4313
4314         Set_Renamed_Object (Id, E);
4315
4316         --  Force generation of debugging information for the constant and for
4317         --  the renamed function call.
4318
4319         Set_Debug_Info_Needed (Id);
4320         Set_Debug_Info_Needed (Entity (Prefix (E)));
4321      end if;
4322
4323      if Present (Prev_Entity)
4324        and then Is_Frozen (Prev_Entity)
4325        and then not Error_Posted (Id)
4326      then
4327         Error_Msg_N ("full constant declaration appears too late", N);
4328      end if;
4329
4330      Check_Eliminated (Id);
4331
4332      --  Deal with setting In_Private_Part flag if in private part
4333
4334      if Ekind (Scope (Id)) = E_Package
4335        and then In_Private_Part (Scope (Id))
4336      then
4337         Set_In_Private_Part (Id);
4338      end if;
4339
4340      --  Check for violation of No_Local_Timing_Events
4341
4342      if Restriction_Check_Required (No_Local_Timing_Events)
4343        and then not Is_Library_Level_Entity (Id)
4344        and then Is_RTE (Etype (Id), RE_Timing_Event)
4345      then
4346         Check_Restriction (No_Local_Timing_Events, N);
4347      end if;
4348
4349   <<Leave>>
4350      --  Initialize the refined state of a variable here because this is a
4351      --  common destination for legal and illegal object declarations.
4352
4353      if Ekind (Id) = E_Variable then
4354         Set_Encapsulating_State (Id, Empty);
4355      end if;
4356
4357      if Has_Aspects (N) then
4358         Analyze_Aspect_Specifications (N, Id);
4359      end if;
4360
4361      Analyze_Dimension (N);
4362
4363      --  Verify whether the object declaration introduces an illegal hidden
4364      --  state within a package subject to a null abstract state.
4365
4366      if Ekind (Id) = E_Variable then
4367         Check_No_Hidden_State (Id);
4368      end if;
4369
4370      Ghost_Mode := Save_Ghost_Mode;
4371   end Analyze_Object_Declaration;
4372
4373   ---------------------------
4374   -- Analyze_Others_Choice --
4375   ---------------------------
4376
4377   --  Nothing to do for the others choice node itself, the semantic analysis
4378   --  of the others choice will occur as part of the processing of the parent
4379
4380   procedure Analyze_Others_Choice (N : Node_Id) is
4381      pragma Warnings (Off, N);
4382   begin
4383      null;
4384   end Analyze_Others_Choice;
4385
4386   -------------------------------------------
4387   -- Analyze_Private_Extension_Declaration --
4388   -------------------------------------------
4389
4390   procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4391      Indic       : constant Node_Id   := Subtype_Indication (N);
4392      T           : constant Entity_Id := Defining_Identifier (N);
4393      Parent_Base : Entity_Id;
4394      Parent_Type : Entity_Id;
4395
4396   begin
4397      --  Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4398
4399      if Is_Non_Empty_List (Interface_List (N)) then
4400         declare
4401            Intf : Node_Id;
4402            T    : Entity_Id;
4403
4404         begin
4405            Intf := First (Interface_List (N));
4406            while Present (Intf) loop
4407               T := Find_Type_Of_Subtype_Indic (Intf);
4408
4409               Diagnose_Interface (Intf, T);
4410               Next (Intf);
4411            end loop;
4412         end;
4413      end if;
4414
4415      Generate_Definition (T);
4416
4417      --  For other than Ada 2012, just enter the name in the current scope
4418
4419      if Ada_Version < Ada_2012 then
4420         Enter_Name (T);
4421
4422      --  Ada 2012 (AI05-0162): Enter the name in the current scope handling
4423      --  case of private type that completes an incomplete type.
4424
4425      else
4426         declare
4427            Prev : Entity_Id;
4428
4429         begin
4430            Prev := Find_Type_Name (N);
4431
4432            pragma Assert (Prev = T
4433              or else (Ekind (Prev) = E_Incomplete_Type
4434                        and then Present (Full_View (Prev))
4435                        and then Full_View (Prev) = T));
4436         end;
4437      end if;
4438
4439      Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4440      Parent_Base := Base_Type (Parent_Type);
4441
4442      if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4443         Set_Ekind (T, Ekind (Parent_Type));
4444         Set_Etype (T, Any_Type);
4445         goto Leave;
4446
4447      elsif not Is_Tagged_Type (Parent_Type) then
4448         Error_Msg_N
4449           ("parent of type extension must be a tagged type ", Indic);
4450         goto Leave;
4451
4452      elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4453         Error_Msg_N ("premature derivation of incomplete type", Indic);
4454         goto Leave;
4455
4456      elsif Is_Concurrent_Type (Parent_Type) then
4457         Error_Msg_N
4458           ("parent type of a private extension cannot be "
4459            & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4460
4461         Set_Etype              (T, Any_Type);
4462         Set_Ekind              (T, E_Limited_Private_Type);
4463         Set_Private_Dependents (T, New_Elmt_List);
4464         Set_Error_Posted       (T);
4465         goto Leave;
4466      end if;
4467
4468      --  Perhaps the parent type should be changed to the class-wide type's
4469      --  specific type in this case to prevent cascading errors ???
4470
4471      if Is_Class_Wide_Type (Parent_Type) then
4472         Error_Msg_N
4473           ("parent of type extension must not be a class-wide type", Indic);
4474         goto Leave;
4475      end if;
4476
4477      if (not Is_Package_Or_Generic_Package (Current_Scope)
4478           and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4479        or else In_Private_Part (Current_Scope)
4480
4481      then
4482         Error_Msg_N ("invalid context for private extension", N);
4483      end if;
4484
4485      --  Set common attributes
4486
4487      Set_Is_Pure          (T, Is_Pure (Current_Scope));
4488      Set_Scope            (T, Current_Scope);
4489      Set_Ekind            (T, E_Record_Type_With_Private);
4490      Init_Size_Align      (T);
4491      Set_Default_SSO      (T);
4492
4493      Set_Etype            (T,            Parent_Base);
4494      Set_Has_Task         (T, Has_Task  (Parent_Base));
4495      Set_Has_Protected    (T, Has_Task  (Parent_Base));
4496
4497      Set_Convention       (T, Convention     (Parent_Type));
4498      Set_First_Rep_Item   (T, First_Rep_Item (Parent_Type));
4499      Set_Is_First_Subtype (T);
4500      Make_Class_Wide_Type (T);
4501
4502      if Unknown_Discriminants_Present (N) then
4503         Set_Discriminant_Constraint (T, No_Elist);
4504      end if;
4505
4506      Build_Derived_Record_Type (N, Parent_Type, T);
4507
4508      --  Propagate inherited invariant information. The new type has
4509      --  invariants, if the parent type has inheritable invariants,
4510      --  and these invariants can in turn be inherited.
4511
4512      if Has_Inheritable_Invariants (Parent_Type) then
4513         Set_Has_Inheritable_Invariants (T);
4514         Set_Has_Invariants (T);
4515      end if;
4516
4517      --  Ada 2005 (AI-443): Synchronized private extension or a rewritten
4518      --  synchronized formal derived type.
4519
4520      if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4521         Set_Is_Limited_Record (T);
4522
4523         --  Formal derived type case
4524
4525         if Is_Generic_Type (T) then
4526
4527            --  The parent must be a tagged limited type or a synchronized
4528            --  interface.
4529
4530            if (not Is_Tagged_Type (Parent_Type)
4531                 or else not Is_Limited_Type (Parent_Type))
4532              and then
4533                (not Is_Interface (Parent_Type)
4534                  or else not Is_Synchronized_Interface (Parent_Type))
4535            then
4536               Error_Msg_NE ("parent type of & must be tagged limited " &
4537                             "or synchronized", N, T);
4538            end if;
4539
4540            --  The progenitors (if any) must be limited or synchronized
4541            --  interfaces.
4542
4543            if Present (Interfaces (T)) then
4544               declare
4545                  Iface      : Entity_Id;
4546                  Iface_Elmt : Elmt_Id;
4547
4548               begin
4549                  Iface_Elmt := First_Elmt (Interfaces (T));
4550                  while Present (Iface_Elmt) loop
4551                     Iface := Node (Iface_Elmt);
4552
4553                     if not Is_Limited_Interface (Iface)
4554                       and then not Is_Synchronized_Interface (Iface)
4555                     then
4556                        Error_Msg_NE ("progenitor & must be limited " &
4557                                      "or synchronized", N, Iface);
4558                     end if;
4559
4560                     Next_Elmt (Iface_Elmt);
4561                  end loop;
4562               end;
4563            end if;
4564
4565         --  Regular derived extension, the parent must be a limited or
4566         --  synchronized interface.
4567
4568         else
4569            if not Is_Interface (Parent_Type)
4570              or else (not Is_Limited_Interface (Parent_Type)
4571                        and then not Is_Synchronized_Interface (Parent_Type))
4572            then
4573               Error_Msg_NE
4574                 ("parent type of & must be limited interface", N, T);
4575            end if;
4576         end if;
4577
4578      --  A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4579      --  extension with a synchronized parent must be explicitly declared
4580      --  synchronized, because the full view will be a synchronized type.
4581      --  This must be checked before the check for limited types below,
4582      --  to ensure that types declared limited are not allowed to extend
4583      --  synchronized interfaces.
4584
4585      elsif Is_Interface (Parent_Type)
4586        and then Is_Synchronized_Interface (Parent_Type)
4587        and then not Synchronized_Present (N)
4588      then
4589         Error_Msg_NE
4590           ("private extension of& must be explicitly synchronized",
4591             N, Parent_Type);
4592
4593      elsif Limited_Present (N) then
4594         Set_Is_Limited_Record (T);
4595
4596         if not Is_Limited_Type (Parent_Type)
4597           and then
4598             (not Is_Interface (Parent_Type)
4599               or else not Is_Limited_Interface (Parent_Type))
4600         then
4601            Error_Msg_NE ("parent type& of limited extension must be limited",
4602              N, Parent_Type);
4603         end if;
4604      end if;
4605
4606   <<Leave>>
4607      if Has_Aspects (N) then
4608         Analyze_Aspect_Specifications (N, T);
4609      end if;
4610   end Analyze_Private_Extension_Declaration;
4611
4612   ---------------------------------
4613   -- Analyze_Subtype_Declaration --
4614   ---------------------------------
4615
4616   procedure Analyze_Subtype_Declaration
4617     (N    : Node_Id;
4618      Skip : Boolean := False)
4619   is
4620      Id       : constant Entity_Id := Defining_Identifier (N);
4621      R_Checks : Check_Result;
4622      T        : Entity_Id;
4623
4624   begin
4625      Generate_Definition (Id);
4626      Set_Is_Pure (Id, Is_Pure (Current_Scope));
4627      Init_Size_Align (Id);
4628
4629      --  The following guard condition on Enter_Name is to handle cases where
4630      --  the defining identifier has already been entered into the scope but
4631      --  the declaration as a whole needs to be analyzed.
4632
4633      --  This case in particular happens for derived enumeration types. The
4634      --  derived enumeration type is processed as an inserted enumeration type
4635      --  declaration followed by a rewritten subtype declaration. The defining
4636      --  identifier, however, is entered into the name scope very early in the
4637      --  processing of the original type declaration and therefore needs to be
4638      --  avoided here, when the created subtype declaration is analyzed. (See
4639      --  Build_Derived_Types)
4640
4641      --  This also happens when the full view of a private type is derived
4642      --  type with constraints. In this case the entity has been introduced
4643      --  in the private declaration.
4644
4645      --  Finally this happens in some complex cases when validity checks are
4646      --  enabled, where the same subtype declaration may be analyzed twice.
4647      --  This can happen if the subtype is created by the pre-analysis of
4648      --  an attribute tht gives the range of a loop statement, and the loop
4649      --  itself appears within an if_statement that will be rewritten during
4650      --  expansion.
4651
4652      if Skip
4653        or else (Present (Etype (Id))
4654                  and then (Is_Private_Type (Etype (Id))
4655                             or else Is_Task_Type (Etype (Id))
4656                             or else Is_Rewrite_Substitution (N)))
4657      then
4658         null;
4659
4660      elsif Current_Entity (Id) = Id then
4661         null;
4662
4663      else
4664         Enter_Name (Id);
4665      end if;
4666
4667      T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4668
4669      --  Class-wide equivalent types of records with unknown discriminants
4670      --  involve the generation of an itype which serves as the private view
4671      --  of a constrained record subtype. In such cases the base type of the
4672      --  current subtype we are processing is the private itype. Use the full
4673      --  of the private itype when decorating various attributes.
4674
4675      if Is_Itype (T)
4676        and then Is_Private_Type (T)
4677        and then Present (Full_View (T))
4678      then
4679         T := Full_View (T);
4680      end if;
4681
4682      --  Inherit common attributes
4683
4684      Set_Is_Volatile       (Id, Is_Volatile       (T));
4685      Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4686      Set_Is_Generic_Type   (Id, Is_Generic_Type   (Base_Type (T)));
4687      Set_Convention        (Id, Convention        (T));
4688
4689      --  If ancestor has predicates then so does the subtype, and in addition
4690      --  we must delay the freeze to properly arrange predicate inheritance.
4691
4692      --  The Ancestor_Type test is really unpleasant, there seem to be cases
4693      --  in which T = ID, so the above tests and assignments do nothing???
4694
4695      if Has_Predicates (T)
4696        or else (Present (Ancestor_Subtype (T))
4697                  and then Has_Predicates (Ancestor_Subtype (T)))
4698      then
4699         Set_Has_Predicates (Id);
4700         Set_Has_Delayed_Freeze (Id);
4701      end if;
4702
4703      --  Subtype of Boolean cannot have a constraint in SPARK
4704
4705      if Is_Boolean_Type (T)
4706        and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4707      then
4708         Check_SPARK_05_Restriction
4709           ("subtype of Boolean cannot have constraint", N);
4710      end if;
4711
4712      if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4713         declare
4714            Cstr     : constant Node_Id := Constraint (Subtype_Indication (N));
4715            One_Cstr : Node_Id;
4716            Low      : Node_Id;
4717            High     : Node_Id;
4718
4719         begin
4720            if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4721               One_Cstr := First (Constraints (Cstr));
4722               while Present (One_Cstr) loop
4723
4724                  --  Index or discriminant constraint in SPARK must be a
4725                  --  subtype mark.
4726
4727                  if not
4728                    Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4729                  then
4730                     Check_SPARK_05_Restriction
4731                       ("subtype mark required", One_Cstr);
4732
4733                  --  String subtype must have a lower bound of 1 in SPARK.
4734                  --  Note that we do not need to test for the non-static case
4735                  --  here, since that was already taken care of in
4736                  --  Process_Range_Expr_In_Decl.
4737
4738                  elsif Base_Type (T) = Standard_String then
4739                     Get_Index_Bounds (One_Cstr, Low, High);
4740
4741                     if Is_OK_Static_Expression (Low)
4742                       and then Expr_Value (Low) /= 1
4743                     then
4744                        Check_SPARK_05_Restriction
4745                          ("String subtype must have lower bound of 1", N);
4746                     end if;
4747                  end if;
4748
4749                  Next (One_Cstr);
4750               end loop;
4751            end if;
4752         end;
4753      end if;
4754
4755      --  In the case where there is no constraint given in the subtype
4756      --  indication, Process_Subtype just returns the Subtype_Mark, so its
4757      --  semantic attributes must be established here.
4758
4759      if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4760         Set_Etype (Id, Base_Type (T));
4761
4762         --  Subtype of unconstrained array without constraint is not allowed
4763         --  in SPARK.
4764
4765         if Is_Array_Type (T) and then not Is_Constrained (T) then
4766            Check_SPARK_05_Restriction
4767              ("subtype of unconstrained array must have constraint", N);
4768         end if;
4769
4770         case Ekind (T) is
4771            when Array_Kind =>
4772               Set_Ekind                       (Id, E_Array_Subtype);
4773               Copy_Array_Subtype_Attributes   (Id, T);
4774
4775            when Decimal_Fixed_Point_Kind =>
4776               Set_Ekind                (Id, E_Decimal_Fixed_Point_Subtype);
4777               Set_Digits_Value         (Id, Digits_Value       (T));
4778               Set_Delta_Value          (Id, Delta_Value        (T));
4779               Set_Scale_Value          (Id, Scale_Value        (T));
4780               Set_Small_Value          (Id, Small_Value        (T));
4781               Set_Scalar_Range         (Id, Scalar_Range       (T));
4782               Set_Machine_Radix_10     (Id, Machine_Radix_10   (T));
4783               Set_Is_Constrained       (Id, Is_Constrained     (T));
4784               Set_Is_Known_Valid       (Id, Is_Known_Valid     (T));
4785               Set_RM_Size              (Id, RM_Size            (T));
4786
4787            when Enumeration_Kind =>
4788               Set_Ekind                (Id, E_Enumeration_Subtype);
4789               Set_First_Literal        (Id, First_Literal (Base_Type (T)));
4790               Set_Scalar_Range         (Id, Scalar_Range       (T));
4791               Set_Is_Character_Type    (Id, Is_Character_Type  (T));
4792               Set_Is_Constrained       (Id, Is_Constrained     (T));
4793               Set_Is_Known_Valid       (Id, Is_Known_Valid     (T));
4794               Set_RM_Size              (Id, RM_Size            (T));
4795               Inherit_Predicate_Flags  (Id, T);
4796
4797            when Ordinary_Fixed_Point_Kind =>
4798               Set_Ekind                (Id, E_Ordinary_Fixed_Point_Subtype);
4799               Set_Scalar_Range         (Id, Scalar_Range       (T));
4800               Set_Small_Value          (Id, Small_Value        (T));
4801               Set_Delta_Value          (Id, Delta_Value        (T));
4802               Set_Is_Constrained       (Id, Is_Constrained     (T));
4803               Set_Is_Known_Valid       (Id, Is_Known_Valid     (T));
4804               Set_RM_Size              (Id, RM_Size            (T));
4805
4806            when Float_Kind =>
4807               Set_Ekind                (Id, E_Floating_Point_Subtype);
4808               Set_Scalar_Range         (Id, Scalar_Range       (T));
4809               Set_Digits_Value         (Id, Digits_Value       (T));
4810               Set_Is_Constrained       (Id, Is_Constrained     (T));
4811
4812               --  If the floating point type has dimensions, these will be
4813               --  inherited subsequently when Analyze_Dimensions is called.
4814
4815            when Signed_Integer_Kind =>
4816               Set_Ekind                (Id, E_Signed_Integer_Subtype);
4817               Set_Scalar_Range         (Id, Scalar_Range       (T));
4818               Set_Is_Constrained       (Id, Is_Constrained     (T));
4819               Set_Is_Known_Valid       (Id, Is_Known_Valid     (T));
4820               Set_RM_Size              (Id, RM_Size            (T));
4821               Inherit_Predicate_Flags  (Id, T);
4822
4823            when Modular_Integer_Kind =>
4824               Set_Ekind                (Id, E_Modular_Integer_Subtype);
4825               Set_Scalar_Range         (Id, Scalar_Range       (T));
4826               Set_Is_Constrained       (Id, Is_Constrained     (T));
4827               Set_Is_Known_Valid       (Id, Is_Known_Valid     (T));
4828               Set_RM_Size              (Id, RM_Size            (T));
4829               Inherit_Predicate_Flags  (Id, T);
4830
4831            when Class_Wide_Kind =>
4832               Set_Ekind                (Id, E_Class_Wide_Subtype);
4833               Set_Class_Wide_Type      (Id, Class_Wide_Type    (T));
4834               Set_Cloned_Subtype       (Id, T);
4835               Set_Is_Tagged_Type       (Id, True);
4836               Set_Has_Unknown_Discriminants
4837                                        (Id, True);
4838               Set_No_Tagged_Streams_Pragma
4839                                        (Id, No_Tagged_Streams_Pragma (T));
4840
4841               if Ekind (T) = E_Class_Wide_Subtype then
4842                  Set_Equivalent_Type   (Id, Equivalent_Type    (T));
4843               end if;
4844
4845            when E_Record_Type | E_Record_Subtype =>
4846               Set_Ekind                (Id, E_Record_Subtype);
4847
4848               if Ekind (T) = E_Record_Subtype
4849                 and then Present (Cloned_Subtype (T))
4850               then
4851                  Set_Cloned_Subtype    (Id, Cloned_Subtype (T));
4852               else
4853                  Set_Cloned_Subtype    (Id, T);
4854               end if;
4855
4856               Set_First_Entity         (Id, First_Entity       (T));
4857               Set_Last_Entity          (Id, Last_Entity        (T));
4858               Set_Has_Discriminants    (Id, Has_Discriminants  (T));
4859               Set_Is_Constrained       (Id, Is_Constrained     (T));
4860               Set_Is_Limited_Record    (Id, Is_Limited_Record  (T));
4861               Set_Has_Implicit_Dereference
4862                                        (Id, Has_Implicit_Dereference (T));
4863               Set_Has_Unknown_Discriminants
4864                                        (Id, Has_Unknown_Discriminants (T));
4865
4866               if Has_Discriminants (T) then
4867                  Set_Discriminant_Constraint
4868                                        (Id, Discriminant_Constraint (T));
4869                  Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4870
4871               elsif Has_Unknown_Discriminants (Id) then
4872                  Set_Discriminant_Constraint (Id, No_Elist);
4873               end if;
4874
4875               if Is_Tagged_Type (T) then
4876                  Set_Is_Tagged_Type    (Id, True);
4877                  Set_No_Tagged_Streams_Pragma
4878                                        (Id, No_Tagged_Streams_Pragma (T));
4879                  Set_Is_Abstract_Type  (Id, Is_Abstract_Type (T));
4880                  Set_Direct_Primitive_Operations
4881                                        (Id, Direct_Primitive_Operations (T));
4882                  Set_Class_Wide_Type   (Id, Class_Wide_Type (T));
4883
4884                  if Is_Interface (T) then
4885                     Set_Is_Interface (Id);
4886                     Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4887                  end if;
4888               end if;
4889
4890            when Private_Kind =>
4891               Set_Ekind              (Id, Subtype_Kind (Ekind        (T)));
4892               Set_Has_Discriminants  (Id, Has_Discriminants          (T));
4893               Set_Is_Constrained     (Id, Is_Constrained             (T));
4894               Set_First_Entity       (Id, First_Entity               (T));
4895               Set_Last_Entity        (Id, Last_Entity                (T));
4896               Set_Private_Dependents (Id, New_Elmt_List);
4897               Set_Is_Limited_Record  (Id, Is_Limited_Record          (T));
4898               Set_Has_Implicit_Dereference
4899                                      (Id, Has_Implicit_Dereference   (T));
4900               Set_Has_Unknown_Discriminants
4901                                      (Id, Has_Unknown_Discriminants  (T));
4902               Set_Known_To_Have_Preelab_Init
4903                                      (Id, Known_To_Have_Preelab_Init (T));
4904
4905               if Is_Tagged_Type (T) then
4906                  Set_Is_Tagged_Type              (Id);
4907                  Set_No_Tagged_Streams_Pragma    (Id,
4908                    No_Tagged_Streams_Pragma (T));
4909                  Set_Is_Abstract_Type            (Id, Is_Abstract_Type (T));
4910                  Set_Class_Wide_Type             (Id, Class_Wide_Type  (T));
4911                  Set_Direct_Primitive_Operations (Id,
4912                    Direct_Primitive_Operations (T));
4913               end if;
4914
4915               --  In general the attributes of the subtype of a private type
4916               --  are the attributes of the partial view of parent. However,
4917               --  the full view may be a discriminated type, and the subtype
4918               --  must share the discriminant constraint to generate correct
4919               --  calls to initialization procedures.
4920
4921               if Has_Discriminants (T) then
4922                  Set_Discriminant_Constraint
4923                    (Id, Discriminant_Constraint (T));
4924                  Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4925
4926               elsif Present (Full_View (T))
4927                 and then Has_Discriminants (Full_View (T))
4928               then
4929                  Set_Discriminant_Constraint
4930                    (Id, Discriminant_Constraint (Full_View (T)));
4931                  Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4932
4933                  --  This would seem semantically correct, but apparently
4934                  --  generates spurious errors about missing components ???
4935
4936                  --  Set_Has_Discriminants (Id);
4937               end if;
4938
4939               Prepare_Private_Subtype_Completion (Id, N);
4940
4941               --  If this is the subtype of a constrained private type with
4942               --  discriminants that has got a full view and we also have
4943               --  built a completion just above, show that the completion
4944               --  is a clone of the full view to the back-end.
4945
4946               if Has_Discriminants (T)
4947                  and then not Has_Unknown_Discriminants (T)
4948                  and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4949                  and then Present (Full_View (T))
4950                  and then Present (Full_View (Id))
4951               then
4952                  Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4953               end if;
4954
4955            when Access_Kind =>
4956               Set_Ekind             (Id, E_Access_Subtype);
4957               Set_Is_Constrained    (Id, Is_Constrained        (T));
4958               Set_Is_Access_Constant
4959                                     (Id, Is_Access_Constant    (T));
4960               Set_Directly_Designated_Type
4961                                     (Id, Designated_Type       (T));
4962               Set_Can_Never_Be_Null (Id, Can_Never_Be_Null     (T));
4963
4964               --  A Pure library_item must not contain the declaration of a
4965               --  named access type, except within a subprogram, generic
4966               --  subprogram, task unit, or protected unit, or if it has
4967               --  a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4968
4969               if Comes_From_Source (Id)
4970                 and then In_Pure_Unit
4971                 and then not In_Subprogram_Task_Protected_Unit
4972                 and then not No_Pool_Assigned (Id)
4973               then
4974                  Error_Msg_N
4975                    ("named access types not allowed in pure unit", N);
4976               end if;
4977
4978            when Concurrent_Kind =>
4979               Set_Ekind                (Id, Subtype_Kind (Ekind   (T)));
4980               Set_Corresponding_Record_Type (Id,
4981                                         Corresponding_Record_Type (T));
4982               Set_First_Entity         (Id, First_Entity          (T));
4983               Set_First_Private_Entity (Id, First_Private_Entity  (T));
4984               Set_Has_Discriminants    (Id, Has_Discriminants     (T));
4985               Set_Is_Constrained       (Id, Is_Constrained        (T));
4986               Set_Is_Tagged_Type       (Id, Is_Tagged_Type        (T));
4987               Set_Last_Entity          (Id, Last_Entity           (T));
4988
4989               if Is_Tagged_Type (T) then
4990                  Set_No_Tagged_Streams_Pragma
4991                    (Id, No_Tagged_Streams_Pragma (T));
4992               end if;
4993
4994               if Has_Discriminants (T) then
4995                  Set_Discriminant_Constraint
4996                    (Id, Discriminant_Constraint (T));
4997                  Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4998               end if;
4999
5000            when Incomplete_Kind  =>
5001               if Ada_Version >= Ada_2005 then
5002
5003                  --  In Ada 2005 an incomplete type can be explicitly tagged:
5004                  --  propagate indication. Note that we also have to include
5005                  --  subtypes for Ada 2012 extended use of incomplete types.
5006
5007                  Set_Ekind              (Id, E_Incomplete_Subtype);
5008                  Set_Is_Tagged_Type     (Id, Is_Tagged_Type (T));
5009                  Set_Private_Dependents (Id, New_Elmt_List);
5010
5011                  if Is_Tagged_Type (Id) then
5012                     Set_No_Tagged_Streams_Pragma
5013                       (Id, No_Tagged_Streams_Pragma (T));
5014                     Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5015                  end if;
5016
5017                  --  Ada 2005 (AI-412): Decorate an incomplete subtype of an
5018                  --  incomplete type visible through a limited with clause.
5019
5020                  if From_Limited_With (T)
5021                    and then Present (Non_Limited_View (T))
5022                  then
5023                     Set_From_Limited_With (Id);
5024                     Set_Non_Limited_View  (Id, Non_Limited_View (T));
5025
5026                  --  Ada 2005 (AI-412): Add the regular incomplete subtype
5027                  --  to the private dependents of the original incomplete
5028                  --  type for future transformation.
5029
5030                  else
5031                     Append_Elmt (Id, Private_Dependents (T));
5032                  end if;
5033
5034               --  If the subtype name denotes an incomplete type an error
5035               --  was already reported by Process_Subtype.
5036
5037               else
5038                  Set_Etype (Id, Any_Type);
5039               end if;
5040
5041            when others =>
5042               raise Program_Error;
5043         end case;
5044      end if;
5045
5046      if Etype (Id) = Any_Type then
5047         goto Leave;
5048      end if;
5049
5050      --  Some common processing on all types
5051
5052      Set_Size_Info      (Id, T);
5053      Set_First_Rep_Item (Id, First_Rep_Item (T));
5054
5055      --  If the parent type is a generic actual, so is the subtype. This may
5056      --  happen in a nested instance. Why Comes_From_Source test???
5057
5058      if not Comes_From_Source (N) then
5059         Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5060      end if;
5061
5062      T := Etype (Id);
5063
5064      Set_Is_Immediately_Visible   (Id, True);
5065      Set_Depends_On_Private       (Id, Has_Private_Component (T));
5066      Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
5067
5068      if Is_Interface (T) then
5069         Set_Is_Interface (Id);
5070      end if;
5071
5072      if Present (Generic_Parent_Type (N))
5073        and then
5074          (Nkind (Parent (Generic_Parent_Type (N))) /=
5075                                              N_Formal_Type_Declaration
5076            or else Nkind (Formal_Type_Definition
5077                            (Parent (Generic_Parent_Type (N)))) /=
5078                                              N_Formal_Private_Type_Definition)
5079      then
5080         if Is_Tagged_Type (Id) then
5081
5082            --  If this is a generic actual subtype for a synchronized type,
5083            --  the primitive operations are those of the corresponding record
5084            --  for which there is a separate subtype declaration.
5085
5086            if Is_Concurrent_Type (Id) then
5087               null;
5088            elsif Is_Class_Wide_Type (Id) then
5089               Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5090            else
5091               Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5092            end if;
5093
5094         elsif Scope (Etype (Id)) /= Standard_Standard then
5095            Derive_Subprograms (Generic_Parent_Type (N), Id);
5096         end if;
5097      end if;
5098
5099      if Is_Private_Type (T) and then Present (Full_View (T)) then
5100         Conditional_Delay (Id, Full_View (T));
5101
5102      --  The subtypes of components or subcomponents of protected types
5103      --  do not need freeze nodes, which would otherwise appear in the
5104      --  wrong scope (before the freeze node for the protected type). The
5105      --  proper subtypes are those of the subcomponents of the corresponding
5106      --  record.
5107
5108      elsif Ekind (Scope (Id)) /= E_Protected_Type
5109        and then Present (Scope (Scope (Id))) -- error defense
5110        and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5111      then
5112         Conditional_Delay (Id, T);
5113      end if;
5114
5115      --  Check that Constraint_Error is raised for a scalar subtype indication
5116      --  when the lower or upper bound of a non-null range lies outside the
5117      --  range of the type mark.
5118
5119      if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5120         if Is_Scalar_Type (Etype (Id))
5121            and then Scalar_Range (Id) /=
5122                     Scalar_Range (Etype (Subtype_Mark
5123                                           (Subtype_Indication (N))))
5124         then
5125            Apply_Range_Check
5126              (Scalar_Range (Id),
5127               Etype (Subtype_Mark (Subtype_Indication (N))));
5128
5129         --  In the array case, check compatibility for each index
5130
5131         elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5132         then
5133            --  This really should be a subprogram that finds the indications
5134            --  to check???
5135
5136            declare
5137               Subt_Index   : Node_Id := First_Index (Id);
5138               Target_Index : Node_Id :=
5139                                First_Index (Etype
5140                                  (Subtype_Mark (Subtype_Indication (N))));
5141               Has_Dyn_Chk  : Boolean := Has_Dynamic_Range_Check (N);
5142
5143            begin
5144               while Present (Subt_Index) loop
5145                  if ((Nkind (Subt_Index) = N_Identifier
5146                        and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5147                       or else Nkind (Subt_Index) = N_Subtype_Indication)
5148                    and then
5149                      Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5150                  then
5151                     declare
5152                        Target_Typ : constant Entity_Id :=
5153                                       Etype (Target_Index);
5154                     begin
5155                        R_Checks :=
5156                          Get_Range_Checks
5157                            (Scalar_Range (Etype (Subt_Index)),
5158                             Target_Typ,
5159                             Etype (Subt_Index),
5160                             Defining_Identifier (N));
5161
5162                        --  Reset Has_Dynamic_Range_Check on the subtype to
5163                        --  prevent elision of the index check due to a dynamic
5164                        --  check generated for a preceding index (needed since
5165                        --  Insert_Range_Checks tries to avoid generating
5166                        --  redundant checks on a given declaration).
5167
5168                        Set_Has_Dynamic_Range_Check (N, False);
5169
5170                        Insert_Range_Checks
5171                          (R_Checks,
5172                           N,
5173                           Target_Typ,
5174                           Sloc (Defining_Identifier (N)));
5175
5176                        --  Record whether this index involved a dynamic check
5177
5178                        Has_Dyn_Chk :=
5179                          Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5180                     end;
5181                  end if;
5182
5183                  Next_Index (Subt_Index);
5184                  Next_Index (Target_Index);
5185               end loop;
5186
5187               --  Finally, mark whether the subtype involves dynamic checks
5188
5189               Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5190            end;
5191         end if;
5192      end if;
5193
5194      --  A type invariant applies to any subtype in its scope, in particular
5195      --  to a generic actual.
5196
5197      if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5198         Set_Has_Invariants (Id);
5199         Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5200      end if;
5201
5202      --  Make sure that generic actual types are properly frozen. The subtype
5203      --  is marked as a generic actual type when the enclosing instance is
5204      --  analyzed, so here we identify the subtype from the tree structure.
5205
5206      if Expander_Active
5207        and then Is_Generic_Actual_Type (Id)
5208        and then In_Instance
5209        and then not Comes_From_Source (N)
5210        and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5211        and then Is_Frozen (T)
5212      then
5213         Freeze_Before (N, Id);
5214      end if;
5215
5216      Set_Optimize_Alignment_Flags (Id);
5217      Check_Eliminated (Id);
5218
5219   <<Leave>>
5220      if Has_Aspects (N) then
5221         Analyze_Aspect_Specifications (N, Id);
5222      end if;
5223
5224      Analyze_Dimension (N);
5225
5226      --  Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5227      --  indications on composite types where the constraints are dynamic.
5228      --  Note that object declarations and aggregates generate implicit
5229      --  subtype declarations, which this covers. One special case is that the
5230      --  implicitly generated "=" for discriminated types includes an
5231      --  offending subtype declaration, which is harmless, so we ignore it
5232      --  here.
5233
5234      if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5235         declare
5236            Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5237         begin
5238            if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5239              and then not (Is_Internal (Id)
5240                             and then Is_TSS (Scope (Id),
5241                                              TSS_Composite_Equality))
5242              and then not Within_Init_Proc
5243              and then not All_Composite_Constraints_Static (Cstr)
5244            then
5245               Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5246            end if;
5247         end;
5248      end if;
5249   end Analyze_Subtype_Declaration;
5250
5251   --------------------------------
5252   -- Analyze_Subtype_Indication --
5253   --------------------------------
5254
5255   procedure Analyze_Subtype_Indication (N : Node_Id) is
5256      T : constant Entity_Id := Subtype_Mark (N);
5257      R : constant Node_Id   := Range_Expression (Constraint (N));
5258
5259   begin
5260      Analyze (T);
5261
5262      if R /= Error then
5263         Analyze (R);
5264         Set_Etype (N, Etype (R));
5265         Resolve (R, Entity (T));
5266      else
5267         Set_Error_Posted (R);
5268         Set_Error_Posted (T);
5269      end if;
5270   end Analyze_Subtype_Indication;
5271
5272   --------------------------
5273   -- Analyze_Variant_Part --
5274   --------------------------
5275
5276   procedure Analyze_Variant_Part (N : Node_Id) is
5277      Discr_Name : Node_Id;
5278      Discr_Type : Entity_Id;
5279
5280      procedure Process_Variant (A : Node_Id);
5281      --  Analyze declarations for a single variant
5282
5283      package Analyze_Variant_Choices is
5284        new Generic_Analyze_Choices (Process_Variant);
5285      use Analyze_Variant_Choices;
5286
5287      ---------------------
5288      -- Process_Variant --
5289      ---------------------
5290
5291      procedure Process_Variant (A : Node_Id) is
5292         CL : constant Node_Id := Component_List (A);
5293      begin
5294         if not Null_Present (CL) then
5295            Analyze_Declarations (Component_Items (CL));
5296
5297            if Present (Variant_Part (CL)) then
5298               Analyze (Variant_Part (CL));
5299            end if;
5300         end if;
5301      end Process_Variant;
5302
5303   --  Start of processing for Analyze_Variant_Part
5304
5305   begin
5306      Discr_Name := Name (N);
5307      Analyze (Discr_Name);
5308
5309      --  If Discr_Name bad, get out (prevent cascaded errors)
5310
5311      if Etype (Discr_Name) = Any_Type then
5312         return;
5313      end if;
5314
5315      --  Check invalid discriminant in variant part
5316
5317      if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5318         Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5319      end if;
5320
5321      Discr_Type := Etype (Entity (Discr_Name));
5322
5323      if not Is_Discrete_Type (Discr_Type) then
5324         Error_Msg_N
5325           ("discriminant in a variant part must be of a discrete type",
5326             Name (N));
5327         return;
5328      end if;
5329
5330      --  Now analyze the choices, which also analyzes the declarations that
5331      --  are associated with each choice.
5332
5333      Analyze_Choices (Variants (N), Discr_Type);
5334
5335      --  Note: we used to instantiate and call Check_Choices here to check
5336      --  that the choices covered the discriminant, but it's too early to do
5337      --  that because of statically predicated subtypes, whose analysis may
5338      --  be deferred to their freeze point which may be as late as the freeze
5339      --  point of the containing record. So this call is now to be found in
5340      --  Freeze_Record_Declaration.
5341
5342   end Analyze_Variant_Part;
5343
5344   ----------------------------
5345   -- Array_Type_Declaration --
5346   ----------------------------
5347
5348   procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5349      Component_Def : constant Node_Id := Component_Definition (Def);
5350      Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5351      Element_Type  : Entity_Id;
5352      Implicit_Base : Entity_Id;
5353      Index         : Node_Id;
5354      Related_Id    : Entity_Id := Empty;
5355      Nb_Index      : Nat;
5356      P             : constant Node_Id := Parent (Def);
5357      Priv          : Entity_Id;
5358
5359   begin
5360      if Nkind (Def) = N_Constrained_Array_Definition then
5361         Index := First (Discrete_Subtype_Definitions (Def));
5362      else
5363         Index := First (Subtype_Marks (Def));
5364      end if;
5365
5366      --  Find proper names for the implicit types which may be public. In case
5367      --  of anonymous arrays we use the name of the first object of that type
5368      --  as prefix.
5369
5370      if No (T) then
5371         Related_Id := Defining_Identifier (P);
5372      else
5373         Related_Id := T;
5374      end if;
5375
5376      Nb_Index := 1;
5377      while Present (Index) loop
5378         Analyze (Index);
5379
5380         --  Test for odd case of trying to index a type by the type itself
5381
5382         if Is_Entity_Name (Index) and then Entity (Index) = T then
5383            Error_Msg_N ("type& cannot be indexed by itself", Index);
5384            Set_Entity (Index, Standard_Boolean);
5385            Set_Etype (Index, Standard_Boolean);
5386         end if;
5387
5388         --  Check SPARK restriction requiring a subtype mark
5389
5390         if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5391            Check_SPARK_05_Restriction ("subtype mark required", Index);
5392         end if;
5393
5394         --  Add a subtype declaration for each index of private array type
5395         --  declaration whose etype is also private. For example:
5396
5397         --     package Pkg is
5398         --        type Index is private;
5399         --     private
5400         --        type Table is array (Index) of ...
5401         --     end;
5402
5403         --  This is currently required by the expander for the internally
5404         --  generated equality subprogram of records with variant parts in
5405         --  which the etype of some component is such private type.
5406
5407         if Ekind (Current_Scope) = E_Package
5408           and then In_Private_Part (Current_Scope)
5409           and then Has_Private_Declaration (Etype (Index))
5410         then
5411            declare
5412               Loc   : constant Source_Ptr := Sloc (Def);
5413               New_E : Entity_Id;
5414               Decl  : Entity_Id;
5415
5416            begin
5417               New_E := Make_Temporary (Loc, 'T');
5418               Set_Is_Internal (New_E);
5419
5420               Decl :=
5421                 Make_Subtype_Declaration (Loc,
5422                   Defining_Identifier => New_E,
5423                   Subtype_Indication  =>
5424                     New_Occurrence_Of (Etype (Index), Loc));
5425
5426               Insert_Before (Parent (Def), Decl);
5427               Analyze (Decl);
5428               Set_Etype (Index, New_E);
5429
5430               --  If the index is a range the Entity attribute is not
5431               --  available. Example:
5432
5433               --     package Pkg is
5434               --        type T is private;
5435               --     private
5436               --        type T is new Natural;
5437               --        Table : array (T(1) .. T(10)) of Boolean;
5438               --     end Pkg;
5439
5440               if Nkind (Index) /= N_Range then
5441                  Set_Entity (Index, New_E);
5442               end if;
5443            end;
5444         end if;
5445
5446         Make_Index (Index, P, Related_Id, Nb_Index);
5447
5448         --  Check error of subtype with predicate for index type
5449
5450         Bad_Predicated_Subtype_Use
5451           ("subtype& has predicate, not allowed as index subtype",
5452            Index, Etype (Index));
5453
5454         --  Move to next index
5455
5456         Next_Index (Index);
5457         Nb_Index := Nb_Index + 1;
5458      end loop;
5459
5460      --  Process subtype indication if one is present
5461
5462      if Present (Component_Typ) then
5463         Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5464
5465         Set_Etype (Component_Typ, Element_Type);
5466
5467         if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5468            Check_SPARK_05_Restriction
5469              ("subtype mark required", Component_Typ);
5470         end if;
5471
5472      --  Ada 2005 (AI-230): Access Definition case
5473
5474      else pragma Assert (Present (Access_Definition (Component_Def)));
5475
5476         --  Indicate that the anonymous access type is created by the
5477         --  array type declaration.
5478
5479         Element_Type := Access_Definition
5480                           (Related_Nod => P,
5481                            N           => Access_Definition (Component_Def));
5482         Set_Is_Local_Anonymous_Access (Element_Type);
5483
5484         --  Propagate the parent. This field is needed if we have to generate
5485         --  the master_id associated with an anonymous access to task type
5486         --  component (see Expand_N_Full_Type_Declaration.Build_Master)
5487
5488         Set_Parent (Element_Type, Parent (T));
5489
5490         --  Ada 2005 (AI-230): In case of components that are anonymous access
5491         --  types the level of accessibility depends on the enclosing type
5492         --  declaration
5493
5494         Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5495
5496         --  Ada 2005 (AI-254)
5497
5498         declare
5499            CD : constant Node_Id :=
5500                   Access_To_Subprogram_Definition
5501                     (Access_Definition (Component_Def));
5502         begin
5503            if Present (CD) and then Protected_Present (CD) then
5504               Element_Type :=
5505                 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5506            end if;
5507         end;
5508      end if;
5509
5510      --  Constrained array case
5511
5512      if No (T) then
5513         T := Create_Itype (E_Void, P, Related_Id, 'T');
5514      end if;
5515
5516      if Nkind (Def) = N_Constrained_Array_Definition then
5517
5518         --  Establish Implicit_Base as unconstrained base type
5519
5520         Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5521
5522         Set_Etype              (Implicit_Base, Implicit_Base);
5523         Set_Scope              (Implicit_Base, Current_Scope);
5524         Set_Has_Delayed_Freeze (Implicit_Base);
5525         Set_Default_SSO        (Implicit_Base);
5526
5527         --  The constrained array type is a subtype of the unconstrained one
5528
5529         Set_Ekind              (T, E_Array_Subtype);
5530         Init_Size_Align        (T);
5531         Set_Etype              (T, Implicit_Base);
5532         Set_Scope              (T, Current_Scope);
5533         Set_Is_Constrained     (T);
5534         Set_First_Index        (T,
5535           First (Discrete_Subtype_Definitions (Def)));
5536         Set_Has_Delayed_Freeze (T);
5537
5538         --  Complete setup of implicit base type
5539
5540         Set_First_Index       (Implicit_Base, First_Index (T));
5541         Set_Component_Type    (Implicit_Base, Element_Type);
5542         Set_Has_Task          (Implicit_Base, Has_Task (Element_Type));
5543         Set_Has_Protected     (Implicit_Base, Has_Protected (Element_Type));
5544         Set_Component_Size    (Implicit_Base, Uint_0);
5545         Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5546         Set_Has_Controlled_Component (Implicit_Base,
5547           Has_Controlled_Component (Element_Type)
5548             or else Is_Controlled_Active  (Element_Type));
5549         Set_Finalize_Storage_Only (Implicit_Base,
5550           Finalize_Storage_Only (Element_Type));
5551
5552         --  Inherit the "ghostness" from the constrained array type
5553
5554         if Ghost_Mode > None or else Is_Ghost_Entity (T) then
5555            Set_Is_Ghost_Entity (Implicit_Base);
5556         end if;
5557
5558      --  Unconstrained array case
5559
5560      else
5561         Set_Ekind                    (T, E_Array_Type);
5562         Init_Size_Align              (T);
5563         Set_Etype                    (T, T);
5564         Set_Scope                    (T, Current_Scope);
5565         Set_Component_Size           (T, Uint_0);
5566         Set_Is_Constrained           (T, False);
5567         Set_First_Index              (T, First (Subtype_Marks (Def)));
5568         Set_Has_Delayed_Freeze       (T, True);
5569         Set_Has_Task                 (T, Has_Task      (Element_Type));
5570         Set_Has_Protected            (T, Has_Protected (Element_Type));
5571         Set_Has_Controlled_Component (T, Has_Controlled_Component
5572                                                        (Element_Type)
5573                                            or else
5574                                          Is_Controlled_Active (Element_Type));
5575         Set_Finalize_Storage_Only    (T, Finalize_Storage_Only
5576                                                        (Element_Type));
5577         Set_Default_SSO              (T);
5578      end if;
5579
5580      --  Common attributes for both cases
5581
5582      Set_Component_Type (Base_Type (T), Element_Type);
5583      Set_Packed_Array_Impl_Type (T, Empty);
5584
5585      if Aliased_Present (Component_Definition (Def)) then
5586         Check_SPARK_05_Restriction
5587           ("aliased is not allowed", Component_Definition (Def));
5588         Set_Has_Aliased_Components (Etype (T));
5589      end if;
5590
5591      --  Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5592      --  array type to ensure that objects of this type are initialized.
5593
5594      if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5595         Set_Can_Never_Be_Null (T);
5596
5597         if Null_Exclusion_Present (Component_Definition (Def))
5598
5599            --  No need to check itypes because in their case this check was
5600            --  done at their point of creation
5601
5602           and then not Is_Itype (Element_Type)
5603         then
5604            Error_Msg_N
5605              ("`NOT NULL` not allowed (null already excluded)",
5606               Subtype_Indication (Component_Definition (Def)));
5607         end if;
5608      end if;
5609
5610      Priv := Private_Component (Element_Type);
5611
5612      if Present (Priv) then
5613
5614         --  Check for circular definitions
5615
5616         if Priv = Any_Type then
5617            Set_Component_Type (Etype (T), Any_Type);
5618
5619         --  There is a gap in the visibility of operations on the composite
5620         --  type only if the component type is defined in a different scope.
5621
5622         elsif Scope (Priv) = Current_Scope then
5623            null;
5624
5625         elsif Is_Limited_Type (Priv) then
5626            Set_Is_Limited_Composite (Etype (T));
5627            Set_Is_Limited_Composite (T);
5628         else
5629            Set_Is_Private_Composite (Etype (T));
5630            Set_Is_Private_Composite (T);
5631         end if;
5632      end if;
5633
5634      --  A syntax error in the declaration itself may lead to an empty index
5635      --  list, in which case do a minimal patch.
5636
5637      if No (First_Index (T)) then
5638         Error_Msg_N ("missing index definition in array type declaration", T);
5639
5640         declare
5641            Indexes : constant List_Id :=
5642                        New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5643         begin
5644            Set_Discrete_Subtype_Definitions (Def, Indexes);
5645            Set_First_Index (T, First (Indexes));
5646            return;
5647         end;
5648      end if;
5649
5650      --  Create a concatenation operator for the new type. Internal array
5651      --  types created for packed entities do not need such, they are
5652      --  compatible with the user-defined type.
5653
5654      if Number_Dimensions (T) = 1
5655        and then not Is_Packed_Array_Impl_Type (T)
5656      then
5657         New_Concatenation_Op (T);
5658      end if;
5659
5660      --  In the case of an unconstrained array the parser has already verified
5661      --  that all the indexes are unconstrained but we still need to make sure
5662      --  that the element type is constrained.
5663
5664      if not Is_Definite_Subtype (Element_Type) then
5665         Error_Msg_N
5666           ("unconstrained element type in array declaration",
5667            Subtype_Indication (Component_Def));
5668
5669      elsif Is_Abstract_Type (Element_Type) then
5670         Error_Msg_N
5671           ("the type of a component cannot be abstract",
5672            Subtype_Indication (Component_Def));
5673      end if;
5674
5675      --  There may be an invariant declared for the component type, but
5676      --  the construction of the component invariant checking procedure
5677      --  takes place during expansion.
5678   end Array_Type_Declaration;
5679
5680   ------------------------------------------------------
5681   -- Replace_Anonymous_Access_To_Protected_Subprogram --
5682   ------------------------------------------------------
5683
5684   function Replace_Anonymous_Access_To_Protected_Subprogram
5685     (N : Node_Id) return Entity_Id
5686   is
5687      Loc : constant Source_Ptr := Sloc (N);
5688
5689      Curr_Scope : constant Scope_Stack_Entry :=
5690                     Scope_Stack.Table (Scope_Stack.Last);
5691
5692      Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5693
5694      Acc : Node_Id;
5695      --  Access definition in declaration
5696
5697      Comp : Node_Id;
5698      --  Object definition or formal definition with an access definition
5699
5700      Decl : Node_Id;
5701      --  Declaration of anonymous access to subprogram type
5702
5703      Spec : Node_Id;
5704      --  Original specification in access to subprogram
5705
5706      P : Node_Id;
5707
5708   begin
5709      Set_Is_Internal (Anon);
5710
5711      case Nkind (N) is
5712         when N_Component_Declaration       |
5713           N_Unconstrained_Array_Definition |
5714           N_Constrained_Array_Definition   =>
5715            Comp := Component_Definition (N);
5716            Acc  := Access_Definition (Comp);
5717
5718         when N_Discriminant_Specification =>
5719            Comp := Discriminant_Type (N);
5720            Acc  := Comp;
5721
5722         when N_Parameter_Specification =>
5723            Comp := Parameter_Type (N);
5724            Acc  := Comp;
5725
5726         when N_Access_Function_Definition  =>
5727            Comp := Result_Definition (N);
5728            Acc  := Comp;
5729
5730         when N_Object_Declaration  =>
5731            Comp := Object_Definition (N);
5732            Acc  := Comp;
5733
5734         when N_Function_Specification =>
5735            Comp := Result_Definition (N);
5736            Acc  := Comp;
5737
5738         when others =>
5739            raise Program_Error;
5740      end case;
5741
5742      Spec := Access_To_Subprogram_Definition (Acc);
5743
5744      Decl :=
5745        Make_Full_Type_Declaration (Loc,
5746          Defining_Identifier => Anon,
5747          Type_Definition     => Copy_Separate_Tree (Spec));
5748
5749      Mark_Rewrite_Insertion (Decl);
5750
5751      --  In ASIS mode, analyze the profile on the original node, because
5752      --  the separate copy does not provide enough links to recover the
5753      --  original tree. Analysis is limited to type annotations, within
5754      --  a temporary scope that serves as an anonymous subprogram to collect
5755      --  otherwise useless temporaries and itypes.
5756
5757      if ASIS_Mode then
5758         declare
5759            Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5760
5761         begin
5762            if Nkind (Spec) = N_Access_Function_Definition then
5763               Set_Ekind (Typ, E_Function);
5764            else
5765               Set_Ekind (Typ, E_Procedure);
5766            end if;
5767
5768            Set_Parent (Typ, N);
5769            Set_Scope  (Typ, Current_Scope);
5770            Push_Scope (Typ);
5771
5772            --  Nothing to do if procedure is parameterless
5773
5774            if Present (Parameter_Specifications (Spec)) then
5775               Process_Formals (Parameter_Specifications (Spec), Spec);
5776            end if;
5777
5778            if Nkind (Spec) = N_Access_Function_Definition then
5779               declare
5780                  Def : constant Node_Id := Result_Definition (Spec);
5781
5782               begin
5783                  --  The result might itself be an anonymous access type, so
5784                  --  have to recurse.
5785
5786                  if Nkind (Def) = N_Access_Definition then
5787                     if Present (Access_To_Subprogram_Definition (Def)) then
5788                        Set_Etype
5789                          (Def,
5790                           Replace_Anonymous_Access_To_Protected_Subprogram
5791                            (Spec));
5792                     else
5793                        Find_Type (Subtype_Mark (Def));
5794                     end if;
5795
5796                  else
5797                     Find_Type (Def);
5798                  end if;
5799               end;
5800            end if;
5801
5802            End_Scope;
5803         end;
5804      end if;
5805
5806      --  Insert the new declaration in the nearest enclosing scope. If the
5807      --  node is a body and N is its return type, the declaration belongs in
5808      --  the enclosing scope.
5809
5810      P := Parent (N);
5811
5812      if Nkind (P) = N_Subprogram_Body
5813        and then Nkind (N) = N_Function_Specification
5814      then
5815         P := Parent (P);
5816      end if;
5817
5818      while Present (P) and then not Has_Declarations (P) loop
5819         P := Parent (P);
5820      end loop;
5821
5822      pragma Assert (Present (P));
5823
5824      if Nkind (P) = N_Package_Specification then
5825         Prepend (Decl, Visible_Declarations (P));
5826      else
5827         Prepend (Decl, Declarations (P));
5828      end if;
5829
5830      --  Replace the anonymous type with an occurrence of the new declaration.
5831      --  In all cases the rewritten node does not have the null-exclusion
5832      --  attribute because (if present) it was already inherited by the
5833      --  anonymous entity (Anon). Thus, in case of components we do not
5834      --  inherit this attribute.
5835
5836      if Nkind (N) = N_Parameter_Specification then
5837         Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5838         Set_Etype (Defining_Identifier (N), Anon);
5839         Set_Null_Exclusion_Present (N, False);
5840
5841      elsif Nkind (N) = N_Object_Declaration then
5842         Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5843         Set_Etype (Defining_Identifier (N), Anon);
5844
5845      elsif Nkind (N) = N_Access_Function_Definition then
5846         Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5847
5848      elsif Nkind (N) = N_Function_Specification then
5849         Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5850         Set_Etype (Defining_Unit_Name (N), Anon);
5851
5852      else
5853         Rewrite (Comp,
5854           Make_Component_Definition (Loc,
5855             Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5856      end if;
5857
5858      Mark_Rewrite_Insertion (Comp);
5859
5860      if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
5861        or else (Nkind (Parent (N)) = N_Full_Type_Declaration
5862                  and then not Is_Type (Current_Scope))
5863      then
5864
5865         --  Declaration can be analyzed in the current scope.
5866
5867         Analyze (Decl);
5868
5869      else
5870         --  Temporarily remove the current scope (record or subprogram) from
5871         --  the stack to add the new declarations to the enclosing scope.
5872         --  The anonymous entity is an Itype with the proper attributes.
5873
5874         Scope_Stack.Decrement_Last;
5875         Analyze (Decl);
5876         Set_Is_Itype (Anon);
5877         Set_Associated_Node_For_Itype (Anon, N);
5878         Scope_Stack.Append (Curr_Scope);
5879      end if;
5880
5881      Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5882      Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5883      return Anon;
5884   end Replace_Anonymous_Access_To_Protected_Subprogram;
5885
5886   -------------------------------
5887   -- Build_Derived_Access_Type --
5888   -------------------------------
5889
5890   procedure Build_Derived_Access_Type
5891     (N            : Node_Id;
5892      Parent_Type  : Entity_Id;
5893      Derived_Type : Entity_Id)
5894   is
5895      S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5896
5897      Desig_Type      : Entity_Id;
5898      Discr           : Entity_Id;
5899      Discr_Con_Elist : Elist_Id;
5900      Discr_Con_El    : Elmt_Id;
5901      Subt            : Entity_Id;
5902
5903   begin
5904      --  Set the designated type so it is available in case this is an access
5905      --  to a self-referential type, e.g. a standard list type with a next
5906      --  pointer. Will be reset after subtype is built.
5907
5908      Set_Directly_Designated_Type
5909        (Derived_Type, Designated_Type (Parent_Type));
5910
5911      Subt := Process_Subtype (S, N);
5912
5913      if Nkind (S) /= N_Subtype_Indication
5914        and then Subt /= Base_Type (Subt)
5915      then
5916         Set_Ekind (Derived_Type, E_Access_Subtype);
5917      end if;
5918
5919      if Ekind (Derived_Type) = E_Access_Subtype then
5920         declare
5921            Pbase      : constant Entity_Id := Base_Type (Parent_Type);
5922            Ibase      : constant Entity_Id :=
5923                           Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5924            Svg_Chars  : constant Name_Id   := Chars (Ibase);
5925            Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5926
5927         begin
5928            Copy_Node (Pbase, Ibase);
5929
5930            Set_Chars             (Ibase, Svg_Chars);
5931            Set_Next_Entity       (Ibase, Svg_Next_E);
5932            Set_Sloc              (Ibase, Sloc (Derived_Type));
5933            Set_Scope             (Ibase, Scope (Derived_Type));
5934            Set_Freeze_Node       (Ibase, Empty);
5935            Set_Is_Frozen         (Ibase, False);
5936            Set_Comes_From_Source (Ibase, False);
5937            Set_Is_First_Subtype  (Ibase, False);
5938
5939            Set_Etype (Ibase, Pbase);
5940            Set_Etype (Derived_Type, Ibase);
5941         end;
5942      end if;
5943
5944      Set_Directly_Designated_Type
5945        (Derived_Type, Designated_Type (Subt));
5946
5947      Set_Is_Constrained     (Derived_Type, Is_Constrained (Subt));
5948      Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5949      Set_Size_Info          (Derived_Type,                     Parent_Type);
5950      Set_RM_Size            (Derived_Type, RM_Size            (Parent_Type));
5951      Set_Depends_On_Private (Derived_Type,
5952                              Has_Private_Component (Derived_Type));
5953      Conditional_Delay      (Derived_Type, Subt);
5954
5955      --  Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5956      --  that it is not redundant.
5957
5958      if Null_Exclusion_Present (Type_Definition (N)) then
5959         Set_Can_Never_Be_Null (Derived_Type);
5960
5961         --  What is with the "AND THEN FALSE" here ???
5962
5963         if Can_Never_Be_Null (Parent_Type)
5964           and then False
5965         then
5966            Error_Msg_NE
5967              ("`NOT NULL` not allowed (& already excludes null)",
5968                N, Parent_Type);
5969         end if;
5970
5971      elsif Can_Never_Be_Null (Parent_Type) then
5972         Set_Can_Never_Be_Null (Derived_Type);
5973      end if;
5974
5975      --  Note: we do not copy the Storage_Size_Variable, since we always go to
5976      --  the root type for this information.
5977
5978      --  Apply range checks to discriminants for derived record case
5979      --  ??? THIS CODE SHOULD NOT BE HERE REALLY.
5980
5981      Desig_Type := Designated_Type (Derived_Type);
5982      if Is_Composite_Type (Desig_Type)
5983        and then (not Is_Array_Type (Desig_Type))
5984        and then Has_Discriminants (Desig_Type)
5985        and then Base_Type (Desig_Type) /= Desig_Type
5986      then
5987         Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5988         Discr_Con_El := First_Elmt (Discr_Con_Elist);
5989
5990         Discr := First_Discriminant (Base_Type (Desig_Type));
5991         while Present (Discr_Con_El) loop
5992            Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5993            Next_Elmt (Discr_Con_El);
5994            Next_Discriminant (Discr);
5995         end loop;
5996      end if;
5997   end Build_Derived_Access_Type;
5998
5999   ------------------------------
6000   -- Build_Derived_Array_Type --
6001   ------------------------------
6002
6003   procedure Build_Derived_Array_Type
6004     (N            : Node_Id;
6005      Parent_Type  : Entity_Id;
6006      Derived_Type : Entity_Id)
6007   is
6008      Loc           : constant Source_Ptr := Sloc (N);
6009      Tdef          : constant Node_Id    := Type_Definition (N);
6010      Indic         : constant Node_Id    := Subtype_Indication (Tdef);
6011      Parent_Base   : constant Entity_Id  := Base_Type (Parent_Type);
6012      Implicit_Base : Entity_Id;
6013      New_Indic     : Node_Id;
6014
6015      procedure Make_Implicit_Base;
6016      --  If the parent subtype is constrained, the derived type is a subtype
6017      --  of an implicit base type derived from the parent base.
6018
6019      ------------------------
6020      -- Make_Implicit_Base --
6021      ------------------------
6022
6023      procedure Make_Implicit_Base is
6024      begin
6025         Implicit_Base :=
6026           Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6027
6028         Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6029         Set_Etype (Implicit_Base, Parent_Base);
6030
6031         Copy_Array_Subtype_Attributes   (Implicit_Base, Parent_Base);
6032         Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6033
6034         Set_Has_Delayed_Freeze (Implicit_Base, True);
6035
6036         --  Inherit the "ghostness" from the parent base type
6037
6038         if Ghost_Mode > None or else Is_Ghost_Entity (Parent_Base) then
6039            Set_Is_Ghost_Entity (Implicit_Base);
6040         end if;
6041      end Make_Implicit_Base;
6042
6043   --  Start of processing for Build_Derived_Array_Type
6044
6045   begin
6046      if not Is_Constrained (Parent_Type) then
6047         if Nkind (Indic) /= N_Subtype_Indication then
6048            Set_Ekind (Derived_Type, E_Array_Type);
6049
6050            Copy_Array_Subtype_Attributes   (Derived_Type, Parent_Type);
6051            Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6052
6053            Set_Has_Delayed_Freeze (Derived_Type, True);
6054
6055         else
6056            Make_Implicit_Base;
6057            Set_Etype (Derived_Type, Implicit_Base);
6058
6059            New_Indic :=
6060              Make_Subtype_Declaration (Loc,
6061                Defining_Identifier => Derived_Type,
6062                Subtype_Indication  =>
6063                  Make_Subtype_Indication (Loc,
6064                    Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6065                    Constraint => Constraint (Indic)));
6066
6067            Rewrite (N, New_Indic);
6068            Analyze (N);
6069         end if;
6070
6071      else
6072         if Nkind (Indic) /= N_Subtype_Indication then
6073            Make_Implicit_Base;
6074
6075            Set_Ekind                     (Derived_Type, Ekind (Parent_Type));
6076            Set_Etype                     (Derived_Type, Implicit_Base);
6077            Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6078
6079         else
6080            Error_Msg_N ("illegal constraint on constrained type", Indic);
6081         end if;
6082      end if;
6083
6084      --  If parent type is not a derived type itself, and is declared in
6085      --  closed scope (e.g. a subprogram), then we must explicitly introduce
6086      --  the new type's concatenation operator since Derive_Subprograms
6087      --  will not inherit the parent's operator. If the parent type is
6088      --  unconstrained, the operator is of the unconstrained base type.
6089
6090      if Number_Dimensions (Parent_Type) = 1
6091        and then not Is_Limited_Type (Parent_Type)
6092        and then not Is_Derived_Type (Parent_Type)
6093        and then not Is_Package_Or_Generic_Package
6094                       (Scope (Base_Type (Parent_Type)))
6095      then
6096         if not Is_Constrained (Parent_Type)
6097           and then Is_Constrained (Derived_Type)
6098         then
6099            New_Concatenation_Op (Implicit_Base);
6100         else
6101            New_Concatenation_Op (Derived_Type);
6102         end if;
6103      end if;
6104   end Build_Derived_Array_Type;
6105
6106   -----------------------------------
6107   -- Build_Derived_Concurrent_Type --
6108   -----------------------------------
6109
6110   procedure Build_Derived_Concurrent_Type
6111     (N            : Node_Id;
6112      Parent_Type  : Entity_Id;
6113      Derived_Type : Entity_Id)
6114   is
6115      Loc : constant Source_Ptr := Sloc (N);
6116
6117      Corr_Record      : constant Entity_Id := Make_Temporary (Loc, 'C');
6118      Corr_Decl        : Node_Id;
6119      Corr_Decl_Needed : Boolean;
6120      --  If the derived type has fewer discriminants than its parent, the
6121      --  corresponding record is also a derived type, in order to account for
6122      --  the bound discriminants. We create a full type declaration for it in
6123      --  this case.
6124
6125      Constraint_Present : constant Boolean :=
6126                             Nkind (Subtype_Indication (Type_Definition (N))) =
6127                                                          N_Subtype_Indication;
6128
6129      D_Constraint   : Node_Id;
6130      New_Constraint : Elist_Id;
6131      Old_Disc       : Entity_Id;
6132      New_Disc       : Entity_Id;
6133      New_N          : Node_Id;
6134
6135   begin
6136      Set_Stored_Constraint (Derived_Type, No_Elist);
6137      Corr_Decl_Needed := False;
6138      Old_Disc := Empty;
6139
6140      if Present (Discriminant_Specifications (N))
6141        and then Constraint_Present
6142      then
6143         Old_Disc := First_Discriminant (Parent_Type);
6144         New_Disc := First (Discriminant_Specifications (N));
6145         while Present (New_Disc) and then Present (Old_Disc) loop
6146            Next_Discriminant (Old_Disc);
6147            Next (New_Disc);
6148         end loop;
6149      end if;
6150
6151      if Present (Old_Disc) and then Expander_Active then
6152
6153         --  The new type has fewer discriminants, so we need to create a new
6154         --  corresponding record, which is derived from the corresponding
6155         --  record of the parent, and has a stored constraint that captures
6156         --  the values of the discriminant constraints. The corresponding
6157         --  record is needed only if expander is active and code generation is
6158         --  enabled.
6159
6160         --  The type declaration for the derived corresponding record has the
6161         --  same discriminant part and constraints as the current declaration.
6162         --  Copy the unanalyzed tree to build declaration.
6163
6164         Corr_Decl_Needed := True;
6165         New_N := Copy_Separate_Tree (N);
6166
6167         Corr_Decl :=
6168           Make_Full_Type_Declaration (Loc,
6169             Defining_Identifier         => Corr_Record,
6170             Discriminant_Specifications =>
6171                Discriminant_Specifications (New_N),
6172             Type_Definition             =>
6173               Make_Derived_Type_Definition (Loc,
6174                 Subtype_Indication =>
6175                   Make_Subtype_Indication (Loc,
6176                     Subtype_Mark =>
6177                        New_Occurrence_Of
6178                          (Corresponding_Record_Type (Parent_Type), Loc),
6179                     Constraint   =>
6180                       Constraint
6181                         (Subtype_Indication (Type_Definition (New_N))))));
6182      end if;
6183
6184      --  Copy Storage_Size and Relative_Deadline variables if task case
6185
6186      if Is_Task_Type (Parent_Type) then
6187         Set_Storage_Size_Variable (Derived_Type,
6188           Storage_Size_Variable (Parent_Type));
6189         Set_Relative_Deadline_Variable (Derived_Type,
6190           Relative_Deadline_Variable (Parent_Type));
6191      end if;
6192
6193      if Present (Discriminant_Specifications (N)) then
6194         Push_Scope (Derived_Type);
6195         Check_Or_Process_Discriminants (N, Derived_Type);
6196
6197         if Constraint_Present then
6198            New_Constraint :=
6199              Expand_To_Stored_Constraint
6200                (Parent_Type,
6201                 Build_Discriminant_Constraints
6202                   (Parent_Type,
6203                    Subtype_Indication (Type_Definition (N)), True));
6204         end if;
6205
6206         End_Scope;
6207
6208      elsif Constraint_Present then
6209
6210         --  Build constrained subtype, copying the constraint, and derive
6211         --  from it to create a derived constrained type.
6212
6213         declare
6214            Loc  : constant Source_Ptr := Sloc (N);
6215            Anon : constant Entity_Id :=
6216                     Make_Defining_Identifier (Loc,
6217                       Chars => New_External_Name (Chars (Derived_Type), 'T'));
6218            Decl : Node_Id;
6219
6220         begin
6221            Decl :=
6222              Make_Subtype_Declaration (Loc,
6223                Defining_Identifier => Anon,
6224                Subtype_Indication =>
6225                  New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6226            Insert_Before (N, Decl);
6227            Analyze (Decl);
6228
6229            Rewrite (Subtype_Indication (Type_Definition (N)),
6230              New_Occurrence_Of (Anon, Loc));
6231            Set_Analyzed (Derived_Type, False);
6232            Analyze (N);
6233            return;
6234         end;
6235      end if;
6236
6237      --  By default, operations and private data are inherited from parent.
6238      --  However, in the presence of bound discriminants, a new corresponding
6239      --  record will be created, see below.
6240
6241      Set_Has_Discriminants
6242        (Derived_Type, Has_Discriminants         (Parent_Type));
6243      Set_Corresponding_Record_Type
6244        (Derived_Type, Corresponding_Record_Type (Parent_Type));
6245
6246      --  Is_Constrained is set according the parent subtype, but is set to
6247      --  False if the derived type is declared with new discriminants.
6248
6249      Set_Is_Constrained
6250        (Derived_Type,
6251         (Is_Constrained (Parent_Type) or else Constraint_Present)
6252           and then not Present (Discriminant_Specifications (N)));
6253
6254      if Constraint_Present then
6255         if not Has_Discriminants (Parent_Type) then
6256            Error_Msg_N ("untagged parent must have discriminants", N);
6257
6258         elsif Present (Discriminant_Specifications (N)) then
6259
6260            --  Verify that new discriminants are used to constrain old ones
6261
6262            D_Constraint :=
6263              First
6264                (Constraints
6265                  (Constraint (Subtype_Indication (Type_Definition (N)))));
6266
6267            Old_Disc := First_Discriminant (Parent_Type);
6268
6269            while Present (D_Constraint) loop
6270               if Nkind (D_Constraint) /= N_Discriminant_Association then
6271
6272                  --  Positional constraint. If it is a reference to a new
6273                  --  discriminant, it constrains the corresponding old one.
6274
6275                  if Nkind (D_Constraint) = N_Identifier then
6276                     New_Disc := First_Discriminant (Derived_Type);
6277                     while Present (New_Disc) loop
6278                        exit when Chars (New_Disc) = Chars (D_Constraint);
6279                        Next_Discriminant (New_Disc);
6280                     end loop;
6281
6282                     if Present (New_Disc) then
6283                        Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6284                     end if;
6285                  end if;
6286
6287                  Next_Discriminant (Old_Disc);
6288
6289                  --  if this is a named constraint, search by name for the old
6290                  --  discriminants constrained by the new one.
6291
6292               elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6293
6294                  --  Find new discriminant with that name
6295
6296                  New_Disc := First_Discriminant (Derived_Type);
6297                  while Present (New_Disc) loop
6298                     exit when
6299                       Chars (New_Disc) = Chars (Expression (D_Constraint));
6300                     Next_Discriminant (New_Disc);
6301                  end loop;
6302
6303                  if Present (New_Disc) then
6304
6305                     --  Verify that new discriminant renames some discriminant
6306                     --  of the parent type, and associate the new discriminant
6307                     --  with one or more old ones that it renames.
6308
6309                     declare
6310                        Selector : Node_Id;
6311
6312                     begin
6313                        Selector := First (Selector_Names (D_Constraint));
6314                        while Present (Selector) loop
6315                           Old_Disc := First_Discriminant (Parent_Type);
6316                           while Present (Old_Disc) loop
6317                              exit when Chars (Old_Disc) = Chars (Selector);
6318                              Next_Discriminant (Old_Disc);
6319                           end loop;
6320
6321                           if Present (Old_Disc) then
6322                              Set_Corresponding_Discriminant
6323                                (New_Disc, Old_Disc);
6324                           end if;
6325
6326                           Next (Selector);
6327                        end loop;
6328                     end;
6329                  end if;
6330               end if;
6331
6332               Next (D_Constraint);
6333            end loop;
6334
6335            New_Disc := First_Discriminant (Derived_Type);
6336            while Present (New_Disc) loop
6337               if No (Corresponding_Discriminant (New_Disc)) then
6338                  Error_Msg_NE
6339                    ("new discriminant& must constrain old one", N, New_Disc);
6340
6341               elsif not
6342                 Subtypes_Statically_Compatible
6343                   (Etype (New_Disc),
6344                    Etype (Corresponding_Discriminant (New_Disc)))
6345               then
6346                  Error_Msg_NE
6347                    ("& not statically compatible with parent discriminant",
6348                      N, New_Disc);
6349               end if;
6350
6351               Next_Discriminant (New_Disc);
6352            end loop;
6353         end if;
6354
6355      elsif Present (Discriminant_Specifications (N)) then
6356         Error_Msg_N
6357           ("missing discriminant constraint in untagged derivation", N);
6358      end if;
6359
6360      --  The entity chain of the derived type includes the new discriminants
6361      --  but shares operations with the parent.
6362
6363      if Present (Discriminant_Specifications (N)) then
6364         Old_Disc := First_Discriminant (Parent_Type);
6365         while Present (Old_Disc) loop
6366            if No (Next_Entity (Old_Disc))
6367              or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6368            then
6369               Set_Next_Entity
6370                 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6371               exit;
6372            end if;
6373
6374            Next_Discriminant (Old_Disc);
6375         end loop;
6376
6377      else
6378         Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6379         if Has_Discriminants (Parent_Type) then
6380            Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6381            Set_Discriminant_Constraint (
6382              Derived_Type, Discriminant_Constraint (Parent_Type));
6383         end if;
6384      end if;
6385
6386      Set_Last_Entity  (Derived_Type, Last_Entity  (Parent_Type));
6387
6388      Set_Has_Completion (Derived_Type);
6389
6390      if Corr_Decl_Needed then
6391         Set_Stored_Constraint (Derived_Type, New_Constraint);
6392         Insert_After (N, Corr_Decl);
6393         Analyze (Corr_Decl);
6394         Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6395      end if;
6396   end Build_Derived_Concurrent_Type;
6397
6398   ------------------------------------
6399   -- Build_Derived_Enumeration_Type --
6400   ------------------------------------
6401
6402   procedure Build_Derived_Enumeration_Type
6403     (N            : Node_Id;
6404      Parent_Type  : Entity_Id;
6405      Derived_Type : Entity_Id)
6406   is
6407      Loc           : constant Source_Ptr := Sloc (N);
6408      Def           : constant Node_Id    := Type_Definition (N);
6409      Indic         : constant Node_Id    := Subtype_Indication (Def);
6410      Implicit_Base : Entity_Id;
6411      Literal       : Entity_Id;
6412      New_Lit       : Entity_Id;
6413      Literals_List : List_Id;
6414      Type_Decl     : Node_Id;
6415      Hi, Lo        : Node_Id;
6416      Rang_Expr     : Node_Id;
6417
6418   begin
6419      --  Since types Standard.Character and Standard.[Wide_]Wide_Character do
6420      --  not have explicit literals lists we need to process types derived
6421      --  from them specially. This is handled by Derived_Standard_Character.
6422      --  If the parent type is a generic type, there are no literals either,
6423      --  and we construct the same skeletal representation as for the generic
6424      --  parent type.
6425
6426      if Is_Standard_Character_Type (Parent_Type) then
6427         Derived_Standard_Character (N, Parent_Type, Derived_Type);
6428
6429      elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6430         declare
6431            Lo : Node_Id;
6432            Hi : Node_Id;
6433
6434         begin
6435            if Nkind (Indic) /= N_Subtype_Indication then
6436               Lo :=
6437                  Make_Attribute_Reference (Loc,
6438                    Attribute_Name => Name_First,
6439                    Prefix         => New_Occurrence_Of (Derived_Type, Loc));
6440               Set_Etype (Lo, Derived_Type);
6441
6442               Hi :=
6443                  Make_Attribute_Reference (Loc,
6444                    Attribute_Name => Name_Last,
6445                    Prefix         => New_Occurrence_Of (Derived_Type, Loc));
6446               Set_Etype (Hi, Derived_Type);
6447
6448               Set_Scalar_Range (Derived_Type,
6449                  Make_Range (Loc,
6450                    Low_Bound  => Lo,
6451                    High_Bound => Hi));
6452            else
6453
6454               --   Analyze subtype indication and verify compatibility
6455               --   with parent type.
6456
6457               if Base_Type (Process_Subtype (Indic, N)) /=
6458                  Base_Type (Parent_Type)
6459               then
6460                  Error_Msg_N
6461                    ("illegal constraint for formal discrete type", N);
6462               end if;
6463            end if;
6464         end;
6465
6466      else
6467         --  If a constraint is present, analyze the bounds to catch
6468         --  premature usage of the derived literals.
6469
6470         if Nkind (Indic) = N_Subtype_Indication
6471           and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6472         then
6473            Analyze (Low_Bound  (Range_Expression (Constraint (Indic))));
6474            Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6475         end if;
6476
6477         --  Introduce an implicit base type for the derived type even if there
6478         --  is no constraint attached to it, since this seems closer to the
6479         --  Ada semantics. Build a full type declaration tree for the derived
6480         --  type using the implicit base type as the defining identifier. The
6481         --  build a subtype declaration tree which applies the constraint (if
6482         --  any) have it replace the derived type declaration.
6483
6484         Literal := First_Literal (Parent_Type);
6485         Literals_List := New_List;
6486         while Present (Literal)
6487           and then Ekind (Literal) = E_Enumeration_Literal
6488         loop
6489            --  Literals of the derived type have the same representation as
6490            --  those of the parent type, but this representation can be
6491            --  overridden by an explicit representation clause. Indicate
6492            --  that there is no explicit representation given yet. These
6493            --  derived literals are implicit operations of the new type,
6494            --  and can be overridden by explicit ones.
6495
6496            if Nkind (Literal) = N_Defining_Character_Literal then
6497               New_Lit :=
6498                 Make_Defining_Character_Literal (Loc, Chars (Literal));
6499            else
6500               New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6501            end if;
6502
6503            Set_Ekind                (New_Lit, E_Enumeration_Literal);
6504            Set_Enumeration_Pos      (New_Lit, Enumeration_Pos (Literal));
6505            Set_Enumeration_Rep      (New_Lit, Enumeration_Rep (Literal));
6506            Set_Enumeration_Rep_Expr (New_Lit, Empty);
6507            Set_Alias                (New_Lit, Literal);
6508            Set_Is_Known_Valid       (New_Lit, True);
6509
6510            Append (New_Lit, Literals_List);
6511            Next_Literal (Literal);
6512         end loop;
6513
6514         Implicit_Base :=
6515           Make_Defining_Identifier (Sloc (Derived_Type),
6516             Chars => New_External_Name (Chars (Derived_Type), 'B'));
6517
6518         --  Indicate the proper nature of the derived type. This must be done
6519         --  before analysis of the literals, to recognize cases when a literal
6520         --  may be hidden by a previous explicit function definition (cf.
6521         --  c83031a).
6522
6523         Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6524         Set_Etype (Derived_Type, Implicit_Base);
6525
6526         Type_Decl :=
6527           Make_Full_Type_Declaration (Loc,
6528             Defining_Identifier => Implicit_Base,
6529             Discriminant_Specifications => No_List,
6530             Type_Definition =>
6531               Make_Enumeration_Type_Definition (Loc, Literals_List));
6532
6533         Mark_Rewrite_Insertion (Type_Decl);
6534         Insert_Before (N, Type_Decl);
6535         Analyze (Type_Decl);
6536
6537         --  The anonymous base now has a full declaration, but this base
6538         --  is not a first subtype.
6539
6540         Set_Is_First_Subtype (Implicit_Base, False);
6541
6542         --  After the implicit base is analyzed its Etype needs to be changed
6543         --  to reflect the fact that it is derived from the parent type which
6544         --  was ignored during analysis. We also set the size at this point.
6545
6546         Set_Etype (Implicit_Base, Parent_Type);
6547
6548         Set_Size_Info      (Implicit_Base,                 Parent_Type);
6549         Set_RM_Size        (Implicit_Base, RM_Size        (Parent_Type));
6550         Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6551
6552         --  Copy other flags from parent type
6553
6554         Set_Has_Non_Standard_Rep
6555                            (Implicit_Base, Has_Non_Standard_Rep
6556                                                           (Parent_Type));
6557         Set_Has_Pragma_Ordered
6558                            (Implicit_Base, Has_Pragma_Ordered
6559                                                           (Parent_Type));
6560         Set_Has_Delayed_Freeze (Implicit_Base);
6561
6562         --  Process the subtype indication including a validation check on the
6563         --  constraint, if any. If a constraint is given, its bounds must be
6564         --  implicitly converted to the new type.
6565
6566         if Nkind (Indic) = N_Subtype_Indication then
6567            declare
6568               R : constant Node_Id :=
6569                     Range_Expression (Constraint (Indic));
6570
6571            begin
6572               if Nkind (R) = N_Range then
6573                  Hi := Build_Scalar_Bound
6574                          (High_Bound (R), Parent_Type, Implicit_Base);
6575                  Lo := Build_Scalar_Bound
6576                          (Low_Bound  (R), Parent_Type, Implicit_Base);
6577
6578               else
6579                  --  Constraint is a Range attribute. Replace with explicit
6580                  --  mention of the bounds of the prefix, which must be a
6581                  --  subtype.
6582
6583                  Analyze (Prefix (R));
6584                  Hi :=
6585                    Convert_To (Implicit_Base,
6586                      Make_Attribute_Reference (Loc,
6587                        Attribute_Name => Name_Last,
6588                        Prefix =>
6589                          New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6590
6591                  Lo :=
6592                    Convert_To (Implicit_Base,
6593                      Make_Attribute_Reference (Loc,
6594                        Attribute_Name => Name_First,
6595                        Prefix =>
6596                          New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6597               end if;
6598            end;
6599
6600         else
6601            Hi :=
6602              Build_Scalar_Bound
6603                (Type_High_Bound (Parent_Type),
6604                 Parent_Type, Implicit_Base);
6605            Lo :=
6606               Build_Scalar_Bound
6607                 (Type_Low_Bound (Parent_Type),
6608                  Parent_Type, Implicit_Base);
6609         end if;
6610
6611         Rang_Expr :=
6612           Make_Range (Loc,
6613             Low_Bound  => Lo,
6614             High_Bound => Hi);
6615
6616         --  If we constructed a default range for the case where no range
6617         --  was given, then the expressions in the range must not freeze
6618         --  since they do not correspond to expressions in the source.
6619
6620         if Nkind (Indic) /= N_Subtype_Indication then
6621            Set_Must_Not_Freeze (Lo);
6622            Set_Must_Not_Freeze (Hi);
6623            Set_Must_Not_Freeze (Rang_Expr);
6624         end if;
6625
6626         Rewrite (N,
6627           Make_Subtype_Declaration (Loc,
6628             Defining_Identifier => Derived_Type,
6629             Subtype_Indication =>
6630               Make_Subtype_Indication (Loc,
6631                 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6632                 Constraint =>
6633                   Make_Range_Constraint (Loc,
6634                     Range_Expression => Rang_Expr))));
6635
6636         Analyze (N);
6637
6638         --  Propagate the aspects from the original type declaration to the
6639         --  declaration of the implicit base.
6640
6641         Move_Aspects (From => Original_Node (N), To => Type_Decl);
6642
6643         --  Apply a range check. Since this range expression doesn't have an
6644         --  Etype, we have to specifically pass the Source_Typ parameter. Is
6645         --  this right???
6646
6647         if Nkind (Indic) = N_Subtype_Indication then
6648            Apply_Range_Check
6649              (Range_Expression (Constraint (Indic)), Parent_Type,
6650               Source_Typ => Entity (Subtype_Mark (Indic)));
6651         end if;
6652      end if;
6653   end Build_Derived_Enumeration_Type;
6654
6655   --------------------------------
6656   -- Build_Derived_Numeric_Type --
6657   --------------------------------
6658
6659   procedure Build_Derived_Numeric_Type
6660     (N            : Node_Id;
6661      Parent_Type  : Entity_Id;
6662      Derived_Type : Entity_Id)
6663   is
6664      Loc           : constant Source_Ptr := Sloc (N);
6665      Tdef          : constant Node_Id    := Type_Definition (N);
6666      Indic         : constant Node_Id    := Subtype_Indication (Tdef);
6667      Parent_Base   : constant Entity_Id  := Base_Type (Parent_Type);
6668      No_Constraint : constant Boolean    := Nkind (Indic) /=
6669                                                  N_Subtype_Indication;
6670      Implicit_Base : Entity_Id;
6671
6672      Lo : Node_Id;
6673      Hi : Node_Id;
6674
6675   begin
6676      --  Process the subtype indication including a validation check on
6677      --  the constraint if any.
6678
6679      Discard_Node (Process_Subtype (Indic, N));
6680
6681      --  Introduce an implicit base type for the derived type even if there
6682      --  is no constraint attached to it, since this seems closer to the Ada
6683      --  semantics.
6684
6685      Implicit_Base :=
6686        Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6687
6688      Set_Etype          (Implicit_Base, Parent_Base);
6689      Set_Ekind          (Implicit_Base, Ekind          (Parent_Base));
6690      Set_Size_Info      (Implicit_Base,                 Parent_Base);
6691      Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6692      Set_Parent         (Implicit_Base, Parent (Derived_Type));
6693      Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6694
6695      --  Set RM Size for discrete type or decimal fixed-point type
6696      --  Ordinary fixed-point is excluded, why???
6697
6698      if Is_Discrete_Type (Parent_Base)
6699        or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6700      then
6701         Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6702      end if;
6703
6704      Set_Has_Delayed_Freeze (Implicit_Base);
6705
6706      Lo := New_Copy_Tree (Type_Low_Bound  (Parent_Base));
6707      Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6708
6709      Set_Scalar_Range (Implicit_Base,
6710        Make_Range (Loc,
6711          Low_Bound  => Lo,
6712          High_Bound => Hi));
6713
6714      if Has_Infinities (Parent_Base) then
6715         Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6716      end if;
6717
6718      --  The Derived_Type, which is the entity of the declaration, is a
6719      --  subtype of the implicit base. Its Ekind is a subtype, even in the
6720      --  absence of an explicit constraint.
6721
6722      Set_Etype (Derived_Type, Implicit_Base);
6723
6724      --  If we did not have a constraint, then the Ekind is set from the
6725      --  parent type (otherwise Process_Subtype has set the bounds)
6726
6727      if No_Constraint then
6728         Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6729      end if;
6730
6731      --  If we did not have a range constraint, then set the range from the
6732      --  parent type. Otherwise, the Process_Subtype call has set the bounds.
6733
6734      if No_Constraint or else not Has_Range_Constraint (Indic) then
6735         Set_Scalar_Range (Derived_Type,
6736           Make_Range (Loc,
6737             Low_Bound  => New_Copy_Tree (Type_Low_Bound  (Parent_Type)),
6738             High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6739         Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6740
6741         if Has_Infinities (Parent_Type) then
6742            Set_Includes_Infinities (Scalar_Range (Derived_Type));
6743         end if;
6744
6745         Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6746      end if;
6747
6748      Set_Is_Descendent_Of_Address (Derived_Type,
6749        Is_Descendent_Of_Address (Parent_Type));
6750      Set_Is_Descendent_Of_Address (Implicit_Base,
6751        Is_Descendent_Of_Address (Parent_Type));
6752
6753      --  Set remaining type-specific fields, depending on numeric type
6754
6755      if Is_Modular_Integer_Type (Parent_Type) then
6756         Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6757
6758         Set_Non_Binary_Modulus
6759           (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6760
6761         Set_Is_Known_Valid
6762           (Implicit_Base, Is_Known_Valid (Parent_Base));
6763
6764      elsif Is_Floating_Point_Type (Parent_Type) then
6765
6766         --  Digits of base type is always copied from the digits value of
6767         --  the parent base type, but the digits of the derived type will
6768         --  already have been set if there was a constraint present.
6769
6770         Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6771         Set_Float_Rep    (Implicit_Base, Float_Rep    (Parent_Base));
6772
6773         if No_Constraint then
6774            Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6775         end if;
6776
6777      elsif Is_Fixed_Point_Type (Parent_Type) then
6778
6779         --  Small of base type and derived type are always copied from the
6780         --  parent base type, since smalls never change. The delta of the
6781         --  base type is also copied from the parent base type. However the
6782         --  delta of the derived type will have been set already if a
6783         --  constraint was present.
6784
6785         Set_Small_Value (Derived_Type,  Small_Value (Parent_Base));
6786         Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6787         Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6788
6789         if No_Constraint then
6790            Set_Delta_Value (Derived_Type,  Delta_Value (Parent_Type));
6791         end if;
6792
6793         --  The scale and machine radix in the decimal case are always
6794         --  copied from the parent base type.
6795
6796         if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6797            Set_Scale_Value (Derived_Type,  Scale_Value (Parent_Base));
6798            Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6799
6800            Set_Machine_Radix_10
6801              (Derived_Type,  Machine_Radix_10 (Parent_Base));
6802            Set_Machine_Radix_10
6803              (Implicit_Base, Machine_Radix_10 (Parent_Base));
6804
6805            Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6806
6807            if No_Constraint then
6808               Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6809
6810            else
6811               --  the analysis of the subtype_indication sets the
6812               --  digits value of the derived type.
6813
6814               null;
6815            end if;
6816         end if;
6817      end if;
6818
6819      if Is_Integer_Type (Parent_Type) then
6820         Set_Has_Shift_Operator
6821           (Implicit_Base, Has_Shift_Operator (Parent_Type));
6822      end if;
6823
6824      --  The type of the bounds is that of the parent type, and they
6825      --  must be converted to the derived type.
6826
6827      Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6828
6829      --  The implicit_base should be frozen when the derived type is frozen,
6830      --  but note that it is used in the conversions of the bounds. For fixed
6831      --  types we delay the determination of the bounds until the proper
6832      --  freezing point. For other numeric types this is rejected by GCC, for
6833      --  reasons that are currently unclear (???), so we choose to freeze the
6834      --  implicit base now. In the case of integers and floating point types
6835      --  this is harmless because subsequent representation clauses cannot
6836      --  affect anything, but it is still baffling that we cannot use the
6837      --  same mechanism for all derived numeric types.
6838
6839      --  There is a further complication: actually some representation
6840      --  clauses can affect the implicit base type. For example, attribute
6841      --  definition clauses for stream-oriented attributes need to set the
6842      --  corresponding TSS entries on the base type, and this normally
6843      --  cannot be done after the base type is frozen, so the circuitry in
6844      --  Sem_Ch13.New_Stream_Subprogram must account for this possibility
6845      --  and not use Set_TSS in this case.
6846
6847      --  There are also consequences for the case of delayed representation
6848      --  aspects for some cases. For example, a Size aspect is delayed and
6849      --  should not be evaluated to the freeze point. This early freezing
6850      --  means that the size attribute evaluation happens too early???
6851
6852      if Is_Fixed_Point_Type (Parent_Type) then
6853         Conditional_Delay (Implicit_Base, Parent_Type);
6854      else
6855         Freeze_Before (N, Implicit_Base);
6856      end if;
6857   end Build_Derived_Numeric_Type;
6858
6859   --------------------------------
6860   -- Build_Derived_Private_Type --
6861   --------------------------------
6862
6863   procedure Build_Derived_Private_Type
6864     (N             : Node_Id;
6865      Parent_Type   : Entity_Id;
6866      Derived_Type  : Entity_Id;
6867      Is_Completion : Boolean;
6868      Derive_Subps  : Boolean := True)
6869   is
6870      Loc       : constant Source_Ptr := Sloc (N);
6871      Par_Base  : constant Entity_Id  := Base_Type (Parent_Type);
6872      Par_Scope : constant Entity_Id  := Scope (Par_Base);
6873      Full_N    : constant Node_Id    := New_Copy_Tree (N);
6874      Full_Der  : Entity_Id           := New_Copy (Derived_Type);
6875      Full_P    : Entity_Id;
6876
6877      procedure Build_Full_Derivation;
6878      --  Build full derivation, i.e. derive from the full view
6879
6880      procedure Copy_And_Build;
6881      --  Copy derived type declaration, replace parent with its full view,
6882      --  and build derivation
6883
6884      ---------------------------
6885      -- Build_Full_Derivation --
6886      ---------------------------
6887
6888      procedure Build_Full_Derivation is
6889      begin
6890         --  If parent scope is not open, install the declarations
6891
6892         if not In_Open_Scopes (Par_Scope) then
6893            Install_Private_Declarations (Par_Scope);
6894            Install_Visible_Declarations (Par_Scope);
6895            Copy_And_Build;
6896            Uninstall_Declarations (Par_Scope);
6897
6898         --  If parent scope is open and in another unit, and parent has a
6899         --  completion, then the derivation is taking place in the visible
6900         --  part of a child unit. In that case retrieve the full view of
6901         --  the parent momentarily.
6902
6903         elsif not In_Same_Source_Unit (N, Parent_Type) then
6904            Full_P := Full_View (Parent_Type);
6905            Exchange_Declarations (Parent_Type);
6906            Copy_And_Build;
6907            Exchange_Declarations (Full_P);
6908
6909         --  Otherwise it is a local derivation
6910
6911         else
6912            Copy_And_Build;
6913         end if;
6914      end Build_Full_Derivation;
6915
6916      --------------------
6917      -- Copy_And_Build --
6918      --------------------
6919
6920      procedure Copy_And_Build is
6921         Full_Parent : Entity_Id := Parent_Type;
6922
6923      begin
6924         --  If the parent is itself derived from another private type,
6925         --  installing the private declarations has not affected its
6926         --  privacy status, so use its own full view explicitly.
6927
6928         if Is_Private_Type (Full_Parent)
6929           and then Present (Full_View (Full_Parent))
6930         then
6931            Full_Parent := Full_View (Full_Parent);
6932         end if;
6933
6934         --  And its underlying full view if necessary
6935
6936         if Is_Private_Type (Full_Parent)
6937           and then Present (Underlying_Full_View (Full_Parent))
6938         then
6939            Full_Parent := Underlying_Full_View (Full_Parent);
6940         end if;
6941
6942         --  For record, access and most enumeration types, derivation from
6943         --  the full view requires a fully-fledged declaration. In the other
6944         --  cases, just use an itype.
6945
6946         if Ekind (Full_Parent) in Record_Kind
6947           or else Ekind (Full_Parent) in Access_Kind
6948           or else
6949             (Ekind (Full_Parent) in Enumeration_Kind
6950               and then not Is_Standard_Character_Type (Full_Parent)
6951               and then not Is_Generic_Type (Root_Type (Full_Parent)))
6952         then
6953            --  Copy and adjust declaration to provide a completion for what
6954            --  is originally a private declaration. Indicate that full view
6955            --  is internally generated.
6956
6957            Set_Comes_From_Source (Full_N, False);
6958            Set_Comes_From_Source (Full_Der, False);
6959            Set_Parent (Full_Der, Full_N);
6960            Set_Defining_Identifier (Full_N, Full_Der);
6961
6962            --  If there are no constraints, adjust the subtype mark
6963
6964            if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6965                                                       N_Subtype_Indication
6966            then
6967               Set_Subtype_Indication
6968                 (Type_Definition (Full_N),
6969                  New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6970            end if;
6971
6972            Insert_After (N, Full_N);
6973
6974            --  Build full view of derived type from full view of parent which
6975            --  is now installed. Subprograms have been derived on the partial
6976            --  view, the completion does not derive them anew.
6977
6978            if Ekind (Full_Parent) in Record_Kind then
6979
6980               --  If parent type is tagged, the completion inherits the proper
6981               --  primitive operations.
6982
6983               if Is_Tagged_Type (Parent_Type) then
6984                  Build_Derived_Record_Type
6985                    (Full_N, Full_Parent, Full_Der, Derive_Subps);
6986               else
6987                  Build_Derived_Record_Type
6988                    (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6989               end if;
6990
6991            else
6992               Build_Derived_Type
6993                 (Full_N, Full_Parent, Full_Der,
6994                  Is_Completion => False, Derive_Subps => False);
6995            end if;
6996
6997            --  The full declaration has been introduced into the tree and
6998            --  processed in the step above. It should not be analyzed again
6999            --  (when encountered later in the current list of declarations)
7000            --  to prevent spurious name conflicts. The full entity remains
7001            --  invisible.
7002
7003            Set_Analyzed (Full_N);
7004
7005         else
7006            Full_Der :=
7007              Make_Defining_Identifier (Sloc (Derived_Type),
7008                Chars => Chars (Derived_Type));
7009            Set_Is_Itype (Full_Der);
7010            Set_Associated_Node_For_Itype (Full_Der, N);
7011            Set_Parent (Full_Der, N);
7012            Build_Derived_Type
7013              (N, Full_Parent, Full_Der,
7014               Is_Completion => False, Derive_Subps => False);
7015         end if;
7016
7017         Set_Has_Private_Declaration (Full_Der);
7018         Set_Has_Private_Declaration (Derived_Type);
7019
7020         Set_Scope                (Full_Der, Scope (Derived_Type));
7021         Set_Is_First_Subtype     (Full_Der, Is_First_Subtype (Derived_Type));
7022         Set_Has_Size_Clause      (Full_Der, False);
7023         Set_Has_Alignment_Clause (Full_Der, False);
7024         Set_Has_Delayed_Freeze   (Full_Der);
7025         Set_Is_Frozen            (Full_Der, False);
7026         Set_Freeze_Node          (Full_Der, Empty);
7027         Set_Depends_On_Private   (Full_Der, Has_Private_Component (Full_Der));
7028         Set_Is_Public            (Full_Der, Is_Public (Derived_Type));
7029
7030         --  The convention on the base type may be set in the private part
7031         --  and not propagated to the subtype until later, so we obtain the
7032         --  convention from the base type of the parent.
7033
7034         Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7035      end Copy_And_Build;
7036
7037   --  Start of processing for Build_Derived_Private_Type
7038
7039   begin
7040      if Is_Tagged_Type (Parent_Type) then
7041         Full_P := Full_View (Parent_Type);
7042
7043         --  A type extension of a type with unknown discriminants is an
7044         --  indefinite type that the back-end cannot handle directly.
7045         --  We treat it as a private type, and build a completion that is
7046         --  derived from the full view of the parent, and hopefully has
7047         --  known discriminants.
7048
7049         --  If the full view of the parent type has an underlying record view,
7050         --  use it to generate the underlying record view of this derived type
7051         --  (required for chains of derivations with unknown discriminants).
7052
7053         --  Minor optimization: we avoid the generation of useless underlying
7054         --  record view entities if the private type declaration has unknown
7055         --  discriminants but its corresponding full view has no
7056         --  discriminants.
7057
7058         if Has_Unknown_Discriminants (Parent_Type)
7059           and then Present (Full_P)
7060           and then (Has_Discriminants (Full_P)
7061                      or else Present (Underlying_Record_View (Full_P)))
7062           and then not In_Open_Scopes (Par_Scope)
7063           and then Expander_Active
7064         then
7065            declare
7066               Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7067               New_Ext  : constant Node_Id :=
7068                            Copy_Separate_Tree
7069                              (Record_Extension_Part (Type_Definition (N)));
7070               Decl     : Node_Id;
7071
7072            begin
7073               Build_Derived_Record_Type
7074                 (N, Parent_Type, Derived_Type, Derive_Subps);
7075
7076               --  Build anonymous completion, as a derivation from the full
7077               --  view of the parent. This is not a completion in the usual
7078               --  sense, because the current type is not private.
7079
7080               Decl :=
7081                 Make_Full_Type_Declaration (Loc,
7082                   Defining_Identifier => Full_Der,
7083                   Type_Definition     =>
7084                     Make_Derived_Type_Definition (Loc,
7085                       Subtype_Indication =>
7086                         New_Copy_Tree
7087                           (Subtype_Indication (Type_Definition (N))),
7088                       Record_Extension_Part => New_Ext));
7089
7090               --  If the parent type has an underlying record view, use it
7091               --  here to build the new underlying record view.
7092
7093               if Present (Underlying_Record_View (Full_P)) then
7094                  pragma Assert
7095                    (Nkind (Subtype_Indication (Type_Definition (Decl)))
7096                       = N_Identifier);
7097                  Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7098                    Underlying_Record_View (Full_P));
7099               end if;
7100
7101               Install_Private_Declarations (Par_Scope);
7102               Install_Visible_Declarations (Par_Scope);
7103               Insert_Before (N, Decl);
7104
7105               --  Mark entity as an underlying record view before analysis,
7106               --  to avoid generating the list of its primitive operations
7107               --  (which is not really required for this entity) and thus
7108               --  prevent spurious errors associated with missing overriding
7109               --  of abstract primitives (overridden only for Derived_Type).
7110
7111               Set_Ekind (Full_Der, E_Record_Type);
7112               Set_Is_Underlying_Record_View (Full_Der);
7113               Set_Default_SSO (Full_Der);
7114
7115               Analyze (Decl);
7116
7117               pragma Assert (Has_Discriminants (Full_Der)
7118                 and then not Has_Unknown_Discriminants (Full_Der));
7119
7120               Uninstall_Declarations (Par_Scope);
7121
7122               --  Freeze the underlying record view, to prevent generation of
7123               --  useless dispatching information, which is simply shared with
7124               --  the real derived type.
7125
7126               Set_Is_Frozen (Full_Der);
7127
7128               --  If the derived type has access discriminants, create
7129               --  references to their anonymous types now, to prevent
7130               --  back-end problems when their first use is in generated
7131               --  bodies of primitives.
7132
7133               declare
7134                  E : Entity_Id;
7135
7136               begin
7137                  E := First_Entity (Full_Der);
7138
7139                  while Present (E) loop
7140                     if Ekind (E) = E_Discriminant
7141                       and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7142                     then
7143                        Build_Itype_Reference (Etype (E), Decl);
7144                     end if;
7145
7146                     Next_Entity (E);
7147                  end loop;
7148               end;
7149
7150               --  Set up links between real entity and underlying record view
7151
7152               Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7153               Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7154            end;
7155
7156         --  If discriminants are known, build derived record
7157
7158         else
7159            Build_Derived_Record_Type
7160              (N, Parent_Type, Derived_Type, Derive_Subps);
7161         end if;
7162
7163         return;
7164
7165      elsif Has_Discriminants (Parent_Type) then
7166
7167         --  Build partial view of derived type from partial view of parent.
7168         --  This must be done before building the full derivation because the
7169         --  second derivation will modify the discriminants of the first and
7170         --  the discriminants are chained with the rest of the components in
7171         --  the full derivation.
7172
7173         Build_Derived_Record_Type
7174           (N, Parent_Type, Derived_Type, Derive_Subps);
7175
7176         --  Build the full derivation if this is not the anonymous derived
7177         --  base type created by Build_Derived_Record_Type in the constrained
7178         --  case (see point 5. of its head comment) since we build it for the
7179         --  derived subtype. And skip it for protected types altogether, as
7180         --  gigi does not use these types directly.
7181
7182         if Present (Full_View (Parent_Type))
7183           and then not Is_Itype (Derived_Type)
7184           and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7185         then
7186            declare
7187               Der_Base   : constant Entity_Id := Base_Type (Derived_Type);
7188               Discr      : Entity_Id;
7189               Last_Discr : Entity_Id;
7190
7191            begin
7192               --  If this is not a completion, construct the implicit full
7193               --  view by deriving from the full view of the parent type.
7194               --  But if this is a completion, the derived private type
7195               --  being built is a full view and the full derivation can
7196               --  only be its underlying full view.
7197
7198               Build_Full_Derivation;
7199
7200               if not Is_Completion then
7201                  Set_Full_View (Derived_Type, Full_Der);
7202               else
7203                  Set_Underlying_Full_View (Derived_Type, Full_Der);
7204               end if;
7205
7206               if not Is_Base_Type (Derived_Type) then
7207                  Set_Full_View (Der_Base, Base_Type (Full_Der));
7208               end if;
7209
7210               --  Copy the discriminant list from full view to the partial
7211               --  view (base type and its subtype). Gigi requires that the
7212               --  partial and full views have the same discriminants.
7213
7214               --  Note that since the partial view points to discriminants
7215               --  in the full view, their scope will be that of the full
7216               --  view. This might cause some front end problems and need
7217               --  adjustment???
7218
7219               Discr := First_Discriminant (Base_Type (Full_Der));
7220               Set_First_Entity (Der_Base, Discr);
7221
7222               loop
7223                  Last_Discr := Discr;
7224                  Next_Discriminant (Discr);
7225                  exit when No (Discr);
7226               end loop;
7227
7228               Set_Last_Entity (Der_Base, Last_Discr);
7229               Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7230               Set_Last_Entity  (Derived_Type, Last_Entity  (Der_Base));
7231
7232               Set_Stored_Constraint
7233                 (Full_Der, Stored_Constraint (Derived_Type));
7234            end;
7235         end if;
7236
7237      elsif Present (Full_View (Parent_Type))
7238        and then Has_Discriminants (Full_View (Parent_Type))
7239      then
7240         if Has_Unknown_Discriminants (Parent_Type)
7241           and then Nkind (Subtype_Indication (Type_Definition (N))) =
7242                                                         N_Subtype_Indication
7243         then
7244            Error_Msg_N
7245              ("cannot constrain type with unknown discriminants",
7246               Subtype_Indication (Type_Definition (N)));
7247            return;
7248         end if;
7249
7250         --  If this is not a completion, construct the implicit full view by
7251         --  deriving from the full view of the parent type. But if this is a
7252         --  completion, the derived private type being built is a full view
7253         --  and the full derivation can only be its underlying full view.
7254
7255         Build_Full_Derivation;
7256
7257         if not Is_Completion then
7258            Set_Full_View (Derived_Type, Full_Der);
7259         else
7260            Set_Underlying_Full_View (Derived_Type, Full_Der);
7261         end if;
7262
7263         --  In any case, the primitive operations are inherited from the
7264         --  parent type, not from the internal full view.
7265
7266         Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7267
7268         if Derive_Subps then
7269            Derive_Subprograms (Parent_Type, Derived_Type);
7270         end if;
7271
7272         Set_Stored_Constraint (Derived_Type, No_Elist);
7273         Set_Is_Constrained
7274           (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7275
7276      else
7277         --  Untagged type, No discriminants on either view
7278
7279         if Nkind (Subtype_Indication (Type_Definition (N))) =
7280                                                   N_Subtype_Indication
7281         then
7282            Error_Msg_N
7283              ("illegal constraint on type without discriminants", N);
7284         end if;
7285
7286         if Present (Discriminant_Specifications (N))
7287           and then Present (Full_View (Parent_Type))
7288           and then not Is_Tagged_Type (Full_View (Parent_Type))
7289         then
7290            Error_Msg_N ("cannot add discriminants to untagged type", N);
7291         end if;
7292
7293         Set_Stored_Constraint  (Derived_Type, No_Elist);
7294         Set_Is_Constrained     (Derived_Type, Is_Constrained (Parent_Type));
7295         Set_Is_Controlled      (Derived_Type, Is_Controlled  (Parent_Type));
7296         Set_Disable_Controlled (Derived_Type, Disable_Controlled
7297                                                              (Parent_Type));
7298         Set_Has_Controlled_Component
7299                                (Derived_Type, Has_Controlled_Component
7300                                                              (Parent_Type));
7301
7302         --  Direct controlled types do not inherit Finalize_Storage_Only flag
7303
7304         if not Is_Controlled_Active (Parent_Type) then
7305            Set_Finalize_Storage_Only
7306              (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7307         end if;
7308
7309         --  If this is not a completion, construct the implicit full view by
7310         --  deriving from the full view of the parent type.
7311
7312         --  ??? If the parent is untagged private and its completion is
7313         --  tagged, this mechanism will not work because we cannot derive from
7314         --  the tagged full view unless we have an extension.
7315
7316         if Present (Full_View (Parent_Type))
7317           and then not Is_Tagged_Type (Full_View (Parent_Type))
7318           and then not Is_Completion
7319         then
7320            Build_Full_Derivation;
7321            Set_Full_View (Derived_Type, Full_Der);
7322         end if;
7323      end if;
7324
7325      Set_Has_Unknown_Discriminants (Derived_Type,
7326        Has_Unknown_Discriminants (Parent_Type));
7327
7328      if Is_Private_Type (Derived_Type) then
7329         Set_Private_Dependents (Derived_Type, New_Elmt_List);
7330      end if;
7331
7332      --  If the parent base type is in scope, add the derived type to its
7333      --  list of private dependents, because its full view may become
7334      --  visible subsequently (in a nested private part, a body, or in a
7335      --  further child unit).
7336
7337      if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7338         Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7339
7340         --  Check for unusual case where a type completed by a private
7341         --  derivation occurs within a package nested in a child unit, and
7342         --  the parent is declared in an ancestor.
7343
7344         if Is_Child_Unit (Scope (Current_Scope))
7345           and then Is_Completion
7346           and then In_Private_Part (Current_Scope)
7347           and then Scope (Parent_Type) /= Current_Scope
7348
7349           --  Note that if the parent has a completion in the private part,
7350           --  (which is itself a derivation from some other private type)
7351           --  it is that completion that is visible, there is no full view
7352           --  available, and no special processing is needed.
7353
7354           and then Present (Full_View (Parent_Type))
7355         then
7356            --  In this case, the full view of the parent type will become
7357            --  visible in the body of the enclosing child, and only then will
7358            --  the current type be possibly non-private. Build an underlying
7359            --  full view that will be installed when the enclosing child body
7360            --  is compiled.
7361
7362            if Present (Underlying_Full_View (Derived_Type)) then
7363               Full_Der := Underlying_Full_View (Derived_Type);
7364            else
7365               Build_Full_Derivation;
7366               Set_Underlying_Full_View (Derived_Type, Full_Der);
7367            end if;
7368
7369            --  The full view will be used to swap entities on entry/exit to
7370            --  the body, and must appear in the entity list for the package.
7371
7372            Append_Entity (Full_Der, Scope (Derived_Type));
7373         end if;
7374      end if;
7375   end Build_Derived_Private_Type;
7376
7377   -------------------------------
7378   -- Build_Derived_Record_Type --
7379   -------------------------------
7380
7381   --  1. INTRODUCTION
7382
7383   --  Ideally we would like to use the same model of type derivation for
7384   --  tagged and untagged record types. Unfortunately this is not quite
7385   --  possible because the semantics of representation clauses is different
7386   --  for tagged and untagged records under inheritance. Consider the
7387   --  following:
7388
7389   --     type R (...) is [tagged] record ... end record;
7390   --     type T (...) is new R (...) [with ...];
7391
7392   --  The representation clauses for T can specify a completely different
7393   --  record layout from R's. Hence the same component can be placed in two
7394   --  very different positions in objects of type T and R. If R and T are
7395   --  tagged types, representation clauses for T can only specify the layout
7396   --  of non inherited components, thus components that are common in R and T
7397   --  have the same position in objects of type R and T.
7398
7399   --  This has two implications. The first is that the entire tree for R's
7400   --  declaration needs to be copied for T in the untagged case, so that T
7401   --  can be viewed as a record type of its own with its own representation
7402   --  clauses. The second implication is the way we handle discriminants.
7403   --  Specifically, in the untagged case we need a way to communicate to Gigi
7404   --  what are the real discriminants in the record, while for the semantics
7405   --  we need to consider those introduced by the user to rename the
7406   --  discriminants in the parent type. This is handled by introducing the
7407   --  notion of stored discriminants. See below for more.
7408
7409   --  Fortunately the way regular components are inherited can be handled in
7410   --  the same way in tagged and untagged types.
7411
7412   --  To complicate things a bit more the private view of a private extension
7413   --  cannot be handled in the same way as the full view (for one thing the
7414   --  semantic rules are somewhat different). We will explain what differs
7415   --  below.
7416
7417   --  2. DISCRIMINANTS UNDER INHERITANCE
7418
7419   --  The semantic rules governing the discriminants of derived types are
7420   --  quite subtle.
7421
7422   --   type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7423   --      [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7424
7425   --  If parent type has discriminants, then the discriminants that are
7426   --  declared in the derived type are [3.4 (11)]:
7427
7428   --  o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7429   --    there is one;
7430
7431   --  o Otherwise, each discriminant of the parent type (implicitly declared
7432   --    in the same order with the same specifications). In this case, the
7433   --    discriminants are said to be "inherited", or if unknown in the parent
7434   --    are also unknown in the derived type.
7435
7436   --  Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7437
7438   --  o The parent subtype must be constrained;
7439
7440   --  o If the parent type is not a tagged type, then each discriminant of
7441   --    the derived type must be used in the constraint defining a parent
7442   --    subtype. [Implementation note: This ensures that the new discriminant
7443   --    can share storage with an existing discriminant.]
7444
7445   --  For the derived type each discriminant of the parent type is either
7446   --  inherited, constrained to equal some new discriminant of the derived
7447   --  type, or constrained to the value of an expression.
7448
7449   --  When inherited or constrained to equal some new discriminant, the
7450   --  parent discriminant and the discriminant of the derived type are said
7451   --  to "correspond".
7452
7453   --  If a discriminant of the parent type is constrained to a specific value
7454   --  in the derived type definition, then the discriminant is said to be
7455   --  "specified" by that derived type definition.
7456
7457   --  3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7458
7459   --  We have spoken about stored discriminants in point 1 (introduction)
7460   --  above. There are two sort of stored discriminants: implicit and
7461   --  explicit. As long as the derived type inherits the same discriminants as
7462   --  the root record type, stored discriminants are the same as regular
7463   --  discriminants, and are said to be implicit. However, if any discriminant
7464   --  in the root type was renamed in the derived type, then the derived
7465   --  type will contain explicit stored discriminants. Explicit stored
7466   --  discriminants are discriminants in addition to the semantically visible
7467   --  discriminants defined for the derived type. Stored discriminants are
7468   --  used by Gigi to figure out what are the physical discriminants in
7469   --  objects of the derived type (see precise definition in einfo.ads).
7470   --  As an example, consider the following:
7471
7472   --           type R  (D1, D2, D3 : Int) is record ... end record;
7473   --           type T1 is new R;
7474   --           type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7475   --           type T3 is new T2;
7476   --           type T4 (Y : Int) is new T3 (Y, 99);
7477
7478   --  The following table summarizes the discriminants and stored
7479   --  discriminants in R and T1 through T4.
7480
7481   --   Type      Discrim     Stored Discrim  Comment
7482   --    R      (D1, D2, D3)   (D1, D2, D3)   Girder discrims implicit in R
7483   --    T1     (D1, D2, D3)   (D1, D2, D3)   Girder discrims implicit in T1
7484   --    T2     (X1, X2)       (D1, D2, D3)   Girder discrims EXPLICIT in T2
7485   --    T3     (X1, X2)       (D1, D2, D3)   Girder discrims EXPLICIT in T3
7486   --    T4     (Y)            (D1, D2, D3)   Girder discrims EXPLICIT in T4
7487
7488   --  Field Corresponding_Discriminant (abbreviated CD below) allows us to
7489   --  find the corresponding discriminant in the parent type, while
7490   --  Original_Record_Component (abbreviated ORC below), the actual physical
7491   --  component that is renamed. Finally the field Is_Completely_Hidden
7492   --  (abbreviated ICH below) is set for all explicit stored discriminants
7493   --  (see einfo.ads for more info). For the above example this gives:
7494
7495   --                 Discrim     CD        ORC     ICH
7496   --                 ^^^^^^^     ^^        ^^^     ^^^
7497   --                 D1 in R    empty     itself    no
7498   --                 D2 in R    empty     itself    no
7499   --                 D3 in R    empty     itself    no
7500
7501   --                 D1 in T1  D1 in R    itself    no
7502   --                 D2 in T1  D2 in R    itself    no
7503   --                 D3 in T1  D3 in R    itself    no
7504
7505   --                 X1 in T2  D3 in T1  D3 in T2   no
7506   --                 X2 in T2  D1 in T1  D1 in T2   no
7507   --                 D1 in T2   empty    itself    yes
7508   --                 D2 in T2   empty    itself    yes
7509   --                 D3 in T2   empty    itself    yes
7510
7511   --                 X1 in T3  X1 in T2  D3 in T3   no
7512   --                 X2 in T3  X2 in T2  D1 in T3   no
7513   --                 D1 in T3   empty    itself    yes
7514   --                 D2 in T3   empty    itself    yes
7515   --                 D3 in T3   empty    itself    yes
7516
7517   --                 Y  in T4  X1 in T3  D3 in T3   no
7518   --                 D1 in T3   empty    itself    yes
7519   --                 D2 in T3   empty    itself    yes
7520   --                 D3 in T3   empty    itself    yes
7521
7522   --  4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7523
7524   --  Type derivation for tagged types is fairly straightforward. If no
7525   --  discriminants are specified by the derived type, these are inherited
7526   --  from the parent. No explicit stored discriminants are ever necessary.
7527   --  The only manipulation that is done to the tree is that of adding a
7528   --  _parent field with parent type and constrained to the same constraint
7529   --  specified for the parent in the derived type definition. For instance:
7530
7531   --           type R  (D1, D2, D3 : Int) is tagged record ... end record;
7532   --           type T1 is new R with null record;
7533   --           type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7534
7535   --  are changed into:
7536
7537   --           type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7538   --              _parent : R (D1, D2, D3);
7539   --           end record;
7540
7541   --           type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7542   --              _parent : T1 (X2, 88, X1);
7543   --           end record;
7544
7545   --  The discriminants actually present in R, T1 and T2 as well as their CD,
7546   --  ORC and ICH fields are:
7547
7548   --                 Discrim     CD        ORC     ICH
7549   --                 ^^^^^^^     ^^        ^^^     ^^^
7550   --                 D1 in R    empty     itself    no
7551   --                 D2 in R    empty     itself    no
7552   --                 D3 in R    empty     itself    no
7553
7554   --                 D1 in T1  D1 in R    D1 in R   no
7555   --                 D2 in T1  D2 in R    D2 in R   no
7556   --                 D3 in T1  D3 in R    D3 in R   no
7557
7558   --                 X1 in T2  D3 in T1   D3 in R   no
7559   --                 X2 in T2  D1 in T1   D1 in R   no
7560
7561   --  5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7562   --
7563   --  Regardless of whether we dealing with a tagged or untagged type
7564   --  we will transform all derived type declarations of the form
7565   --
7566   --               type T is new R (...) [with ...];
7567   --  or
7568   --               subtype S is R (...);
7569   --               type T is new S [with ...];
7570   --  into
7571   --               type BT is new R [with ...];
7572   --               subtype T is BT (...);
7573   --
7574   --  That is, the base derived type is constrained only if it has no
7575   --  discriminants. The reason for doing this is that GNAT's semantic model
7576   --  assumes that a base type with discriminants is unconstrained.
7577   --
7578   --  Note that, strictly speaking, the above transformation is not always
7579   --  correct. Consider for instance the following excerpt from ACVC b34011a:
7580   --
7581   --       procedure B34011A is
7582   --          type REC (D : integer := 0) is record
7583   --             I : Integer;
7584   --          end record;
7585
7586   --          package P is
7587   --             type T6 is new Rec;
7588   --             function F return T6;
7589   --          end P;
7590
7591   --          use P;
7592   --          package Q6 is
7593   --             type U is new T6 (Q6.F.I);                   -- ERROR: Q6.F.
7594   --          end Q6;
7595   --
7596   --  The definition of Q6.U is illegal. However transforming Q6.U into
7597
7598   --             type BaseU is new T6;
7599   --             subtype U is BaseU (Q6.F.I)
7600
7601   --  turns U into a legal subtype, which is incorrect. To avoid this problem
7602   --  we always analyze the constraint (in this case (Q6.F.I)) before applying
7603   --  the transformation described above.
7604
7605   --  There is another instance where the above transformation is incorrect.
7606   --  Consider:
7607
7608   --          package Pack is
7609   --             type Base (D : Integer) is tagged null record;
7610   --             procedure P (X : Base);
7611
7612   --             type Der is new Base (2) with null record;
7613   --             procedure P (X : Der);
7614   --          end Pack;
7615
7616   --  Then the above transformation turns this into
7617
7618   --             type Der_Base is new Base with null record;
7619   --             --  procedure P (X : Base) is implicitly inherited here
7620   --             --  as procedure P (X : Der_Base).
7621
7622   --             subtype Der is Der_Base (2);
7623   --             procedure P (X : Der);
7624   --             --  The overriding of P (X : Der_Base) is illegal since we
7625   --             --  have a parameter conformance problem.
7626
7627   --  To get around this problem, after having semantically processed Der_Base
7628   --  and the rewritten subtype declaration for Der, we copy Der_Base field
7629   --  Discriminant_Constraint from Der so that when parameter conformance is
7630   --  checked when P is overridden, no semantic errors are flagged.
7631
7632   --  6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7633
7634   --  Regardless of whether we are dealing with a tagged or untagged type
7635   --  we will transform all derived type declarations of the form
7636
7637   --               type R (D1, .., Dn : ...) is [tagged] record ...;
7638   --               type T is new R [with ...];
7639   --  into
7640   --               type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7641
7642   --  The reason for such transformation is that it allows us to implement a
7643   --  very clean form of component inheritance as explained below.
7644
7645   --  Note that this transformation is not achieved by direct tree rewriting
7646   --  and manipulation, but rather by redoing the semantic actions that the
7647   --  above transformation will entail. This is done directly in routine
7648   --  Inherit_Components.
7649
7650   --  7. TYPE DERIVATION AND COMPONENT INHERITANCE
7651
7652   --  In both tagged and untagged derived types, regular non discriminant
7653   --  components are inherited in the derived type from the parent type. In
7654   --  the absence of discriminants component, inheritance is straightforward
7655   --  as components can simply be copied from the parent.
7656
7657   --  If the parent has discriminants, inheriting components constrained with
7658   --  these discriminants requires caution. Consider the following example:
7659
7660   --      type R  (D1, D2 : Positive) is [tagged] record
7661   --         S : String (D1 .. D2);
7662   --      end record;
7663
7664   --      type T1                is new R        [with null record];
7665   --      type T2 (X : positive) is new R (1, X) [with null record];
7666
7667   --  As explained in 6. above, T1 is rewritten as
7668   --      type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7669   --  which makes the treatment for T1 and T2 identical.
7670
7671   --  What we want when inheriting S, is that references to D1 and D2 in R are
7672   --  replaced with references to their correct constraints, i.e. D1 and D2 in
7673   --  T1 and 1 and X in T2. So all R's discriminant references are replaced
7674   --  with either discriminant references in the derived type or expressions.
7675   --  This replacement is achieved as follows: before inheriting R's
7676   --  components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7677   --  created in the scope of T1 (resp. scope of T2) so that discriminants D1
7678   --  and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7679   --  For T2, for instance, this has the effect of replacing String (D1 .. D2)
7680   --  by String (1 .. X).
7681
7682   --  8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7683
7684   --  We explain here the rules governing private type extensions relevant to
7685   --  type derivation. These rules are explained on the following example:
7686
7687   --      type D [(...)] is new A [(...)] with private;      <-- partial view
7688   --      type D [(...)] is new P [(...)] with null record;  <-- full view
7689
7690   --  Type A is called the ancestor subtype of the private extension.
7691   --  Type P is the parent type of the full view of the private extension. It
7692   --  must be A or a type derived from A.
7693
7694   --  The rules concerning the discriminants of private type extensions are
7695   --  [7.3(10-13)]:
7696
7697   --  o If a private extension inherits known discriminants from the ancestor
7698   --    subtype, then the full view must also inherit its discriminants from
7699   --    the ancestor subtype and the parent subtype of the full view must be
7700   --    constrained if and only if the ancestor subtype is constrained.
7701
7702   --  o If a partial view has unknown discriminants, then the full view may
7703   --    define a definite or an indefinite subtype, with or without
7704   --    discriminants.
7705
7706   --  o If a partial view has neither known nor unknown discriminants, then
7707   --    the full view must define a definite subtype.
7708
7709   --  o If the ancestor subtype of a private extension has constrained
7710   --    discriminants, then the parent subtype of the full view must impose a
7711   --    statically matching constraint on those discriminants.
7712
7713   --  This means that only the following forms of private extensions are
7714   --  allowed:
7715
7716   --      type D is new A with private;      <-- partial view
7717   --      type D is new P with null record;  <-- full view
7718
7719   --  If A has no discriminants than P has no discriminants, otherwise P must
7720   --  inherit A's discriminants.
7721
7722   --      type D is new A (...) with private;      <-- partial view
7723   --      type D is new P (:::) with null record;  <-- full view
7724
7725   --  P must inherit A's discriminants and (...) and (:::) must statically
7726   --  match.
7727
7728   --      subtype A is R (...);
7729   --      type D is new A with private;      <-- partial view
7730   --      type D is new P with null record;  <-- full view
7731
7732   --  P must have inherited R's discriminants and must be derived from A or
7733   --  any of its subtypes.
7734
7735   --      type D (..) is new A with private;              <-- partial view
7736   --      type D (..) is new P [(:::)] with null record;  <-- full view
7737
7738   --  No specific constraints on P's discriminants or constraint (:::).
7739   --  Note that A can be unconstrained, but the parent subtype P must either
7740   --  be constrained or (:::) must be present.
7741
7742   --      type D (..) is new A [(...)] with private;      <-- partial view
7743   --      type D (..) is new P [(:::)] with null record;  <-- full view
7744
7745   --  P's constraints on A's discriminants must statically match those
7746   --  imposed by (...).
7747
7748   --  9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7749
7750   --  The full view of a private extension is handled exactly as described
7751   --  above. The model chose for the private view of a private extension is
7752   --  the same for what concerns discriminants (i.e. they receive the same
7753   --  treatment as in the tagged case). However, the private view of the
7754   --  private extension always inherits the components of the parent base,
7755   --  without replacing any discriminant reference. Strictly speaking this is
7756   --  incorrect. However, Gigi never uses this view to generate code so this
7757   --  is a purely semantic issue. In theory, a set of transformations similar
7758   --  to those given in 5. and 6. above could be applied to private views of
7759   --  private extensions to have the same model of component inheritance as
7760   --  for non private extensions. However, this is not done because it would
7761   --  further complicate private type processing. Semantically speaking, this
7762   --  leaves us in an uncomfortable situation. As an example consider:
7763
7764   --          package Pack is
7765   --             type R (D : integer) is tagged record
7766   --                S : String (1 .. D);
7767   --             end record;
7768   --             procedure P (X : R);
7769   --             type T is new R (1) with private;
7770   --          private
7771   --             type T is new R (1) with null record;
7772   --          end;
7773
7774   --  This is transformed into:
7775
7776   --          package Pack is
7777   --             type R (D : integer) is tagged record
7778   --                S : String (1 .. D);
7779   --             end record;
7780   --             procedure P (X : R);
7781   --             type T is new R (1) with private;
7782   --          private
7783   --             type BaseT is new R with null record;
7784   --             subtype  T is BaseT (1);
7785   --          end;
7786
7787   --  (strictly speaking the above is incorrect Ada)
7788
7789   --  From the semantic standpoint the private view of private extension T
7790   --  should be flagged as constrained since one can clearly have
7791   --
7792   --             Obj : T;
7793   --
7794   --  in a unit withing Pack. However, when deriving subprograms for the
7795   --  private view of private extension T, T must be seen as unconstrained
7796   --  since T has discriminants (this is a constraint of the current
7797   --  subprogram derivation model). Thus, when processing the private view of
7798   --  a private extension such as T, we first mark T as unconstrained, we
7799   --  process it, we perform program derivation and just before returning from
7800   --  Build_Derived_Record_Type we mark T as constrained.
7801
7802   --  ??? Are there are other uncomfortable cases that we will have to
7803   --      deal with.
7804
7805   --  10. RECORD_TYPE_WITH_PRIVATE complications
7806
7807   --  Types that are derived from a visible record type and have a private
7808   --  extension present other peculiarities. They behave mostly like private
7809   --  types, but if they have primitive operations defined, these will not
7810   --  have the proper signatures for further inheritance, because other
7811   --  primitive operations will use the implicit base that we define for
7812   --  private derivations below. This affect subprogram inheritance (see
7813   --  Derive_Subprograms for details). We also derive the implicit base from
7814   --  the base type of the full view, so that the implicit base is a record
7815   --  type and not another private type, This avoids infinite loops.
7816
7817   procedure Build_Derived_Record_Type
7818     (N            : Node_Id;
7819      Parent_Type  : Entity_Id;
7820      Derived_Type : Entity_Id;
7821      Derive_Subps : Boolean := True)
7822   is
7823      Discriminant_Specs : constant Boolean :=
7824                             Present (Discriminant_Specifications (N));
7825      Is_Tagged          : constant Boolean := Is_Tagged_Type (Parent_Type);
7826      Loc                : constant Source_Ptr := Sloc (N);
7827      Private_Extension  : constant Boolean :=
7828                             Nkind (N) = N_Private_Extension_Declaration;
7829      Assoc_List         : Elist_Id;
7830      Constraint_Present : Boolean;
7831      Constrs            : Elist_Id;
7832      Discrim            : Entity_Id;
7833      Indic              : Node_Id;
7834      Inherit_Discrims   : Boolean := False;
7835      Last_Discrim       : Entity_Id;
7836      New_Base           : Entity_Id;
7837      New_Decl           : Node_Id;
7838      New_Discrs         : Elist_Id;
7839      New_Indic          : Node_Id;
7840      Parent_Base        : Entity_Id;
7841      Save_Etype         : Entity_Id;
7842      Save_Discr_Constr  : Elist_Id;
7843      Save_Next_Entity   : Entity_Id;
7844      Type_Def           : Node_Id;
7845
7846      Discs : Elist_Id := New_Elmt_List;
7847      --  An empty Discs list means that there were no constraints in the
7848      --  subtype indication or that there was an error processing it.
7849
7850   begin
7851      if Ekind (Parent_Type) = E_Record_Type_With_Private
7852        and then Present (Full_View (Parent_Type))
7853        and then Has_Discriminants (Parent_Type)
7854      then
7855         Parent_Base := Base_Type (Full_View (Parent_Type));
7856      else
7857         Parent_Base := Base_Type (Parent_Type);
7858      end if;
7859
7860      --  AI05-0115 : if this is a derivation from a private type in some
7861      --  other scope that may lead to invisible components for the derived
7862      --  type, mark it accordingly.
7863
7864      if Is_Private_Type (Parent_Type) then
7865         if Scope (Parent_Type) = Scope (Derived_Type) then
7866            null;
7867
7868         elsif In_Open_Scopes (Scope (Parent_Type))
7869           and then In_Private_Part (Scope (Parent_Type))
7870         then
7871            null;
7872
7873         else
7874            Set_Has_Private_Ancestor (Derived_Type);
7875         end if;
7876
7877      else
7878         Set_Has_Private_Ancestor
7879           (Derived_Type, Has_Private_Ancestor (Parent_Type));
7880      end if;
7881
7882      --  Before we start the previously documented transformations, here is
7883      --  little fix for size and alignment of tagged types. Normally when we
7884      --  derive type D from type P, we copy the size and alignment of P as the
7885      --  default for D, and in the absence of explicit representation clauses
7886      --  for D, the size and alignment are indeed the same as the parent.
7887
7888      --  But this is wrong for tagged types, since fields may be added, and
7889      --  the default size may need to be larger, and the default alignment may
7890      --  need to be larger.
7891
7892      --  We therefore reset the size and alignment fields in the tagged case.
7893      --  Note that the size and alignment will in any case be at least as
7894      --  large as the parent type (since the derived type has a copy of the
7895      --  parent type in the _parent field)
7896
7897      --  The type is also marked as being tagged here, which is needed when
7898      --  processing components with a self-referential anonymous access type
7899      --  in the call to Check_Anonymous_Access_Components below. Note that
7900      --  this flag is also set later on for completeness.
7901
7902      if Is_Tagged then
7903         Set_Is_Tagged_Type (Derived_Type);
7904         Init_Size_Align    (Derived_Type);
7905      end if;
7906
7907      --  STEP 0a: figure out what kind of derived type declaration we have
7908
7909      if Private_Extension then
7910         Type_Def := N;
7911         Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7912         Set_Default_SSO (Derived_Type);
7913
7914      else
7915         Type_Def := Type_Definition (N);
7916
7917         --  Ekind (Parent_Base) is not necessarily E_Record_Type since
7918         --  Parent_Base can be a private type or private extension. However,
7919         --  for tagged types with an extension the newly added fields are
7920         --  visible and hence the Derived_Type is always an E_Record_Type.
7921         --  (except that the parent may have its own private fields).
7922         --  For untagged types we preserve the Ekind of the Parent_Base.
7923
7924         if Present (Record_Extension_Part (Type_Def)) then
7925            Set_Ekind (Derived_Type, E_Record_Type);
7926            Set_Default_SSO (Derived_Type);
7927
7928            --  Create internal access types for components with anonymous
7929            --  access types.
7930
7931            if Ada_Version >= Ada_2005 then
7932               Check_Anonymous_Access_Components
7933                 (N, Derived_Type, Derived_Type,
7934                   Component_List (Record_Extension_Part (Type_Def)));
7935            end if;
7936
7937         else
7938            Set_Ekind (Derived_Type, Ekind (Parent_Base));
7939         end if;
7940      end if;
7941
7942      --  Indic can either be an N_Identifier if the subtype indication
7943      --  contains no constraint or an N_Subtype_Indication if the subtype
7944      --  indication has a constraint.
7945
7946      Indic := Subtype_Indication (Type_Def);
7947      Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7948
7949      --  Check that the type has visible discriminants. The type may be
7950      --  a private type with unknown discriminants whose full view has
7951      --  discriminants which are invisible.
7952
7953      if Constraint_Present then
7954         if not Has_Discriminants (Parent_Base)
7955           or else
7956             (Has_Unknown_Discriminants (Parent_Base)
7957               and then Is_Private_Type (Parent_Base))
7958         then
7959            Error_Msg_N
7960              ("invalid constraint: type has no discriminant",
7961                 Constraint (Indic));
7962
7963            Constraint_Present := False;
7964            Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7965
7966         elsif Is_Constrained (Parent_Type) then
7967            Error_Msg_N
7968               ("invalid constraint: parent type is already constrained",
7969                  Constraint (Indic));
7970
7971            Constraint_Present := False;
7972            Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7973         end if;
7974      end if;
7975
7976      --  STEP 0b: If needed, apply transformation given in point 5. above
7977
7978      if not Private_Extension
7979        and then Has_Discriminants (Parent_Type)
7980        and then not Discriminant_Specs
7981        and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7982      then
7983         --  First, we must analyze the constraint (see comment in point 5.)
7984         --  The constraint may come from the subtype indication of the full
7985         --  declaration.
7986
7987         if Constraint_Present then
7988            New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7989
7990         --  If there is no explicit constraint, there might be one that is
7991         --  inherited from a constrained parent type. In that case verify that
7992         --  it conforms to the constraint in the partial view. In perverse
7993         --  cases the parent subtypes of the partial and full view can have
7994         --  different constraints.
7995
7996         elsif Present (Stored_Constraint (Parent_Type)) then
7997            New_Discrs := Stored_Constraint (Parent_Type);
7998
7999         else
8000            New_Discrs := No_Elist;
8001         end if;
8002
8003         if Has_Discriminants (Derived_Type)
8004           and then Has_Private_Declaration (Derived_Type)
8005           and then Present (Discriminant_Constraint (Derived_Type))
8006           and then Present (New_Discrs)
8007         then
8008            --  Verify that constraints of the full view statically match
8009            --  those given in the partial view.
8010
8011            declare
8012               C1, C2 : Elmt_Id;
8013
8014            begin
8015               C1 := First_Elmt (New_Discrs);
8016               C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8017               while Present (C1) and then Present (C2) loop
8018                  if Fully_Conformant_Expressions (Node (C1), Node (C2))
8019                    or else
8020                      (Is_OK_Static_Expression (Node (C1))
8021                        and then Is_OK_Static_Expression (Node (C2))
8022                        and then
8023                          Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8024                  then
8025                     null;
8026
8027                  else
8028                     if Constraint_Present then
8029                        Error_Msg_N
8030                          ("constraint not conformant to previous declaration",
8031                           Node (C1));
8032                     else
8033                        Error_Msg_N
8034                          ("constraint of full view is incompatible "
8035                           & "with partial view", N);
8036                     end if;
8037                  end if;
8038
8039                  Next_Elmt (C1);
8040                  Next_Elmt (C2);
8041               end loop;
8042            end;
8043         end if;
8044
8045         --  Insert and analyze the declaration for the unconstrained base type
8046
8047         New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8048
8049         New_Decl :=
8050           Make_Full_Type_Declaration (Loc,
8051              Defining_Identifier => New_Base,
8052              Type_Definition     =>
8053                Make_Derived_Type_Definition (Loc,
8054                  Abstract_Present      => Abstract_Present (Type_Def),
8055                  Limited_Present       => Limited_Present (Type_Def),
8056                  Subtype_Indication    =>
8057                    New_Occurrence_Of (Parent_Base, Loc),
8058                  Record_Extension_Part =>
8059                    Relocate_Node (Record_Extension_Part (Type_Def)),
8060                  Interface_List        => Interface_List (Type_Def)));
8061
8062         Set_Parent (New_Decl, Parent (N));
8063         Mark_Rewrite_Insertion (New_Decl);
8064         Insert_Before (N, New_Decl);
8065
8066         --  In the extension case, make sure ancestor is frozen appropriately
8067         --  (see also non-discriminated case below).
8068
8069         if Present (Record_Extension_Part (Type_Def))
8070           or else Is_Interface (Parent_Base)
8071         then
8072            Freeze_Before (New_Decl, Parent_Type);
8073         end if;
8074
8075         --  Note that this call passes False for the Derive_Subps parameter
8076         --  because subprogram derivation is deferred until after creating
8077         --  the subtype (see below).
8078
8079         Build_Derived_Type
8080           (New_Decl, Parent_Base, New_Base,
8081            Is_Completion => False, Derive_Subps => False);
8082
8083         --  ??? This needs re-examination to determine whether the
8084         --  above call can simply be replaced by a call to Analyze.
8085
8086         Set_Analyzed (New_Decl);
8087
8088         --  Insert and analyze the declaration for the constrained subtype
8089
8090         if Constraint_Present then
8091            New_Indic :=
8092              Make_Subtype_Indication (Loc,
8093                Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8094                Constraint   => Relocate_Node (Constraint (Indic)));
8095
8096         else
8097            declare
8098               Constr_List : constant List_Id := New_List;
8099               C           : Elmt_Id;
8100               Expr        : Node_Id;
8101
8102            begin
8103               C := First_Elmt (Discriminant_Constraint (Parent_Type));
8104               while Present (C) loop
8105                  Expr := Node (C);
8106
8107                  --  It is safe here to call New_Copy_Tree since we called
8108                  --  Force_Evaluation on each constraint previously
8109                  --  in Build_Discriminant_Constraints.
8110
8111                  Append (New_Copy_Tree (Expr), To => Constr_List);
8112
8113                  Next_Elmt (C);
8114               end loop;
8115
8116               New_Indic :=
8117                 Make_Subtype_Indication (Loc,
8118                   Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8119                   Constraint   =>
8120                     Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8121            end;
8122         end if;
8123
8124         Rewrite (N,
8125           Make_Subtype_Declaration (Loc,
8126             Defining_Identifier => Derived_Type,
8127             Subtype_Indication  => New_Indic));
8128
8129         Analyze (N);
8130
8131         --  Derivation of subprograms must be delayed until the full subtype
8132         --  has been established, to ensure proper overriding of subprograms
8133         --  inherited by full types. If the derivations occurred as part of
8134         --  the call to Build_Derived_Type above, then the check for type
8135         --  conformance would fail because earlier primitive subprograms
8136         --  could still refer to the full type prior the change to the new
8137         --  subtype and hence would not match the new base type created here.
8138         --  Subprograms are not derived, however, when Derive_Subps is False
8139         --  (since otherwise there could be redundant derivations).
8140
8141         if Derive_Subps then
8142            Derive_Subprograms (Parent_Type, Derived_Type);
8143         end if;
8144
8145         --  For tagged types the Discriminant_Constraint of the new base itype
8146         --  is inherited from the first subtype so that no subtype conformance
8147         --  problem arise when the first subtype overrides primitive
8148         --  operations inherited by the implicit base type.
8149
8150         if Is_Tagged then
8151            Set_Discriminant_Constraint
8152              (New_Base, Discriminant_Constraint (Derived_Type));
8153         end if;
8154
8155         return;
8156      end if;
8157
8158      --  If we get here Derived_Type will have no discriminants or it will be
8159      --  a discriminated unconstrained base type.
8160
8161      --  STEP 1a: perform preliminary actions/checks for derived tagged types
8162
8163      if Is_Tagged then
8164
8165         --  The parent type is frozen for non-private extensions (RM 13.14(7))
8166         --  The declaration of a specific descendant of an interface type
8167         --  freezes the interface type (RM 13.14).
8168
8169         if not Private_Extension or else Is_Interface (Parent_Base) then
8170            Freeze_Before (N, Parent_Type);
8171         end if;
8172
8173         --  In Ada 2005 (AI-344), the restriction that a derived tagged type
8174         --  cannot be declared at a deeper level than its parent type is
8175         --  removed. The check on derivation within a generic body is also
8176         --  relaxed, but there's a restriction that a derived tagged type
8177         --  cannot be declared in a generic body if it's derived directly
8178         --  or indirectly from a formal type of that generic.
8179
8180         if Ada_Version >= Ada_2005 then
8181            if Present (Enclosing_Generic_Body (Derived_Type)) then
8182               declare
8183                  Ancestor_Type : Entity_Id;
8184
8185               begin
8186                  --  Check to see if any ancestor of the derived type is a
8187                  --  formal type.
8188
8189                  Ancestor_Type := Parent_Type;
8190                  while not Is_Generic_Type (Ancestor_Type)
8191                    and then Etype (Ancestor_Type) /= Ancestor_Type
8192                  loop
8193                     Ancestor_Type := Etype (Ancestor_Type);
8194                  end loop;
8195
8196                  --  If the derived type does have a formal type as an
8197                  --  ancestor, then it's an error if the derived type is
8198                  --  declared within the body of the generic unit that
8199                  --  declares the formal type in its generic formal part. It's
8200                  --  sufficient to check whether the ancestor type is declared
8201                  --  inside the same generic body as the derived type (such as
8202                  --  within a nested generic spec), in which case the
8203                  --  derivation is legal. If the formal type is declared
8204                  --  outside of that generic body, then it's guaranteed that
8205                  --  the derived type is declared within the generic body of
8206                  --  the generic unit declaring the formal type.
8207
8208                  if Is_Generic_Type (Ancestor_Type)
8209                    and then Enclosing_Generic_Body (Ancestor_Type) /=
8210                               Enclosing_Generic_Body (Derived_Type)
8211                  then
8212                     Error_Msg_NE
8213                       ("parent type of& must not be descendant of formal type"
8214                          & " of an enclosing generic body",
8215                            Indic, Derived_Type);
8216                  end if;
8217               end;
8218            end if;
8219
8220         elsif Type_Access_Level (Derived_Type) /=
8221                 Type_Access_Level (Parent_Type)
8222           and then not Is_Generic_Type (Derived_Type)
8223         then
8224            if Is_Controlled (Parent_Type) then
8225               Error_Msg_N
8226                 ("controlled type must be declared at the library level",
8227                  Indic);
8228            else
8229               Error_Msg_N
8230                 ("type extension at deeper accessibility level than parent",
8231                  Indic);
8232            end if;
8233
8234         else
8235            declare
8236               GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8237            begin
8238               if Present (GB)
8239                 and then GB /= Enclosing_Generic_Body (Parent_Base)
8240               then
8241                  Error_Msg_NE
8242                    ("parent type of& must not be outside generic body"
8243                       & " (RM 3.9.1(4))",
8244                         Indic, Derived_Type);
8245               end if;
8246            end;
8247         end if;
8248      end if;
8249
8250      --  Ada 2005 (AI-251)
8251
8252      if Ada_Version >= Ada_2005 and then Is_Tagged then
8253
8254         --  "The declaration of a specific descendant of an interface type
8255         --  freezes the interface type" (RM 13.14).
8256
8257         declare
8258            Iface : Node_Id;
8259         begin
8260            if Is_Non_Empty_List (Interface_List (Type_Def)) then
8261               Iface := First (Interface_List (Type_Def));
8262               while Present (Iface) loop
8263                  Freeze_Before (N, Etype (Iface));
8264                  Next (Iface);
8265               end loop;
8266            end if;
8267         end;
8268      end if;
8269
8270      --  STEP 1b : preliminary cleanup of the full view of private types
8271
8272      --  If the type is already marked as having discriminants, then it's the
8273      --  completion of a private type or private extension and we need to
8274      --  retain the discriminants from the partial view if the current
8275      --  declaration has Discriminant_Specifications so that we can verify
8276      --  conformance. However, we must remove any existing components that
8277      --  were inherited from the parent (and attached in Copy_And_Swap)
8278      --  because the full type inherits all appropriate components anyway, and
8279      --  we do not want the partial view's components interfering.
8280
8281      if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8282         Discrim := First_Discriminant (Derived_Type);
8283         loop
8284            Last_Discrim := Discrim;
8285            Next_Discriminant (Discrim);
8286            exit when No (Discrim);
8287         end loop;
8288
8289         Set_Last_Entity (Derived_Type, Last_Discrim);
8290
8291      --  In all other cases wipe out the list of inherited components (even
8292      --  inherited discriminants), it will be properly rebuilt here.
8293
8294      else
8295         Set_First_Entity (Derived_Type, Empty);
8296         Set_Last_Entity  (Derived_Type, Empty);
8297      end if;
8298
8299      --  STEP 1c: Initialize some flags for the Derived_Type
8300
8301      --  The following flags must be initialized here so that
8302      --  Process_Discriminants can check that discriminants of tagged types do
8303      --  not have a default initial value and that access discriminants are
8304      --  only specified for limited records. For completeness, these flags are
8305      --  also initialized along with all the other flags below.
8306
8307      --  AI-419: Limitedness is not inherited from an interface parent, so to
8308      --  be limited in that case the type must be explicitly declared as
8309      --  limited. However, task and protected interfaces are always limited.
8310
8311      if Limited_Present (Type_Def) then
8312         Set_Is_Limited_Record (Derived_Type);
8313
8314      elsif Is_Limited_Record (Parent_Type)
8315        or else (Present (Full_View (Parent_Type))
8316                  and then Is_Limited_Record (Full_View (Parent_Type)))
8317      then
8318         if not Is_Interface (Parent_Type)
8319           or else Is_Synchronized_Interface (Parent_Type)
8320           or else Is_Protected_Interface (Parent_Type)
8321           or else Is_Task_Interface (Parent_Type)
8322         then
8323            Set_Is_Limited_Record (Derived_Type);
8324         end if;
8325      end if;
8326
8327      --  STEP 2a: process discriminants of derived type if any
8328
8329      Push_Scope (Derived_Type);
8330
8331      if Discriminant_Specs then
8332         Set_Has_Unknown_Discriminants (Derived_Type, False);
8333
8334         --  The following call initializes fields Has_Discriminants and
8335         --  Discriminant_Constraint, unless we are processing the completion
8336         --  of a private type declaration.
8337
8338         Check_Or_Process_Discriminants (N, Derived_Type);
8339
8340         --  For untagged types, the constraint on the Parent_Type must be
8341         --  present and is used to rename the discriminants.
8342
8343         if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8344            Error_Msg_N ("untagged parent must have discriminants", Indic);
8345
8346         elsif not Is_Tagged and then not Constraint_Present then
8347            Error_Msg_N
8348              ("discriminant constraint needed for derived untagged records",
8349               Indic);
8350
8351         --  Otherwise the parent subtype must be constrained unless we have a
8352         --  private extension.
8353
8354         elsif not Constraint_Present
8355           and then not Private_Extension
8356           and then not Is_Constrained (Parent_Type)
8357         then
8358            Error_Msg_N
8359              ("unconstrained type not allowed in this context", Indic);
8360
8361         elsif Constraint_Present then
8362            --  The following call sets the field Corresponding_Discriminant
8363            --  for the discriminants in the Derived_Type.
8364
8365            Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8366
8367            --  For untagged types all new discriminants must rename
8368            --  discriminants in the parent. For private extensions new
8369            --  discriminants cannot rename old ones (implied by [7.3(13)]).
8370
8371            Discrim := First_Discriminant (Derived_Type);
8372            while Present (Discrim) loop
8373               if not Is_Tagged
8374                 and then No (Corresponding_Discriminant (Discrim))
8375               then
8376                  Error_Msg_N
8377                    ("new discriminants must constrain old ones", Discrim);
8378
8379               elsif Private_Extension
8380                 and then Present (Corresponding_Discriminant (Discrim))
8381               then
8382                  Error_Msg_N
8383                    ("only static constraints allowed for parent"
8384                     & " discriminants in the partial view", Indic);
8385                  exit;
8386               end if;
8387
8388               --  If a new discriminant is used in the constraint, then its
8389               --  subtype must be statically compatible with the parent
8390               --  discriminant's subtype (3.7(15)).
8391
8392               --  However, if the record contains an array constrained by
8393               --  the discriminant but with some different bound, the compiler
8394               --  attemps to create a smaller range for the discriminant type.
8395               --  (See exp_ch3.Adjust_Discriminants). In this case, where
8396               --  the discriminant type is a scalar type, the check must use
8397               --  the original discriminant type in the parent declaration.
8398
8399               declare
8400                  Corr_Disc : constant Entity_Id :=
8401                                Corresponding_Discriminant (Discrim);
8402                  Disc_Type : constant Entity_Id := Etype (Discrim);
8403                  Corr_Type : Entity_Id;
8404
8405               begin
8406                  if Present (Corr_Disc) then
8407                     if Is_Scalar_Type (Disc_Type) then
8408                        Corr_Type :=
8409                           Entity (Discriminant_Type (Parent (Corr_Disc)));
8410                     else
8411                        Corr_Type := Etype (Corr_Disc);
8412                     end if;
8413
8414                     if not
8415                        Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8416                     then
8417                        Error_Msg_N
8418                          ("subtype must be compatible "
8419                           & "with parent discriminant",
8420                           Discrim);
8421                     end if;
8422                  end if;
8423               end;
8424
8425               Next_Discriminant (Discrim);
8426            end loop;
8427
8428            --  Check whether the constraints of the full view statically
8429            --  match those imposed by the parent subtype [7.3(13)].
8430
8431            if Present (Stored_Constraint (Derived_Type)) then
8432               declare
8433                  C1, C2 : Elmt_Id;
8434
8435               begin
8436                  C1 := First_Elmt (Discs);
8437                  C2 := First_Elmt (Stored_Constraint (Derived_Type));
8438                  while Present (C1) and then Present (C2) loop
8439                     if not
8440                       Fully_Conformant_Expressions (Node (C1), Node (C2))
8441                     then
8442                        Error_Msg_N
8443                          ("not conformant with previous declaration",
8444                           Node (C1));
8445                     end if;
8446
8447                     Next_Elmt (C1);
8448                     Next_Elmt (C2);
8449                  end loop;
8450               end;
8451            end if;
8452         end if;
8453
8454      --  STEP 2b: No new discriminants, inherit discriminants if any
8455
8456      else
8457         if Private_Extension then
8458            Set_Has_Unknown_Discriminants
8459              (Derived_Type,
8460               Has_Unknown_Discriminants (Parent_Type)
8461                 or else Unknown_Discriminants_Present (N));
8462
8463         --  The partial view of the parent may have unknown discriminants,
8464         --  but if the full view has discriminants and the parent type is
8465         --  in scope they must be inherited.
8466
8467         elsif Has_Unknown_Discriminants (Parent_Type)
8468           and then
8469            (not Has_Discriminants (Parent_Type)
8470              or else not In_Open_Scopes (Scope (Parent_Type)))
8471         then
8472            Set_Has_Unknown_Discriminants (Derived_Type);
8473         end if;
8474
8475         if not Has_Unknown_Discriminants (Derived_Type)
8476           and then not Has_Unknown_Discriminants (Parent_Base)
8477           and then Has_Discriminants (Parent_Type)
8478         then
8479            Inherit_Discrims := True;
8480            Set_Has_Discriminants
8481              (Derived_Type, True);
8482            Set_Discriminant_Constraint
8483              (Derived_Type, Discriminant_Constraint (Parent_Base));
8484         end if;
8485
8486         --  The following test is true for private types (remember
8487         --  transformation 5. is not applied to those) and in an error
8488         --  situation.
8489
8490         if Constraint_Present then
8491            Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8492         end if;
8493
8494         --  For now mark a new derived type as constrained only if it has no
8495         --  discriminants. At the end of Build_Derived_Record_Type we properly
8496         --  set this flag in the case of private extensions. See comments in
8497         --  point 9. just before body of Build_Derived_Record_Type.
8498
8499         Set_Is_Constrained
8500           (Derived_Type,
8501            not (Inherit_Discrims
8502                  or else Has_Unknown_Discriminants (Derived_Type)));
8503      end if;
8504
8505      --  STEP 3: initialize fields of derived type
8506
8507      Set_Is_Tagged_Type    (Derived_Type, Is_Tagged);
8508      Set_Stored_Constraint (Derived_Type, No_Elist);
8509
8510      --  Ada 2005 (AI-251): Private type-declarations can implement interfaces
8511      --  but cannot be interfaces
8512
8513      if not Private_Extension
8514         and then Ekind (Derived_Type) /= E_Private_Type
8515         and then Ekind (Derived_Type) /= E_Limited_Private_Type
8516      then
8517         if Interface_Present (Type_Def) then
8518            Analyze_Interface_Declaration (Derived_Type, Type_Def);
8519         end if;
8520
8521         Set_Interfaces (Derived_Type, No_Elist);
8522      end if;
8523
8524      --  Fields inherited from the Parent_Type
8525
8526      Set_Has_Specified_Layout
8527        (Derived_Type, Has_Specified_Layout     (Parent_Type));
8528      Set_Is_Limited_Composite
8529        (Derived_Type, Is_Limited_Composite     (Parent_Type));
8530      Set_Is_Private_Composite
8531        (Derived_Type, Is_Private_Composite     (Parent_Type));
8532
8533      if Is_Tagged_Type (Parent_Type) then
8534         Set_No_Tagged_Streams_Pragma
8535           (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8536      end if;
8537
8538      --  Fields inherited from the Parent_Base
8539
8540      Set_Has_Controlled_Component
8541        (Derived_Type, Has_Controlled_Component (Parent_Base));
8542      Set_Has_Non_Standard_Rep
8543        (Derived_Type, Has_Non_Standard_Rep     (Parent_Base));
8544      Set_Has_Primitive_Operations
8545        (Derived_Type, Has_Primitive_Operations (Parent_Base));
8546
8547      --  Fields inherited from the Parent_Base in the non-private case
8548
8549      if Ekind (Derived_Type) = E_Record_Type then
8550         Set_Has_Complex_Representation
8551           (Derived_Type, Has_Complex_Representation (Parent_Base));
8552      end if;
8553
8554      --  Fields inherited from the Parent_Base for record types
8555
8556      if Is_Record_Type (Derived_Type) then
8557         declare
8558            Parent_Full : Entity_Id;
8559
8560         begin
8561            --  Ekind (Parent_Base) is not necessarily E_Record_Type since
8562            --  Parent_Base can be a private type or private extension. Go
8563            --  to the full view here to get the E_Record_Type specific flags.
8564
8565            if Present (Full_View (Parent_Base)) then
8566               Parent_Full := Full_View (Parent_Base);
8567            else
8568               Parent_Full := Parent_Base;
8569            end if;
8570
8571            Set_OK_To_Reorder_Components
8572              (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8573         end;
8574      end if;
8575
8576      --  Set fields for private derived types
8577
8578      if Is_Private_Type (Derived_Type) then
8579         Set_Depends_On_Private (Derived_Type, True);
8580         Set_Private_Dependents (Derived_Type, New_Elmt_List);
8581
8582      --  Inherit fields from non private record types. If this is the
8583      --  completion of a derivation from a private type, the parent itself
8584      --  is private, and the attributes come from its full view, which must
8585      --  be present.
8586
8587      else
8588         if Is_Private_Type (Parent_Base)
8589           and then not Is_Record_Type (Parent_Base)
8590         then
8591            Set_Component_Alignment
8592              (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8593            Set_C_Pass_By_Copy
8594              (Derived_Type, C_Pass_By_Copy      (Full_View (Parent_Base)));
8595         else
8596            Set_Component_Alignment
8597              (Derived_Type, Component_Alignment (Parent_Base));
8598            Set_C_Pass_By_Copy
8599              (Derived_Type, C_Pass_By_Copy      (Parent_Base));
8600         end if;
8601      end if;
8602
8603      --  Set fields for tagged types
8604
8605      if Is_Tagged then
8606         Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8607
8608         --  All tagged types defined in Ada.Finalization are controlled
8609
8610         if Chars (Scope (Derived_Type)) = Name_Finalization
8611           and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8612           and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8613         then
8614            Set_Is_Controlled (Derived_Type);
8615         else
8616            Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8617         end if;
8618
8619         --  Minor optimization: there is no need to generate the class-wide
8620         --  entity associated with an underlying record view.
8621
8622         if not Is_Underlying_Record_View (Derived_Type) then
8623            Make_Class_Wide_Type (Derived_Type);
8624         end if;
8625
8626         Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8627
8628         if Has_Discriminants (Derived_Type)
8629           and then Constraint_Present
8630         then
8631            Set_Stored_Constraint
8632              (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8633         end if;
8634
8635         if Ada_Version >= Ada_2005 then
8636            declare
8637               Ifaces_List : Elist_Id;
8638
8639            begin
8640               --  Checks rules 3.9.4 (13/2 and 14/2)
8641
8642               if Comes_From_Source (Derived_Type)
8643                 and then not Is_Private_Type (Derived_Type)
8644                 and then Is_Interface (Parent_Type)
8645                 and then not Is_Interface (Derived_Type)
8646               then
8647                  if Is_Task_Interface (Parent_Type) then
8648                     Error_Msg_N
8649                       ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8650                        Derived_Type);
8651
8652                  elsif Is_Protected_Interface (Parent_Type) then
8653                     Error_Msg_N
8654                       ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8655                        Derived_Type);
8656                  end if;
8657               end if;
8658
8659               --  Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8660
8661               Check_Interfaces (N, Type_Def);
8662
8663               --  Ada 2005 (AI-251): Collect the list of progenitors that are
8664               --  not already in the parents.
8665
8666               Collect_Interfaces
8667                 (T               => Derived_Type,
8668                  Ifaces_List     => Ifaces_List,
8669                  Exclude_Parents => True);
8670
8671               Set_Interfaces (Derived_Type, Ifaces_List);
8672
8673               --  If the derived type is the anonymous type created for
8674               --  a declaration whose parent has a constraint, propagate
8675               --  the interface list to the source type. This must be done
8676               --  prior to the completion of the analysis of the source type
8677               --  because the components in the extension may contain current
8678               --  instances whose legality depends on some ancestor.
8679
8680               if Is_Itype (Derived_Type) then
8681                  declare
8682                     Def : constant Node_Id :=
8683                             Associated_Node_For_Itype (Derived_Type);
8684                  begin
8685                     if Present (Def)
8686                       and then Nkind (Def) = N_Full_Type_Declaration
8687                     then
8688                        Set_Interfaces
8689                          (Defining_Identifier (Def), Ifaces_List);
8690                     end if;
8691                  end;
8692               end if;
8693
8694               --  Propagate inherited invariant information of parents
8695               --  and progenitors
8696
8697               if Ada_Version >= Ada_2012
8698                 and then not Is_Interface (Derived_Type)
8699               then
8700                  if Has_Inheritable_Invariants (Parent_Type) then
8701                     Set_Has_Invariants (Derived_Type);
8702                     Set_Has_Inheritable_Invariants (Derived_Type);
8703
8704                  elsif not Is_Empty_Elmt_List (Ifaces_List) then
8705                     declare
8706                        AI : Elmt_Id;
8707
8708                     begin
8709                        AI := First_Elmt (Ifaces_List);
8710                        while Present (AI) loop
8711                           if Has_Inheritable_Invariants (Node (AI)) then
8712                              Set_Has_Invariants (Derived_Type);
8713                              Set_Has_Inheritable_Invariants (Derived_Type);
8714
8715                              exit;
8716                           end if;
8717
8718                           Next_Elmt (AI);
8719                        end loop;
8720                     end;
8721                  end if;
8722               end if;
8723
8724               --  A type extension is automatically Ghost when one of its
8725               --  progenitors is Ghost (SPARK RM 6.9(9)). This property is
8726               --  also inherited when the parent type is Ghost, but this is
8727               --  done in Build_Derived_Type as the mechanism also handles
8728               --  untagged derivations.
8729
8730               if Implements_Ghost_Interface (Derived_Type) then
8731                  Set_Is_Ghost_Entity (Derived_Type);
8732               end if;
8733            end;
8734         end if;
8735
8736      else
8737         Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8738         Set_Has_Non_Standard_Rep
8739                       (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8740      end if;
8741
8742      --  STEP 4: Inherit components from the parent base and constrain them.
8743      --          Apply the second transformation described in point 6. above.
8744
8745      if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8746        or else not Has_Discriminants (Parent_Type)
8747        or else not Is_Constrained (Parent_Type)
8748      then
8749         Constrs := Discs;
8750      else
8751         Constrs := Discriminant_Constraint (Parent_Type);
8752      end if;
8753
8754      Assoc_List :=
8755        Inherit_Components
8756          (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8757
8758      --  STEP 5a: Copy the parent record declaration for untagged types
8759
8760      if not Is_Tagged then
8761
8762         --  Discriminant_Constraint (Derived_Type) has been properly
8763         --  constructed. Save it and temporarily set it to Empty because we
8764         --  do not want the call to New_Copy_Tree below to mess this list.
8765
8766         if Has_Discriminants (Derived_Type) then
8767            Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8768            Set_Discriminant_Constraint (Derived_Type, No_Elist);
8769         else
8770            Save_Discr_Constr := No_Elist;
8771         end if;
8772
8773         --  Save the Etype field of Derived_Type. It is correctly set now,
8774         --  but the call to New_Copy tree may remap it to point to itself,
8775         --  which is not what we want. Ditto for the Next_Entity field.
8776
8777         Save_Etype       := Etype (Derived_Type);
8778         Save_Next_Entity := Next_Entity (Derived_Type);
8779
8780         --  Assoc_List maps all stored discriminants in the Parent_Base to
8781         --  stored discriminants in the Derived_Type. It is fundamental that
8782         --  no types or itypes with discriminants other than the stored
8783         --  discriminants appear in the entities declared inside
8784         --  Derived_Type, since the back end cannot deal with it.
8785
8786         New_Decl :=
8787           New_Copy_Tree
8788             (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8789
8790         --  Restore the fields saved prior to the New_Copy_Tree call
8791         --  and compute the stored constraint.
8792
8793         Set_Etype       (Derived_Type, Save_Etype);
8794         Set_Next_Entity (Derived_Type, Save_Next_Entity);
8795
8796         if Has_Discriminants (Derived_Type) then
8797            Set_Discriminant_Constraint
8798              (Derived_Type, Save_Discr_Constr);
8799            Set_Stored_Constraint
8800              (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8801            Replace_Components (Derived_Type, New_Decl);
8802            Set_Has_Implicit_Dereference
8803              (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8804         end if;
8805
8806         --  Insert the new derived type declaration
8807
8808         Rewrite (N, New_Decl);
8809
8810      --  STEP 5b: Complete the processing for record extensions in generics
8811
8812      --  There is no completion for record extensions declared in the
8813      --  parameter part of a generic, so we need to complete processing for
8814      --  these generic record extensions here. The Record_Type_Definition call
8815      --  will change the Ekind of the components from E_Void to E_Component.
8816
8817      elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8818         Record_Type_Definition (Empty, Derived_Type);
8819
8820      --  STEP 5c: Process the record extension for non private tagged types
8821
8822      elsif not Private_Extension then
8823         Expand_Record_Extension (Derived_Type, Type_Def);
8824
8825         --  Note : previously in ASIS mode we set the Parent_Subtype of the
8826         --  derived type to propagate some semantic information. This led
8827         --  to other ASIS failures and has been removed.
8828
8829         --  Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8830         --  implemented interfaces if we are in expansion mode
8831
8832         if Expander_Active
8833           and then Has_Interfaces (Derived_Type)
8834         then
8835            Add_Interface_Tag_Components (N, Derived_Type);
8836         end if;
8837
8838         --  Analyze the record extension
8839
8840         Record_Type_Definition
8841           (Record_Extension_Part (Type_Def), Derived_Type);
8842      end if;
8843
8844      End_Scope;
8845
8846      --  Nothing else to do if there is an error in the derivation.
8847      --  An unusual case: the full view may be derived from a type in an
8848      --  instance, when the partial view was used illegally as an actual
8849      --  in that instance, leading to a circular definition.
8850
8851      if Etype (Derived_Type) = Any_Type
8852        or else Etype (Parent_Type) = Derived_Type
8853      then
8854         return;
8855      end if;
8856
8857      --  Set delayed freeze and then derive subprograms, we need to do
8858      --  this in this order so that derived subprograms inherit the
8859      --  derived freeze if necessary.
8860
8861      Set_Has_Delayed_Freeze (Derived_Type);
8862
8863      if Derive_Subps then
8864         Derive_Subprograms (Parent_Type, Derived_Type);
8865      end if;
8866
8867      --  If we have a private extension which defines a constrained derived
8868      --  type mark as constrained here after we have derived subprograms. See
8869      --  comment on point 9. just above the body of Build_Derived_Record_Type.
8870
8871      if Private_Extension and then Inherit_Discrims then
8872         if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8873            Set_Is_Constrained          (Derived_Type, True);
8874            Set_Discriminant_Constraint (Derived_Type, Discs);
8875
8876         elsif Is_Constrained (Parent_Type) then
8877            Set_Is_Constrained
8878              (Derived_Type, True);
8879            Set_Discriminant_Constraint
8880              (Derived_Type, Discriminant_Constraint (Parent_Type));
8881         end if;
8882      end if;
8883
8884      --  Update the class-wide type, which shares the now-completed entity
8885      --  list with its specific type. In case of underlying record views,
8886      --  we do not generate the corresponding class wide entity.
8887
8888      if Is_Tagged
8889        and then not Is_Underlying_Record_View (Derived_Type)
8890      then
8891         Set_First_Entity
8892           (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8893         Set_Last_Entity
8894           (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8895      end if;
8896
8897      Check_Function_Writable_Actuals (N);
8898   end Build_Derived_Record_Type;
8899
8900   ------------------------
8901   -- Build_Derived_Type --
8902   ------------------------
8903
8904   procedure Build_Derived_Type
8905     (N             : Node_Id;
8906      Parent_Type   : Entity_Id;
8907      Derived_Type  : Entity_Id;
8908      Is_Completion : Boolean;
8909      Derive_Subps  : Boolean := True)
8910   is
8911      Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8912
8913   begin
8914      --  Set common attributes
8915
8916      Set_Scope              (Derived_Type, Current_Scope);
8917
8918      Set_Etype              (Derived_Type,                Parent_Base);
8919      Set_Ekind              (Derived_Type, Ekind         (Parent_Base));
8920      Set_Has_Task           (Derived_Type, Has_Task      (Parent_Base));
8921      Set_Has_Protected      (Derived_Type, Has_Protected (Parent_Base));
8922
8923      Set_Size_Info          (Derived_Type,                     Parent_Type);
8924      Set_RM_Size            (Derived_Type, RM_Size            (Parent_Type));
8925      Set_Is_Controlled      (Derived_Type, Is_Controlled      (Parent_Type));
8926      Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
8927
8928      Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8929      Set_Is_Volatile    (Derived_Type, Is_Volatile    (Parent_Type));
8930
8931      if Is_Tagged_Type (Derived_Type) then
8932         Set_No_Tagged_Streams_Pragma
8933           (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8934      end if;
8935
8936      --  If the parent has primitive routines, set the derived type link
8937
8938      if Has_Primitive_Operations (Parent_Type) then
8939         Set_Derived_Type_Link (Parent_Base, Derived_Type);
8940      end if;
8941
8942      --  If the parent type is a private subtype, the convention on the base
8943      --  type may be set in the private part, and not propagated to the
8944      --  subtype until later, so we obtain the convention from the base type.
8945
8946      Set_Convention (Derived_Type, Convention (Parent_Base));
8947
8948      --  Set SSO default for record or array type
8949
8950      if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8951        and then Is_Base_Type (Derived_Type)
8952      then
8953         Set_Default_SSO (Derived_Type);
8954      end if;
8955
8956      --  Propagate invariant information. The new type has invariants if
8957      --  they are inherited from the parent type, and these invariants can
8958      --  be further inherited, so both flags are set.
8959
8960      --  We similarly inherit predicates
8961
8962      if Has_Predicates (Parent_Type) then
8963         Set_Has_Predicates (Derived_Type);
8964      end if;
8965
8966      --  The derived type inherits the representation clauses of the parent
8967
8968      Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8969
8970      --  Propagate the attributes related to pragma Default_Initial_Condition
8971      --  from the parent type to the private extension. A derived type always
8972      --  inherits the default initial condition flag from the parent type. If
8973      --  the derived type carries its own Default_Initial_Condition pragma,
8974      --  the flag is later reset in Analyze_Pragma. Note that both flags are
8975      --  mutually exclusive.
8976
8977      Propagate_Default_Init_Cond_Attributes
8978        (From_Typ             => Parent_Type,
8979         To_Typ               => Derived_Type,
8980         Parent_To_Derivation => True);
8981
8982      --  If the parent type has delayed rep aspects, then mark the derived
8983      --  type as possibly inheriting a delayed rep aspect.
8984
8985      if Has_Delayed_Rep_Aspects (Parent_Type) then
8986         Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8987      end if;
8988
8989      --  Propagate the attributes related to pragma Ghost from the parent type
8990      --  to the derived type or type extension (SPARK RM 6.9(9)).
8991
8992      if Is_Ghost_Entity (Parent_Type) then
8993         Set_Is_Ghost_Entity (Derived_Type);
8994      end if;
8995
8996      --  Type dependent processing
8997
8998      case Ekind (Parent_Type) is
8999         when Numeric_Kind =>
9000            Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9001
9002         when Array_Kind =>
9003            Build_Derived_Array_Type (N, Parent_Type,  Derived_Type);
9004
9005         when E_Record_Type
9006            | E_Record_Subtype
9007            | Class_Wide_Kind  =>
9008            Build_Derived_Record_Type
9009              (N, Parent_Type, Derived_Type, Derive_Subps);
9010            return;
9011
9012         when Enumeration_Kind =>
9013            Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9014
9015         when Access_Kind =>
9016            Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9017
9018         when Incomplete_Or_Private_Kind =>
9019            Build_Derived_Private_Type
9020              (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9021
9022            --  For discriminated types, the derivation includes deriving
9023            --  primitive operations. For others it is done below.
9024
9025            if Is_Tagged_Type (Parent_Type)
9026              or else Has_Discriminants (Parent_Type)
9027              or else (Present (Full_View (Parent_Type))
9028                        and then Has_Discriminants (Full_View (Parent_Type)))
9029            then
9030               return;
9031            end if;
9032
9033         when Concurrent_Kind =>
9034            Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9035
9036         when others =>
9037            raise Program_Error;
9038      end case;
9039
9040      --  Nothing more to do if some error occurred
9041
9042      if Etype (Derived_Type) = Any_Type then
9043         return;
9044      end if;
9045
9046      --  Set delayed freeze and then derive subprograms, we need to do this
9047      --  in this order so that derived subprograms inherit the derived freeze
9048      --  if necessary.
9049
9050      Set_Has_Delayed_Freeze (Derived_Type);
9051
9052      if Derive_Subps then
9053         Derive_Subprograms (Parent_Type, Derived_Type);
9054      end if;
9055
9056      Set_Has_Primitive_Operations
9057        (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9058   end Build_Derived_Type;
9059
9060   -----------------------
9061   -- Build_Discriminal --
9062   -----------------------
9063
9064   procedure Build_Discriminal (Discrim : Entity_Id) is
9065      D_Minal : Entity_Id;
9066      CR_Disc : Entity_Id;
9067
9068   begin
9069      --  A discriminal has the same name as the discriminant
9070
9071      D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9072
9073      Set_Ekind     (D_Minal, E_In_Parameter);
9074      Set_Mechanism (D_Minal, Default_Mechanism);
9075      Set_Etype     (D_Minal, Etype (Discrim));
9076      Set_Scope     (D_Minal, Current_Scope);
9077
9078      Set_Discriminal (Discrim, D_Minal);
9079      Set_Discriminal_Link (D_Minal, Discrim);
9080
9081      --  For task types, build at once the discriminants of the corresponding
9082      --  record, which are needed if discriminants are used in entry defaults
9083      --  and in family bounds.
9084
9085      if Is_Concurrent_Type (Current_Scope)
9086           or else
9087         Is_Limited_Type    (Current_Scope)
9088      then
9089         CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9090
9091         Set_Ekind            (CR_Disc, E_In_Parameter);
9092         Set_Mechanism        (CR_Disc, Default_Mechanism);
9093         Set_Etype            (CR_Disc, Etype (Discrim));
9094         Set_Scope            (CR_Disc, Current_Scope);
9095         Set_Discriminal_Link (CR_Disc, Discrim);
9096         Set_CR_Discriminant  (Discrim, CR_Disc);
9097      end if;
9098   end Build_Discriminal;
9099
9100   ------------------------------------
9101   -- Build_Discriminant_Constraints --
9102   ------------------------------------
9103
9104   function Build_Discriminant_Constraints
9105     (T           : Entity_Id;
9106      Def         : Node_Id;
9107      Derived_Def : Boolean := False) return Elist_Id
9108   is
9109      C        : constant Node_Id := Constraint (Def);
9110      Nb_Discr : constant Nat     := Number_Discriminants (T);
9111
9112      Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9113      --  Saves the expression corresponding to a given discriminant in T
9114
9115      function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9116      --  Return the Position number within array Discr_Expr of a discriminant
9117      --  D within the discriminant list of the discriminated type T.
9118
9119      procedure Process_Discriminant_Expression
9120         (Expr : Node_Id;
9121          D    : Entity_Id);
9122      --  If this is a discriminant constraint on a partial view, do not
9123      --  generate an overflow check on the discriminant expression. The check
9124      --  will be generated when constraining the full view. Otherwise the
9125      --  backend creates duplicate symbols for the temporaries corresponding
9126      --  to the expressions to be checked, causing spurious assembler errors.
9127
9128      ------------------
9129      -- Pos_Of_Discr --
9130      ------------------
9131
9132      function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9133         Disc : Entity_Id;
9134
9135      begin
9136         Disc := First_Discriminant (T);
9137         for J in Discr_Expr'Range loop
9138            if Disc = D then
9139               return J;
9140            end if;
9141
9142            Next_Discriminant (Disc);
9143         end loop;
9144
9145         --  Note: Since this function is called on discriminants that are
9146         --  known to belong to the discriminated type, falling through the
9147         --  loop with no match signals an internal compiler error.
9148
9149         raise Program_Error;
9150      end Pos_Of_Discr;
9151
9152      -------------------------------------
9153      -- Process_Discriminant_Expression --
9154      -------------------------------------
9155
9156      procedure Process_Discriminant_Expression
9157         (Expr : Node_Id;
9158          D    : Entity_Id)
9159      is
9160         BDT : constant Entity_Id := Base_Type (Etype (D));
9161
9162      begin
9163         --  If this is a discriminant constraint on a partial view, do
9164         --  not generate an overflow on the discriminant expression. The
9165         --  check will be generated when constraining the full view.
9166
9167         if Is_Private_Type (T)
9168           and then Present (Full_View (T))
9169         then
9170            Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9171         else
9172            Analyze_And_Resolve (Expr, BDT);
9173         end if;
9174      end Process_Discriminant_Expression;
9175
9176      --  Declarations local to Build_Discriminant_Constraints
9177
9178      Discr : Entity_Id;
9179      E     : Entity_Id;
9180      Elist : constant Elist_Id := New_Elmt_List;
9181
9182      Constr   : Node_Id;
9183      Expr     : Node_Id;
9184      Id       : Node_Id;
9185      Position : Nat;
9186      Found    : Boolean;
9187
9188      Discrim_Present : Boolean := False;
9189
9190   --  Start of processing for Build_Discriminant_Constraints
9191
9192   begin
9193      --  The following loop will process positional associations only.
9194      --  For a positional association, the (single) discriminant is
9195      --  implicitly specified by position, in textual order (RM 3.7.2).
9196
9197      Discr  := First_Discriminant (T);
9198      Constr := First (Constraints (C));
9199      for D in Discr_Expr'Range loop
9200         exit when Nkind (Constr) = N_Discriminant_Association;
9201
9202         if No (Constr) then
9203            Error_Msg_N ("too few discriminants given in constraint", C);
9204            return New_Elmt_List;
9205
9206         elsif Nkind (Constr) = N_Range
9207           or else (Nkind (Constr) = N_Attribute_Reference
9208                     and then Attribute_Name (Constr) = Name_Range)
9209         then
9210            Error_Msg_N
9211              ("a range is not a valid discriminant constraint", Constr);
9212            Discr_Expr (D) := Error;
9213
9214         else
9215            Process_Discriminant_Expression (Constr, Discr);
9216            Discr_Expr (D) := Constr;
9217         end if;
9218
9219         Next_Discriminant (Discr);
9220         Next (Constr);
9221      end loop;
9222
9223      if No (Discr) and then Present (Constr) then
9224         Error_Msg_N ("too many discriminants given in constraint", Constr);
9225         return New_Elmt_List;
9226      end if;
9227
9228      --  Named associations can be given in any order, but if both positional
9229      --  and named associations are used in the same discriminant constraint,
9230      --  then positional associations must occur first, at their normal
9231      --  position. Hence once a named association is used, the rest of the
9232      --  discriminant constraint must use only named associations.
9233
9234      while Present (Constr) loop
9235
9236         --  Positional association forbidden after a named association
9237
9238         if Nkind (Constr) /= N_Discriminant_Association then
9239            Error_Msg_N ("positional association follows named one", Constr);
9240            return New_Elmt_List;
9241
9242         --  Otherwise it is a named association
9243
9244         else
9245            --  E records the type of the discriminants in the named
9246            --  association. All the discriminants specified in the same name
9247            --  association must have the same type.
9248
9249            E := Empty;
9250
9251            --  Search the list of discriminants in T to see if the simple name
9252            --  given in the constraint matches any of them.
9253
9254            Id := First (Selector_Names (Constr));
9255            while Present (Id) loop
9256               Found := False;
9257
9258               --  If Original_Discriminant is present, we are processing a
9259               --  generic instantiation and this is an instance node. We need
9260               --  to find the name of the corresponding discriminant in the
9261               --  actual record type T and not the name of the discriminant in
9262               --  the generic formal. Example:
9263
9264               --    generic
9265               --       type G (D : int) is private;
9266               --    package P is
9267               --       subtype W is G (D => 1);
9268               --    end package;
9269               --    type Rec (X : int) is record ... end record;
9270               --    package Q is new P (G => Rec);
9271
9272               --  At the point of the instantiation, formal type G is Rec
9273               --  and therefore when reanalyzing "subtype W is G (D => 1);"
9274               --  which really looks like "subtype W is Rec (D => 1);" at
9275               --  the point of instantiation, we want to find the discriminant
9276               --  that corresponds to D in Rec, i.e. X.
9277
9278               if Present (Original_Discriminant (Id))
9279                 and then In_Instance
9280               then
9281                  Discr := Find_Corresponding_Discriminant (Id, T);
9282                  Found := True;
9283
9284               else
9285                  Discr := First_Discriminant (T);
9286                  while Present (Discr) loop
9287                     if Chars (Discr) = Chars (Id) then
9288                        Found := True;
9289                        exit;
9290                     end if;
9291
9292                     Next_Discriminant (Discr);
9293                  end loop;
9294
9295                  if not Found then
9296                     Error_Msg_N ("& does not match any discriminant", Id);
9297                     return New_Elmt_List;
9298
9299                  --  If the parent type is a generic formal, preserve the
9300                  --  name of the discriminant for subsequent instances.
9301                  --  see comment at the beginning of this if statement.
9302
9303                  elsif Is_Generic_Type (Root_Type (T)) then
9304                     Set_Original_Discriminant (Id, Discr);
9305                  end if;
9306               end if;
9307
9308               Position := Pos_Of_Discr (T, Discr);
9309
9310               if Present (Discr_Expr (Position)) then
9311                  Error_Msg_N ("duplicate constraint for discriminant&", Id);
9312
9313               else
9314                  --  Each discriminant specified in the same named association
9315                  --  must be associated with a separate copy of the
9316                  --  corresponding expression.
9317
9318                  if Present (Next (Id)) then
9319                     Expr := New_Copy_Tree (Expression (Constr));
9320                     Set_Parent (Expr, Parent (Expression (Constr)));
9321                  else
9322                     Expr := Expression (Constr);
9323                  end if;
9324
9325                  Discr_Expr (Position) := Expr;
9326                  Process_Discriminant_Expression (Expr, Discr);
9327               end if;
9328
9329               --  A discriminant association with more than one discriminant
9330               --  name is only allowed if the named discriminants are all of
9331               --  the same type (RM 3.7.1(8)).
9332
9333               if E = Empty then
9334                  E := Base_Type (Etype (Discr));
9335
9336               elsif Base_Type (Etype (Discr)) /= E then
9337                  Error_Msg_N
9338                    ("all discriminants in an association " &
9339                     "must have the same type", Id);
9340               end if;
9341
9342               Next (Id);
9343            end loop;
9344         end if;
9345
9346         Next (Constr);
9347      end loop;
9348
9349      --  A discriminant constraint must provide exactly one value for each
9350      --  discriminant of the type (RM 3.7.1(8)).
9351
9352      for J in Discr_Expr'Range loop
9353         if No (Discr_Expr (J)) then
9354            Error_Msg_N ("too few discriminants given in constraint", C);
9355            return New_Elmt_List;
9356         end if;
9357      end loop;
9358
9359      --  Determine if there are discriminant expressions in the constraint
9360
9361      for J in Discr_Expr'Range loop
9362         if Denotes_Discriminant
9363              (Discr_Expr (J), Check_Concurrent => True)
9364         then
9365            Discrim_Present := True;
9366         end if;
9367      end loop;
9368
9369      --  Build an element list consisting of the expressions given in the
9370      --  discriminant constraint and apply the appropriate checks. The list
9371      --  is constructed after resolving any named discriminant associations
9372      --  and therefore the expressions appear in the textual order of the
9373      --  discriminants.
9374
9375      Discr := First_Discriminant (T);
9376      for J in Discr_Expr'Range loop
9377         if Discr_Expr (J) /= Error then
9378            Append_Elmt (Discr_Expr (J), Elist);
9379
9380            --  If any of the discriminant constraints is given by a
9381            --  discriminant and we are in a derived type declaration we
9382            --  have a discriminant renaming. Establish link between new
9383            --  and old discriminant.
9384
9385            if Denotes_Discriminant (Discr_Expr (J)) then
9386               if Derived_Def then
9387                  Set_Corresponding_Discriminant
9388                    (Entity (Discr_Expr (J)), Discr);
9389               end if;
9390
9391            --  Force the evaluation of non-discriminant expressions.
9392            --  If we have found a discriminant in the constraint 3.4(26)
9393            --  and 3.8(18) demand that no range checks are performed are
9394            --  after evaluation. If the constraint is for a component
9395            --  definition that has a per-object constraint, expressions are
9396            --  evaluated but not checked either. In all other cases perform
9397            --  a range check.
9398
9399            else
9400               if Discrim_Present then
9401                  null;
9402
9403               elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9404                 and then
9405                   Has_Per_Object_Constraint
9406                     (Defining_Identifier (Parent (Parent (Def))))
9407               then
9408                  null;
9409
9410               elsif Is_Access_Type (Etype (Discr)) then
9411                  Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9412
9413               else
9414                  Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9415               end if;
9416
9417               Force_Evaluation (Discr_Expr (J));
9418            end if;
9419
9420            --  Check that the designated type of an access discriminant's
9421            --  expression is not a class-wide type unless the discriminant's
9422            --  designated type is also class-wide.
9423
9424            if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9425              and then not Is_Class_Wide_Type
9426                         (Designated_Type (Etype (Discr)))
9427              and then Etype (Discr_Expr (J)) /= Any_Type
9428              and then Is_Class_Wide_Type
9429                         (Designated_Type (Etype (Discr_Expr (J))))
9430            then
9431               Wrong_Type (Discr_Expr (J), Etype (Discr));
9432
9433            elsif Is_Access_Type (Etype (Discr))
9434              and then not Is_Access_Constant (Etype (Discr))
9435              and then Is_Access_Type (Etype (Discr_Expr (J)))
9436              and then Is_Access_Constant (Etype (Discr_Expr (J)))
9437            then
9438               Error_Msg_NE
9439                 ("constraint for discriminant& must be access to variable",
9440                    Def, Discr);
9441            end if;
9442         end if;
9443
9444         Next_Discriminant (Discr);
9445      end loop;
9446
9447      return Elist;
9448   end Build_Discriminant_Constraints;
9449
9450   ---------------------------------
9451   -- Build_Discriminated_Subtype --
9452   ---------------------------------
9453
9454   procedure Build_Discriminated_Subtype
9455     (T           : Entity_Id;
9456      Def_Id      : Entity_Id;
9457      Elist       : Elist_Id;
9458      Related_Nod : Node_Id;
9459      For_Access  : Boolean := False)
9460   is
9461      Has_Discrs  : constant Boolean := Has_Discriminants (T);
9462      Constrained : constant Boolean :=
9463                      (Has_Discrs
9464                         and then not Is_Empty_Elmt_List (Elist)
9465                         and then not Is_Class_Wide_Type (T))
9466                        or else Is_Constrained (T);
9467
9468   begin
9469      if Ekind (T) = E_Record_Type then
9470         if For_Access then
9471            Set_Ekind (Def_Id, E_Private_Subtype);
9472            Set_Is_For_Access_Subtype (Def_Id, True);
9473         else
9474            Set_Ekind (Def_Id, E_Record_Subtype);
9475         end if;
9476
9477         --  Inherit preelaboration flag from base, for types for which it
9478         --  may have been set: records, private types, protected types.
9479
9480         Set_Known_To_Have_Preelab_Init
9481           (Def_Id, Known_To_Have_Preelab_Init (T));
9482
9483      elsif Ekind (T) = E_Task_Type then
9484         Set_Ekind (Def_Id, E_Task_Subtype);
9485
9486      elsif Ekind (T) = E_Protected_Type then
9487         Set_Ekind (Def_Id, E_Protected_Subtype);
9488         Set_Known_To_Have_Preelab_Init
9489           (Def_Id, Known_To_Have_Preelab_Init (T));
9490
9491      elsif Is_Private_Type (T) then
9492         Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9493         Set_Known_To_Have_Preelab_Init
9494           (Def_Id, Known_To_Have_Preelab_Init (T));
9495
9496         --  Private subtypes may have private dependents
9497
9498         Set_Private_Dependents (Def_Id, New_Elmt_List);
9499
9500      elsif Is_Class_Wide_Type (T) then
9501         Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9502
9503      else
9504         --  Incomplete type. Attach subtype to list of dependents, to be
9505         --  completed with full view of parent type,  unless is it the
9506         --  designated subtype of a record component within an init_proc.
9507         --  This last case arises for a component of an access type whose
9508         --  designated type is incomplete (e.g. a Taft Amendment type).
9509         --  The designated subtype is within an inner scope, and needs no
9510         --  elaboration, because only the access type is needed in the
9511         --  initialization procedure.
9512
9513         Set_Ekind (Def_Id, Ekind (T));
9514
9515         if For_Access and then Within_Init_Proc then
9516            null;
9517         else
9518            Append_Elmt (Def_Id, Private_Dependents (T));
9519         end if;
9520      end if;
9521
9522      Set_Etype             (Def_Id, T);
9523      Init_Size_Align       (Def_Id);
9524      Set_Has_Discriminants (Def_Id, Has_Discrs);
9525      Set_Is_Constrained    (Def_Id, Constrained);
9526
9527      Set_First_Entity      (Def_Id, First_Entity   (T));
9528      Set_Last_Entity       (Def_Id, Last_Entity    (T));
9529      Set_Has_Implicit_Dereference
9530                            (Def_Id, Has_Implicit_Dereference (T));
9531
9532      --  If the subtype is the completion of a private declaration, there may
9533      --  have been representation clauses for the partial view, and they must
9534      --  be preserved. Build_Derived_Type chains the inherited clauses with
9535      --  the ones appearing on the extension. If this comes from a subtype
9536      --  declaration, all clauses are inherited.
9537
9538      if No (First_Rep_Item (Def_Id)) then
9539         Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9540      end if;
9541
9542      if Is_Tagged_Type (T) then
9543         Set_Is_Tagged_Type (Def_Id);
9544         Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9545         Make_Class_Wide_Type (Def_Id);
9546      end if;
9547
9548      Set_Stored_Constraint (Def_Id, No_Elist);
9549
9550      if Has_Discrs then
9551         Set_Discriminant_Constraint (Def_Id, Elist);
9552         Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9553      end if;
9554
9555      if Is_Tagged_Type (T) then
9556
9557         --  Ada 2005 (AI-251): In case of concurrent types we inherit the
9558         --  concurrent record type (which has the list of primitive
9559         --  operations).
9560
9561         if Ada_Version >= Ada_2005
9562           and then Is_Concurrent_Type (T)
9563         then
9564            Set_Corresponding_Record_Type (Def_Id,
9565               Corresponding_Record_Type (T));
9566         else
9567            Set_Direct_Primitive_Operations (Def_Id,
9568              Direct_Primitive_Operations (T));
9569         end if;
9570
9571         Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9572      end if;
9573
9574      --  Subtypes introduced by component declarations do not need to be
9575      --  marked as delayed, and do not get freeze nodes, because the semantics
9576      --  verifies that the parents of the subtypes are frozen before the
9577      --  enclosing record is frozen.
9578
9579      if not Is_Type (Scope (Def_Id)) then
9580         Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9581
9582         if Is_Private_Type (T)
9583           and then Present (Full_View (T))
9584         then
9585            Conditional_Delay (Def_Id, Full_View (T));
9586         else
9587            Conditional_Delay (Def_Id, T);
9588         end if;
9589      end if;
9590
9591      if Is_Record_Type (T) then
9592         Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9593
9594         if Has_Discrs
9595            and then not Is_Empty_Elmt_List (Elist)
9596            and then not For_Access
9597         then
9598            Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9599         elsif not For_Access then
9600            Set_Cloned_Subtype (Def_Id, T);
9601         end if;
9602      end if;
9603   end Build_Discriminated_Subtype;
9604
9605   ---------------------------
9606   -- Build_Itype_Reference --
9607   ---------------------------
9608
9609   procedure Build_Itype_Reference
9610     (Ityp : Entity_Id;
9611      Nod  : Node_Id)
9612   is
9613      IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9614   begin
9615
9616      --  Itype references are only created for use by the back-end
9617
9618      if Inside_A_Generic then
9619         return;
9620      else
9621         Set_Itype (IR, Ityp);
9622         Insert_After (Nod, IR);
9623      end if;
9624   end Build_Itype_Reference;
9625
9626   ------------------------
9627   -- Build_Scalar_Bound --
9628   ------------------------
9629
9630   function Build_Scalar_Bound
9631     (Bound : Node_Id;
9632      Par_T : Entity_Id;
9633      Der_T : Entity_Id) return Node_Id
9634   is
9635      New_Bound : Entity_Id;
9636
9637   begin
9638      --  Note: not clear why this is needed, how can the original bound
9639      --  be unanalyzed at this point? and if it is, what business do we
9640      --  have messing around with it? and why is the base type of the
9641      --  parent type the right type for the resolution. It probably is
9642      --  not. It is OK for the new bound we are creating, but not for
9643      --  the old one??? Still if it never happens, no problem.
9644
9645      Analyze_And_Resolve (Bound, Base_Type (Par_T));
9646
9647      if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9648         New_Bound := New_Copy (Bound);
9649         Set_Etype (New_Bound, Der_T);
9650         Set_Analyzed (New_Bound);
9651
9652      elsif Is_Entity_Name (Bound) then
9653         New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9654
9655      --  The following is almost certainly wrong. What business do we have
9656      --  relocating a node (Bound) that is presumably still attached to
9657      --  the tree elsewhere???
9658
9659      else
9660         New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9661      end if;
9662
9663      Set_Etype (New_Bound, Der_T);
9664      return New_Bound;
9665   end Build_Scalar_Bound;
9666
9667   --------------------------------
9668   -- Build_Underlying_Full_View --
9669   --------------------------------
9670
9671   procedure Build_Underlying_Full_View
9672     (N   : Node_Id;
9673      Typ : Entity_Id;
9674      Par : Entity_Id)
9675   is
9676      Loc  : constant Source_Ptr := Sloc (N);
9677      Subt : constant Entity_Id :=
9678               Make_Defining_Identifier
9679                 (Loc, New_External_Name (Chars (Typ), 'S'));
9680
9681      Constr : Node_Id;
9682      Indic  : Node_Id;
9683      C      : Node_Id;
9684      Id     : Node_Id;
9685
9686      procedure Set_Discriminant_Name (Id : Node_Id);
9687      --  If the derived type has discriminants, they may rename discriminants
9688      --  of the parent. When building the full view of the parent, we need to
9689      --  recover the names of the original discriminants if the constraint is
9690      --  given by named associations.
9691
9692      ---------------------------
9693      -- Set_Discriminant_Name --
9694      ---------------------------
9695
9696      procedure Set_Discriminant_Name (Id : Node_Id) is
9697         Disc : Entity_Id;
9698
9699      begin
9700         Set_Original_Discriminant (Id, Empty);
9701
9702         if Has_Discriminants (Typ) then
9703            Disc := First_Discriminant (Typ);
9704            while Present (Disc) loop
9705               if Chars (Disc) = Chars (Id)
9706                 and then Present (Corresponding_Discriminant (Disc))
9707               then
9708                  Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9709               end if;
9710               Next_Discriminant (Disc);
9711            end loop;
9712         end if;
9713      end Set_Discriminant_Name;
9714
9715   --  Start of processing for Build_Underlying_Full_View
9716
9717   begin
9718      if Nkind (N) = N_Full_Type_Declaration then
9719         Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9720
9721      elsif Nkind (N) = N_Subtype_Declaration then
9722         Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9723
9724      elsif Nkind (N) = N_Component_Declaration then
9725         Constr :=
9726           New_Copy_Tree
9727             (Constraint (Subtype_Indication (Component_Definition (N))));
9728
9729      else
9730         raise Program_Error;
9731      end if;
9732
9733      C := First (Constraints (Constr));
9734      while Present (C) loop
9735         if Nkind (C) = N_Discriminant_Association then
9736            Id := First (Selector_Names (C));
9737            while Present (Id) loop
9738               Set_Discriminant_Name (Id);
9739               Next (Id);
9740            end loop;
9741         end if;
9742
9743         Next (C);
9744      end loop;
9745
9746      Indic :=
9747        Make_Subtype_Declaration (Loc,
9748          Defining_Identifier => Subt,
9749          Subtype_Indication  =>
9750            Make_Subtype_Indication (Loc,
9751              Subtype_Mark => New_Occurrence_Of (Par, Loc),
9752              Constraint   => New_Copy_Tree (Constr)));
9753
9754      --  If this is a component subtype for an outer itype, it is not
9755      --  a list member, so simply set the parent link for analysis: if
9756      --  the enclosing type does not need to be in a declarative list,
9757      --  neither do the components.
9758
9759      if Is_List_Member (N)
9760        and then Nkind (N) /= N_Component_Declaration
9761      then
9762         Insert_Before (N, Indic);
9763      else
9764         Set_Parent (Indic, Parent (N));
9765      end if;
9766
9767      Analyze (Indic);
9768      Set_Underlying_Full_View (Typ, Full_View (Subt));
9769   end Build_Underlying_Full_View;
9770
9771   -------------------------------
9772   -- Check_Abstract_Overriding --
9773   -------------------------------
9774
9775   procedure Check_Abstract_Overriding (T : Entity_Id) is
9776      Alias_Subp : Entity_Id;
9777      Elmt       : Elmt_Id;
9778      Op_List    : Elist_Id;
9779      Subp       : Entity_Id;
9780      Type_Def   : Node_Id;
9781
9782      procedure Check_Pragma_Implemented (Subp : Entity_Id);
9783      --  Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9784      --  which has pragma Implemented already set. Check whether Subp's entity
9785      --  kind conforms to the implementation kind of the overridden routine.
9786
9787      procedure Check_Pragma_Implemented
9788        (Subp       : Entity_Id;
9789         Iface_Subp : Entity_Id);
9790      --  Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9791      --  Iface_Subp and both entities have pragma Implemented already set on
9792      --  them. Check whether the two implementation kinds are conforming.
9793
9794      procedure Inherit_Pragma_Implemented
9795        (Subp       : Entity_Id;
9796         Iface_Subp : Entity_Id);
9797      --  Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9798      --  subprogram Iface_Subp which has been marked by pragma Implemented.
9799      --  Propagate the implementation kind of Iface_Subp to Subp.
9800
9801      ------------------------------
9802      -- Check_Pragma_Implemented --
9803      ------------------------------
9804
9805      procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9806         Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9807         Impl_Kind   : constant Name_Id   := Implementation_Kind (Iface_Alias);
9808         Subp_Alias  : constant Entity_Id := Alias (Subp);
9809         Contr_Typ   : Entity_Id;
9810         Impl_Subp   : Entity_Id;
9811
9812      begin
9813         --  Subp must have an alias since it is a hidden entity used to link
9814         --  an interface subprogram to its overriding counterpart.
9815
9816         pragma Assert (Present (Subp_Alias));
9817
9818         --  Handle aliases to synchronized wrappers
9819
9820         Impl_Subp := Subp_Alias;
9821
9822         if Is_Primitive_Wrapper (Impl_Subp) then
9823            Impl_Subp := Wrapped_Entity (Impl_Subp);
9824         end if;
9825
9826         --  Extract the type of the controlling formal
9827
9828         Contr_Typ := Etype (First_Formal (Subp_Alias));
9829
9830         if Is_Concurrent_Record_Type (Contr_Typ) then
9831            Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9832         end if;
9833
9834         --  An interface subprogram whose implementation kind is By_Entry must
9835         --  be implemented by an entry.
9836
9837         if Impl_Kind = Name_By_Entry
9838           and then Ekind (Impl_Subp) /= E_Entry
9839         then
9840            Error_Msg_Node_2 := Iface_Alias;
9841            Error_Msg_NE
9842              ("type & must implement abstract subprogram & with an entry",
9843               Subp_Alias, Contr_Typ);
9844
9845         elsif Impl_Kind = Name_By_Protected_Procedure then
9846
9847            --  An interface subprogram whose implementation kind is By_
9848            --  Protected_Procedure cannot be implemented by a primitive
9849            --  procedure of a task type.
9850
9851            if Ekind (Contr_Typ) /= E_Protected_Type then
9852               Error_Msg_Node_2 := Contr_Typ;
9853               Error_Msg_NE
9854                 ("interface subprogram & cannot be implemented by a " &
9855                  "primitive procedure of task type &", Subp_Alias,
9856                  Iface_Alias);
9857
9858            --  An interface subprogram whose implementation kind is By_
9859            --  Protected_Procedure must be implemented by a procedure.
9860
9861            elsif Ekind (Impl_Subp) /= E_Procedure then
9862               Error_Msg_Node_2 := Iface_Alias;
9863               Error_Msg_NE
9864                 ("type & must implement abstract subprogram & with a " &
9865                  "procedure", Subp_Alias, Contr_Typ);
9866
9867            elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9868              and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9869            then
9870               Error_Msg_Name_1 := Impl_Kind;
9871               Error_Msg_N
9872                ("overriding operation& must have synchronization%",
9873                 Subp_Alias);
9874            end if;
9875
9876         --  If primitive has Optional synchronization, overriding operation
9877         --  must match if it has an explicit synchronization..
9878
9879         elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9880           and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9881         then
9882               Error_Msg_Name_1 := Impl_Kind;
9883               Error_Msg_N
9884                ("overriding operation& must have syncrhonization%",
9885                 Subp_Alias);
9886         end if;
9887      end Check_Pragma_Implemented;
9888
9889      ------------------------------
9890      -- Check_Pragma_Implemented --
9891      ------------------------------
9892
9893      procedure Check_Pragma_Implemented
9894        (Subp       : Entity_Id;
9895         Iface_Subp : Entity_Id)
9896      is
9897         Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9898         Subp_Kind  : constant Name_Id := Implementation_Kind (Subp);
9899
9900      begin
9901         --  Ada 2012 (AI05-0030): The implementation kinds of an overridden
9902         --  and overriding subprogram are different. In general this is an
9903         --  error except when the implementation kind of the overridden
9904         --  subprograms is By_Any or Optional.
9905
9906         if Iface_Kind /= Subp_Kind
9907           and then Iface_Kind /= Name_By_Any
9908           and then Iface_Kind /= Name_Optional
9909         then
9910            if Iface_Kind = Name_By_Entry then
9911               Error_Msg_N
9912                 ("incompatible implementation kind, overridden subprogram " &
9913                  "is marked By_Entry", Subp);
9914            else
9915               Error_Msg_N
9916                 ("incompatible implementation kind, overridden subprogram " &
9917                  "is marked By_Protected_Procedure", Subp);
9918            end if;
9919         end if;
9920      end Check_Pragma_Implemented;
9921
9922      --------------------------------
9923      -- Inherit_Pragma_Implemented --
9924      --------------------------------
9925
9926      procedure Inherit_Pragma_Implemented
9927        (Subp       : Entity_Id;
9928         Iface_Subp : Entity_Id)
9929      is
9930         Iface_Kind : constant Name_Id    := Implementation_Kind (Iface_Subp);
9931         Loc        : constant Source_Ptr := Sloc (Subp);
9932         Impl_Prag  : Node_Id;
9933
9934      begin
9935         --  Since the implementation kind is stored as a representation item
9936         --  rather than a flag, create a pragma node.
9937
9938         Impl_Prag :=
9939           Make_Pragma (Loc,
9940             Chars                        => Name_Implemented,
9941             Pragma_Argument_Associations => New_List (
9942               Make_Pragma_Argument_Association (Loc,
9943                 Expression => New_Occurrence_Of (Subp, Loc)),
9944
9945               Make_Pragma_Argument_Association (Loc,
9946                 Expression => Make_Identifier (Loc, Iface_Kind))));
9947
9948         --  The pragma doesn't need to be analyzed because it is internally
9949         --  built. It is safe to directly register it as a rep item since we
9950         --  are only interested in the characters of the implementation kind.
9951
9952         Record_Rep_Item (Subp, Impl_Prag);
9953      end Inherit_Pragma_Implemented;
9954
9955   --  Start of processing for Check_Abstract_Overriding
9956
9957   begin
9958      Op_List := Primitive_Operations (T);
9959
9960      --  Loop to check primitive operations
9961
9962      Elmt := First_Elmt (Op_List);
9963      while Present (Elmt) loop
9964         Subp := Node (Elmt);
9965         Alias_Subp := Alias (Subp);
9966
9967         --  Inherited subprograms are identified by the fact that they do not
9968         --  come from source, and the associated source location is the
9969         --  location of the first subtype of the derived type.
9970
9971         --  Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9972         --  subprograms that "require overriding".
9973
9974         --  Special exception, do not complain about failure to override the
9975         --  stream routines _Input and _Output, as well as the primitive
9976         --  operations used in dispatching selects since we always provide
9977         --  automatic overridings for these subprograms.
9978
9979         --  The partial view of T may have been a private extension, for
9980         --  which inherited functions dispatching on result are abstract.
9981         --  If the full view is a null extension, there is no need for
9982         --  overriding in Ada 2005, but wrappers need to be built for them
9983         --  (see exp_ch3, Build_Controlling_Function_Wrappers).
9984
9985         if Is_Null_Extension (T)
9986           and then Has_Controlling_Result (Subp)
9987           and then Ada_Version >= Ada_2005
9988           and then Present (Alias_Subp)
9989           and then not Comes_From_Source (Subp)
9990           and then not Is_Abstract_Subprogram (Alias_Subp)
9991           and then not Is_Access_Type (Etype (Subp))
9992         then
9993            null;
9994
9995         --  Ada 2005 (AI-251): Internal entities of interfaces need no
9996         --  processing because this check is done with the aliased
9997         --  entity
9998
9999         elsif Present (Interface_Alias (Subp)) then
10000            null;
10001
10002         elsif (Is_Abstract_Subprogram (Subp)
10003                 or else Requires_Overriding (Subp)
10004                 or else
10005                   (Has_Controlling_Result (Subp)
10006                     and then Present (Alias_Subp)
10007                     and then not Comes_From_Source (Subp)
10008                     and then Sloc (Subp) = Sloc (First_Subtype (T))))
10009           and then not Is_TSS (Subp, TSS_Stream_Input)
10010           and then not Is_TSS (Subp, TSS_Stream_Output)
10011           and then not Is_Abstract_Type (T)
10012           and then not Is_Predefined_Interface_Primitive (Subp)
10013
10014            --  Ada 2005 (AI-251): Do not consider hidden entities associated
10015            --  with abstract interface types because the check will be done
10016            --  with the aliased entity (otherwise we generate a duplicated
10017            --  error message).
10018
10019           and then not Present (Interface_Alias (Subp))
10020         then
10021            if Present (Alias_Subp) then
10022
10023               --  Only perform the check for a derived subprogram when the
10024               --  type has an explicit record extension. This avoids incorrect
10025               --  flagging of abstract subprograms for the case of a type
10026               --  without an extension that is derived from a formal type
10027               --  with a tagged actual (can occur within a private part).
10028
10029               --  Ada 2005 (AI-391): In the case of an inherited function with
10030               --  a controlling result of the type, the rule does not apply if
10031               --  the type is a null extension (unless the parent function
10032               --  itself is abstract, in which case the function must still be
10033               --  be overridden). The expander will generate an overriding
10034               --  wrapper function calling the parent subprogram (see
10035               --  Exp_Ch3.Make_Controlling_Wrapper_Functions).
10036
10037               Type_Def := Type_Definition (Parent (T));
10038
10039               if Nkind (Type_Def) = N_Derived_Type_Definition
10040                 and then Present (Record_Extension_Part (Type_Def))
10041                 and then
10042                   (Ada_Version < Ada_2005
10043                      or else not Is_Null_Extension (T)
10044                      or else Ekind (Subp) = E_Procedure
10045                      or else not Has_Controlling_Result (Subp)
10046                      or else Is_Abstract_Subprogram (Alias_Subp)
10047                      or else Requires_Overriding (Subp)
10048                      or else Is_Access_Type (Etype (Subp)))
10049               then
10050                  --  Avoid reporting error in case of abstract predefined
10051                  --  primitive inherited from interface type because the
10052                  --  body of internally generated predefined primitives
10053                  --  of tagged types are generated later by Freeze_Type
10054
10055                  if Is_Interface (Root_Type (T))
10056                    and then Is_Abstract_Subprogram (Subp)
10057                    and then Is_Predefined_Dispatching_Operation (Subp)
10058                    and then not Comes_From_Source (Ultimate_Alias (Subp))
10059                  then
10060                     null;
10061
10062                  --  A null extension is not obliged to override an inherited
10063                  --  procedure subject to pragma Extensions_Visible with value
10064                  --  False and at least one controlling OUT parameter
10065                  --  (SPARK RM 6.1.7(6)).
10066
10067                  elsif Is_Null_Extension (T)
10068                    and then Is_EVF_Procedure (Subp)
10069                  then
10070                     null;
10071
10072                  else
10073                     Error_Msg_NE
10074                       ("type must be declared abstract or & overridden",
10075                        T, Subp);
10076
10077                     --  Traverse the whole chain of aliased subprograms to
10078                     --  complete the error notification. This is especially
10079                     --  useful for traceability of the chain of entities when
10080                     --  the subprogram corresponds with an interface
10081                     --  subprogram (which may be defined in another package).
10082
10083                     if Present (Alias_Subp) then
10084                        declare
10085                           E : Entity_Id;
10086
10087                        begin
10088                           E := Subp;
10089                           while Present (Alias (E)) loop
10090
10091                              --  Avoid reporting redundant errors on entities
10092                              --  inherited from interfaces
10093
10094                              if Sloc (E) /= Sloc (T) then
10095                                 Error_Msg_Sloc := Sloc (E);
10096                                 Error_Msg_NE
10097                                   ("\& has been inherited #", T, Subp);
10098                              end if;
10099
10100                              E := Alias (E);
10101                           end loop;
10102
10103                           Error_Msg_Sloc := Sloc (E);
10104
10105                           --  AI05-0068: report if there is an overriding
10106                           --  non-abstract subprogram that is invisible.
10107
10108                           if Is_Hidden (E)
10109                             and then not Is_Abstract_Subprogram (E)
10110                           then
10111                              Error_Msg_NE
10112                                ("\& subprogram# is not visible",
10113                                 T, Subp);
10114
10115                           --  Clarify the case where a non-null extension must
10116                           --  override inherited procedure subject to pragma
10117                           --  Extensions_Visible with value False and at least
10118                           --  one controlling OUT param.
10119
10120                           elsif Is_EVF_Procedure (E) then
10121                              Error_Msg_NE
10122                                ("\& # is subject to Extensions_Visible False",
10123                                 T, Subp);
10124
10125                           else
10126                              Error_Msg_NE
10127                                ("\& has been inherited from subprogram #",
10128                                 T, Subp);
10129                           end if;
10130                        end;
10131                     end if;
10132                  end if;
10133
10134               --  Ada 2005 (AI-345): Protected or task type implementing
10135               --  abstract interfaces.
10136
10137               elsif Is_Concurrent_Record_Type (T)
10138                 and then Present (Interfaces (T))
10139               then
10140                  --  There is no need to check here RM 9.4(11.9/3) since we
10141                  --  are processing the corresponding record type and the
10142                  --  mode of the overriding subprograms was verified by
10143                  --  Check_Conformance when the corresponding concurrent
10144                  --  type declaration was analyzed.
10145
10146                  Error_Msg_NE
10147                    ("interface subprogram & must be overridden", T, Subp);
10148
10149                  --  Examine primitive operations of synchronized type to find
10150                  --  homonyms that have the wrong profile.
10151
10152                  declare
10153                     Prim : Entity_Id;
10154
10155                  begin
10156                     Prim := First_Entity (Corresponding_Concurrent_Type (T));
10157                     while Present (Prim) loop
10158                        if Chars (Prim) = Chars (Subp) then
10159                           Error_Msg_NE
10160                             ("profile is not type conformant with prefixed "
10161                              & "view profile of inherited operation&",
10162                              Prim, Subp);
10163                        end if;
10164
10165                        Next_Entity (Prim);
10166                     end loop;
10167                  end;
10168               end if;
10169
10170            else
10171               Error_Msg_Node_2 := T;
10172               Error_Msg_N
10173                 ("abstract subprogram& not allowed for type&", Subp);
10174
10175               --  Also post unconditional warning on the type (unconditional
10176               --  so that if there are more than one of these cases, we get
10177               --  them all, and not just the first one).
10178
10179               Error_Msg_Node_2 := Subp;
10180               Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10181            end if;
10182
10183         --  A subprogram subject to pragma Extensions_Visible with value
10184         --  "True" cannot override a subprogram subject to the same pragma
10185         --  with value "False" (SPARK RM 6.1.7(5)).
10186
10187         elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10188           and then Present (Overridden_Operation (Subp))
10189           and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10190                    Extensions_Visible_False
10191         then
10192            Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10193            Error_Msg_N
10194              ("subprogram & with Extensions_Visible True cannot override "
10195               & "subprogram # with Extensions_Visible False", Subp);
10196         end if;
10197
10198         --  Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10199
10200         --  Subp is an expander-generated procedure which maps an interface
10201         --  alias to a protected wrapper. The interface alias is flagged by
10202         --  pragma Implemented. Ensure that Subp is a procedure when the
10203         --  implementation kind is By_Protected_Procedure or an entry when
10204         --  By_Entry.
10205
10206         if Ada_Version >= Ada_2012
10207           and then Is_Hidden (Subp)
10208           and then Present (Interface_Alias (Subp))
10209           and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10210         then
10211            Check_Pragma_Implemented (Subp);
10212         end if;
10213
10214         --  Subp is an interface primitive which overrides another interface
10215         --  primitive marked with pragma Implemented.
10216
10217         if Ada_Version >= Ada_2012
10218           and then Present (Overridden_Operation (Subp))
10219           and then Has_Rep_Pragma
10220                      (Overridden_Operation (Subp), Name_Implemented)
10221         then
10222            --  If the overriding routine is also marked by Implemented, check
10223            --  that the two implementation kinds are conforming.
10224
10225            if Has_Rep_Pragma (Subp, Name_Implemented) then
10226               Check_Pragma_Implemented
10227                 (Subp       => Subp,
10228                  Iface_Subp => Overridden_Operation (Subp));
10229
10230            --  Otherwise the overriding routine inherits the implementation
10231            --  kind from the overridden subprogram.
10232
10233            else
10234               Inherit_Pragma_Implemented
10235                 (Subp       => Subp,
10236                  Iface_Subp => Overridden_Operation (Subp));
10237            end if;
10238         end if;
10239
10240         --  If the operation is a wrapper for a synchronized primitive, it
10241         --  may be called indirectly through a dispatching select. We assume
10242         --  that it will be referenced elsewhere indirectly, and suppress
10243         --  warnings about an unused entity.
10244
10245         if Is_Primitive_Wrapper (Subp)
10246           and then Present (Wrapped_Entity (Subp))
10247         then
10248            Set_Referenced (Wrapped_Entity (Subp));
10249         end if;
10250
10251         Next_Elmt (Elmt);
10252      end loop;
10253   end Check_Abstract_Overriding;
10254
10255   ------------------------------------------------
10256   -- Check_Access_Discriminant_Requires_Limited --
10257   ------------------------------------------------
10258
10259   procedure Check_Access_Discriminant_Requires_Limited
10260     (D   : Node_Id;
10261      Loc : Node_Id)
10262   is
10263   begin
10264      --  A discriminant_specification for an access discriminant shall appear
10265      --  only in the declaration for a task or protected type, or for a type
10266      --  with the reserved word 'limited' in its definition or in one of its
10267      --  ancestors (RM 3.7(10)).
10268
10269      --  AI-0063: The proper condition is that type must be immutably limited,
10270      --  or else be a partial view.
10271
10272      if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10273         if Is_Limited_View (Current_Scope)
10274           or else
10275             (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10276               and then Limited_Present (Parent (Current_Scope)))
10277         then
10278            null;
10279
10280         else
10281            Error_Msg_N
10282              ("access discriminants allowed only for limited types", Loc);
10283         end if;
10284      end if;
10285   end Check_Access_Discriminant_Requires_Limited;
10286
10287   -----------------------------------
10288   -- Check_Aliased_Component_Types --
10289   -----------------------------------
10290
10291   procedure Check_Aliased_Component_Types (T : Entity_Id) is
10292      C : Entity_Id;
10293
10294   begin
10295      --  ??? Also need to check components of record extensions, but not
10296      --  components of protected types (which are always limited).
10297
10298      --  Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10299      --  types to be unconstrained. This is safe because it is illegal to
10300      --  create access subtypes to such types with explicit discriminant
10301      --  constraints.
10302
10303      if not Is_Limited_Type (T) then
10304         if Ekind (T) = E_Record_Type then
10305            C := First_Component (T);
10306            while Present (C) loop
10307               if Is_Aliased (C)
10308                 and then Has_Discriminants (Etype (C))
10309                 and then not Is_Constrained (Etype (C))
10310                 and then not In_Instance_Body
10311                 and then Ada_Version < Ada_2005
10312               then
10313                  Error_Msg_N
10314                    ("aliased component must be constrained (RM 3.6(11))",
10315                      C);
10316               end if;
10317
10318               Next_Component (C);
10319            end loop;
10320
10321         elsif Ekind (T) = E_Array_Type then
10322            if Has_Aliased_Components (T)
10323              and then Has_Discriminants (Component_Type (T))
10324              and then not Is_Constrained (Component_Type (T))
10325              and then not In_Instance_Body
10326              and then Ada_Version < Ada_2005
10327            then
10328               Error_Msg_N
10329                 ("aliased component type must be constrained (RM 3.6(11))",
10330                    T);
10331            end if;
10332         end if;
10333      end if;
10334   end Check_Aliased_Component_Types;
10335
10336   ---------------------------------------
10337   -- Check_Anonymous_Access_Components --
10338   ---------------------------------------
10339
10340   procedure Check_Anonymous_Access_Components
10341      (Typ_Decl  : Node_Id;
10342       Typ       : Entity_Id;
10343       Prev      : Entity_Id;
10344       Comp_List : Node_Id)
10345   is
10346      Loc         : constant Source_Ptr := Sloc (Typ_Decl);
10347      Anon_Access : Entity_Id;
10348      Acc_Def     : Node_Id;
10349      Comp        : Node_Id;
10350      Comp_Def    : Node_Id;
10351      Decl        : Node_Id;
10352      Type_Def    : Node_Id;
10353
10354      procedure Build_Incomplete_Type_Declaration;
10355      --  If the record type contains components that include an access to the
10356      --  current record, then create an incomplete type declaration for the
10357      --  record, to be used as the designated type of the anonymous access.
10358      --  This is done only once, and only if there is no previous partial
10359      --  view of the type.
10360
10361      function Designates_T (Subt : Node_Id) return Boolean;
10362      --  Check whether a node designates the enclosing record type, or 'Class
10363      --  of that type
10364
10365      function Mentions_T (Acc_Def : Node_Id) return Boolean;
10366      --  Check whether an access definition includes a reference to
10367      --  the enclosing record type. The reference can be a subtype mark
10368      --  in the access definition itself, a 'Class attribute reference, or
10369      --  recursively a reference appearing in a parameter specification
10370      --  or result definition of an access_to_subprogram definition.
10371
10372      --------------------------------------
10373      -- Build_Incomplete_Type_Declaration --
10374      --------------------------------------
10375
10376      procedure Build_Incomplete_Type_Declaration is
10377         Decl  : Node_Id;
10378         Inc_T : Entity_Id;
10379         H     : Entity_Id;
10380
10381         --  Is_Tagged indicates whether the type is tagged. It is tagged if
10382         --  it's "is new ... with record" or else "is tagged record ...".
10383
10384         Is_Tagged : constant Boolean :=
10385             (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10386               and then
10387                 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10388           or else
10389             (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10390               and then Tagged_Present (Type_Definition (Typ_Decl)));
10391
10392      begin
10393         --  If there is a previous partial view, no need to create a new one
10394         --  If the partial view, given by Prev, is incomplete,  If Prev is
10395         --  a private declaration, full declaration is flagged accordingly.
10396
10397         if Prev /= Typ then
10398            if Is_Tagged then
10399               Make_Class_Wide_Type (Prev);
10400               Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10401               Set_Etype (Class_Wide_Type (Typ), Typ);
10402            end if;
10403
10404            return;
10405
10406         elsif Has_Private_Declaration (Typ) then
10407
10408            --  If we refer to T'Class inside T, and T is the completion of a
10409            --  private type, then make sure the class-wide type exists.
10410
10411            if Is_Tagged then
10412               Make_Class_Wide_Type (Typ);
10413            end if;
10414
10415            return;
10416
10417         --  If there was a previous anonymous access type, the incomplete
10418         --  type declaration will have been created already.
10419
10420         elsif Present (Current_Entity (Typ))
10421           and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10422           and then Full_View (Current_Entity (Typ)) = Typ
10423         then
10424            if Is_Tagged
10425              and then Comes_From_Source (Current_Entity (Typ))
10426              and then not Is_Tagged_Type (Current_Entity (Typ))
10427            then
10428               Make_Class_Wide_Type (Typ);
10429               Error_Msg_N
10430                 ("incomplete view of tagged type should be declared tagged??",
10431                  Parent (Current_Entity (Typ)));
10432            end if;
10433            return;
10434
10435         else
10436            Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10437            Decl  := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10438
10439            --  Type has already been inserted into the current scope. Remove
10440            --  it, and add incomplete declaration for type, so that subsequent
10441            --  anonymous access types can use it. The entity is unchained from
10442            --  the homonym list and from immediate visibility. After analysis,
10443            --  the entity in the incomplete declaration becomes immediately
10444            --  visible in the record declaration that follows.
10445
10446            H := Current_Entity (Typ);
10447
10448            if H = Typ then
10449               Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10450            else
10451               while Present (H)
10452                 and then Homonym (H) /= Typ
10453               loop
10454                  H := Homonym (Typ);
10455               end loop;
10456
10457               Set_Homonym (H, Homonym (Typ));
10458            end if;
10459
10460            Insert_Before (Typ_Decl, Decl);
10461            Analyze (Decl);
10462            Set_Full_View (Inc_T, Typ);
10463
10464            if Is_Tagged then
10465
10466               --  Create a common class-wide type for both views, and set the
10467               --  Etype of the class-wide type to the full view.
10468
10469               Make_Class_Wide_Type (Inc_T);
10470               Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10471               Set_Etype (Class_Wide_Type (Typ), Typ);
10472            end if;
10473         end if;
10474      end Build_Incomplete_Type_Declaration;
10475
10476      ------------------
10477      -- Designates_T --
10478      ------------------
10479
10480      function Designates_T (Subt : Node_Id) return Boolean is
10481         Type_Id : constant Name_Id := Chars (Typ);
10482
10483         function Names_T (Nam : Node_Id) return Boolean;
10484         --  The record type has not been introduced in the current scope
10485         --  yet, so we must examine the name of the type itself, either
10486         --  an identifier T, or an expanded name of the form P.T, where
10487         --  P denotes the current scope.
10488
10489         -------------
10490         -- Names_T --
10491         -------------
10492
10493         function Names_T (Nam : Node_Id) return Boolean is
10494         begin
10495            if Nkind (Nam) = N_Identifier then
10496               return Chars (Nam) = Type_Id;
10497
10498            elsif Nkind (Nam) = N_Selected_Component then
10499               if Chars (Selector_Name (Nam)) = Type_Id then
10500                  if Nkind (Prefix (Nam)) = N_Identifier then
10501                     return Chars (Prefix (Nam)) = Chars (Current_Scope);
10502
10503                  elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10504                     return Chars (Selector_Name (Prefix (Nam))) =
10505                            Chars (Current_Scope);
10506                  else
10507                     return False;
10508                  end if;
10509
10510               else
10511                  return False;
10512               end if;
10513
10514            else
10515               return False;
10516            end if;
10517         end Names_T;
10518
10519      --  Start of processing for Designates_T
10520
10521      begin
10522         if Nkind (Subt) = N_Identifier then
10523            return Chars (Subt) = Type_Id;
10524
10525            --  Reference can be through an expanded name which has not been
10526            --  analyzed yet, and which designates enclosing scopes.
10527
10528         elsif Nkind (Subt) = N_Selected_Component then
10529            if Names_T (Subt) then
10530               return True;
10531
10532            --  Otherwise it must denote an entity that is already visible.
10533            --  The access definition may name a subtype of the enclosing
10534            --  type, if there is a previous incomplete declaration for it.
10535
10536            else
10537               Find_Selected_Component (Subt);
10538               return
10539                 Is_Entity_Name (Subt)
10540                   and then Scope (Entity (Subt)) = Current_Scope
10541                   and then
10542                     (Chars (Base_Type (Entity (Subt))) = Type_Id
10543                       or else
10544                         (Is_Class_Wide_Type (Entity (Subt))
10545                           and then
10546                             Chars (Etype (Base_Type (Entity (Subt)))) =
10547                                                                  Type_Id));
10548            end if;
10549
10550         --  A reference to the current type may appear as the prefix of
10551         --  a 'Class attribute.
10552
10553         elsif Nkind (Subt) = N_Attribute_Reference
10554           and then Attribute_Name (Subt) = Name_Class
10555         then
10556            return Names_T (Prefix (Subt));
10557
10558         else
10559            return False;
10560         end if;
10561      end Designates_T;
10562
10563      ----------------
10564      -- Mentions_T --
10565      ----------------
10566
10567      function Mentions_T (Acc_Def : Node_Id) return Boolean is
10568         Param_Spec : Node_Id;
10569
10570         Acc_Subprg : constant Node_Id :=
10571                        Access_To_Subprogram_Definition (Acc_Def);
10572
10573      begin
10574         if No (Acc_Subprg) then
10575            return Designates_T (Subtype_Mark (Acc_Def));
10576         end if;
10577
10578         --  Component is an access_to_subprogram: examine its formals,
10579         --  and result definition in the case of an access_to_function.
10580
10581         Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10582         while Present (Param_Spec) loop
10583            if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10584              and then Mentions_T (Parameter_Type (Param_Spec))
10585            then
10586               return True;
10587
10588            elsif Designates_T (Parameter_Type (Param_Spec)) then
10589               return True;
10590            end if;
10591
10592            Next (Param_Spec);
10593         end loop;
10594
10595         if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10596            if Nkind (Result_Definition (Acc_Subprg)) =
10597                 N_Access_Definition
10598            then
10599               return Mentions_T (Result_Definition (Acc_Subprg));
10600            else
10601               return Designates_T (Result_Definition (Acc_Subprg));
10602            end if;
10603         end if;
10604
10605         return False;
10606      end Mentions_T;
10607
10608   --  Start of processing for Check_Anonymous_Access_Components
10609
10610   begin
10611      if No (Comp_List) then
10612         return;
10613      end if;
10614
10615      Comp := First (Component_Items (Comp_List));
10616      while Present (Comp) loop
10617         if Nkind (Comp) = N_Component_Declaration
10618           and then Present
10619             (Access_Definition (Component_Definition (Comp)))
10620           and then
10621             Mentions_T (Access_Definition (Component_Definition (Comp)))
10622         then
10623            Comp_Def := Component_Definition (Comp);
10624            Acc_Def :=
10625              Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10626
10627            Build_Incomplete_Type_Declaration;
10628            Anon_Access := Make_Temporary (Loc, 'S');
10629
10630            --  Create a declaration for the anonymous access type: either
10631            --  an access_to_object or an access_to_subprogram.
10632
10633            if Present (Acc_Def) then
10634               if Nkind (Acc_Def) = N_Access_Function_Definition then
10635                  Type_Def :=
10636                    Make_Access_Function_Definition (Loc,
10637                      Parameter_Specifications =>
10638                        Parameter_Specifications (Acc_Def),
10639                      Result_Definition        => Result_Definition (Acc_Def));
10640               else
10641                  Type_Def :=
10642                    Make_Access_Procedure_Definition (Loc,
10643                      Parameter_Specifications =>
10644                        Parameter_Specifications (Acc_Def));
10645               end if;
10646
10647            else
10648               Type_Def :=
10649                 Make_Access_To_Object_Definition (Loc,
10650                   Subtype_Indication =>
10651                      Relocate_Node
10652                        (Subtype_Mark (Access_Definition (Comp_Def))));
10653
10654               Set_Constant_Present
10655                 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10656               Set_All_Present
10657                 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10658            end if;
10659
10660            Set_Null_Exclusion_Present
10661              (Type_Def,
10662               Null_Exclusion_Present (Access_Definition (Comp_Def)));
10663
10664            Decl :=
10665              Make_Full_Type_Declaration (Loc,
10666                Defining_Identifier => Anon_Access,
10667                Type_Definition     => Type_Def);
10668
10669            Insert_Before (Typ_Decl, Decl);
10670            Analyze (Decl);
10671
10672            --  If an access to subprogram, create the extra formals
10673
10674            if Present (Acc_Def) then
10675               Create_Extra_Formals (Designated_Type (Anon_Access));
10676
10677            --  If an access to object, preserve entity of designated type,
10678            --  for ASIS use, before rewriting the component definition.
10679
10680            else
10681               declare
10682                  Desig : Entity_Id;
10683
10684               begin
10685                  Desig := Entity (Subtype_Indication (Type_Def));
10686
10687                  --  If the access definition is to the current  record,
10688                  --  the visible entity at this point is an  incomplete
10689                  --  type. Retrieve the full view to simplify  ASIS queries
10690
10691                  if Ekind (Desig) = E_Incomplete_Type then
10692                     Desig := Full_View (Desig);
10693                  end if;
10694
10695                  Set_Entity
10696                    (Subtype_Mark (Access_Definition  (Comp_Def)), Desig);
10697               end;
10698            end if;
10699
10700            Rewrite (Comp_Def,
10701              Make_Component_Definition (Loc,
10702                Subtype_Indication =>
10703               New_Occurrence_Of (Anon_Access, Loc)));
10704
10705            if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10706               Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10707            else
10708               Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10709            end if;
10710
10711            Set_Is_Local_Anonymous_Access (Anon_Access);
10712         end if;
10713
10714         Next (Comp);
10715      end loop;
10716
10717      if Present (Variant_Part (Comp_List)) then
10718         declare
10719            V : Node_Id;
10720         begin
10721            V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10722            while Present (V) loop
10723               Check_Anonymous_Access_Components
10724                 (Typ_Decl, Typ, Prev, Component_List (V));
10725               Next_Non_Pragma (V);
10726            end loop;
10727         end;
10728      end if;
10729   end Check_Anonymous_Access_Components;
10730
10731   ----------------------
10732   -- Check_Completion --
10733   ----------------------
10734
10735   procedure Check_Completion (Body_Id : Node_Id := Empty) is
10736      E : Entity_Id;
10737
10738      procedure Post_Error;
10739      --  Post error message for lack of completion for entity E
10740
10741      ----------------
10742      -- Post_Error --
10743      ----------------
10744
10745      procedure Post_Error is
10746         procedure Missing_Body;
10747         --  Output missing body message
10748
10749         ------------------
10750         -- Missing_Body --
10751         ------------------
10752
10753         procedure Missing_Body is
10754         begin
10755            --  Spec is in same unit, so we can post on spec
10756
10757            if In_Same_Source_Unit (Body_Id, E) then
10758               Error_Msg_N ("missing body for &", E);
10759
10760            --  Spec is in a separate unit, so we have to post on the body
10761
10762            else
10763               Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10764            end if;
10765         end Missing_Body;
10766
10767      --  Start of processing for Post_Error
10768
10769      begin
10770         if not Comes_From_Source (E) then
10771            if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10772
10773               --  It may be an anonymous protected type created for a
10774               --  single variable. Post error on variable, if present.
10775
10776               declare
10777                  Var : Entity_Id;
10778
10779               begin
10780                  Var := First_Entity (Current_Scope);
10781                  while Present (Var) loop
10782                     exit when Etype (Var) = E
10783                       and then Comes_From_Source (Var);
10784
10785                     Next_Entity (Var);
10786                  end loop;
10787
10788                  if Present (Var) then
10789                     E := Var;
10790                  end if;
10791               end;
10792            end if;
10793         end if;
10794
10795         --  If a generated entity has no completion, then either previous
10796         --  semantic errors have disabled the expansion phase, or else we had
10797         --  missing subunits, or else we are compiling without expansion,
10798         --  or else something is very wrong.
10799
10800         if not Comes_From_Source (E) then
10801            pragma Assert
10802              (Serious_Errors_Detected > 0
10803                or else Configurable_Run_Time_Violations > 0
10804                or else Subunits_Missing
10805                or else not Expander_Active);
10806            return;
10807
10808         --  Here for source entity
10809
10810         else
10811            --  Here if no body to post the error message, so we post the error
10812            --  on the declaration that has no completion. This is not really
10813            --  the right place to post it, think about this later ???
10814
10815            if No (Body_Id) then
10816               if Is_Type (E) then
10817                  Error_Msg_NE
10818                    ("missing full declaration for }", Parent (E), E);
10819               else
10820                  Error_Msg_NE ("missing body for &", Parent (E), E);
10821               end if;
10822
10823            --  Package body has no completion for a declaration that appears
10824            --  in the corresponding spec. Post error on the body, with a
10825            --  reference to the non-completed declaration.
10826
10827            else
10828               Error_Msg_Sloc := Sloc (E);
10829
10830               if Is_Type (E) then
10831                  Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10832
10833               elsif Is_Overloadable (E)
10834                 and then Current_Entity_In_Scope (E) /= E
10835               then
10836                  --  It may be that the completion is mistyped and appears as
10837                  --  a distinct overloading of the entity.
10838
10839                  declare
10840                     Candidate : constant Entity_Id :=
10841                                   Current_Entity_In_Scope (E);
10842                     Decl      : constant Node_Id :=
10843                                   Unit_Declaration_Node (Candidate);
10844
10845                  begin
10846                     if Is_Overloadable (Candidate)
10847                       and then Ekind (Candidate) = Ekind (E)
10848                       and then Nkind (Decl) = N_Subprogram_Body
10849                       and then Acts_As_Spec (Decl)
10850                     then
10851                        Check_Type_Conformant (Candidate, E);
10852
10853                     else
10854                        Missing_Body;
10855                     end if;
10856                  end;
10857
10858               else
10859                  Missing_Body;
10860               end if;
10861            end if;
10862         end if;
10863      end Post_Error;
10864
10865      --  Local variables
10866
10867      Pack_Id : constant Entity_Id := Current_Scope;
10868
10869   --  Start of processing for Check_Completion
10870
10871   begin
10872      E := First_Entity (Pack_Id);
10873      while Present (E) loop
10874         if Is_Intrinsic_Subprogram (E) then
10875            null;
10876
10877         --  The following situation requires special handling: a child unit
10878         --  that appears in the context clause of the body of its parent:
10879
10880         --    procedure Parent.Child (...);
10881
10882         --    with Parent.Child;
10883         --    package body Parent is
10884
10885         --  Here Parent.Child appears as a local entity, but should not be
10886         --  flagged as requiring completion, because it is a compilation
10887         --  unit.
10888
10889         --  Ignore missing completion for a subprogram that does not come from
10890         --  source (including the _Call primitive operation of RAS types,
10891         --  which has to have the flag Comes_From_Source for other purposes):
10892         --  we assume that the expander will provide the missing completion.
10893         --  In case of previous errors, other expansion actions that provide
10894         --  bodies for null procedures with not be invoked, so inhibit message
10895         --  in those cases.
10896
10897         --  Note that E_Operator is not in the list that follows, because
10898         --  this kind is reserved for predefined operators, that are
10899         --  intrinsic and do not need completion.
10900
10901         elsif Ekind_In (E, E_Function,
10902                            E_Procedure,
10903                            E_Generic_Function,
10904                            E_Generic_Procedure)
10905         then
10906            if Has_Completion (E) then
10907               null;
10908
10909            elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10910               null;
10911
10912            elsif Is_Subprogram (E)
10913              and then (not Comes_From_Source (E)
10914                         or else Chars (E) = Name_uCall)
10915            then
10916               null;
10917
10918            elsif
10919               Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10920            then
10921               null;
10922
10923            elsif Nkind (Parent (E)) = N_Procedure_Specification
10924              and then Null_Present (Parent (E))
10925              and then Serious_Errors_Detected > 0
10926            then
10927               null;
10928
10929            else
10930               Post_Error;
10931            end if;
10932
10933         elsif Is_Entry (E) then
10934            if not Has_Completion (E) and then
10935              (Ekind (Scope (E)) = E_Protected_Object
10936                or else Ekind (Scope (E)) = E_Protected_Type)
10937            then
10938               Post_Error;
10939            end if;
10940
10941         elsif Is_Package_Or_Generic_Package (E) then
10942            if Unit_Requires_Body (E) then
10943               if not Has_Completion (E)
10944                 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10945                                                       N_Compilation_Unit
10946               then
10947                  Post_Error;
10948               end if;
10949
10950            elsif not Is_Child_Unit (E) then
10951               May_Need_Implicit_Body (E);
10952            end if;
10953
10954         --  A formal incomplete type (Ada 2012) does not require a completion;
10955         --  other incomplete type declarations do.
10956
10957         elsif Ekind (E) = E_Incomplete_Type
10958           and then No (Underlying_Type (E))
10959           and then not Is_Generic_Type (E)
10960         then
10961            Post_Error;
10962
10963         elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10964           and then not Has_Completion (E)
10965         then
10966            Post_Error;
10967
10968         --  A single task declared in the current scope is a constant, verify
10969         --  that the body of its anonymous type is in the same scope. If the
10970         --  task is defined elsewhere, this may be a renaming declaration for
10971         --  which no completion is needed.
10972
10973         elsif Ekind (E) = E_Constant
10974           and then Ekind (Etype (E)) = E_Task_Type
10975           and then not Has_Completion (Etype (E))
10976           and then Scope (Etype (E)) = Current_Scope
10977         then
10978            Post_Error;
10979
10980         elsif Ekind (E) = E_Protected_Object
10981           and then not Has_Completion (Etype (E))
10982         then
10983            Post_Error;
10984
10985         elsif Ekind (E) = E_Record_Type then
10986            if Is_Tagged_Type (E) then
10987               Check_Abstract_Overriding (E);
10988               Check_Conventions (E);
10989            end if;
10990
10991            Check_Aliased_Component_Types (E);
10992
10993         elsif Ekind (E) = E_Array_Type then
10994            Check_Aliased_Component_Types (E);
10995
10996         end if;
10997
10998         Next_Entity (E);
10999      end loop;
11000   end Check_Completion;
11001
11002   ------------------------------------
11003   -- Check_CPP_Type_Has_No_Defaults --
11004   ------------------------------------
11005
11006   procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11007      Tdef  : constant Node_Id := Type_Definition (Declaration_Node (T));
11008      Clist : Node_Id;
11009      Comp  : Node_Id;
11010
11011   begin
11012      --  Obtain the component list
11013
11014      if Nkind (Tdef) = N_Record_Definition then
11015         Clist := Component_List (Tdef);
11016      else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11017         Clist := Component_List (Record_Extension_Part (Tdef));
11018      end if;
11019
11020      --  Check all components to ensure no default expressions
11021
11022      if Present (Clist) then
11023         Comp := First (Component_Items (Clist));
11024         while Present (Comp) loop
11025            if Present (Expression (Comp)) then
11026               Error_Msg_N
11027                 ("component of imported 'C'P'P type cannot have "
11028                  & "default expression", Expression (Comp));
11029            end if;
11030
11031            Next (Comp);
11032         end loop;
11033      end if;
11034   end Check_CPP_Type_Has_No_Defaults;
11035
11036   ----------------------------
11037   -- Check_Delta_Expression --
11038   ----------------------------
11039
11040   procedure Check_Delta_Expression (E : Node_Id) is
11041   begin
11042      if not (Is_Real_Type (Etype (E))) then
11043         Wrong_Type (E, Any_Real);
11044
11045      elsif not Is_OK_Static_Expression (E) then
11046         Flag_Non_Static_Expr
11047           ("non-static expression used for delta value!", E);
11048
11049      elsif not UR_Is_Positive (Expr_Value_R (E)) then
11050         Error_Msg_N ("delta expression must be positive", E);
11051
11052      else
11053         return;
11054      end if;
11055
11056      --  If any of above errors occurred, then replace the incorrect
11057      --  expression by the real 0.1, which should prevent further errors.
11058
11059      Rewrite (E,
11060        Make_Real_Literal (Sloc (E), Ureal_Tenth));
11061      Analyze_And_Resolve (E, Standard_Float);
11062   end Check_Delta_Expression;
11063
11064   -----------------------------
11065   -- Check_Digits_Expression --
11066   -----------------------------
11067
11068   procedure Check_Digits_Expression (E : Node_Id) is
11069   begin
11070      if not (Is_Integer_Type (Etype (E))) then
11071         Wrong_Type (E, Any_Integer);
11072
11073      elsif not Is_OK_Static_Expression (E) then
11074         Flag_Non_Static_Expr
11075           ("non-static expression used for digits value!", E);
11076
11077      elsif Expr_Value (E) <= 0 then
11078         Error_Msg_N ("digits value must be greater than zero", E);
11079
11080      else
11081         return;
11082      end if;
11083
11084      --  If any of above errors occurred, then replace the incorrect
11085      --  expression by the integer 1, which should prevent further errors.
11086
11087      Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11088      Analyze_And_Resolve (E, Standard_Integer);
11089
11090   end Check_Digits_Expression;
11091
11092   --------------------------
11093   -- Check_Initialization --
11094   --------------------------
11095
11096   procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11097   begin
11098      --  Special processing for limited types
11099
11100      if Is_Limited_Type (T)
11101        and then not In_Instance
11102        and then not In_Inlined_Body
11103      then
11104         if not OK_For_Limited_Init (T, Exp) then
11105
11106            --  In GNAT mode, this is just a warning, to allow it to be evilly
11107            --  turned off. Otherwise it is a real error.
11108
11109            if GNAT_Mode then
11110               Error_Msg_N
11111                 ("??cannot initialize entities of limited type!", Exp);
11112
11113            elsif Ada_Version < Ada_2005 then
11114
11115               --  The side effect removal machinery may generate illegal Ada
11116               --  code to avoid the usage of access types and 'reference in
11117               --  SPARK mode. Since this is legal code with respect to theorem
11118               --  proving, do not emit the error.
11119
11120               if GNATprove_Mode
11121                 and then Nkind (Exp) = N_Function_Call
11122                 and then Nkind (Parent (Exp)) = N_Object_Declaration
11123                 and then not Comes_From_Source
11124                                (Defining_Identifier (Parent (Exp)))
11125               then
11126                  null;
11127
11128               else
11129                  Error_Msg_N
11130                    ("cannot initialize entities of limited type", Exp);
11131                  Explain_Limited_Type (T, Exp);
11132               end if;
11133
11134            else
11135               --  Specialize error message according to kind of illegal
11136               --  initial expression.
11137
11138               if Nkind (Exp) = N_Type_Conversion
11139                 and then Nkind (Expression (Exp)) = N_Function_Call
11140               then
11141                  Error_Msg_N
11142                    ("illegal context for call"
11143                      & " to function with limited result", Exp);
11144
11145               else
11146                  Error_Msg_N
11147                    ("initialization of limited object requires aggregate "
11148                      & "or function call",  Exp);
11149               end if;
11150            end if;
11151         end if;
11152      end if;
11153
11154      --  In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11155      --  set unless we can be sure that no range check is required.
11156
11157      if (GNATprove_Mode or not Expander_Active)
11158        and then Is_Scalar_Type (T)
11159        and then not Is_In_Range (Exp, T, Assume_Valid => True)
11160      then
11161         Set_Do_Range_Check (Exp);
11162      end if;
11163   end Check_Initialization;
11164
11165   ----------------------
11166   -- Check_Interfaces --
11167   ----------------------
11168
11169   procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11170      Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11171
11172      Iface       : Node_Id;
11173      Iface_Def   : Node_Id;
11174      Iface_Typ   : Entity_Id;
11175      Parent_Node : Node_Id;
11176
11177      Is_Task : Boolean := False;
11178      --  Set True if parent type or any progenitor is a task interface
11179
11180      Is_Protected : Boolean := False;
11181      --  Set True if parent type or any progenitor is a protected interface
11182
11183      procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11184      --  Check that a progenitor is compatible with declaration. If an error
11185      --  message is output, it is posted on Error_Node.
11186
11187      ------------------
11188      -- Check_Ifaces --
11189      ------------------
11190
11191      procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11192         Iface_Id : constant Entity_Id :=
11193                      Defining_Identifier (Parent (Iface_Def));
11194         Type_Def : Node_Id;
11195
11196      begin
11197         if Nkind (N) = N_Private_Extension_Declaration then
11198            Type_Def := N;
11199         else
11200            Type_Def := Type_Definition (N);
11201         end if;
11202
11203         if Is_Task_Interface (Iface_Id) then
11204            Is_Task := True;
11205
11206         elsif Is_Protected_Interface (Iface_Id) then
11207            Is_Protected := True;
11208         end if;
11209
11210         if Is_Synchronized_Interface (Iface_Id) then
11211
11212            --  A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11213            --  extension derived from a synchronized interface must explicitly
11214            --  be declared synchronized, because the full view will be a
11215            --  synchronized type.
11216
11217            if Nkind (N) = N_Private_Extension_Declaration then
11218               if not Synchronized_Present (N) then
11219                  Error_Msg_NE
11220                    ("private extension of& must be explicitly synchronized",
11221                      N, Iface_Id);
11222               end if;
11223
11224            --  However, by 3.9.4(16/2), a full type that is a record extension
11225            --  is never allowed to derive from a synchronized interface (note
11226            --  that interfaces must be excluded from this check, because those
11227            --  are represented by derived type definitions in some cases).
11228
11229            elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11230              and then not Interface_Present (Type_Definition (N))
11231            then
11232               Error_Msg_N ("record extension cannot derive from synchronized "
11233                            & "interface", Error_Node);
11234            end if;
11235         end if;
11236
11237         --  Check that the characteristics of the progenitor are compatible
11238         --  with the explicit qualifier in the declaration.
11239         --  The check only applies to qualifiers that come from source.
11240         --  Limited_Present also appears in the declaration of corresponding
11241         --  records, and the check does not apply to them.
11242
11243         if Limited_Present (Type_Def)
11244           and then not
11245             Is_Concurrent_Record_Type (Defining_Identifier (N))
11246         then
11247            if Is_Limited_Interface (Parent_Type)
11248              and then not Is_Limited_Interface (Iface_Id)
11249            then
11250               Error_Msg_NE
11251                 ("progenitor & must be limited interface",
11252                   Error_Node, Iface_Id);
11253
11254            elsif
11255              (Task_Present (Iface_Def)
11256                or else Protected_Present (Iface_Def)
11257                or else Synchronized_Present (Iface_Def))
11258              and then Nkind (N) /= N_Private_Extension_Declaration
11259              and then not Error_Posted (N)
11260            then
11261               Error_Msg_NE
11262                 ("progenitor & must be limited interface",
11263                   Error_Node, Iface_Id);
11264            end if;
11265
11266         --  Protected interfaces can only inherit from limited, synchronized
11267         --  or protected interfaces.
11268
11269         elsif Nkind (N) = N_Full_Type_Declaration
11270           and then  Protected_Present (Type_Def)
11271         then
11272            if Limited_Present (Iface_Def)
11273              or else Synchronized_Present (Iface_Def)
11274              or else Protected_Present (Iface_Def)
11275            then
11276               null;
11277
11278            elsif Task_Present (Iface_Def) then
11279               Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11280                            & "from task interface", Error_Node);
11281
11282            else
11283               Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11284                            & "from non-limited interface", Error_Node);
11285            end if;
11286
11287         --  Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11288         --  limited and synchronized.
11289
11290         elsif Synchronized_Present (Type_Def) then
11291            if Limited_Present (Iface_Def)
11292              or else Synchronized_Present (Iface_Def)
11293            then
11294               null;
11295
11296            elsif Protected_Present (Iface_Def)
11297              and then Nkind (N) /= N_Private_Extension_Declaration
11298            then
11299               Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11300                            & "from protected interface", Error_Node);
11301
11302            elsif Task_Present (Iface_Def)
11303              and then Nkind (N) /= N_Private_Extension_Declaration
11304            then
11305               Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11306                            & "from task interface", Error_Node);
11307
11308            elsif not Is_Limited_Interface (Iface_Id) then
11309               Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11310                            & "from non-limited interface", Error_Node);
11311            end if;
11312
11313         --  Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11314         --  synchronized or task interfaces.
11315
11316         elsif Nkind (N) = N_Full_Type_Declaration
11317           and then Task_Present (Type_Def)
11318         then
11319            if Limited_Present (Iface_Def)
11320              or else Synchronized_Present (Iface_Def)
11321              or else Task_Present (Iface_Def)
11322            then
11323               null;
11324
11325            elsif Protected_Present (Iface_Def) then
11326               Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11327                            & "protected interface", Error_Node);
11328
11329            else
11330               Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11331                            & "non-limited interface", Error_Node);
11332            end if;
11333         end if;
11334      end Check_Ifaces;
11335
11336   --  Start of processing for Check_Interfaces
11337
11338   begin
11339      if Is_Interface (Parent_Type) then
11340         if Is_Task_Interface (Parent_Type) then
11341            Is_Task := True;
11342
11343         elsif Is_Protected_Interface (Parent_Type) then
11344            Is_Protected := True;
11345         end if;
11346      end if;
11347
11348      if Nkind (N) = N_Private_Extension_Declaration then
11349
11350         --  Check that progenitors are compatible with declaration
11351
11352         Iface := First (Interface_List (Def));
11353         while Present (Iface) loop
11354            Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11355
11356            Parent_Node := Parent (Base_Type (Iface_Typ));
11357            Iface_Def   := Type_Definition (Parent_Node);
11358
11359            if not Is_Interface (Iface_Typ) then
11360               Diagnose_Interface (Iface, Iface_Typ);
11361            else
11362               Check_Ifaces (Iface_Def, Iface);
11363            end if;
11364
11365            Next (Iface);
11366         end loop;
11367
11368         if Is_Task and Is_Protected then
11369            Error_Msg_N
11370              ("type cannot derive from task and protected interface", N);
11371         end if;
11372
11373         return;
11374      end if;
11375
11376      --  Full type declaration of derived type.
11377      --  Check compatibility with parent if it is interface type
11378
11379      if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11380        and then Is_Interface (Parent_Type)
11381      then
11382         Parent_Node := Parent (Parent_Type);
11383
11384         --  More detailed checks for interface varieties
11385
11386         Check_Ifaces
11387           (Iface_Def  => Type_Definition (Parent_Node),
11388            Error_Node => Subtype_Indication (Type_Definition (N)));
11389      end if;
11390
11391      Iface := First (Interface_List (Def));
11392      while Present (Iface) loop
11393         Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11394
11395         Parent_Node := Parent (Base_Type (Iface_Typ));
11396         Iface_Def   := Type_Definition (Parent_Node);
11397
11398         if not Is_Interface (Iface_Typ) then
11399            Diagnose_Interface (Iface, Iface_Typ);
11400
11401         else
11402            --  "The declaration of a specific descendant of an interface
11403            --   type freezes the interface type" RM 13.14
11404
11405            Freeze_Before (N, Iface_Typ);
11406            Check_Ifaces (Iface_Def, Error_Node => Iface);
11407         end if;
11408
11409         Next (Iface);
11410      end loop;
11411
11412      if Is_Task and Is_Protected then
11413         Error_Msg_N
11414           ("type cannot derive from task and protected interface", N);
11415      end if;
11416   end Check_Interfaces;
11417
11418   ------------------------------------
11419   -- Check_Or_Process_Discriminants --
11420   ------------------------------------
11421
11422   --  If an incomplete or private type declaration was already given for the
11423   --  type, the discriminants may have already been processed if they were
11424   --  present on the incomplete declaration. In this case a full conformance
11425   --  check has been performed in Find_Type_Name, and we then recheck here
11426   --  some properties that can't be checked on the partial view alone.
11427   --  Otherwise we call Process_Discriminants.
11428
11429   procedure Check_Or_Process_Discriminants
11430     (N    : Node_Id;
11431      T    : Entity_Id;
11432      Prev : Entity_Id := Empty)
11433   is
11434   begin
11435      if Has_Discriminants (T) then
11436
11437         --  Discriminants are already set on T if they were already present
11438         --  on the partial view. Make them visible to component declarations.
11439
11440         declare
11441            D : Entity_Id;
11442            --  Discriminant on T (full view) referencing expr on partial view
11443
11444            Prev_D : Entity_Id;
11445            --  Entity of corresponding discriminant on partial view
11446
11447            New_D : Node_Id;
11448            --  Discriminant specification for full view, expression is
11449            --  the syntactic copy on full view (which has been checked for
11450            --  conformance with partial view), only used here to post error
11451            --  message.
11452
11453         begin
11454            D     := First_Discriminant (T);
11455            New_D := First (Discriminant_Specifications (N));
11456            while Present (D) loop
11457               Prev_D := Current_Entity (D);
11458               Set_Current_Entity (D);
11459               Set_Is_Immediately_Visible (D);
11460               Set_Homonym (D, Prev_D);
11461
11462               --  Handle the case where there is an untagged partial view and
11463               --  the full view is tagged: must disallow discriminants with
11464               --  defaults, unless compiling for Ada 2012, which allows a
11465               --  limited tagged type to have defaulted discriminants (see
11466               --  AI05-0214). However, suppress error here if it was already
11467               --  reported on the default expression of the partial view.
11468
11469               if Is_Tagged_Type (T)
11470                 and then Present (Expression (Parent (D)))
11471                 and then (not Is_Limited_Type (Current_Scope)
11472                            or else Ada_Version < Ada_2012)
11473                 and then not Error_Posted (Expression (Parent (D)))
11474               then
11475                  if Ada_Version >= Ada_2012 then
11476                     Error_Msg_N
11477                       ("discriminants of nonlimited tagged type cannot have "
11478                        & "defaults",
11479                        Expression (New_D));
11480                  else
11481                     Error_Msg_N
11482                       ("discriminants of tagged type cannot have defaults",
11483                        Expression (New_D));
11484                  end if;
11485               end if;
11486
11487               --  Ada 2005 (AI-230): Access discriminant allowed in
11488               --  non-limited record types.
11489
11490               if Ada_Version < Ada_2005 then
11491
11492                  --  This restriction gets applied to the full type here. It
11493                  --  has already been applied earlier to the partial view.
11494
11495                  Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11496               end if;
11497
11498               Next_Discriminant (D);
11499               Next (New_D);
11500            end loop;
11501         end;
11502
11503      elsif Present (Discriminant_Specifications (N)) then
11504         Process_Discriminants (N, Prev);
11505      end if;
11506   end Check_Or_Process_Discriminants;
11507
11508   ----------------------
11509   -- Check_Real_Bound --
11510   ----------------------
11511
11512   procedure Check_Real_Bound (Bound : Node_Id) is
11513   begin
11514      if not Is_Real_Type (Etype (Bound)) then
11515         Error_Msg_N
11516           ("bound in real type definition must be of real type", Bound);
11517
11518      elsif not Is_OK_Static_Expression (Bound) then
11519         Flag_Non_Static_Expr
11520           ("non-static expression used for real type bound!", Bound);
11521
11522      else
11523         return;
11524      end if;
11525
11526      Rewrite
11527        (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11528      Analyze (Bound);
11529      Resolve (Bound, Standard_Float);
11530   end Check_Real_Bound;
11531
11532   ------------------------------
11533   -- Complete_Private_Subtype --
11534   ------------------------------
11535
11536   procedure Complete_Private_Subtype
11537     (Priv        : Entity_Id;
11538      Full        : Entity_Id;
11539      Full_Base   : Entity_Id;
11540      Related_Nod : Node_Id)
11541   is
11542      Save_Next_Entity : Entity_Id;
11543      Save_Homonym     : Entity_Id;
11544
11545   begin
11546      --  Set semantic attributes for (implicit) private subtype completion.
11547      --  If the full type has no discriminants, then it is a copy of the
11548      --  full view of the base. Otherwise, it is a subtype of the base with
11549      --  a possible discriminant constraint. Save and restore the original
11550      --  Next_Entity field of full to ensure that the calls to Copy_Node do
11551      --  not corrupt the entity chain.
11552
11553      --  Note that the type of the full view is the same entity as the type
11554      --  of the partial view. In this fashion, the subtype has access to the
11555      --  correct view of the parent.
11556
11557      Save_Next_Entity := Next_Entity (Full);
11558      Save_Homonym     := Homonym (Priv);
11559
11560      case Ekind (Full_Base) is
11561         when E_Record_Type    |
11562              E_Record_Subtype |
11563              Class_Wide_Kind  |
11564              Private_Kind     |
11565              Task_Kind        |
11566              Protected_Kind   =>
11567            Copy_Node (Priv, Full);
11568
11569            Set_Has_Discriminants
11570                             (Full, Has_Discriminants (Full_Base));
11571            Set_Has_Unknown_Discriminants
11572                             (Full, Has_Unknown_Discriminants (Full_Base));
11573            Set_First_Entity (Full, First_Entity (Full_Base));
11574            Set_Last_Entity  (Full, Last_Entity (Full_Base));
11575
11576            --  If the underlying base type is constrained, we know that the
11577            --  full view of the subtype is constrained as well (the converse
11578            --  is not necessarily true).
11579
11580            if Is_Constrained (Full_Base) then
11581               Set_Is_Constrained (Full);
11582            end if;
11583
11584         when others =>
11585            Copy_Node (Full_Base, Full);
11586
11587            Set_Chars         (Full, Chars (Priv));
11588            Conditional_Delay (Full, Priv);
11589            Set_Sloc          (Full, Sloc (Priv));
11590      end case;
11591
11592      Set_Next_Entity               (Full, Save_Next_Entity);
11593      Set_Homonym                   (Full, Save_Homonym);
11594      Set_Associated_Node_For_Itype (Full, Related_Nod);
11595
11596      --  Set common attributes for all subtypes: kind, convention, etc.
11597
11598      Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11599      Set_Convention (Full, Convention (Full_Base));
11600
11601      --  The Etype of the full view is inconsistent. Gigi needs to see the
11602      --  structural full view, which is what the current scheme gives: the
11603      --  Etype of the full view is the etype of the full base. However, if the
11604      --  full base is a derived type, the full view then looks like a subtype
11605      --  of the parent, not a subtype of the full base. If instead we write:
11606
11607      --       Set_Etype (Full, Full_Base);
11608
11609      --  then we get inconsistencies in the front-end (confusion between
11610      --  views). Several outstanding bugs are related to this ???
11611
11612      Set_Is_First_Subtype (Full, False);
11613      Set_Scope            (Full, Scope (Priv));
11614      Set_Size_Info        (Full, Full_Base);
11615      Set_RM_Size          (Full, RM_Size (Full_Base));
11616      Set_Is_Itype         (Full);
11617
11618      --  A subtype of a private-type-without-discriminants, whose full-view
11619      --  has discriminants with default expressions, is not constrained.
11620
11621      if not Has_Discriminants (Priv) then
11622         Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11623
11624         if Has_Discriminants (Full_Base) then
11625            Set_Discriminant_Constraint
11626              (Full, Discriminant_Constraint (Full_Base));
11627
11628            --  The partial view may have been indefinite, the full view
11629            --  might not be.
11630
11631            Set_Has_Unknown_Discriminants
11632              (Full, Has_Unknown_Discriminants (Full_Base));
11633         end if;
11634      end if;
11635
11636      Set_First_Rep_Item     (Full, First_Rep_Item (Full_Base));
11637      Set_Depends_On_Private (Full, Has_Private_Component (Full));
11638
11639      --  Freeze the private subtype entity if its parent is delayed, and not
11640      --  already frozen. We skip this processing if the type is an anonymous
11641      --  subtype of a record component, or is the corresponding record of a
11642      --  protected type, since these are processed when the enclosing type
11643      --  is frozen.
11644
11645      if not Is_Type (Scope (Full)) then
11646         Set_Has_Delayed_Freeze (Full,
11647           Has_Delayed_Freeze (Full_Base)
11648             and then (not Is_Frozen (Full_Base)));
11649      end if;
11650
11651      Set_Freeze_Node (Full, Empty);
11652      Set_Is_Frozen (Full, False);
11653      Set_Full_View (Priv, Full);
11654
11655      if Has_Discriminants (Full) then
11656         Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11657         Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11658
11659         if Has_Unknown_Discriminants (Full) then
11660            Set_Discriminant_Constraint (Full, No_Elist);
11661         end if;
11662      end if;
11663
11664      if Ekind (Full_Base) = E_Record_Type
11665        and then Has_Discriminants (Full_Base)
11666        and then Has_Discriminants (Priv) -- might not, if errors
11667        and then not Has_Unknown_Discriminants (Priv)
11668        and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11669      then
11670         Create_Constrained_Components
11671           (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11672
11673      --  If the full base is itself derived from private, build a congruent
11674      --  subtype of its underlying type, for use by the back end. For a
11675      --  constrained record component, the declaration cannot be placed on
11676      --  the component list, but it must nevertheless be built an analyzed, to
11677      --  supply enough information for Gigi to compute the size of component.
11678
11679      elsif Ekind (Full_Base) in Private_Kind
11680        and then Is_Derived_Type (Full_Base)
11681        and then Has_Discriminants (Full_Base)
11682        and then (Ekind (Current_Scope) /= E_Record_Subtype)
11683      then
11684         if not Is_Itype (Priv)
11685           and then
11686             Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11687         then
11688            Build_Underlying_Full_View
11689              (Parent (Priv), Full, Etype (Full_Base));
11690
11691         elsif Nkind (Related_Nod) = N_Component_Declaration then
11692            Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11693         end if;
11694
11695      elsif Is_Record_Type (Full_Base) then
11696
11697         --  Show Full is simply a renaming of Full_Base
11698
11699         Set_Cloned_Subtype (Full, Full_Base);
11700      end if;
11701
11702      --  It is unsafe to share the bounds of a scalar type, because the Itype
11703      --  is elaborated on demand, and if a bound is non-static then different
11704      --  orders of elaboration in different units will lead to different
11705      --  external symbols.
11706
11707      if Is_Scalar_Type (Full_Base) then
11708         Set_Scalar_Range (Full,
11709           Make_Range (Sloc (Related_Nod),
11710             Low_Bound  =>
11711               Duplicate_Subexpr_No_Checks (Type_Low_Bound  (Full_Base)),
11712             High_Bound =>
11713               Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11714
11715         --  This completion inherits the bounds of the full parent, but if
11716         --  the parent is an unconstrained floating point type, so is the
11717         --  completion.
11718
11719         if Is_Floating_Point_Type (Full_Base) then
11720            Set_Includes_Infinities
11721             (Scalar_Range (Full), Has_Infinities (Full_Base));
11722         end if;
11723      end if;
11724
11725      --  ??? It seems that a lot of fields are missing that should be copied
11726      --  from Full_Base to Full. Here are some that are introduced in a
11727      --  non-disruptive way but a cleanup is necessary.
11728
11729      if Is_Tagged_Type (Full_Base) then
11730         Set_Is_Tagged_Type (Full);
11731         Set_Direct_Primitive_Operations
11732           (Full, Direct_Primitive_Operations (Full_Base));
11733         Set_No_Tagged_Streams_Pragma
11734           (Full, No_Tagged_Streams_Pragma (Full_Base));
11735
11736         --  Inherit class_wide type of full_base in case the partial view was
11737         --  not tagged. Otherwise it has already been created when the private
11738         --  subtype was analyzed.
11739
11740         if No (Class_Wide_Type (Full)) then
11741            Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11742         end if;
11743
11744      --  If this is a subtype of a protected or task type, constrain its
11745      --  corresponding record, unless this is a subtype without constraints,
11746      --  i.e. a simple renaming as with an actual subtype in an instance.
11747
11748      elsif Is_Concurrent_Type (Full_Base) then
11749         if Has_Discriminants (Full)
11750           and then Present (Corresponding_Record_Type (Full_Base))
11751           and then
11752             not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11753         then
11754            Set_Corresponding_Record_Type (Full,
11755              Constrain_Corresponding_Record
11756                (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11757
11758         else
11759            Set_Corresponding_Record_Type (Full,
11760              Corresponding_Record_Type (Full_Base));
11761         end if;
11762      end if;
11763
11764      --  Link rep item chain, and also setting of Has_Predicates from private
11765      --  subtype to full subtype, since we will need these on the full subtype
11766      --  to create the predicate function. Note that the full subtype may
11767      --  already have rep items, inherited from the full view of the base
11768      --  type, so we must be sure not to overwrite these entries.
11769
11770      declare
11771         Append    : Boolean;
11772         Item      : Node_Id;
11773         Next_Item : Node_Id;
11774
11775      begin
11776         Item := First_Rep_Item (Full);
11777
11778         --  If no existing rep items on full type, we can just link directly
11779         --  to the list of items on the private type, if any exist.. Same if
11780         --  the rep items are only those inherited from the base
11781
11782         if (No (Item)
11783              or else Nkind (Item) /= N_Aspect_Specification
11784              or else Entity (Item) = Full_Base)
11785             and then Present (First_Rep_Item (Priv))
11786         then
11787            Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11788
11789         --  Otherwise, search to the end of items currently linked to the full
11790         --  subtype and append the private items to the end. However, if Priv
11791         --  and Full already have the same list of rep items, then the append
11792         --  is not done, as that would create a circularity.
11793
11794         elsif Item /= First_Rep_Item (Priv) then
11795            Append := True;
11796            loop
11797               Next_Item := Next_Rep_Item (Item);
11798               exit when No (Next_Item);
11799               Item := Next_Item;
11800
11801               --  If the private view has aspect specifications, the full view
11802               --  inherits them. Since these aspects may already have been
11803               --  attached to the full view during derivation, do not append
11804               --  them if already present.
11805
11806               if Item = First_Rep_Item (Priv) then
11807                  Append := False;
11808                  exit;
11809               end if;
11810            end loop;
11811
11812            --  And link the private type items at the end of the chain
11813
11814            if Append then
11815               Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11816            end if;
11817         end if;
11818      end;
11819
11820      --  Make sure Has_Predicates is set on full type if it is set on the
11821      --  private type. Note that it may already be set on the full type and
11822      --  if so, we don't want to unset it. Similarly, propagate information
11823      --  about delayed aspects, because the corresponding pragmas must be
11824      --  analyzed when one of the views is frozen. This last step is needed
11825      --  in particular when the full type is a scalar type for which an
11826      --  anonymous base type is constructed.
11827
11828      if Has_Predicates (Priv) then
11829         Set_Has_Predicates (Full);
11830      end if;
11831
11832      if Has_Delayed_Aspects (Priv) then
11833         Set_Has_Delayed_Aspects (Full);
11834      end if;
11835   end Complete_Private_Subtype;
11836
11837   ----------------------------
11838   -- Constant_Redeclaration --
11839   ----------------------------
11840
11841   procedure Constant_Redeclaration
11842     (Id : Entity_Id;
11843      N  : Node_Id;
11844      T  : out Entity_Id)
11845   is
11846      Prev    : constant Entity_Id := Current_Entity_In_Scope (Id);
11847      Obj_Def : constant Node_Id := Object_Definition (N);
11848      New_T   : Entity_Id;
11849
11850      procedure Check_Possible_Deferred_Completion
11851        (Prev_Id      : Entity_Id;
11852         Prev_Obj_Def : Node_Id;
11853         Curr_Obj_Def : Node_Id);
11854      --  Determine whether the two object definitions describe the partial
11855      --  and the full view of a constrained deferred constant. Generate
11856      --  a subtype for the full view and verify that it statically matches
11857      --  the subtype of the partial view.
11858
11859      procedure Check_Recursive_Declaration (Typ : Entity_Id);
11860      --  If deferred constant is an access type initialized with an allocator,
11861      --  check whether there is an illegal recursion in the definition,
11862      --  through a default value of some record subcomponent. This is normally
11863      --  detected when generating init procs, but requires this additional
11864      --  mechanism when expansion is disabled.
11865
11866      ----------------------------------------
11867      -- Check_Possible_Deferred_Completion --
11868      ----------------------------------------
11869
11870      procedure Check_Possible_Deferred_Completion
11871        (Prev_Id      : Entity_Id;
11872         Prev_Obj_Def : Node_Id;
11873         Curr_Obj_Def : Node_Id)
11874      is
11875      begin
11876         if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11877           and then Present (Constraint (Prev_Obj_Def))
11878           and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11879           and then Present (Constraint (Curr_Obj_Def))
11880         then
11881            declare
11882               Loc    : constant Source_Ptr := Sloc (N);
11883               Def_Id : constant Entity_Id  := Make_Temporary (Loc, 'S');
11884               Decl   : constant Node_Id    :=
11885                          Make_Subtype_Declaration (Loc,
11886                            Defining_Identifier => Def_Id,
11887                            Subtype_Indication  =>
11888                              Relocate_Node (Curr_Obj_Def));
11889
11890            begin
11891               Insert_Before_And_Analyze (N, Decl);
11892               Set_Etype (Id, Def_Id);
11893
11894               if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11895                  Error_Msg_Sloc := Sloc (Prev_Id);
11896                  Error_Msg_N ("subtype does not statically match deferred "
11897                               & "declaration #", N);
11898               end if;
11899            end;
11900         end if;
11901      end Check_Possible_Deferred_Completion;
11902
11903      ---------------------------------
11904      -- Check_Recursive_Declaration --
11905      ---------------------------------
11906
11907      procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11908         Comp : Entity_Id;
11909
11910      begin
11911         if Is_Record_Type (Typ) then
11912            Comp := First_Component (Typ);
11913            while Present (Comp) loop
11914               if Comes_From_Source (Comp) then
11915                  if Present (Expression (Parent (Comp)))
11916                    and then Is_Entity_Name (Expression (Parent (Comp)))
11917                    and then Entity (Expression (Parent (Comp))) = Prev
11918                  then
11919                     Error_Msg_Sloc := Sloc (Parent (Comp));
11920                     Error_Msg_NE
11921                       ("illegal circularity with declaration for & #",
11922                         N, Comp);
11923                     return;
11924
11925                  elsif Is_Record_Type (Etype (Comp)) then
11926                     Check_Recursive_Declaration (Etype (Comp));
11927                  end if;
11928               end if;
11929
11930               Next_Component (Comp);
11931            end loop;
11932         end if;
11933      end Check_Recursive_Declaration;
11934
11935   --  Start of processing for Constant_Redeclaration
11936
11937   begin
11938      if Nkind (Parent (Prev)) = N_Object_Declaration then
11939         if Nkind (Object_Definition
11940                     (Parent (Prev))) = N_Subtype_Indication
11941         then
11942            --  Find type of new declaration. The constraints of the two
11943            --  views must match statically, but there is no point in
11944            --  creating an itype for the full view.
11945
11946            if Nkind (Obj_Def) = N_Subtype_Indication then
11947               Find_Type (Subtype_Mark (Obj_Def));
11948               New_T := Entity (Subtype_Mark (Obj_Def));
11949
11950            else
11951               Find_Type (Obj_Def);
11952               New_T := Entity (Obj_Def);
11953            end if;
11954
11955            T := Etype (Prev);
11956
11957         else
11958            --  The full view may impose a constraint, even if the partial
11959            --  view does not, so construct the subtype.
11960
11961            New_T := Find_Type_Of_Object (Obj_Def, N);
11962            T     := New_T;
11963         end if;
11964
11965      else
11966         --  Current declaration is illegal, diagnosed below in Enter_Name
11967
11968         T := Empty;
11969         New_T := Any_Type;
11970      end if;
11971
11972      --  If previous full declaration or a renaming declaration exists, or if
11973      --  a homograph is present, let Enter_Name handle it, either with an
11974      --  error or with the removal of an overridden implicit subprogram.
11975      --  The previous one is a full declaration if it has an expression
11976      --  (which in the case of an aggregate is indicated by the Init flag).
11977
11978      if Ekind (Prev) /= E_Constant
11979        or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11980        or else Present (Expression (Parent (Prev)))
11981        or else Has_Init_Expression (Parent (Prev))
11982        or else Present (Full_View (Prev))
11983      then
11984         Enter_Name (Id);
11985
11986      --  Verify that types of both declarations match, or else that both types
11987      --  are anonymous access types whose designated subtypes statically match
11988      --  (as allowed in Ada 2005 by AI-385).
11989
11990      elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11991        and then
11992          (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11993             or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11994             or else Is_Access_Constant (Etype (New_T)) /=
11995                     Is_Access_Constant (Etype (Prev))
11996             or else Can_Never_Be_Null (Etype (New_T)) /=
11997                     Can_Never_Be_Null (Etype (Prev))
11998             or else Null_Exclusion_Present (Parent (Prev)) /=
11999                     Null_Exclusion_Present (Parent (Id))
12000             or else not Subtypes_Statically_Match
12001                           (Designated_Type (Etype (Prev)),
12002                            Designated_Type (Etype (New_T))))
12003      then
12004         Error_Msg_Sloc := Sloc (Prev);
12005         Error_Msg_N ("type does not match declaration#", N);
12006         Set_Full_View (Prev, Id);
12007         Set_Etype (Id, Any_Type);
12008
12009         --  A deferred constant whose type is an anonymous array is always
12010         --  illegal (unless imported). A detailed error message might be
12011         --  helpful for Ada beginners.
12012
12013         if Nkind (Object_Definition (Parent (Prev)))
12014            = N_Constrained_Array_Definition
12015           and then Nkind (Object_Definition (N))
12016              = N_Constrained_Array_Definition
12017         then
12018            Error_Msg_N ("\each anonymous array is a distinct type", N);
12019            Error_Msg_N ("a deferred constant must have a named type",
12020              Object_Definition (Parent (Prev)));
12021         end if;
12022
12023      elsif
12024        Null_Exclusion_Present (Parent (Prev))
12025          and then not Null_Exclusion_Present (N)
12026      then
12027         Error_Msg_Sloc := Sloc (Prev);
12028         Error_Msg_N ("null-exclusion does not match declaration#", N);
12029         Set_Full_View (Prev, Id);
12030         Set_Etype (Id, Any_Type);
12031
12032      --  If so, process the full constant declaration
12033
12034      else
12035         --  RM 7.4 (6): If the subtype defined by the subtype_indication in
12036         --  the deferred declaration is constrained, then the subtype defined
12037         --  by the subtype_indication in the full declaration shall match it
12038         --  statically.
12039
12040         Check_Possible_Deferred_Completion
12041           (Prev_Id      => Prev,
12042            Prev_Obj_Def => Object_Definition (Parent (Prev)),
12043            Curr_Obj_Def => Obj_Def);
12044
12045         Set_Full_View (Prev, Id);
12046         Set_Is_Public (Id, Is_Public (Prev));
12047         Set_Is_Internal (Id);
12048         Append_Entity (Id, Current_Scope);
12049
12050         --  Check ALIASED present if present before (RM 7.4(7))
12051
12052         if Is_Aliased (Prev)
12053           and then not Aliased_Present (N)
12054         then
12055            Error_Msg_Sloc := Sloc (Prev);
12056            Error_Msg_N ("ALIASED required (see declaration #)", N);
12057         end if;
12058
12059         --  Check that placement is in private part and that the incomplete
12060         --  declaration appeared in the visible part.
12061
12062         if Ekind (Current_Scope) = E_Package
12063           and then not In_Private_Part (Current_Scope)
12064         then
12065            Error_Msg_Sloc := Sloc (Prev);
12066            Error_Msg_N
12067              ("full constant for declaration # must be in private part", N);
12068
12069         elsif Ekind (Current_Scope) = E_Package
12070           and then
12071             List_Containing (Parent (Prev)) /=
12072               Visible_Declarations (Package_Specification (Current_Scope))
12073         then
12074            Error_Msg_N
12075              ("deferred constant must be declared in visible part",
12076                 Parent (Prev));
12077         end if;
12078
12079         if Is_Access_Type (T)
12080           and then Nkind (Expression (N)) = N_Allocator
12081         then
12082            Check_Recursive_Declaration (Designated_Type (T));
12083         end if;
12084
12085         --  A deferred constant is a visible entity. If type has invariants,
12086         --  verify that the initial value satisfies them.
12087
12088         if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12089            Insert_After (N,
12090              Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12091         end if;
12092      end if;
12093   end Constant_Redeclaration;
12094
12095   ----------------------
12096   -- Constrain_Access --
12097   ----------------------
12098
12099   procedure Constrain_Access
12100     (Def_Id      : in out Entity_Id;
12101      S           : Node_Id;
12102      Related_Nod : Node_Id)
12103   is
12104      T             : constant Entity_Id := Entity (Subtype_Mark (S));
12105      Desig_Type    : constant Entity_Id := Designated_Type (T);
12106      Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12107      Constraint_OK : Boolean := True;
12108
12109   begin
12110      if Is_Array_Type (Desig_Type) then
12111         Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12112
12113      elsif (Is_Record_Type (Desig_Type)
12114              or else Is_Incomplete_Or_Private_Type (Desig_Type))
12115        and then not Is_Constrained (Desig_Type)
12116      then
12117         --  ??? The following code is a temporary bypass to ignore a
12118         --  discriminant constraint on access type if it is constraining
12119         --  the current record. Avoid creating the implicit subtype of the
12120         --  record we are currently compiling since right now, we cannot
12121         --  handle these. For now, just return the access type itself.
12122
12123         if Desig_Type = Current_Scope
12124           and then No (Def_Id)
12125         then
12126            Set_Ekind (Desig_Subtype, E_Record_Subtype);
12127            Def_Id := Entity (Subtype_Mark (S));
12128
12129            --  This call added to ensure that the constraint is analyzed
12130            --  (needed for a B test). Note that we still return early from
12131            --  this procedure to avoid recursive processing. ???
12132
12133            Constrain_Discriminated_Type
12134              (Desig_Subtype, S, Related_Nod, For_Access => True);
12135            return;
12136         end if;
12137
12138         --  Enforce rule that the constraint is illegal if there is an
12139         --  unconstrained view of the designated type. This means that the
12140         --  partial view (either a private type declaration or a derivation
12141         --  from a private type) has no discriminants. (Defect Report
12142         --  8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12143
12144         --  Rule updated for Ada 2005: The private type is said to have
12145         --  a constrained partial view, given that objects of the type
12146         --  can be declared. Furthermore, the rule applies to all access
12147         --  types, unlike the rule concerning default discriminants (see
12148         --  RM 3.7.1(7/3))
12149
12150         if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12151           and then Has_Private_Declaration (Desig_Type)
12152           and then In_Open_Scopes (Scope (Desig_Type))
12153           and then Has_Discriminants (Desig_Type)
12154         then
12155            declare
12156               Pack  : constant Node_Id :=
12157                         Unit_Declaration_Node (Scope (Desig_Type));
12158               Decls : List_Id;
12159               Decl  : Node_Id;
12160
12161            begin
12162               if Nkind (Pack) = N_Package_Declaration then
12163                  Decls := Visible_Declarations (Specification (Pack));
12164                  Decl := First (Decls);
12165                  while Present (Decl) loop
12166                     if (Nkind (Decl) = N_Private_Type_Declaration
12167                          and then Chars (Defining_Identifier (Decl)) =
12168                                                           Chars (Desig_Type))
12169
12170                       or else
12171                        (Nkind (Decl) = N_Full_Type_Declaration
12172                          and then
12173                            Chars (Defining_Identifier (Decl)) =
12174                                                     Chars (Desig_Type)
12175                          and then Is_Derived_Type (Desig_Type)
12176                          and then
12177                            Has_Private_Declaration (Etype (Desig_Type)))
12178                     then
12179                        if No (Discriminant_Specifications (Decl)) then
12180                           Error_Msg_N
12181                             ("cannot constrain access type if designated "
12182                              & "type has constrained partial view", S);
12183                        end if;
12184
12185                        exit;
12186                     end if;
12187
12188                     Next (Decl);
12189                  end loop;
12190               end if;
12191            end;
12192         end if;
12193
12194         Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12195           For_Access => True);
12196
12197      elsif Is_Concurrent_Type (Desig_Type)
12198        and then not Is_Constrained (Desig_Type)
12199      then
12200         Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12201
12202      else
12203         Error_Msg_N ("invalid constraint on access type", S);
12204
12205         --  We simply ignore an invalid constraint
12206
12207         Desig_Subtype := Desig_Type;
12208         Constraint_OK := False;
12209      end if;
12210
12211      if No (Def_Id) then
12212         Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12213      else
12214         Set_Ekind (Def_Id, E_Access_Subtype);
12215      end if;
12216
12217      if Constraint_OK then
12218         Set_Etype (Def_Id, Base_Type (T));
12219
12220         if Is_Private_Type (Desig_Type) then
12221            Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12222         end if;
12223      else
12224         Set_Etype (Def_Id, Any_Type);
12225      end if;
12226
12227      Set_Size_Info                (Def_Id, T);
12228      Set_Is_Constrained           (Def_Id, Constraint_OK);
12229      Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12230      Set_Depends_On_Private       (Def_Id, Has_Private_Component (Def_Id));
12231      Set_Is_Access_Constant       (Def_Id, Is_Access_Constant (T));
12232
12233      Conditional_Delay (Def_Id, T);
12234
12235      --  AI-363 : Subtypes of general access types whose designated types have
12236      --  default discriminants are disallowed. In instances, the rule has to
12237      --  be checked against the actual, of which T is the subtype. In a
12238      --  generic body, the rule is checked assuming that the actual type has
12239      --  defaulted discriminants.
12240
12241      if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12242         if Ekind (Base_Type (T)) = E_General_Access_Type
12243           and then Has_Defaulted_Discriminants (Desig_Type)
12244         then
12245            if Ada_Version < Ada_2005 then
12246               Error_Msg_N
12247                 ("access subtype of general access type would not " &
12248                  "be allowed in Ada 2005?y?", S);
12249            else
12250               Error_Msg_N
12251                 ("access subtype of general access type not allowed", S);
12252            end if;
12253
12254            Error_Msg_N ("\discriminants have defaults", S);
12255
12256         elsif Is_Access_Type (T)
12257           and then Is_Generic_Type (Desig_Type)
12258           and then Has_Discriminants (Desig_Type)
12259           and then In_Package_Body (Current_Scope)
12260         then
12261            if Ada_Version < Ada_2005 then
12262               Error_Msg_N
12263                 ("access subtype would not be allowed in generic body "
12264                  & "in Ada 2005?y?", S);
12265            else
12266               Error_Msg_N
12267                 ("access subtype not allowed in generic body", S);
12268            end if;
12269
12270            Error_Msg_N
12271              ("\designated type is a discriminated formal", S);
12272         end if;
12273      end if;
12274   end Constrain_Access;
12275
12276   ---------------------
12277   -- Constrain_Array --
12278   ---------------------
12279
12280   procedure Constrain_Array
12281     (Def_Id      : in out Entity_Id;
12282      SI          : Node_Id;
12283      Related_Nod : Node_Id;
12284      Related_Id  : Entity_Id;
12285      Suffix      : Character)
12286   is
12287      C                     : constant Node_Id := Constraint (SI);
12288      Number_Of_Constraints : Nat := 0;
12289      Index                 : Node_Id;
12290      S, T                  : Entity_Id;
12291      Constraint_OK         : Boolean := True;
12292
12293   begin
12294      T := Entity (Subtype_Mark (SI));
12295
12296      if Is_Access_Type (T) then
12297         T := Designated_Type (T);
12298      end if;
12299
12300      --  If an index constraint follows a subtype mark in a subtype indication
12301      --  then the type or subtype denoted by the subtype mark must not already
12302      --  impose an index constraint. The subtype mark must denote either an
12303      --  unconstrained array type or an access type whose designated type
12304      --  is such an array type... (RM 3.6.1)
12305
12306      if Is_Constrained (T) then
12307         Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12308         Constraint_OK := False;
12309
12310      else
12311         S := First (Constraints (C));
12312         while Present (S) loop
12313            Number_Of_Constraints := Number_Of_Constraints + 1;
12314            Next (S);
12315         end loop;
12316
12317         --  In either case, the index constraint must provide a discrete
12318         --  range for each index of the array type and the type of each
12319         --  discrete range must be the same as that of the corresponding
12320         --  index. (RM 3.6.1)
12321
12322         if Number_Of_Constraints /= Number_Dimensions (T) then
12323            Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12324            Constraint_OK := False;
12325
12326         else
12327            S := First (Constraints (C));
12328            Index := First_Index (T);
12329            Analyze (Index);
12330
12331            --  Apply constraints to each index type
12332
12333            for J in 1 .. Number_Of_Constraints loop
12334               Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12335               Next (Index);
12336               Next (S);
12337            end loop;
12338
12339         end if;
12340      end if;
12341
12342      if No (Def_Id) then
12343         Def_Id :=
12344           Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12345         Set_Parent (Def_Id, Related_Nod);
12346
12347      else
12348         Set_Ekind (Def_Id, E_Array_Subtype);
12349      end if;
12350
12351      Set_Size_Info      (Def_Id,                (T));
12352      Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12353      Set_Etype          (Def_Id, Base_Type      (T));
12354
12355      if Constraint_OK then
12356         Set_First_Index (Def_Id, First (Constraints (C)));
12357      else
12358         Set_First_Index (Def_Id, First_Index (T));
12359      end if;
12360
12361      Set_Is_Constrained     (Def_Id, True);
12362      Set_Is_Aliased         (Def_Id, Is_Aliased (T));
12363      Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12364
12365      Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12366      Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12367
12368      --  A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12369      --  We need to initialize the attribute because if Def_Id is previously
12370      --  analyzed through a limited_with clause, it will have the attributes
12371      --  of an incomplete type, one of which is an Elist that overlaps the
12372      --  Packed_Array_Impl_Type field.
12373
12374      Set_Packed_Array_Impl_Type (Def_Id, Empty);
12375
12376      --  Build a freeze node if parent still needs one. Also make sure that
12377      --  the Depends_On_Private status is set because the subtype will need
12378      --  reprocessing at the time the base type does, and also we must set a
12379      --  conditional delay.
12380
12381      Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12382      Conditional_Delay (Def_Id, T);
12383   end Constrain_Array;
12384
12385   ------------------------------
12386   -- Constrain_Component_Type --
12387   ------------------------------
12388
12389   function Constrain_Component_Type
12390     (Comp            : Entity_Id;
12391      Constrained_Typ : Entity_Id;
12392      Related_Node    : Node_Id;
12393      Typ             : Entity_Id;
12394      Constraints     : Elist_Id) return Entity_Id
12395   is
12396      Loc         : constant Source_Ptr := Sloc (Constrained_Typ);
12397      Compon_Type : constant Entity_Id := Etype (Comp);
12398
12399      function Build_Constrained_Array_Type
12400        (Old_Type : Entity_Id) return Entity_Id;
12401      --  If Old_Type is an array type, one of whose indexes is constrained
12402      --  by a discriminant, build an Itype whose constraint replaces the
12403      --  discriminant with its value in the constraint.
12404
12405      function Build_Constrained_Discriminated_Type
12406        (Old_Type : Entity_Id) return Entity_Id;
12407      --  Ditto for record components
12408
12409      function Build_Constrained_Access_Type
12410        (Old_Type : Entity_Id) return Entity_Id;
12411      --  Ditto for access types. Makes use of previous two functions, to
12412      --  constrain designated type.
12413
12414      function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12415      --  T is an array or discriminated type, C is a list of constraints
12416      --  that apply to T. This routine builds the constrained subtype.
12417
12418      function Is_Discriminant (Expr : Node_Id) return Boolean;
12419      --  Returns True if Expr is a discriminant
12420
12421      function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12422      --  Find the value of discriminant Discrim in Constraint
12423
12424      -----------------------------------
12425      -- Build_Constrained_Access_Type --
12426      -----------------------------------
12427
12428      function Build_Constrained_Access_Type
12429        (Old_Type : Entity_Id) return Entity_Id
12430      is
12431         Desig_Type    : constant Entity_Id := Designated_Type (Old_Type);
12432         Itype         : Entity_Id;
12433         Desig_Subtype : Entity_Id;
12434         Scop          : Entity_Id;
12435
12436      begin
12437         --  if the original access type was not embedded in the enclosing
12438         --  type definition, there is no need to produce a new access
12439         --  subtype. In fact every access type with an explicit constraint
12440         --  generates an itype whose scope is the enclosing record.
12441
12442         if not Is_Type (Scope (Old_Type)) then
12443            return Old_Type;
12444
12445         elsif Is_Array_Type (Desig_Type) then
12446            Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12447
12448         elsif Has_Discriminants (Desig_Type) then
12449
12450            --  This may be an access type to an enclosing record type for
12451            --  which we are constructing the constrained components. Return
12452            --  the enclosing record subtype. This is not always correct,
12453            --  but avoids infinite recursion. ???
12454
12455            Desig_Subtype := Any_Type;
12456
12457            for J in reverse 0 .. Scope_Stack.Last loop
12458               Scop := Scope_Stack.Table (J).Entity;
12459
12460               if Is_Type (Scop)
12461                 and then Base_Type (Scop) = Base_Type (Desig_Type)
12462               then
12463                  Desig_Subtype := Scop;
12464               end if;
12465
12466               exit when not Is_Type (Scop);
12467            end loop;
12468
12469            if Desig_Subtype = Any_Type then
12470               Desig_Subtype :=
12471                 Build_Constrained_Discriminated_Type (Desig_Type);
12472            end if;
12473
12474         else
12475            return Old_Type;
12476         end if;
12477
12478         if Desig_Subtype /= Desig_Type then
12479
12480            --  The Related_Node better be here or else we won't be able
12481            --  to attach new itypes to a node in the tree.
12482
12483            pragma Assert (Present (Related_Node));
12484
12485            Itype := Create_Itype (E_Access_Subtype, Related_Node);
12486
12487            Set_Etype                    (Itype, Base_Type      (Old_Type));
12488            Set_Size_Info                (Itype,                (Old_Type));
12489            Set_Directly_Designated_Type (Itype, Desig_Subtype);
12490            Set_Depends_On_Private       (Itype, Has_Private_Component
12491                                                                (Old_Type));
12492            Set_Is_Access_Constant       (Itype, Is_Access_Constant
12493                                                                (Old_Type));
12494
12495            --  The new itype needs freezing when it depends on a not frozen
12496            --  type and the enclosing subtype needs freezing.
12497
12498            if Has_Delayed_Freeze (Constrained_Typ)
12499              and then not Is_Frozen (Constrained_Typ)
12500            then
12501               Conditional_Delay (Itype, Base_Type (Old_Type));
12502            end if;
12503
12504            return Itype;
12505
12506         else
12507            return Old_Type;
12508         end if;
12509      end Build_Constrained_Access_Type;
12510
12511      ----------------------------------
12512      -- Build_Constrained_Array_Type --
12513      ----------------------------------
12514
12515      function Build_Constrained_Array_Type
12516        (Old_Type : Entity_Id) return Entity_Id
12517      is
12518         Lo_Expr     : Node_Id;
12519         Hi_Expr     : Node_Id;
12520         Old_Index   : Node_Id;
12521         Range_Node  : Node_Id;
12522         Constr_List : List_Id;
12523
12524         Need_To_Create_Itype : Boolean := False;
12525
12526      begin
12527         Old_Index := First_Index (Old_Type);
12528         while Present (Old_Index) loop
12529            Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12530
12531            if Is_Discriminant (Lo_Expr)
12532                 or else
12533               Is_Discriminant (Hi_Expr)
12534            then
12535               Need_To_Create_Itype := True;
12536            end if;
12537
12538            Next_Index (Old_Index);
12539         end loop;
12540
12541         if Need_To_Create_Itype then
12542            Constr_List := New_List;
12543
12544            Old_Index := First_Index (Old_Type);
12545            while Present (Old_Index) loop
12546               Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12547
12548               if Is_Discriminant (Lo_Expr) then
12549                  Lo_Expr := Get_Discr_Value (Lo_Expr);
12550               end if;
12551
12552               if Is_Discriminant (Hi_Expr) then
12553                  Hi_Expr := Get_Discr_Value (Hi_Expr);
12554               end if;
12555
12556               Range_Node :=
12557                 Make_Range
12558                   (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12559
12560               Append (Range_Node, To => Constr_List);
12561
12562               Next_Index (Old_Index);
12563            end loop;
12564
12565            return Build_Subtype (Old_Type, Constr_List);
12566
12567         else
12568            return Old_Type;
12569         end if;
12570      end Build_Constrained_Array_Type;
12571
12572      ------------------------------------------
12573      -- Build_Constrained_Discriminated_Type --
12574      ------------------------------------------
12575
12576      function Build_Constrained_Discriminated_Type
12577        (Old_Type : Entity_Id) return Entity_Id
12578      is
12579         Expr           : Node_Id;
12580         Constr_List    : List_Id;
12581         Old_Constraint : Elmt_Id;
12582
12583         Need_To_Create_Itype : Boolean := False;
12584
12585      begin
12586         Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12587         while Present (Old_Constraint) loop
12588            Expr := Node (Old_Constraint);
12589
12590            if Is_Discriminant (Expr) then
12591               Need_To_Create_Itype := True;
12592            end if;
12593
12594            Next_Elmt (Old_Constraint);
12595         end loop;
12596
12597         if Need_To_Create_Itype then
12598            Constr_List := New_List;
12599
12600            Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12601            while Present (Old_Constraint) loop
12602               Expr := Node (Old_Constraint);
12603
12604               if Is_Discriminant (Expr) then
12605                  Expr := Get_Discr_Value (Expr);
12606               end if;
12607
12608               Append (New_Copy_Tree (Expr), To => Constr_List);
12609
12610               Next_Elmt (Old_Constraint);
12611            end loop;
12612
12613            return Build_Subtype (Old_Type, Constr_List);
12614
12615         else
12616            return Old_Type;
12617         end if;
12618      end Build_Constrained_Discriminated_Type;
12619
12620      -------------------
12621      -- Build_Subtype --
12622      -------------------
12623
12624      function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12625         Indic       : Node_Id;
12626         Subtyp_Decl : Node_Id;
12627         Def_Id      : Entity_Id;
12628         Btyp        : Entity_Id := Base_Type (T);
12629
12630      begin
12631         --  The Related_Node better be here or else we won't be able to
12632         --  attach new itypes to a node in the tree.
12633
12634         pragma Assert (Present (Related_Node));
12635
12636         --  If the view of the component's type is incomplete or private
12637         --  with unknown discriminants, then the constraint must be applied
12638         --  to the full type.
12639
12640         if Has_Unknown_Discriminants (Btyp)
12641           and then Present (Underlying_Type (Btyp))
12642         then
12643            Btyp := Underlying_Type (Btyp);
12644         end if;
12645
12646         Indic :=
12647           Make_Subtype_Indication (Loc,
12648             Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12649             Constraint   => Make_Index_Or_Discriminant_Constraint (Loc, C));
12650
12651         Def_Id := Create_Itype (Ekind (T), Related_Node);
12652
12653         Subtyp_Decl :=
12654           Make_Subtype_Declaration (Loc,
12655             Defining_Identifier => Def_Id,
12656             Subtype_Indication  => Indic);
12657
12658         Set_Parent (Subtyp_Decl, Parent (Related_Node));
12659
12660         --  Itypes must be analyzed with checks off (see package Itypes)
12661
12662         Analyze (Subtyp_Decl, Suppress => All_Checks);
12663
12664         return Def_Id;
12665      end Build_Subtype;
12666
12667      ---------------------
12668      -- Get_Discr_Value --
12669      ---------------------
12670
12671      function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12672         D : Entity_Id;
12673         E : Elmt_Id;
12674
12675      begin
12676         --  The discriminant may be declared for the type, in which case we
12677         --  find it by iterating over the list of discriminants. If the
12678         --  discriminant is inherited from a parent type, it appears as the
12679         --  corresponding discriminant of the current type. This will be the
12680         --  case when constraining an inherited component whose constraint is
12681         --  given by a discriminant of the parent.
12682
12683         D := First_Discriminant (Typ);
12684         E := First_Elmt (Constraints);
12685
12686         while Present (D) loop
12687            if D = Entity (Discrim)
12688              or else D = CR_Discriminant (Entity (Discrim))
12689              or else Corresponding_Discriminant (D) = Entity (Discrim)
12690            then
12691               return Node (E);
12692            end if;
12693
12694            Next_Discriminant (D);
12695            Next_Elmt (E);
12696         end loop;
12697
12698         --  The Corresponding_Discriminant mechanism is incomplete, because
12699         --  the correspondence between new and old discriminants is not one
12700         --  to one: one new discriminant can constrain several old ones. In
12701         --  that case, scan sequentially the stored_constraint, the list of
12702         --  discriminants of the parents, and the constraints.
12703
12704         --  Previous code checked for the present of the Stored_Constraint
12705         --  list for the derived type, but did not use it at all. Should it
12706         --  be present when the component is a discriminated task type?
12707
12708         if Is_Derived_Type (Typ)
12709           and then Scope (Entity (Discrim)) = Etype (Typ)
12710         then
12711            D := First_Discriminant (Etype (Typ));
12712            E := First_Elmt (Constraints);
12713            while Present (D) loop
12714               if D = Entity (Discrim) then
12715                  return Node (E);
12716               end if;
12717
12718               Next_Discriminant (D);
12719               Next_Elmt (E);
12720            end loop;
12721         end if;
12722
12723         --  Something is wrong if we did not find the value
12724
12725         raise Program_Error;
12726      end Get_Discr_Value;
12727
12728      ---------------------
12729      -- Is_Discriminant --
12730      ---------------------
12731
12732      function Is_Discriminant (Expr : Node_Id) return Boolean is
12733         Discrim_Scope : Entity_Id;
12734
12735      begin
12736         if Denotes_Discriminant (Expr) then
12737            Discrim_Scope := Scope (Entity (Expr));
12738
12739            --  Either we have a reference to one of Typ's discriminants,
12740
12741            pragma Assert (Discrim_Scope = Typ
12742
12743               --  or to the discriminants of the parent type, in the case
12744               --  of a derivation of a tagged type with variants.
12745
12746               or else Discrim_Scope = Etype (Typ)
12747               or else Full_View (Discrim_Scope) = Etype (Typ)
12748
12749               --  or same as above for the case where the discriminants
12750               --  were declared in Typ's private view.
12751
12752               or else (Is_Private_Type (Discrim_Scope)
12753                         and then Chars (Discrim_Scope) = Chars (Typ))
12754
12755               --  or else we are deriving from the full view and the
12756               --  discriminant is declared in the private entity.
12757
12758               or else (Is_Private_Type (Typ)
12759                         and then Chars (Discrim_Scope) = Chars (Typ))
12760
12761               --  Or we are constrained the corresponding record of a
12762               --  synchronized type that completes a private declaration.
12763
12764               or else (Is_Concurrent_Record_Type (Typ)
12765                         and then
12766                           Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12767
12768               --  or we have a class-wide type, in which case make sure the
12769               --  discriminant found belongs to the root type.
12770
12771               or else (Is_Class_Wide_Type (Typ)
12772                         and then Etype (Typ) = Discrim_Scope));
12773
12774            return True;
12775         end if;
12776
12777         --  In all other cases we have something wrong
12778
12779         return False;
12780      end Is_Discriminant;
12781
12782   --  Start of processing for Constrain_Component_Type
12783
12784   begin
12785      if Nkind (Parent (Comp)) = N_Component_Declaration
12786        and then Comes_From_Source (Parent (Comp))
12787        and then Comes_From_Source
12788          (Subtype_Indication (Component_Definition (Parent (Comp))))
12789        and then
12790          Is_Entity_Name
12791            (Subtype_Indication (Component_Definition (Parent (Comp))))
12792      then
12793         return Compon_Type;
12794
12795      elsif Is_Array_Type (Compon_Type) then
12796         return Build_Constrained_Array_Type (Compon_Type);
12797
12798      elsif Has_Discriminants (Compon_Type) then
12799         return Build_Constrained_Discriminated_Type (Compon_Type);
12800
12801      elsif Is_Access_Type (Compon_Type) then
12802         return Build_Constrained_Access_Type (Compon_Type);
12803
12804      else
12805         return Compon_Type;
12806      end if;
12807   end Constrain_Component_Type;
12808
12809   --------------------------
12810   -- Constrain_Concurrent --
12811   --------------------------
12812
12813   --  For concurrent types, the associated record value type carries the same
12814   --  discriminants, so when we constrain a concurrent type, we must constrain
12815   --  the corresponding record type as well.
12816
12817   procedure Constrain_Concurrent
12818     (Def_Id      : in out Entity_Id;
12819      SI          : Node_Id;
12820      Related_Nod : Node_Id;
12821      Related_Id  : Entity_Id;
12822      Suffix      : Character)
12823   is
12824      --  Retrieve Base_Type to ensure getting to the concurrent type in the
12825      --  case of a private subtype (needed when only doing semantic analysis).
12826
12827      T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12828      T_Val : Entity_Id;
12829
12830   begin
12831      if Is_Access_Type (T_Ent) then
12832         T_Ent := Designated_Type (T_Ent);
12833      end if;
12834
12835      T_Val := Corresponding_Record_Type (T_Ent);
12836
12837      if Present (T_Val) then
12838
12839         if No (Def_Id) then
12840            Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12841
12842            --  Elaborate itype now, as it may be used in a subsequent
12843            --  synchronized operation in another scope.
12844
12845            if Nkind (Related_Nod) = N_Full_Type_Declaration then
12846               Build_Itype_Reference (Def_Id, Related_Nod);
12847            end if;
12848         end if;
12849
12850         Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12851
12852         Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12853         Set_Corresponding_Record_Type (Def_Id,
12854           Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12855
12856      else
12857         --  If there is no associated record, expansion is disabled and this
12858         --  is a generic context. Create a subtype in any case, so that
12859         --  semantic analysis can proceed.
12860
12861         if No (Def_Id) then
12862            Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12863         end if;
12864
12865         Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12866      end if;
12867   end Constrain_Concurrent;
12868
12869   ------------------------------------
12870   -- Constrain_Corresponding_Record --
12871   ------------------------------------
12872
12873   function Constrain_Corresponding_Record
12874     (Prot_Subt   : Entity_Id;
12875      Corr_Rec    : Entity_Id;
12876      Related_Nod : Node_Id) return Entity_Id
12877   is
12878      T_Sub : constant Entity_Id :=
12879                Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12880
12881   begin
12882      Set_Etype             (T_Sub, Corr_Rec);
12883      Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12884      Set_Is_Constrained    (T_Sub, True);
12885      Set_First_Entity      (T_Sub, First_Entity (Corr_Rec));
12886      Set_Last_Entity       (T_Sub, Last_Entity  (Corr_Rec));
12887
12888      if Has_Discriminants (Prot_Subt) then -- False only if errors.
12889         Set_Discriminant_Constraint
12890           (T_Sub, Discriminant_Constraint (Prot_Subt));
12891         Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12892         Create_Constrained_Components
12893           (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12894      end if;
12895
12896      Set_Depends_On_Private      (T_Sub, Has_Private_Component (T_Sub));
12897
12898      if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12899         Conditional_Delay (T_Sub, Corr_Rec);
12900
12901      else
12902         --  This is a component subtype: it will be frozen in the context of
12903         --  the enclosing record's init_proc, so that discriminant references
12904         --  are resolved to discriminals. (Note: we used to skip freezing
12905         --  altogether in that case, which caused errors downstream for
12906         --  components of a bit packed array type).
12907
12908         Set_Has_Delayed_Freeze (T_Sub);
12909      end if;
12910
12911      return T_Sub;
12912   end Constrain_Corresponding_Record;
12913
12914   -----------------------
12915   -- Constrain_Decimal --
12916   -----------------------
12917
12918   procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12919      T           : constant Entity_Id  := Entity (Subtype_Mark (S));
12920      C           : constant Node_Id    := Constraint (S);
12921      Loc         : constant Source_Ptr := Sloc (C);
12922      Range_Expr  : Node_Id;
12923      Digits_Expr : Node_Id;
12924      Digits_Val  : Uint;
12925      Bound_Val   : Ureal;
12926
12927   begin
12928      Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12929
12930      if Nkind (C) = N_Range_Constraint then
12931         Range_Expr := Range_Expression (C);
12932         Digits_Val := Digits_Value (T);
12933
12934      else
12935         pragma Assert (Nkind (C) = N_Digits_Constraint);
12936
12937         Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12938
12939         Digits_Expr := Digits_Expression (C);
12940         Analyze_And_Resolve (Digits_Expr, Any_Integer);
12941
12942         Check_Digits_Expression (Digits_Expr);
12943         Digits_Val := Expr_Value (Digits_Expr);
12944
12945         if Digits_Val > Digits_Value (T) then
12946            Error_Msg_N
12947               ("digits expression is incompatible with subtype", C);
12948            Digits_Val := Digits_Value (T);
12949         end if;
12950
12951         if Present (Range_Constraint (C)) then
12952            Range_Expr := Range_Expression (Range_Constraint (C));
12953         else
12954            Range_Expr := Empty;
12955         end if;
12956      end if;
12957
12958      Set_Etype            (Def_Id, Base_Type        (T));
12959      Set_Size_Info        (Def_Id,                  (T));
12960      Set_First_Rep_Item   (Def_Id, First_Rep_Item   (T));
12961      Set_Delta_Value      (Def_Id, Delta_Value      (T));
12962      Set_Scale_Value      (Def_Id, Scale_Value      (T));
12963      Set_Small_Value      (Def_Id, Small_Value      (T));
12964      Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12965      Set_Digits_Value     (Def_Id, Digits_Val);
12966
12967      --  Manufacture range from given digits value if no range present
12968
12969      if No (Range_Expr) then
12970         Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12971         Range_Expr :=
12972           Make_Range (Loc,
12973             Low_Bound =>
12974               Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12975             High_Bound =>
12976               Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12977      end if;
12978
12979      Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12980      Set_Discrete_RM_Size (Def_Id);
12981
12982      --  Unconditionally delay the freeze, since we cannot set size
12983      --  information in all cases correctly until the freeze point.
12984
12985      Set_Has_Delayed_Freeze (Def_Id);
12986   end Constrain_Decimal;
12987
12988   ----------------------------------
12989   -- Constrain_Discriminated_Type --
12990   ----------------------------------
12991
12992   procedure Constrain_Discriminated_Type
12993     (Def_Id      : Entity_Id;
12994      S           : Node_Id;
12995      Related_Nod : Node_Id;
12996      For_Access  : Boolean := False)
12997   is
12998      E     : constant Entity_Id := Entity (Subtype_Mark (S));
12999      T     : Entity_Id;
13000      C     : Node_Id;
13001      Elist : Elist_Id := New_Elmt_List;
13002
13003      procedure Fixup_Bad_Constraint;
13004      --  This is called after finding a bad constraint, and after having
13005      --  posted an appropriate error message. The mission is to leave the
13006      --  entity T in as reasonable state as possible.
13007
13008      --------------------------
13009      -- Fixup_Bad_Constraint --
13010      --------------------------
13011
13012      procedure Fixup_Bad_Constraint is
13013      begin
13014         --  Set a reasonable Ekind for the entity. For an incomplete type,
13015         --  we can't do much, but for other types, we can set the proper
13016         --  corresponding subtype kind.
13017
13018         if Ekind (T) = E_Incomplete_Type then
13019            Set_Ekind (Def_Id, Ekind (T));
13020         else
13021            Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13022         end if;
13023
13024         --  Set Etype to the known type, to reduce chances of cascaded errors
13025
13026         Set_Etype (Def_Id, E);
13027         Set_Error_Posted (Def_Id);
13028      end Fixup_Bad_Constraint;
13029
13030   --  Start of processing for Constrain_Discriminated_Type
13031
13032   begin
13033      C := Constraint (S);
13034
13035      --  A discriminant constraint is only allowed in a subtype indication,
13036      --  after a subtype mark. This subtype mark must denote either a type
13037      --  with discriminants, or an access type whose designated type is a
13038      --  type with discriminants. A discriminant constraint specifies the
13039      --  values of these discriminants (RM 3.7.2(5)).
13040
13041      T := Base_Type (Entity (Subtype_Mark (S)));
13042
13043      if Is_Access_Type (T) then
13044         T := Designated_Type (T);
13045      end if;
13046
13047      --  Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13048      --  Avoid generating an error for access-to-incomplete subtypes.
13049
13050      if Ada_Version >= Ada_2005
13051        and then Ekind (T) = E_Incomplete_Type
13052        and then Nkind (Parent (S)) = N_Subtype_Declaration
13053        and then not Is_Itype (Def_Id)
13054      then
13055         --  A little sanity check, emit an error message if the type
13056         --  has discriminants to begin with. Type T may be a regular
13057         --  incomplete type or imported via a limited with clause.
13058
13059         if Has_Discriminants (T)
13060           or else (From_Limited_With (T)
13061                     and then Present (Non_Limited_View (T))
13062                     and then Nkind (Parent (Non_Limited_View (T))) =
13063                                               N_Full_Type_Declaration
13064                     and then Present (Discriminant_Specifications
13065                                         (Parent (Non_Limited_View (T)))))
13066         then
13067            Error_Msg_N
13068              ("(Ada 2005) incomplete subtype may not be constrained", C);
13069         else
13070            Error_Msg_N ("invalid constraint: type has no discriminant", C);
13071         end if;
13072
13073         Fixup_Bad_Constraint;
13074         return;
13075
13076      --  Check that the type has visible discriminants. The type may be
13077      --  a private type with unknown discriminants whose full view has
13078      --  discriminants which are invisible.
13079
13080      elsif not Has_Discriminants (T)
13081        or else
13082          (Has_Unknown_Discriminants (T)
13083             and then Is_Private_Type (T))
13084      then
13085         Error_Msg_N ("invalid constraint: type has no discriminant", C);
13086         Fixup_Bad_Constraint;
13087         return;
13088
13089      elsif Is_Constrained (E)
13090        or else (Ekind (E) = E_Class_Wide_Subtype
13091                  and then Present (Discriminant_Constraint (E)))
13092      then
13093         Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13094         Fixup_Bad_Constraint;
13095         return;
13096      end if;
13097
13098      --  T may be an unconstrained subtype (e.g. a generic actual).
13099      --  Constraint applies to the base type.
13100
13101      T := Base_Type (T);
13102
13103      Elist := Build_Discriminant_Constraints (T, S);
13104
13105      --  If the list returned was empty we had an error in building the
13106      --  discriminant constraint. We have also already signalled an error
13107      --  in the incomplete type case
13108
13109      if Is_Empty_Elmt_List (Elist) then
13110         Fixup_Bad_Constraint;
13111         return;
13112      end if;
13113
13114      Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13115   end Constrain_Discriminated_Type;
13116
13117   ---------------------------
13118   -- Constrain_Enumeration --
13119   ---------------------------
13120
13121   procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13122      T : constant Entity_Id := Entity (Subtype_Mark (S));
13123      C : constant Node_Id   := Constraint (S);
13124
13125   begin
13126      Set_Ekind (Def_Id, E_Enumeration_Subtype);
13127
13128      Set_First_Literal     (Def_Id, First_Literal (Base_Type (T)));
13129
13130      Set_Etype             (Def_Id, Base_Type         (T));
13131      Set_Size_Info         (Def_Id,                   (T));
13132      Set_First_Rep_Item    (Def_Id, First_Rep_Item    (T));
13133      Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13134
13135      Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13136
13137      Set_Discrete_RM_Size (Def_Id);
13138   end Constrain_Enumeration;
13139
13140   ----------------------
13141   -- Constrain_Float --
13142   ----------------------
13143
13144   procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13145      T    : constant Entity_Id := Entity (Subtype_Mark (S));
13146      C    : Node_Id;
13147      D    : Node_Id;
13148      Rais : Node_Id;
13149
13150   begin
13151      Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13152
13153      Set_Etype          (Def_Id, Base_Type      (T));
13154      Set_Size_Info      (Def_Id,                (T));
13155      Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13156
13157      --  Process the constraint
13158
13159      C := Constraint (S);
13160
13161      --  Digits constraint present
13162
13163      if Nkind (C) = N_Digits_Constraint then
13164
13165         Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13166         Check_Restriction (No_Obsolescent_Features, C);
13167
13168         if Warn_On_Obsolescent_Feature then
13169            Error_Msg_N
13170              ("subtype digits constraint is an " &
13171               "obsolescent feature (RM J.3(8))?j?", C);
13172         end if;
13173
13174         D := Digits_Expression (C);
13175         Analyze_And_Resolve (D, Any_Integer);
13176         Check_Digits_Expression (D);
13177         Set_Digits_Value (Def_Id, Expr_Value (D));
13178
13179         --  Check that digits value is in range. Obviously we can do this
13180         --  at compile time, but it is strictly a runtime check, and of
13181         --  course there is an ACVC test that checks this.
13182
13183         if Digits_Value (Def_Id) > Digits_Value (T) then
13184            Error_Msg_Uint_1 := Digits_Value (T);
13185            Error_Msg_N ("??digits value is too large, maximum is ^", D);
13186            Rais :=
13187              Make_Raise_Constraint_Error (Sloc (D),
13188                Reason => CE_Range_Check_Failed);
13189            Insert_Action (Declaration_Node (Def_Id), Rais);
13190         end if;
13191
13192         C := Range_Constraint (C);
13193
13194      --  No digits constraint present
13195
13196      else
13197         Set_Digits_Value (Def_Id, Digits_Value (T));
13198      end if;
13199
13200      --  Range constraint present
13201
13202      if Nkind (C) = N_Range_Constraint then
13203         Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13204
13205      --  No range constraint present
13206
13207      else
13208         pragma Assert (No (C));
13209         Set_Scalar_Range (Def_Id, Scalar_Range (T));
13210      end if;
13211
13212      Set_Is_Constrained (Def_Id);
13213   end Constrain_Float;
13214
13215   ---------------------
13216   -- Constrain_Index --
13217   ---------------------
13218
13219   procedure Constrain_Index
13220     (Index        : Node_Id;
13221      S            : Node_Id;
13222      Related_Nod  : Node_Id;
13223      Related_Id   : Entity_Id;
13224      Suffix       : Character;
13225      Suffix_Index : Nat)
13226   is
13227      Def_Id : Entity_Id;
13228      R      : Node_Id := Empty;
13229      T      : constant Entity_Id := Etype (Index);
13230
13231   begin
13232      Def_Id :=
13233        Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13234      Set_Etype (Def_Id, Base_Type (T));
13235
13236      if Nkind (S) = N_Range
13237        or else
13238          (Nkind (S) = N_Attribute_Reference
13239            and then Attribute_Name (S) = Name_Range)
13240      then
13241         --  A Range attribute will be transformed into N_Range by Resolve
13242
13243         Analyze (S);
13244         Set_Etype (S, T);
13245         R := S;
13246
13247         Process_Range_Expr_In_Decl (R, T);
13248
13249         if not Error_Posted (S)
13250           and then
13251             (Nkind (S) /= N_Range
13252               or else not Covers (T, (Etype (Low_Bound (S))))
13253               or else not Covers (T, (Etype (High_Bound (S)))))
13254         then
13255            if Base_Type (T) /= Any_Type
13256              and then Etype (Low_Bound (S)) /= Any_Type
13257              and then Etype (High_Bound (S)) /= Any_Type
13258            then
13259               Error_Msg_N ("range expected", S);
13260            end if;
13261         end if;
13262
13263      elsif Nkind (S) = N_Subtype_Indication then
13264
13265         --  The parser has verified that this is a discrete indication
13266
13267         Resolve_Discrete_Subtype_Indication (S, T);
13268         Bad_Predicated_Subtype_Use
13269           ("subtype& has predicate, not allowed in index constraint",
13270            S, Entity (Subtype_Mark (S)));
13271
13272         R := Range_Expression (Constraint (S));
13273
13274         --  Capture values of bounds and generate temporaries for them if
13275         --  needed, since checks may cause duplication of the expressions
13276         --  which must not be reevaluated.
13277
13278         --  The forced evaluation removes side effects from expressions, which
13279         --  should occur also in GNATprove mode. Otherwise, we end up with
13280         --  unexpected insertions of actions at places where this is not
13281         --  supposed to occur, e.g. on default parameters of a call.
13282
13283         if Expander_Active or GNATprove_Mode then
13284            Force_Evaluation
13285              (Low_Bound (R),  Related_Id => Def_Id, Is_Low_Bound  => True);
13286            Force_Evaluation
13287              (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13288         end if;
13289
13290      elsif Nkind (S) = N_Discriminant_Association then
13291
13292         --  Syntactically valid in subtype indication
13293
13294         Error_Msg_N ("invalid index constraint", S);
13295         Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13296         return;
13297
13298      --  Subtype_Mark case, no anonymous subtypes to construct
13299
13300      else
13301         Analyze (S);
13302
13303         if Is_Entity_Name (S) then
13304            if not Is_Type (Entity (S)) then
13305               Error_Msg_N ("expect subtype mark for index constraint", S);
13306
13307            elsif Base_Type (Entity (S)) /= Base_Type (T) then
13308               Wrong_Type (S, Base_Type (T));
13309
13310            --  Check error of subtype with predicate in index constraint
13311
13312            else
13313               Bad_Predicated_Subtype_Use
13314                 ("subtype& has predicate, not allowed in index constraint",
13315                  S, Entity (S));
13316            end if;
13317
13318            return;
13319
13320         else
13321            Error_Msg_N ("invalid index constraint", S);
13322            Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13323            return;
13324         end if;
13325      end if;
13326
13327      --  Complete construction of the Itype
13328
13329      if Is_Modular_Integer_Type (T) then
13330         Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13331
13332      elsif Is_Integer_Type (T) then
13333         Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13334
13335      else
13336         Set_Ekind (Def_Id, E_Enumeration_Subtype);
13337         Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13338         Set_First_Literal     (Def_Id, First_Literal (T));
13339      end if;
13340
13341      Set_Size_Info      (Def_Id,                (T));
13342      Set_RM_Size        (Def_Id, RM_Size        (T));
13343      Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13344
13345      Set_Scalar_Range   (Def_Id, R);
13346
13347      Set_Etype (S, Def_Id);
13348      Set_Discrete_RM_Size (Def_Id);
13349   end Constrain_Index;
13350
13351   -----------------------
13352   -- Constrain_Integer --
13353   -----------------------
13354
13355   procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13356      T : constant Entity_Id := Entity (Subtype_Mark (S));
13357      C : constant Node_Id   := Constraint (S);
13358
13359   begin
13360      Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13361
13362      if Is_Modular_Integer_Type (T) then
13363         Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13364      else
13365         Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13366      end if;
13367
13368      Set_Etype            (Def_Id, Base_Type      (T));
13369      Set_Size_Info        (Def_Id,                (T));
13370      Set_First_Rep_Item   (Def_Id, First_Rep_Item (T));
13371      Set_Discrete_RM_Size (Def_Id);
13372   end Constrain_Integer;
13373
13374   ------------------------------
13375   -- Constrain_Ordinary_Fixed --
13376   ------------------------------
13377
13378   procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13379      T    : constant Entity_Id := Entity (Subtype_Mark (S));
13380      C    : Node_Id;
13381      D    : Node_Id;
13382      Rais : Node_Id;
13383
13384   begin
13385      Set_Ekind          (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13386      Set_Etype          (Def_Id, Base_Type      (T));
13387      Set_Size_Info      (Def_Id,                (T));
13388      Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13389      Set_Small_Value    (Def_Id, Small_Value    (T));
13390
13391      --  Process the constraint
13392
13393      C := Constraint (S);
13394
13395      --  Delta constraint present
13396
13397      if Nkind (C) = N_Delta_Constraint then
13398
13399         Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13400         Check_Restriction (No_Obsolescent_Features, C);
13401
13402         if Warn_On_Obsolescent_Feature then
13403            Error_Msg_S
13404              ("subtype delta constraint is an " &
13405               "obsolescent feature (RM J.3(7))?j?");
13406         end if;
13407
13408         D := Delta_Expression (C);
13409         Analyze_And_Resolve (D, Any_Real);
13410         Check_Delta_Expression (D);
13411         Set_Delta_Value (Def_Id, Expr_Value_R (D));
13412
13413         --  Check that delta value is in range. Obviously we can do this
13414         --  at compile time, but it is strictly a runtime check, and of
13415         --  course there is an ACVC test that checks this.
13416
13417         if Delta_Value (Def_Id) < Delta_Value (T) then
13418            Error_Msg_N ("??delta value is too small", D);
13419            Rais :=
13420              Make_Raise_Constraint_Error (Sloc (D),
13421                Reason => CE_Range_Check_Failed);
13422            Insert_Action (Declaration_Node (Def_Id), Rais);
13423         end if;
13424
13425         C := Range_Constraint (C);
13426
13427      --  No delta constraint present
13428
13429      else
13430         Set_Delta_Value (Def_Id, Delta_Value (T));
13431      end if;
13432
13433      --  Range constraint present
13434
13435      if Nkind (C) = N_Range_Constraint then
13436         Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13437
13438      --  No range constraint present
13439
13440      else
13441         pragma Assert (No (C));
13442         Set_Scalar_Range (Def_Id, Scalar_Range (T));
13443      end if;
13444
13445      Set_Discrete_RM_Size (Def_Id);
13446
13447      --  Unconditionally delay the freeze, since we cannot set size
13448      --  information in all cases correctly until the freeze point.
13449
13450      Set_Has_Delayed_Freeze (Def_Id);
13451   end Constrain_Ordinary_Fixed;
13452
13453   -----------------------
13454   -- Contain_Interface --
13455   -----------------------
13456
13457   function Contain_Interface
13458     (Iface  : Entity_Id;
13459      Ifaces : Elist_Id) return Boolean
13460   is
13461      Iface_Elmt : Elmt_Id;
13462
13463   begin
13464      if Present (Ifaces) then
13465         Iface_Elmt := First_Elmt (Ifaces);
13466         while Present (Iface_Elmt) loop
13467            if Node (Iface_Elmt) = Iface then
13468               return True;
13469            end if;
13470
13471            Next_Elmt (Iface_Elmt);
13472         end loop;
13473      end if;
13474
13475      return False;
13476   end Contain_Interface;
13477
13478   ---------------------------
13479   -- Convert_Scalar_Bounds --
13480   ---------------------------
13481
13482   procedure Convert_Scalar_Bounds
13483     (N            : Node_Id;
13484      Parent_Type  : Entity_Id;
13485      Derived_Type : Entity_Id;
13486      Loc          : Source_Ptr)
13487   is
13488      Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13489
13490      Lo  : Node_Id;
13491      Hi  : Node_Id;
13492      Rng : Node_Id;
13493
13494   begin
13495      --  Defend against previous errors
13496
13497      if No (Scalar_Range (Derived_Type)) then
13498         Check_Error_Detected;
13499         return;
13500      end if;
13501
13502      Lo := Build_Scalar_Bound
13503              (Type_Low_Bound (Derived_Type),
13504               Parent_Type, Implicit_Base);
13505
13506      Hi := Build_Scalar_Bound
13507              (Type_High_Bound (Derived_Type),
13508               Parent_Type, Implicit_Base);
13509
13510      Rng :=
13511        Make_Range (Loc,
13512          Low_Bound  => Lo,
13513          High_Bound => Hi);
13514
13515      Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13516
13517      Set_Parent (Rng, N);
13518      Set_Scalar_Range (Derived_Type, Rng);
13519
13520      --  Analyze the bounds
13521
13522      Analyze_And_Resolve (Lo, Implicit_Base);
13523      Analyze_And_Resolve (Hi, Implicit_Base);
13524
13525      --  Analyze the range itself, except that we do not analyze it if
13526      --  the bounds are real literals, and we have a fixed-point type.
13527      --  The reason for this is that we delay setting the bounds in this
13528      --  case till we know the final Small and Size values (see circuit
13529      --  in Freeze.Freeze_Fixed_Point_Type for further details).
13530
13531      if Is_Fixed_Point_Type (Parent_Type)
13532        and then Nkind (Lo) = N_Real_Literal
13533        and then Nkind (Hi) = N_Real_Literal
13534      then
13535         return;
13536
13537      --  Here we do the analysis of the range
13538
13539      --  Note: we do this manually, since if we do a normal Analyze and
13540      --  Resolve call, there are problems with the conversions used for
13541      --  the derived type range.
13542
13543      else
13544         Set_Etype    (Rng, Implicit_Base);
13545         Set_Analyzed (Rng, True);
13546      end if;
13547   end Convert_Scalar_Bounds;
13548
13549   -------------------
13550   -- Copy_And_Swap --
13551   -------------------
13552
13553   procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13554   begin
13555      --  Initialize new full declaration entity by copying the pertinent
13556      --  fields of the corresponding private declaration entity.
13557
13558      --  We temporarily set Ekind to a value appropriate for a type to
13559      --  avoid assert failures in Einfo from checking for setting type
13560      --  attributes on something that is not a type. Ekind (Priv) is an
13561      --  appropriate choice, since it allowed the attributes to be set
13562      --  in the first place. This Ekind value will be modified later.
13563
13564      Set_Ekind (Full, Ekind (Priv));
13565
13566      --  Also set Etype temporarily to Any_Type, again, in the absence
13567      --  of errors, it will be properly reset, and if there are errors,
13568      --  then we want a value of Any_Type to remain.
13569
13570      Set_Etype (Full, Any_Type);
13571
13572      --  Now start copying attributes
13573
13574      Set_Has_Discriminants          (Full, Has_Discriminants       (Priv));
13575
13576      if Has_Discriminants (Full) then
13577         Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13578         Set_Stored_Constraint       (Full, Stored_Constraint       (Priv));
13579      end if;
13580
13581      Set_First_Rep_Item             (Full, First_Rep_Item          (Priv));
13582      Set_Homonym                    (Full, Homonym                 (Priv));
13583      Set_Is_Immediately_Visible     (Full, Is_Immediately_Visible  (Priv));
13584      Set_Is_Public                  (Full, Is_Public               (Priv));
13585      Set_Is_Pure                    (Full, Is_Pure                 (Priv));
13586      Set_Is_Tagged_Type             (Full, Is_Tagged_Type          (Priv));
13587      Set_Has_Pragma_Unmodified      (Full, Has_Pragma_Unmodified   (Priv));
13588      Set_Has_Pragma_Unreferenced    (Full, Has_Pragma_Unreferenced (Priv));
13589      Set_Has_Pragma_Unreferenced_Objects
13590                                     (Full, Has_Pragma_Unreferenced_Objects
13591                                                                    (Priv));
13592
13593      Conditional_Delay              (Full,                          Priv);
13594
13595      if Is_Tagged_Type (Full) then
13596         Set_Direct_Primitive_Operations
13597           (Full, Direct_Primitive_Operations (Priv));
13598         Set_No_Tagged_Streams_Pragma
13599           (Full, No_Tagged_Streams_Pragma (Priv));
13600
13601         if Is_Base_Type (Priv) then
13602            Set_Class_Wide_Type      (Full, Class_Wide_Type         (Priv));
13603         end if;
13604      end if;
13605
13606      Set_Is_Volatile                (Full, Is_Volatile             (Priv));
13607      Set_Treat_As_Volatile          (Full, Treat_As_Volatile       (Priv));
13608      Set_Scope                      (Full, Scope                   (Priv));
13609      Set_Next_Entity                (Full, Next_Entity             (Priv));
13610      Set_First_Entity               (Full, First_Entity            (Priv));
13611      Set_Last_Entity                (Full, Last_Entity             (Priv));
13612
13613      --  If access types have been recorded for later handling, keep them in
13614      --  the full view so that they get handled when the full view freeze
13615      --  node is expanded.
13616
13617      if Present (Freeze_Node (Priv))
13618        and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13619      then
13620         Ensure_Freeze_Node (Full);
13621         Set_Access_Types_To_Process
13622           (Freeze_Node (Full),
13623            Access_Types_To_Process (Freeze_Node (Priv)));
13624      end if;
13625
13626      --  Swap the two entities. Now Private is the full type entity and Full
13627      --  is the private one. They will be swapped back at the end of the
13628      --  private part. This swapping ensures that the entity that is visible
13629      --  in the private part is the full declaration.
13630
13631      Exchange_Entities (Priv, Full);
13632      Append_Entity (Full, Scope (Full));
13633   end Copy_And_Swap;
13634
13635   -------------------------------------
13636   -- Copy_Array_Base_Type_Attributes --
13637   -------------------------------------
13638
13639   procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13640   begin
13641      Set_Component_Alignment      (T1, Component_Alignment      (T2));
13642      Set_Component_Type           (T1, Component_Type           (T2));
13643      Set_Component_Size           (T1, Component_Size           (T2));
13644      Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13645      Set_Has_Non_Standard_Rep     (T1, Has_Non_Standard_Rep     (T2));
13646      Set_Has_Protected            (T1, Has_Protected            (T2));
13647      Set_Has_Task                 (T1, Has_Task                 (T2));
13648      Set_Is_Packed                (T1, Is_Packed                (T2));
13649      Set_Has_Aliased_Components   (T1, Has_Aliased_Components   (T2));
13650      Set_Has_Atomic_Components    (T1, Has_Atomic_Components    (T2));
13651      Set_Has_Volatile_Components  (T1, Has_Volatile_Components  (T2));
13652   end Copy_Array_Base_Type_Attributes;
13653
13654   -----------------------------------
13655   -- Copy_Array_Subtype_Attributes --
13656   -----------------------------------
13657
13658   procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13659   begin
13660      Set_Size_Info (T1, T2);
13661
13662      Set_First_Index            (T1, First_Index            (T2));
13663      Set_Is_Aliased             (T1, Is_Aliased             (T2));
13664      Set_Is_Volatile            (T1, Is_Volatile            (T2));
13665      Set_Treat_As_Volatile      (T1, Treat_As_Volatile      (T2));
13666      Set_Is_Constrained         (T1, Is_Constrained         (T2));
13667      Set_Depends_On_Private     (T1, Has_Private_Component  (T2));
13668      Inherit_Rep_Item_Chain     (T1,                         T2);
13669      Set_Convention             (T1, Convention             (T2));
13670      Set_Is_Limited_Composite   (T1, Is_Limited_Composite   (T2));
13671      Set_Is_Private_Composite   (T1, Is_Private_Composite   (T2));
13672      Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13673   end Copy_Array_Subtype_Attributes;
13674
13675   -----------------------------------
13676   -- Create_Constrained_Components --
13677   -----------------------------------
13678
13679   procedure Create_Constrained_Components
13680     (Subt        : Entity_Id;
13681      Decl_Node   : Node_Id;
13682      Typ         : Entity_Id;
13683      Constraints : Elist_Id)
13684   is
13685      Loc         : constant Source_Ptr := Sloc (Subt);
13686      Comp_List   : constant Elist_Id   := New_Elmt_List;
13687      Parent_Type : constant Entity_Id  := Etype (Typ);
13688      Assoc_List  : constant List_Id    := New_List;
13689      Discr_Val   : Elmt_Id;
13690      Errors      : Boolean;
13691      New_C       : Entity_Id;
13692      Old_C       : Entity_Id;
13693      Is_Static   : Boolean := True;
13694
13695      procedure Collect_Fixed_Components (Typ : Entity_Id);
13696      --  Collect parent type components that do not appear in a variant part
13697
13698      procedure Create_All_Components;
13699      --  Iterate over Comp_List to create the components of the subtype
13700
13701      function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13702      --  Creates a new component from Old_Compon, copying all the fields from
13703      --  it, including its Etype, inserts the new component in the Subt entity
13704      --  chain and returns the new component.
13705
13706      function Is_Variant_Record (T : Entity_Id) return Boolean;
13707      --  If true, and discriminants are static, collect only components from
13708      --  variants selected by discriminant values.
13709
13710      ------------------------------
13711      -- Collect_Fixed_Components --
13712      ------------------------------
13713
13714      procedure Collect_Fixed_Components (Typ : Entity_Id) is
13715      begin
13716      --  Build association list for discriminants, and find components of the
13717      --  variant part selected by the values of the discriminants.
13718
13719         Old_C := First_Discriminant (Typ);
13720         Discr_Val := First_Elmt (Constraints);
13721         while Present (Old_C) loop
13722            Append_To (Assoc_List,
13723              Make_Component_Association (Loc,
13724                 Choices    => New_List (New_Occurrence_Of (Old_C, Loc)),
13725                 Expression => New_Copy (Node (Discr_Val))));
13726
13727            Next_Elmt (Discr_Val);
13728            Next_Discriminant (Old_C);
13729         end loop;
13730
13731         --  The tag and the possible parent component are unconditionally in
13732         --  the subtype.
13733
13734         if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13735            Old_C := First_Component (Typ);
13736            while Present (Old_C) loop
13737               if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13738                  Append_Elmt (Old_C, Comp_List);
13739               end if;
13740
13741               Next_Component (Old_C);
13742            end loop;
13743         end if;
13744      end Collect_Fixed_Components;
13745
13746      ---------------------------
13747      -- Create_All_Components --
13748      ---------------------------
13749
13750      procedure Create_All_Components is
13751         Comp : Elmt_Id;
13752
13753      begin
13754         Comp := First_Elmt (Comp_List);
13755         while Present (Comp) loop
13756            Old_C := Node (Comp);
13757            New_C := Create_Component (Old_C);
13758
13759            Set_Etype
13760              (New_C,
13761               Constrain_Component_Type
13762                 (Old_C, Subt, Decl_Node, Typ, Constraints));
13763            Set_Is_Public (New_C, Is_Public (Subt));
13764
13765            Next_Elmt (Comp);
13766         end loop;
13767      end Create_All_Components;
13768
13769      ----------------------
13770      -- Create_Component --
13771      ----------------------
13772
13773      function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13774         New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13775
13776      begin
13777         if Ekind (Old_Compon) = E_Discriminant
13778           and then Is_Completely_Hidden (Old_Compon)
13779         then
13780            --  This is a shadow discriminant created for a discriminant of
13781            --  the parent type, which needs to be present in the subtype.
13782            --  Give the shadow discriminant an internal name that cannot
13783            --  conflict with that of visible components.
13784
13785            Set_Chars (New_Compon, New_Internal_Name ('C'));
13786         end if;
13787
13788         --  Set the parent so we have a proper link for freezing etc. This is
13789         --  not a real parent pointer, since of course our parent does not own
13790         --  up to us and reference us, we are an illegitimate child of the
13791         --  original parent.
13792
13793         Set_Parent (New_Compon, Parent (Old_Compon));
13794
13795         --  If the old component's Esize was already determined and is a
13796         --  static value, then the new component simply inherits it. Otherwise
13797         --  the old component's size may require run-time determination, but
13798         --  the new component's size still might be statically determinable
13799         --  (if, for example it has a static constraint). In that case we want
13800         --  Layout_Type to recompute the component's size, so we reset its
13801         --  size and positional fields.
13802
13803         if Frontend_Layout_On_Target
13804           and then not Known_Static_Esize (Old_Compon)
13805         then
13806            Set_Esize (New_Compon, Uint_0);
13807            Init_Normalized_First_Bit    (New_Compon);
13808            Init_Normalized_Position     (New_Compon);
13809            Init_Normalized_Position_Max (New_Compon);
13810         end if;
13811
13812         --  We do not want this node marked as Comes_From_Source, since
13813         --  otherwise it would get first class status and a separate cross-
13814         --  reference line would be generated. Illegitimate children do not
13815         --  rate such recognition.
13816
13817         Set_Comes_From_Source (New_Compon, False);
13818
13819         --  But it is a real entity, and a birth certificate must be properly
13820         --  registered by entering it into the entity list.
13821
13822         Enter_Name (New_Compon);
13823
13824         return New_Compon;
13825      end Create_Component;
13826
13827      -----------------------
13828      -- Is_Variant_Record --
13829      -----------------------
13830
13831      function Is_Variant_Record (T : Entity_Id) return Boolean is
13832      begin
13833         return Nkind (Parent (T)) = N_Full_Type_Declaration
13834           and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13835           and then Present (Component_List (Type_Definition (Parent (T))))
13836           and then
13837             Present
13838               (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13839      end Is_Variant_Record;
13840
13841   --  Start of processing for Create_Constrained_Components
13842
13843   begin
13844      pragma Assert (Subt /= Base_Type (Subt));
13845      pragma Assert (Typ = Base_Type (Typ));
13846
13847      Set_First_Entity (Subt, Empty);
13848      Set_Last_Entity  (Subt, Empty);
13849
13850      --  Check whether constraint is fully static, in which case we can
13851      --  optimize the list of components.
13852
13853      Discr_Val := First_Elmt (Constraints);
13854      while Present (Discr_Val) loop
13855         if not Is_OK_Static_Expression (Node (Discr_Val)) then
13856            Is_Static := False;
13857            exit;
13858         end if;
13859
13860         Next_Elmt (Discr_Val);
13861      end loop;
13862
13863      Set_Has_Static_Discriminants (Subt, Is_Static);
13864
13865      Push_Scope (Subt);
13866
13867      --  Inherit the discriminants of the parent type
13868
13869      Add_Discriminants : declare
13870         Num_Disc : Int;
13871         Num_Gird : Int;
13872
13873      begin
13874         Num_Disc := 0;
13875         Old_C := First_Discriminant (Typ);
13876
13877         while Present (Old_C) loop
13878            Num_Disc := Num_Disc + 1;
13879            New_C := Create_Component (Old_C);
13880            Set_Is_Public (New_C, Is_Public (Subt));
13881            Next_Discriminant (Old_C);
13882         end loop;
13883
13884         --  For an untagged derived subtype, the number of discriminants may
13885         --  be smaller than the number of inherited discriminants, because
13886         --  several of them may be renamed by a single new discriminant or
13887         --  constrained. In this case, add the hidden discriminants back into
13888         --  the subtype, because they need to be present if the optimizer of
13889         --  the GCC 4.x back-end decides to break apart assignments between
13890         --  objects using the parent view into member-wise assignments.
13891
13892         Num_Gird := 0;
13893
13894         if Is_Derived_Type (Typ)
13895           and then not Is_Tagged_Type (Typ)
13896         then
13897            Old_C := First_Stored_Discriminant (Typ);
13898
13899            while Present (Old_C) loop
13900               Num_Gird := Num_Gird + 1;
13901               Next_Stored_Discriminant (Old_C);
13902            end loop;
13903         end if;
13904
13905         if Num_Gird > Num_Disc then
13906
13907            --  Find out multiple uses of new discriminants, and add hidden
13908            --  components for the extra renamed discriminants. We recognize
13909            --  multiple uses through the Corresponding_Discriminant of a
13910            --  new discriminant: if it constrains several old discriminants,
13911            --  this field points to the last one in the parent type. The
13912            --  stored discriminants of the derived type have the same name
13913            --  as those of the parent.
13914
13915            declare
13916               Constr    : Elmt_Id;
13917               New_Discr : Entity_Id;
13918               Old_Discr : Entity_Id;
13919
13920            begin
13921               Constr    := First_Elmt (Stored_Constraint (Typ));
13922               Old_Discr := First_Stored_Discriminant (Typ);
13923               while Present (Constr) loop
13924                  if Is_Entity_Name (Node (Constr))
13925                    and then Ekind (Entity (Node (Constr))) = E_Discriminant
13926                  then
13927                     New_Discr := Entity (Node (Constr));
13928
13929                     if Chars (Corresponding_Discriminant (New_Discr)) /=
13930                        Chars (Old_Discr)
13931                     then
13932                        --  The new discriminant has been used to rename a
13933                        --  subsequent old discriminant. Introduce a shadow
13934                        --  component for the current old discriminant.
13935
13936                        New_C := Create_Component (Old_Discr);
13937                        Set_Original_Record_Component (New_C, Old_Discr);
13938                     end if;
13939
13940                  else
13941                     --  The constraint has eliminated the old discriminant.
13942                     --  Introduce a shadow component.
13943
13944                     New_C := Create_Component (Old_Discr);
13945                     Set_Original_Record_Component (New_C, Old_Discr);
13946                  end if;
13947
13948                  Next_Elmt (Constr);
13949                  Next_Stored_Discriminant (Old_Discr);
13950               end loop;
13951            end;
13952         end if;
13953      end Add_Discriminants;
13954
13955      if Is_Static
13956        and then Is_Variant_Record (Typ)
13957      then
13958         Collect_Fixed_Components (Typ);
13959
13960         Gather_Components (
13961           Typ,
13962           Component_List (Type_Definition (Parent (Typ))),
13963           Governed_By   => Assoc_List,
13964           Into          => Comp_List,
13965           Report_Errors => Errors);
13966         pragma Assert (not Errors);
13967
13968         Create_All_Components;
13969
13970      --  If the subtype declaration is created for a tagged type derivation
13971      --  with constraints, we retrieve the record definition of the parent
13972      --  type to select the components of the proper variant.
13973
13974      elsif Is_Static
13975        and then Is_Tagged_Type (Typ)
13976        and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13977        and then
13978          Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13979        and then Is_Variant_Record (Parent_Type)
13980      then
13981         Collect_Fixed_Components (Typ);
13982
13983         Gather_Components
13984           (Typ,
13985            Component_List (Type_Definition (Parent (Parent_Type))),
13986            Governed_By   => Assoc_List,
13987            Into          => Comp_List,
13988            Report_Errors => Errors);
13989
13990         --  Note: previously there was a check at this point that no errors
13991         --  were detected. As a consequence of AI05-220 there may be an error
13992         --  if an inherited discriminant that controls a variant has a non-
13993         --  static constraint.
13994
13995         --  If the tagged derivation has a type extension, collect all the
13996         --  new components therein.
13997
13998         if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
13999         then
14000            Old_C := First_Component (Typ);
14001            while Present (Old_C) loop
14002               if Original_Record_Component (Old_C) = Old_C
14003                 and then Chars (Old_C) /= Name_uTag
14004                 and then Chars (Old_C) /= Name_uParent
14005               then
14006                  Append_Elmt (Old_C, Comp_List);
14007               end if;
14008
14009               Next_Component (Old_C);
14010            end loop;
14011         end if;
14012
14013         Create_All_Components;
14014
14015      else
14016         --  If discriminants are not static, or if this is a multi-level type
14017         --  extension, we have to include all components of the parent type.
14018
14019         Old_C := First_Component (Typ);
14020         while Present (Old_C) loop
14021            New_C := Create_Component (Old_C);
14022
14023            Set_Etype
14024              (New_C,
14025               Constrain_Component_Type
14026                 (Old_C, Subt, Decl_Node, Typ, Constraints));
14027            Set_Is_Public (New_C, Is_Public (Subt));
14028
14029            Next_Component (Old_C);
14030         end loop;
14031      end if;
14032
14033      End_Scope;
14034   end Create_Constrained_Components;
14035
14036   ------------------------------------------
14037   -- Decimal_Fixed_Point_Type_Declaration --
14038   ------------------------------------------
14039
14040   procedure Decimal_Fixed_Point_Type_Declaration
14041     (T   : Entity_Id;
14042      Def : Node_Id)
14043   is
14044      Loc           : constant Source_Ptr := Sloc (Def);
14045      Digs_Expr     : constant Node_Id    := Digits_Expression (Def);
14046      Delta_Expr    : constant Node_Id    := Delta_Expression (Def);
14047      Implicit_Base : Entity_Id;
14048      Digs_Val      : Uint;
14049      Delta_Val     : Ureal;
14050      Scale_Val     : Uint;
14051      Bound_Val     : Ureal;
14052
14053   begin
14054      Check_SPARK_05_Restriction
14055        ("decimal fixed point type is not allowed", Def);
14056      Check_Restriction (No_Fixed_Point, Def);
14057
14058      --  Create implicit base type
14059
14060      Implicit_Base :=
14061        Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14062      Set_Etype (Implicit_Base, Implicit_Base);
14063
14064      --  Analyze and process delta expression
14065
14066      Analyze_And_Resolve (Delta_Expr, Universal_Real);
14067
14068      Check_Delta_Expression (Delta_Expr);
14069      Delta_Val := Expr_Value_R (Delta_Expr);
14070
14071      --  Check delta is power of 10, and determine scale value from it
14072
14073      declare
14074         Val : Ureal;
14075
14076      begin
14077         Scale_Val := Uint_0;
14078         Val := Delta_Val;
14079
14080         if Val < Ureal_1 then
14081            while Val < Ureal_1 loop
14082               Val := Val * Ureal_10;
14083               Scale_Val := Scale_Val + 1;
14084            end loop;
14085
14086            if Scale_Val > 18 then
14087               Error_Msg_N ("scale exceeds maximum value of 18", Def);
14088               Scale_Val := UI_From_Int (+18);
14089            end if;
14090
14091         else
14092            while Val > Ureal_1 loop
14093               Val := Val / Ureal_10;
14094               Scale_Val := Scale_Val - 1;
14095            end loop;
14096
14097            if Scale_Val < -18 then
14098               Error_Msg_N ("scale is less than minimum value of -18", Def);
14099               Scale_Val := UI_From_Int (-18);
14100            end if;
14101         end if;
14102
14103         if Val /= Ureal_1 then
14104            Error_Msg_N ("delta expression must be a power of 10", Def);
14105            Delta_Val := Ureal_10 ** (-Scale_Val);
14106         end if;
14107      end;
14108
14109      --  Set delta, scale and small (small = delta for decimal type)
14110
14111      Set_Delta_Value (Implicit_Base, Delta_Val);
14112      Set_Scale_Value (Implicit_Base, Scale_Val);
14113      Set_Small_Value (Implicit_Base, Delta_Val);
14114
14115      --  Analyze and process digits expression
14116
14117      Analyze_And_Resolve (Digs_Expr, Any_Integer);
14118      Check_Digits_Expression (Digs_Expr);
14119      Digs_Val := Expr_Value (Digs_Expr);
14120
14121      if Digs_Val > 18 then
14122         Digs_Val := UI_From_Int (+18);
14123         Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14124      end if;
14125
14126      Set_Digits_Value (Implicit_Base, Digs_Val);
14127      Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14128
14129      --  Set range of base type from digits value for now. This will be
14130      --  expanded to represent the true underlying base range by Freeze.
14131
14132      Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14133
14134      --  Note: We leave size as zero for now, size will be set at freeze
14135      --  time. We have to do this for ordinary fixed-point, because the size
14136      --  depends on the specified small, and we might as well do the same for
14137      --  decimal fixed-point.
14138
14139      pragma Assert (Esize (Implicit_Base) = Uint_0);
14140
14141      --  If there are bounds given in the declaration use them as the
14142      --  bounds of the first named subtype.
14143
14144      if Present (Real_Range_Specification (Def)) then
14145         declare
14146            RRS      : constant Node_Id := Real_Range_Specification (Def);
14147            Low      : constant Node_Id := Low_Bound (RRS);
14148            High     : constant Node_Id := High_Bound (RRS);
14149            Low_Val  : Ureal;
14150            High_Val : Ureal;
14151
14152         begin
14153            Analyze_And_Resolve (Low, Any_Real);
14154            Analyze_And_Resolve (High, Any_Real);
14155            Check_Real_Bound (Low);
14156            Check_Real_Bound (High);
14157            Low_Val := Expr_Value_R (Low);
14158            High_Val := Expr_Value_R (High);
14159
14160            if Low_Val < (-Bound_Val) then
14161               Error_Msg_N
14162                 ("range low bound too small for digits value", Low);
14163               Low_Val := -Bound_Val;
14164            end if;
14165
14166            if High_Val > Bound_Val then
14167               Error_Msg_N
14168                 ("range high bound too large for digits value", High);
14169               High_Val := Bound_Val;
14170            end if;
14171
14172            Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14173         end;
14174
14175      --  If no explicit range, use range that corresponds to given
14176      --  digits value. This will end up as the final range for the
14177      --  first subtype.
14178
14179      else
14180         Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14181      end if;
14182
14183      --  Complete entity for first subtype. The inheritance of the rep item
14184      --  chain ensures that SPARK-related pragmas are not clobbered when the
14185      --  decimal fixed point type acts as a full view of a private type.
14186
14187      Set_Ekind              (T, E_Decimal_Fixed_Point_Subtype);
14188      Set_Etype              (T, Implicit_Base);
14189      Set_Size_Info          (T, Implicit_Base);
14190      Inherit_Rep_Item_Chain (T, Implicit_Base);
14191      Set_Digits_Value       (T, Digs_Val);
14192      Set_Delta_Value        (T, Delta_Val);
14193      Set_Small_Value        (T, Delta_Val);
14194      Set_Scale_Value        (T, Scale_Val);
14195      Set_Is_Constrained     (T);
14196   end Decimal_Fixed_Point_Type_Declaration;
14197
14198   -----------------------------------
14199   -- Derive_Progenitor_Subprograms --
14200   -----------------------------------
14201
14202   procedure Derive_Progenitor_Subprograms
14203     (Parent_Type : Entity_Id;
14204      Tagged_Type : Entity_Id)
14205   is
14206      E          : Entity_Id;
14207      Elmt       : Elmt_Id;
14208      Iface      : Entity_Id;
14209      Iface_Elmt : Elmt_Id;
14210      Iface_Subp : Entity_Id;
14211      New_Subp   : Entity_Id := Empty;
14212      Prim_Elmt  : Elmt_Id;
14213      Subp       : Entity_Id;
14214      Typ        : Entity_Id;
14215
14216   begin
14217      pragma Assert (Ada_Version >= Ada_2005
14218        and then Is_Record_Type (Tagged_Type)
14219        and then Is_Tagged_Type (Tagged_Type)
14220        and then Has_Interfaces (Tagged_Type));
14221
14222      --  Step 1: Transfer to the full-view primitives associated with the
14223      --  partial-view that cover interface primitives. Conceptually this
14224      --  work should be done later by Process_Full_View; done here to
14225      --  simplify its implementation at later stages. It can be safely
14226      --  done here because interfaces must be visible in the partial and
14227      --  private view (RM 7.3(7.3/2)).
14228
14229      --  Small optimization: This work is only required if the parent may
14230      --  have entities whose Alias attribute reference an interface primitive.
14231      --  Such a situation may occur if the parent is an abstract type and the
14232      --  primitive has not been yet overridden or if the parent is a generic
14233      --  formal type covering interfaces.
14234
14235      --  If the tagged type is not abstract, it cannot have abstract
14236      --  primitives (the only entities in the list of primitives of
14237      --  non-abstract tagged types that can reference abstract primitives
14238      --  through its Alias attribute are the internal entities that have
14239      --  attribute Interface_Alias, and these entities are generated later
14240      --  by Add_Internal_Interface_Entities).
14241
14242      if In_Private_Part (Current_Scope)
14243        and then (Is_Abstract_Type (Parent_Type)
14244                    or else
14245                  Is_Generic_Type  (Parent_Type))
14246      then
14247         Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14248         while Present (Elmt) loop
14249            Subp := Node (Elmt);
14250
14251            --  At this stage it is not possible to have entities in the list
14252            --  of primitives that have attribute Interface_Alias.
14253
14254            pragma Assert (No (Interface_Alias (Subp)));
14255
14256            Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14257
14258            if Is_Interface (Typ) then
14259               E := Find_Primitive_Covering_Interface
14260                      (Tagged_Type => Tagged_Type,
14261                       Iface_Prim  => Subp);
14262
14263               if Present (E)
14264                 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14265               then
14266                  Replace_Elmt (Elmt, E);
14267                  Remove_Homonym (Subp);
14268               end if;
14269            end if;
14270
14271            Next_Elmt (Elmt);
14272         end loop;
14273      end if;
14274
14275      --  Step 2: Add primitives of progenitors that are not implemented by
14276      --  parents of Tagged_Type.
14277
14278      if Present (Interfaces (Base_Type (Tagged_Type))) then
14279         Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14280         while Present (Iface_Elmt) loop
14281            Iface := Node (Iface_Elmt);
14282
14283            Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14284            while Present (Prim_Elmt) loop
14285               Iface_Subp := Node (Prim_Elmt);
14286
14287               --  Exclude derivation of predefined primitives except those
14288               --  that come from source, or are inherited from one that comes
14289               --  from source. Required to catch declarations of equality
14290               --  operators of interfaces. For example:
14291
14292               --     type Iface is interface;
14293               --     function "=" (Left, Right : Iface) return Boolean;
14294
14295               if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14296                 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14297               then
14298                  E := Find_Primitive_Covering_Interface
14299                         (Tagged_Type => Tagged_Type,
14300                          Iface_Prim  => Iface_Subp);
14301
14302                  --  If not found we derive a new primitive leaving its alias
14303                  --  attribute referencing the interface primitive.
14304
14305                  if No (E) then
14306                     Derive_Subprogram
14307                       (New_Subp, Iface_Subp, Tagged_Type, Iface);
14308
14309                  --  Ada 2012 (AI05-0197): If the covering primitive's name
14310                  --  differs from the name of the interface primitive then it
14311                  --  is a private primitive inherited from a parent type. In
14312                  --  such case, given that Tagged_Type covers the interface,
14313                  --  the inherited private primitive becomes visible. For such
14314                  --  purpose we add a new entity that renames the inherited
14315                  --  private primitive.
14316
14317                  elsif Chars (E) /= Chars (Iface_Subp) then
14318                     pragma Assert (Has_Suffix (E, 'P'));
14319                     Derive_Subprogram
14320                       (New_Subp, Iface_Subp, Tagged_Type, Iface);
14321                     Set_Alias (New_Subp, E);
14322                     Set_Is_Abstract_Subprogram (New_Subp,
14323                       Is_Abstract_Subprogram (E));
14324
14325                  --  Propagate to the full view interface entities associated
14326                  --  with the partial view.
14327
14328                  elsif In_Private_Part (Current_Scope)
14329                    and then Present (Alias (E))
14330                    and then Alias (E) = Iface_Subp
14331                    and then
14332                      List_Containing (Parent (E)) /=
14333                        Private_Declarations
14334                          (Specification
14335                            (Unit_Declaration_Node (Current_Scope)))
14336                  then
14337                     Append_Elmt (E, Primitive_Operations (Tagged_Type));
14338                  end if;
14339               end if;
14340
14341               Next_Elmt (Prim_Elmt);
14342            end loop;
14343
14344            Next_Elmt (Iface_Elmt);
14345         end loop;
14346      end if;
14347   end Derive_Progenitor_Subprograms;
14348
14349   -----------------------
14350   -- Derive_Subprogram --
14351   -----------------------
14352
14353   procedure Derive_Subprogram
14354     (New_Subp     : in out Entity_Id;
14355      Parent_Subp  : Entity_Id;
14356      Derived_Type : Entity_Id;
14357      Parent_Type  : Entity_Id;
14358      Actual_Subp  : Entity_Id := Empty)
14359   is
14360      Formal : Entity_Id;
14361      --  Formal parameter of parent primitive operation
14362
14363      Formal_Of_Actual : Entity_Id;
14364      --  Formal parameter of actual operation, when the derivation is to
14365      --  create a renaming for a primitive operation of an actual in an
14366      --  instantiation.
14367
14368      New_Formal : Entity_Id;
14369      --  Formal of inherited operation
14370
14371      Visible_Subp : Entity_Id := Parent_Subp;
14372
14373      function Is_Private_Overriding return Boolean;
14374      --  If Subp is a private overriding of a visible operation, the inherited
14375      --  operation derives from the overridden op (even though its body is the
14376      --  overriding one) and the inherited operation is visible now. See
14377      --  sem_disp to see the full details of the handling of the overridden
14378      --  subprogram, which is removed from the list of primitive operations of
14379      --  the type. The overridden subprogram is saved locally in Visible_Subp,
14380      --  and used to diagnose abstract operations that need overriding in the
14381      --  derived type.
14382
14383      procedure Replace_Type (Id, New_Id : Entity_Id);
14384      --  When the type is an anonymous access type, create a new access type
14385      --  designating the derived type.
14386
14387      procedure Set_Derived_Name;
14388      --  This procedure sets the appropriate Chars name for New_Subp. This
14389      --  is normally just a copy of the parent name. An exception arises for
14390      --  type support subprograms, where the name is changed to reflect the
14391      --  name of the derived type, e.g. if type foo is derived from type bar,
14392      --  then a procedure barDA is derived with a name fooDA.
14393
14394      ---------------------------
14395      -- Is_Private_Overriding --
14396      ---------------------------
14397
14398      function Is_Private_Overriding return Boolean is
14399         Prev : Entity_Id;
14400
14401      begin
14402         --  If the parent is not a dispatching operation there is no
14403         --  need to investigate overridings
14404
14405         if not Is_Dispatching_Operation (Parent_Subp) then
14406            return False;
14407         end if;
14408
14409         --  The visible operation that is overridden is a homonym of the
14410         --  parent subprogram. We scan the homonym chain to find the one
14411         --  whose alias is the subprogram we are deriving.
14412
14413         Prev := Current_Entity (Parent_Subp);
14414         while Present (Prev) loop
14415            if Ekind (Prev) = Ekind (Parent_Subp)
14416              and then Alias (Prev) = Parent_Subp
14417              and then Scope (Parent_Subp) = Scope (Prev)
14418              and then not Is_Hidden (Prev)
14419            then
14420               Visible_Subp := Prev;
14421               return True;
14422            end if;
14423
14424            Prev := Homonym (Prev);
14425         end loop;
14426
14427         return False;
14428      end Is_Private_Overriding;
14429
14430      ------------------
14431      -- Replace_Type --
14432      ------------------
14433
14434      procedure Replace_Type (Id, New_Id : Entity_Id) is
14435         Id_Type  : constant Entity_Id := Etype (Id);
14436         Acc_Type : Entity_Id;
14437         Par      : constant Node_Id := Parent (Derived_Type);
14438
14439      begin
14440         --  When the type is an anonymous access type, create a new access
14441         --  type designating the derived type. This itype must be elaborated
14442         --  at the point of the derivation, not on subsequent calls that may
14443         --  be out of the proper scope for Gigi, so we insert a reference to
14444         --  it after the derivation.
14445
14446         if Ekind (Id_Type) = E_Anonymous_Access_Type then
14447            declare
14448               Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14449
14450            begin
14451               if Ekind (Desig_Typ) = E_Record_Type_With_Private
14452                 and then Present (Full_View (Desig_Typ))
14453                 and then not Is_Private_Type (Parent_Type)
14454               then
14455                  Desig_Typ := Full_View (Desig_Typ);
14456               end if;
14457
14458               if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14459
14460                  --  Ada 2005 (AI-251): Handle also derivations of abstract
14461                  --  interface primitives.
14462
14463                 or else (Is_Interface (Desig_Typ)
14464                           and then not Is_Class_Wide_Type (Desig_Typ))
14465               then
14466                  Acc_Type := New_Copy (Id_Type);
14467                  Set_Etype (Acc_Type, Acc_Type);
14468                  Set_Scope (Acc_Type, New_Subp);
14469
14470                  --  Set size of anonymous access type. If we have an access
14471                  --  to an unconstrained array, this is a fat pointer, so it
14472                  --  is sizes at twice addtress size.
14473
14474                  if Is_Array_Type (Desig_Typ)
14475                    and then not Is_Constrained (Desig_Typ)
14476                  then
14477                     Init_Size (Acc_Type, 2 * System_Address_Size);
14478
14479                  --  Other cases use a thin pointer
14480
14481                  else
14482                     Init_Size (Acc_Type, System_Address_Size);
14483                  end if;
14484
14485                  --  Set remaining characterstics of anonymous access type
14486
14487                  Init_Alignment (Acc_Type);
14488                  Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14489
14490                  Set_Etype (New_Id, Acc_Type);
14491                  Set_Scope (New_Id, New_Subp);
14492
14493                  --  Create a reference to it
14494
14495                  Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14496
14497               else
14498                  Set_Etype (New_Id, Id_Type);
14499               end if;
14500            end;
14501
14502         --  In Ada2012, a formal may have an incomplete type but the type
14503         --  derivation that inherits the primitive follows the full view.
14504
14505         elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14506           or else
14507             (Ekind (Id_Type) = E_Record_Type_With_Private
14508               and then Present (Full_View (Id_Type))
14509               and then
14510                 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14511           or else
14512             (Ada_Version >= Ada_2012
14513               and then Ekind (Id_Type) = E_Incomplete_Type
14514               and then Full_View (Id_Type) = Parent_Type)
14515         then
14516            --  Constraint checks on formals are generated during expansion,
14517            --  based on the signature of the original subprogram. The bounds
14518            --  of the derived type are not relevant, and thus we can use
14519            --  the base type for the formals. However, the return type may be
14520            --  used in a context that requires that the proper static bounds
14521            --  be used (a case statement, for example)  and for those cases
14522            --  we must use the derived type (first subtype), not its base.
14523
14524            --  If the derived_type_definition has no constraints, we know that
14525            --  the derived type has the same constraints as the first subtype
14526            --  of the parent, and we can also use it rather than its base,
14527            --  which can lead to more efficient code.
14528
14529            if Etype (Id) = Parent_Type then
14530               if Is_Scalar_Type (Parent_Type)
14531                 and then
14532                   Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14533               then
14534                  Set_Etype (New_Id, Derived_Type);
14535
14536               elsif Nkind (Par) = N_Full_Type_Declaration
14537                 and then
14538                   Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14539                 and then
14540                   Is_Entity_Name
14541                     (Subtype_Indication (Type_Definition (Par)))
14542               then
14543                  Set_Etype (New_Id, Derived_Type);
14544
14545               else
14546                  Set_Etype (New_Id, Base_Type (Derived_Type));
14547               end if;
14548
14549            else
14550               Set_Etype (New_Id, Base_Type (Derived_Type));
14551            end if;
14552
14553         else
14554            Set_Etype (New_Id, Etype (Id));
14555         end if;
14556      end Replace_Type;
14557
14558      ----------------------
14559      -- Set_Derived_Name --
14560      ----------------------
14561
14562      procedure Set_Derived_Name is
14563         Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14564      begin
14565         if Nm = TSS_Null then
14566            Set_Chars (New_Subp, Chars (Parent_Subp));
14567         else
14568            Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14569         end if;
14570      end Set_Derived_Name;
14571
14572   --  Start of processing for Derive_Subprogram
14573
14574   begin
14575      New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14576      Set_Ekind (New_Subp, Ekind (Parent_Subp));
14577
14578      --  Check whether the inherited subprogram is a private operation that
14579      --  should be inherited but not yet made visible. Such subprograms can
14580      --  become visible at a later point (e.g., the private part of a public
14581      --  child unit) via Declare_Inherited_Private_Subprograms. If the
14582      --  following predicate is true, then this is not such a private
14583      --  operation and the subprogram simply inherits the name of the parent
14584      --  subprogram. Note the special check for the names of controlled
14585      --  operations, which are currently exempted from being inherited with
14586      --  a hidden name because they must be findable for generation of
14587      --  implicit run-time calls.
14588
14589      if not Is_Hidden (Parent_Subp)
14590        or else Is_Internal (Parent_Subp)
14591        or else Is_Private_Overriding
14592        or else Is_Internal_Name (Chars (Parent_Subp))
14593        or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14594                                             Name_Adjust,
14595                                             Name_Finalize)
14596      then
14597         Set_Derived_Name;
14598
14599      --  An inherited dispatching equality will be overridden by an internally
14600      --  generated one, or by an explicit one, so preserve its name and thus
14601      --  its entry in the dispatch table. Otherwise, if Parent_Subp is a
14602      --  private operation it may become invisible if the full view has
14603      --  progenitors, and the dispatch table will be malformed.
14604      --  We check that the type is limited to handle the anomalous declaration
14605      --  of Limited_Controlled, which is derived from a non-limited type, and
14606      --  which is handled specially elsewhere as well.
14607
14608      elsif Chars (Parent_Subp) = Name_Op_Eq
14609        and then Is_Dispatching_Operation (Parent_Subp)
14610        and then Etype (Parent_Subp) = Standard_Boolean
14611        and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14612        and then
14613          Etype (First_Formal (Parent_Subp)) =
14614            Etype (Next_Formal (First_Formal (Parent_Subp)))
14615      then
14616         Set_Derived_Name;
14617
14618      --  If parent is hidden, this can be a regular derivation if the
14619      --  parent is immediately visible in a non-instantiating context,
14620      --  or if we are in the private part of an instance. This test
14621      --  should still be refined ???
14622
14623      --  The test for In_Instance_Not_Visible avoids inheriting the derived
14624      --  operation as a non-visible operation in cases where the parent
14625      --  subprogram might not be visible now, but was visible within the
14626      --  original generic, so it would be wrong to make the inherited
14627      --  subprogram non-visible now. (Not clear if this test is fully
14628      --  correct; are there any cases where we should declare the inherited
14629      --  operation as not visible to avoid it being overridden, e.g., when
14630      --  the parent type is a generic actual with private primitives ???)
14631
14632      --  (they should be treated the same as other private inherited
14633      --  subprograms, but it's not clear how to do this cleanly). ???
14634
14635      elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14636              and then Is_Immediately_Visible (Parent_Subp)
14637              and then not In_Instance)
14638        or else In_Instance_Not_Visible
14639      then
14640         Set_Derived_Name;
14641
14642      --  Ada 2005 (AI-251): Regular derivation if the parent subprogram
14643      --  overrides an interface primitive because interface primitives
14644      --  must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14645
14646      elsif Ada_Version >= Ada_2005
14647         and then Is_Dispatching_Operation (Parent_Subp)
14648         and then Covers_Some_Interface (Parent_Subp)
14649      then
14650         Set_Derived_Name;
14651
14652      --  Otherwise, the type is inheriting a private operation, so enter
14653      --  it with a special name so it can't be overridden.
14654
14655      else
14656         Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14657      end if;
14658
14659      Set_Parent (New_Subp, Parent (Derived_Type));
14660
14661      if Present (Actual_Subp) then
14662         Replace_Type (Actual_Subp, New_Subp);
14663      else
14664         Replace_Type (Parent_Subp, New_Subp);
14665      end if;
14666
14667      Conditional_Delay (New_Subp, Parent_Subp);
14668
14669      --  If we are creating a renaming for a primitive operation of an
14670      --  actual of a generic derived type, we must examine the signature
14671      --  of the actual primitive, not that of the generic formal, which for
14672      --  example may be an interface. However the name and initial value
14673      --  of the inherited operation are those of the formal primitive.
14674
14675      Formal := First_Formal (Parent_Subp);
14676
14677      if Present (Actual_Subp) then
14678         Formal_Of_Actual := First_Formal (Actual_Subp);
14679      else
14680         Formal_Of_Actual := Empty;
14681      end if;
14682
14683      while Present (Formal) loop
14684         New_Formal := New_Copy (Formal);
14685
14686         --  Normally we do not go copying parents, but in the case of
14687         --  formals, we need to link up to the declaration (which is the
14688         --  parameter specification), and it is fine to link up to the
14689         --  original formal's parameter specification in this case.
14690
14691         Set_Parent (New_Formal, Parent (Formal));
14692         Append_Entity (New_Formal, New_Subp);
14693
14694         if Present (Formal_Of_Actual) then
14695            Replace_Type (Formal_Of_Actual, New_Formal);
14696            Next_Formal (Formal_Of_Actual);
14697         else
14698            Replace_Type (Formal, New_Formal);
14699         end if;
14700
14701         Next_Formal (Formal);
14702      end loop;
14703
14704      --  If this derivation corresponds to a tagged generic actual, then
14705      --  primitive operations rename those of the actual. Otherwise the
14706      --  primitive operations rename those of the parent type, If the parent
14707      --  renames an intrinsic operator, so does the new subprogram. We except
14708      --  concatenation, which is always properly typed, and does not get
14709      --  expanded as other intrinsic operations.
14710
14711      if No (Actual_Subp) then
14712         if Is_Intrinsic_Subprogram (Parent_Subp) then
14713            Set_Is_Intrinsic_Subprogram (New_Subp);
14714
14715            if Present (Alias (Parent_Subp))
14716              and then Chars (Parent_Subp) /= Name_Op_Concat
14717            then
14718               Set_Alias (New_Subp, Alias (Parent_Subp));
14719            else
14720               Set_Alias (New_Subp, Parent_Subp);
14721            end if;
14722
14723         else
14724            Set_Alias (New_Subp, Parent_Subp);
14725         end if;
14726
14727      else
14728         Set_Alias (New_Subp, Actual_Subp);
14729      end if;
14730
14731      --  Inherit the "ghostness" from the parent subprogram
14732
14733      if Is_Ghost_Entity (Alias (New_Subp)) then
14734         Set_Is_Ghost_Entity (New_Subp);
14735      end if;
14736
14737      --  Derived subprograms of a tagged type must inherit the convention
14738      --  of the parent subprogram (a requirement of AI-117). Derived
14739      --  subprograms of untagged types simply get convention Ada by default.
14740
14741      --  If the derived type is a tagged generic formal type with unknown
14742      --  discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14743
14744      --  However, if the type is derived from a generic formal, the further
14745      --  inherited subprogram has the convention of the non-generic ancestor.
14746      --  Otherwise there would be no way to override the operation.
14747      --  (This is subject to forthcoming ARG discussions).
14748
14749      if Is_Tagged_Type (Derived_Type) then
14750         if Is_Generic_Type (Derived_Type)
14751           and then Has_Unknown_Discriminants (Derived_Type)
14752         then
14753            Set_Convention (New_Subp, Convention_Intrinsic);
14754
14755         else
14756            if Is_Generic_Type (Parent_Type)
14757              and then Has_Unknown_Discriminants (Parent_Type)
14758            then
14759               Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14760            else
14761               Set_Convention (New_Subp, Convention (Parent_Subp));
14762            end if;
14763         end if;
14764      end if;
14765
14766      --  Predefined controlled operations retain their name even if the parent
14767      --  is hidden (see above), but they are not primitive operations if the
14768      --  ancestor is not visible, for example if the parent is a private
14769      --  extension completed with a controlled extension. Note that a full
14770      --  type that is controlled can break privacy: the flag Is_Controlled is
14771      --  set on both views of the type.
14772
14773      if Is_Controlled (Parent_Type)
14774        and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14775                                              Name_Adjust,
14776                                              Name_Finalize)
14777        and then Is_Hidden (Parent_Subp)
14778        and then not Is_Visibly_Controlled (Parent_Type)
14779      then
14780         Set_Is_Hidden (New_Subp);
14781      end if;
14782
14783      Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14784      Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14785
14786      if Ekind (Parent_Subp) = E_Procedure then
14787         Set_Is_Valued_Procedure
14788           (New_Subp, Is_Valued_Procedure (Parent_Subp));
14789      else
14790         Set_Has_Controlling_Result
14791           (New_Subp, Has_Controlling_Result (Parent_Subp));
14792      end if;
14793
14794      --  No_Return must be inherited properly. If this is overridden in the
14795      --  case of a dispatching operation, then a check is made in Sem_Disp
14796      --  that the overriding operation is also No_Return (no such check is
14797      --  required for the case of non-dispatching operation.
14798
14799      Set_No_Return (New_Subp, No_Return (Parent_Subp));
14800
14801      --  A derived function with a controlling result is abstract. If the
14802      --  Derived_Type is a nonabstract formal generic derived type, then
14803      --  inherited operations are not abstract: the required check is done at
14804      --  instantiation time. If the derivation is for a generic actual, the
14805      --  function is not abstract unless the actual is.
14806
14807      if Is_Generic_Type (Derived_Type)
14808        and then not Is_Abstract_Type (Derived_Type)
14809      then
14810         null;
14811
14812      --  Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14813      --  properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14814
14815      --  A subprogram subject to pragma Extensions_Visible with value False
14816      --  requires overriding if the subprogram has at least one controlling
14817      --  OUT parameter (SPARK RM 6.1.7(6)).
14818
14819      elsif Ada_Version >= Ada_2005
14820        and then (Is_Abstract_Subprogram (Alias (New_Subp))
14821                   or else (Is_Tagged_Type (Derived_Type)
14822                             and then Etype (New_Subp) = Derived_Type
14823                             and then not Is_Null_Extension (Derived_Type))
14824                   or else (Is_Tagged_Type (Derived_Type)
14825                             and then Ekind (Etype (New_Subp)) =
14826                                                       E_Anonymous_Access_Type
14827                             and then Designated_Type (Etype (New_Subp)) =
14828                                                        Derived_Type
14829                             and then not Is_Null_Extension (Derived_Type))
14830                   or else (Comes_From_Source (Alias (New_Subp))
14831                             and then Is_EVF_Procedure (Alias (New_Subp))))
14832        and then No (Actual_Subp)
14833      then
14834         if not Is_Tagged_Type (Derived_Type)
14835           or else Is_Abstract_Type (Derived_Type)
14836           or else Is_Abstract_Subprogram (Alias (New_Subp))
14837         then
14838            Set_Is_Abstract_Subprogram (New_Subp);
14839         else
14840            Set_Requires_Overriding (New_Subp);
14841         end if;
14842
14843      elsif Ada_Version < Ada_2005
14844        and then (Is_Abstract_Subprogram (Alias (New_Subp))
14845                   or else (Is_Tagged_Type (Derived_Type)
14846                             and then Etype (New_Subp) = Derived_Type
14847                             and then No (Actual_Subp)))
14848      then
14849         Set_Is_Abstract_Subprogram (New_Subp);
14850
14851      --  AI05-0097 : an inherited operation that dispatches on result is
14852      --  abstract if the derived type is abstract, even if the parent type
14853      --  is concrete and the derived type is a null extension.
14854
14855      elsif Has_Controlling_Result (Alias (New_Subp))
14856        and then Is_Abstract_Type (Etype (New_Subp))
14857      then
14858         Set_Is_Abstract_Subprogram (New_Subp);
14859
14860      --  Finally, if the parent type is abstract we must verify that all
14861      --  inherited operations are either non-abstract or overridden, or that
14862      --  the derived type itself is abstract (this check is performed at the
14863      --  end of a package declaration, in Check_Abstract_Overriding). A
14864      --  private overriding in the parent type will not be visible in the
14865      --  derivation if we are not in an inner package or in a child unit of
14866      --  the parent type, in which case the abstractness of the inherited
14867      --  operation is carried to the new subprogram.
14868
14869      elsif Is_Abstract_Type (Parent_Type)
14870        and then not In_Open_Scopes (Scope (Parent_Type))
14871        and then Is_Private_Overriding
14872        and then Is_Abstract_Subprogram (Visible_Subp)
14873      then
14874         if No (Actual_Subp) then
14875            Set_Alias (New_Subp, Visible_Subp);
14876            Set_Is_Abstract_Subprogram (New_Subp, True);
14877
14878         else
14879            --  If this is a derivation for an instance of a formal derived
14880            --  type, abstractness comes from the primitive operation of the
14881            --  actual, not from the operation inherited from the ancestor.
14882
14883            Set_Is_Abstract_Subprogram
14884              (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14885         end if;
14886      end if;
14887
14888      New_Overloaded_Entity (New_Subp, Derived_Type);
14889
14890      --  Check for case of a derived subprogram for the instantiation of a
14891      --  formal derived tagged type, if so mark the subprogram as dispatching
14892      --  and inherit the dispatching attributes of the actual subprogram. The
14893      --  derived subprogram is effectively renaming of the actual subprogram,
14894      --  so it needs to have the same attributes as the actual.
14895
14896      if Present (Actual_Subp)
14897        and then Is_Dispatching_Operation (Actual_Subp)
14898      then
14899         Set_Is_Dispatching_Operation (New_Subp);
14900
14901         if Present (DTC_Entity (Actual_Subp)) then
14902            Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14903            Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
14904         end if;
14905      end if;
14906
14907      --  Indicate that a derived subprogram does not require a body and that
14908      --  it does not require processing of default expressions.
14909
14910      Set_Has_Completion (New_Subp);
14911      Set_Default_Expressions_Processed (New_Subp);
14912
14913      if Ekind (New_Subp) = E_Function then
14914         Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14915      end if;
14916   end Derive_Subprogram;
14917
14918   ------------------------
14919   -- Derive_Subprograms --
14920   ------------------------
14921
14922   procedure Derive_Subprograms
14923     (Parent_Type    : Entity_Id;
14924      Derived_Type   : Entity_Id;
14925      Generic_Actual : Entity_Id := Empty)
14926   is
14927      Op_List : constant Elist_Id :=
14928                  Collect_Primitive_Operations (Parent_Type);
14929
14930      function Check_Derived_Type return Boolean;
14931      --  Check that all the entities derived from Parent_Type are found in
14932      --  the list of primitives of Derived_Type exactly in the same order.
14933
14934      procedure Derive_Interface_Subprogram
14935        (New_Subp    : in out Entity_Id;
14936         Subp        : Entity_Id;
14937         Actual_Subp : Entity_Id);
14938      --  Derive New_Subp from the ultimate alias of the parent subprogram Subp
14939      --  (which is an interface primitive). If Generic_Actual is present then
14940      --  Actual_Subp is the actual subprogram corresponding with the generic
14941      --  subprogram Subp.
14942
14943      function Check_Derived_Type return Boolean is
14944         E        : Entity_Id;
14945         Elmt     : Elmt_Id;
14946         List     : Elist_Id;
14947         New_Subp : Entity_Id;
14948         Op_Elmt  : Elmt_Id;
14949         Subp     : Entity_Id;
14950
14951      begin
14952         --  Traverse list of entities in the current scope searching for
14953         --  an incomplete type whose full-view is derived type
14954
14955         E := First_Entity (Scope (Derived_Type));
14956         while Present (E) and then E /= Derived_Type loop
14957            if Ekind (E) = E_Incomplete_Type
14958              and then Present (Full_View (E))
14959              and then Full_View (E) = Derived_Type
14960            then
14961               --  Disable this test if Derived_Type completes an incomplete
14962               --  type because in such case more primitives can be added
14963               --  later to the list of primitives of Derived_Type by routine
14964               --  Process_Incomplete_Dependents
14965
14966               return True;
14967            end if;
14968
14969            E := Next_Entity (E);
14970         end loop;
14971
14972         List := Collect_Primitive_Operations (Derived_Type);
14973         Elmt := First_Elmt (List);
14974
14975         Op_Elmt := First_Elmt (Op_List);
14976         while Present (Op_Elmt) loop
14977            Subp     := Node (Op_Elmt);
14978            New_Subp := Node (Elmt);
14979
14980            --  At this early stage Derived_Type has no entities with attribute
14981            --  Interface_Alias. In addition, such primitives are always
14982            --  located at the end of the list of primitives of Parent_Type.
14983            --  Therefore, if found we can safely stop processing pending
14984            --  entities.
14985
14986            exit when Present (Interface_Alias (Subp));
14987
14988            --  Handle hidden entities
14989
14990            if not Is_Predefined_Dispatching_Operation (Subp)
14991              and then Is_Hidden (Subp)
14992            then
14993               if Present (New_Subp)
14994                 and then Primitive_Names_Match (Subp, New_Subp)
14995               then
14996                  Next_Elmt (Elmt);
14997               end if;
14998
14999            else
15000               if not Present (New_Subp)
15001                 or else Ekind (Subp) /= Ekind (New_Subp)
15002                 or else not Primitive_Names_Match (Subp, New_Subp)
15003               then
15004                  return False;
15005               end if;
15006
15007               Next_Elmt (Elmt);
15008            end if;
15009
15010            Next_Elmt (Op_Elmt);
15011         end loop;
15012
15013         return True;
15014      end Check_Derived_Type;
15015
15016      ---------------------------------
15017      -- Derive_Interface_Subprogram --
15018      ---------------------------------
15019
15020      procedure Derive_Interface_Subprogram
15021        (New_Subp    : in out Entity_Id;
15022         Subp        : Entity_Id;
15023         Actual_Subp : Entity_Id)
15024      is
15025         Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15026         Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15027
15028      begin
15029         pragma Assert (Is_Interface (Iface_Type));
15030
15031         Derive_Subprogram
15032           (New_Subp     => New_Subp,
15033            Parent_Subp  => Iface_Subp,
15034            Derived_Type => Derived_Type,
15035            Parent_Type  => Iface_Type,
15036            Actual_Subp  => Actual_Subp);
15037
15038         --  Given that this new interface entity corresponds with a primitive
15039         --  of the parent that was not overridden we must leave it associated
15040         --  with its parent primitive to ensure that it will share the same
15041         --  dispatch table slot when overridden. We must set the Alias to Subp
15042         --  (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15043         --  (in case we inherited Subp from Iface_Type via a nonabstract
15044         --  generic formal type).
15045
15046         if No (Actual_Subp) then
15047            Set_Alias (New_Subp, Subp);
15048
15049            declare
15050               T : Entity_Id := Find_Dispatching_Type (Subp);
15051            begin
15052               while Etype (T) /= T loop
15053                  if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15054                     Set_Is_Abstract_Subprogram (New_Subp, False);
15055                     exit;
15056                  end if;
15057
15058                  T := Etype (T);
15059               end loop;
15060            end;
15061
15062         --  For instantiations this is not needed since the previous call to
15063         --  Derive_Subprogram leaves the entity well decorated.
15064
15065         else
15066            pragma Assert (Alias (New_Subp) = Actual_Subp);
15067            null;
15068         end if;
15069      end Derive_Interface_Subprogram;
15070
15071      --  Local variables
15072
15073      Alias_Subp   : Entity_Id;
15074      Act_List     : Elist_Id;
15075      Act_Elmt     : Elmt_Id;
15076      Act_Subp     : Entity_Id := Empty;
15077      Elmt         : Elmt_Id;
15078      Need_Search  : Boolean   := False;
15079      New_Subp     : Entity_Id := Empty;
15080      Parent_Base  : Entity_Id;
15081      Subp         : Entity_Id;
15082
15083   --  Start of processing for Derive_Subprograms
15084
15085   begin
15086      if Ekind (Parent_Type) = E_Record_Type_With_Private
15087        and then Has_Discriminants (Parent_Type)
15088        and then Present (Full_View (Parent_Type))
15089      then
15090         Parent_Base := Full_View (Parent_Type);
15091      else
15092         Parent_Base := Parent_Type;
15093      end if;
15094
15095      if Present (Generic_Actual) then
15096         Act_List := Collect_Primitive_Operations (Generic_Actual);
15097         Act_Elmt := First_Elmt (Act_List);
15098      else
15099         Act_List := No_Elist;
15100         Act_Elmt := No_Elmt;
15101      end if;
15102
15103      --  Derive primitives inherited from the parent. Note that if the generic
15104      --  actual is present, this is not really a type derivation, it is a
15105      --  completion within an instance.
15106
15107      --  Case 1: Derived_Type does not implement interfaces
15108
15109      if not Is_Tagged_Type (Derived_Type)
15110        or else (not Has_Interfaces (Derived_Type)
15111                  and then not (Present (Generic_Actual)
15112                                 and then Has_Interfaces (Generic_Actual)))
15113      then
15114         Elmt := First_Elmt (Op_List);
15115         while Present (Elmt) loop
15116            Subp := Node (Elmt);
15117
15118            --  Literals are derived earlier in the process of building the
15119            --  derived type, and are skipped here.
15120
15121            if Ekind (Subp) = E_Enumeration_Literal then
15122               null;
15123
15124            --  The actual is a direct descendant and the common primitive
15125            --  operations appear in the same order.
15126
15127            --  If the generic parent type is present, the derived type is an
15128            --  instance of a formal derived type, and within the instance its
15129            --  operations are those of the actual. We derive from the formal
15130            --  type but make the inherited operations aliases of the
15131            --  corresponding operations of the actual.
15132
15133            else
15134               pragma Assert (No (Node (Act_Elmt))
15135                 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15136                           and then
15137                             Type_Conformant
15138                               (Subp, Node (Act_Elmt),
15139                                Skip_Controlling_Formals => True)));
15140
15141               Derive_Subprogram
15142                 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15143
15144               if Present (Act_Elmt) then
15145                  Next_Elmt (Act_Elmt);
15146               end if;
15147            end if;
15148
15149            Next_Elmt (Elmt);
15150         end loop;
15151
15152      --  Case 2: Derived_Type implements interfaces
15153
15154      else
15155         --  If the parent type has no predefined primitives we remove
15156         --  predefined primitives from the list of primitives of generic
15157         --  actual to simplify the complexity of this algorithm.
15158
15159         if Present (Generic_Actual) then
15160            declare
15161               Has_Predefined_Primitives : Boolean := False;
15162
15163            begin
15164               --  Check if the parent type has predefined primitives
15165
15166               Elmt := First_Elmt (Op_List);
15167               while Present (Elmt) loop
15168                  Subp := Node (Elmt);
15169
15170                  if Is_Predefined_Dispatching_Operation (Subp)
15171                    and then not Comes_From_Source (Ultimate_Alias (Subp))
15172                  then
15173                     Has_Predefined_Primitives := True;
15174                     exit;
15175                  end if;
15176
15177                  Next_Elmt (Elmt);
15178               end loop;
15179
15180               --  Remove predefined primitives of Generic_Actual. We must use
15181               --  an auxiliary list because in case of tagged types the value
15182               --  returned by Collect_Primitive_Operations is the value stored
15183               --  in its Primitive_Operations attribute (and we don't want to
15184               --  modify its current contents).
15185
15186               if not Has_Predefined_Primitives then
15187                  declare
15188                     Aux_List : constant Elist_Id := New_Elmt_List;
15189
15190                  begin
15191                     Elmt := First_Elmt (Act_List);
15192                     while Present (Elmt) loop
15193                        Subp := Node (Elmt);
15194
15195                        if not Is_Predefined_Dispatching_Operation (Subp)
15196                          or else Comes_From_Source (Subp)
15197                        then
15198                           Append_Elmt (Subp, Aux_List);
15199                        end if;
15200
15201                        Next_Elmt (Elmt);
15202                     end loop;
15203
15204                     Act_List := Aux_List;
15205                  end;
15206               end if;
15207
15208               Act_Elmt := First_Elmt (Act_List);
15209               Act_Subp := Node (Act_Elmt);
15210            end;
15211         end if;
15212
15213         --  Stage 1: If the generic actual is not present we derive the
15214         --  primitives inherited from the parent type. If the generic parent
15215         --  type is present, the derived type is an instance of a formal
15216         --  derived type, and within the instance its operations are those of
15217         --  the actual. We derive from the formal type but make the inherited
15218         --  operations aliases of the corresponding operations of the actual.
15219
15220         Elmt := First_Elmt (Op_List);
15221         while Present (Elmt) loop
15222            Subp       := Node (Elmt);
15223            Alias_Subp := Ultimate_Alias (Subp);
15224
15225            --  Do not derive internal entities of the parent that link
15226            --  interface primitives with their covering primitive. These
15227            --  entities will be added to this type when frozen.
15228
15229            if Present (Interface_Alias (Subp)) then
15230               goto Continue;
15231            end if;
15232
15233            --  If the generic actual is present find the corresponding
15234            --  operation in the generic actual. If the parent type is a
15235            --  direct ancestor of the derived type then, even if it is an
15236            --  interface, the operations are inherited from the primary
15237            --  dispatch table and are in the proper order. If we detect here
15238            --  that primitives are not in the same order we traverse the list
15239            --  of primitive operations of the actual to find the one that
15240            --  implements the interface primitive.
15241
15242            if Need_Search
15243              or else
15244                (Present (Generic_Actual)
15245                  and then Present (Act_Subp)
15246                  and then not
15247                    (Primitive_Names_Match (Subp, Act_Subp)
15248                       and then
15249                     Type_Conformant (Subp, Act_Subp,
15250                                      Skip_Controlling_Formals => True)))
15251            then
15252               pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15253                                               Use_Full_View => True));
15254
15255               --  Remember that we need searching for all pending primitives
15256
15257               Need_Search := True;
15258
15259               --  Handle entities associated with interface primitives
15260
15261               if Present (Alias_Subp)
15262                 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15263                 and then not Is_Predefined_Dispatching_Operation (Subp)
15264               then
15265                  --  Search for the primitive in the homonym chain
15266
15267                  Act_Subp :=
15268                    Find_Primitive_Covering_Interface
15269                      (Tagged_Type => Generic_Actual,
15270                       Iface_Prim  => Alias_Subp);
15271
15272                  --  Previous search may not locate primitives covering
15273                  --  interfaces defined in generics units or instantiations.
15274                  --  (it fails if the covering primitive has formals whose
15275                  --  type is also defined in generics or instantiations).
15276                  --  In such case we search in the list of primitives of the
15277                  --  generic actual for the internal entity that links the
15278                  --  interface primitive and the covering primitive.
15279
15280                  if No (Act_Subp)
15281                    and then Is_Generic_Type (Parent_Type)
15282                  then
15283                     --  This code has been designed to handle only generic
15284                     --  formals that implement interfaces that are defined
15285                     --  in a generic unit or instantiation. If this code is
15286                     --  needed for other cases we must review it because
15287                     --  (given that it relies on Original_Location to locate
15288                     --  the primitive of Generic_Actual that covers the
15289                     --  interface) it could leave linked through attribute
15290                     --  Alias entities of unrelated instantiations).
15291
15292                     pragma Assert
15293                       (Is_Generic_Unit
15294                          (Scope (Find_Dispatching_Type (Alias_Subp)))
15295                         or else
15296                           Instantiation_Depth
15297                             (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15298
15299                     declare
15300                        Iface_Prim_Loc : constant Source_Ptr :=
15301                                         Original_Location (Sloc (Alias_Subp));
15302
15303                        Elmt : Elmt_Id;
15304                        Prim : Entity_Id;
15305
15306                     begin
15307                        Elmt :=
15308                          First_Elmt (Primitive_Operations (Generic_Actual));
15309
15310                        Search : while Present (Elmt) loop
15311                           Prim := Node (Elmt);
15312
15313                           if Present (Interface_Alias (Prim))
15314                             and then Original_Location
15315                                        (Sloc (Interface_Alias (Prim))) =
15316                                                              Iface_Prim_Loc
15317                           then
15318                              Act_Subp := Alias (Prim);
15319                              exit Search;
15320                           end if;
15321
15322                           Next_Elmt (Elmt);
15323                        end loop Search;
15324                     end;
15325                  end if;
15326
15327                  pragma Assert (Present (Act_Subp)
15328                    or else Is_Abstract_Type (Generic_Actual)
15329                    or else Serious_Errors_Detected > 0);
15330
15331               --  Handle predefined primitives plus the rest of user-defined
15332               --  primitives
15333
15334               else
15335                  Act_Elmt := First_Elmt (Act_List);
15336                  while Present (Act_Elmt) loop
15337                     Act_Subp := Node (Act_Elmt);
15338
15339                     exit when Primitive_Names_Match (Subp, Act_Subp)
15340                       and then Type_Conformant
15341                                  (Subp, Act_Subp,
15342                                   Skip_Controlling_Formals => True)
15343                       and then No (Interface_Alias (Act_Subp));
15344
15345                     Next_Elmt (Act_Elmt);
15346                  end loop;
15347
15348                  if No (Act_Elmt) then
15349                     Act_Subp := Empty;
15350                  end if;
15351               end if;
15352            end if;
15353
15354            --   Case 1: If the parent is a limited interface then it has the
15355            --   predefined primitives of synchronized interfaces. However, the
15356            --   actual type may be a non-limited type and hence it does not
15357            --   have such primitives.
15358
15359            if Present (Generic_Actual)
15360              and then not Present (Act_Subp)
15361              and then Is_Limited_Interface (Parent_Base)
15362              and then Is_Predefined_Interface_Primitive (Subp)
15363            then
15364               null;
15365
15366            --  Case 2: Inherit entities associated with interfaces that were
15367            --  not covered by the parent type. We exclude here null interface
15368            --  primitives because they do not need special management.
15369
15370            --  We also exclude interface operations that are renamings. If the
15371            --  subprogram is an explicit renaming of an interface primitive,
15372            --  it is a regular primitive operation, and the presence of its
15373            --  alias is not relevant: it has to be derived like any other
15374            --  primitive.
15375
15376            elsif Present (Alias (Subp))
15377              and then Nkind (Unit_Declaration_Node (Subp)) /=
15378                                            N_Subprogram_Renaming_Declaration
15379              and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15380              and then not
15381                (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15382                  and then Null_Present (Parent (Alias_Subp)))
15383            then
15384               --  If this is an abstract private type then we transfer the
15385               --  derivation of the interface primitive from the partial view
15386               --  to the full view. This is safe because all the interfaces
15387               --  must be visible in the partial view. Done to avoid adding
15388               --  a new interface derivation to the private part of the
15389               --  enclosing package; otherwise this new derivation would be
15390               --  decorated as hidden when the analysis of the enclosing
15391               --  package completes.
15392
15393               if Is_Abstract_Type (Derived_Type)
15394                 and then In_Private_Part (Current_Scope)
15395                 and then Has_Private_Declaration (Derived_Type)
15396               then
15397                  declare
15398                     Partial_View : Entity_Id;
15399                     Elmt         : Elmt_Id;
15400                     Ent          : Entity_Id;
15401
15402                  begin
15403                     Partial_View := First_Entity (Current_Scope);
15404                     loop
15405                        exit when No (Partial_View)
15406                          or else (Has_Private_Declaration (Partial_View)
15407                                    and then
15408                                      Full_View (Partial_View) = Derived_Type);
15409
15410                        Next_Entity (Partial_View);
15411                     end loop;
15412
15413                     --  If the partial view was not found then the source code
15414                     --  has errors and the derivation is not needed.
15415
15416                     if Present (Partial_View) then
15417                        Elmt :=
15418                          First_Elmt (Primitive_Operations (Partial_View));
15419                        while Present (Elmt) loop
15420                           Ent := Node (Elmt);
15421
15422                           if Present (Alias (Ent))
15423                             and then Ultimate_Alias (Ent) = Alias (Subp)
15424                           then
15425                              Append_Elmt
15426                                (Ent, Primitive_Operations (Derived_Type));
15427                              exit;
15428                           end if;
15429
15430                           Next_Elmt (Elmt);
15431                        end loop;
15432
15433                        --  If the interface primitive was not found in the
15434                        --  partial view then this interface primitive was
15435                        --  overridden. We add a derivation to activate in
15436                        --  Derive_Progenitor_Subprograms the machinery to
15437                        --  search for it.
15438
15439                        if No (Elmt) then
15440                           Derive_Interface_Subprogram
15441                             (New_Subp    => New_Subp,
15442                              Subp        => Subp,
15443                              Actual_Subp => Act_Subp);
15444                        end if;
15445                     end if;
15446                  end;
15447               else
15448                  Derive_Interface_Subprogram
15449                    (New_Subp     => New_Subp,
15450                     Subp         => Subp,
15451                     Actual_Subp  => Act_Subp);
15452               end if;
15453
15454            --  Case 3: Common derivation
15455
15456            else
15457               Derive_Subprogram
15458                 (New_Subp     => New_Subp,
15459                  Parent_Subp  => Subp,
15460                  Derived_Type => Derived_Type,
15461                  Parent_Type  => Parent_Base,
15462                  Actual_Subp  => Act_Subp);
15463            end if;
15464
15465            --  No need to update Act_Elm if we must search for the
15466            --  corresponding operation in the generic actual
15467
15468            if not Need_Search
15469              and then Present (Act_Elmt)
15470            then
15471               Next_Elmt (Act_Elmt);
15472               Act_Subp := Node (Act_Elmt);
15473            end if;
15474
15475            <<Continue>>
15476            Next_Elmt (Elmt);
15477         end loop;
15478
15479         --  Inherit additional operations from progenitors. If the derived
15480         --  type is a generic actual, there are not new primitive operations
15481         --  for the type because it has those of the actual, and therefore
15482         --  nothing needs to be done. The renamings generated above are not
15483         --  primitive operations, and their purpose is simply to make the
15484         --  proper operations visible within an instantiation.
15485
15486         if No (Generic_Actual) then
15487            Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15488         end if;
15489      end if;
15490
15491      --  Final check: Direct descendants must have their primitives in the
15492      --  same order. We exclude from this test untagged types and instances
15493      --  of formal derived types. We skip this test if we have already
15494      --  reported serious errors in the sources.
15495
15496      pragma Assert (not Is_Tagged_Type (Derived_Type)
15497        or else Present (Generic_Actual)
15498        or else Serious_Errors_Detected > 0
15499        or else Check_Derived_Type);
15500   end Derive_Subprograms;
15501
15502   --------------------------------
15503   -- Derived_Standard_Character --
15504   --------------------------------
15505
15506   procedure Derived_Standard_Character
15507     (N            : Node_Id;
15508      Parent_Type  : Entity_Id;
15509      Derived_Type : Entity_Id)
15510   is
15511      Loc           : constant Source_Ptr := Sloc (N);
15512      Def           : constant Node_Id    := Type_Definition (N);
15513      Indic         : constant Node_Id    := Subtype_Indication (Def);
15514      Parent_Base   : constant Entity_Id  := Base_Type (Parent_Type);
15515      Implicit_Base : constant Entity_Id  :=
15516                        Create_Itype
15517                          (E_Enumeration_Type, N, Derived_Type, 'B');
15518
15519      Lo : Node_Id;
15520      Hi : Node_Id;
15521
15522   begin
15523      Discard_Node (Process_Subtype (Indic, N));
15524
15525      Set_Etype     (Implicit_Base, Parent_Base);
15526      Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15527      Set_RM_Size   (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15528
15529      Set_Is_Character_Type  (Implicit_Base, True);
15530      Set_Has_Delayed_Freeze (Implicit_Base);
15531
15532      --  The bounds of the implicit base are the bounds of the parent base.
15533      --  Note that their type is the parent base.
15534
15535      Lo := New_Copy_Tree (Type_Low_Bound  (Parent_Base));
15536      Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15537
15538      Set_Scalar_Range (Implicit_Base,
15539        Make_Range (Loc,
15540          Low_Bound  => Lo,
15541          High_Bound => Hi));
15542
15543      Conditional_Delay (Derived_Type, Parent_Type);
15544
15545      Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15546      Set_Etype (Derived_Type, Implicit_Base);
15547      Set_Size_Info         (Derived_Type, Parent_Type);
15548
15549      if Unknown_RM_Size (Derived_Type) then
15550         Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15551      end if;
15552
15553      Set_Is_Character_Type (Derived_Type, True);
15554
15555      if Nkind (Indic) /= N_Subtype_Indication then
15556
15557         --  If no explicit constraint, the bounds are those
15558         --  of the parent type.
15559
15560         Lo := New_Copy_Tree (Type_Low_Bound  (Parent_Type));
15561         Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15562         Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15563      end if;
15564
15565      Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15566
15567      --  Because the implicit base is used in the conversion of the bounds, we
15568      --  have to freeze it now. This is similar to what is done for numeric
15569      --  types, and it equally suspicious, but otherwise a non-static bound
15570      --  will have a reference to an unfrozen type, which is rejected by Gigi
15571      --  (???). This requires specific care for definition of stream
15572      --  attributes. For details, see comments at the end of
15573      --  Build_Derived_Numeric_Type.
15574
15575      Freeze_Before (N, Implicit_Base);
15576   end Derived_Standard_Character;
15577
15578   ------------------------------
15579   -- Derived_Type_Declaration --
15580   ------------------------------
15581
15582   procedure Derived_Type_Declaration
15583     (T             : Entity_Id;
15584      N             : Node_Id;
15585      Is_Completion : Boolean)
15586   is
15587      Parent_Type  : Entity_Id;
15588
15589      function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15590      --  Check whether the parent type is a generic formal, or derives
15591      --  directly or indirectly from one.
15592
15593      ------------------------
15594      -- Comes_From_Generic --
15595      ------------------------
15596
15597      function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15598      begin
15599         if Is_Generic_Type (Typ) then
15600            return True;
15601
15602         elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15603            return True;
15604
15605         elsif Is_Private_Type (Typ)
15606           and then Present (Full_View (Typ))
15607           and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15608         then
15609            return True;
15610
15611         elsif Is_Generic_Actual_Type (Typ) then
15612            return True;
15613
15614         else
15615            return False;
15616         end if;
15617      end Comes_From_Generic;
15618
15619      --  Local variables
15620
15621      Def          : constant Node_Id := Type_Definition (N);
15622      Iface_Def    : Node_Id;
15623      Indic        : constant Node_Id := Subtype_Indication (Def);
15624      Extension    : constant Node_Id := Record_Extension_Part (Def);
15625      Parent_Node  : Node_Id;
15626      Taggd        : Boolean;
15627
15628   --  Start of processing for Derived_Type_Declaration
15629
15630   begin
15631      Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15632
15633      --  Ada 2005 (AI-251): In case of interface derivation check that the
15634      --  parent is also an interface.
15635
15636      if Interface_Present (Def) then
15637         Check_SPARK_05_Restriction ("interface is not allowed", Def);
15638
15639         if not Is_Interface (Parent_Type) then
15640            Diagnose_Interface (Indic, Parent_Type);
15641
15642         else
15643            Parent_Node := Parent (Base_Type (Parent_Type));
15644            Iface_Def   := Type_Definition (Parent_Node);
15645
15646            --  Ada 2005 (AI-251): Limited interfaces can only inherit from
15647            --  other limited interfaces.
15648
15649            if Limited_Present (Def) then
15650               if Limited_Present (Iface_Def) then
15651                  null;
15652
15653               elsif Protected_Present (Iface_Def) then
15654                  Error_Msg_NE
15655                    ("descendant of & must be declared as a protected "
15656                     & "interface", N, Parent_Type);
15657
15658               elsif Synchronized_Present (Iface_Def) then
15659                  Error_Msg_NE
15660                    ("descendant of & must be declared as a synchronized "
15661                     & "interface", N, Parent_Type);
15662
15663               elsif Task_Present (Iface_Def) then
15664                  Error_Msg_NE
15665                    ("descendant of & must be declared as a task interface",
15666                       N, Parent_Type);
15667
15668               else
15669                  Error_Msg_N
15670                    ("(Ada 2005) limited interface cannot inherit from "
15671                     & "non-limited interface", Indic);
15672               end if;
15673
15674            --  Ada 2005 (AI-345): Non-limited interfaces can only inherit
15675            --  from non-limited or limited interfaces.
15676
15677            elsif not Protected_Present (Def)
15678              and then not Synchronized_Present (Def)
15679              and then not Task_Present (Def)
15680            then
15681               if Limited_Present (Iface_Def) then
15682                  null;
15683
15684               elsif Protected_Present (Iface_Def) then
15685                  Error_Msg_NE
15686                    ("descendant of & must be declared as a protected "
15687                     & "interface", N, Parent_Type);
15688
15689               elsif Synchronized_Present (Iface_Def) then
15690                  Error_Msg_NE
15691                    ("descendant of & must be declared as a synchronized "
15692                     & "interface", N, Parent_Type);
15693
15694               elsif Task_Present (Iface_Def) then
15695                  Error_Msg_NE
15696                    ("descendant of & must be declared as a task interface",
15697                       N, Parent_Type);
15698               else
15699                  null;
15700               end if;
15701            end if;
15702         end if;
15703      end if;
15704
15705      if Is_Tagged_Type (Parent_Type)
15706        and then Is_Concurrent_Type (Parent_Type)
15707        and then not Is_Interface (Parent_Type)
15708      then
15709         Error_Msg_N
15710           ("parent type of a record extension cannot be a synchronized "
15711            & "tagged type (RM 3.9.1 (3/1))", N);
15712         Set_Etype (T, Any_Type);
15713         return;
15714      end if;
15715
15716      --  Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15717      --  interfaces
15718
15719      if Is_Tagged_Type (Parent_Type)
15720        and then Is_Non_Empty_List (Interface_List (Def))
15721      then
15722         declare
15723            Intf : Node_Id;
15724            T    : Entity_Id;
15725
15726         begin
15727            Intf := First (Interface_List (Def));
15728            while Present (Intf) loop
15729               T := Find_Type_Of_Subtype_Indic (Intf);
15730
15731               if not Is_Interface (T) then
15732                  Diagnose_Interface (Intf, T);
15733
15734               --  Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15735               --  a limited type from having a nonlimited progenitor.
15736
15737               elsif (Limited_Present (Def)
15738                       or else (not Is_Interface (Parent_Type)
15739                                 and then Is_Limited_Type (Parent_Type)))
15740                 and then not Is_Limited_Interface (T)
15741               then
15742                  Error_Msg_NE
15743                   ("progenitor interface& of limited type must be limited",
15744                     N, T);
15745               end if;
15746
15747               Next (Intf);
15748            end loop;
15749         end;
15750      end if;
15751
15752      if Parent_Type = Any_Type
15753        or else Etype (Parent_Type) = Any_Type
15754        or else (Is_Class_Wide_Type (Parent_Type)
15755                  and then Etype (Parent_Type) = T)
15756      then
15757         --  If Parent_Type is undefined or illegal, make new type into a
15758         --  subtype of Any_Type, and set a few attributes to prevent cascaded
15759         --  errors. If this is a self-definition, emit error now.
15760
15761         if T = Parent_Type or else T = Etype (Parent_Type) then
15762            Error_Msg_N ("type cannot be used in its own definition", Indic);
15763         end if;
15764
15765         Set_Ekind        (T, Ekind (Parent_Type));
15766         Set_Etype        (T, Any_Type);
15767         Set_Scalar_Range (T, Scalar_Range (Any_Type));
15768
15769         if Is_Tagged_Type (T)
15770           and then Is_Record_Type (T)
15771         then
15772            Set_Direct_Primitive_Operations (T, New_Elmt_List);
15773         end if;
15774
15775         return;
15776      end if;
15777
15778      --  Ada 2005 (AI-251): The case in which the parent of the full-view is
15779      --  an interface is special because the list of interfaces in the full
15780      --  view can be given in any order. For example:
15781
15782      --     type A is interface;
15783      --     type B is interface and A;
15784      --     type D is new B with private;
15785      --   private
15786      --     type D is new A and B with null record; -- 1 --
15787
15788      --  In this case we perform the following transformation of -1-:
15789
15790      --     type D is new B and A with null record;
15791
15792      --  If the parent of the full-view covers the parent of the partial-view
15793      --  we have two possible cases:
15794
15795      --     1) They have the same parent
15796      --     2) The parent of the full-view implements some further interfaces
15797
15798      --  In both cases we do not need to perform the transformation. In the
15799      --  first case the source program is correct and the transformation is
15800      --  not needed; in the second case the source program does not fulfill
15801      --  the no-hidden interfaces rule (AI-396) and the error will be reported
15802      --  later.
15803
15804      --  This transformation not only simplifies the rest of the analysis of
15805      --  this type declaration but also simplifies the correct generation of
15806      --  the object layout to the expander.
15807
15808      if In_Private_Part (Current_Scope)
15809        and then Is_Interface (Parent_Type)
15810      then
15811         declare
15812            Iface               : Node_Id;
15813            Partial_View        : Entity_Id;
15814            Partial_View_Parent : Entity_Id;
15815            New_Iface           : Node_Id;
15816
15817         begin
15818            --  Look for the associated private type declaration
15819
15820            Partial_View := First_Entity (Current_Scope);
15821            loop
15822               exit when No (Partial_View)
15823                 or else (Has_Private_Declaration (Partial_View)
15824                           and then Full_View (Partial_View) = T);
15825
15826               Next_Entity (Partial_View);
15827            end loop;
15828
15829            --  If the partial view was not found then the source code has
15830            --  errors and the transformation is not needed.
15831
15832            if Present (Partial_View) then
15833               Partial_View_Parent := Etype (Partial_View);
15834
15835               --  If the parent of the full-view covers the parent of the
15836               --  partial-view we have nothing else to do.
15837
15838               if Interface_Present_In_Ancestor
15839                    (Parent_Type, Partial_View_Parent)
15840               then
15841                  null;
15842
15843               --  Traverse the list of interfaces of the full-view to look
15844               --  for the parent of the partial-view and perform the tree
15845               --  transformation.
15846
15847               else
15848                  Iface := First (Interface_List (Def));
15849                  while Present (Iface) loop
15850                     if Etype (Iface) = Etype (Partial_View) then
15851                        Rewrite (Subtype_Indication (Def),
15852                          New_Copy (Subtype_Indication
15853                                     (Parent (Partial_View))));
15854
15855                        New_Iface :=
15856                          Make_Identifier (Sloc (N), Chars (Parent_Type));
15857                        Append (New_Iface, Interface_List (Def));
15858
15859                        --  Analyze the transformed code
15860
15861                        Derived_Type_Declaration (T, N, Is_Completion);
15862                        return;
15863                     end if;
15864
15865                     Next (Iface);
15866                  end loop;
15867               end if;
15868            end if;
15869         end;
15870      end if;
15871
15872      --  Only composite types other than array types are allowed to have
15873      --  discriminants.
15874
15875      if Present (Discriminant_Specifications (N)) then
15876         if (Is_Elementary_Type (Parent_Type)
15877               or else
15878             Is_Array_Type      (Parent_Type))
15879           and then not Error_Posted (N)
15880         then
15881            Error_Msg_N
15882              ("elementary or array type cannot have discriminants",
15883               Defining_Identifier (First (Discriminant_Specifications (N))));
15884            Set_Has_Discriminants (T, False);
15885
15886         --  The type is allowed to have discriminants
15887
15888         else
15889            Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15890         end if;
15891      end if;
15892
15893      --  In Ada 83, a derived type defined in a package specification cannot
15894      --  be used for further derivation until the end of its visible part.
15895      --  Note that derivation in the private part of the package is allowed.
15896
15897      if Ada_Version = Ada_83
15898        and then Is_Derived_Type (Parent_Type)
15899        and then In_Visible_Part (Scope (Parent_Type))
15900      then
15901         if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15902            Error_Msg_N
15903              ("(Ada 83): premature use of type for derivation", Indic);
15904         end if;
15905      end if;
15906
15907      --  Check for early use of incomplete or private type
15908
15909      if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15910         Error_Msg_N ("premature derivation of incomplete type", Indic);
15911         return;
15912
15913      elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15914              and then not Comes_From_Generic (Parent_Type))
15915        or else Has_Private_Component (Parent_Type)
15916      then
15917         --  The ancestor type of a formal type can be incomplete, in which
15918         --  case only the operations of the partial view are available in the
15919         --  generic. Subsequent checks may be required when the full view is
15920         --  analyzed to verify that a derivation from a tagged type has an
15921         --  extension.
15922
15923         if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15924            null;
15925
15926         elsif No (Underlying_Type (Parent_Type))
15927           or else Has_Private_Component (Parent_Type)
15928         then
15929            Error_Msg_N
15930              ("premature derivation of derived or private type", Indic);
15931
15932            --  Flag the type itself as being in error, this prevents some
15933            --  nasty problems with subsequent uses of the malformed type.
15934
15935            Set_Error_Posted (T);
15936
15937         --  Check that within the immediate scope of an untagged partial
15938         --  view it's illegal to derive from the partial view if the
15939         --  full view is tagged. (7.3(7))
15940
15941         --  We verify that the Parent_Type is a partial view by checking
15942         --  that it is not a Full_Type_Declaration (i.e. a private type or
15943         --  private extension declaration), to distinguish a partial view
15944         --  from  a derivation from a private type which also appears as
15945         --  E_Private_Type. If the parent base type is not declared in an
15946         --  enclosing scope there is no need to check.
15947
15948         elsif Present (Full_View (Parent_Type))
15949           and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15950           and then not Is_Tagged_Type (Parent_Type)
15951           and then Is_Tagged_Type (Full_View (Parent_Type))
15952           and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15953         then
15954            Error_Msg_N
15955              ("premature derivation from type with tagged full view",
15956                Indic);
15957         end if;
15958      end if;
15959
15960      --  Check that form of derivation is appropriate
15961
15962      Taggd := Is_Tagged_Type (Parent_Type);
15963
15964      --  Set the parent type to the class-wide type's specific type in this
15965      --  case to prevent cascading errors
15966
15967      if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15968         Error_Msg_N ("parent type must not be a class-wide type", Indic);
15969         Set_Etype (T, Etype (Parent_Type));
15970         return;
15971      end if;
15972
15973      if Present (Extension) and then not Taggd then
15974         Error_Msg_N
15975           ("type derived from untagged type cannot have extension", Indic);
15976
15977      elsif No (Extension) and then Taggd then
15978
15979         --  If this declaration is within a private part (or body) of a
15980         --  generic instantiation then the derivation is allowed (the parent
15981         --  type can only appear tagged in this case if it's a generic actual
15982         --  type, since it would otherwise have been rejected in the analysis
15983         --  of the generic template).
15984
15985         if not Is_Generic_Actual_Type (Parent_Type)
15986           or else In_Visible_Part (Scope (Parent_Type))
15987         then
15988            if Is_Class_Wide_Type (Parent_Type) then
15989               Error_Msg_N
15990                 ("parent type must not be a class-wide type", Indic);
15991
15992               --  Use specific type to prevent cascaded errors.
15993
15994               Parent_Type := Etype (Parent_Type);
15995
15996            else
15997               Error_Msg_N
15998                 ("type derived from tagged type must have extension", Indic);
15999            end if;
16000         end if;
16001      end if;
16002
16003      --  AI-443: Synchronized formal derived types require a private
16004      --  extension. There is no point in checking the ancestor type or
16005      --  the progenitors since the construct is wrong to begin with.
16006
16007      if Ada_Version >= Ada_2005
16008        and then Is_Generic_Type (T)
16009        and then Present (Original_Node (N))
16010      then
16011         declare
16012            Decl : constant Node_Id := Original_Node (N);
16013
16014         begin
16015            if Nkind (Decl) = N_Formal_Type_Declaration
16016              and then Nkind (Formal_Type_Definition (Decl)) =
16017                                          N_Formal_Derived_Type_Definition
16018              and then Synchronized_Present (Formal_Type_Definition (Decl))
16019              and then No (Extension)
16020
16021               --  Avoid emitting a duplicate error message
16022
16023              and then not Error_Posted (Indic)
16024            then
16025               Error_Msg_N
16026                 ("synchronized derived type must have extension", N);
16027            end if;
16028         end;
16029      end if;
16030
16031      if Null_Exclusion_Present (Def)
16032        and then not Is_Access_Type (Parent_Type)
16033      then
16034         Error_Msg_N ("null exclusion can only apply to an access type", N);
16035      end if;
16036
16037      --  Avoid deriving parent primitives of underlying record views
16038
16039      Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16040        Derive_Subps => not Is_Underlying_Record_View (T));
16041
16042      --  AI-419: The parent type of an explicitly limited derived type must
16043      --  be a limited type or a limited interface.
16044
16045      if Limited_Present (Def) then
16046         Set_Is_Limited_Record (T);
16047
16048         if Is_Interface (T) then
16049            Set_Is_Limited_Interface (T);
16050         end if;
16051
16052         if not Is_Limited_Type (Parent_Type)
16053           and then
16054             (not Is_Interface (Parent_Type)
16055               or else not Is_Limited_Interface (Parent_Type))
16056         then
16057            --  AI05-0096: a derivation in the private part of an instance is
16058            --  legal if the generic formal is untagged limited, and the actual
16059            --  is non-limited.
16060
16061            if Is_Generic_Actual_Type (Parent_Type)
16062              and then In_Private_Part (Current_Scope)
16063              and then
16064                not Is_Tagged_Type
16065                      (Generic_Parent_Type (Parent (Parent_Type)))
16066            then
16067               null;
16068
16069            else
16070               Error_Msg_NE
16071                 ("parent type& of limited type must be limited",
16072                  N, Parent_Type);
16073            end if;
16074         end if;
16075      end if;
16076
16077      --  In SPARK, there are no derived type definitions other than type
16078      --  extensions of tagged record types.
16079
16080      if No (Extension) then
16081         Check_SPARK_05_Restriction
16082           ("derived type is not allowed", Original_Node (N));
16083      end if;
16084   end Derived_Type_Declaration;
16085
16086   ------------------------
16087   -- Diagnose_Interface --
16088   ------------------------
16089
16090   procedure Diagnose_Interface (N : Node_Id;  E : Entity_Id) is
16091   begin
16092      if not Is_Interface (E) and then  E /= Any_Type then
16093         Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16094      end if;
16095   end Diagnose_Interface;
16096
16097   ----------------------------------
16098   -- Enumeration_Type_Declaration --
16099   ----------------------------------
16100
16101   procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16102      Ev     : Uint;
16103      L      : Node_Id;
16104      R_Node : Node_Id;
16105      B_Node : Node_Id;
16106
16107   begin
16108      --  Create identifier node representing lower bound
16109
16110      B_Node := New_Node (N_Identifier, Sloc (Def));
16111      L := First (Literals (Def));
16112      Set_Chars (B_Node, Chars (L));
16113      Set_Entity (B_Node,  L);
16114      Set_Etype (B_Node, T);
16115      Set_Is_Static_Expression (B_Node, True);
16116
16117      R_Node := New_Node (N_Range, Sloc (Def));
16118      Set_Low_Bound  (R_Node, B_Node);
16119
16120      Set_Ekind (T, E_Enumeration_Type);
16121      Set_First_Literal (T, L);
16122      Set_Etype (T, T);
16123      Set_Is_Constrained (T);
16124
16125      Ev := Uint_0;
16126
16127      --  Loop through literals of enumeration type setting pos and rep values
16128      --  except that if the Ekind is already set, then it means the literal
16129      --  was already constructed (case of a derived type declaration and we
16130      --  should not disturb the Pos and Rep values.
16131
16132      while Present (L) loop
16133         if Ekind (L) /= E_Enumeration_Literal then
16134            Set_Ekind (L, E_Enumeration_Literal);
16135            Set_Enumeration_Pos (L, Ev);
16136            Set_Enumeration_Rep (L, Ev);
16137            Set_Is_Known_Valid  (L, True);
16138         end if;
16139
16140         Set_Etype (L, T);
16141         New_Overloaded_Entity (L);
16142         Generate_Definition (L);
16143         Set_Convention (L, Convention_Intrinsic);
16144
16145         --  Case of character literal
16146
16147         if Nkind (L) = N_Defining_Character_Literal then
16148            Set_Is_Character_Type (T, True);
16149
16150            --  Check violation of No_Wide_Characters
16151
16152            if Restriction_Check_Required (No_Wide_Characters) then
16153               Get_Name_String (Chars (L));
16154
16155               if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16156                  Check_Restriction (No_Wide_Characters, L);
16157               end if;
16158            end if;
16159         end if;
16160
16161         Ev := Ev + 1;
16162         Next (L);
16163      end loop;
16164
16165      --  Now create a node representing upper bound
16166
16167      B_Node := New_Node (N_Identifier, Sloc (Def));
16168      Set_Chars (B_Node, Chars (Last (Literals (Def))));
16169      Set_Entity (B_Node,  Last (Literals (Def)));
16170      Set_Etype (B_Node, T);
16171      Set_Is_Static_Expression (B_Node, True);
16172
16173      Set_High_Bound (R_Node, B_Node);
16174
16175      --  Initialize various fields of the type. Some of this information
16176      --  may be overwritten later through rep.clauses.
16177
16178      Set_Scalar_Range    (T, R_Node);
16179      Set_RM_Size         (T, UI_From_Int (Minimum_Size (T)));
16180      Set_Enum_Esize      (T);
16181      Set_Enum_Pos_To_Rep (T, Empty);
16182
16183      --  Set Discard_Names if configuration pragma set, or if there is
16184      --  a parameterless pragma in the current declarative region
16185
16186      if Global_Discard_Names or else Discard_Names (Scope (T)) then
16187         Set_Discard_Names (T);
16188      end if;
16189
16190      --  Process end label if there is one
16191
16192      if Present (Def) then
16193         Process_End_Label (Def, 'e', T);
16194      end if;
16195   end Enumeration_Type_Declaration;
16196
16197   ---------------------------------
16198   -- Expand_To_Stored_Constraint --
16199   ---------------------------------
16200
16201   function Expand_To_Stored_Constraint
16202     (Typ        : Entity_Id;
16203      Constraint : Elist_Id) return Elist_Id
16204   is
16205      Explicitly_Discriminated_Type : Entity_Id;
16206      Expansion    : Elist_Id;
16207      Discriminant : Entity_Id;
16208
16209      function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16210      --  Find the nearest type that actually specifies discriminants
16211
16212      ---------------------------------
16213      -- Type_With_Explicit_Discrims --
16214      ---------------------------------
16215
16216      function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16217         Typ : constant E := Base_Type (Id);
16218
16219      begin
16220         if Ekind (Typ) in Incomplete_Or_Private_Kind then
16221            if Present (Full_View (Typ)) then
16222               return Type_With_Explicit_Discrims (Full_View (Typ));
16223            end if;
16224
16225         else
16226            if Has_Discriminants (Typ) then
16227               return Typ;
16228            end if;
16229         end if;
16230
16231         if Etype (Typ) = Typ then
16232            return Empty;
16233         elsif Has_Discriminants (Typ) then
16234            return Typ;
16235         else
16236            return Type_With_Explicit_Discrims (Etype (Typ));
16237         end if;
16238
16239      end Type_With_Explicit_Discrims;
16240
16241   --  Start of processing for Expand_To_Stored_Constraint
16242
16243   begin
16244      if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16245         return No_Elist;
16246      end if;
16247
16248      Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16249
16250      if No (Explicitly_Discriminated_Type) then
16251         return No_Elist;
16252      end if;
16253
16254      Expansion := New_Elmt_List;
16255
16256      Discriminant :=
16257         First_Stored_Discriminant (Explicitly_Discriminated_Type);
16258      while Present (Discriminant) loop
16259         Append_Elmt
16260           (Get_Discriminant_Value
16261              (Discriminant, Explicitly_Discriminated_Type, Constraint),
16262            To => Expansion);
16263         Next_Stored_Discriminant (Discriminant);
16264      end loop;
16265
16266      return Expansion;
16267   end Expand_To_Stored_Constraint;
16268
16269   ---------------------------
16270   -- Find_Hidden_Interface --
16271   ---------------------------
16272
16273   function Find_Hidden_Interface
16274     (Src  : Elist_Id;
16275      Dest : Elist_Id) return Entity_Id
16276   is
16277      Iface      : Entity_Id;
16278      Iface_Elmt : Elmt_Id;
16279
16280   begin
16281      if Present (Src) and then Present (Dest) then
16282         Iface_Elmt := First_Elmt (Src);
16283         while Present (Iface_Elmt) loop
16284            Iface := Node (Iface_Elmt);
16285
16286            if Is_Interface (Iface)
16287              and then not Contain_Interface (Iface, Dest)
16288            then
16289               return Iface;
16290            end if;
16291
16292            Next_Elmt (Iface_Elmt);
16293         end loop;
16294      end if;
16295
16296      return Empty;
16297   end Find_Hidden_Interface;
16298
16299   --------------------
16300   -- Find_Type_Name --
16301   --------------------
16302
16303   function Find_Type_Name (N : Node_Id) return Entity_Id is
16304      Id       : constant Entity_Id := Defining_Identifier (N);
16305      Prev     : Entity_Id;
16306      New_Id   : Entity_Id;
16307      Prev_Par : Node_Id;
16308
16309      procedure Check_Duplicate_Aspects;
16310      --  Check that aspects specified in a completion have not been specified
16311      --  already in the partial view. Type_Invariant and others can be
16312      --  specified on either view but never on both.
16313
16314      procedure Tag_Mismatch;
16315      --  Diagnose a tagged partial view whose full view is untagged.
16316      --  We post the message on the full view, with a reference to
16317      --  the previous partial view. The partial view can be private
16318      --  or incomplete, and these are handled in a different manner,
16319      --  so we determine the position of the error message from the
16320      --  respective slocs of both.
16321
16322      -----------------------------
16323      -- Check_Duplicate_Aspects --
16324      -----------------------------
16325
16326      procedure Check_Duplicate_Aspects is
16327         Prev_Aspects   : constant List_Id := Aspect_Specifications (Prev_Par);
16328         Full_Aspects   : constant List_Id := Aspect_Specifications (N);
16329         F_Spec, P_Spec : Node_Id;
16330
16331      begin
16332         if Present (Full_Aspects) then
16333            F_Spec := First (Full_Aspects);
16334            while Present (F_Spec) loop
16335               if Present (Prev_Aspects) then
16336                  P_Spec := First (Prev_Aspects);
16337                  while Present (P_Spec) loop
16338                     if Chars (Identifier (P_Spec)) =
16339                       Chars (Identifier (F_Spec))
16340                     then
16341                        Error_Msg_N
16342                          ("aspect already specified in private declaration",
16343                            F_Spec);
16344                        Remove (F_Spec);
16345                        return;
16346                     end if;
16347
16348                     Next (P_Spec);
16349                  end loop;
16350               end if;
16351
16352               if Has_Discriminants (Prev)
16353                 and then not Has_Unknown_Discriminants (Prev)
16354                 and then Chars (Identifier (F_Spec)) =
16355                   Name_Implicit_Dereference
16356               then
16357                  Error_Msg_N ("cannot specify aspect " &
16358                    "if partial view has known discriminants", F_Spec);
16359               end if;
16360
16361               Next (F_Spec);
16362            end loop;
16363         end if;
16364      end Check_Duplicate_Aspects;
16365
16366      ------------------
16367      -- Tag_Mismatch --
16368      ------------------
16369
16370      procedure Tag_Mismatch is
16371      begin
16372         if Sloc (Prev) < Sloc (Id) then
16373            if Ada_Version >= Ada_2012
16374              and then Nkind (N) = N_Private_Type_Declaration
16375            then
16376               Error_Msg_NE
16377                 ("declaration of private } must be a tagged type ", Id, Prev);
16378            else
16379               Error_Msg_NE
16380                 ("full declaration of } must be a tagged type ", Id, Prev);
16381            end if;
16382
16383         else
16384            if Ada_Version >= Ada_2012
16385              and then Nkind (N) = N_Private_Type_Declaration
16386            then
16387               Error_Msg_NE
16388                 ("declaration of private } must be a tagged type ", Prev, Id);
16389            else
16390               Error_Msg_NE
16391                 ("full declaration of } must be a tagged type ", Prev, Id);
16392            end if;
16393         end if;
16394      end Tag_Mismatch;
16395
16396   --  Start of processing for Find_Type_Name
16397
16398   begin
16399      --  Find incomplete declaration, if one was given
16400
16401      Prev := Current_Entity_In_Scope (Id);
16402
16403      --  New type declaration
16404
16405      if No (Prev) then
16406         Enter_Name (Id);
16407         return Id;
16408
16409      --  Previous declaration exists
16410
16411      else
16412         Prev_Par := Parent (Prev);
16413
16414         --  Error if not incomplete/private case except if previous
16415         --  declaration is implicit, etc. Enter_Name will emit error if
16416         --  appropriate.
16417
16418         if not Is_Incomplete_Or_Private_Type (Prev) then
16419            Enter_Name (Id);
16420            New_Id := Id;
16421
16422         --  Check invalid completion of private or incomplete type
16423
16424         elsif not Nkind_In (N, N_Full_Type_Declaration,
16425                                N_Task_Type_Declaration,
16426                                N_Protected_Type_Declaration)
16427           and then
16428             (Ada_Version < Ada_2012
16429               or else not Is_Incomplete_Type (Prev)
16430               or else not Nkind_In (N, N_Private_Type_Declaration,
16431                                        N_Private_Extension_Declaration))
16432         then
16433            --  Completion must be a full type declarations (RM 7.3(4))
16434
16435            Error_Msg_Sloc := Sloc (Prev);
16436            Error_Msg_NE ("invalid completion of }", Id, Prev);
16437
16438            --  Set scope of Id to avoid cascaded errors. Entity is never
16439            --  examined again, except when saving globals in generics.
16440
16441            Set_Scope (Id, Current_Scope);
16442            New_Id := Id;
16443
16444            --  If this is a repeated incomplete declaration, no further
16445            --  checks are possible.
16446
16447            if Nkind (N) = N_Incomplete_Type_Declaration then
16448               return Prev;
16449            end if;
16450
16451         --  Case of full declaration of incomplete type
16452
16453         elsif Ekind (Prev) = E_Incomplete_Type
16454           and then (Ada_Version < Ada_2012
16455                      or else No (Full_View (Prev))
16456                      or else not Is_Private_Type (Full_View (Prev)))
16457         then
16458            --  Indicate that the incomplete declaration has a matching full
16459            --  declaration. The defining occurrence of the incomplete
16460            --  declaration remains the visible one, and the procedure
16461            --  Get_Full_View dereferences it whenever the type is used.
16462
16463            if Present (Full_View (Prev)) then
16464               Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16465            end if;
16466
16467            Set_Full_View (Prev, Id);
16468            Append_Entity (Id, Current_Scope);
16469            Set_Is_Public (Id, Is_Public (Prev));
16470            Set_Is_Internal (Id);
16471            New_Id := Prev;
16472
16473            --  If the incomplete view is tagged, a class_wide type has been
16474            --  created already. Use it for the private type as well, in order
16475            --  to prevent multiple incompatible class-wide types that may be
16476            --  created for self-referential anonymous access components.
16477
16478            if Is_Tagged_Type (Prev)
16479              and then Present (Class_Wide_Type (Prev))
16480            then
16481               Set_Ekind (Id, Ekind (Prev));         --  will be reset later
16482               Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16483
16484               --  The type of the classwide type is the current Id. Previously
16485               --  this was not done for private declarations because of order-
16486               --  of elaboration issues in the back-end, but gigi now handles
16487               --  this properly.
16488
16489               Set_Etype (Class_Wide_Type (Id), Id);
16490            end if;
16491
16492         --  Case of full declaration of private type
16493
16494         else
16495            --  If the private type was a completion of an incomplete type then
16496            --  update Prev to reference the private type
16497
16498            if Ada_Version >= Ada_2012
16499              and then Ekind (Prev) = E_Incomplete_Type
16500              and then Present (Full_View (Prev))
16501              and then Is_Private_Type (Full_View (Prev))
16502            then
16503               Prev := Full_View (Prev);
16504               Prev_Par := Parent (Prev);
16505            end if;
16506
16507            if Nkind (N) = N_Full_Type_Declaration
16508              and then Nkind_In
16509                         (Type_Definition (N), N_Record_Definition,
16510                                               N_Derived_Type_Definition)
16511              and then Interface_Present (Type_Definition (N))
16512            then
16513               Error_Msg_N
16514                 ("completion of private type cannot be an interface", N);
16515            end if;
16516
16517            if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16518               if Etype (Prev) /= Prev then
16519
16520                  --  Prev is a private subtype or a derived type, and needs
16521                  --  no completion.
16522
16523                  Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16524                  New_Id := Id;
16525
16526               elsif Ekind (Prev) = E_Private_Type
16527                 and then Nkind_In (N, N_Task_Type_Declaration,
16528                                       N_Protected_Type_Declaration)
16529               then
16530                  Error_Msg_N
16531                   ("completion of nonlimited type cannot be limited", N);
16532
16533               elsif Ekind (Prev) = E_Record_Type_With_Private
16534                 and then Nkind_In (N, N_Task_Type_Declaration,
16535                                       N_Protected_Type_Declaration)
16536               then
16537                  if not Is_Limited_Record (Prev) then
16538                     Error_Msg_N
16539                        ("completion of nonlimited type cannot be limited", N);
16540
16541                  elsif No (Interface_List (N)) then
16542                     Error_Msg_N
16543                        ("completion of tagged private type must be tagged",
16544                         N);
16545                  end if;
16546               end if;
16547
16548            --  Ada 2005 (AI-251): Private extension declaration of a task
16549            --  type or a protected type. This case arises when covering
16550            --  interface types.
16551
16552            elsif Nkind_In (N, N_Task_Type_Declaration,
16553                               N_Protected_Type_Declaration)
16554            then
16555               null;
16556
16557            elsif Nkind (N) /= N_Full_Type_Declaration
16558              or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16559            then
16560               Error_Msg_N
16561                 ("full view of private extension must be an extension", N);
16562
16563            elsif not (Abstract_Present (Parent (Prev)))
16564              and then Abstract_Present (Type_Definition (N))
16565            then
16566               Error_Msg_N
16567                 ("full view of non-abstract extension cannot be abstract", N);
16568            end if;
16569
16570            if not In_Private_Part (Current_Scope) then
16571               Error_Msg_N
16572                 ("declaration of full view must appear in private part", N);
16573            end if;
16574
16575            if Ada_Version >= Ada_2012 then
16576               Check_Duplicate_Aspects;
16577            end if;
16578
16579            Copy_And_Swap (Prev, Id);
16580            Set_Has_Private_Declaration (Prev);
16581            Set_Has_Private_Declaration (Id);
16582
16583            --  AI12-0133: Indicate whether we have a partial view with
16584            --  unknown discriminants, in which case initialization of objects
16585            --  of the type do not receive an invariant check.
16586
16587            Set_Partial_View_Has_Unknown_Discr
16588              (Prev, Has_Unknown_Discriminants (Id));
16589
16590            --  Preserve aspect and iterator flags that may have been set on
16591            --  the partial view.
16592
16593            Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16594            Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16595
16596            --  If no error, propagate freeze_node from private to full view.
16597            --  It may have been generated for an early operational item.
16598
16599            if Present (Freeze_Node (Id))
16600              and then Serious_Errors_Detected = 0
16601              and then No (Full_View (Id))
16602            then
16603               Set_Freeze_Node (Prev, Freeze_Node (Id));
16604               Set_Freeze_Node (Id, Empty);
16605               Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16606            end if;
16607
16608            Set_Full_View (Id, Prev);
16609            New_Id := Prev;
16610         end if;
16611
16612         --  Verify that full declaration conforms to partial one
16613
16614         if Is_Incomplete_Or_Private_Type (Prev)
16615           and then Present (Discriminant_Specifications (Prev_Par))
16616         then
16617            if Present (Discriminant_Specifications (N)) then
16618               if Ekind (Prev) = E_Incomplete_Type then
16619                  Check_Discriminant_Conformance (N, Prev, Prev);
16620               else
16621                  Check_Discriminant_Conformance (N, Prev, Id);
16622               end if;
16623
16624            else
16625               Error_Msg_N
16626                 ("missing discriminants in full type declaration", N);
16627
16628               --  To avoid cascaded errors on subsequent use, share the
16629               --  discriminants of the partial view.
16630
16631               Set_Discriminant_Specifications (N,
16632                 Discriminant_Specifications (Prev_Par));
16633            end if;
16634         end if;
16635
16636         --  A prior untagged partial view can have an associated class-wide
16637         --  type due to use of the class attribute, and in this case the full
16638         --  type must also be tagged. This Ada 95 usage is deprecated in favor
16639         --  of incomplete tagged declarations, but we check for it.
16640
16641         if Is_Type (Prev)
16642           and then (Is_Tagged_Type (Prev)
16643                      or else Present (Class_Wide_Type (Prev)))
16644         then
16645            --  Ada 2012 (AI05-0162): A private type may be the completion of
16646            --  an incomplete type.
16647
16648            if Ada_Version >= Ada_2012
16649              and then Is_Incomplete_Type (Prev)
16650              and then Nkind_In (N, N_Private_Type_Declaration,
16651                                    N_Private_Extension_Declaration)
16652            then
16653               --  No need to check private extensions since they are tagged
16654
16655               if Nkind (N) = N_Private_Type_Declaration
16656                 and then not Tagged_Present (N)
16657               then
16658                  Tag_Mismatch;
16659               end if;
16660
16661            --  The full declaration is either a tagged type (including
16662            --  a synchronized type that implements interfaces) or a
16663            --  type extension, otherwise this is an error.
16664
16665            elsif Nkind_In (N, N_Task_Type_Declaration,
16666                               N_Protected_Type_Declaration)
16667            then
16668               if No (Interface_List (N)) and then not Error_Posted (N) then
16669                  Tag_Mismatch;
16670               end if;
16671
16672            elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16673
16674               --  Indicate that the previous declaration (tagged incomplete
16675               --  or private declaration) requires the same on the full one.
16676
16677               if not Tagged_Present (Type_Definition (N)) then
16678                  Tag_Mismatch;
16679                  Set_Is_Tagged_Type (Id);
16680               end if;
16681
16682            elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16683               if No (Record_Extension_Part (Type_Definition (N))) then
16684                  Error_Msg_NE
16685                    ("full declaration of } must be a record extension",
16686                     Prev, Id);
16687
16688                  --  Set some attributes to produce a usable full view
16689
16690                  Set_Is_Tagged_Type (Id);
16691               end if;
16692
16693            else
16694               Tag_Mismatch;
16695            end if;
16696         end if;
16697
16698         if Present (Prev)
16699           and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16700           and then Present (Premature_Use (Parent (Prev)))
16701         then
16702            Error_Msg_Sloc := Sloc (N);
16703            Error_Msg_N
16704              ("\full declaration #", Premature_Use (Parent (Prev)));
16705         end if;
16706
16707         return New_Id;
16708      end if;
16709   end Find_Type_Name;
16710
16711   -------------------------
16712   -- Find_Type_Of_Object --
16713   -------------------------
16714
16715   function Find_Type_Of_Object
16716     (Obj_Def     : Node_Id;
16717      Related_Nod : Node_Id) return Entity_Id
16718   is
16719      Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16720      P        : Node_Id := Parent (Obj_Def);
16721      T        : Entity_Id;
16722      Nam      : Name_Id;
16723
16724   begin
16725      --  If the parent is a component_definition node we climb to the
16726      --  component_declaration node
16727
16728      if Nkind (P) = N_Component_Definition then
16729         P := Parent (P);
16730      end if;
16731
16732      --  Case of an anonymous array subtype
16733
16734      if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16735                             N_Unconstrained_Array_Definition)
16736      then
16737         T := Empty;
16738         Array_Type_Declaration (T, Obj_Def);
16739
16740      --  Create an explicit subtype whenever possible
16741
16742      elsif Nkind (P) /= N_Component_Declaration
16743        and then Def_Kind = N_Subtype_Indication
16744      then
16745         --  Base name of subtype on object name, which will be unique in
16746         --  the current scope.
16747
16748         --  If this is a duplicate declaration, return base type, to avoid
16749         --  generating duplicate anonymous types.
16750
16751         if Error_Posted (P) then
16752            Analyze (Subtype_Mark (Obj_Def));
16753            return Entity (Subtype_Mark (Obj_Def));
16754         end if;
16755
16756         Nam :=
16757            New_External_Name
16758             (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16759
16760         T := Make_Defining_Identifier (Sloc (P), Nam);
16761
16762         Insert_Action (Obj_Def,
16763           Make_Subtype_Declaration (Sloc (P),
16764             Defining_Identifier => T,
16765             Subtype_Indication  => Relocate_Node (Obj_Def)));
16766
16767         --  This subtype may need freezing, and this will not be done
16768         --  automatically if the object declaration is not in declarative
16769         --  part. Since this is an object declaration, the type cannot always
16770         --  be frozen here. Deferred constants do not freeze their type
16771         --  (which often enough will be private).
16772
16773         if Nkind (P) = N_Object_Declaration
16774           and then Constant_Present (P)
16775           and then No (Expression (P))
16776         then
16777            null;
16778
16779         --  Here we freeze the base type of object type to catch premature use
16780         --  of discriminated private type without a full view.
16781
16782         else
16783            Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16784         end if;
16785
16786      --  Ada 2005 AI-406: the object definition in an object declaration
16787      --  can be an access definition.
16788
16789      elsif Def_Kind = N_Access_Definition then
16790         T := Access_Definition (Related_Nod, Obj_Def);
16791
16792         Set_Is_Local_Anonymous_Access
16793           (T,
16794            V => (Ada_Version < Ada_2012)
16795                   or else (Nkind (P) /= N_Object_Declaration)
16796                   or else Is_Library_Level_Entity (Defining_Identifier (P)));
16797
16798      --  Otherwise, the object definition is just a subtype_mark
16799
16800      else
16801         T := Process_Subtype (Obj_Def, Related_Nod);
16802
16803         --  If expansion is disabled an object definition that is an aggregate
16804         --  will not get expanded and may lead to scoping problems in the back
16805         --  end, if the object is referenced in an inner scope. In that case
16806         --  create an itype reference for the object definition now. This
16807         --  may be redundant in some cases, but harmless.
16808
16809         if Is_Itype (T)
16810           and then Nkind (Related_Nod) = N_Object_Declaration
16811           and then ASIS_Mode
16812         then
16813            Build_Itype_Reference (T, Related_Nod);
16814         end if;
16815      end if;
16816
16817      return T;
16818   end Find_Type_Of_Object;
16819
16820   --------------------------------
16821   -- Find_Type_Of_Subtype_Indic --
16822   --------------------------------
16823
16824   function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16825      Typ : Entity_Id;
16826
16827   begin
16828      --  Case of subtype mark with a constraint
16829
16830      if Nkind (S) = N_Subtype_Indication then
16831         Find_Type (Subtype_Mark (S));
16832         Typ := Entity (Subtype_Mark (S));
16833
16834         if not
16835           Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16836         then
16837            Error_Msg_N
16838              ("incorrect constraint for this kind of type", Constraint (S));
16839            Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16840         end if;
16841
16842      --  Otherwise we have a subtype mark without a constraint
16843
16844      elsif Error_Posted (S) then
16845         Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16846         return Any_Type;
16847
16848      else
16849         Find_Type (S);
16850         Typ := Entity (S);
16851      end if;
16852
16853      --  Check No_Wide_Characters restriction
16854
16855      Check_Wide_Character_Restriction (Typ, S);
16856
16857      return Typ;
16858   end Find_Type_Of_Subtype_Indic;
16859
16860   -------------------------------------
16861   -- Floating_Point_Type_Declaration --
16862   -------------------------------------
16863
16864   procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16865      Digs          : constant Node_Id := Digits_Expression (Def);
16866      Max_Digs_Val  : constant Uint := Digits_Value (Standard_Long_Long_Float);
16867      Digs_Val      : Uint;
16868      Base_Typ      : Entity_Id;
16869      Implicit_Base : Entity_Id;
16870      Bound         : Node_Id;
16871
16872      function Can_Derive_From (E : Entity_Id) return Boolean;
16873      --  Find if given digits value, and possibly a specified range, allows
16874      --  derivation from specified type
16875
16876      function Find_Base_Type return Entity_Id;
16877      --  Find a predefined base type that Def can derive from, or generate
16878      --  an error and substitute Long_Long_Float if none exists.
16879
16880      ---------------------
16881      -- Can_Derive_From --
16882      ---------------------
16883
16884      function Can_Derive_From (E : Entity_Id) return Boolean is
16885         Spec : constant Entity_Id := Real_Range_Specification (Def);
16886
16887      begin
16888         --  Check specified "digits" constraint
16889
16890         if Digs_Val > Digits_Value (E) then
16891            return False;
16892         end if;
16893
16894         --  Check for matching range, if specified
16895
16896         if Present (Spec) then
16897            if Expr_Value_R (Type_Low_Bound (E)) >
16898               Expr_Value_R (Low_Bound (Spec))
16899            then
16900               return False;
16901            end if;
16902
16903            if Expr_Value_R (Type_High_Bound (E)) <
16904               Expr_Value_R (High_Bound (Spec))
16905            then
16906               return False;
16907            end if;
16908         end if;
16909
16910         return True;
16911      end Can_Derive_From;
16912
16913      --------------------
16914      -- Find_Base_Type --
16915      --------------------
16916
16917      function Find_Base_Type return Entity_Id is
16918         Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16919
16920      begin
16921         --  Iterate over the predefined types in order, returning the first
16922         --  one that Def can derive from.
16923
16924         while Present (Choice) loop
16925            if Can_Derive_From (Node (Choice)) then
16926               return Node (Choice);
16927            end if;
16928
16929            Next_Elmt (Choice);
16930         end loop;
16931
16932         --  If we can't derive from any existing type, use Long_Long_Float
16933         --  and give appropriate message explaining the problem.
16934
16935         if Digs_Val > Max_Digs_Val then
16936            --  It might be the case that there is a type with the requested
16937            --  range, just not the combination of digits and range.
16938
16939            Error_Msg_N
16940              ("no predefined type has requested range and precision",
16941               Real_Range_Specification (Def));
16942
16943         else
16944            Error_Msg_N
16945              ("range too large for any predefined type",
16946               Real_Range_Specification (Def));
16947         end if;
16948
16949         return Standard_Long_Long_Float;
16950      end Find_Base_Type;
16951
16952   --  Start of processing for Floating_Point_Type_Declaration
16953
16954   begin
16955      Check_Restriction (No_Floating_Point, Def);
16956
16957      --  Create an implicit base type
16958
16959      Implicit_Base :=
16960        Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16961
16962      --  Analyze and verify digits value
16963
16964      Analyze_And_Resolve (Digs, Any_Integer);
16965      Check_Digits_Expression (Digs);
16966      Digs_Val := Expr_Value (Digs);
16967
16968      --  Process possible range spec and find correct type to derive from
16969
16970      Process_Real_Range_Specification (Def);
16971
16972      --  Check that requested number of digits is not too high.
16973
16974      if Digs_Val > Max_Digs_Val then
16975
16976         --  The check for Max_Base_Digits may be somewhat expensive, as it
16977         --  requires reading System, so only do it when necessary.
16978
16979         declare
16980            Max_Base_Digits : constant Uint :=
16981                                Expr_Value
16982                                  (Expression
16983                                     (Parent (RTE (RE_Max_Base_Digits))));
16984
16985         begin
16986            if Digs_Val > Max_Base_Digits then
16987               Error_Msg_Uint_1 := Max_Base_Digits;
16988               Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16989
16990            elsif No (Real_Range_Specification (Def)) then
16991               Error_Msg_Uint_1 := Max_Digs_Val;
16992               Error_Msg_N ("types with more than ^ digits need range spec "
16993                 & "(RM 3.5.7(6))", Digs);
16994            end if;
16995         end;
16996      end if;
16997
16998      --  Find a suitable type to derive from or complain and use a substitute
16999
17000      Base_Typ := Find_Base_Type;
17001
17002      --  If there are bounds given in the declaration use them as the bounds
17003      --  of the type, otherwise use the bounds of the predefined base type
17004      --  that was chosen based on the Digits value.
17005
17006      if Present (Real_Range_Specification (Def)) then
17007         Set_Scalar_Range (T, Real_Range_Specification (Def));
17008         Set_Is_Constrained (T);
17009
17010         --  The bounds of this range must be converted to machine numbers
17011         --  in accordance with RM 4.9(38).
17012
17013         Bound := Type_Low_Bound (T);
17014
17015         if Nkind (Bound) = N_Real_Literal then
17016            Set_Realval
17017              (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17018            Set_Is_Machine_Number (Bound);
17019         end if;
17020
17021         Bound := Type_High_Bound (T);
17022
17023         if Nkind (Bound) = N_Real_Literal then
17024            Set_Realval
17025              (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17026            Set_Is_Machine_Number (Bound);
17027         end if;
17028
17029      else
17030         Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17031      end if;
17032
17033      --  Complete definition of implicit base and declared first subtype. The
17034      --  inheritance of the rep item chain ensures that SPARK-related pragmas
17035      --  are not clobbered when the floating point type acts as a full view of
17036      --  a private type.
17037
17038      Set_Etype              (Implicit_Base,                 Base_Typ);
17039      Set_Scalar_Range       (Implicit_Base, Scalar_Range   (Base_Typ));
17040      Set_Size_Info          (Implicit_Base,                 Base_Typ);
17041      Set_RM_Size            (Implicit_Base, RM_Size        (Base_Typ));
17042      Set_First_Rep_Item     (Implicit_Base, First_Rep_Item (Base_Typ));
17043      Set_Digits_Value       (Implicit_Base, Digits_Value   (Base_Typ));
17044      Set_Float_Rep          (Implicit_Base, Float_Rep      (Base_Typ));
17045
17046      Set_Ekind              (T, E_Floating_Point_Subtype);
17047      Set_Etype              (T,          Implicit_Base);
17048      Set_Size_Info          (T,          Implicit_Base);
17049      Set_RM_Size            (T, RM_Size (Implicit_Base));
17050      Inherit_Rep_Item_Chain (T,          Implicit_Base);
17051      Set_Digits_Value       (T, Digs_Val);
17052   end Floating_Point_Type_Declaration;
17053
17054   ----------------------------
17055   -- Get_Discriminant_Value --
17056   ----------------------------
17057
17058   --  This is the situation:
17059
17060   --  There is a non-derived type
17061
17062   --       type T0 (Dx, Dy, Dz...)
17063
17064   --  There are zero or more levels of derivation, with each derivation
17065   --  either purely inheriting the discriminants, or defining its own.
17066
17067   --       type Ti      is new Ti-1
17068   --  or
17069   --       type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17070   --  or
17071   --       subtype Ti is ...
17072
17073   --  The subtype issue is avoided by the use of Original_Record_Component,
17074   --  and the fact that derived subtypes also derive the constraints.
17075
17076   --  This chain leads back from
17077
17078   --       Typ_For_Constraint
17079
17080   --  Typ_For_Constraint has discriminants, and the value for each
17081   --  discriminant is given by its corresponding Elmt of Constraints.
17082
17083   --  Discriminant is some discriminant in this hierarchy
17084
17085   --  We need to return its value
17086
17087   --  We do this by recursively searching each level, and looking for
17088   --  Discriminant. Once we get to the bottom, we start backing up
17089   --  returning the value for it which may in turn be a discriminant
17090   --  further up, so on the backup we continue the substitution.
17091
17092   function Get_Discriminant_Value
17093     (Discriminant       : Entity_Id;
17094      Typ_For_Constraint : Entity_Id;
17095      Constraint         : Elist_Id) return Node_Id
17096   is
17097      function Root_Corresponding_Discriminant
17098        (Discr : Entity_Id) return Entity_Id;
17099      --  Given a discriminant, traverse the chain of inherited discriminants
17100      --  and return the topmost discriminant.
17101
17102      function Search_Derivation_Levels
17103        (Ti                    : Entity_Id;
17104         Discrim_Values        : Elist_Id;
17105         Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17106      --  This is the routine that performs the recursive search of levels
17107      --  as described above.
17108
17109      -------------------------------------
17110      -- Root_Corresponding_Discriminant --
17111      -------------------------------------
17112
17113      function Root_Corresponding_Discriminant
17114        (Discr : Entity_Id) return Entity_Id
17115      is
17116         D : Entity_Id;
17117
17118      begin
17119         D := Discr;
17120         while Present (Corresponding_Discriminant (D)) loop
17121            D := Corresponding_Discriminant (D);
17122         end loop;
17123
17124         return D;
17125      end Root_Corresponding_Discriminant;
17126
17127      ------------------------------
17128      -- Search_Derivation_Levels --
17129      ------------------------------
17130
17131      function Search_Derivation_Levels
17132        (Ti                    : Entity_Id;
17133         Discrim_Values        : Elist_Id;
17134         Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17135      is
17136         Assoc          : Elmt_Id;
17137         Disc           : Entity_Id;
17138         Result         : Node_Or_Entity_Id;
17139         Result_Entity  : Node_Id;
17140
17141      begin
17142         --  If inappropriate type, return Error, this happens only in
17143         --  cascaded error situations, and we want to avoid a blow up.
17144
17145         if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17146            return Error;
17147         end if;
17148
17149         --  Look deeper if possible. Use Stored_Constraints only for
17150         --  untagged types. For tagged types use the given constraint.
17151         --  This asymmetry needs explanation???
17152
17153         if not Stored_Discrim_Values
17154           and then Present (Stored_Constraint (Ti))
17155           and then not Is_Tagged_Type (Ti)
17156         then
17157            Result :=
17158              Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17159         else
17160            declare
17161               Td : constant Entity_Id := Etype (Ti);
17162
17163            begin
17164               if Td = Ti then
17165                  Result := Discriminant;
17166
17167               else
17168                  if Present (Stored_Constraint (Ti)) then
17169                     Result :=
17170                        Search_Derivation_Levels
17171                          (Td, Stored_Constraint (Ti), True);
17172                  else
17173                     Result :=
17174                        Search_Derivation_Levels
17175                          (Td, Discrim_Values, Stored_Discrim_Values);
17176                  end if;
17177               end if;
17178            end;
17179         end if;
17180
17181         --  Extra underlying places to search, if not found above. For
17182         --  concurrent types, the relevant discriminant appears in the
17183         --  corresponding record. For a type derived from a private type
17184         --  without discriminant, the full view inherits the discriminants
17185         --  of the full view of the parent.
17186
17187         if Result = Discriminant then
17188            if Is_Concurrent_Type (Ti)
17189              and then Present (Corresponding_Record_Type (Ti))
17190            then
17191               Result :=
17192                 Search_Derivation_Levels (
17193                   Corresponding_Record_Type (Ti),
17194                   Discrim_Values,
17195                   Stored_Discrim_Values);
17196
17197            elsif Is_Private_Type (Ti)
17198              and then not Has_Discriminants (Ti)
17199              and then Present (Full_View (Ti))
17200              and then Etype (Full_View (Ti)) /= Ti
17201            then
17202               Result :=
17203                 Search_Derivation_Levels (
17204                   Full_View (Ti),
17205                   Discrim_Values,
17206                   Stored_Discrim_Values);
17207            end if;
17208         end if;
17209
17210         --  If Result is not a (reference to a) discriminant, return it,
17211         --  otherwise set Result_Entity to the discriminant.
17212
17213         if Nkind (Result) = N_Defining_Identifier then
17214            pragma Assert (Result = Discriminant);
17215            Result_Entity := Result;
17216
17217         else
17218            if not Denotes_Discriminant (Result) then
17219               return Result;
17220            end if;
17221
17222            Result_Entity := Entity (Result);
17223         end if;
17224
17225         --  See if this level of derivation actually has discriminants because
17226         --  tagged derivations can add them, hence the lower levels need not
17227         --  have any.
17228
17229         if not Has_Discriminants (Ti) then
17230            return Result;
17231         end if;
17232
17233         --  Scan Ti's discriminants for Result_Entity, and return its
17234         --  corresponding value, if any.
17235
17236         Result_Entity := Original_Record_Component (Result_Entity);
17237
17238         Assoc := First_Elmt (Discrim_Values);
17239
17240         if Stored_Discrim_Values then
17241            Disc := First_Stored_Discriminant (Ti);
17242         else
17243            Disc := First_Discriminant (Ti);
17244         end if;
17245
17246         while Present (Disc) loop
17247            pragma Assert (Present (Assoc));
17248
17249            if Original_Record_Component (Disc) = Result_Entity then
17250               return Node (Assoc);
17251            end if;
17252
17253            Next_Elmt (Assoc);
17254
17255            if Stored_Discrim_Values then
17256               Next_Stored_Discriminant (Disc);
17257            else
17258               Next_Discriminant (Disc);
17259            end if;
17260         end loop;
17261
17262         --  Could not find it
17263
17264         return Result;
17265      end Search_Derivation_Levels;
17266
17267      --  Local Variables
17268
17269      Result : Node_Or_Entity_Id;
17270
17271   --  Start of processing for Get_Discriminant_Value
17272
17273   begin
17274      --  ??? This routine is a gigantic mess and will be deleted. For the
17275      --  time being just test for the trivial case before calling recurse.
17276
17277      if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17278         declare
17279            D : Entity_Id;
17280            E : Elmt_Id;
17281
17282         begin
17283            D := First_Discriminant (Typ_For_Constraint);
17284            E := First_Elmt (Constraint);
17285            while Present (D) loop
17286               if Chars (D) = Chars (Discriminant) then
17287                  return Node (E);
17288               end if;
17289
17290               Next_Discriminant (D);
17291               Next_Elmt (E);
17292            end loop;
17293         end;
17294      end if;
17295
17296      Result := Search_Derivation_Levels
17297        (Typ_For_Constraint, Constraint, False);
17298
17299      --  ??? hack to disappear when this routine is gone
17300
17301      if Nkind (Result) = N_Defining_Identifier then
17302         declare
17303            D : Entity_Id;
17304            E : Elmt_Id;
17305
17306         begin
17307            D := First_Discriminant (Typ_For_Constraint);
17308            E := First_Elmt (Constraint);
17309            while Present (D) loop
17310               if Root_Corresponding_Discriminant (D) = Discriminant then
17311                  return Node (E);
17312               end if;
17313
17314               Next_Discriminant (D);
17315               Next_Elmt (E);
17316            end loop;
17317         end;
17318      end if;
17319
17320      pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17321      return Result;
17322   end Get_Discriminant_Value;
17323
17324   --------------------------
17325   -- Has_Range_Constraint --
17326   --------------------------
17327
17328   function Has_Range_Constraint (N : Node_Id) return Boolean is
17329      C : constant Node_Id := Constraint (N);
17330
17331   begin
17332      if Nkind (C) = N_Range_Constraint then
17333         return True;
17334
17335      elsif Nkind (C) = N_Digits_Constraint then
17336         return
17337            Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17338              or else Present (Range_Constraint (C));
17339
17340      elsif Nkind (C) = N_Delta_Constraint then
17341         return Present (Range_Constraint (C));
17342
17343      else
17344         return False;
17345      end if;
17346   end Has_Range_Constraint;
17347
17348   ------------------------
17349   -- Inherit_Components --
17350   ------------------------
17351
17352   function Inherit_Components
17353     (N             : Node_Id;
17354      Parent_Base   : Entity_Id;
17355      Derived_Base  : Entity_Id;
17356      Is_Tagged     : Boolean;
17357      Inherit_Discr : Boolean;
17358      Discs         : Elist_Id) return Elist_Id
17359   is
17360      Assoc_List : constant Elist_Id := New_Elmt_List;
17361
17362      procedure Inherit_Component
17363        (Old_C          : Entity_Id;
17364         Plain_Discrim  : Boolean := False;
17365         Stored_Discrim : Boolean := False);
17366      --  Inherits component Old_C from Parent_Base to the Derived_Base. If
17367      --  Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17368      --  True, Old_C is a stored discriminant. If they are both false then
17369      --  Old_C is a regular component.
17370
17371      -----------------------
17372      -- Inherit_Component --
17373      -----------------------
17374
17375      procedure Inherit_Component
17376        (Old_C          : Entity_Id;
17377         Plain_Discrim  : Boolean := False;
17378         Stored_Discrim : Boolean := False)
17379      is
17380         procedure Set_Anonymous_Type (Id : Entity_Id);
17381         --  Id denotes the entity of an access discriminant or anonymous
17382         --  access component. Set the type of Id to either the same type of
17383         --  Old_C or create a new one depending on whether the parent and
17384         --  the child types are in the same scope.
17385
17386         ------------------------
17387         -- Set_Anonymous_Type --
17388         ------------------------
17389
17390         procedure Set_Anonymous_Type (Id : Entity_Id) is
17391            Old_Typ : constant Entity_Id := Etype (Old_C);
17392
17393         begin
17394            if Scope (Parent_Base) = Scope (Derived_Base) then
17395               Set_Etype (Id, Old_Typ);
17396
17397            --  The parent and the derived type are in two different scopes.
17398            --  Reuse the type of the original discriminant / component by
17399            --  copying it in order to preserve all attributes.
17400
17401            else
17402               declare
17403                  Typ : constant Entity_Id := New_Copy (Old_Typ);
17404
17405               begin
17406                  Set_Etype (Id, Typ);
17407
17408                  --  Since we do not generate component declarations for
17409                  --  inherited components, associate the itype with the
17410                  --  derived type.
17411
17412                  Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17413                  Set_Scope                     (Typ, Derived_Base);
17414               end;
17415            end if;
17416         end Set_Anonymous_Type;
17417
17418         --  Local variables and constants
17419
17420         New_C : constant Entity_Id := New_Copy (Old_C);
17421
17422         Corr_Discrim : Entity_Id;
17423         Discrim      : Entity_Id;
17424
17425      --  Start of processing for Inherit_Component
17426
17427      begin
17428         pragma Assert (not Is_Tagged or not Stored_Discrim);
17429
17430         Set_Parent (New_C, Parent (Old_C));
17431
17432         --  Regular discriminants and components must be inserted in the scope
17433         --  of the Derived_Base. Do it here.
17434
17435         if not Stored_Discrim then
17436            Enter_Name (New_C);
17437         end if;
17438
17439         --  For tagged types the Original_Record_Component must point to
17440         --  whatever this field was pointing to in the parent type. This has
17441         --  already been achieved by the call to New_Copy above.
17442
17443         if not Is_Tagged then
17444            Set_Original_Record_Component (New_C, New_C);
17445         end if;
17446
17447         --  Set the proper type of an access discriminant
17448
17449         if Ekind (New_C) = E_Discriminant
17450           and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17451         then
17452            Set_Anonymous_Type (New_C);
17453         end if;
17454
17455         --  If we have inherited a component then see if its Etype contains
17456         --  references to Parent_Base discriminants. In this case, replace
17457         --  these references with the constraints given in Discs. We do not
17458         --  do this for the partial view of private types because this is
17459         --  not needed (only the components of the full view will be used
17460         --  for code generation) and cause problem. We also avoid this
17461         --  transformation in some error situations.
17462
17463         if Ekind (New_C) = E_Component then
17464
17465            --  Set the proper type of an anonymous access component
17466
17467            if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17468               Set_Anonymous_Type (New_C);
17469
17470            elsif (Is_Private_Type (Derived_Base)
17471                    and then not Is_Generic_Type (Derived_Base))
17472              or else (Is_Empty_Elmt_List (Discs)
17473                        and then not Expander_Active)
17474            then
17475               Set_Etype (New_C, Etype (Old_C));
17476
17477            else
17478               --  The current component introduces a circularity of the
17479               --  following kind:
17480
17481               --     limited with Pack_2;
17482               --     package Pack_1 is
17483               --        type T_1 is tagged record
17484               --           Comp : access Pack_2.T_2;
17485               --           ...
17486               --        end record;
17487               --     end Pack_1;
17488
17489               --     with Pack_1;
17490               --     package Pack_2 is
17491               --        type T_2 is new Pack_1.T_1 with ...;
17492               --     end Pack_2;
17493
17494               Set_Etype
17495                 (New_C,
17496                  Constrain_Component_Type
17497                    (Old_C, Derived_Base, N, Parent_Base, Discs));
17498            end if;
17499         end if;
17500
17501         --  In derived tagged types it is illegal to reference a non
17502         --  discriminant component in the parent type. To catch this, mark
17503         --  these components with an Ekind of E_Void. This will be reset in
17504         --  Record_Type_Definition after processing the record extension of
17505         --  the derived type.
17506
17507         --  If the declaration is a private extension, there is no further
17508         --  record extension to process, and the components retain their
17509         --  current kind, because they are visible at this point.
17510
17511         if Is_Tagged and then Ekind (New_C) = E_Component
17512           and then Nkind (N) /= N_Private_Extension_Declaration
17513         then
17514            Set_Ekind (New_C, E_Void);
17515         end if;
17516
17517         if Plain_Discrim then
17518            Set_Corresponding_Discriminant (New_C, Old_C);
17519            Build_Discriminal (New_C);
17520
17521         --  If we are explicitly inheriting a stored discriminant it will be
17522         --  completely hidden.
17523
17524         elsif Stored_Discrim then
17525            Set_Corresponding_Discriminant (New_C, Empty);
17526            Set_Discriminal (New_C, Empty);
17527            Set_Is_Completely_Hidden (New_C);
17528
17529            --  Set the Original_Record_Component of each discriminant in the
17530            --  derived base to point to the corresponding stored that we just
17531            --  created.
17532
17533            Discrim := First_Discriminant (Derived_Base);
17534            while Present (Discrim) loop
17535               Corr_Discrim := Corresponding_Discriminant (Discrim);
17536
17537               --  Corr_Discrim could be missing in an error situation
17538
17539               if Present (Corr_Discrim)
17540                 and then Original_Record_Component (Corr_Discrim) = Old_C
17541               then
17542                  Set_Original_Record_Component (Discrim, New_C);
17543               end if;
17544
17545               Next_Discriminant (Discrim);
17546            end loop;
17547
17548            Append_Entity (New_C, Derived_Base);
17549         end if;
17550
17551         if not Is_Tagged then
17552            Append_Elmt (Old_C, Assoc_List);
17553            Append_Elmt (New_C, Assoc_List);
17554         end if;
17555      end Inherit_Component;
17556
17557      --  Variables local to Inherit_Component
17558
17559      Loc : constant Source_Ptr := Sloc (N);
17560
17561      Parent_Discrim : Entity_Id;
17562      Stored_Discrim : Entity_Id;
17563      D              : Entity_Id;
17564      Component      : Entity_Id;
17565
17566   --  Start of processing for Inherit_Components
17567
17568   begin
17569      if not Is_Tagged then
17570         Append_Elmt (Parent_Base,  Assoc_List);
17571         Append_Elmt (Derived_Base, Assoc_List);
17572      end if;
17573
17574      --  Inherit parent discriminants if needed
17575
17576      if Inherit_Discr then
17577         Parent_Discrim := First_Discriminant (Parent_Base);
17578         while Present (Parent_Discrim) loop
17579            Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17580            Next_Discriminant (Parent_Discrim);
17581         end loop;
17582      end if;
17583
17584      --  Create explicit stored discrims for untagged types when necessary
17585
17586      if not Has_Unknown_Discriminants (Derived_Base)
17587        and then Has_Discriminants (Parent_Base)
17588        and then not Is_Tagged
17589        and then
17590          (not Inherit_Discr
17591            or else First_Discriminant (Parent_Base) /=
17592                    First_Stored_Discriminant (Parent_Base))
17593      then
17594         Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17595         while Present (Stored_Discrim) loop
17596            Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17597            Next_Stored_Discriminant (Stored_Discrim);
17598         end loop;
17599      end if;
17600
17601      --  See if we can apply the second transformation for derived types, as
17602      --  explained in point 6. in the comments above Build_Derived_Record_Type
17603      --  This is achieved by appending Derived_Base discriminants into Discs,
17604      --  which has the side effect of returning a non empty Discs list to the
17605      --  caller of Inherit_Components, which is what we want. This must be
17606      --  done for private derived types if there are explicit stored
17607      --  discriminants, to ensure that we can retrieve the values of the
17608      --  constraints provided in the ancestors.
17609
17610      if Inherit_Discr
17611        and then Is_Empty_Elmt_List (Discs)
17612        and then Present (First_Discriminant (Derived_Base))
17613        and then
17614          (not Is_Private_Type (Derived_Base)
17615            or else Is_Completely_Hidden
17616                      (First_Stored_Discriminant (Derived_Base))
17617            or else Is_Generic_Type (Derived_Base))
17618      then
17619         D := First_Discriminant (Derived_Base);
17620         while Present (D) loop
17621            Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17622            Next_Discriminant (D);
17623         end loop;
17624      end if;
17625
17626      --  Finally, inherit non-discriminant components unless they are not
17627      --  visible because defined or inherited from the full view of the
17628      --  parent. Don't inherit the _parent field of the parent type.
17629
17630      Component := First_Entity (Parent_Base);
17631      while Present (Component) loop
17632
17633         --  Ada 2005 (AI-251): Do not inherit components associated with
17634         --  secondary tags of the parent.
17635
17636         if Ekind (Component) = E_Component
17637           and then Present (Related_Type (Component))
17638         then
17639            null;
17640
17641         elsif Ekind (Component) /= E_Component
17642           or else Chars (Component) = Name_uParent
17643         then
17644            null;
17645
17646         --  If the derived type is within the parent type's declarative
17647         --  region, then the components can still be inherited even though
17648         --  they aren't visible at this point. This can occur for cases
17649         --  such as within public child units where the components must
17650         --  become visible upon entering the child unit's private part.
17651
17652         elsif not Is_Visible_Component (Component)
17653           and then not In_Open_Scopes (Scope (Parent_Base))
17654         then
17655            null;
17656
17657         elsif Ekind_In (Derived_Base, E_Private_Type,
17658                                       E_Limited_Private_Type)
17659         then
17660            null;
17661
17662         else
17663            Inherit_Component (Component);
17664         end if;
17665
17666         Next_Entity (Component);
17667      end loop;
17668
17669      --  For tagged derived types, inherited discriminants cannot be used in
17670      --  component declarations of the record extension part. To achieve this
17671      --  we mark the inherited discriminants as not visible.
17672
17673      if Is_Tagged and then Inherit_Discr then
17674         D := First_Discriminant (Derived_Base);
17675         while Present (D) loop
17676            Set_Is_Immediately_Visible (D, False);
17677            Next_Discriminant (D);
17678         end loop;
17679      end if;
17680
17681      return Assoc_List;
17682   end Inherit_Components;
17683
17684   -----------------------------
17685   -- Inherit_Predicate_Flags --
17686   -----------------------------
17687
17688   procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17689   begin
17690      Set_Has_Predicates (Subt, Has_Predicates (Par));
17691      Set_Has_Static_Predicate_Aspect
17692        (Subt, Has_Static_Predicate_Aspect (Par));
17693      Set_Has_Dynamic_Predicate_Aspect
17694        (Subt, Has_Dynamic_Predicate_Aspect (Par));
17695   end Inherit_Predicate_Flags;
17696
17697   ----------------------
17698   -- Is_EVF_Procedure --
17699   ----------------------
17700
17701   function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17702      Formal : Entity_Id;
17703
17704   begin
17705      --  Examine the formals of an Extensions_Visible False procedure looking
17706      --  for a controlling OUT parameter.
17707
17708      if Ekind (Subp) = E_Procedure
17709        and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17710      then
17711         Formal := First_Formal (Subp);
17712         while Present (Formal) loop
17713            if Ekind (Formal) = E_Out_Parameter
17714              and then Is_Controlling_Formal (Formal)
17715            then
17716               return True;
17717            end if;
17718
17719            Next_Formal (Formal);
17720         end loop;
17721      end if;
17722
17723      return False;
17724   end Is_EVF_Procedure;
17725
17726   -----------------------
17727   -- Is_Null_Extension --
17728   -----------------------
17729
17730   function Is_Null_Extension (T : Entity_Id) return Boolean is
17731      Type_Decl : constant Node_Id := Parent (Base_Type (T));
17732      Comp_List : Node_Id;
17733      Comp      : Node_Id;
17734
17735   begin
17736      if Nkind (Type_Decl) /= N_Full_Type_Declaration
17737        or else not Is_Tagged_Type (T)
17738        or else Nkind (Type_Definition (Type_Decl)) /=
17739                                              N_Derived_Type_Definition
17740        or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17741      then
17742         return False;
17743      end if;
17744
17745      Comp_List :=
17746        Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17747
17748      if Present (Discriminant_Specifications (Type_Decl)) then
17749         return False;
17750
17751      elsif Present (Comp_List)
17752        and then Is_Non_Empty_List (Component_Items (Comp_List))
17753      then
17754         Comp := First (Component_Items (Comp_List));
17755
17756         --  Only user-defined components are relevant. The component list
17757         --  may also contain a parent component and internal components
17758         --  corresponding to secondary tags, but these do not determine
17759         --  whether this is a null extension.
17760
17761         while Present (Comp) loop
17762            if Comes_From_Source (Comp) then
17763               return False;
17764            end if;
17765
17766            Next (Comp);
17767         end loop;
17768
17769         return True;
17770
17771      else
17772         return True;
17773      end if;
17774   end Is_Null_Extension;
17775
17776   ------------------------------
17777   -- Is_Valid_Constraint_Kind --
17778   ------------------------------
17779
17780   function Is_Valid_Constraint_Kind
17781     (T_Kind          : Type_Kind;
17782      Constraint_Kind : Node_Kind) return Boolean
17783   is
17784   begin
17785      case T_Kind is
17786         when Enumeration_Kind |
17787              Integer_Kind =>
17788            return Constraint_Kind = N_Range_Constraint;
17789
17790         when Decimal_Fixed_Point_Kind =>
17791            return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17792                                              N_Range_Constraint);
17793
17794         when Ordinary_Fixed_Point_Kind =>
17795            return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17796                                              N_Range_Constraint);
17797
17798         when Float_Kind =>
17799            return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17800                                              N_Range_Constraint);
17801
17802         when Access_Kind       |
17803              Array_Kind        |
17804              E_Record_Type     |
17805              E_Record_Subtype  |
17806              Class_Wide_Kind   |
17807              E_Incomplete_Type |
17808              Private_Kind      |
17809              Concurrent_Kind  =>
17810            return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17811
17812         when others =>
17813            return True; -- Error will be detected later
17814      end case;
17815   end Is_Valid_Constraint_Kind;
17816
17817   --------------------------
17818   -- Is_Visible_Component --
17819   --------------------------
17820
17821   function Is_Visible_Component
17822     (C : Entity_Id;
17823      N : Node_Id := Empty) return Boolean
17824   is
17825      Original_Comp : Entity_Id := Empty;
17826      Original_Type : Entity_Id;
17827      Type_Scope    : Entity_Id;
17828
17829      function Is_Local_Type (Typ : Entity_Id) return Boolean;
17830      --  Check whether parent type of inherited component is declared locally,
17831      --  possibly within a nested package or instance. The current scope is
17832      --  the derived record itself.
17833
17834      -------------------
17835      -- Is_Local_Type --
17836      -------------------
17837
17838      function Is_Local_Type (Typ : Entity_Id) return Boolean is
17839         Scop : Entity_Id;
17840
17841      begin
17842         Scop := Scope (Typ);
17843         while Present (Scop)
17844           and then Scop /= Standard_Standard
17845         loop
17846            if Scop = Scope (Current_Scope) then
17847               return True;
17848            end if;
17849
17850            Scop := Scope (Scop);
17851         end loop;
17852
17853         return False;
17854      end Is_Local_Type;
17855
17856   --  Start of processing for Is_Visible_Component
17857
17858   begin
17859      if Ekind_In (C, E_Component, E_Discriminant) then
17860         Original_Comp := Original_Record_Component (C);
17861      end if;
17862
17863      if No (Original_Comp) then
17864
17865         --  Premature usage, or previous error
17866
17867         return False;
17868
17869      else
17870         Original_Type := Scope (Original_Comp);
17871         Type_Scope    := Scope (Base_Type (Scope (C)));
17872      end if;
17873
17874      --  This test only concerns tagged types
17875
17876      if not Is_Tagged_Type (Original_Type) then
17877         return True;
17878
17879      --  If it is _Parent or _Tag, there is no visibility issue
17880
17881      elsif not Comes_From_Source (Original_Comp) then
17882         return True;
17883
17884      --  Discriminants are visible unless the (private) type has unknown
17885      --  discriminants. If the discriminant reference is inserted for a
17886      --  discriminant check on a full view it is also visible.
17887
17888      elsif Ekind (Original_Comp) = E_Discriminant
17889        and then
17890          (not Has_Unknown_Discriminants (Original_Type)
17891            or else (Present (N)
17892                      and then Nkind (N) = N_Selected_Component
17893                      and then Nkind (Prefix (N)) = N_Type_Conversion
17894                      and then not Comes_From_Source (Prefix (N))))
17895      then
17896         return True;
17897
17898      --  In the body of an instantiation, no need to check for the visibility
17899      --  of a component.
17900
17901      elsif In_Instance_Body then
17902         return True;
17903
17904      --  If the component has been declared in an ancestor which is currently
17905      --  a private type, then it is not visible. The same applies if the
17906      --  component's containing type is not in an open scope and the original
17907      --  component's enclosing type is a visible full view of a private type
17908      --  (which can occur in cases where an attempt is being made to reference
17909      --  a component in a sibling package that is inherited from a visible
17910      --  component of a type in an ancestor package; the component in the
17911      --  sibling package should not be visible even though the component it
17912      --  inherited from is visible). This does not apply however in the case
17913      --  where the scope of the type is a private child unit, or when the
17914      --  parent comes from a local package in which the ancestor is currently
17915      --  visible. The latter suppression of visibility is needed for cases
17916      --  that are tested in B730006.
17917
17918      elsif Is_Private_Type (Original_Type)
17919        or else
17920          (not Is_Private_Descendant (Type_Scope)
17921            and then not In_Open_Scopes (Type_Scope)
17922            and then Has_Private_Declaration (Original_Type))
17923      then
17924         --  If the type derives from an entity in a formal package, there
17925         --  are no additional visible components.
17926
17927         if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17928            N_Formal_Package_Declaration
17929         then
17930            return False;
17931
17932         --  if we are not in the private part of the current package, there
17933         --  are no additional visible components.
17934
17935         elsif Ekind (Scope (Current_Scope)) = E_Package
17936           and then not In_Private_Part (Scope (Current_Scope))
17937         then
17938            return False;
17939         else
17940            return
17941              Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17942                and then In_Open_Scopes (Scope (Original_Type))
17943                and then Is_Local_Type (Type_Scope);
17944         end if;
17945
17946      --  There is another weird way in which a component may be invisible when
17947      --  the private and the full view are not derived from the same ancestor.
17948      --  Here is an example :
17949
17950      --       type A1 is tagged      record F1 : integer; end record;
17951      --       type A2 is new A1 with record F2 : integer; end record;
17952      --       type T is new A1 with private;
17953      --     private
17954      --       type T is new A2 with null record;
17955
17956      --  In this case, the full view of T inherits F1 and F2 but the private
17957      --  view inherits only F1
17958
17959      else
17960         declare
17961            Ancestor : Entity_Id := Scope (C);
17962
17963         begin
17964            loop
17965               if Ancestor = Original_Type then
17966                  return True;
17967
17968               --  The ancestor may have a partial view of the original type,
17969               --  but if the full view is in scope, as in a child body, the
17970               --  component is visible.
17971
17972               elsif In_Private_Part (Scope (Original_Type))
17973                 and then Full_View (Ancestor) = Original_Type
17974               then
17975                  return True;
17976
17977               elsif Ancestor = Etype (Ancestor) then
17978
17979                  --  No further ancestors to examine
17980
17981                  return False;
17982               end if;
17983
17984               Ancestor := Etype (Ancestor);
17985            end loop;
17986         end;
17987      end if;
17988   end Is_Visible_Component;
17989
17990   --------------------------
17991   -- Make_Class_Wide_Type --
17992   --------------------------
17993
17994   procedure Make_Class_Wide_Type (T : Entity_Id) is
17995      CW_Type : Entity_Id;
17996      CW_Name : Name_Id;
17997      Next_E  : Entity_Id;
17998
17999   begin
18000      if Present (Class_Wide_Type (T)) then
18001
18002         --  The class-wide type is a partially decorated entity created for a
18003         --  unanalyzed tagged type referenced through a limited with clause.
18004         --  When the tagged type is analyzed, its class-wide type needs to be
18005         --  redecorated. Note that we reuse the entity created by Decorate_
18006         --  Tagged_Type in order to preserve all links.
18007
18008         if Materialize_Entity (Class_Wide_Type (T)) then
18009            CW_Type := Class_Wide_Type (T);
18010            Set_Materialize_Entity (CW_Type, False);
18011
18012         --  The class wide type can have been defined by the partial view, in
18013         --  which case everything is already done.
18014
18015         else
18016            return;
18017         end if;
18018
18019      --  Default case, we need to create a new class-wide type
18020
18021      else
18022         CW_Type :=
18023           New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18024      end if;
18025
18026      --  Inherit root type characteristics
18027
18028      CW_Name := Chars (CW_Type);
18029      Next_E  := Next_Entity (CW_Type);
18030      Copy_Node (T, CW_Type);
18031      Set_Comes_From_Source (CW_Type, False);
18032      Set_Chars (CW_Type, CW_Name);
18033      Set_Parent (CW_Type, Parent (T));
18034      Set_Next_Entity (CW_Type, Next_E);
18035
18036      --  Ensure we have a new freeze node for the class-wide type. The partial
18037      --  view may have freeze action of its own, requiring a proper freeze
18038      --  node, and the same freeze node cannot be shared between the two
18039      --  types.
18040
18041      Set_Has_Delayed_Freeze (CW_Type);
18042      Set_Freeze_Node (CW_Type, Empty);
18043
18044      --  Customize the class-wide type: It has no prim. op., it cannot be
18045      --  abstract and its Etype points back to the specific root type.
18046
18047      Set_Ekind                       (CW_Type, E_Class_Wide_Type);
18048      Set_Is_Tagged_Type              (CW_Type, True);
18049      Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18050      Set_Is_Abstract_Type            (CW_Type, False);
18051      Set_Is_Constrained              (CW_Type, False);
18052      Set_Is_First_Subtype            (CW_Type, Is_First_Subtype (T));
18053      Set_Default_SSO                 (CW_Type);
18054
18055      if Ekind (T) = E_Class_Wide_Subtype then
18056         Set_Etype (CW_Type, Etype (Base_Type (T)));
18057      else
18058         Set_Etype (CW_Type, T);
18059      end if;
18060
18061      Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18062
18063      --  If this is the class_wide type of a constrained subtype, it does
18064      --  not have discriminants.
18065
18066      Set_Has_Discriminants (CW_Type,
18067        Has_Discriminants (T) and then not Is_Constrained (T));
18068
18069      Set_Has_Unknown_Discriminants (CW_Type, True);
18070      Set_Class_Wide_Type (T, CW_Type);
18071      Set_Equivalent_Type (CW_Type, Empty);
18072
18073      --  The class-wide type of a class-wide type is itself (RM 3.9(14))
18074
18075      Set_Class_Wide_Type (CW_Type, CW_Type);
18076
18077      --  Inherit the "ghostness" from the root tagged type
18078
18079      if Ghost_Mode > None or else Is_Ghost_Entity (T) then
18080         Set_Is_Ghost_Entity (CW_Type);
18081      end if;
18082   end Make_Class_Wide_Type;
18083
18084   ----------------
18085   -- Make_Index --
18086   ----------------
18087
18088   procedure Make_Index
18089     (N            : Node_Id;
18090      Related_Nod  : Node_Id;
18091      Related_Id   : Entity_Id := Empty;
18092      Suffix_Index : Nat       := 1;
18093      In_Iter_Schm : Boolean   := False)
18094   is
18095      R      : Node_Id;
18096      T      : Entity_Id;
18097      Def_Id : Entity_Id := Empty;
18098      Found  : Boolean := False;
18099
18100   begin
18101      --  For a discrete range used in a constrained array definition and
18102      --  defined by a range, an implicit conversion to the predefined type
18103      --  INTEGER is assumed if each bound is either a numeric literal, a named
18104      --  number, or an attribute, and the type of both bounds (prior to the
18105      --  implicit conversion) is the type universal_integer. Otherwise, both
18106      --  bounds must be of the same discrete type, other than universal
18107      --  integer; this type must be determinable independently of the
18108      --  context, but using the fact that the type must be discrete and that
18109      --  both bounds must have the same type.
18110
18111      --  Character literals also have a universal type in the absence of
18112      --  of additional context,  and are resolved to Standard_Character.
18113
18114      if Nkind (N) = N_Range then
18115
18116         --  The index is given by a range constraint. The bounds are known
18117         --  to be of a consistent type.
18118
18119         if not Is_Overloaded (N) then
18120            T := Etype (N);
18121
18122            --  For universal bounds, choose the specific predefined type
18123
18124            if T = Universal_Integer then
18125               T := Standard_Integer;
18126
18127            elsif T = Any_Character then
18128               Ambiguous_Character (Low_Bound (N));
18129
18130               T := Standard_Character;
18131            end if;
18132
18133         --  The node may be overloaded because some user-defined operators
18134         --  are available, but if a universal interpretation exists it is
18135         --  also the selected one.
18136
18137         elsif Universal_Interpretation (N) = Universal_Integer then
18138            T := Standard_Integer;
18139
18140         else
18141            T := Any_Type;
18142
18143            declare
18144               Ind : Interp_Index;
18145               It  : Interp;
18146
18147            begin
18148               Get_First_Interp (N, Ind, It);
18149               while Present (It.Typ) loop
18150                  if Is_Discrete_Type (It.Typ) then
18151
18152                     if Found
18153                       and then not Covers (It.Typ, T)
18154                       and then not Covers (T, It.Typ)
18155                     then
18156                        Error_Msg_N ("ambiguous bounds in discrete range", N);
18157                        exit;
18158                     else
18159                        T := It.Typ;
18160                        Found := True;
18161                     end if;
18162                  end if;
18163
18164                  Get_Next_Interp (Ind, It);
18165               end loop;
18166
18167               if T = Any_Type then
18168                  Error_Msg_N ("discrete type required for range", N);
18169                  Set_Etype (N, Any_Type);
18170                  return;
18171
18172               elsif T = Universal_Integer then
18173                  T := Standard_Integer;
18174               end if;
18175            end;
18176         end if;
18177
18178         if not Is_Discrete_Type (T) then
18179            Error_Msg_N ("discrete type required for range", N);
18180            Set_Etype (N, Any_Type);
18181            return;
18182         end if;
18183
18184         if Nkind (Low_Bound (N)) = N_Attribute_Reference
18185           and then Attribute_Name (Low_Bound (N)) = Name_First
18186           and then Is_Entity_Name (Prefix (Low_Bound (N)))
18187           and then Is_Type (Entity (Prefix (Low_Bound (N))))
18188           and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18189         then
18190            --  The type of the index will be the type of the prefix, as long
18191            --  as the upper bound is 'Last of the same type.
18192
18193            Def_Id := Entity (Prefix (Low_Bound (N)));
18194
18195            if Nkind (High_Bound (N)) /= N_Attribute_Reference
18196              or else Attribute_Name (High_Bound (N)) /= Name_Last
18197              or else not Is_Entity_Name (Prefix (High_Bound (N)))
18198              or else Entity (Prefix (High_Bound (N))) /= Def_Id
18199            then
18200               Def_Id := Empty;
18201            end if;
18202         end if;
18203
18204         R := N;
18205         Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18206
18207      elsif Nkind (N) = N_Subtype_Indication then
18208
18209         --  The index is given by a subtype with a range constraint
18210
18211         T := Base_Type (Entity (Subtype_Mark (N)));
18212
18213         if not Is_Discrete_Type (T) then
18214            Error_Msg_N ("discrete type required for range", N);
18215            Set_Etype (N, Any_Type);
18216            return;
18217         end if;
18218
18219         R := Range_Expression (Constraint (N));
18220
18221         Resolve (R, T);
18222         Process_Range_Expr_In_Decl
18223           (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18224
18225      elsif Nkind (N) = N_Attribute_Reference then
18226
18227         --  Catch beginner's error (use of attribute other than 'Range)
18228
18229         if Attribute_Name (N) /= Name_Range then
18230            Error_Msg_N ("expect attribute ''Range", N);
18231            Set_Etype (N, Any_Type);
18232            return;
18233         end if;
18234
18235         --  If the node denotes the range of a type mark, that is also the
18236         --  resulting type, and we do not need to create an Itype for it.
18237
18238         if Is_Entity_Name (Prefix (N))
18239           and then Comes_From_Source (N)
18240           and then Is_Type (Entity (Prefix (N)))
18241           and then Is_Discrete_Type (Entity (Prefix (N)))
18242         then
18243            Def_Id := Entity (Prefix (N));
18244         end if;
18245
18246         Analyze_And_Resolve (N);
18247         T := Etype (N);
18248         R := N;
18249
18250      --  If none of the above, must be a subtype. We convert this to a
18251      --  range attribute reference because in the case of declared first
18252      --  named subtypes, the types in the range reference can be different
18253      --  from the type of the entity. A range attribute normalizes the
18254      --  reference and obtains the correct types for the bounds.
18255
18256      --  This transformation is in the nature of an expansion, is only
18257      --  done if expansion is active. In particular, it is not done on
18258      --  formal generic types,  because we need to retain the name of the
18259      --  original index for instantiation purposes.
18260
18261      else
18262         if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18263            Error_Msg_N ("invalid subtype mark in discrete range ", N);
18264            Set_Etype (N, Any_Integer);
18265            return;
18266
18267         else
18268            --  The type mark may be that of an incomplete type. It is only
18269            --  now that we can get the full view, previous analysis does
18270            --  not look specifically for a type mark.
18271
18272            Set_Entity (N, Get_Full_View (Entity (N)));
18273            Set_Etype  (N, Entity (N));
18274            Def_Id := Entity (N);
18275
18276            if not Is_Discrete_Type (Def_Id) then
18277               Error_Msg_N ("discrete type required for index", N);
18278               Set_Etype (N, Any_Type);
18279               return;
18280            end if;
18281         end if;
18282
18283         if Expander_Active then
18284            Rewrite (N,
18285              Make_Attribute_Reference (Sloc (N),
18286                Attribute_Name => Name_Range,
18287                Prefix         => Relocate_Node (N)));
18288
18289            --  The original was a subtype mark that does not freeze. This
18290            --  means that the rewritten version must not freeze either.
18291
18292            Set_Must_Not_Freeze (N);
18293            Set_Must_Not_Freeze (Prefix (N));
18294            Analyze_And_Resolve (N);
18295            T := Etype (N);
18296            R := N;
18297
18298         --  If expander is inactive, type is legal, nothing else to construct
18299
18300         else
18301            return;
18302         end if;
18303      end if;
18304
18305      if not Is_Discrete_Type (T) then
18306         Error_Msg_N ("discrete type required for range", N);
18307         Set_Etype (N, Any_Type);
18308         return;
18309
18310      elsif T = Any_Type then
18311         Set_Etype (N, Any_Type);
18312         return;
18313      end if;
18314
18315      --  We will now create the appropriate Itype to describe the range, but
18316      --  first a check. If we originally had a subtype, then we just label
18317      --  the range with this subtype. Not only is there no need to construct
18318      --  a new subtype, but it is wrong to do so for two reasons:
18319
18320      --    1. A legality concern, if we have a subtype, it must not freeze,
18321      --       and the Itype would cause freezing incorrectly
18322
18323      --    2. An efficiency concern, if we created an Itype, it would not be
18324      --       recognized as the same type for the purposes of eliminating
18325      --       checks in some circumstances.
18326
18327      --  We signal this case by setting the subtype entity in Def_Id
18328
18329      if No (Def_Id) then
18330         Def_Id :=
18331           Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18332         Set_Etype (Def_Id, Base_Type (T));
18333
18334         if Is_Signed_Integer_Type (T) then
18335            Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18336
18337         elsif Is_Modular_Integer_Type (T) then
18338            Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18339
18340         else
18341            Set_Ekind             (Def_Id, E_Enumeration_Subtype);
18342            Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18343            Set_First_Literal     (Def_Id, First_Literal (T));
18344         end if;
18345
18346         Set_Size_Info      (Def_Id,                  (T));
18347         Set_RM_Size        (Def_Id, RM_Size          (T));
18348         Set_First_Rep_Item (Def_Id, First_Rep_Item   (T));
18349
18350         Set_Scalar_Range   (Def_Id, R);
18351         Conditional_Delay  (Def_Id, T);
18352
18353         if Nkind (N) = N_Subtype_Indication then
18354            Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18355         end if;
18356
18357         --  In the subtype indication case, if the immediate parent of the
18358         --  new subtype is non-static, then the subtype we create is non-
18359         --  static, even if its bounds are static.
18360
18361         if Nkind (N) = N_Subtype_Indication
18362           and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18363         then
18364            Set_Is_Non_Static_Subtype (Def_Id);
18365         end if;
18366      end if;
18367
18368      --  Final step is to label the index with this constructed type
18369
18370      Set_Etype (N, Def_Id);
18371   end Make_Index;
18372
18373   ------------------------------
18374   -- Modular_Type_Declaration --
18375   ------------------------------
18376
18377   procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18378      Mod_Expr : constant Node_Id := Expression (Def);
18379      M_Val    : Uint;
18380
18381      procedure Set_Modular_Size (Bits : Int);
18382      --  Sets RM_Size to Bits, and Esize to normal word size above this
18383
18384      ----------------------
18385      -- Set_Modular_Size --
18386      ----------------------
18387
18388      procedure Set_Modular_Size (Bits : Int) is
18389      begin
18390         Set_RM_Size (T, UI_From_Int (Bits));
18391
18392         if Bits <= 8 then
18393            Init_Esize (T, 8);
18394
18395         elsif Bits <= 16 then
18396            Init_Esize (T, 16);
18397
18398         elsif Bits <= 32 then
18399            Init_Esize (T, 32);
18400
18401         else
18402            Init_Esize (T, System_Max_Binary_Modulus_Power);
18403         end if;
18404
18405         if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18406            Set_Is_Known_Valid (T);
18407         end if;
18408      end Set_Modular_Size;
18409
18410   --  Start of processing for Modular_Type_Declaration
18411
18412   begin
18413      --  If the mod expression is (exactly) 2 * literal, where literal is
18414      --  64 or less,then almost certainly the * was meant to be **. Warn.
18415
18416      if Warn_On_Suspicious_Modulus_Value
18417        and then Nkind (Mod_Expr) = N_Op_Multiply
18418        and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18419        and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18420        and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18421        and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18422      then
18423         Error_Msg_N
18424           ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18425      end if;
18426
18427      --  Proceed with analysis of mod expression
18428
18429      Analyze_And_Resolve (Mod_Expr, Any_Integer);
18430      Set_Etype (T, T);
18431      Set_Ekind (T, E_Modular_Integer_Type);
18432      Init_Alignment (T);
18433      Set_Is_Constrained (T);
18434
18435      if not Is_OK_Static_Expression (Mod_Expr) then
18436         Flag_Non_Static_Expr
18437           ("non-static expression used for modular type bound!", Mod_Expr);
18438         M_Val := 2 ** System_Max_Binary_Modulus_Power;
18439      else
18440         M_Val := Expr_Value (Mod_Expr);
18441      end if;
18442
18443      if M_Val < 1 then
18444         Error_Msg_N ("modulus value must be positive", Mod_Expr);
18445         M_Val := 2 ** System_Max_Binary_Modulus_Power;
18446      end if;
18447
18448      if M_Val > 2 ** Standard_Long_Integer_Size then
18449         Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18450      end if;
18451
18452      Set_Modulus (T, M_Val);
18453
18454      --   Create bounds for the modular type based on the modulus given in
18455      --   the type declaration and then analyze and resolve those bounds.
18456
18457      Set_Scalar_Range (T,
18458        Make_Range (Sloc (Mod_Expr),
18459          Low_Bound  => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18460          High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18461
18462      --  Properly analyze the literals for the range. We do this manually
18463      --  because we can't go calling Resolve, since we are resolving these
18464      --  bounds with the type, and this type is certainly not complete yet.
18465
18466      Set_Etype (Low_Bound  (Scalar_Range (T)), T);
18467      Set_Etype (High_Bound (Scalar_Range (T)), T);
18468      Set_Is_Static_Expression (Low_Bound  (Scalar_Range (T)));
18469      Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18470
18471      --  Loop through powers of two to find number of bits required
18472
18473      for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18474
18475         --  Binary case
18476
18477         if M_Val = 2 ** Bits then
18478            Set_Modular_Size (Bits);
18479            return;
18480
18481         --  Nonbinary case
18482
18483         elsif M_Val < 2 ** Bits then
18484            Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18485            Set_Non_Binary_Modulus (T);
18486
18487            if Bits > System_Max_Nonbinary_Modulus_Power then
18488               Error_Msg_Uint_1 :=
18489                 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18490               Error_Msg_F
18491                 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18492               Set_Modular_Size (System_Max_Binary_Modulus_Power);
18493               return;
18494
18495            else
18496               --  In the nonbinary case, set size as per RM 13.3(55)
18497
18498               Set_Modular_Size (Bits);
18499               return;
18500            end if;
18501         end if;
18502
18503      end loop;
18504
18505      --  If we fall through, then the size exceed System.Max_Binary_Modulus
18506      --  so we just signal an error and set the maximum size.
18507
18508      Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18509      Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18510
18511      Set_Modular_Size (System_Max_Binary_Modulus_Power);
18512      Init_Alignment (T);
18513
18514   end Modular_Type_Declaration;
18515
18516   --------------------------
18517   -- New_Concatenation_Op --
18518   --------------------------
18519
18520   procedure New_Concatenation_Op (Typ : Entity_Id) is
18521      Loc : constant Source_Ptr := Sloc (Typ);
18522      Op  : Entity_Id;
18523
18524      function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18525      --  Create abbreviated declaration for the formal of a predefined
18526      --  Operator 'Op' of type 'Typ'
18527
18528      --------------------
18529      -- Make_Op_Formal --
18530      --------------------
18531
18532      function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18533         Formal : Entity_Id;
18534      begin
18535         Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18536         Set_Etype (Formal, Typ);
18537         Set_Mechanism (Formal, Default_Mechanism);
18538         return Formal;
18539      end Make_Op_Formal;
18540
18541   --  Start of processing for New_Concatenation_Op
18542
18543   begin
18544      Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18545
18546      Set_Ekind                   (Op, E_Operator);
18547      Set_Scope                   (Op, Current_Scope);
18548      Set_Etype                   (Op, Typ);
18549      Set_Homonym                 (Op, Get_Name_Entity_Id (Name_Op_Concat));
18550      Set_Is_Immediately_Visible  (Op);
18551      Set_Is_Intrinsic_Subprogram (Op);
18552      Set_Has_Completion          (Op);
18553      Append_Entity               (Op, Current_Scope);
18554
18555      Set_Name_Entity_Id (Name_Op_Concat, Op);
18556
18557      Append_Entity (Make_Op_Formal (Typ, Op), Op);
18558      Append_Entity (Make_Op_Formal (Typ, Op), Op);
18559   end New_Concatenation_Op;
18560
18561   -------------------------
18562   -- OK_For_Limited_Init --
18563   -------------------------
18564
18565   --  ???Check all calls of this, and compare the conditions under which it's
18566   --  called.
18567
18568   function OK_For_Limited_Init
18569     (Typ : Entity_Id;
18570      Exp : Node_Id) return Boolean
18571   is
18572   begin
18573      return Is_CPP_Constructor_Call (Exp)
18574        or else (Ada_Version >= Ada_2005
18575                  and then not Debug_Flag_Dot_L
18576                  and then OK_For_Limited_Init_In_05 (Typ, Exp));
18577   end OK_For_Limited_Init;
18578
18579   -------------------------------
18580   -- OK_For_Limited_Init_In_05 --
18581   -------------------------------
18582
18583   function OK_For_Limited_Init_In_05
18584     (Typ : Entity_Id;
18585      Exp : Node_Id) return Boolean
18586   is
18587   begin
18588      --  An object of a limited interface type can be initialized with any
18589      --  expression of a nonlimited descendant type.
18590
18591      if Is_Class_Wide_Type (Typ)
18592        and then Is_Limited_Interface (Typ)
18593        and then not Is_Limited_Type (Etype (Exp))
18594      then
18595         return True;
18596      end if;
18597
18598      --  Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18599      --  case of limited aggregates (including extension aggregates), and
18600      --  function calls. The function call may have been given in prefixed
18601      --  notation, in which case the original node is an indexed component.
18602      --  If the function is parameterless, the original node was an explicit
18603      --  dereference. The function may also be parameterless, in which case
18604      --  the source node is just an identifier.
18605
18606      --  A branch of a conditional expression may have been removed if the
18607      --  condition is statically known. This happens during expansion, and
18608      --  thus will not happen if previous errors were encountered. The check
18609      --  will have been performed on the chosen branch, which replaces the
18610      --  original conditional expression.
18611
18612      if No (Exp) then
18613         return True;
18614      end if;
18615
18616      case Nkind (Original_Node (Exp)) is
18617         when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18618            return True;
18619
18620         when N_Identifier =>
18621            return Present (Entity (Original_Node (Exp)))
18622              and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18623
18624         when N_Qualified_Expression =>
18625            return
18626              OK_For_Limited_Init_In_05
18627                (Typ, Expression (Original_Node (Exp)));
18628
18629         --  Ada 2005 (AI-251): If a class-wide interface object is initialized
18630         --  with a function call, the expander has rewritten the call into an
18631         --  N_Type_Conversion node to force displacement of the pointer to
18632         --  reference the component containing the secondary dispatch table.
18633         --  Otherwise a type conversion is not a legal context.
18634         --  A return statement for a build-in-place function returning a
18635         --  synchronized type also introduces an unchecked conversion.
18636
18637         when N_Type_Conversion           |
18638              N_Unchecked_Type_Conversion =>
18639            return not Comes_From_Source (Exp)
18640              and then
18641                OK_For_Limited_Init_In_05
18642                  (Typ, Expression (Original_Node (Exp)));
18643
18644         when N_Indexed_Component     |
18645              N_Selected_Component    |
18646              N_Explicit_Dereference  =>
18647            return Nkind (Exp) = N_Function_Call;
18648
18649         --  A use of 'Input is a function call, hence allowed. Normally the
18650         --  attribute will be changed to a call, but the attribute by itself
18651         --  can occur with -gnatc.
18652
18653         when N_Attribute_Reference =>
18654            return Attribute_Name (Original_Node (Exp)) = Name_Input;
18655
18656         --  For a case expression, all dependent expressions must be legal
18657
18658         when N_Case_Expression =>
18659            declare
18660               Alt : Node_Id;
18661
18662            begin
18663               Alt := First (Alternatives (Original_Node (Exp)));
18664               while Present (Alt) loop
18665                  if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18666                     return False;
18667                  end if;
18668
18669                  Next (Alt);
18670               end loop;
18671
18672               return True;
18673            end;
18674
18675         --  For an if expression, all dependent expressions must be legal
18676
18677         when N_If_Expression =>
18678            declare
18679               Then_Expr : constant Node_Id :=
18680                             Next (First (Expressions (Original_Node (Exp))));
18681               Else_Expr : constant Node_Id := Next (Then_Expr);
18682            begin
18683               return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18684                        and then
18685                      OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18686            end;
18687
18688         when others =>
18689            return False;
18690      end case;
18691   end OK_For_Limited_Init_In_05;
18692
18693   -------------------------------------------
18694   -- Ordinary_Fixed_Point_Type_Declaration --
18695   -------------------------------------------
18696
18697   procedure Ordinary_Fixed_Point_Type_Declaration
18698     (T   : Entity_Id;
18699      Def : Node_Id)
18700   is
18701      Loc           : constant Source_Ptr := Sloc (Def);
18702      Delta_Expr    : constant Node_Id    := Delta_Expression (Def);
18703      RRS           : constant Node_Id    := Real_Range_Specification (Def);
18704      Implicit_Base : Entity_Id;
18705      Delta_Val     : Ureal;
18706      Small_Val     : Ureal;
18707      Low_Val       : Ureal;
18708      High_Val      : Ureal;
18709
18710   begin
18711      Check_Restriction (No_Fixed_Point, Def);
18712
18713      --  Create implicit base type
18714
18715      Implicit_Base :=
18716        Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18717      Set_Etype (Implicit_Base, Implicit_Base);
18718
18719      --  Analyze and process delta expression
18720
18721      Analyze_And_Resolve (Delta_Expr, Any_Real);
18722
18723      Check_Delta_Expression (Delta_Expr);
18724      Delta_Val := Expr_Value_R (Delta_Expr);
18725
18726      Set_Delta_Value (Implicit_Base, Delta_Val);
18727
18728      --  Compute default small from given delta, which is the largest power
18729      --  of two that does not exceed the given delta value.
18730
18731      declare
18732         Tmp   : Ureal;
18733         Scale : Int;
18734
18735      begin
18736         Tmp := Ureal_1;
18737         Scale := 0;
18738
18739         if Delta_Val < Ureal_1 then
18740            while Delta_Val < Tmp loop
18741               Tmp := Tmp / Ureal_2;
18742               Scale := Scale + 1;
18743            end loop;
18744
18745         else
18746            loop
18747               Tmp := Tmp * Ureal_2;
18748               exit when Tmp > Delta_Val;
18749               Scale := Scale - 1;
18750            end loop;
18751         end if;
18752
18753         Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18754      end;
18755
18756      Set_Small_Value (Implicit_Base, Small_Val);
18757
18758      --  If no range was given, set a dummy range
18759
18760      if RRS <= Empty_Or_Error then
18761         Low_Val  := -Small_Val;
18762         High_Val := Small_Val;
18763
18764      --  Otherwise analyze and process given range
18765
18766      else
18767         declare
18768            Low  : constant Node_Id := Low_Bound  (RRS);
18769            High : constant Node_Id := High_Bound (RRS);
18770
18771         begin
18772            Analyze_And_Resolve (Low, Any_Real);
18773            Analyze_And_Resolve (High, Any_Real);
18774            Check_Real_Bound (Low);
18775            Check_Real_Bound (High);
18776
18777            --  Obtain and set the range
18778
18779            Low_Val  := Expr_Value_R (Low);
18780            High_Val := Expr_Value_R (High);
18781
18782            if Low_Val > High_Val then
18783               Error_Msg_NE ("??fixed point type& has null range", Def, T);
18784            end if;
18785         end;
18786      end if;
18787
18788      --  The range for both the implicit base and the declared first subtype
18789      --  cannot be set yet, so we use the special routine Set_Fixed_Range to
18790      --  set a temporary range in place. Note that the bounds of the base
18791      --  type will be widened to be symmetrical and to fill the available
18792      --  bits when the type is frozen.
18793
18794      --  We could do this with all discrete types, and probably should, but
18795      --  we absolutely have to do it for fixed-point, since the end-points
18796      --  of the range and the size are determined by the small value, which
18797      --  could be reset before the freeze point.
18798
18799      Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18800      Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18801
18802      --  Complete definition of first subtype. The inheritance of the rep item
18803      --  chain ensures that SPARK-related pragmas are not clobbered when the
18804      --  ordinary fixed point type acts as a full view of a private type.
18805
18806      Set_Ekind              (T, E_Ordinary_Fixed_Point_Subtype);
18807      Set_Etype              (T, Implicit_Base);
18808      Init_Size_Align        (T);
18809      Inherit_Rep_Item_Chain (T, Implicit_Base);
18810      Set_Small_Value        (T, Small_Val);
18811      Set_Delta_Value        (T, Delta_Val);
18812      Set_Is_Constrained     (T);
18813   end Ordinary_Fixed_Point_Type_Declaration;
18814
18815   ----------------------------------
18816   -- Preanalyze_Assert_Expression --
18817   ----------------------------------
18818
18819   procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18820   begin
18821      In_Assertion_Expr := In_Assertion_Expr + 1;
18822      Preanalyze_Spec_Expression (N, T);
18823      In_Assertion_Expr := In_Assertion_Expr - 1;
18824   end Preanalyze_Assert_Expression;
18825
18826   -----------------------------------
18827   -- Preanalyze_Default_Expression --
18828   -----------------------------------
18829
18830   procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18831      Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18832   begin
18833      In_Default_Expr := True;
18834      Preanalyze_Spec_Expression (N, T);
18835      In_Default_Expr := Save_In_Default_Expr;
18836   end Preanalyze_Default_Expression;
18837
18838   --------------------------------
18839   -- Preanalyze_Spec_Expression --
18840   --------------------------------
18841
18842   procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18843      Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18844   begin
18845      In_Spec_Expression := True;
18846      Preanalyze_And_Resolve (N, T);
18847      In_Spec_Expression := Save_In_Spec_Expression;
18848   end Preanalyze_Spec_Expression;
18849
18850   ----------------------------------------
18851   -- Prepare_Private_Subtype_Completion --
18852   ----------------------------------------
18853
18854   procedure Prepare_Private_Subtype_Completion
18855     (Id          : Entity_Id;
18856      Related_Nod : Node_Id)
18857   is
18858      Id_B   : constant Entity_Id := Base_Type (Id);
18859      Full_B : Entity_Id := Full_View (Id_B);
18860      Full   : Entity_Id;
18861
18862   begin
18863      if Present (Full_B) then
18864
18865         --  Get to the underlying full view if necessary
18866
18867         if Is_Private_Type (Full_B)
18868           and then Present (Underlying_Full_View (Full_B))
18869         then
18870            Full_B := Underlying_Full_View (Full_B);
18871         end if;
18872
18873         --  The Base_Type is already completed, we can complete the subtype
18874         --  now. We have to create a new entity with the same name, Thus we
18875         --  can't use Create_Itype.
18876
18877         Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18878         Set_Is_Itype (Full);
18879         Set_Associated_Node_For_Itype (Full, Related_Nod);
18880         Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18881      end if;
18882
18883      --  The parent subtype may be private, but the base might not, in some
18884      --  nested instances. In that case, the subtype does not need to be
18885      --  exchanged. It would still be nice to make private subtypes and their
18886      --  bases consistent at all times ???
18887
18888      if Is_Private_Type (Id_B) then
18889         Append_Elmt (Id, Private_Dependents (Id_B));
18890      end if;
18891   end Prepare_Private_Subtype_Completion;
18892
18893   ---------------------------
18894   -- Process_Discriminants --
18895   ---------------------------
18896
18897   procedure Process_Discriminants
18898     (N    : Node_Id;
18899      Prev : Entity_Id := Empty)
18900   is
18901      Elist               : constant Elist_Id := New_Elmt_List;
18902      Id                  : Node_Id;
18903      Discr               : Node_Id;
18904      Discr_Number        : Uint;
18905      Discr_Type          : Entity_Id;
18906      Default_Present     : Boolean := False;
18907      Default_Not_Present : Boolean := False;
18908
18909   begin
18910      --  A composite type other than an array type can have discriminants.
18911      --  On entry, the current scope is the composite type.
18912
18913      --  The discriminants are initially entered into the scope of the type
18914      --  via Enter_Name with the default Ekind of E_Void to prevent premature
18915      --  use, as explained at the end of this procedure.
18916
18917      Discr := First (Discriminant_Specifications (N));
18918      while Present (Discr) loop
18919         Enter_Name (Defining_Identifier (Discr));
18920
18921         --  For navigation purposes we add a reference to the discriminant
18922         --  in the entity for the type. If the current declaration is a
18923         --  completion, place references on the partial view. Otherwise the
18924         --  type is the current scope.
18925
18926         if Present (Prev) then
18927
18928            --  The references go on the partial view, if present. If the
18929            --  partial view has discriminants, the references have been
18930            --  generated already.
18931
18932            if not Has_Discriminants (Prev) then
18933               Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18934            end if;
18935         else
18936            Generate_Reference
18937              (Current_Scope, Defining_Identifier (Discr), 'd');
18938         end if;
18939
18940         if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18941            Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18942
18943            --  Ada 2005 (AI-254)
18944
18945            if Present (Access_To_Subprogram_Definition
18946                         (Discriminant_Type (Discr)))
18947              and then Protected_Present (Access_To_Subprogram_Definition
18948                                           (Discriminant_Type (Discr)))
18949            then
18950               Discr_Type :=
18951                 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18952            end if;
18953
18954         else
18955            Find_Type (Discriminant_Type (Discr));
18956            Discr_Type := Etype (Discriminant_Type (Discr));
18957
18958            if Error_Posted (Discriminant_Type (Discr)) then
18959               Discr_Type := Any_Type;
18960            end if;
18961         end if;
18962
18963         --  Handling of discriminants that are access types
18964
18965         if Is_Access_Type (Discr_Type) then
18966
18967            --  Ada 2005 (AI-230): Access discriminant allowed in non-
18968            --  limited record types
18969
18970            if Ada_Version < Ada_2005 then
18971               Check_Access_Discriminant_Requires_Limited
18972                 (Discr, Discriminant_Type (Discr));
18973            end if;
18974
18975            if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18976               Error_Msg_N
18977                 ("(Ada 83) access discriminant not allowed", Discr);
18978            end if;
18979
18980         --  If not access type, must be a discrete type
18981
18982         elsif not Is_Discrete_Type (Discr_Type) then
18983            Error_Msg_N
18984              ("discriminants must have a discrete or access type",
18985               Discriminant_Type (Discr));
18986         end if;
18987
18988         Set_Etype (Defining_Identifier (Discr), Discr_Type);
18989
18990         --  If a discriminant specification includes the assignment compound
18991         --  delimiter followed by an expression, the expression is the default
18992         --  expression of the discriminant; the default expression must be of
18993         --  the type of the discriminant. (RM 3.7.1) Since this expression is
18994         --  a default expression, we do the special preanalysis, since this
18995         --  expression does not freeze (see section "Handling of Default and
18996         --  Per-Object Expressions" in spec of package Sem).
18997
18998         if Present (Expression (Discr)) then
18999            Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19000
19001            --  Legaity checks
19002
19003            if Nkind (N) = N_Formal_Type_Declaration then
19004               Error_Msg_N
19005                 ("discriminant defaults not allowed for formal type",
19006                  Expression (Discr));
19007
19008            --  Flag an error for a tagged type with defaulted discriminants,
19009            --  excluding limited tagged types when compiling for Ada 2012
19010            --  (see AI05-0214).
19011
19012            elsif Is_Tagged_Type (Current_Scope)
19013              and then (not Is_Limited_Type (Current_Scope)
19014                         or else Ada_Version < Ada_2012)
19015              and then Comes_From_Source (N)
19016            then
19017               --  Note: see similar test in Check_Or_Process_Discriminants, to
19018               --  handle the (illegal) case of the completion of an untagged
19019               --  view with discriminants with defaults by a tagged full view.
19020               --  We skip the check if Discr does not come from source, to
19021               --  account for the case of an untagged derived type providing
19022               --  defaults for a renamed discriminant from a private untagged
19023               --  ancestor with a tagged full view (ACATS B460006).
19024
19025               if Ada_Version >= Ada_2012 then
19026                  Error_Msg_N
19027                    ("discriminants of nonlimited tagged type cannot have"
19028                       & " defaults",
19029                     Expression (Discr));
19030               else
19031                  Error_Msg_N
19032                    ("discriminants of tagged type cannot have defaults",
19033                     Expression (Discr));
19034               end if;
19035
19036            else
19037               Default_Present := True;
19038               Append_Elmt (Expression (Discr), Elist);
19039
19040               --  Tag the defining identifiers for the discriminants with
19041               --  their corresponding default expressions from the tree.
19042
19043               Set_Discriminant_Default_Value
19044                 (Defining_Identifier (Discr), Expression (Discr));
19045            end if;
19046
19047            --  In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19048            --  gets set unless we can be sure that no range check is required.
19049
19050            if (GNATprove_Mode or not Expander_Active)
19051              and then not
19052                Is_In_Range
19053                  (Expression (Discr), Discr_Type, Assume_Valid => True)
19054            then
19055               Set_Do_Range_Check (Expression (Discr));
19056            end if;
19057
19058         --  No default discriminant value given
19059
19060         else
19061            Default_Not_Present := True;
19062         end if;
19063
19064         --  Ada 2005 (AI-231): Create an Itype that is a duplicate of
19065         --  Discr_Type but with the null-exclusion attribute
19066
19067         if Ada_Version >= Ada_2005 then
19068
19069            --  Ada 2005 (AI-231): Static checks
19070
19071            if Can_Never_Be_Null (Discr_Type) then
19072               Null_Exclusion_Static_Checks (Discr);
19073
19074            elsif Is_Access_Type (Discr_Type)
19075              and then Null_Exclusion_Present (Discr)
19076
19077               --  No need to check itypes because in their case this check
19078               --  was done at their point of creation
19079
19080              and then not Is_Itype (Discr_Type)
19081            then
19082               if Can_Never_Be_Null (Discr_Type) then
19083                  Error_Msg_NE
19084                    ("`NOT NULL` not allowed (& already excludes null)",
19085                     Discr,
19086                     Discr_Type);
19087               end if;
19088
19089               Set_Etype (Defining_Identifier (Discr),
19090                 Create_Null_Excluding_Itype
19091                   (T           => Discr_Type,
19092                    Related_Nod => Discr));
19093
19094            --  Check for improper null exclusion if the type is otherwise
19095            --  legal for a discriminant.
19096
19097            elsif Null_Exclusion_Present (Discr)
19098              and then Is_Discrete_Type (Discr_Type)
19099            then
19100               Error_Msg_N
19101                 ("null exclusion can only apply to an access type", Discr);
19102            end if;
19103
19104            --  Ada 2005 (AI-402): access discriminants of nonlimited types
19105            --  can't have defaults. Synchronized types, or types that are
19106            --  explicitly limited are fine, but special tests apply to derived
19107            --  types in generics: in a generic body we have to assume the
19108            --  worst, and therefore defaults are not allowed if the parent is
19109            --  a generic formal private type (see ACATS B370001).
19110
19111            if Is_Access_Type (Discr_Type) and then Default_Present then
19112               if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19113                 or else Is_Limited_Record (Current_Scope)
19114                 or else Is_Concurrent_Type (Current_Scope)
19115                 or else Is_Concurrent_Record_Type (Current_Scope)
19116                 or else Ekind (Current_Scope) = E_Limited_Private_Type
19117               then
19118                  if not Is_Derived_Type (Current_Scope)
19119                    or else not Is_Generic_Type (Etype (Current_Scope))
19120                    or else not In_Package_Body (Scope (Etype (Current_Scope)))
19121                    or else Limited_Present
19122                              (Type_Definition (Parent (Current_Scope)))
19123                  then
19124                     null;
19125
19126                  else
19127                     Error_Msg_N
19128                       ("access discriminants of nonlimited types cannot "
19129                        & "have defaults", Expression (Discr));
19130                  end if;
19131
19132               elsif Present (Expression (Discr)) then
19133                  Error_Msg_N
19134                    ("(Ada 2005) access discriminants of nonlimited types "
19135                     & "cannot have defaults", Expression (Discr));
19136               end if;
19137            end if;
19138         end if;
19139
19140         --  A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19141         --  This check is relevant only when SPARK_Mode is on as it is not a
19142         --  standard Ada legality rule.
19143
19144         if SPARK_Mode = On
19145           and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19146         then
19147            Error_Msg_N ("discriminant cannot be volatile", Discr);
19148         end if;
19149
19150         Next (Discr);
19151      end loop;
19152
19153      --  An element list consisting of the default expressions of the
19154      --  discriminants is constructed in the above loop and used to set
19155      --  the Discriminant_Constraint attribute for the type. If an object
19156      --  is declared of this (record or task) type without any explicit
19157      --  discriminant constraint given, this element list will form the
19158      --  actual parameters for the corresponding initialization procedure
19159      --  for the type.
19160
19161      Set_Discriminant_Constraint (Current_Scope, Elist);
19162      Set_Stored_Constraint (Current_Scope, No_Elist);
19163
19164      --  Default expressions must be provided either for all or for none
19165      --  of the discriminants of a discriminant part. (RM 3.7.1)
19166
19167      if Default_Present and then Default_Not_Present then
19168         Error_Msg_N
19169           ("incomplete specification of defaults for discriminants", N);
19170      end if;
19171
19172      --  The use of the name of a discriminant is not allowed in default
19173      --  expressions of a discriminant part if the specification of the
19174      --  discriminant is itself given in the discriminant part. (RM 3.7.1)
19175
19176      --  To detect this, the discriminant names are entered initially with an
19177      --  Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19178      --  attempt to use a void entity (for example in an expression that is
19179      --  type-checked) produces the error message: premature usage. Now after
19180      --  completing the semantic analysis of the discriminant part, we can set
19181      --  the Ekind of all the discriminants appropriately.
19182
19183      Discr := First (Discriminant_Specifications (N));
19184      Discr_Number := Uint_1;
19185      while Present (Discr) loop
19186         Id := Defining_Identifier (Discr);
19187         Set_Ekind (Id, E_Discriminant);
19188         Init_Component_Location (Id);
19189         Init_Esize (Id);
19190         Set_Discriminant_Number (Id, Discr_Number);
19191
19192         --  Make sure this is always set, even in illegal programs
19193
19194         Set_Corresponding_Discriminant (Id, Empty);
19195
19196         --  Initialize the Original_Record_Component to the entity itself.
19197         --  Inherit_Components will propagate the right value to
19198         --  discriminants in derived record types.
19199
19200         Set_Original_Record_Component (Id, Id);
19201
19202         --  Create the discriminal for the discriminant
19203
19204         Build_Discriminal (Id);
19205
19206         Next (Discr);
19207         Discr_Number := Discr_Number + 1;
19208      end loop;
19209
19210      Set_Has_Discriminants (Current_Scope);
19211   end Process_Discriminants;
19212
19213   -----------------------
19214   -- Process_Full_View --
19215   -----------------------
19216
19217   procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19218      procedure Collect_Implemented_Interfaces
19219        (Typ    : Entity_Id;
19220         Ifaces : Elist_Id);
19221      --  Ada 2005: Gather all the interfaces that Typ directly or
19222      --  inherently implements. Duplicate entries are not added to
19223      --  the list Ifaces.
19224
19225      ------------------------------------
19226      -- Collect_Implemented_Interfaces --
19227      ------------------------------------
19228
19229      procedure Collect_Implemented_Interfaces
19230        (Typ    : Entity_Id;
19231         Ifaces : Elist_Id)
19232      is
19233         Iface      : Entity_Id;
19234         Iface_Elmt : Elmt_Id;
19235
19236      begin
19237         --  Abstract interfaces are only associated with tagged record types
19238
19239         if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19240            return;
19241         end if;
19242
19243         --  Recursively climb to the ancestors
19244
19245         if Etype (Typ) /= Typ
19246
19247            --  Protect the frontend against wrong cyclic declarations like:
19248
19249            --     type B is new A with private;
19250            --     type C is new A with private;
19251            --  private
19252            --     type B is new C with null record;
19253            --     type C is new B with null record;
19254
19255           and then Etype (Typ) /= Priv_T
19256           and then Etype (Typ) /= Full_T
19257         then
19258            --  Keep separate the management of private type declarations
19259
19260            if Ekind (Typ) = E_Record_Type_With_Private then
19261
19262               --  Handle the following illegal usage:
19263               --      type Private_Type is tagged private;
19264               --   private
19265               --      type Private_Type is new Type_Implementing_Iface;
19266
19267               if Present (Full_View (Typ))
19268                 and then Etype (Typ) /= Full_View (Typ)
19269               then
19270                  if Is_Interface (Etype (Typ)) then
19271                     Append_Unique_Elmt (Etype (Typ), Ifaces);
19272                  end if;
19273
19274                  Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19275               end if;
19276
19277            --  Non-private types
19278
19279            else
19280               if Is_Interface (Etype (Typ)) then
19281                  Append_Unique_Elmt (Etype (Typ), Ifaces);
19282               end if;
19283
19284               Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19285            end if;
19286         end if;
19287
19288         --  Handle entities in the list of abstract interfaces
19289
19290         if Present (Interfaces (Typ)) then
19291            Iface_Elmt := First_Elmt (Interfaces (Typ));
19292            while Present (Iface_Elmt) loop
19293               Iface := Node (Iface_Elmt);
19294
19295               pragma Assert (Is_Interface (Iface));
19296
19297               if not Contain_Interface (Iface, Ifaces) then
19298                  Append_Elmt (Iface, Ifaces);
19299                  Collect_Implemented_Interfaces (Iface, Ifaces);
19300               end if;
19301
19302               Next_Elmt (Iface_Elmt);
19303            end loop;
19304         end if;
19305      end Collect_Implemented_Interfaces;
19306
19307      --  Local variables
19308
19309      Full_Indic  : Node_Id;
19310      Full_Parent : Entity_Id;
19311      Priv_Parent : Entity_Id;
19312
19313   --  Start of processing for Process_Full_View
19314
19315   begin
19316      --  First some sanity checks that must be done after semantic
19317      --  decoration of the full view and thus cannot be placed with other
19318      --  similar checks in Find_Type_Name
19319
19320      if not Is_Limited_Type (Priv_T)
19321        and then (Is_Limited_Type (Full_T)
19322                   or else Is_Limited_Composite (Full_T))
19323      then
19324         if In_Instance then
19325            null;
19326         else
19327            Error_Msg_N
19328              ("completion of nonlimited type cannot be limited", Full_T);
19329            Explain_Limited_Type (Full_T, Full_T);
19330         end if;
19331
19332      elsif Is_Abstract_Type (Full_T)
19333        and then not Is_Abstract_Type (Priv_T)
19334      then
19335         Error_Msg_N
19336           ("completion of nonabstract type cannot be abstract", Full_T);
19337
19338      elsif Is_Tagged_Type (Priv_T)
19339        and then Is_Limited_Type (Priv_T)
19340        and then not Is_Limited_Type (Full_T)
19341      then
19342         --  If pragma CPP_Class was applied to the private declaration
19343         --  propagate the limitedness to the full-view
19344
19345         if Is_CPP_Class (Priv_T) then
19346            Set_Is_Limited_Record (Full_T);
19347
19348         --  GNAT allow its own definition of Limited_Controlled to disobey
19349         --  this rule in order in ease the implementation. This test is safe
19350         --  because Root_Controlled is defined in a child of System that
19351         --  normal programs are not supposed to use.
19352
19353         elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19354            Set_Is_Limited_Composite (Full_T);
19355         else
19356            Error_Msg_N
19357              ("completion of limited tagged type must be limited", Full_T);
19358         end if;
19359
19360      elsif Is_Generic_Type (Priv_T) then
19361         Error_Msg_N ("generic type cannot have a completion", Full_T);
19362      end if;
19363
19364      --  Check that ancestor interfaces of private and full views are
19365      --  consistent. We omit this check for synchronized types because
19366      --  they are performed on the corresponding record type when frozen.
19367
19368      if Ada_Version >= Ada_2005
19369        and then Is_Tagged_Type (Priv_T)
19370        and then Is_Tagged_Type (Full_T)
19371        and then not Is_Concurrent_Type (Full_T)
19372      then
19373         declare
19374            Iface         : Entity_Id;
19375            Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19376            Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19377
19378         begin
19379            Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19380            Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19381
19382            --  Ada 2005 (AI-251): The partial view shall be a descendant of
19383            --  an interface type if and only if the full type is descendant
19384            --  of the interface type (AARM 7.3 (7.3/2)).
19385
19386            Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19387
19388            if Present (Iface) then
19389               Error_Msg_NE
19390                 ("interface in partial view& not implemented by full type "
19391                  & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19392            end if;
19393
19394            Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19395
19396            if Present (Iface) then
19397               Error_Msg_NE
19398                 ("interface & not implemented by partial view "
19399                  & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19400            end if;
19401         end;
19402      end if;
19403
19404      if Is_Tagged_Type (Priv_T)
19405        and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19406        and then Is_Derived_Type (Full_T)
19407      then
19408         Priv_Parent := Etype (Priv_T);
19409
19410         --  The full view of a private extension may have been transformed
19411         --  into an unconstrained derived type declaration and a subtype
19412         --  declaration (see build_derived_record_type for details).
19413
19414         if Nkind (N) = N_Subtype_Declaration then
19415            Full_Indic  := Subtype_Indication (N);
19416            Full_Parent := Etype (Base_Type (Full_T));
19417         else
19418            Full_Indic  := Subtype_Indication (Type_Definition (N));
19419            Full_Parent := Etype (Full_T);
19420         end if;
19421
19422         --  Check that the parent type of the full type is a descendant of
19423         --  the ancestor subtype given in the private extension. If either
19424         --  entity has an Etype equal to Any_Type then we had some previous
19425         --  error situation [7.3(8)].
19426
19427         if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19428            return;
19429
19430         --  Ada 2005 (AI-251): Interfaces in the full type can be given in
19431         --  any order. Therefore we don't have to check that its parent must
19432         --  be a descendant of the parent of the private type declaration.
19433
19434         elsif Is_Interface (Priv_Parent)
19435           and then Is_Interface (Full_Parent)
19436         then
19437            null;
19438
19439         --  Ada 2005 (AI-251): If the parent of the private type declaration
19440         --  is an interface there is no need to check that it is an ancestor
19441         --  of the associated full type declaration. The required tests for
19442         --  this case are performed by Build_Derived_Record_Type.
19443
19444         elsif not Is_Interface (Base_Type (Priv_Parent))
19445           and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19446         then
19447            Error_Msg_N
19448              ("parent of full type must descend from parent"
19449                  & " of private extension", Full_Indic);
19450
19451         --  First check a formal restriction, and then proceed with checking
19452         --  Ada rules. Since the formal restriction is not a serious error, we
19453         --  don't prevent further error detection for this check, hence the
19454         --  ELSE.
19455
19456         else
19457            --  In formal mode, when completing a private extension the type
19458            --  named in the private part must be exactly the same as that
19459            --  named in the visible part.
19460
19461            if Priv_Parent /= Full_Parent then
19462               Error_Msg_Name_1 := Chars (Priv_Parent);
19463               Check_SPARK_05_Restriction ("% expected", Full_Indic);
19464            end if;
19465
19466            --  Check the rules of 7.3(10): if the private extension inherits
19467            --  known discriminants, then the full type must also inherit those
19468            --  discriminants from the same (ancestor) type, and the parent
19469            --  subtype of the full type must be constrained if and only if
19470            --  the ancestor subtype of the private extension is constrained.
19471
19472            if No (Discriminant_Specifications (Parent (Priv_T)))
19473              and then not Has_Unknown_Discriminants (Priv_T)
19474              and then Has_Discriminants (Base_Type (Priv_Parent))
19475            then
19476               declare
19477                  Priv_Indic  : constant Node_Id :=
19478                                  Subtype_Indication (Parent (Priv_T));
19479
19480                  Priv_Constr : constant Boolean :=
19481                                  Is_Constrained (Priv_Parent)
19482                                    or else
19483                                      Nkind (Priv_Indic) = N_Subtype_Indication
19484                                    or else
19485                                      Is_Constrained (Entity (Priv_Indic));
19486
19487                  Full_Constr : constant Boolean :=
19488                                  Is_Constrained (Full_Parent)
19489                                    or else
19490                                      Nkind (Full_Indic) = N_Subtype_Indication
19491                                    or else
19492                                      Is_Constrained (Entity (Full_Indic));
19493
19494                  Priv_Discr : Entity_Id;
19495                  Full_Discr : Entity_Id;
19496
19497               begin
19498                  Priv_Discr := First_Discriminant (Priv_Parent);
19499                  Full_Discr := First_Discriminant (Full_Parent);
19500                  while Present (Priv_Discr) and then Present (Full_Discr) loop
19501                     if Original_Record_Component (Priv_Discr) =
19502                        Original_Record_Component (Full_Discr)
19503                       or else
19504                         Corresponding_Discriminant (Priv_Discr) =
19505                         Corresponding_Discriminant (Full_Discr)
19506                     then
19507                        null;
19508                     else
19509                        exit;
19510                     end if;
19511
19512                     Next_Discriminant (Priv_Discr);
19513                     Next_Discriminant (Full_Discr);
19514                  end loop;
19515
19516                  if Present (Priv_Discr) or else Present (Full_Discr) then
19517                     Error_Msg_N
19518                       ("full view must inherit discriminants of the parent"
19519                        & " type used in the private extension", Full_Indic);
19520
19521                  elsif Priv_Constr and then not Full_Constr then
19522                     Error_Msg_N
19523                       ("parent subtype of full type must be constrained",
19524                        Full_Indic);
19525
19526                  elsif Full_Constr and then not Priv_Constr then
19527                     Error_Msg_N
19528                       ("parent subtype of full type must be unconstrained",
19529                        Full_Indic);
19530                  end if;
19531               end;
19532
19533               --  Check the rules of 7.3(12): if a partial view has neither
19534               --  known or unknown discriminants, then the full type
19535               --  declaration shall define a definite subtype.
19536
19537            elsif      not Has_Unknown_Discriminants (Priv_T)
19538              and then not Has_Discriminants (Priv_T)
19539              and then not Is_Constrained (Full_T)
19540            then
19541               Error_Msg_N
19542                 ("full view must define a constrained type if partial view"
19543                  & " has no discriminants", Full_T);
19544            end if;
19545
19546            --  ??????? Do we implement the following properly ?????
19547            --  If the ancestor subtype of a private extension has constrained
19548            --  discriminants, then the parent subtype of the full view shall
19549            --  impose a statically matching constraint on those discriminants
19550            --  [7.3(13)].
19551         end if;
19552
19553      else
19554         --  For untagged types, verify that a type without discriminants is
19555         --  not completed with an unconstrained type. A separate error message
19556         --  is produced if the full type has defaulted discriminants.
19557
19558         if Is_Definite_Subtype (Priv_T)
19559           and then not Is_Definite_Subtype (Full_T)
19560         then
19561            Error_Msg_Sloc := Sloc (Parent (Priv_T));
19562            Error_Msg_NE
19563              ("full view of& not compatible with declaration#",
19564               Full_T, Priv_T);
19565
19566            if not Is_Tagged_Type (Full_T) then
19567               Error_Msg_N
19568                 ("\one is constrained, the other unconstrained", Full_T);
19569            end if;
19570         end if;
19571      end if;
19572
19573      --  AI-419: verify that the use of "limited" is consistent
19574
19575      declare
19576         Orig_Decl : constant Node_Id := Original_Node (N);
19577
19578      begin
19579         if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19580           and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19581           and then Nkind
19582             (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19583         then
19584            if not Limited_Present (Parent (Priv_T))
19585              and then not Synchronized_Present (Parent (Priv_T))
19586              and then Limited_Present (Type_Definition (Orig_Decl))
19587            then
19588               Error_Msg_N
19589                 ("full view of non-limited extension cannot be limited", N);
19590
19591            --  Conversely, if the partial view carries the limited keyword,
19592            --  the full view must as well, even if it may be redundant.
19593
19594            elsif Limited_Present (Parent (Priv_T))
19595              and then not Limited_Present (Type_Definition (Orig_Decl))
19596            then
19597               Error_Msg_N
19598                 ("full view of limited extension must be explicitly limited",
19599                  N);
19600            end if;
19601         end if;
19602      end;
19603
19604      --  Ada 2005 (AI-443): A synchronized private extension must be
19605      --  completed by a task or protected type.
19606
19607      if Ada_Version >= Ada_2005
19608        and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19609        and then Synchronized_Present (Parent (Priv_T))
19610        and then not Is_Concurrent_Type (Full_T)
19611      then
19612         Error_Msg_N ("full view of synchronized extension must " &
19613                      "be synchronized type", N);
19614      end if;
19615
19616      --  Ada 2005 AI-363: if the full view has discriminants with
19617      --  defaults, it is illegal to declare constrained access subtypes
19618      --  whose designated type is the current type. This allows objects
19619      --  of the type that are declared in the heap to be unconstrained.
19620
19621      if not Has_Unknown_Discriminants (Priv_T)
19622        and then not Has_Discriminants (Priv_T)
19623        and then Has_Discriminants (Full_T)
19624        and then
19625          Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19626      then
19627         Set_Has_Constrained_Partial_View (Full_T);
19628         Set_Has_Constrained_Partial_View (Priv_T);
19629      end if;
19630
19631      --  Create a full declaration for all its subtypes recorded in
19632      --  Private_Dependents and swap them similarly to the base type. These
19633      --  are subtypes that have been define before the full declaration of
19634      --  the private type. We also swap the entry in Private_Dependents list
19635      --  so we can properly restore the private view on exit from the scope.
19636
19637      declare
19638         Priv_Elmt : Elmt_Id;
19639         Priv_Scop : Entity_Id;
19640         Priv      : Entity_Id;
19641         Full      : Entity_Id;
19642
19643      begin
19644         Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19645         while Present (Priv_Elmt) loop
19646            Priv := Node (Priv_Elmt);
19647            Priv_Scop := Scope (Priv);
19648
19649            if Ekind_In (Priv, E_Private_Subtype,
19650                               E_Limited_Private_Subtype,
19651                               E_Record_Subtype_With_Private)
19652            then
19653               Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19654               Set_Is_Itype (Full);
19655               Set_Parent (Full, Parent (Priv));
19656               Set_Associated_Node_For_Itype (Full, N);
19657
19658               --  Now we need to complete the private subtype, but since the
19659               --  base type has already been swapped, we must also swap the
19660               --  subtypes (and thus, reverse the arguments in the call to
19661               --  Complete_Private_Subtype). Also note that we may need to
19662               --  re-establish the scope of the private subtype.
19663
19664               Copy_And_Swap (Priv, Full);
19665
19666               if not In_Open_Scopes (Priv_Scop) then
19667                  Push_Scope (Priv_Scop);
19668
19669               else
19670                  --  Reset Priv_Scop to Empty to indicate no scope was pushed
19671
19672                  Priv_Scop := Empty;
19673               end if;
19674
19675               Complete_Private_Subtype (Full, Priv, Full_T, N);
19676
19677               if Present (Priv_Scop) then
19678                  Pop_Scope;
19679               end if;
19680
19681               Replace_Elmt (Priv_Elmt, Full);
19682            end if;
19683
19684            Next_Elmt (Priv_Elmt);
19685         end loop;
19686      end;
19687
19688      --  If the private view was tagged, copy the new primitive operations
19689      --  from the private view to the full view.
19690
19691      if Is_Tagged_Type (Full_T) then
19692         declare
19693            Disp_Typ  : Entity_Id;
19694            Full_List : Elist_Id;
19695            Prim      : Entity_Id;
19696            Prim_Elmt : Elmt_Id;
19697            Priv_List : Elist_Id;
19698
19699            function Contains
19700              (E : Entity_Id;
19701               L : Elist_Id) return Boolean;
19702            --  Determine whether list L contains element E
19703
19704            --------------
19705            -- Contains --
19706            --------------
19707
19708            function Contains
19709              (E : Entity_Id;
19710               L : Elist_Id) return Boolean
19711            is
19712               List_Elmt : Elmt_Id;
19713
19714            begin
19715               List_Elmt := First_Elmt (L);
19716               while Present (List_Elmt) loop
19717                  if Node (List_Elmt) = E then
19718                     return True;
19719                  end if;
19720
19721                  Next_Elmt (List_Elmt);
19722               end loop;
19723
19724               return False;
19725            end Contains;
19726
19727         --  Start of processing
19728
19729         begin
19730            if Is_Tagged_Type (Priv_T) then
19731               Priv_List := Primitive_Operations (Priv_T);
19732               Prim_Elmt := First_Elmt (Priv_List);
19733
19734               --  In the case of a concurrent type completing a private tagged
19735               --  type, primitives may have been declared in between the two
19736               --  views. These subprograms need to be wrapped the same way
19737               --  entries and protected procedures are handled because they
19738               --  cannot be directly shared by the two views.
19739
19740               if Is_Concurrent_Type (Full_T) then
19741                  declare
19742                     Conc_Typ  : constant Entity_Id :=
19743                                   Corresponding_Record_Type (Full_T);
19744                     Curr_Nod  : Node_Id := Parent (Conc_Typ);
19745                     Wrap_Spec : Node_Id;
19746
19747                  begin
19748                     while Present (Prim_Elmt) loop
19749                        Prim := Node (Prim_Elmt);
19750
19751                        if Comes_From_Source (Prim)
19752                          and then not Is_Abstract_Subprogram (Prim)
19753                        then
19754                           Wrap_Spec :=
19755                             Make_Subprogram_Declaration (Sloc (Prim),
19756                               Specification =>
19757                                 Build_Wrapper_Spec
19758                                   (Subp_Id => Prim,
19759                                    Obj_Typ => Conc_Typ,
19760                                    Formals =>
19761                                      Parameter_Specifications (
19762                                        Parent (Prim))));
19763
19764                           Insert_After (Curr_Nod, Wrap_Spec);
19765                           Curr_Nod := Wrap_Spec;
19766
19767                           Analyze (Wrap_Spec);
19768                        end if;
19769
19770                        Next_Elmt (Prim_Elmt);
19771                     end loop;
19772
19773                     return;
19774                  end;
19775
19776               --  For non-concurrent types, transfer explicit primitives, but
19777               --  omit those inherited from the parent of the private view
19778               --  since they will be re-inherited later on.
19779
19780               else
19781                  Full_List := Primitive_Operations (Full_T);
19782
19783                  while Present (Prim_Elmt) loop
19784                     Prim := Node (Prim_Elmt);
19785
19786                     if Comes_From_Source (Prim)
19787                       and then not Contains (Prim, Full_List)
19788                     then
19789                        Append_Elmt (Prim, Full_List);
19790                     end if;
19791
19792                     Next_Elmt (Prim_Elmt);
19793                  end loop;
19794               end if;
19795
19796            --  Untagged private view
19797
19798            else
19799               Full_List := Primitive_Operations (Full_T);
19800
19801               --  In this case the partial view is untagged, so here we locate
19802               --  all of the earlier primitives that need to be treated as
19803               --  dispatching (those that appear between the two views). Note
19804               --  that these additional operations must all be new operations
19805               --  (any earlier operations that override inherited operations
19806               --  of the full view will already have been inserted in the
19807               --  primitives list, marked by Check_Operation_From_Private_View
19808               --  as dispatching. Note that implicit "/=" operators are
19809               --  excluded from being added to the primitives list since they
19810               --  shouldn't be treated as dispatching (tagged "/=" is handled
19811               --  specially).
19812
19813               Prim := Next_Entity (Full_T);
19814               while Present (Prim) and then Prim /= Priv_T loop
19815                  if Ekind_In (Prim, E_Procedure, E_Function) then
19816                     Disp_Typ := Find_Dispatching_Type (Prim);
19817
19818                     if Disp_Typ = Full_T
19819                       and then (Chars (Prim) /= Name_Op_Ne
19820                                  or else Comes_From_Source (Prim))
19821                     then
19822                        Check_Controlling_Formals (Full_T, Prim);
19823
19824                        if not Is_Dispatching_Operation (Prim) then
19825                           Append_Elmt (Prim, Full_List);
19826                           Set_Is_Dispatching_Operation (Prim, True);
19827                           Set_DT_Position_Value (Prim, No_Uint);
19828                        end if;
19829
19830                     elsif Is_Dispatching_Operation (Prim)
19831                       and then Disp_Typ  /= Full_T
19832                     then
19833
19834                        --  Verify that it is not otherwise controlled by a
19835                        --  formal or a return value of type T.
19836
19837                        Check_Controlling_Formals (Disp_Typ, Prim);
19838                     end if;
19839                  end if;
19840
19841                  Next_Entity (Prim);
19842               end loop;
19843            end if;
19844
19845            --  For the tagged case, the two views can share the same primitive
19846            --  operations list and the same class-wide type. Update attributes
19847            --  of the class-wide type which depend on the full declaration.
19848
19849            if Is_Tagged_Type (Priv_T) then
19850               Set_Direct_Primitive_Operations (Priv_T, Full_List);
19851               Set_Class_Wide_Type
19852                 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19853
19854               Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task      (Full_T));
19855               Set_Has_Protected
19856                            (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19857            end if;
19858         end;
19859      end if;
19860
19861      --  Ada 2005 AI 161: Check preelaborable initialization consistency
19862
19863      if Known_To_Have_Preelab_Init (Priv_T) then
19864
19865         --  Case where there is a pragma Preelaborable_Initialization. We
19866         --  always allow this in predefined units, which is cheating a bit,
19867         --  but it means we don't have to struggle to meet the requirements in
19868         --  the RM for having Preelaborable Initialization. Otherwise we
19869         --  require that the type meets the RM rules. But we can't check that
19870         --  yet, because of the rule about overriding Initialize, so we simply
19871         --  set a flag that will be checked at freeze time.
19872
19873         if not In_Predefined_Unit (Full_T) then
19874            Set_Must_Have_Preelab_Init (Full_T);
19875         end if;
19876      end if;
19877
19878      --  If pragma CPP_Class was applied to the private type declaration,
19879      --  propagate it now to the full type declaration.
19880
19881      if Is_CPP_Class (Priv_T) then
19882         Set_Is_CPP_Class (Full_T);
19883         Set_Convention   (Full_T, Convention_CPP);
19884
19885         --  Check that components of imported CPP types do not have default
19886         --  expressions.
19887
19888         Check_CPP_Type_Has_No_Defaults (Full_T);
19889      end if;
19890
19891      --  If the private view has user specified stream attributes, then so has
19892      --  the full view.
19893
19894      --  Why the test, how could these flags be already set in Full_T ???
19895
19896      if Has_Specified_Stream_Read (Priv_T) then
19897         Set_Has_Specified_Stream_Read (Full_T);
19898      end if;
19899
19900      if Has_Specified_Stream_Write (Priv_T) then
19901         Set_Has_Specified_Stream_Write (Full_T);
19902      end if;
19903
19904      if Has_Specified_Stream_Input (Priv_T) then
19905         Set_Has_Specified_Stream_Input (Full_T);
19906      end if;
19907
19908      if Has_Specified_Stream_Output (Priv_T) then
19909         Set_Has_Specified_Stream_Output (Full_T);
19910      end if;
19911
19912      --  Propagate the attributes related to pragma Default_Initial_Condition
19913      --  from the private to the full view. Note that both flags are mutually
19914      --  exclusive.
19915
19916      if Has_Default_Init_Cond (Priv_T)
19917        or else Has_Inherited_Default_Init_Cond (Priv_T)
19918      then
19919         Propagate_Default_Init_Cond_Attributes
19920           (From_Typ             => Priv_T,
19921            To_Typ               => Full_T,
19922            Private_To_Full_View => True);
19923
19924      --  In the case where the full view is derived from another private type,
19925      --  the attributes related to pragma Default_Initial_Condition must be
19926      --  propagated from the full to the private view to maintain consistency
19927      --  of views.
19928
19929      --    package Pack is
19930      --       type Parent_Typ is private
19931      --         with Default_Initial_Condition ...;
19932      --    private
19933      --       type Parent_Typ is ...;
19934      --    end Pack;
19935
19936      --    with Pack; use Pack;
19937      --    package Pack_2 is
19938      --       type Deriv_Typ is private;         --  must inherit
19939      --    private
19940      --       type Deriv_Typ is new Parent_Typ;  --  must inherit
19941      --    end Pack_2;
19942
19943      elsif Has_Default_Init_Cond (Full_T)
19944        or else Has_Inherited_Default_Init_Cond (Full_T)
19945      then
19946         Propagate_Default_Init_Cond_Attributes
19947           (From_Typ             => Full_T,
19948            To_Typ               => Priv_T,
19949            Private_To_Full_View => True);
19950      end if;
19951
19952      if Is_Ghost_Entity (Priv_T) then
19953
19954         --  The Ghost policy in effect at the point of declaration and at the
19955         --  point of completion must match (SPARK RM 6.9(14)).
19956
19957         Check_Ghost_Completion (Priv_T, Full_T);
19958
19959         --  In the case where the private view of a tagged type lacks a parent
19960         --  type and is subject to pragma Ghost, ensure that the parent type
19961         --  specified by the full view is also Ghost (SPARK RM 6.9(9)).
19962
19963         if Is_Derived_Type (Full_T) then
19964            Check_Ghost_Derivation (Full_T);
19965         end if;
19966
19967         --  Propagate the attributes related to pragma Ghost from the private
19968         --  to the full view.
19969
19970         Mark_Full_View_As_Ghost (Priv_T, Full_T);
19971      end if;
19972
19973      --  Propagate invariants to full type
19974
19975      if Has_Invariants (Priv_T) then
19976         Set_Has_Invariants (Full_T);
19977         Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19978      end if;
19979
19980      if Has_Inheritable_Invariants (Priv_T) then
19981         Set_Has_Inheritable_Invariants (Full_T);
19982      end if;
19983
19984      --  Check hidden inheritance of class-wide type invariants
19985
19986      if Ada_Version >= Ada_2012
19987        and then not Has_Inheritable_Invariants (Full_T)
19988        and then In_Private_Part (Current_Scope)
19989        and then Has_Interfaces (Full_T)
19990      then
19991         declare
19992            Ifaces : Elist_Id;
19993            AI     : Elmt_Id;
19994
19995         begin
19996            Collect_Interfaces (Full_T, Ifaces, Exclude_Parents => True);
19997
19998            AI := First_Elmt (Ifaces);
19999            while Present (AI) loop
20000               if Has_Inheritable_Invariants (Node (AI)) then
20001                  Error_Msg_N
20002                    ("hidden inheritance of class-wide type invariants " &
20003                     "not allowed", N);
20004                  exit;
20005               end if;
20006
20007               Next_Elmt (AI);
20008            end loop;
20009         end;
20010      end if;
20011
20012      --  Propagate predicates to full type, and predicate function if already
20013      --  defined. It is not clear that this can actually happen? the partial
20014      --  view cannot be frozen yet, and the predicate function has not been
20015      --  built. Still it is a cheap check and seems safer to make it.
20016
20017      if Has_Predicates (Priv_T) then
20018         if Present (Predicate_Function (Priv_T)) then
20019            Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20020         end if;
20021
20022         Set_Has_Predicates (Full_T);
20023      end if;
20024   end Process_Full_View;
20025
20026   -----------------------------------
20027   -- Process_Incomplete_Dependents --
20028   -----------------------------------
20029
20030   procedure Process_Incomplete_Dependents
20031     (N      : Node_Id;
20032      Full_T : Entity_Id;
20033      Inc_T  : Entity_Id)
20034   is
20035      Inc_Elmt : Elmt_Id;
20036      Priv_Dep : Entity_Id;
20037      New_Subt : Entity_Id;
20038
20039      Disc_Constraint : Elist_Id;
20040
20041   begin
20042      if No (Private_Dependents (Inc_T)) then
20043         return;
20044      end if;
20045
20046      --  Itypes that may be generated by the completion of an incomplete
20047      --  subtype are not used by the back-end and not attached to the tree.
20048      --  They are created only for constraint-checking purposes.
20049
20050      Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20051      while Present (Inc_Elmt) loop
20052         Priv_Dep := Node (Inc_Elmt);
20053
20054         if Ekind (Priv_Dep) = E_Subprogram_Type then
20055
20056            --  An Access_To_Subprogram type may have a return type or a
20057            --  parameter type that is incomplete. Replace with the full view.
20058
20059            if Etype (Priv_Dep) = Inc_T then
20060               Set_Etype (Priv_Dep, Full_T);
20061            end if;
20062
20063            declare
20064               Formal : Entity_Id;
20065
20066            begin
20067               Formal := First_Formal (Priv_Dep);
20068               while Present (Formal) loop
20069                  if Etype (Formal) = Inc_T then
20070                     Set_Etype (Formal, Full_T);
20071                  end if;
20072
20073                  Next_Formal (Formal);
20074               end loop;
20075            end;
20076
20077         elsif Is_Overloadable (Priv_Dep) then
20078
20079            --  If a subprogram in the incomplete dependents list is primitive
20080            --  for a tagged full type then mark it as a dispatching operation,
20081            --  check whether it overrides an inherited subprogram, and check
20082            --  restrictions on its controlling formals. Note that a protected
20083            --  operation is never dispatching: only its wrapper operation
20084            --  (which has convention Ada) is.
20085
20086            if Is_Tagged_Type (Full_T)
20087              and then Is_Primitive (Priv_Dep)
20088              and then Convention (Priv_Dep) /= Convention_Protected
20089            then
20090               Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20091               Set_Is_Dispatching_Operation (Priv_Dep);
20092               Check_Controlling_Formals (Full_T, Priv_Dep);
20093            end if;
20094
20095         elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20096
20097            --  Can happen during processing of a body before the completion
20098            --  of a TA type. Ignore, because spec is also on dependent list.
20099
20100            return;
20101
20102         --  Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20103         --  corresponding subtype of the full view.
20104
20105         elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
20106            Set_Subtype_Indication
20107              (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20108            Set_Etype (Priv_Dep, Full_T);
20109            Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20110            Set_Analyzed (Parent (Priv_Dep), False);
20111
20112            --  Reanalyze the declaration, suppressing the call to
20113            --  Enter_Name to avoid duplicate names.
20114
20115            Analyze_Subtype_Declaration
20116              (N    => Parent (Priv_Dep),
20117               Skip => True);
20118
20119         --  Dependent is a subtype
20120
20121         else
20122            --  We build a new subtype indication using the full view of the
20123            --  incomplete parent. The discriminant constraints have been
20124            --  elaborated already at the point of the subtype declaration.
20125
20126            New_Subt := Create_Itype (E_Void, N);
20127
20128            if Has_Discriminants (Full_T) then
20129               Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20130            else
20131               Disc_Constraint := No_Elist;
20132            end if;
20133
20134            Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20135            Set_Full_View (Priv_Dep, New_Subt);
20136         end if;
20137
20138         Next_Elmt (Inc_Elmt);
20139      end loop;
20140   end Process_Incomplete_Dependents;
20141
20142   --------------------------------
20143   -- Process_Range_Expr_In_Decl --
20144   --------------------------------
20145
20146   procedure Process_Range_Expr_In_Decl
20147     (R            : Node_Id;
20148      T            : Entity_Id;
20149      Subtyp       : Entity_Id := Empty;
20150      Check_List   : List_Id   := Empty_List;
20151      R_Check_Off  : Boolean   := False;
20152      In_Iter_Schm : Boolean   := False)
20153   is
20154      Lo, Hi      : Node_Id;
20155      R_Checks    : Check_Result;
20156      Insert_Node : Node_Id;
20157      Def_Id      : Entity_Id;
20158
20159   begin
20160      Analyze_And_Resolve (R, Base_Type (T));
20161
20162      if Nkind (R) = N_Range then
20163
20164         --  In SPARK, all ranges should be static, with the exception of the
20165         --  discrete type definition of a loop parameter specification.
20166
20167         if not In_Iter_Schm
20168           and then not Is_OK_Static_Range (R)
20169         then
20170            Check_SPARK_05_Restriction ("range should be static", R);
20171         end if;
20172
20173         Lo := Low_Bound (R);
20174         Hi := High_Bound (R);
20175
20176         --  Validity checks on the range of a quantified expression are
20177         --  delayed until the construct is transformed into a loop.
20178
20179         if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20180           and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20181         then
20182            null;
20183
20184         --  We need to ensure validity of the bounds here, because if we
20185         --  go ahead and do the expansion, then the expanded code will get
20186         --  analyzed with range checks suppressed and we miss the check.
20187
20188         --  WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20189         --  the temporaries generated by routine Remove_Side_Effects by means
20190         --  of validity checks must use the same names. When a range appears
20191         --  in the parent of a generic, the range is processed with checks
20192         --  disabled as part of the generic context and with checks enabled
20193         --  for code generation purposes. This leads to link issues as the
20194         --  generic contains references to xxx_FIRST/_LAST, but the inlined
20195         --  template sees the temporaries generated by Remove_Side_Effects.
20196
20197         else
20198            Validity_Check_Range (R, Subtyp);
20199         end if;
20200
20201         --  If there were errors in the declaration, try and patch up some
20202         --  common mistakes in the bounds. The cases handled are literals
20203         --  which are Integer where the expected type is Real and vice versa.
20204         --  These corrections allow the compilation process to proceed further
20205         --  along since some basic assumptions of the format of the bounds
20206         --  are guaranteed.
20207
20208         if Etype (R) = Any_Type then
20209            if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20210               Rewrite (Lo,
20211                 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20212
20213            elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20214               Rewrite (Hi,
20215                 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20216
20217            elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20218               Rewrite (Lo,
20219                 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20220
20221            elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20222               Rewrite (Hi,
20223                 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20224            end if;
20225
20226            Set_Etype (Lo, T);
20227            Set_Etype (Hi, T);
20228         end if;
20229
20230         --  If the bounds of the range have been mistakenly given as string
20231         --  literals (perhaps in place of character literals), then an error
20232         --  has already been reported, but we rewrite the string literal as a
20233         --  bound of the range's type to avoid blowups in later processing
20234         --  that looks at static values.
20235
20236         if Nkind (Lo) = N_String_Literal then
20237            Rewrite (Lo,
20238              Make_Attribute_Reference (Sloc (Lo),
20239                Prefix         => New_Occurrence_Of (T, Sloc (Lo)),
20240                Attribute_Name => Name_First));
20241            Analyze_And_Resolve (Lo);
20242         end if;
20243
20244         if Nkind (Hi) = N_String_Literal then
20245            Rewrite (Hi,
20246              Make_Attribute_Reference (Sloc (Hi),
20247                Prefix         => New_Occurrence_Of (T, Sloc (Hi)),
20248                Attribute_Name => Name_First));
20249            Analyze_And_Resolve (Hi);
20250         end if;
20251
20252         --  If bounds aren't scalar at this point then exit, avoiding
20253         --  problems with further processing of the range in this procedure.
20254
20255         if not Is_Scalar_Type (Etype (Lo)) then
20256            return;
20257         end if;
20258
20259         --  Resolve (actually Sem_Eval) has checked that the bounds are in
20260         --  then range of the base type. Here we check whether the bounds
20261         --  are in the range of the subtype itself. Note that if the bounds
20262         --  represent the null range the Constraint_Error exception should
20263         --  not be raised.
20264
20265         --  ??? The following code should be cleaned up as follows
20266
20267         --  1. The Is_Null_Range (Lo, Hi) test should disappear since it
20268         --     is done in the call to Range_Check (R, T); below
20269
20270         --  2. The use of R_Check_Off should be investigated and possibly
20271         --     removed, this would clean up things a bit.
20272
20273         if Is_Null_Range (Lo, Hi) then
20274            null;
20275
20276         else
20277            --  Capture values of bounds and generate temporaries for them
20278            --  if needed, before applying checks, since checks may cause
20279            --  duplication of the expression without forcing evaluation.
20280
20281            --  The forced evaluation removes side effects from expressions,
20282            --  which should occur also in GNATprove mode. Otherwise, we end up
20283            --  with unexpected insertions of actions at places where this is
20284            --  not supposed to occur, e.g. on default parameters of a call.
20285
20286            if Expander_Active or GNATprove_Mode then
20287
20288               --  Call Force_Evaluation to create declarations as needed to
20289               --  deal with side effects, and also create typ_FIRST/LAST
20290               --  entities for bounds if we have a subtype name.
20291
20292               --  Note: we do this transformation even if expansion is not
20293               --  active if we are in GNATprove_Mode since the transformation
20294               --  is in general required to ensure that the resulting tree has
20295               --  proper Ada semantics.
20296
20297               Force_Evaluation
20298                 (Lo, Related_Id => Subtyp, Is_Low_Bound  => True);
20299               Force_Evaluation
20300                 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
20301            end if;
20302
20303            --  We use a flag here instead of suppressing checks on the type
20304            --  because the type we check against isn't necessarily the place
20305            --  where we put the check.
20306
20307            if not R_Check_Off then
20308               R_Checks := Get_Range_Checks (R, T);
20309
20310               --  Look up tree to find an appropriate insertion point. We
20311               --  can't just use insert_actions because later processing
20312               --  depends on the insertion node. Prior to Ada 2012 the
20313               --  insertion point could only be a declaration or a loop, but
20314               --  quantified expressions can appear within any context in an
20315               --  expression, and the insertion point can be any statement,
20316               --  pragma, or declaration.
20317
20318               Insert_Node := Parent (R);
20319               while Present (Insert_Node) loop
20320                  exit when
20321                    Nkind (Insert_Node) in N_Declaration
20322                    and then
20323                      not Nkind_In
20324                        (Insert_Node, N_Component_Declaration,
20325                                      N_Loop_Parameter_Specification,
20326                                      N_Function_Specification,
20327                                      N_Procedure_Specification);
20328
20329                  exit when Nkind (Insert_Node) in N_Later_Decl_Item
20330                    or else Nkind (Insert_Node) in
20331                              N_Statement_Other_Than_Procedure_Call
20332                    or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20333                                                   N_Pragma);
20334
20335                  Insert_Node := Parent (Insert_Node);
20336               end loop;
20337
20338               --  Why would Type_Decl not be present???  Without this test,
20339               --  short regression tests fail.
20340
20341               if Present (Insert_Node) then
20342
20343                  --  Case of loop statement. Verify that the range is part
20344                  --  of the subtype indication of the iteration scheme.
20345
20346                  if Nkind (Insert_Node) = N_Loop_Statement then
20347                     declare
20348                        Indic : Node_Id;
20349
20350                     begin
20351                        Indic := Parent (R);
20352                        while Present (Indic)
20353                          and then Nkind (Indic) /= N_Subtype_Indication
20354                        loop
20355                           Indic := Parent (Indic);
20356                        end loop;
20357
20358                        if Present (Indic) then
20359                           Def_Id := Etype (Subtype_Mark (Indic));
20360
20361                           Insert_Range_Checks
20362                             (R_Checks,
20363                              Insert_Node,
20364                              Def_Id,
20365                              Sloc (Insert_Node),
20366                              R,
20367                              Do_Before => True);
20368                        end if;
20369                     end;
20370
20371                  --  Insertion before a declaration. If the declaration
20372                  --  includes discriminants, the list of applicable checks
20373                  --  is given by the caller.
20374
20375                  elsif Nkind (Insert_Node) in N_Declaration then
20376                     Def_Id := Defining_Identifier (Insert_Node);
20377
20378                     if (Ekind (Def_Id) = E_Record_Type
20379                          and then Depends_On_Discriminant (R))
20380                       or else
20381                        (Ekind (Def_Id) = E_Protected_Type
20382                          and then Has_Discriminants (Def_Id))
20383                     then
20384                        Append_Range_Checks
20385                          (R_Checks,
20386                            Check_List, Def_Id, Sloc (Insert_Node), R);
20387
20388                     else
20389                        Insert_Range_Checks
20390                          (R_Checks,
20391                            Insert_Node, Def_Id, Sloc (Insert_Node), R);
20392
20393                     end if;
20394
20395                  --  Insertion before a statement. Range appears in the
20396                  --  context of a quantified expression. Insertion will
20397                  --  take place when expression is expanded.
20398
20399                  else
20400                     null;
20401                  end if;
20402               end if;
20403            end if;
20404         end if;
20405
20406      --  Case of other than an explicit N_Range node
20407
20408      --  The forced evaluation removes side effects from expressions, which
20409      --  should occur also in GNATprove mode. Otherwise, we end up with
20410      --  unexpected insertions of actions at places where this is not
20411      --  supposed to occur, e.g. on default parameters of a call.
20412
20413      elsif Expander_Active or GNATprove_Mode then
20414         Get_Index_Bounds (R, Lo, Hi);
20415         Force_Evaluation (Lo);
20416         Force_Evaluation (Hi);
20417      end if;
20418   end Process_Range_Expr_In_Decl;
20419
20420   --------------------------------------
20421   -- Process_Real_Range_Specification --
20422   --------------------------------------
20423
20424   procedure Process_Real_Range_Specification (Def : Node_Id) is
20425      Spec : constant Node_Id := Real_Range_Specification (Def);
20426      Lo   : Node_Id;
20427      Hi   : Node_Id;
20428      Err  : Boolean := False;
20429
20430      procedure Analyze_Bound (N : Node_Id);
20431      --  Analyze and check one bound
20432
20433      -------------------
20434      -- Analyze_Bound --
20435      -------------------
20436
20437      procedure Analyze_Bound (N : Node_Id) is
20438      begin
20439         Analyze_And_Resolve (N, Any_Real);
20440
20441         if not Is_OK_Static_Expression (N) then
20442            Flag_Non_Static_Expr
20443              ("bound in real type definition is not static!", N);
20444            Err := True;
20445         end if;
20446      end Analyze_Bound;
20447
20448   --  Start of processing for Process_Real_Range_Specification
20449
20450   begin
20451      if Present (Spec) then
20452         Lo := Low_Bound (Spec);
20453         Hi := High_Bound (Spec);
20454         Analyze_Bound (Lo);
20455         Analyze_Bound (Hi);
20456
20457         --  If error, clear away junk range specification
20458
20459         if Err then
20460            Set_Real_Range_Specification (Def, Empty);
20461         end if;
20462      end if;
20463   end Process_Real_Range_Specification;
20464
20465   ---------------------
20466   -- Process_Subtype --
20467   ---------------------
20468
20469   function Process_Subtype
20470     (S           : Node_Id;
20471      Related_Nod : Node_Id;
20472      Related_Id  : Entity_Id := Empty;
20473      Suffix      : Character := ' ') return Entity_Id
20474   is
20475      P               : Node_Id;
20476      Def_Id          : Entity_Id;
20477      Error_Node      : Node_Id;
20478      Full_View_Id    : Entity_Id;
20479      Subtype_Mark_Id : Entity_Id;
20480
20481      May_Have_Null_Exclusion : Boolean;
20482
20483      procedure Check_Incomplete (T : Entity_Id);
20484      --  Called to verify that an incomplete type is not used prematurely
20485
20486      ----------------------
20487      -- Check_Incomplete --
20488      ----------------------
20489
20490      procedure Check_Incomplete (T : Entity_Id) is
20491      begin
20492         --  Ada 2005 (AI-412): Incomplete subtypes are legal
20493
20494         if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20495           and then
20496             not (Ada_Version >= Ada_2005
20497                   and then
20498                     (Nkind (Parent (T)) = N_Subtype_Declaration
20499                       or else (Nkind (Parent (T)) = N_Subtype_Indication
20500                                 and then Nkind (Parent (Parent (T))) =
20501                                                   N_Subtype_Declaration)))
20502         then
20503            Error_Msg_N ("invalid use of type before its full declaration", T);
20504         end if;
20505      end Check_Incomplete;
20506
20507   --  Start of processing for Process_Subtype
20508
20509   begin
20510      --  Case of no constraints present
20511
20512      if Nkind (S) /= N_Subtype_Indication then
20513         Find_Type (S);
20514         Check_Incomplete (S);
20515         P := Parent (S);
20516
20517         --  Ada 2005 (AI-231): Static check
20518
20519         if Ada_Version >= Ada_2005
20520           and then Present (P)
20521           and then Null_Exclusion_Present (P)
20522           and then Nkind (P) /= N_Access_To_Object_Definition
20523           and then not Is_Access_Type (Entity (S))
20524         then
20525            Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20526         end if;
20527
20528         --  The following is ugly, can't we have a range or even a flag???
20529
20530         May_Have_Null_Exclusion :=
20531           Nkind_In (P, N_Access_Definition,
20532                        N_Access_Function_Definition,
20533                        N_Access_Procedure_Definition,
20534                        N_Access_To_Object_Definition,
20535                        N_Allocator,
20536                        N_Component_Definition)
20537             or else
20538           Nkind_In (P, N_Derived_Type_Definition,
20539                        N_Discriminant_Specification,
20540                        N_Formal_Object_Declaration,
20541                        N_Object_Declaration,
20542                        N_Object_Renaming_Declaration,
20543                        N_Parameter_Specification,
20544                        N_Subtype_Declaration);
20545
20546         --  Create an Itype that is a duplicate of Entity (S) but with the
20547         --  null-exclusion attribute.
20548
20549         if May_Have_Null_Exclusion
20550           and then Is_Access_Type (Entity (S))
20551           and then Null_Exclusion_Present (P)
20552
20553            --  No need to check the case of an access to object definition.
20554            --  It is correct to define double not-null pointers.
20555
20556            --  Example:
20557            --     type Not_Null_Int_Ptr is not null access Integer;
20558            --     type Acc is not null access Not_Null_Int_Ptr;
20559
20560           and then Nkind (P) /= N_Access_To_Object_Definition
20561         then
20562            if Can_Never_Be_Null (Entity (S)) then
20563               case Nkind (Related_Nod) is
20564                  when N_Full_Type_Declaration =>
20565                     if Nkind (Type_Definition (Related_Nod))
20566                       in N_Array_Type_Definition
20567                     then
20568                        Error_Node :=
20569                          Subtype_Indication
20570                            (Component_Definition
20571                             (Type_Definition (Related_Nod)));
20572                     else
20573                        Error_Node :=
20574                          Subtype_Indication (Type_Definition (Related_Nod));
20575                     end if;
20576
20577                  when N_Subtype_Declaration =>
20578                     Error_Node := Subtype_Indication (Related_Nod);
20579
20580                  when N_Object_Declaration =>
20581                     Error_Node := Object_Definition (Related_Nod);
20582
20583                  when N_Component_Declaration =>
20584                     Error_Node :=
20585                       Subtype_Indication (Component_Definition (Related_Nod));
20586
20587                  when N_Allocator =>
20588                     Error_Node := Expression (Related_Nod);
20589
20590                  when others =>
20591                     pragma Assert (False);
20592                     Error_Node := Related_Nod;
20593               end case;
20594
20595               Error_Msg_NE
20596                 ("`NOT NULL` not allowed (& already excludes null)",
20597                  Error_Node,
20598                  Entity (S));
20599            end if;
20600
20601            Set_Etype  (S,
20602              Create_Null_Excluding_Itype
20603                (T           => Entity (S),
20604                 Related_Nod => P));
20605            Set_Entity (S, Etype (S));
20606         end if;
20607
20608         return Entity (S);
20609
20610      --  Case of constraint present, so that we have an N_Subtype_Indication
20611      --  node (this node is created only if constraints are present).
20612
20613      else
20614         Find_Type (Subtype_Mark (S));
20615
20616         if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20617           and then not
20618            (Nkind (Parent (S)) = N_Subtype_Declaration
20619              and then Is_Itype (Defining_Identifier (Parent (S))))
20620         then
20621            Check_Incomplete (Subtype_Mark (S));
20622         end if;
20623
20624         P := Parent (S);
20625         Subtype_Mark_Id := Entity (Subtype_Mark (S));
20626
20627         --  Explicit subtype declaration case
20628
20629         if Nkind (P) = N_Subtype_Declaration then
20630            Def_Id := Defining_Identifier (P);
20631
20632         --  Explicit derived type definition case
20633
20634         elsif Nkind (P) = N_Derived_Type_Definition then
20635            Def_Id := Defining_Identifier (Parent (P));
20636
20637         --  Implicit case, the Def_Id must be created as an implicit type.
20638         --  The one exception arises in the case of concurrent types, array
20639         --  and access types, where other subsidiary implicit types may be
20640         --  created and must appear before the main implicit type. In these
20641         --  cases we leave Def_Id set to Empty as a signal that Create_Itype
20642         --  has not yet been called to create Def_Id.
20643
20644         else
20645            if Is_Array_Type (Subtype_Mark_Id)
20646              or else Is_Concurrent_Type (Subtype_Mark_Id)
20647              or else Is_Access_Type (Subtype_Mark_Id)
20648            then
20649               Def_Id := Empty;
20650
20651            --  For the other cases, we create a new unattached Itype,
20652            --  and set the indication to ensure it gets attached later.
20653
20654            else
20655               Def_Id :=
20656                 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20657            end if;
20658         end if;
20659
20660         --  If the kind of constraint is invalid for this kind of type,
20661         --  then give an error, and then pretend no constraint was given.
20662
20663         if not Is_Valid_Constraint_Kind
20664                   (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20665         then
20666            Error_Msg_N
20667              ("incorrect constraint for this kind of type", Constraint (S));
20668
20669            Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20670
20671            --  Set Ekind of orphan itype, to prevent cascaded errors
20672
20673            if Present (Def_Id) then
20674               Set_Ekind (Def_Id, Ekind (Any_Type));
20675            end if;
20676
20677            --  Make recursive call, having got rid of the bogus constraint
20678
20679            return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20680         end if;
20681
20682         --  Remaining processing depends on type. Select on Base_Type kind to
20683         --  ensure getting to the concrete type kind in the case of a private
20684         --  subtype (needed when only doing semantic analysis).
20685
20686         case Ekind (Base_Type (Subtype_Mark_Id)) is
20687            when Access_Kind =>
20688
20689               --  If this is a constraint on a class-wide type, discard it.
20690               --  There is currently no way to express a partial discriminant
20691               --  constraint on a type with unknown discriminants. This is
20692               --  a pathology that the ACATS wisely decides not to test.
20693
20694               if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20695                  if Comes_From_Source (S) then
20696                     Error_Msg_N
20697                       ("constraint on class-wide type ignored??",
20698                        Constraint (S));
20699                  end if;
20700
20701                  if Nkind (P) = N_Subtype_Declaration then
20702                     Set_Subtype_Indication (P,
20703                        New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20704                  end if;
20705
20706                  return Subtype_Mark_Id;
20707               end if;
20708
20709               Constrain_Access (Def_Id, S, Related_Nod);
20710
20711               if Expander_Active
20712                 and then  Is_Itype (Designated_Type (Def_Id))
20713                 and then Nkind (Related_Nod) = N_Subtype_Declaration
20714                 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20715               then
20716                  Build_Itype_Reference
20717                    (Designated_Type (Def_Id), Related_Nod);
20718               end if;
20719
20720            when Array_Kind =>
20721               Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20722
20723            when Decimal_Fixed_Point_Kind =>
20724               Constrain_Decimal (Def_Id, S);
20725
20726            when Enumeration_Kind =>
20727               Constrain_Enumeration (Def_Id, S);
20728               Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20729
20730            when Ordinary_Fixed_Point_Kind =>
20731               Constrain_Ordinary_Fixed (Def_Id, S);
20732
20733            when Float_Kind =>
20734               Constrain_Float (Def_Id, S);
20735
20736            when Integer_Kind =>
20737               Constrain_Integer (Def_Id, S);
20738               Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20739
20740            when E_Record_Type     |
20741                 E_Record_Subtype  |
20742                 Class_Wide_Kind   |
20743                 E_Incomplete_Type =>
20744               Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20745
20746               if Ekind (Def_Id) = E_Incomplete_Type then
20747                  Set_Private_Dependents (Def_Id, New_Elmt_List);
20748               end if;
20749
20750            when Private_Kind =>
20751               Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20752               Set_Private_Dependents (Def_Id, New_Elmt_List);
20753
20754               --  In case of an invalid constraint prevent further processing
20755               --  since the type constructed is missing expected fields.
20756
20757               if Etype (Def_Id) = Any_Type then
20758                  return Def_Id;
20759               end if;
20760
20761               --  If the full view is that of a task with discriminants,
20762               --  we must constrain both the concurrent type and its
20763               --  corresponding record type. Otherwise we will just propagate
20764               --  the constraint to the full view, if available.
20765
20766               if Present (Full_View (Subtype_Mark_Id))
20767                 and then Has_Discriminants (Subtype_Mark_Id)
20768                 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20769               then
20770                  Full_View_Id :=
20771                    Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20772
20773                  Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20774                  Constrain_Concurrent (Full_View_Id, S,
20775                    Related_Nod, Related_Id, Suffix);
20776                  Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20777                  Set_Full_View (Def_Id, Full_View_Id);
20778
20779                  --  Introduce an explicit reference to the private subtype,
20780                  --  to prevent scope anomalies in gigi if first use appears
20781                  --  in a nested context, e.g. a later function body.
20782                  --  Should this be generated in other contexts than a full
20783                  --  type declaration?
20784
20785                  if Is_Itype (Def_Id)
20786                    and then
20787                      Nkind (Parent (P)) = N_Full_Type_Declaration
20788                  then
20789                     Build_Itype_Reference (Def_Id, Parent (P));
20790                  end if;
20791
20792               else
20793                  Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20794               end if;
20795
20796            when Concurrent_Kind  =>
20797               Constrain_Concurrent (Def_Id, S,
20798                 Related_Nod, Related_Id, Suffix);
20799
20800            when others =>
20801               Error_Msg_N ("invalid subtype mark in subtype indication", S);
20802         end case;
20803
20804         --  Size and Convention are always inherited from the base type
20805
20806         Set_Size_Info  (Def_Id,            (Subtype_Mark_Id));
20807         Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20808
20809         return Def_Id;
20810      end if;
20811   end Process_Subtype;
20812
20813   --------------------------------------------
20814   -- Propagate_Default_Init_Cond_Attributes --
20815   --------------------------------------------
20816
20817   procedure Propagate_Default_Init_Cond_Attributes
20818     (From_Typ             : Entity_Id;
20819      To_Typ               : Entity_Id;
20820      Parent_To_Derivation : Boolean := False;
20821      Private_To_Full_View : Boolean := False)
20822   is
20823      procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20824      --  Remove the default initial procedure (if any) from the rep chain of
20825      --  type Typ.
20826
20827      ----------------------------------------
20828      -- Remove_Default_Init_Cond_Procedure --
20829      ----------------------------------------
20830
20831      procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20832         Found : Boolean := False;
20833         Prev  : Entity_Id;
20834         Subp  : Entity_Id;
20835
20836      begin
20837         Prev := Typ;
20838         Subp := Subprograms_For_Type (Typ);
20839         while Present (Subp) loop
20840            if Is_Default_Init_Cond_Procedure (Subp) then
20841               Found := True;
20842               exit;
20843            end if;
20844
20845            Prev := Subp;
20846            Subp := Subprograms_For_Type (Subp);
20847         end loop;
20848
20849         if Found then
20850            Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20851            Set_Subprograms_For_Type (Subp, Empty);
20852         end if;
20853      end Remove_Default_Init_Cond_Procedure;
20854
20855      --  Local variables
20856
20857      Inherit_Procedure : Boolean := False;
20858
20859   --  Start of processing for Propagate_Default_Init_Cond_Attributes
20860
20861   begin
20862      if Has_Default_Init_Cond (From_Typ) then
20863
20864         --  A derived type inherits the attributes from its parent type
20865
20866         if Parent_To_Derivation then
20867            Set_Has_Inherited_Default_Init_Cond (To_Typ);
20868
20869         --  A full view shares the attributes with its private view
20870
20871         else
20872            Set_Has_Default_Init_Cond (To_Typ);
20873         end if;
20874
20875         Inherit_Procedure := True;
20876
20877         --  Due to the order of expansion, a derived private type is processed
20878         --  by two routines which both attempt to set the attributes related
20879         --  to pragma Default_Initial_Condition - Build_Derived_Type and then
20880         --  Process_Full_View.
20881
20882         --    package Pack is
20883         --       type Parent_Typ is private
20884         --         with Default_Initial_Condition ...;
20885         --    private
20886         --       type Parent_Typ is ...;
20887         --    end Pack;
20888
20889         --    with Pack; use Pack;
20890         --    package Pack_2 is
20891         --       type Deriv_Typ is private
20892         --         with Default_Initial_Condition ...;
20893         --    private
20894         --       type Deriv_Typ is new Parent_Typ;
20895         --    end Pack_2;
20896
20897         --  When Build_Derived_Type operates, it sets the attributes on the
20898         --  full view without taking into account that the private view may
20899         --  define its own default initial condition procedure. This becomes
20900         --  apparent in Process_Full_View which must undo some of the work by
20901         --  Build_Derived_Type and propagate the attributes from the private
20902         --  to the full view.
20903
20904         if Private_To_Full_View then
20905            Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20906            Remove_Default_Init_Cond_Procedure (To_Typ);
20907         end if;
20908
20909      --  A type must inherit the default initial condition procedure from a
20910      --  parent type when the parent itself is inheriting the procedure or
20911      --  when it is defining one. This circuitry is also used when dealing
20912      --  with the private / full view of a type.
20913
20914      elsif Has_Inherited_Default_Init_Cond (From_Typ)
20915        or (Parent_To_Derivation
20916              and Present (Get_Pragma
20917                    (From_Typ, Pragma_Default_Initial_Condition)))
20918      then
20919         Set_Has_Inherited_Default_Init_Cond (To_Typ);
20920         Inherit_Procedure := True;
20921      end if;
20922
20923      if Inherit_Procedure
20924        and then No (Default_Init_Cond_Procedure (To_Typ))
20925      then
20926         Set_Default_Init_Cond_Procedure
20927           (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20928      end if;
20929   end Propagate_Default_Init_Cond_Attributes;
20930
20931   -----------------------------
20932   -- Record_Type_Declaration --
20933   -----------------------------
20934
20935   procedure Record_Type_Declaration
20936     (T    : Entity_Id;
20937      N    : Node_Id;
20938      Prev : Entity_Id)
20939   is
20940      Def       : constant Node_Id := Type_Definition (N);
20941      Is_Tagged : Boolean;
20942      Tag_Comp  : Entity_Id;
20943
20944   begin
20945      --  These flags must be initialized before calling Process_Discriminants
20946      --  because this routine makes use of them.
20947
20948      Set_Ekind             (T, E_Record_Type);
20949      Set_Etype             (T, T);
20950      Init_Size_Align       (T);
20951      Set_Interfaces        (T, No_Elist);
20952      Set_Stored_Constraint (T, No_Elist);
20953      Set_Default_SSO       (T);
20954
20955      --  Normal case
20956
20957      if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20958         if Limited_Present (Def) then
20959            Check_SPARK_05_Restriction ("limited is not allowed", N);
20960         end if;
20961
20962         if Abstract_Present (Def) then
20963            Check_SPARK_05_Restriction ("abstract is not allowed", N);
20964         end if;
20965
20966         --  The flag Is_Tagged_Type might have already been set by
20967         --  Find_Type_Name if it detected an error for declaration T. This
20968         --  arises in the case of private tagged types where the full view
20969         --  omits the word tagged.
20970
20971         Is_Tagged :=
20972           Tagged_Present (Def)
20973             or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20974
20975         Set_Is_Limited_Record (T, Limited_Present (Def));
20976
20977         if Is_Tagged then
20978            Set_Is_Tagged_Type (T, True);
20979            Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20980         end if;
20981
20982         --  Type is abstract if full declaration carries keyword, or if
20983         --  previous partial view did.
20984
20985         Set_Is_Abstract_Type    (T, Is_Abstract_Type (T)
20986                                      or else Abstract_Present (Def));
20987
20988      else
20989         Check_SPARK_05_Restriction ("interface is not allowed", N);
20990
20991         Is_Tagged := True;
20992         Analyze_Interface_Declaration (T, Def);
20993
20994         if Present (Discriminant_Specifications (N)) then
20995            Error_Msg_N
20996              ("interface types cannot have discriminants",
20997                Defining_Identifier
20998                  (First (Discriminant_Specifications (N))));
20999         end if;
21000      end if;
21001
21002      --  First pass: if there are self-referential access components,
21003      --  create the required anonymous access type declarations, and if
21004      --  need be an incomplete type declaration for T itself.
21005
21006      Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21007
21008      if Ada_Version >= Ada_2005
21009        and then Present (Interface_List (Def))
21010      then
21011         Check_Interfaces (N, Def);
21012
21013         declare
21014            Ifaces_List : Elist_Id;
21015
21016         begin
21017            --  Ada 2005 (AI-251): Collect the list of progenitors that are not
21018            --  already in the parents.
21019
21020            Collect_Interfaces
21021              (T               => T,
21022               Ifaces_List     => Ifaces_List,
21023               Exclude_Parents => True);
21024
21025            Set_Interfaces (T, Ifaces_List);
21026         end;
21027      end if;
21028
21029      --  Records constitute a scope for the component declarations within.
21030      --  The scope is created prior to the processing of these declarations.
21031      --  Discriminants are processed first, so that they are visible when
21032      --  processing the other components. The Ekind of the record type itself
21033      --  is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21034
21035      --  Enter record scope
21036
21037      Push_Scope (T);
21038
21039      --  If an incomplete or private type declaration was already given for
21040      --  the type, then this scope already exists, and the discriminants have
21041      --  been declared within. We must verify that the full declaration
21042      --  matches the incomplete one.
21043
21044      Check_Or_Process_Discriminants (N, T, Prev);
21045
21046      Set_Is_Constrained     (T, not Has_Discriminants (T));
21047      Set_Has_Delayed_Freeze (T, True);
21048
21049      --  For tagged types add a manually analyzed component corresponding
21050      --  to the component _tag, the corresponding piece of tree will be
21051      --  expanded as part of the freezing actions if it is not a CPP_Class.
21052
21053      if Is_Tagged then
21054
21055         --  Do not add the tag unless we are in expansion mode
21056
21057         if Expander_Active then
21058            Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21059            Enter_Name (Tag_Comp);
21060
21061            Set_Ekind                     (Tag_Comp, E_Component);
21062            Set_Is_Tag                    (Tag_Comp);
21063            Set_Is_Aliased                (Tag_Comp);
21064            Set_Etype                     (Tag_Comp, RTE (RE_Tag));
21065            Set_DT_Entry_Count            (Tag_Comp, No_Uint);
21066            Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21067            Init_Component_Location       (Tag_Comp);
21068
21069            --  Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21070            --  implemented interfaces.
21071
21072            if Has_Interfaces (T) then
21073               Add_Interface_Tag_Components (N, T);
21074            end if;
21075         end if;
21076
21077         Make_Class_Wide_Type (T);
21078         Set_Direct_Primitive_Operations (T, New_Elmt_List);
21079      end if;
21080
21081      --  We must suppress range checks when processing record components in
21082      --  the presence of discriminants, since we don't want spurious checks to
21083      --  be generated during their analysis, but Suppress_Range_Checks flags
21084      --  must be reset the after processing the record definition.
21085
21086      --  Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21087      --  couldn't we just use the normal range check suppression method here.
21088      --  That would seem cleaner ???
21089
21090      if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21091         Set_Kill_Range_Checks (T, True);
21092         Record_Type_Definition (Def, Prev);
21093         Set_Kill_Range_Checks (T, False);
21094      else
21095         Record_Type_Definition (Def, Prev);
21096      end if;
21097
21098      --  Exit from record scope
21099
21100      End_Scope;
21101
21102      --  Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21103      --  the implemented interfaces and associate them an aliased entity.
21104
21105      if Is_Tagged
21106        and then not Is_Empty_List (Interface_List (Def))
21107      then
21108         Derive_Progenitor_Subprograms (T, T);
21109      end if;
21110
21111      Check_Function_Writable_Actuals (N);
21112   end Record_Type_Declaration;
21113
21114   ----------------------------
21115   -- Record_Type_Definition --
21116   ----------------------------
21117
21118   procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21119      Component          : Entity_Id;
21120      Ctrl_Components    : Boolean := False;
21121      Final_Storage_Only : Boolean;
21122      T                  : Entity_Id;
21123
21124   begin
21125      if Ekind (Prev_T) = E_Incomplete_Type then
21126         T := Full_View (Prev_T);
21127      else
21128         T := Prev_T;
21129      end if;
21130
21131      --  In SPARK, tagged types and type extensions may only be declared in
21132      --  the specification of library unit packages.
21133
21134      if Present (Def) and then Is_Tagged_Type (T) then
21135         declare
21136            Typ  : Node_Id;
21137            Ctxt : Node_Id;
21138
21139         begin
21140            if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21141               Typ := Parent (Def);
21142            else
21143               pragma Assert
21144                 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21145               Typ := Parent (Parent (Def));
21146            end if;
21147
21148            Ctxt := Parent (Typ);
21149
21150            if Nkind (Ctxt) = N_Package_Body
21151              and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21152            then
21153               Check_SPARK_05_Restriction
21154                 ("type should be defined in package specification", Typ);
21155
21156            elsif Nkind (Ctxt) /= N_Package_Specification
21157              or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21158            then
21159               Check_SPARK_05_Restriction
21160                 ("type should be defined in library unit package", Typ);
21161            end if;
21162         end;
21163      end if;
21164
21165      Final_Storage_Only := not Is_Controlled_Active (T);
21166
21167      --  Ada 2005: Check whether an explicit Limited is present in a derived
21168      --  type declaration.
21169
21170      if Nkind (Parent (Def)) = N_Derived_Type_Definition
21171        and then Limited_Present (Parent (Def))
21172      then
21173         Set_Is_Limited_Record (T);
21174      end if;
21175
21176      --  If the component list of a record type is defined by the reserved
21177      --  word null and there is no discriminant part, then the record type has
21178      --  no components and all records of the type are null records (RM 3.7)
21179      --  This procedure is also called to process the extension part of a
21180      --  record extension, in which case the current scope may have inherited
21181      --  components.
21182
21183      if No (Def)
21184        or else No (Component_List (Def))
21185        or else Null_Present (Component_List (Def))
21186      then
21187         if not Is_Tagged_Type (T) then
21188            Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21189         end if;
21190
21191      else
21192         Analyze_Declarations (Component_Items (Component_List (Def)));
21193
21194         if Present (Variant_Part (Component_List (Def))) then
21195            Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21196            Analyze (Variant_Part (Component_List (Def)));
21197         end if;
21198      end if;
21199
21200      --  After completing the semantic analysis of the record definition,
21201      --  record components, both new and inherited, are accessible. Set their
21202      --  kind accordingly. Exclude malformed itypes from illegal declarations,
21203      --  whose Ekind may be void.
21204
21205      Component := First_Entity (Current_Scope);
21206      while Present (Component) loop
21207         if Ekind (Component) = E_Void
21208           and then not Is_Itype (Component)
21209         then
21210            Set_Ekind (Component, E_Component);
21211            Init_Component_Location (Component);
21212         end if;
21213
21214         if Has_Task (Etype (Component)) then
21215            Set_Has_Task (T);
21216         end if;
21217
21218         if Has_Protected (Etype (Component)) then
21219            Set_Has_Protected (T);
21220         end if;
21221
21222         if Ekind (Component) /= E_Component then
21223            null;
21224
21225         --  Do not set Has_Controlled_Component on a class-wide equivalent
21226         --  type. See Make_CW_Equivalent_Type.
21227
21228         elsif not Is_Class_Wide_Equivalent_Type (T)
21229           and then (Has_Controlled_Component (Etype (Component))
21230                      or else (Chars (Component) /= Name_uParent
21231                                and then Is_Controlled_Active
21232                                           (Etype (Component))))
21233         then
21234            Set_Has_Controlled_Component (T, True);
21235            Final_Storage_Only :=
21236              Final_Storage_Only
21237                and then Finalize_Storage_Only (Etype (Component));
21238            Ctrl_Components := True;
21239         end if;
21240
21241         Next_Entity (Component);
21242      end loop;
21243
21244      --  A Type is Finalize_Storage_Only only if all its controlled components
21245      --  are also.
21246
21247      if Ctrl_Components then
21248         Set_Finalize_Storage_Only (T, Final_Storage_Only);
21249      end if;
21250
21251      --  Place reference to end record on the proper entity, which may
21252      --  be a partial view.
21253
21254      if Present (Def) then
21255         Process_End_Label (Def, 'e', Prev_T);
21256      end if;
21257   end Record_Type_Definition;
21258
21259   ------------------------
21260   -- Replace_Components --
21261   ------------------------
21262
21263   procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21264      function Process (N : Node_Id) return Traverse_Result;
21265
21266      -------------
21267      -- Process --
21268      -------------
21269
21270      function Process (N : Node_Id) return Traverse_Result is
21271         Comp : Entity_Id;
21272
21273      begin
21274         if Nkind (N) = N_Discriminant_Specification then
21275            Comp := First_Discriminant (Typ);
21276            while Present (Comp) loop
21277               if Chars (Comp) = Chars (Defining_Identifier (N)) then
21278                  Set_Defining_Identifier (N, Comp);
21279                  exit;
21280               end if;
21281
21282               Next_Discriminant (Comp);
21283            end loop;
21284
21285         elsif Nkind (N) = N_Component_Declaration then
21286            Comp := First_Component (Typ);
21287            while Present (Comp) loop
21288               if Chars (Comp) = Chars (Defining_Identifier (N)) then
21289                  Set_Defining_Identifier (N, Comp);
21290                  exit;
21291               end if;
21292
21293               Next_Component (Comp);
21294            end loop;
21295         end if;
21296
21297         return OK;
21298      end Process;
21299
21300      procedure Replace is new Traverse_Proc (Process);
21301
21302   --  Start of processing for Replace_Components
21303
21304   begin
21305      Replace (Decl);
21306   end Replace_Components;
21307
21308   -------------------------------
21309   -- Set_Completion_Referenced --
21310   -------------------------------
21311
21312   procedure Set_Completion_Referenced (E : Entity_Id) is
21313   begin
21314      --  If in main unit, mark entity that is a completion as referenced,
21315      --  warnings go on the partial view when needed.
21316
21317      if In_Extended_Main_Source_Unit (E) then
21318         Set_Referenced (E);
21319      end if;
21320   end Set_Completion_Referenced;
21321
21322   ---------------------
21323   -- Set_Default_SSO --
21324   ---------------------
21325
21326   procedure Set_Default_SSO (T : Entity_Id) is
21327   begin
21328      case Opt.Default_SSO is
21329         when ' ' =>
21330            null;
21331         when 'L' =>
21332            Set_SSO_Set_Low_By_Default (T, True);
21333         when 'H' =>
21334            Set_SSO_Set_High_By_Default (T, True);
21335         when others =>
21336            raise Program_Error;
21337      end case;
21338   end Set_Default_SSO;
21339
21340   ---------------------
21341   -- Set_Fixed_Range --
21342   ---------------------
21343
21344   --  The range for fixed-point types is complicated by the fact that we
21345   --  do not know the exact end points at the time of the declaration. This
21346   --  is true for three reasons:
21347
21348   --     A size clause may affect the fudging of the end-points.
21349   --     A small clause may affect the values of the end-points.
21350   --     We try to include the end-points if it does not affect the size.
21351
21352   --  This means that the actual end-points must be established at the
21353   --  point when the type is frozen. Meanwhile, we first narrow the range
21354   --  as permitted (so that it will fit if necessary in a small specified
21355   --  size), and then build a range subtree with these narrowed bounds.
21356   --  Set_Fixed_Range constructs the range from real literal values, and
21357   --  sets the range as the Scalar_Range of the given fixed-point type entity.
21358
21359   --  The parent of this range is set to point to the entity so that it is
21360   --  properly hooked into the tree (unlike normal Scalar_Range entries for
21361   --  other scalar types, which are just pointers to the range in the
21362   --  original tree, this would otherwise be an orphan).
21363
21364   --  The tree is left unanalyzed. When the type is frozen, the processing
21365   --  in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21366   --  analyzed, and uses this as an indication that it should complete
21367   --  work on the range (it will know the final small and size values).
21368
21369   procedure Set_Fixed_Range
21370     (E   : Entity_Id;
21371      Loc : Source_Ptr;
21372      Lo  : Ureal;
21373      Hi  : Ureal)
21374   is
21375      S : constant Node_Id :=
21376            Make_Range (Loc,
21377              Low_Bound  => Make_Real_Literal (Loc, Lo),
21378              High_Bound => Make_Real_Literal (Loc, Hi));
21379   begin
21380      Set_Scalar_Range (E, S);
21381      Set_Parent (S, E);
21382
21383      --  Before the freeze point, the bounds of a fixed point are universal
21384      --  and carry the corresponding type.
21385
21386      Set_Etype (Low_Bound (S),  Universal_Real);
21387      Set_Etype (High_Bound (S), Universal_Real);
21388   end Set_Fixed_Range;
21389
21390   ----------------------------------
21391   -- Set_Scalar_Range_For_Subtype --
21392   ----------------------------------
21393
21394   procedure Set_Scalar_Range_For_Subtype
21395     (Def_Id : Entity_Id;
21396      R      : Node_Id;
21397      Subt   : Entity_Id)
21398   is
21399      Kind : constant Entity_Kind := Ekind (Def_Id);
21400
21401   begin
21402      --  Defend against previous error
21403
21404      if Nkind (R) = N_Error then
21405         return;
21406      end if;
21407
21408      Set_Scalar_Range (Def_Id, R);
21409
21410      --  We need to link the range into the tree before resolving it so
21411      --  that types that are referenced, including importantly the subtype
21412      --  itself, are properly frozen (Freeze_Expression requires that the
21413      --  expression be properly linked into the tree). Of course if it is
21414      --  already linked in, then we do not disturb the current link.
21415
21416      if No (Parent (R)) then
21417         Set_Parent (R, Def_Id);
21418      end if;
21419
21420      --  Reset the kind of the subtype during analysis of the range, to
21421      --  catch possible premature use in the bounds themselves.
21422
21423      Set_Ekind (Def_Id, E_Void);
21424      Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21425      Set_Ekind (Def_Id, Kind);
21426   end Set_Scalar_Range_For_Subtype;
21427
21428   --------------------------------------------------------
21429   -- Set_Stored_Constraint_From_Discriminant_Constraint --
21430   --------------------------------------------------------
21431
21432   procedure Set_Stored_Constraint_From_Discriminant_Constraint
21433     (E : Entity_Id)
21434   is
21435   begin
21436      --  Make sure set if encountered during Expand_To_Stored_Constraint
21437
21438      Set_Stored_Constraint (E, No_Elist);
21439
21440      --  Give it the right value
21441
21442      if Is_Constrained (E) and then Has_Discriminants (E) then
21443         Set_Stored_Constraint (E,
21444           Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21445      end if;
21446   end Set_Stored_Constraint_From_Discriminant_Constraint;
21447
21448   -------------------------------------
21449   -- Signed_Integer_Type_Declaration --
21450   -------------------------------------
21451
21452   procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21453      Implicit_Base : Entity_Id;
21454      Base_Typ      : Entity_Id;
21455      Lo_Val        : Uint;
21456      Hi_Val        : Uint;
21457      Errs          : Boolean := False;
21458      Lo            : Node_Id;
21459      Hi            : Node_Id;
21460
21461      function Can_Derive_From (E : Entity_Id) return Boolean;
21462      --  Determine whether given bounds allow derivation from specified type
21463
21464      procedure Check_Bound (Expr : Node_Id);
21465      --  Check bound to make sure it is integral and static. If not, post
21466      --  appropriate error message and set Errs flag
21467
21468      ---------------------
21469      -- Can_Derive_From --
21470      ---------------------
21471
21472      --  Note we check both bounds against both end values, to deal with
21473      --  strange types like ones with a range of 0 .. -12341234.
21474
21475      function Can_Derive_From (E : Entity_Id) return Boolean is
21476         Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21477         Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21478      begin
21479         return Lo <= Lo_Val and then Lo_Val <= Hi
21480                  and then
21481                Lo <= Hi_Val and then Hi_Val <= Hi;
21482      end Can_Derive_From;
21483
21484      -----------------
21485      -- Check_Bound --
21486      -----------------
21487
21488      procedure Check_Bound (Expr : Node_Id) is
21489      begin
21490         --  If a range constraint is used as an integer type definition, each
21491         --  bound of the range must be defined by a static expression of some
21492         --  integer type, but the two bounds need not have the same integer
21493         --  type (Negative bounds are allowed.) (RM 3.5.4)
21494
21495         if not Is_Integer_Type (Etype (Expr)) then
21496            Error_Msg_N
21497              ("integer type definition bounds must be of integer type", Expr);
21498            Errs := True;
21499
21500         elsif not Is_OK_Static_Expression (Expr) then
21501            Flag_Non_Static_Expr
21502              ("non-static expression used for integer type bound!", Expr);
21503            Errs := True;
21504
21505         --  The bounds are folded into literals, and we set their type to be
21506         --  universal, to avoid typing difficulties: we cannot set the type
21507         --  of the literal to the new type, because this would be a forward
21508         --  reference for the back end,  and if the original type is user-
21509         --  defined this can lead to spurious semantic errors (e.g. 2928-003).
21510
21511         else
21512            if Is_Entity_Name (Expr) then
21513               Fold_Uint (Expr, Expr_Value (Expr), True);
21514            end if;
21515
21516            Set_Etype (Expr, Universal_Integer);
21517         end if;
21518      end Check_Bound;
21519
21520   --  Start of processing for Signed_Integer_Type_Declaration
21521
21522   begin
21523      --  Create an anonymous base type
21524
21525      Implicit_Base :=
21526        Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21527
21528      --  Analyze and check the bounds, they can be of any integer type
21529
21530      Lo := Low_Bound (Def);
21531      Hi := High_Bound (Def);
21532
21533      --  Arbitrarily use Integer as the type if either bound had an error
21534
21535      if Hi = Error or else Lo = Error then
21536         Base_Typ := Any_Integer;
21537         Set_Error_Posted (T, True);
21538
21539      --  Here both bounds are OK expressions
21540
21541      else
21542         Analyze_And_Resolve (Lo, Any_Integer);
21543         Analyze_And_Resolve (Hi, Any_Integer);
21544
21545         Check_Bound (Lo);
21546         Check_Bound (Hi);
21547
21548         if Errs then
21549            Hi := Type_High_Bound (Standard_Long_Long_Integer);
21550            Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21551         end if;
21552
21553         --  Find type to derive from
21554
21555         Lo_Val := Expr_Value (Lo);
21556         Hi_Val := Expr_Value (Hi);
21557
21558         if Can_Derive_From (Standard_Short_Short_Integer) then
21559            Base_Typ := Base_Type (Standard_Short_Short_Integer);
21560
21561         elsif Can_Derive_From (Standard_Short_Integer) then
21562            Base_Typ := Base_Type (Standard_Short_Integer);
21563
21564         elsif Can_Derive_From (Standard_Integer) then
21565            Base_Typ := Base_Type (Standard_Integer);
21566
21567         elsif Can_Derive_From (Standard_Long_Integer) then
21568            Base_Typ := Base_Type (Standard_Long_Integer);
21569
21570         elsif Can_Derive_From (Standard_Long_Long_Integer) then
21571            Check_Restriction (No_Long_Long_Integers, Def);
21572            Base_Typ := Base_Type (Standard_Long_Long_Integer);
21573
21574         else
21575            Base_Typ := Base_Type (Standard_Long_Long_Integer);
21576            Error_Msg_N ("integer type definition bounds out of range", Def);
21577            Hi := Type_High_Bound (Standard_Long_Long_Integer);
21578            Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21579         end if;
21580      end if;
21581
21582      --  Complete both implicit base and declared first subtype entities. The
21583      --  inheritance of the rep item chain ensures that SPARK-related pragmas
21584      --  are not clobbered when the signed integer type acts as a full view of
21585      --  a private type.
21586
21587      Set_Etype          (Implicit_Base,                 Base_Typ);
21588      Set_Size_Info      (Implicit_Base,                 Base_Typ);
21589      Set_RM_Size        (Implicit_Base, RM_Size        (Base_Typ));
21590      Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21591      Set_Scalar_Range   (Implicit_Base, Scalar_Range   (Base_Typ));
21592
21593      Set_Ekind              (T, E_Signed_Integer_Subtype);
21594      Set_Etype              (T, Implicit_Base);
21595      Set_Size_Info          (T, Implicit_Base);
21596      Inherit_Rep_Item_Chain (T, Implicit_Base);
21597      Set_Scalar_Range       (T, Def);
21598      Set_RM_Size            (T, UI_From_Int (Minimum_Size (T)));
21599      Set_Is_Constrained     (T);
21600   end Signed_Integer_Type_Declaration;
21601
21602end Sem_Ch3;
21603