1------------------------------------------------------------------------------ 2-- -- 3-- GNAT COMPILER COMPONENTS -- 4-- -- 5-- S E M _ C H 3 -- 6-- -- 7-- B o d y -- 8-- -- 9-- Copyright (C) 1992-2015, Free Software Foundation, Inc. -- 10-- -- 11-- GNAT is free software; you can redistribute it and/or modify it under -- 12-- terms of the GNU General Public License as published by the Free Soft- -- 13-- ware Foundation; either version 3, or (at your option) any later ver- -- 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- 15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- 16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- 17-- for more details. You should have received a copy of the GNU General -- 18-- Public License distributed with GNAT; see file COPYING3. If not, go to -- 19-- http://www.gnu.org/licenses for a complete copy of the license. -- 20-- -- 21-- GNAT was originally developed by the GNAT team at New York University. -- 22-- Extensive contributions were provided by Ada Core Technologies Inc. -- 23-- -- 24------------------------------------------------------------------------------ 25 26with Aspects; use Aspects; 27with Atree; use Atree; 28with Checks; use Checks; 29with Contracts; use Contracts; 30with Debug; use Debug; 31with Elists; use Elists; 32with Einfo; use Einfo; 33with Errout; use Errout; 34with Eval_Fat; use Eval_Fat; 35with Exp_Ch3; use Exp_Ch3; 36with Exp_Ch9; use Exp_Ch9; 37with Exp_Disp; use Exp_Disp; 38with Exp_Dist; use Exp_Dist; 39with Exp_Tss; use Exp_Tss; 40with Exp_Util; use Exp_Util; 41with Fname; use Fname; 42with Freeze; use Freeze; 43with Ghost; use Ghost; 44with Itypes; use Itypes; 45with Layout; use Layout; 46with Lib; use Lib; 47with Lib.Xref; use Lib.Xref; 48with Namet; use Namet; 49with Nmake; use Nmake; 50with Opt; use Opt; 51with Restrict; use Restrict; 52with Rident; use Rident; 53with Rtsfind; use Rtsfind; 54with Sem; use Sem; 55with Sem_Aux; use Sem_Aux; 56with Sem_Case; use Sem_Case; 57with Sem_Cat; use Sem_Cat; 58with Sem_Ch6; use Sem_Ch6; 59with Sem_Ch7; use Sem_Ch7; 60with Sem_Ch8; use Sem_Ch8; 61with Sem_Ch13; use Sem_Ch13; 62with Sem_Dim; use Sem_Dim; 63with Sem_Disp; use Sem_Disp; 64with Sem_Dist; use Sem_Dist; 65with Sem_Elim; use Sem_Elim; 66with Sem_Eval; use Sem_Eval; 67with Sem_Mech; use Sem_Mech; 68with Sem_Res; use Sem_Res; 69with Sem_Smem; use Sem_Smem; 70with Sem_Type; use Sem_Type; 71with Sem_Util; use Sem_Util; 72with Sem_Warn; use Sem_Warn; 73with Stand; use Stand; 74with Sinfo; use Sinfo; 75with Sinput; use Sinput; 76with Snames; use Snames; 77with Targparm; use Targparm; 78with Tbuild; use Tbuild; 79with Ttypes; use Ttypes; 80with Uintp; use Uintp; 81with Urealp; use Urealp; 82 83package body Sem_Ch3 is 84 85 ----------------------- 86 -- Local Subprograms -- 87 ----------------------- 88 89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id); 90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the 91 -- abstract interface types implemented by a record type or a derived 92 -- record type. 93 94 procedure Build_Derived_Type 95 (N : Node_Id; 96 Parent_Type : Entity_Id; 97 Derived_Type : Entity_Id; 98 Is_Completion : Boolean; 99 Derive_Subps : Boolean := True); 100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is 101 -- the N_Full_Type_Declaration node containing the derived type definition. 102 -- Parent_Type is the entity for the parent type in the derived type 103 -- definition and Derived_Type the actual derived type. Is_Completion must 104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N 105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the 106 -- completion of a private type declaration. If Is_Completion is set to 107 -- True, N is the completion of a private type declaration and Derived_Type 108 -- is different from the defining identifier inside N (i.e. Derived_Type /= 109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent 110 -- subprograms should be derived. The only case where this parameter is 111 -- False is when Build_Derived_Type is recursively called to process an 112 -- implicit derived full type for a type derived from a private type (in 113 -- that case the subprograms must only be derived for the private view of 114 -- the type). 115 -- 116 -- ??? These flags need a bit of re-examination and re-documentation: 117 -- ??? are they both necessary (both seem related to the recursion)? 118 119 procedure Build_Derived_Access_Type 120 (N : Node_Id; 121 Parent_Type : Entity_Id; 122 Derived_Type : Entity_Id); 123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type, 124 -- create an implicit base if the parent type is constrained or if the 125 -- subtype indication has a constraint. 126 127 procedure Build_Derived_Array_Type 128 (N : Node_Id; 129 Parent_Type : Entity_Id; 130 Derived_Type : Entity_Id); 131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type, 132 -- create an implicit base if the parent type is constrained or if the 133 -- subtype indication has a constraint. 134 135 procedure Build_Derived_Concurrent_Type 136 (N : Node_Id; 137 Parent_Type : Entity_Id; 138 Derived_Type : Entity_Id); 139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or 140 -- protected type, inherit entries and protected subprograms, check 141 -- legality of discriminant constraints if any. 142 143 procedure Build_Derived_Enumeration_Type 144 (N : Node_Id; 145 Parent_Type : Entity_Id; 146 Derived_Type : Entity_Id); 147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration 148 -- type, we must create a new list of literals. Types derived from 149 -- Character and [Wide_]Wide_Character are special-cased. 150 151 procedure Build_Derived_Numeric_Type 152 (N : Node_Id; 153 Parent_Type : Entity_Id; 154 Derived_Type : Entity_Id); 155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create 156 -- an anonymous base type, and propagate constraint to subtype if needed. 157 158 procedure Build_Derived_Private_Type 159 (N : Node_Id; 160 Parent_Type : Entity_Id; 161 Derived_Type : Entity_Id; 162 Is_Completion : Boolean; 163 Derive_Subps : Boolean := True); 164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex 165 -- because the parent may or may not have a completion, and the derivation 166 -- may itself be a completion. 167 168 procedure Build_Derived_Record_Type 169 (N : Node_Id; 170 Parent_Type : Entity_Id; 171 Derived_Type : Entity_Id; 172 Derive_Subps : Boolean := True); 173 -- Subsidiary procedure used for tagged and untagged record types 174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration. 175 -- All parameters are as in Build_Derived_Type except that N, in 176 -- addition to being an N_Full_Type_Declaration node, can also be an 177 -- N_Private_Extension_Declaration node. See the definition of this routine 178 -- for much more info. Derive_Subps indicates whether subprograms should be 179 -- derived from the parent type. The only case where Derive_Subps is False 180 -- is for an implicit derived full type for a type derived from a private 181 -- type (see Build_Derived_Type). 182 183 procedure Build_Discriminal (Discrim : Entity_Id); 184 -- Create the discriminal corresponding to discriminant Discrim, that is 185 -- the parameter corresponding to Discrim to be used in initialization 186 -- procedures for the type where Discrim is a discriminant. Discriminals 187 -- are not used during semantic analysis, and are not fully defined 188 -- entities until expansion. Thus they are not given a scope until 189 -- initialization procedures are built. 190 191 function Build_Discriminant_Constraints 192 (T : Entity_Id; 193 Def : Node_Id; 194 Derived_Def : Boolean := False) return Elist_Id; 195 -- Validate discriminant constraints and return the list of the constraints 196 -- in order of discriminant declarations, where T is the discriminated 197 -- unconstrained type. Def is the N_Subtype_Indication node where the 198 -- discriminants constraints for T are specified. Derived_Def is True 199 -- when building the discriminant constraints in a derived type definition 200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent 201 -- type and Def is the constraint "(xxx)" on T and this routine sets the 202 -- Corresponding_Discriminant field of the discriminants in the derived 203 -- type D to point to the corresponding discriminants in the parent type T. 204 205 procedure Build_Discriminated_Subtype 206 (T : Entity_Id; 207 Def_Id : Entity_Id; 208 Elist : Elist_Id; 209 Related_Nod : Node_Id; 210 For_Access : Boolean := False); 211 -- Subsidiary procedure to Constrain_Discriminated_Type and to 212 -- Process_Incomplete_Dependents. Given 213 -- 214 -- T (a possibly discriminated base type) 215 -- Def_Id (a very partially built subtype for T), 216 -- 217 -- the call completes Def_Id to be the appropriate E_*_Subtype. 218 -- 219 -- The Elist is the list of discriminant constraints if any (it is set 220 -- to No_Elist if T is not a discriminated type, and to an empty list if 221 -- T has discriminants but there are no discriminant constraints). The 222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components. 223 -- The For_Access says whether or not this subtype is really constraining 224 -- an access type. That is its sole purpose is the designated type of an 225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype 226 -- is built to avoid freezing T when the access subtype is frozen. 227 228 function Build_Scalar_Bound 229 (Bound : Node_Id; 230 Par_T : Entity_Id; 231 Der_T : Entity_Id) return Node_Id; 232 -- The bounds of a derived scalar type are conversions of the bounds of 233 -- the parent type. Optimize the representation if the bounds are literals. 234 -- Needs a more complete spec--what are the parameters exactly, and what 235 -- exactly is the returned value, and how is Bound affected??? 236 237 procedure Build_Underlying_Full_View 238 (N : Node_Id; 239 Typ : Entity_Id; 240 Par : Entity_Id); 241 -- If the completion of a private type is itself derived from a private 242 -- type, or if the full view of a private subtype is itself private, the 243 -- back-end has no way to compute the actual size of this type. We build 244 -- an internal subtype declaration of the proper parent type to convey 245 -- this information. This extra mechanism is needed because a full 246 -- view cannot itself have a full view (it would get clobbered during 247 -- view exchanges). 248 249 procedure Check_Access_Discriminant_Requires_Limited 250 (D : Node_Id; 251 Loc : Node_Id); 252 -- Check the restriction that the type to which an access discriminant 253 -- belongs must be a concurrent type or a descendant of a type with 254 -- the reserved word 'limited' in its declaration. 255 256 procedure Check_Anonymous_Access_Components 257 (Typ_Decl : Node_Id; 258 Typ : Entity_Id; 259 Prev : Entity_Id; 260 Comp_List : Node_Id); 261 -- Ada 2005 AI-382: an access component in a record definition can refer to 262 -- the enclosing record, in which case it denotes the type itself, and not 263 -- the current instance of the type. We create an anonymous access type for 264 -- the component, and flag it as an access to a component, so accessibility 265 -- checks are properly performed on it. The declaration of the access type 266 -- is placed ahead of that of the record to prevent order-of-elaboration 267 -- circularity issues in Gigi. We create an incomplete type for the record 268 -- declaration, which is the designated type of the anonymous access. 269 270 procedure Check_Delta_Expression (E : Node_Id); 271 -- Check that the expression represented by E is suitable for use as a 272 -- delta expression, i.e. it is of real type and is static. 273 274 procedure Check_Digits_Expression (E : Node_Id); 275 -- Check that the expression represented by E is suitable for use as a 276 -- digits expression, i.e. it is of integer type, positive and static. 277 278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id); 279 -- Validate the initialization of an object declaration. T is the required 280 -- type, and Exp is the initialization expression. 281 282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id); 283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2) 284 285 procedure Check_Or_Process_Discriminants 286 (N : Node_Id; 287 T : Entity_Id; 288 Prev : Entity_Id := Empty); 289 -- If N is the full declaration of the completion T of an incomplete or 290 -- private type, check its discriminants (which are already known to be 291 -- conformant with those of the partial view, see Find_Type_Name), 292 -- otherwise process them. Prev is the entity of the partial declaration, 293 -- if any. 294 295 procedure Check_Real_Bound (Bound : Node_Id); 296 -- Check given bound for being of real type and static. If not, post an 297 -- appropriate message, and rewrite the bound with the real literal zero. 298 299 procedure Constant_Redeclaration 300 (Id : Entity_Id; 301 N : Node_Id; 302 T : out Entity_Id); 303 -- Various checks on legality of full declaration of deferred constant. 304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration, 305 -- node. The caller has not yet set any attributes of this entity. 306 307 function Contain_Interface 308 (Iface : Entity_Id; 309 Ifaces : Elist_Id) return Boolean; 310 -- Ada 2005: Determine whether Iface is present in the list Ifaces 311 312 procedure Convert_Scalar_Bounds 313 (N : Node_Id; 314 Parent_Type : Entity_Id; 315 Derived_Type : Entity_Id; 316 Loc : Source_Ptr); 317 -- For derived scalar types, convert the bounds in the type definition to 318 -- the derived type, and complete their analysis. Given a constraint of the 319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with 320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous 321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived 322 -- subtype are conversions of those bounds to the derived_type, so that 323 -- their typing is consistent. 324 325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id); 326 -- Copies attributes from array base type T2 to array base type T1. Copies 327 -- only attributes that apply to base types, but not subtypes. 328 329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id); 330 -- Copies attributes from array subtype T2 to array subtype T1. Copies 331 -- attributes that apply to both subtypes and base types. 332 333 procedure Create_Constrained_Components 334 (Subt : Entity_Id; 335 Decl_Node : Node_Id; 336 Typ : Entity_Id; 337 Constraints : Elist_Id); 338 -- Build the list of entities for a constrained discriminated record 339 -- subtype. If a component depends on a discriminant, replace its subtype 340 -- using the discriminant values in the discriminant constraint. Subt 341 -- is the defining identifier for the subtype whose list of constrained 342 -- entities we will create. Decl_Node is the type declaration node where 343 -- we will attach all the itypes created. Typ is the base discriminated 344 -- type for the subtype Subt. Constraints is the list of discriminant 345 -- constraints for Typ. 346 347 function Constrain_Component_Type 348 (Comp : Entity_Id; 349 Constrained_Typ : Entity_Id; 350 Related_Node : Node_Id; 351 Typ : Entity_Id; 352 Constraints : Elist_Id) return Entity_Id; 353 -- Given a discriminated base type Typ, a list of discriminant constraints, 354 -- Constraints, for Typ and a component Comp of Typ, create and return the 355 -- type corresponding to Etype (Comp) where all discriminant references 356 -- are replaced with the corresponding constraint. If Etype (Comp) contains 357 -- no discriminant references then it is returned as-is. Constrained_Typ 358 -- is the final constrained subtype to which the constrained component 359 -- belongs. Related_Node is the node where we attach all created itypes. 360 361 procedure Constrain_Access 362 (Def_Id : in out Entity_Id; 363 S : Node_Id; 364 Related_Nod : Node_Id); 365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is 366 -- an anonymous type created for a subtype indication. In that case it is 367 -- created in the procedure and attached to Related_Nod. 368 369 procedure Constrain_Array 370 (Def_Id : in out Entity_Id; 371 SI : Node_Id; 372 Related_Nod : Node_Id; 373 Related_Id : Entity_Id; 374 Suffix : Character); 375 -- Apply a list of index constraints to an unconstrained array type. The 376 -- first parameter is the entity for the resulting subtype. A value of 377 -- Empty for Def_Id indicates that an implicit type must be created, but 378 -- creation is delayed (and must be done by this procedure) because other 379 -- subsidiary implicit types must be created first (which is why Def_Id 380 -- is an in/out parameter). The second parameter is a subtype indication 381 -- node for the constrained array to be created (e.g. something of the 382 -- form string (1 .. 10)). Related_Nod gives the place where this type 383 -- has to be inserted in the tree. The Related_Id and Suffix parameters 384 -- are used to build the associated Implicit type name. 385 386 procedure Constrain_Concurrent 387 (Def_Id : in out Entity_Id; 388 SI : Node_Id; 389 Related_Nod : Node_Id; 390 Related_Id : Entity_Id; 391 Suffix : Character); 392 -- Apply list of discriminant constraints to an unconstrained concurrent 393 -- type. 394 -- 395 -- SI is the N_Subtype_Indication node containing the constraint and 396 -- the unconstrained type to constrain. 397 -- 398 -- Def_Id is the entity for the resulting constrained subtype. A value 399 -- of Empty for Def_Id indicates that an implicit type must be created, 400 -- but creation is delayed (and must be done by this procedure) because 401 -- other subsidiary implicit types must be created first (which is why 402 -- Def_Id is an in/out parameter). 403 -- 404 -- Related_Nod gives the place where this type has to be inserted 405 -- in the tree. 406 -- 407 -- The last two arguments are used to create its external name if needed. 408 409 function Constrain_Corresponding_Record 410 (Prot_Subt : Entity_Id; 411 Corr_Rec : Entity_Id; 412 Related_Nod : Node_Id) return Entity_Id; 413 -- When constraining a protected type or task type with discriminants, 414 -- constrain the corresponding record with the same discriminant values. 415 416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id); 417 -- Constrain a decimal fixed point type with a digits constraint and/or a 418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity. 419 420 procedure Constrain_Discriminated_Type 421 (Def_Id : Entity_Id; 422 S : Node_Id; 423 Related_Nod : Node_Id; 424 For_Access : Boolean := False); 425 -- Process discriminant constraints of composite type. Verify that values 426 -- have been provided for all discriminants, that the original type is 427 -- unconstrained, and that the types of the supplied expressions match 428 -- the discriminant types. The first three parameters are like in routine 429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation 430 -- of For_Access. 431 432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id); 433 -- Constrain an enumeration type with a range constraint. This is identical 434 -- to Constrain_Integer, but for the Ekind of the resulting subtype. 435 436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id); 437 -- Constrain a floating point type with either a digits constraint 438 -- and/or a range constraint, building a E_Floating_Point_Subtype. 439 440 procedure Constrain_Index 441 (Index : Node_Id; 442 S : Node_Id; 443 Related_Nod : Node_Id; 444 Related_Id : Entity_Id; 445 Suffix : Character; 446 Suffix_Index : Nat); 447 -- Process an index constraint S in a constrained array declaration. The 448 -- constraint can be a subtype name, or a range with or without an explicit 449 -- subtype mark. The index is the corresponding index of the unconstrained 450 -- array. The Related_Id and Suffix parameters are used to build the 451 -- associated Implicit type name. 452 453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id); 454 -- Build subtype of a signed or modular integer type 455 456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id); 457 -- Constrain an ordinary fixed point type with a range constraint, and 458 -- build an E_Ordinary_Fixed_Point_Subtype entity. 459 460 procedure Copy_And_Swap (Priv, Full : Entity_Id); 461 -- Copy the Priv entity into the entity of its full declaration then swap 462 -- the two entities in such a manner that the former private type is now 463 -- seen as a full type. 464 465 procedure Decimal_Fixed_Point_Type_Declaration 466 (T : Entity_Id; 467 Def : Node_Id); 468 -- Create a new decimal fixed point type, and apply the constraint to 469 -- obtain a subtype of this new type. 470 471 procedure Complete_Private_Subtype 472 (Priv : Entity_Id; 473 Full : Entity_Id; 474 Full_Base : Entity_Id; 475 Related_Nod : Node_Id); 476 -- Complete the implicit full view of a private subtype by setting the 477 -- appropriate semantic fields. If the full view of the parent is a record 478 -- type, build constrained components of subtype. 479 480 procedure Derive_Progenitor_Subprograms 481 (Parent_Type : Entity_Id; 482 Tagged_Type : Entity_Id); 483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive 484 -- operations of progenitors of Tagged_Type, and replace the subsidiary 485 -- subtypes with Tagged_Type, to build the specs of the inherited interface 486 -- primitives. The derived primitives are aliased to those of the 487 -- interface. This routine takes care also of transferring to the full view 488 -- subprograms associated with the partial view of Tagged_Type that cover 489 -- interface primitives. 490 491 procedure Derived_Standard_Character 492 (N : Node_Id; 493 Parent_Type : Entity_Id; 494 Derived_Type : Entity_Id); 495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles 496 -- derivations from types Standard.Character and Standard.Wide_Character. 497 498 procedure Derived_Type_Declaration 499 (T : Entity_Id; 500 N : Node_Id; 501 Is_Completion : Boolean); 502 -- Process a derived type declaration. Build_Derived_Type is invoked 503 -- to process the actual derived type definition. Parameters N and 504 -- Is_Completion have the same meaning as in Build_Derived_Type. 505 -- T is the N_Defining_Identifier for the entity defined in the 506 -- N_Full_Type_Declaration node N, that is T is the derived type. 507 508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id); 509 -- Insert each literal in symbol table, as an overloadable identifier. Each 510 -- enumeration type is mapped into a sequence of integers, and each literal 511 -- is defined as a constant with integer value. If any of the literals are 512 -- character literals, the type is a character type, which means that 513 -- strings are legal aggregates for arrays of components of the type. 514 515 function Expand_To_Stored_Constraint 516 (Typ : Entity_Id; 517 Constraint : Elist_Id) return Elist_Id; 518 -- Given a constraint (i.e. a list of expressions) on the discriminants of 519 -- Typ, expand it into a constraint on the stored discriminants and return 520 -- the new list of expressions constraining the stored discriminants. 521 522 function Find_Type_Of_Object 523 (Obj_Def : Node_Id; 524 Related_Nod : Node_Id) return Entity_Id; 525 -- Get type entity for object referenced by Obj_Def, attaching the implicit 526 -- types generated to Related_Nod. 527 528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id); 529 -- Create a new float and apply the constraint to obtain subtype of it 530 531 function Has_Range_Constraint (N : Node_Id) return Boolean; 532 -- Given an N_Subtype_Indication node N, return True if a range constraint 533 -- is present, either directly, or as part of a digits or delta constraint. 534 -- In addition, a digits constraint in the decimal case returns True, since 535 -- it establishes a default range if no explicit range is present. 536 537 function Inherit_Components 538 (N : Node_Id; 539 Parent_Base : Entity_Id; 540 Derived_Base : Entity_Id; 541 Is_Tagged : Boolean; 542 Inherit_Discr : Boolean; 543 Discs : Elist_Id) return Elist_Id; 544 -- Called from Build_Derived_Record_Type to inherit the components of 545 -- Parent_Base (a base type) into the Derived_Base (the derived base type). 546 -- For more information on derived types and component inheritance please 547 -- consult the comment above the body of Build_Derived_Record_Type. 548 -- 549 -- N is the original derived type declaration 550 -- 551 -- Is_Tagged is set if we are dealing with tagged types 552 -- 553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from 554 -- Parent_Base, otherwise no discriminants are inherited. 555 -- 556 -- Discs gives the list of constraints that apply to Parent_Base in the 557 -- derived type declaration. If Discs is set to No_Elist, then we have 558 -- the following situation: 559 -- 560 -- type Parent (D1..Dn : ..) is [tagged] record ...; 561 -- type Derived is new Parent [with ...]; 562 -- 563 -- which gets treated as 564 -- 565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...]; 566 -- 567 -- For untagged types the returned value is an association list. The list 568 -- starts from the association (Parent_Base => Derived_Base), and then it 569 -- contains a sequence of the associations of the form 570 -- 571 -- (Old_Component => New_Component), 572 -- 573 -- where Old_Component is the Entity_Id of a component in Parent_Base and 574 -- New_Component is the Entity_Id of the corresponding component in 575 -- Derived_Base. For untagged records, this association list is needed when 576 -- copying the record declaration for the derived base. In the tagged case 577 -- the value returned is irrelevant. 578 579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id); 580 -- Propagate static and dynamic predicate flags from a parent to the 581 -- subtype in a subtype declaration with and without constraints. 582 583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean; 584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram. 585 -- Determine whether subprogram Subp is a procedure subject to pragma 586 -- Extensions_Visible with value False and has at least one controlling 587 -- parameter of mode OUT. 588 589 function Is_Valid_Constraint_Kind 590 (T_Kind : Type_Kind; 591 Constraint_Kind : Node_Kind) return Boolean; 592 -- Returns True if it is legal to apply the given kind of constraint to the 593 -- given kind of type (index constraint to an array type, for example). 594 595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id); 596 -- Create new modular type. Verify that modulus is in bounds 597 598 procedure New_Concatenation_Op (Typ : Entity_Id); 599 -- Create an abbreviated declaration for an operator in order to 600 -- materialize concatenation on array types. 601 602 procedure Ordinary_Fixed_Point_Type_Declaration 603 (T : Entity_Id; 604 Def : Node_Id); 605 -- Create a new ordinary fixed point type, and apply the constraint to 606 -- obtain subtype of it. 607 608 procedure Prepare_Private_Subtype_Completion 609 (Id : Entity_Id; 610 Related_Nod : Node_Id); 611 -- Id is a subtype of some private type. Creates the full declaration 612 -- associated with Id whenever possible, i.e. when the full declaration 613 -- of the base type is already known. Records each subtype into 614 -- Private_Dependents of the base type. 615 616 procedure Process_Incomplete_Dependents 617 (N : Node_Id; 618 Full_T : Entity_Id; 619 Inc_T : Entity_Id); 620 -- Process all entities that depend on an incomplete type. There include 621 -- subtypes, subprogram types that mention the incomplete type in their 622 -- profiles, and subprogram with access parameters that designate the 623 -- incomplete type. 624 625 -- Inc_T is the defining identifier of an incomplete type declaration, its 626 -- Ekind is E_Incomplete_Type. 627 -- 628 -- N is the corresponding N_Full_Type_Declaration for Inc_T. 629 -- 630 -- Full_T is N's defining identifier. 631 -- 632 -- Subtypes of incomplete types with discriminants are completed when the 633 -- parent type is. This is simpler than private subtypes, because they can 634 -- only appear in the same scope, and there is no need to exchange views. 635 -- Similarly, access_to_subprogram types may have a parameter or a return 636 -- type that is an incomplete type, and that must be replaced with the 637 -- full type. 638 -- 639 -- If the full type is tagged, subprogram with access parameters that 640 -- designated the incomplete may be primitive operations of the full type, 641 -- and have to be processed accordingly. 642 643 procedure Process_Real_Range_Specification (Def : Node_Id); 644 -- Given the type definition for a real type, this procedure processes and 645 -- checks the real range specification of this type definition if one is 646 -- present. If errors are found, error messages are posted, and the 647 -- Real_Range_Specification of Def is reset to Empty. 648 649 procedure Propagate_Default_Init_Cond_Attributes 650 (From_Typ : Entity_Id; 651 To_Typ : Entity_Id; 652 Parent_To_Derivation : Boolean := False; 653 Private_To_Full_View : Boolean := False); 654 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit 655 -- all attributes related to pragma Default_Initial_Condition from From_Typ 656 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is 657 -- the creation of a derived type. Flag Private_To_Full_View should be set 658 -- when processing both views of a private type. 659 660 procedure Record_Type_Declaration 661 (T : Entity_Id; 662 N : Node_Id; 663 Prev : Entity_Id); 664 -- Process a record type declaration (for both untagged and tagged 665 -- records). Parameters T and N are exactly like in procedure 666 -- Derived_Type_Declaration, except that no flag Is_Completion is needed 667 -- for this routine. If this is the completion of an incomplete type 668 -- declaration, Prev is the entity of the incomplete declaration, used for 669 -- cross-referencing. Otherwise Prev = T. 670 671 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id); 672 -- This routine is used to process the actual record type definition (both 673 -- for untagged and tagged records). Def is a record type definition node. 674 -- This procedure analyzes the components in this record type definition. 675 -- Prev_T is the entity for the enclosing record type. It is provided so 676 -- that its Has_Task flag can be set if any of the component have Has_Task 677 -- set. If the declaration is the completion of an incomplete type 678 -- declaration, Prev_T is the original incomplete type, whose full view is 679 -- the record type. 680 681 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id); 682 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we 683 -- build a copy of the declaration tree of the parent, and we create 684 -- independently the list of components for the derived type. Semantic 685 -- information uses the component entities, but record representation 686 -- clauses are validated on the declaration tree. This procedure replaces 687 -- discriminants and components in the declaration with those that have 688 -- been created by Inherit_Components. 689 690 procedure Set_Fixed_Range 691 (E : Entity_Id; 692 Loc : Source_Ptr; 693 Lo : Ureal; 694 Hi : Ureal); 695 -- Build a range node with the given bounds and set it as the Scalar_Range 696 -- of the given fixed-point type entity. Loc is the source location used 697 -- for the constructed range. See body for further details. 698 699 procedure Set_Scalar_Range_For_Subtype 700 (Def_Id : Entity_Id; 701 R : Node_Id; 702 Subt : Entity_Id); 703 -- This routine is used to set the scalar range field for a subtype given 704 -- Def_Id, the entity for the subtype, and R, the range expression for the 705 -- scalar range. Subt provides the parent subtype to be used to analyze, 706 -- resolve, and check the given range. 707 708 procedure Set_Default_SSO (T : Entity_Id); 709 -- T is the entity for an array or record being declared. This procedure 710 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according 711 -- to the setting of Opt.Default_SSO. 712 713 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id); 714 -- Create a new signed integer entity, and apply the constraint to obtain 715 -- the required first named subtype of this type. 716 717 procedure Set_Stored_Constraint_From_Discriminant_Constraint 718 (E : Entity_Id); 719 -- E is some record type. This routine computes E's Stored_Constraint 720 -- from its Discriminant_Constraint. 721 722 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id); 723 -- Check that an entity in a list of progenitors is an interface, 724 -- emit error otherwise. 725 726 ----------------------- 727 -- Access_Definition -- 728 ----------------------- 729 730 function Access_Definition 731 (Related_Nod : Node_Id; 732 N : Node_Id) return Entity_Id 733 is 734 Anon_Type : Entity_Id; 735 Anon_Scope : Entity_Id; 736 Desig_Type : Entity_Id; 737 Enclosing_Prot_Type : Entity_Id := Empty; 738 739 begin 740 Check_SPARK_05_Restriction ("access type is not allowed", N); 741 742 if Is_Entry (Current_Scope) 743 and then Is_Task_Type (Etype (Scope (Current_Scope))) 744 then 745 Error_Msg_N ("task entries cannot have access parameters", N); 746 return Empty; 747 end if; 748 749 -- Ada 2005: For an object declaration the corresponding anonymous 750 -- type is declared in the current scope. 751 752 -- If the access definition is the return type of another access to 753 -- function, scope is the current one, because it is the one of the 754 -- current type declaration, except for the pathological case below. 755 756 if Nkind_In (Related_Nod, N_Object_Declaration, 757 N_Access_Function_Definition) 758 then 759 Anon_Scope := Current_Scope; 760 761 -- A pathological case: function returning access functions that 762 -- return access functions, etc. Each anonymous access type created 763 -- is in the enclosing scope of the outermost function. 764 765 declare 766 Par : Node_Id; 767 768 begin 769 Par := Related_Nod; 770 while Nkind_In (Par, N_Access_Function_Definition, 771 N_Access_Definition) 772 loop 773 Par := Parent (Par); 774 end loop; 775 776 if Nkind (Par) = N_Function_Specification then 777 Anon_Scope := Scope (Defining_Entity (Par)); 778 end if; 779 end; 780 781 -- For the anonymous function result case, retrieve the scope of the 782 -- function specification's associated entity rather than using the 783 -- current scope. The current scope will be the function itself if the 784 -- formal part is currently being analyzed, but will be the parent scope 785 -- in the case of a parameterless function, and we always want to use 786 -- the function's parent scope. Finally, if the function is a child 787 -- unit, we must traverse the tree to retrieve the proper entity. 788 789 elsif Nkind (Related_Nod) = N_Function_Specification 790 and then Nkind (Parent (N)) /= N_Parameter_Specification 791 then 792 -- If the current scope is a protected type, the anonymous access 793 -- is associated with one of the protected operations, and must 794 -- be available in the scope that encloses the protected declaration. 795 -- Otherwise the type is in the scope enclosing the subprogram. 796 797 -- If the function has formals, The return type of a subprogram 798 -- declaration is analyzed in the scope of the subprogram (see 799 -- Process_Formals) and thus the protected type, if present, is 800 -- the scope of the current function scope. 801 802 if Ekind (Current_Scope) = E_Protected_Type then 803 Enclosing_Prot_Type := Current_Scope; 804 805 elsif Ekind (Current_Scope) = E_Function 806 and then Ekind (Scope (Current_Scope)) = E_Protected_Type 807 then 808 Enclosing_Prot_Type := Scope (Current_Scope); 809 end if; 810 811 if Present (Enclosing_Prot_Type) then 812 Anon_Scope := Scope (Enclosing_Prot_Type); 813 814 else 815 Anon_Scope := Scope (Defining_Entity (Related_Nod)); 816 end if; 817 818 -- For an access type definition, if the current scope is a child 819 -- unit it is the scope of the type. 820 821 elsif Is_Compilation_Unit (Current_Scope) then 822 Anon_Scope := Current_Scope; 823 824 -- For access formals, access components, and access discriminants, the 825 -- scope is that of the enclosing declaration, 826 827 else 828 Anon_Scope := Scope (Current_Scope); 829 end if; 830 831 Anon_Type := 832 Create_Itype 833 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope); 834 835 if All_Present (N) 836 and then Ada_Version >= Ada_2005 837 then 838 Error_Msg_N ("ALL is not permitted for anonymous access types", N); 839 end if; 840 841 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call 842 -- the corresponding semantic routine 843 844 if Present (Access_To_Subprogram_Definition (N)) then 845 846 -- Compiler runtime units are compiled in Ada 2005 mode when building 847 -- the runtime library but must also be compilable in Ada 95 mode 848 -- (when bootstrapping the compiler). 849 850 Check_Compiler_Unit ("anonymous access to subprogram", N); 851 852 Access_Subprogram_Declaration 853 (T_Name => Anon_Type, 854 T_Def => Access_To_Subprogram_Definition (N)); 855 856 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then 857 Set_Ekind 858 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type); 859 else 860 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type); 861 end if; 862 863 Set_Can_Use_Internal_Rep 864 (Anon_Type, not Always_Compatible_Rep_On_Target); 865 866 -- If the anonymous access is associated with a protected operation, 867 -- create a reference to it after the enclosing protected definition 868 -- because the itype will be used in the subsequent bodies. 869 870 -- If the anonymous access itself is protected, a full type 871 -- declaratiton will be created for it, so that the equivalent 872 -- record type can be constructed. For further details, see 873 -- Replace_Anonymous_Access_To_Protected-Subprogram. 874 875 if Ekind (Current_Scope) = E_Protected_Type 876 and then not Protected_Present (Access_To_Subprogram_Definition (N)) 877 then 878 Build_Itype_Reference (Anon_Type, Parent (Current_Scope)); 879 end if; 880 881 return Anon_Type; 882 end if; 883 884 Find_Type (Subtype_Mark (N)); 885 Desig_Type := Entity (Subtype_Mark (N)); 886 887 Set_Directly_Designated_Type (Anon_Type, Desig_Type); 888 Set_Etype (Anon_Type, Anon_Type); 889 890 -- Make sure the anonymous access type has size and alignment fields 891 -- set, as required by gigi. This is necessary in the case of the 892 -- Task_Body_Procedure. 893 894 if not Has_Private_Component (Desig_Type) then 895 Layout_Type (Anon_Type); 896 end if; 897 898 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs 899 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if 900 -- the null value is allowed. In Ada 95 the null value is never allowed. 901 902 if Ada_Version >= Ada_2005 then 903 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N)); 904 else 905 Set_Can_Never_Be_Null (Anon_Type, True); 906 end if; 907 908 -- The anonymous access type is as public as the discriminated type or 909 -- subprogram that defines it. It is imported (for back-end purposes) 910 -- if the designated type is. 911 912 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type))); 913 914 -- Ada 2005 (AI-231): Propagate the access-constant attribute 915 916 Set_Is_Access_Constant (Anon_Type, Constant_Present (N)); 917 918 -- The context is either a subprogram declaration, object declaration, 919 -- or an access discriminant, in a private or a full type declaration. 920 -- In the case of a subprogram, if the designated type is incomplete, 921 -- the operation will be a primitive operation of the full type, to be 922 -- updated subsequently. If the type is imported through a limited_with 923 -- clause, the subprogram is not a primitive operation of the type 924 -- (which is declared elsewhere in some other scope). 925 926 if Ekind (Desig_Type) = E_Incomplete_Type 927 and then not From_Limited_With (Desig_Type) 928 and then Is_Overloadable (Current_Scope) 929 then 930 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type)); 931 Set_Has_Delayed_Freeze (Current_Scope); 932 end if; 933 934 -- Ada 2005: If the designated type is an interface that may contain 935 -- tasks, create a Master entity for the declaration. This must be done 936 -- before expansion of the full declaration, because the declaration may 937 -- include an expression that is an allocator, whose expansion needs the 938 -- proper Master for the created tasks. 939 940 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active 941 then 942 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type) 943 then 944 Build_Class_Wide_Master (Anon_Type); 945 946 -- Similarly, if the type is an anonymous access that designates 947 -- tasks, create a master entity for it in the current context. 948 949 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod) 950 then 951 Build_Master_Entity (Defining_Identifier (Related_Nod)); 952 Build_Master_Renaming (Anon_Type); 953 end if; 954 end if; 955 956 -- For a private component of a protected type, it is imperative that 957 -- the back-end elaborate the type immediately after the protected 958 -- declaration, because this type will be used in the declarations 959 -- created for the component within each protected body, so we must 960 -- create an itype reference for it now. 961 962 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then 963 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod))); 964 965 -- Similarly, if the access definition is the return result of a 966 -- function, create an itype reference for it because it will be used 967 -- within the function body. For a regular function that is not a 968 -- compilation unit, insert reference after the declaration. For a 969 -- protected operation, insert it after the enclosing protected type 970 -- declaration. In either case, do not create a reference for a type 971 -- obtained through a limited_with clause, because this would introduce 972 -- semantic dependencies. 973 974 -- Similarly, do not create a reference if the designated type is a 975 -- generic formal, because no use of it will reach the backend. 976 977 elsif Nkind (Related_Nod) = N_Function_Specification 978 and then not From_Limited_With (Desig_Type) 979 and then not Is_Generic_Type (Desig_Type) 980 then 981 if Present (Enclosing_Prot_Type) then 982 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type)); 983 984 elsif Is_List_Member (Parent (Related_Nod)) 985 and then Nkind (Parent (N)) /= N_Parameter_Specification 986 then 987 Build_Itype_Reference (Anon_Type, Parent (Related_Nod)); 988 end if; 989 990 -- Finally, create an itype reference for an object declaration of an 991 -- anonymous access type. This is strictly necessary only for deferred 992 -- constants, but in any case will avoid out-of-scope problems in the 993 -- back-end. 994 995 elsif Nkind (Related_Nod) = N_Object_Declaration then 996 Build_Itype_Reference (Anon_Type, Related_Nod); 997 end if; 998 999 return Anon_Type; 1000 end Access_Definition; 1001 1002 ----------------------------------- 1003 -- Access_Subprogram_Declaration -- 1004 ----------------------------------- 1005 1006 procedure Access_Subprogram_Declaration 1007 (T_Name : Entity_Id; 1008 T_Def : Node_Id) 1009 is 1010 procedure Check_For_Premature_Usage (Def : Node_Id); 1011 -- Check that type T_Name is not used, directly or recursively, as a 1012 -- parameter or a return type in Def. Def is either a subtype, an 1013 -- access_definition, or an access_to_subprogram_definition. 1014 1015 ------------------------------- 1016 -- Check_For_Premature_Usage -- 1017 ------------------------------- 1018 1019 procedure Check_For_Premature_Usage (Def : Node_Id) is 1020 Param : Node_Id; 1021 1022 begin 1023 -- Check for a subtype mark 1024 1025 if Nkind (Def) in N_Has_Etype then 1026 if Etype (Def) = T_Name then 1027 Error_Msg_N 1028 ("type& cannot be used before end of its declaration", Def); 1029 end if; 1030 1031 -- If this is not a subtype, then this is an access_definition 1032 1033 elsif Nkind (Def) = N_Access_Definition then 1034 if Present (Access_To_Subprogram_Definition (Def)) then 1035 Check_For_Premature_Usage 1036 (Access_To_Subprogram_Definition (Def)); 1037 else 1038 Check_For_Premature_Usage (Subtype_Mark (Def)); 1039 end if; 1040 1041 -- The only cases left are N_Access_Function_Definition and 1042 -- N_Access_Procedure_Definition. 1043 1044 else 1045 if Present (Parameter_Specifications (Def)) then 1046 Param := First (Parameter_Specifications (Def)); 1047 while Present (Param) loop 1048 Check_For_Premature_Usage (Parameter_Type (Param)); 1049 Param := Next (Param); 1050 end loop; 1051 end if; 1052 1053 if Nkind (Def) = N_Access_Function_Definition then 1054 Check_For_Premature_Usage (Result_Definition (Def)); 1055 end if; 1056 end if; 1057 end Check_For_Premature_Usage; 1058 1059 -- Local variables 1060 1061 Formals : constant List_Id := Parameter_Specifications (T_Def); 1062 Formal : Entity_Id; 1063 D_Ityp : Node_Id; 1064 Desig_Type : constant Entity_Id := 1065 Create_Itype (E_Subprogram_Type, Parent (T_Def)); 1066 1067 -- Start of processing for Access_Subprogram_Declaration 1068 1069 begin 1070 Check_SPARK_05_Restriction ("access type is not allowed", T_Def); 1071 1072 -- Associate the Itype node with the inner full-type declaration or 1073 -- subprogram spec or entry body. This is required to handle nested 1074 -- anonymous declarations. For example: 1075 1076 -- procedure P 1077 -- (X : access procedure 1078 -- (Y : access procedure 1079 -- (Z : access T))) 1080 1081 D_Ityp := Associated_Node_For_Itype (Desig_Type); 1082 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration, 1083 N_Private_Type_Declaration, 1084 N_Private_Extension_Declaration, 1085 N_Procedure_Specification, 1086 N_Function_Specification, 1087 N_Entry_Body) 1088 1089 or else 1090 Nkind_In (D_Ityp, N_Object_Declaration, 1091 N_Object_Renaming_Declaration, 1092 N_Formal_Object_Declaration, 1093 N_Formal_Type_Declaration, 1094 N_Task_Type_Declaration, 1095 N_Protected_Type_Declaration)) 1096 loop 1097 D_Ityp := Parent (D_Ityp); 1098 pragma Assert (D_Ityp /= Empty); 1099 end loop; 1100 1101 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp); 1102 1103 if Nkind_In (D_Ityp, N_Procedure_Specification, 1104 N_Function_Specification) 1105 then 1106 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp))); 1107 1108 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration, 1109 N_Object_Declaration, 1110 N_Object_Renaming_Declaration, 1111 N_Formal_Type_Declaration) 1112 then 1113 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp))); 1114 end if; 1115 1116 if Nkind (T_Def) = N_Access_Function_Definition then 1117 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then 1118 declare 1119 Acc : constant Node_Id := Result_Definition (T_Def); 1120 1121 begin 1122 if Present (Access_To_Subprogram_Definition (Acc)) 1123 and then 1124 Protected_Present (Access_To_Subprogram_Definition (Acc)) 1125 then 1126 Set_Etype 1127 (Desig_Type, 1128 Replace_Anonymous_Access_To_Protected_Subprogram 1129 (T_Def)); 1130 1131 else 1132 Set_Etype 1133 (Desig_Type, 1134 Access_Definition (T_Def, Result_Definition (T_Def))); 1135 end if; 1136 end; 1137 1138 else 1139 Analyze (Result_Definition (T_Def)); 1140 1141 declare 1142 Typ : constant Entity_Id := Entity (Result_Definition (T_Def)); 1143 1144 begin 1145 -- If a null exclusion is imposed on the result type, then 1146 -- create a null-excluding itype (an access subtype) and use 1147 -- it as the function's Etype. 1148 1149 if Is_Access_Type (Typ) 1150 and then Null_Exclusion_In_Return_Present (T_Def) 1151 then 1152 Set_Etype (Desig_Type, 1153 Create_Null_Excluding_Itype 1154 (T => Typ, 1155 Related_Nod => T_Def, 1156 Scope_Id => Current_Scope)); 1157 1158 else 1159 if From_Limited_With (Typ) then 1160 1161 -- AI05-151: Incomplete types are allowed in all basic 1162 -- declarations, including access to subprograms. 1163 1164 if Ada_Version >= Ada_2012 then 1165 null; 1166 1167 else 1168 Error_Msg_NE 1169 ("illegal use of incomplete type&", 1170 Result_Definition (T_Def), Typ); 1171 end if; 1172 1173 elsif Ekind (Current_Scope) = E_Package 1174 and then In_Private_Part (Current_Scope) 1175 then 1176 if Ekind (Typ) = E_Incomplete_Type then 1177 Append_Elmt (Desig_Type, Private_Dependents (Typ)); 1178 1179 elsif Is_Class_Wide_Type (Typ) 1180 and then Ekind (Etype (Typ)) = E_Incomplete_Type 1181 then 1182 Append_Elmt 1183 (Desig_Type, Private_Dependents (Etype (Typ))); 1184 end if; 1185 end if; 1186 1187 Set_Etype (Desig_Type, Typ); 1188 end if; 1189 end; 1190 end if; 1191 1192 if not (Is_Type (Etype (Desig_Type))) then 1193 Error_Msg_N 1194 ("expect type in function specification", 1195 Result_Definition (T_Def)); 1196 end if; 1197 1198 else 1199 Set_Etype (Desig_Type, Standard_Void_Type); 1200 end if; 1201 1202 if Present (Formals) then 1203 Push_Scope (Desig_Type); 1204 1205 -- Some special tests here. These special tests can be removed 1206 -- if and when Itypes always have proper parent pointers to their 1207 -- declarations??? 1208 1209 -- Special test 1) Link defining_identifier of formals. Required by 1210 -- First_Formal to provide its functionality. 1211 1212 declare 1213 F : Node_Id; 1214 1215 begin 1216 F := First (Formals); 1217 1218 -- In ASIS mode, the access_to_subprogram may be analyzed twice, 1219 -- when it is part of an unconstrained type and subtype expansion 1220 -- is disabled. To avoid back-end problems with shared profiles, 1221 -- use previous subprogram type as the designated type, and then 1222 -- remove scope added above. 1223 1224 if ASIS_Mode and then Present (Scope (Defining_Identifier (F))) 1225 then 1226 Set_Etype (T_Name, T_Name); 1227 Init_Size_Align (T_Name); 1228 Set_Directly_Designated_Type (T_Name, 1229 Scope (Defining_Identifier (F))); 1230 End_Scope; 1231 return; 1232 end if; 1233 1234 while Present (F) loop 1235 if No (Parent (Defining_Identifier (F))) then 1236 Set_Parent (Defining_Identifier (F), F); 1237 end if; 1238 1239 Next (F); 1240 end loop; 1241 end; 1242 1243 Process_Formals (Formals, Parent (T_Def)); 1244 1245 -- Special test 2) End_Scope requires that the parent pointer be set 1246 -- to something reasonable, but Itypes don't have parent pointers. So 1247 -- we set it and then unset it ??? 1248 1249 Set_Parent (Desig_Type, T_Name); 1250 End_Scope; 1251 Set_Parent (Desig_Type, Empty); 1252 end if; 1253 1254 -- Check for premature usage of the type being defined 1255 1256 Check_For_Premature_Usage (T_Def); 1257 1258 -- The return type and/or any parameter type may be incomplete. Mark the 1259 -- subprogram_type as depending on the incomplete type, so that it can 1260 -- be updated when the full type declaration is seen. This only applies 1261 -- to incomplete types declared in some enclosing scope, not to limited 1262 -- views from other packages. 1263 1264 -- Prior to Ada 2012, access to functions can only have in_parameters. 1265 1266 if Present (Formals) then 1267 Formal := First_Formal (Desig_Type); 1268 while Present (Formal) loop 1269 if Ekind (Formal) /= E_In_Parameter 1270 and then Nkind (T_Def) = N_Access_Function_Definition 1271 and then Ada_Version < Ada_2012 1272 then 1273 Error_Msg_N ("functions can only have IN parameters", Formal); 1274 end if; 1275 1276 if Ekind (Etype (Formal)) = E_Incomplete_Type 1277 and then In_Open_Scopes (Scope (Etype (Formal))) 1278 then 1279 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal))); 1280 Set_Has_Delayed_Freeze (Desig_Type); 1281 end if; 1282 1283 Next_Formal (Formal); 1284 end loop; 1285 end if; 1286 1287 -- Check whether an indirect call without actuals may be possible. This 1288 -- is used when resolving calls whose result is then indexed. 1289 1290 May_Need_Actuals (Desig_Type); 1291 1292 -- If the return type is incomplete, this is legal as long as the type 1293 -- is declared in the current scope and will be completed in it (rather 1294 -- than being part of limited view). 1295 1296 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type 1297 and then not Has_Delayed_Freeze (Desig_Type) 1298 and then In_Open_Scopes (Scope (Etype (Desig_Type))) 1299 then 1300 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type))); 1301 Set_Has_Delayed_Freeze (Desig_Type); 1302 end if; 1303 1304 Check_Delayed_Subprogram (Desig_Type); 1305 1306 if Protected_Present (T_Def) then 1307 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type); 1308 Set_Convention (Desig_Type, Convention_Protected); 1309 else 1310 Set_Ekind (T_Name, E_Access_Subprogram_Type); 1311 end if; 1312 1313 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target); 1314 1315 Set_Etype (T_Name, T_Name); 1316 Init_Size_Align (T_Name); 1317 Set_Directly_Designated_Type (T_Name, Desig_Type); 1318 1319 Generate_Reference_To_Formals (T_Name); 1320 1321 -- Ada 2005 (AI-231): Propagate the null-excluding attribute 1322 1323 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def)); 1324 1325 Check_Restriction (No_Access_Subprograms, T_Def); 1326 end Access_Subprogram_Declaration; 1327 1328 ---------------------------- 1329 -- Access_Type_Declaration -- 1330 ---------------------------- 1331 1332 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is 1333 P : constant Node_Id := Parent (Def); 1334 S : constant Node_Id := Subtype_Indication (Def); 1335 1336 Full_Desig : Entity_Id; 1337 1338 begin 1339 Check_SPARK_05_Restriction ("access type is not allowed", Def); 1340 1341 -- Check for permissible use of incomplete type 1342 1343 if Nkind (S) /= N_Subtype_Indication then 1344 Analyze (S); 1345 1346 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then 1347 Set_Directly_Designated_Type (T, Entity (S)); 1348 1349 -- If the designated type is a limited view, we cannot tell if 1350 -- the full view contains tasks, and there is no way to handle 1351 -- that full view in a client. We create a master entity for the 1352 -- scope, which will be used when a client determines that one 1353 -- is needed. 1354 1355 if From_Limited_With (Entity (S)) 1356 and then not Is_Class_Wide_Type (Entity (S)) 1357 then 1358 Set_Ekind (T, E_Access_Type); 1359 Build_Master_Entity (T); 1360 Build_Master_Renaming (T); 1361 end if; 1362 1363 else 1364 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P')); 1365 end if; 1366 1367 -- If the access definition is of the form: ACCESS NOT NULL .. 1368 -- the subtype indication must be of an access type. Create 1369 -- a null-excluding subtype of it. 1370 1371 if Null_Excluding_Subtype (Def) then 1372 if not Is_Access_Type (Entity (S)) then 1373 Error_Msg_N ("null exclusion must apply to access type", Def); 1374 1375 else 1376 declare 1377 Loc : constant Source_Ptr := Sloc (S); 1378 Decl : Node_Id; 1379 Nam : constant Entity_Id := Make_Temporary (Loc, 'S'); 1380 1381 begin 1382 Decl := 1383 Make_Subtype_Declaration (Loc, 1384 Defining_Identifier => Nam, 1385 Subtype_Indication => 1386 New_Occurrence_Of (Entity (S), Loc)); 1387 Set_Null_Exclusion_Present (Decl); 1388 Insert_Before (Parent (Def), Decl); 1389 Analyze (Decl); 1390 Set_Entity (S, Nam); 1391 end; 1392 end if; 1393 end if; 1394 1395 else 1396 Set_Directly_Designated_Type (T, 1397 Process_Subtype (S, P, T, 'P')); 1398 end if; 1399 1400 if All_Present (Def) or Constant_Present (Def) then 1401 Set_Ekind (T, E_General_Access_Type); 1402 else 1403 Set_Ekind (T, E_Access_Type); 1404 end if; 1405 1406 Full_Desig := Designated_Type (T); 1407 1408 if Base_Type (Full_Desig) = T then 1409 Error_Msg_N ("access type cannot designate itself", S); 1410 1411 -- In Ada 2005, the type may have a limited view through some unit in 1412 -- its own context, allowing the following circularity that cannot be 1413 -- detected earlier. 1414 1415 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T 1416 then 1417 Error_Msg_N 1418 ("access type cannot designate its own classwide type", S); 1419 1420 -- Clean up indication of tagged status to prevent cascaded errors 1421 1422 Set_Is_Tagged_Type (T, False); 1423 end if; 1424 1425 Set_Etype (T, T); 1426 1427 -- If the type has appeared already in a with_type clause, it is frozen 1428 -- and the pointer size is already set. Else, initialize. 1429 1430 if not From_Limited_With (T) then 1431 Init_Size_Align (T); 1432 end if; 1433 1434 -- Note that Has_Task is always false, since the access type itself 1435 -- is not a task type. See Einfo for more description on this point. 1436 -- Exactly the same consideration applies to Has_Controlled_Component 1437 -- and to Has_Protected. 1438 1439 Set_Has_Task (T, False); 1440 Set_Has_Controlled_Component (T, False); 1441 Set_Has_Protected (T, False); 1442 1443 -- Initialize field Finalization_Master explicitly to Empty, to avoid 1444 -- problems where an incomplete view of this entity has been previously 1445 -- established by a limited with and an overlaid version of this field 1446 -- (Stored_Constraint) was initialized for the incomplete view. 1447 1448 -- This reset is performed in most cases except where the access type 1449 -- has been created for the purposes of allocating or deallocating a 1450 -- build-in-place object. Such access types have explicitly set pools 1451 -- and finalization masters. 1452 1453 if No (Associated_Storage_Pool (T)) then 1454 Set_Finalization_Master (T, Empty); 1455 end if; 1456 1457 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant 1458 -- attributes 1459 1460 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def)); 1461 Set_Is_Access_Constant (T, Constant_Present (Def)); 1462 end Access_Type_Declaration; 1463 1464 ---------------------------------- 1465 -- Add_Interface_Tag_Components -- 1466 ---------------------------------- 1467 1468 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is 1469 Loc : constant Source_Ptr := Sloc (N); 1470 L : List_Id; 1471 Last_Tag : Node_Id; 1472 1473 procedure Add_Tag (Iface : Entity_Id); 1474 -- Add tag for one of the progenitor interfaces 1475 1476 ------------- 1477 -- Add_Tag -- 1478 ------------- 1479 1480 procedure Add_Tag (Iface : Entity_Id) is 1481 Decl : Node_Id; 1482 Def : Node_Id; 1483 Tag : Entity_Id; 1484 Offset : Entity_Id; 1485 1486 begin 1487 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface)); 1488 1489 -- This is a reasonable place to propagate predicates 1490 1491 if Has_Predicates (Iface) then 1492 Set_Has_Predicates (Typ); 1493 end if; 1494 1495 Def := 1496 Make_Component_Definition (Loc, 1497 Aliased_Present => True, 1498 Subtype_Indication => 1499 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc)); 1500 1501 Tag := Make_Temporary (Loc, 'V'); 1502 1503 Decl := 1504 Make_Component_Declaration (Loc, 1505 Defining_Identifier => Tag, 1506 Component_Definition => Def); 1507 1508 Analyze_Component_Declaration (Decl); 1509 1510 Set_Analyzed (Decl); 1511 Set_Ekind (Tag, E_Component); 1512 Set_Is_Tag (Tag); 1513 Set_Is_Aliased (Tag); 1514 Set_Related_Type (Tag, Iface); 1515 Init_Component_Location (Tag); 1516 1517 pragma Assert (Is_Frozen (Iface)); 1518 1519 Set_DT_Entry_Count (Tag, 1520 DT_Entry_Count (First_Entity (Iface))); 1521 1522 if No (Last_Tag) then 1523 Prepend (Decl, L); 1524 else 1525 Insert_After (Last_Tag, Decl); 1526 end if; 1527 1528 Last_Tag := Decl; 1529 1530 -- If the ancestor has discriminants we need to give special support 1531 -- to store the offset_to_top value of the secondary dispatch tables. 1532 -- For this purpose we add a supplementary component just after the 1533 -- field that contains the tag associated with each secondary DT. 1534 1535 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then 1536 Def := 1537 Make_Component_Definition (Loc, 1538 Subtype_Indication => 1539 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc)); 1540 1541 Offset := Make_Temporary (Loc, 'V'); 1542 1543 Decl := 1544 Make_Component_Declaration (Loc, 1545 Defining_Identifier => Offset, 1546 Component_Definition => Def); 1547 1548 Analyze_Component_Declaration (Decl); 1549 1550 Set_Analyzed (Decl); 1551 Set_Ekind (Offset, E_Component); 1552 Set_Is_Aliased (Offset); 1553 Set_Related_Type (Offset, Iface); 1554 Init_Component_Location (Offset); 1555 Insert_After (Last_Tag, Decl); 1556 Last_Tag := Decl; 1557 end if; 1558 end Add_Tag; 1559 1560 -- Local variables 1561 1562 Elmt : Elmt_Id; 1563 Ext : Node_Id; 1564 Comp : Node_Id; 1565 1566 -- Start of processing for Add_Interface_Tag_Components 1567 1568 begin 1569 if not RTE_Available (RE_Interface_Tag) then 1570 Error_Msg 1571 ("(Ada 2005) interface types not supported by this run-time!", 1572 Sloc (N)); 1573 return; 1574 end if; 1575 1576 if Ekind (Typ) /= E_Record_Type 1577 or else (Is_Concurrent_Record_Type (Typ) 1578 and then Is_Empty_List (Abstract_Interface_List (Typ))) 1579 or else (not Is_Concurrent_Record_Type (Typ) 1580 and then No (Interfaces (Typ)) 1581 and then Is_Empty_Elmt_List (Interfaces (Typ))) 1582 then 1583 return; 1584 end if; 1585 1586 -- Find the current last tag 1587 1588 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then 1589 Ext := Record_Extension_Part (Type_Definition (N)); 1590 else 1591 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition); 1592 Ext := Type_Definition (N); 1593 end if; 1594 1595 Last_Tag := Empty; 1596 1597 if not (Present (Component_List (Ext))) then 1598 Set_Null_Present (Ext, False); 1599 L := New_List; 1600 Set_Component_List (Ext, 1601 Make_Component_List (Loc, 1602 Component_Items => L, 1603 Null_Present => False)); 1604 else 1605 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then 1606 L := Component_Items 1607 (Component_List 1608 (Record_Extension_Part 1609 (Type_Definition (N)))); 1610 else 1611 L := Component_Items 1612 (Component_List 1613 (Type_Definition (N))); 1614 end if; 1615 1616 -- Find the last tag component 1617 1618 Comp := First (L); 1619 while Present (Comp) loop 1620 if Nkind (Comp) = N_Component_Declaration 1621 and then Is_Tag (Defining_Identifier (Comp)) 1622 then 1623 Last_Tag := Comp; 1624 end if; 1625 1626 Next (Comp); 1627 end loop; 1628 end if; 1629 1630 -- At this point L references the list of components and Last_Tag 1631 -- references the current last tag (if any). Now we add the tag 1632 -- corresponding with all the interfaces that are not implemented 1633 -- by the parent. 1634 1635 if Present (Interfaces (Typ)) then 1636 Elmt := First_Elmt (Interfaces (Typ)); 1637 while Present (Elmt) loop 1638 Add_Tag (Node (Elmt)); 1639 Next_Elmt (Elmt); 1640 end loop; 1641 end if; 1642 end Add_Interface_Tag_Components; 1643 1644 ------------------------------------- 1645 -- Add_Internal_Interface_Entities -- 1646 ------------------------------------- 1647 1648 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is 1649 Elmt : Elmt_Id; 1650 Iface : Entity_Id; 1651 Iface_Elmt : Elmt_Id; 1652 Iface_Prim : Entity_Id; 1653 Ifaces_List : Elist_Id; 1654 New_Subp : Entity_Id := Empty; 1655 Prim : Entity_Id; 1656 Restore_Scope : Boolean := False; 1657 1658 begin 1659 pragma Assert (Ada_Version >= Ada_2005 1660 and then Is_Record_Type (Tagged_Type) 1661 and then Is_Tagged_Type (Tagged_Type) 1662 and then Has_Interfaces (Tagged_Type) 1663 and then not Is_Interface (Tagged_Type)); 1664 1665 -- Ensure that the internal entities are added to the scope of the type 1666 1667 if Scope (Tagged_Type) /= Current_Scope then 1668 Push_Scope (Scope (Tagged_Type)); 1669 Restore_Scope := True; 1670 end if; 1671 1672 Collect_Interfaces (Tagged_Type, Ifaces_List); 1673 1674 Iface_Elmt := First_Elmt (Ifaces_List); 1675 while Present (Iface_Elmt) loop 1676 Iface := Node (Iface_Elmt); 1677 1678 -- Originally we excluded here from this processing interfaces that 1679 -- are parents of Tagged_Type because their primitives are located 1680 -- in the primary dispatch table (and hence no auxiliary internal 1681 -- entities are required to handle secondary dispatch tables in such 1682 -- case). However, these auxiliary entities are also required to 1683 -- handle derivations of interfaces in formals of generics (see 1684 -- Derive_Subprograms). 1685 1686 Elmt := First_Elmt (Primitive_Operations (Iface)); 1687 while Present (Elmt) loop 1688 Iface_Prim := Node (Elmt); 1689 1690 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then 1691 Prim := 1692 Find_Primitive_Covering_Interface 1693 (Tagged_Type => Tagged_Type, 1694 Iface_Prim => Iface_Prim); 1695 1696 if No (Prim) and then Serious_Errors_Detected > 0 then 1697 goto Continue; 1698 end if; 1699 1700 pragma Assert (Present (Prim)); 1701 1702 -- Ada 2012 (AI05-0197): If the name of the covering primitive 1703 -- differs from the name of the interface primitive then it is 1704 -- a private primitive inherited from a parent type. In such 1705 -- case, given that Tagged_Type covers the interface, the 1706 -- inherited private primitive becomes visible. For such 1707 -- purpose we add a new entity that renames the inherited 1708 -- private primitive. 1709 1710 if Chars (Prim) /= Chars (Iface_Prim) then 1711 pragma Assert (Has_Suffix (Prim, 'P')); 1712 Derive_Subprogram 1713 (New_Subp => New_Subp, 1714 Parent_Subp => Iface_Prim, 1715 Derived_Type => Tagged_Type, 1716 Parent_Type => Iface); 1717 Set_Alias (New_Subp, Prim); 1718 Set_Is_Abstract_Subprogram 1719 (New_Subp, Is_Abstract_Subprogram (Prim)); 1720 end if; 1721 1722 Derive_Subprogram 1723 (New_Subp => New_Subp, 1724 Parent_Subp => Iface_Prim, 1725 Derived_Type => Tagged_Type, 1726 Parent_Type => Iface); 1727 1728 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp 1729 -- associated with interface types. These entities are 1730 -- only registered in the list of primitives of its 1731 -- corresponding tagged type because they are only used 1732 -- to fill the contents of the secondary dispatch tables. 1733 -- Therefore they are removed from the homonym chains. 1734 1735 Set_Is_Hidden (New_Subp); 1736 Set_Is_Internal (New_Subp); 1737 Set_Alias (New_Subp, Prim); 1738 Set_Is_Abstract_Subprogram 1739 (New_Subp, Is_Abstract_Subprogram (Prim)); 1740 Set_Interface_Alias (New_Subp, Iface_Prim); 1741 1742 -- If the returned type is an interface then propagate it to 1743 -- the returned type. Needed by the thunk to generate the code 1744 -- which displaces "this" to reference the corresponding 1745 -- secondary dispatch table in the returned object. 1746 1747 if Is_Interface (Etype (Iface_Prim)) then 1748 Set_Etype (New_Subp, Etype (Iface_Prim)); 1749 end if; 1750 1751 -- Internal entities associated with interface types are only 1752 -- registered in the list of primitives of the tagged type. 1753 -- They are only used to fill the contents of the secondary 1754 -- dispatch tables. Therefore they are not needed in the 1755 -- homonym chains. 1756 1757 Remove_Homonym (New_Subp); 1758 1759 -- Hidden entities associated with interfaces must have set 1760 -- the Has_Delay_Freeze attribute to ensure that, in case 1761 -- of locally defined tagged types (or compiling with static 1762 -- dispatch tables generation disabled) the corresponding 1763 -- entry of the secondary dispatch table is filled when such 1764 -- an entity is frozen. This is an expansion activity that must 1765 -- be suppressed for ASIS because it leads to gigi elaboration 1766 -- issues in annotate mode. 1767 1768 if not ASIS_Mode then 1769 Set_Has_Delayed_Freeze (New_Subp); 1770 end if; 1771 end if; 1772 1773 <<Continue>> 1774 Next_Elmt (Elmt); 1775 end loop; 1776 1777 Next_Elmt (Iface_Elmt); 1778 end loop; 1779 1780 if Restore_Scope then 1781 Pop_Scope; 1782 end if; 1783 end Add_Internal_Interface_Entities; 1784 1785 ----------------------------------- 1786 -- Analyze_Component_Declaration -- 1787 ----------------------------------- 1788 1789 procedure Analyze_Component_Declaration (N : Node_Id) is 1790 Loc : constant Source_Ptr := Sloc (Component_Definition (N)); 1791 Id : constant Entity_Id := Defining_Identifier (N); 1792 E : constant Node_Id := Expression (N); 1793 Typ : constant Node_Id := 1794 Subtype_Indication (Component_Definition (N)); 1795 T : Entity_Id; 1796 P : Entity_Id; 1797 1798 function Contains_POC (Constr : Node_Id) return Boolean; 1799 -- Determines whether a constraint uses the discriminant of a record 1800 -- type thus becoming a per-object constraint (POC). 1801 1802 function Is_Known_Limited (Typ : Entity_Id) return Boolean; 1803 -- Typ is the type of the current component, check whether this type is 1804 -- a limited type. Used to validate declaration against that of 1805 -- enclosing record. 1806 1807 ------------------ 1808 -- Contains_POC -- 1809 ------------------ 1810 1811 function Contains_POC (Constr : Node_Id) return Boolean is 1812 begin 1813 -- Prevent cascaded errors 1814 1815 if Error_Posted (Constr) then 1816 return False; 1817 end if; 1818 1819 case Nkind (Constr) is 1820 when N_Attribute_Reference => 1821 return Attribute_Name (Constr) = Name_Access 1822 and then Prefix (Constr) = Scope (Entity (Prefix (Constr))); 1823 1824 when N_Discriminant_Association => 1825 return Denotes_Discriminant (Expression (Constr)); 1826 1827 when N_Identifier => 1828 return Denotes_Discriminant (Constr); 1829 1830 when N_Index_Or_Discriminant_Constraint => 1831 declare 1832 IDC : Node_Id; 1833 1834 begin 1835 IDC := First (Constraints (Constr)); 1836 while Present (IDC) loop 1837 1838 -- One per-object constraint is sufficient 1839 1840 if Contains_POC (IDC) then 1841 return True; 1842 end if; 1843 1844 Next (IDC); 1845 end loop; 1846 1847 return False; 1848 end; 1849 1850 when N_Range => 1851 return Denotes_Discriminant (Low_Bound (Constr)) 1852 or else 1853 Denotes_Discriminant (High_Bound (Constr)); 1854 1855 when N_Range_Constraint => 1856 return Denotes_Discriminant (Range_Expression (Constr)); 1857 1858 when others => 1859 return False; 1860 1861 end case; 1862 end Contains_POC; 1863 1864 ---------------------- 1865 -- Is_Known_Limited -- 1866 ---------------------- 1867 1868 function Is_Known_Limited (Typ : Entity_Id) return Boolean is 1869 P : constant Entity_Id := Etype (Typ); 1870 R : constant Entity_Id := Root_Type (Typ); 1871 1872 begin 1873 if Is_Limited_Record (Typ) then 1874 return True; 1875 1876 -- If the root type is limited (and not a limited interface) 1877 -- so is the current type 1878 1879 elsif Is_Limited_Record (R) 1880 and then (not Is_Interface (R) or else not Is_Limited_Interface (R)) 1881 then 1882 return True; 1883 1884 -- Else the type may have a limited interface progenitor, but a 1885 -- limited record parent. 1886 1887 elsif R /= P and then Is_Limited_Record (P) then 1888 return True; 1889 1890 else 1891 return False; 1892 end if; 1893 end Is_Known_Limited; 1894 1895 -- Start of processing for Analyze_Component_Declaration 1896 1897 begin 1898 Generate_Definition (Id); 1899 Enter_Name (Id); 1900 1901 if Present (Typ) then 1902 T := Find_Type_Of_Object 1903 (Subtype_Indication (Component_Definition (N)), N); 1904 1905 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then 1906 Check_SPARK_05_Restriction ("subtype mark required", Typ); 1907 end if; 1908 1909 -- Ada 2005 (AI-230): Access Definition case 1910 1911 else 1912 pragma Assert (Present 1913 (Access_Definition (Component_Definition (N)))); 1914 1915 T := Access_Definition 1916 (Related_Nod => N, 1917 N => Access_Definition (Component_Definition (N))); 1918 Set_Is_Local_Anonymous_Access (T); 1919 1920 -- Ada 2005 (AI-254) 1921 1922 if Present (Access_To_Subprogram_Definition 1923 (Access_Definition (Component_Definition (N)))) 1924 and then Protected_Present (Access_To_Subprogram_Definition 1925 (Access_Definition 1926 (Component_Definition (N)))) 1927 then 1928 T := Replace_Anonymous_Access_To_Protected_Subprogram (N); 1929 end if; 1930 end if; 1931 1932 -- If the subtype is a constrained subtype of the enclosing record, 1933 -- (which must have a partial view) the back-end does not properly 1934 -- handle the recursion. Rewrite the component declaration with an 1935 -- explicit subtype indication, which is acceptable to Gigi. We can copy 1936 -- the tree directly because side effects have already been removed from 1937 -- discriminant constraints. 1938 1939 if Ekind (T) = E_Access_Subtype 1940 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N))) 1941 and then Comes_From_Source (T) 1942 and then Nkind (Parent (T)) = N_Subtype_Declaration 1943 and then Etype (Directly_Designated_Type (T)) = Current_Scope 1944 then 1945 Rewrite 1946 (Subtype_Indication (Component_Definition (N)), 1947 New_Copy_Tree (Subtype_Indication (Parent (T)))); 1948 T := Find_Type_Of_Object 1949 (Subtype_Indication (Component_Definition (N)), N); 1950 end if; 1951 1952 -- If the component declaration includes a default expression, then we 1953 -- check that the component is not of a limited type (RM 3.7(5)), 1954 -- and do the special preanalysis of the expression (see section on 1955 -- "Handling of Default and Per-Object Expressions" in the spec of 1956 -- package Sem). 1957 1958 if Present (E) then 1959 Check_SPARK_05_Restriction ("default expression is not allowed", E); 1960 Preanalyze_Default_Expression (E, T); 1961 Check_Initialization (T, E); 1962 1963 if Ada_Version >= Ada_2005 1964 and then Ekind (T) = E_Anonymous_Access_Type 1965 and then Etype (E) /= Any_Type 1966 then 1967 -- Check RM 3.9.2(9): "if the expected type for an expression is 1968 -- an anonymous access-to-specific tagged type, then the object 1969 -- designated by the expression shall not be dynamically tagged 1970 -- unless it is a controlling operand in a call on a dispatching 1971 -- operation" 1972 1973 if Is_Tagged_Type (Directly_Designated_Type (T)) 1974 and then 1975 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type 1976 and then 1977 Ekind (Directly_Designated_Type (Etype (E))) = 1978 E_Class_Wide_Type 1979 then 1980 Error_Msg_N 1981 ("access to specific tagged type required (RM 3.9.2(9))", E); 1982 end if; 1983 1984 -- (Ada 2005: AI-230): Accessibility check for anonymous 1985 -- components 1986 1987 if Type_Access_Level (Etype (E)) > 1988 Deepest_Type_Access_Level (T) 1989 then 1990 Error_Msg_N 1991 ("expression has deeper access level than component " & 1992 "(RM 3.10.2 (12.2))", E); 1993 end if; 1994 1995 -- The initialization expression is a reference to an access 1996 -- discriminant. The type of the discriminant is always deeper 1997 -- than any access type. 1998 1999 if Ekind (Etype (E)) = E_Anonymous_Access_Type 2000 and then Is_Entity_Name (E) 2001 and then Ekind (Entity (E)) = E_In_Parameter 2002 and then Present (Discriminal_Link (Entity (E))) 2003 then 2004 Error_Msg_N 2005 ("discriminant has deeper accessibility level than target", 2006 E); 2007 end if; 2008 end if; 2009 end if; 2010 2011 -- The parent type may be a private view with unknown discriminants, 2012 -- and thus unconstrained. Regular components must be constrained. 2013 2014 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then 2015 if Is_Class_Wide_Type (T) then 2016 Error_Msg_N 2017 ("class-wide subtype with unknown discriminants" & 2018 " in component declaration", 2019 Subtype_Indication (Component_Definition (N))); 2020 else 2021 Error_Msg_N 2022 ("unconstrained subtype in component declaration", 2023 Subtype_Indication (Component_Definition (N))); 2024 end if; 2025 2026 -- Components cannot be abstract, except for the special case of 2027 -- the _Parent field (case of extending an abstract tagged type) 2028 2029 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then 2030 Error_Msg_N ("type of a component cannot be abstract", N); 2031 end if; 2032 2033 Set_Etype (Id, T); 2034 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N))); 2035 2036 -- The component declaration may have a per-object constraint, set 2037 -- the appropriate flag in the defining identifier of the subtype. 2038 2039 if Present (Subtype_Indication (Component_Definition (N))) then 2040 declare 2041 Sindic : constant Node_Id := 2042 Subtype_Indication (Component_Definition (N)); 2043 begin 2044 if Nkind (Sindic) = N_Subtype_Indication 2045 and then Present (Constraint (Sindic)) 2046 and then Contains_POC (Constraint (Sindic)) 2047 then 2048 Set_Has_Per_Object_Constraint (Id); 2049 end if; 2050 end; 2051 end if; 2052 2053 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry 2054 -- out some static checks. 2055 2056 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then 2057 Null_Exclusion_Static_Checks (N); 2058 end if; 2059 2060 -- If this component is private (or depends on a private type), flag the 2061 -- record type to indicate that some operations are not available. 2062 2063 P := Private_Component (T); 2064 2065 if Present (P) then 2066 2067 -- Check for circular definitions 2068 2069 if P = Any_Type then 2070 Set_Etype (Id, Any_Type); 2071 2072 -- There is a gap in the visibility of operations only if the 2073 -- component type is not defined in the scope of the record type. 2074 2075 elsif Scope (P) = Scope (Current_Scope) then 2076 null; 2077 2078 elsif Is_Limited_Type (P) then 2079 Set_Is_Limited_Composite (Current_Scope); 2080 2081 else 2082 Set_Is_Private_Composite (Current_Scope); 2083 end if; 2084 end if; 2085 2086 if P /= Any_Type 2087 and then Is_Limited_Type (T) 2088 and then Chars (Id) /= Name_uParent 2089 and then Is_Tagged_Type (Current_Scope) 2090 then 2091 if Is_Derived_Type (Current_Scope) 2092 and then not Is_Known_Limited (Current_Scope) 2093 then 2094 Error_Msg_N 2095 ("extension of nonlimited type cannot have limited components", 2096 N); 2097 2098 if Is_Interface (Root_Type (Current_Scope)) then 2099 Error_Msg_N 2100 ("\limitedness is not inherited from limited interface", N); 2101 Error_Msg_N ("\add LIMITED to type indication", N); 2102 end if; 2103 2104 Explain_Limited_Type (T, N); 2105 Set_Etype (Id, Any_Type); 2106 Set_Is_Limited_Composite (Current_Scope, False); 2107 2108 elsif not Is_Derived_Type (Current_Scope) 2109 and then not Is_Limited_Record (Current_Scope) 2110 and then not Is_Concurrent_Type (Current_Scope) 2111 then 2112 Error_Msg_N 2113 ("nonlimited tagged type cannot have limited components", N); 2114 Explain_Limited_Type (T, N); 2115 Set_Etype (Id, Any_Type); 2116 Set_Is_Limited_Composite (Current_Scope, False); 2117 end if; 2118 end if; 2119 2120 -- If the component is an unconstrained task or protected type with 2121 -- discriminants, the component and the enclosing record are limited 2122 -- and the component is constrained by its default values. Compute 2123 -- its actual subtype, else it may be allocated the maximum size by 2124 -- the backend, and possibly overflow. 2125 2126 if Is_Concurrent_Type (T) 2127 and then not Is_Constrained (T) 2128 and then Has_Discriminants (T) 2129 and then not Has_Discriminants (Current_Scope) 2130 then 2131 declare 2132 Act_T : constant Entity_Id := Build_Default_Subtype (T, N); 2133 2134 begin 2135 Set_Etype (Id, Act_T); 2136 2137 -- Rewrite component definition to use the constrained subtype 2138 2139 Rewrite (Component_Definition (N), 2140 Make_Component_Definition (Loc, 2141 Subtype_Indication => New_Occurrence_Of (Act_T, Loc))); 2142 end; 2143 end if; 2144 2145 Set_Original_Record_Component (Id, Id); 2146 2147 if Has_Aspects (N) then 2148 Analyze_Aspect_Specifications (N, Id); 2149 end if; 2150 2151 Analyze_Dimension (N); 2152 end Analyze_Component_Declaration; 2153 2154 -------------------------- 2155 -- Analyze_Declarations -- 2156 -------------------------- 2157 2158 procedure Analyze_Declarations (L : List_Id) is 2159 Decl : Node_Id; 2160 2161 procedure Adjust_Decl; 2162 -- Adjust Decl not to include implicit label declarations, since these 2163 -- have strange Sloc values that result in elaboration check problems. 2164 -- (They have the sloc of the label as found in the source, and that 2165 -- is ahead of the current declarative part). 2166 2167 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id); 2168 -- Determine whether Body_Decl denotes the body of a late controlled 2169 -- primitive (either Initialize, Adjust or Finalize). If this is the 2170 -- case, add a proper spec if the body lacks one. The spec is inserted 2171 -- before Body_Decl and immedately analyzed. 2172 2173 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id); 2174 -- Spec_Id is the entity of a package that may define abstract states. 2175 -- If the states have visible refinement, remove the visibility of each 2176 -- constituent at the end of the package body declarations. 2177 2178 ----------------- 2179 -- Adjust_Decl -- 2180 ----------------- 2181 2182 procedure Adjust_Decl is 2183 begin 2184 while Present (Prev (Decl)) 2185 and then Nkind (Decl) = N_Implicit_Label_Declaration 2186 loop 2187 Prev (Decl); 2188 end loop; 2189 end Adjust_Decl; 2190 2191 -------------------------------------- 2192 -- Handle_Late_Controlled_Primitive -- 2193 -------------------------------------- 2194 2195 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is 2196 Body_Spec : constant Node_Id := Specification (Body_Decl); 2197 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec); 2198 Loc : constant Source_Ptr := Sloc (Body_Id); 2199 Params : constant List_Id := 2200 Parameter_Specifications (Body_Spec); 2201 Spec : Node_Id; 2202 Spec_Id : Entity_Id; 2203 Typ : Node_Id; 2204 2205 begin 2206 -- Consider only procedure bodies whose name matches one of the three 2207 -- controlled primitives. 2208 2209 if Nkind (Body_Spec) /= N_Procedure_Specification 2210 or else not Nam_In (Chars (Body_Id), Name_Adjust, 2211 Name_Finalize, 2212 Name_Initialize) 2213 then 2214 return; 2215 2216 -- A controlled primitive must have exactly one formal which is not 2217 -- an anonymous access type. 2218 2219 elsif List_Length (Params) /= 1 then 2220 return; 2221 end if; 2222 2223 Typ := Parameter_Type (First (Params)); 2224 2225 if Nkind (Typ) = N_Access_Definition then 2226 return; 2227 end if; 2228 2229 Find_Type (Typ); 2230 2231 -- The type of the formal must be derived from [Limited_]Controlled 2232 2233 if not Is_Controlled (Entity (Typ)) then 2234 return; 2235 end if; 2236 2237 -- Check whether a specification exists for this body. We do not 2238 -- analyze the spec of the body in full, because it will be analyzed 2239 -- again when the body is properly analyzed, and we cannot create 2240 -- duplicate entries in the formals chain. We look for an explicit 2241 -- specification because the body may be an overriding operation and 2242 -- an inherited spec may be present. 2243 2244 Spec_Id := Current_Entity (Body_Id); 2245 2246 while Present (Spec_Id) loop 2247 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) 2248 and then Scope (Spec_Id) = Current_Scope 2249 and then Present (First_Formal (Spec_Id)) 2250 and then No (Next_Formal (First_Formal (Spec_Id))) 2251 and then Etype (First_Formal (Spec_Id)) = Entity (Typ) 2252 and then Comes_From_Source (Spec_Id) 2253 then 2254 return; 2255 end if; 2256 2257 Spec_Id := Homonym (Spec_Id); 2258 end loop; 2259 2260 -- At this point the body is known to be a late controlled primitive. 2261 -- Generate a matching spec and insert it before the body. Note the 2262 -- use of Copy_Separate_Tree - we want an entirely separate semantic 2263 -- tree in this case. 2264 2265 Spec := Copy_Separate_Tree (Body_Spec); 2266 2267 -- Ensure that the subprogram declaration does not inherit the null 2268 -- indicator from the body as we now have a proper spec/body pair. 2269 2270 Set_Null_Present (Spec, False); 2271 2272 Insert_Before_And_Analyze (Body_Decl, 2273 Make_Subprogram_Declaration (Loc, Specification => Spec)); 2274 end Handle_Late_Controlled_Primitive; 2275 2276 -------------------------------- 2277 -- Remove_Visible_Refinements -- 2278 -------------------------------- 2279 2280 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is 2281 State_Elmt : Elmt_Id; 2282 begin 2283 if Present (Abstract_States (Spec_Id)) then 2284 State_Elmt := First_Elmt (Abstract_States (Spec_Id)); 2285 while Present (State_Elmt) loop 2286 Set_Has_Visible_Refinement (Node (State_Elmt), False); 2287 Next_Elmt (State_Elmt); 2288 end loop; 2289 end if; 2290 end Remove_Visible_Refinements; 2291 2292 -- Local variables 2293 2294 Context : Node_Id := Empty; 2295 Freeze_From : Entity_Id := Empty; 2296 Next_Decl : Node_Id; 2297 2298 Body_Seen : Boolean := False; 2299 -- Flag set when the first body [stub] is encountered 2300 2301 -- Start of processing for Analyze_Declarations 2302 2303 begin 2304 if Restriction_Check_Required (SPARK_05) then 2305 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False); 2306 end if; 2307 2308 Decl := First (L); 2309 while Present (Decl) loop 2310 2311 -- Package spec cannot contain a package declaration in SPARK 2312 2313 if Nkind (Decl) = N_Package_Declaration 2314 and then Nkind (Parent (L)) = N_Package_Specification 2315 then 2316 Check_SPARK_05_Restriction 2317 ("package specification cannot contain a package declaration", 2318 Decl); 2319 end if; 2320 2321 -- Complete analysis of declaration 2322 2323 Analyze (Decl); 2324 Next_Decl := Next (Decl); 2325 2326 if No (Freeze_From) then 2327 Freeze_From := First_Entity (Current_Scope); 2328 end if; 2329 2330 -- At the end of a declarative part, freeze remaining entities 2331 -- declared in it. The end of the visible declarations of package 2332 -- specification is not the end of a declarative part if private 2333 -- declarations are present. The end of a package declaration is a 2334 -- freezing point only if it a library package. A task definition or 2335 -- protected type definition is not a freeze point either. Finally, 2336 -- we do not freeze entities in generic scopes, because there is no 2337 -- code generated for them and freeze nodes will be generated for 2338 -- the instance. 2339 2340 -- The end of a package instantiation is not a freeze point, but 2341 -- for now we make it one, because the generic body is inserted 2342 -- (currently) immediately after. Generic instantiations will not 2343 -- be a freeze point once delayed freezing of bodies is implemented. 2344 -- (This is needed in any case for early instantiations ???). 2345 2346 if No (Next_Decl) then 2347 if Nkind_In (Parent (L), N_Component_List, 2348 N_Task_Definition, 2349 N_Protected_Definition) 2350 then 2351 null; 2352 2353 elsif Nkind (Parent (L)) /= N_Package_Specification then 2354 if Nkind (Parent (L)) = N_Package_Body then 2355 Freeze_From := First_Entity (Current_Scope); 2356 end if; 2357 2358 -- There may have been several freezing points previously, 2359 -- for example object declarations or subprogram bodies, but 2360 -- at the end of a declarative part we check freezing from 2361 -- the beginning, even though entities may already be frozen, 2362 -- in order to perform visibility checks on delayed aspects. 2363 2364 Adjust_Decl; 2365 Freeze_All (First_Entity (Current_Scope), Decl); 2366 Freeze_From := Last_Entity (Current_Scope); 2367 2368 elsif Scope (Current_Scope) /= Standard_Standard 2369 and then not Is_Child_Unit (Current_Scope) 2370 and then No (Generic_Parent (Parent (L))) 2371 then 2372 null; 2373 2374 elsif L /= Visible_Declarations (Parent (L)) 2375 or else No (Private_Declarations (Parent (L))) 2376 or else Is_Empty_List (Private_Declarations (Parent (L))) 2377 then 2378 Adjust_Decl; 2379 Freeze_All (First_Entity (Current_Scope), Decl); 2380 Freeze_From := Last_Entity (Current_Scope); 2381 2382 -- At the end of the visible declarations the expressions in 2383 -- aspects of all entities declared so far must be resolved. 2384 -- The entities themselves might be frozen later, and the 2385 -- generated pragmas and attribute definition clauses analyzed 2386 -- in full at that point, but name resolution must take place 2387 -- now. 2388 -- In addition to being the proper semantics, this is mandatory 2389 -- within generic units, because global name capture requires 2390 -- those expressions to be analyzed, given that the generated 2391 -- pragmas do not appear in the original generic tree. 2392 2393 elsif Serious_Errors_Detected = 0 then 2394 declare 2395 E : Entity_Id; 2396 2397 begin 2398 E := First_Entity (Current_Scope); 2399 while Present (E) loop 2400 Resolve_Aspect_Expressions (E); 2401 Next_Entity (E); 2402 end loop; 2403 end; 2404 end if; 2405 2406 -- If next node is a body then freeze all types before the body. 2407 -- An exception occurs for some expander-generated bodies. If these 2408 -- are generated at places where in general language rules would not 2409 -- allow a freeze point, then we assume that the expander has 2410 -- explicitly checked that all required types are properly frozen, 2411 -- and we do not cause general freezing here. This special circuit 2412 -- is used when the encountered body is marked as having already 2413 -- been analyzed. 2414 2415 -- In all other cases (bodies that come from source, and expander 2416 -- generated bodies that have not been analyzed yet), freeze all 2417 -- types now. Note that in the latter case, the expander must take 2418 -- care to attach the bodies at a proper place in the tree so as to 2419 -- not cause unwanted freezing at that point. 2420 2421 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then 2422 2423 -- When a controlled type is frozen, the expander generates stream 2424 -- and controlled type support routines. If the freeze is caused 2425 -- by the stand alone body of Initialize, Adjust and Finalize, the 2426 -- expander will end up using the wrong version of these routines 2427 -- as the body has not been processed yet. To remedy this, detect 2428 -- a late controlled primitive and create a proper spec for it. 2429 -- This ensures that the primitive will override its inherited 2430 -- counterpart before the freeze takes place. 2431 2432 -- If the declaration we just processed is a body, do not attempt 2433 -- to examine Next_Decl as the late primitive idiom can only apply 2434 -- to the first encountered body. 2435 2436 -- The spec of the late primitive is not generated in ASIS mode to 2437 -- ensure a consistent list of primitives that indicates the true 2438 -- semantic structure of the program (which is not relevant when 2439 -- generating executable code. 2440 2441 -- ??? a cleaner approach may be possible and/or this solution 2442 -- could be extended to general-purpose late primitives, TBD. 2443 2444 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl) 2445 then 2446 Body_Seen := True; 2447 2448 if Nkind (Next_Decl) = N_Subprogram_Body then 2449 Handle_Late_Controlled_Primitive (Next_Decl); 2450 end if; 2451 end if; 2452 2453 Adjust_Decl; 2454 Freeze_All (Freeze_From, Decl); 2455 Freeze_From := Last_Entity (Current_Scope); 2456 end if; 2457 2458 Decl := Next_Decl; 2459 end loop; 2460 2461 -- Analyze the contracts of packages and their bodies 2462 2463 if Present (L) then 2464 Context := Parent (L); 2465 2466 if Nkind (Context) = N_Package_Specification then 2467 2468 -- When a package has private declarations, its contract must be 2469 -- analyzed at the end of the said declarations. This way both the 2470 -- analysis and freeze actions are properly synchronized in case 2471 -- of private type use within the contract. 2472 2473 if L = Private_Declarations (Context) then 2474 Analyze_Package_Contract (Defining_Entity (Context)); 2475 2476 -- Build the bodies of the default initial condition procedures 2477 -- for all types subject to pragma Default_Initial_Condition. 2478 -- From a purely Ada stand point, this is a freezing activity, 2479 -- however freezing is not available under GNATprove_Mode. To 2480 -- accomodate both scenarios, the bodies are build at the end 2481 -- of private declaration analysis. 2482 2483 Build_Default_Init_Cond_Procedure_Bodies (L); 2484 2485 -- Otherwise the contract is analyzed at the end of the visible 2486 -- declarations. 2487 2488 elsif L = Visible_Declarations (Context) 2489 and then No (Private_Declarations (Context)) 2490 then 2491 Analyze_Package_Contract (Defining_Entity (Context)); 2492 end if; 2493 2494 elsif Nkind (Context) = N_Package_Body then 2495 Analyze_Package_Body_Contract (Defining_Entity (Context)); 2496 end if; 2497 2498 -- Analyze the contracts of various constructs now due to the delayed 2499 -- visibility needs of their aspects and pragmas. 2500 2501 Analyze_Contracts (L); 2502 2503 if Nkind (Context) = N_Package_Body then 2504 2505 -- Ensure that all abstract states and objects declared in the 2506 -- state space of a package body are utilized as constituents. 2507 2508 Check_Unused_Body_States (Defining_Entity (Context)); 2509 2510 -- State refinements are visible up to the end of the package body 2511 -- declarations. Hide the state refinements from visibility to 2512 -- restore the original state conditions. 2513 2514 Remove_Visible_Refinements (Corresponding_Spec (Context)); 2515 end if; 2516 end if; 2517 end Analyze_Declarations; 2518 2519 ----------------------------------- 2520 -- Analyze_Full_Type_Declaration -- 2521 ----------------------------------- 2522 2523 procedure Analyze_Full_Type_Declaration (N : Node_Id) is 2524 Def : constant Node_Id := Type_Definition (N); 2525 Def_Id : constant Entity_Id := Defining_Identifier (N); 2526 T : Entity_Id; 2527 Prev : Entity_Id; 2528 2529 Is_Remote : constant Boolean := 2530 (Is_Remote_Types (Current_Scope) 2531 or else Is_Remote_Call_Interface (Current_Scope)) 2532 and then not (In_Private_Part (Current_Scope) 2533 or else In_Package_Body (Current_Scope)); 2534 2535 procedure Check_Nonoverridable_Aspects; 2536 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot 2537 -- be overridden, and can only be confirmed on derivation. 2538 2539 procedure Check_Ops_From_Incomplete_Type; 2540 -- If there is a tagged incomplete partial view of the type, traverse 2541 -- the primitives of the incomplete view and change the type of any 2542 -- controlling formals and result to indicate the full view. The 2543 -- primitives will be added to the full type's primitive operations 2544 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which 2545 -- is called from Process_Incomplete_Dependents). 2546 2547 ---------------------------------- 2548 -- Check_Nonoverridable_Aspects -- 2549 ---------------------------------- 2550 2551 procedure Check_Nonoverridable_Aspects is 2552 Prev_Aspects : constant List_Id := 2553 Aspect_Specifications (Parent (Def_Id)); 2554 Par_Type : Entity_Id; 2555 2556 function Has_Aspect_Spec 2557 (Specs : List_Id; 2558 Aspect_Name : Name_Id) return Boolean; 2559 -- Check whether a list of aspect specifications includes an entry 2560 -- for a specific aspect. The list is either that of a partial or 2561 -- a full view. 2562 2563 --------------------- 2564 -- Has_Aspect_Spec -- 2565 --------------------- 2566 2567 function Has_Aspect_Spec 2568 (Specs : List_Id; 2569 Aspect_Name : Name_Id) return Boolean 2570 is 2571 Spec : Node_Id; 2572 begin 2573 Spec := First (Specs); 2574 while Present (Spec) loop 2575 if Chars (Identifier (Spec)) = Aspect_Name then 2576 return True; 2577 end if; 2578 Next (Spec); 2579 end loop; 2580 return False; 2581 end Has_Aspect_Spec; 2582 2583 -- Start of processing for Check_Nonoverridable_Aspects 2584 2585 begin 2586 2587 -- Get parent type of derived type. Note that Prev is the entity 2588 -- in the partial declaration, but its contents are now those of 2589 -- full view, while Def_Id reflects the partial view. 2590 2591 if Is_Private_Type (Def_Id) then 2592 Par_Type := Etype (Full_View (Def_Id)); 2593 else 2594 Par_Type := Etype (Def_Id); 2595 end if; 2596 2597 -- If there is an inherited Implicit_Dereference, verify that it is 2598 -- made explicit in the partial view. 2599 2600 if Has_Discriminants (Base_Type (Par_Type)) 2601 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration 2602 and then Present (Discriminant_Specifications (Parent (Prev))) 2603 and then Present (Get_Reference_Discriminant (Par_Type)) 2604 then 2605 if 2606 not Has_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference) 2607 then 2608 Error_Msg_N 2609 ("type does not inherit implicit dereference", Prev); 2610 2611 else 2612 -- If one of the views has the aspect specified, verify that it 2613 -- is consistent with that of the parent. 2614 2615 declare 2616 Par_Discr : constant Entity_Id := 2617 Get_Reference_Discriminant (Par_Type); 2618 Cur_Discr : constant Entity_Id := 2619 Get_Reference_Discriminant (Prev); 2620 begin 2621 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then 2622 Error_Msg_N ("aspect incosistent with that of parent", N); 2623 end if; 2624 end; 2625 end if; 2626 end if; 2627 2628 -- TBD : other nonoverridable aspects. 2629 end Check_Nonoverridable_Aspects; 2630 2631 ------------------------------------ 2632 -- Check_Ops_From_Incomplete_Type -- 2633 ------------------------------------ 2634 2635 procedure Check_Ops_From_Incomplete_Type is 2636 Elmt : Elmt_Id; 2637 Formal : Entity_Id; 2638 Op : Entity_Id; 2639 2640 begin 2641 if Prev /= T 2642 and then Ekind (Prev) = E_Incomplete_Type 2643 and then Is_Tagged_Type (Prev) 2644 and then Is_Tagged_Type (T) 2645 then 2646 Elmt := First_Elmt (Primitive_Operations (Prev)); 2647 while Present (Elmt) loop 2648 Op := Node (Elmt); 2649 2650 Formal := First_Formal (Op); 2651 while Present (Formal) loop 2652 if Etype (Formal) = Prev then 2653 Set_Etype (Formal, T); 2654 end if; 2655 2656 Next_Formal (Formal); 2657 end loop; 2658 2659 if Etype (Op) = Prev then 2660 Set_Etype (Op, T); 2661 end if; 2662 2663 Next_Elmt (Elmt); 2664 end loop; 2665 end if; 2666 end Check_Ops_From_Incomplete_Type; 2667 2668 -- Start of processing for Analyze_Full_Type_Declaration 2669 2670 begin 2671 Prev := Find_Type_Name (N); 2672 2673 -- The full view, if present, now points to the current type. If there 2674 -- is an incomplete partial view, set a link to it, to simplify the 2675 -- retrieval of primitive operations of the type. 2676 2677 -- Ada 2005 (AI-50217): If the type was previously decorated when 2678 -- imported through a LIMITED WITH clause, it appears as incomplete 2679 -- but has no full view. 2680 2681 if Ekind (Prev) = E_Incomplete_Type 2682 and then Present (Full_View (Prev)) 2683 then 2684 T := Full_View (Prev); 2685 Set_Incomplete_View (N, Parent (Prev)); 2686 else 2687 T := Prev; 2688 end if; 2689 2690 Set_Is_Pure (T, Is_Pure (Current_Scope)); 2691 2692 -- We set the flag Is_First_Subtype here. It is needed to set the 2693 -- corresponding flag for the Implicit class-wide-type created 2694 -- during tagged types processing. 2695 2696 Set_Is_First_Subtype (T, True); 2697 2698 -- Only composite types other than array types are allowed to have 2699 -- discriminants. 2700 2701 case Nkind (Def) is 2702 2703 -- For derived types, the rule will be checked once we've figured 2704 -- out the parent type. 2705 2706 when N_Derived_Type_Definition => 2707 null; 2708 2709 -- For record types, discriminants are allowed, unless we are in 2710 -- SPARK. 2711 2712 when N_Record_Definition => 2713 if Present (Discriminant_Specifications (N)) then 2714 Check_SPARK_05_Restriction 2715 ("discriminant type is not allowed", 2716 Defining_Identifier 2717 (First (Discriminant_Specifications (N)))); 2718 end if; 2719 2720 when others => 2721 if Present (Discriminant_Specifications (N)) then 2722 Error_Msg_N 2723 ("elementary or array type cannot have discriminants", 2724 Defining_Identifier 2725 (First (Discriminant_Specifications (N)))); 2726 end if; 2727 end case; 2728 2729 -- Elaborate the type definition according to kind, and generate 2730 -- subsidiary (implicit) subtypes where needed. We skip this if it was 2731 -- already done (this happens during the reanalysis that follows a call 2732 -- to the high level optimizer). 2733 2734 if not Analyzed (T) then 2735 Set_Analyzed (T); 2736 2737 case Nkind (Def) is 2738 when N_Access_To_Subprogram_Definition => 2739 Access_Subprogram_Declaration (T, Def); 2740 2741 -- If this is a remote access to subprogram, we must create the 2742 -- equivalent fat pointer type, and related subprograms. 2743 2744 if Is_Remote then 2745 Process_Remote_AST_Declaration (N); 2746 end if; 2747 2748 -- Validate categorization rule against access type declaration 2749 -- usually a violation in Pure unit, Shared_Passive unit. 2750 2751 Validate_Access_Type_Declaration (T, N); 2752 2753 when N_Access_To_Object_Definition => 2754 Access_Type_Declaration (T, Def); 2755 2756 -- Validate categorization rule against access type declaration 2757 -- usually a violation in Pure unit, Shared_Passive unit. 2758 2759 Validate_Access_Type_Declaration (T, N); 2760 2761 -- If we are in a Remote_Call_Interface package and define a 2762 -- RACW, then calling stubs and specific stream attributes 2763 -- must be added. 2764 2765 if Is_Remote 2766 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id) 2767 then 2768 Add_RACW_Features (Def_Id); 2769 end if; 2770 2771 when N_Array_Type_Definition => 2772 Array_Type_Declaration (T, Def); 2773 2774 when N_Derived_Type_Definition => 2775 Derived_Type_Declaration (T, N, T /= Def_Id); 2776 2777 when N_Enumeration_Type_Definition => 2778 Enumeration_Type_Declaration (T, Def); 2779 2780 when N_Floating_Point_Definition => 2781 Floating_Point_Type_Declaration (T, Def); 2782 2783 when N_Decimal_Fixed_Point_Definition => 2784 Decimal_Fixed_Point_Type_Declaration (T, Def); 2785 2786 when N_Ordinary_Fixed_Point_Definition => 2787 Ordinary_Fixed_Point_Type_Declaration (T, Def); 2788 2789 when N_Signed_Integer_Type_Definition => 2790 Signed_Integer_Type_Declaration (T, Def); 2791 2792 when N_Modular_Type_Definition => 2793 Modular_Type_Declaration (T, Def); 2794 2795 when N_Record_Definition => 2796 Record_Type_Declaration (T, N, Prev); 2797 2798 -- If declaration has a parse error, nothing to elaborate. 2799 2800 when N_Error => 2801 null; 2802 2803 when others => 2804 raise Program_Error; 2805 2806 end case; 2807 end if; 2808 2809 if Etype (T) = Any_Type then 2810 return; 2811 end if; 2812 2813 -- Controlled type is not allowed in SPARK 2814 2815 if Is_Visibly_Controlled (T) then 2816 Check_SPARK_05_Restriction ("controlled type is not allowed", N); 2817 end if; 2818 2819 -- A type declared within a Ghost region is automatically Ghost 2820 -- (SPARK RM 6.9(2)). 2821 2822 if Ghost_Mode > None then 2823 Set_Is_Ghost_Entity (T); 2824 end if; 2825 2826 -- Some common processing for all types 2827 2828 Set_Depends_On_Private (T, Has_Private_Component (T)); 2829 Check_Ops_From_Incomplete_Type; 2830 2831 -- Both the declared entity, and its anonymous base type if one was 2832 -- created, need freeze nodes allocated. 2833 2834 declare 2835 B : constant Entity_Id := Base_Type (T); 2836 2837 begin 2838 -- In the case where the base type differs from the first subtype, we 2839 -- pre-allocate a freeze node, and set the proper link to the first 2840 -- subtype. Freeze_Entity will use this preallocated freeze node when 2841 -- it freezes the entity. 2842 2843 -- This does not apply if the base type is a generic type, whose 2844 -- declaration is independent of the current derived definition. 2845 2846 if B /= T and then not Is_Generic_Type (B) then 2847 Ensure_Freeze_Node (B); 2848 Set_First_Subtype_Link (Freeze_Node (B), T); 2849 end if; 2850 2851 -- A type that is imported through a limited_with clause cannot 2852 -- generate any code, and thus need not be frozen. However, an access 2853 -- type with an imported designated type needs a finalization list, 2854 -- which may be referenced in some other package that has non-limited 2855 -- visibility on the designated type. Thus we must create the 2856 -- finalization list at the point the access type is frozen, to 2857 -- prevent unsatisfied references at link time. 2858 2859 if not From_Limited_With (T) or else Is_Access_Type (T) then 2860 Set_Has_Delayed_Freeze (T); 2861 end if; 2862 end; 2863 2864 -- Case where T is the full declaration of some private type which has 2865 -- been swapped in Defining_Identifier (N). 2866 2867 if T /= Def_Id and then Is_Private_Type (Def_Id) then 2868 Process_Full_View (N, T, Def_Id); 2869 2870 -- Record the reference. The form of this is a little strange, since 2871 -- the full declaration has been swapped in. So the first parameter 2872 -- here represents the entity to which a reference is made which is 2873 -- the "real" entity, i.e. the one swapped in, and the second 2874 -- parameter provides the reference location. 2875 2876 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here 2877 -- since we don't want a complaint about the full type being an 2878 -- unwanted reference to the private type 2879 2880 declare 2881 B : constant Boolean := Has_Pragma_Unreferenced (T); 2882 begin 2883 Set_Has_Pragma_Unreferenced (T, False); 2884 Generate_Reference (T, T, 'c'); 2885 Set_Has_Pragma_Unreferenced (T, B); 2886 end; 2887 2888 Set_Completion_Referenced (Def_Id); 2889 2890 -- For completion of incomplete type, process incomplete dependents 2891 -- and always mark the full type as referenced (it is the incomplete 2892 -- type that we get for any real reference). 2893 2894 elsif Ekind (Prev) = E_Incomplete_Type then 2895 Process_Incomplete_Dependents (N, T, Prev); 2896 Generate_Reference (Prev, Def_Id, 'c'); 2897 Set_Completion_Referenced (Def_Id); 2898 2899 -- If not private type or incomplete type completion, this is a real 2900 -- definition of a new entity, so record it. 2901 2902 else 2903 Generate_Definition (Def_Id); 2904 end if; 2905 2906 -- Propagate any pending access types whose finalization masters need to 2907 -- be fully initialized from the partial to the full view. Guard against 2908 -- an illegal full view that remains unanalyzed. 2909 2910 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then 2911 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev)); 2912 end if; 2913 2914 if Chars (Scope (Def_Id)) = Name_System 2915 and then Chars (Def_Id) = Name_Address 2916 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N))) 2917 then 2918 Set_Is_Descendent_Of_Address (Def_Id); 2919 Set_Is_Descendent_Of_Address (Base_Type (Def_Id)); 2920 Set_Is_Descendent_Of_Address (Prev); 2921 end if; 2922 2923 Set_Optimize_Alignment_Flags (Def_Id); 2924 Check_Eliminated (Def_Id); 2925 2926 -- If the declaration is a completion and aspects are present, apply 2927 -- them to the entity for the type which is currently the partial 2928 -- view, but which is the one that will be frozen. 2929 2930 if Has_Aspects (N) then 2931 2932 -- In most cases the partial view is a private type, and both views 2933 -- appear in different declarative parts. In the unusual case where 2934 -- the partial view is incomplete, perform the analysis on the 2935 -- full view, to prevent freezing anomalies with the corresponding 2936 -- class-wide type, which otherwise might be frozen before the 2937 -- dispatch table is built. 2938 2939 if Prev /= Def_Id 2940 and then Ekind (Prev) /= E_Incomplete_Type 2941 then 2942 Analyze_Aspect_Specifications (N, Prev); 2943 2944 -- Normal case 2945 2946 else 2947 Analyze_Aspect_Specifications (N, Def_Id); 2948 end if; 2949 end if; 2950 2951 if Is_Derived_Type (Prev) 2952 and then Def_Id /= Prev 2953 then 2954 Check_Nonoverridable_Aspects; 2955 end if; 2956 end Analyze_Full_Type_Declaration; 2957 2958 ---------------------------------- 2959 -- Analyze_Incomplete_Type_Decl -- 2960 ---------------------------------- 2961 2962 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is 2963 F : constant Boolean := Is_Pure (Current_Scope); 2964 T : Entity_Id; 2965 2966 begin 2967 Check_SPARK_05_Restriction ("incomplete type is not allowed", N); 2968 2969 Generate_Definition (Defining_Identifier (N)); 2970 2971 -- Process an incomplete declaration. The identifier must not have been 2972 -- declared already in the scope. However, an incomplete declaration may 2973 -- appear in the private part of a package, for a private type that has 2974 -- already been declared. 2975 2976 -- In this case, the discriminants (if any) must match 2977 2978 T := Find_Type_Name (N); 2979 2980 Set_Ekind (T, E_Incomplete_Type); 2981 Init_Size_Align (T); 2982 Set_Is_First_Subtype (T, True); 2983 Set_Etype (T, T); 2984 2985 -- An incomplete type declared within a Ghost region is automatically 2986 -- Ghost (SPARK RM 6.9(2)). 2987 2988 if Ghost_Mode > None then 2989 Set_Is_Ghost_Entity (T); 2990 end if; 2991 2992 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged 2993 -- incomplete types. 2994 2995 if Tagged_Present (N) then 2996 Set_Is_Tagged_Type (T, True); 2997 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams); 2998 Make_Class_Wide_Type (T); 2999 Set_Direct_Primitive_Operations (T, New_Elmt_List); 3000 end if; 3001 3002 Set_Stored_Constraint (T, No_Elist); 3003 3004 if Present (Discriminant_Specifications (N)) then 3005 Push_Scope (T); 3006 Process_Discriminants (N); 3007 End_Scope; 3008 end if; 3009 3010 -- If the type has discriminants, nontrivial subtypes may be declared 3011 -- before the full view of the type. The full views of those subtypes 3012 -- will be built after the full view of the type. 3013 3014 Set_Private_Dependents (T, New_Elmt_List); 3015 Set_Is_Pure (T, F); 3016 end Analyze_Incomplete_Type_Decl; 3017 3018 ----------------------------------- 3019 -- Analyze_Interface_Declaration -- 3020 ----------------------------------- 3021 3022 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is 3023 CW : constant Entity_Id := Class_Wide_Type (T); 3024 3025 begin 3026 Set_Is_Tagged_Type (T); 3027 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams); 3028 3029 Set_Is_Limited_Record (T, Limited_Present (Def) 3030 or else Task_Present (Def) 3031 or else Protected_Present (Def) 3032 or else Synchronized_Present (Def)); 3033 3034 -- Type is abstract if full declaration carries keyword, or if previous 3035 -- partial view did. 3036 3037 Set_Is_Abstract_Type (T); 3038 Set_Is_Interface (T); 3039 3040 -- Type is a limited interface if it includes the keyword limited, task, 3041 -- protected, or synchronized. 3042 3043 Set_Is_Limited_Interface 3044 (T, Limited_Present (Def) 3045 or else Protected_Present (Def) 3046 or else Synchronized_Present (Def) 3047 or else Task_Present (Def)); 3048 3049 Set_Interfaces (T, New_Elmt_List); 3050 Set_Direct_Primitive_Operations (T, New_Elmt_List); 3051 3052 -- Complete the decoration of the class-wide entity if it was already 3053 -- built (i.e. during the creation of the limited view) 3054 3055 if Present (CW) then 3056 Set_Is_Interface (CW); 3057 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T)); 3058 end if; 3059 3060 -- Check runtime support for synchronized interfaces 3061 3062 if (Is_Task_Interface (T) 3063 or else Is_Protected_Interface (T) 3064 or else Is_Synchronized_Interface (T)) 3065 and then not RTE_Available (RE_Select_Specific_Data) 3066 then 3067 Error_Msg_CRT ("synchronized interfaces", T); 3068 end if; 3069 end Analyze_Interface_Declaration; 3070 3071 ----------------------------- 3072 -- Analyze_Itype_Reference -- 3073 ----------------------------- 3074 3075 -- Nothing to do. This node is placed in the tree only for the benefit of 3076 -- back end processing, and has no effect on the semantic processing. 3077 3078 procedure Analyze_Itype_Reference (N : Node_Id) is 3079 begin 3080 pragma Assert (Is_Itype (Itype (N))); 3081 null; 3082 end Analyze_Itype_Reference; 3083 3084 -------------------------------- 3085 -- Analyze_Number_Declaration -- 3086 -------------------------------- 3087 3088 procedure Analyze_Number_Declaration (N : Node_Id) is 3089 E : constant Node_Id := Expression (N); 3090 Id : constant Entity_Id := Defining_Identifier (N); 3091 Index : Interp_Index; 3092 It : Interp; 3093 T : Entity_Id; 3094 3095 begin 3096 Generate_Definition (Id); 3097 Enter_Name (Id); 3098 3099 -- A number declared within a Ghost region is automatically Ghost 3100 -- (SPARK RM 6.9(2)). 3101 3102 if Ghost_Mode > None then 3103 Set_Is_Ghost_Entity (Id); 3104 end if; 3105 3106 -- This is an optimization of a common case of an integer literal 3107 3108 if Nkind (E) = N_Integer_Literal then 3109 Set_Is_Static_Expression (E, True); 3110 Set_Etype (E, Universal_Integer); 3111 3112 Set_Etype (Id, Universal_Integer); 3113 Set_Ekind (Id, E_Named_Integer); 3114 Set_Is_Frozen (Id, True); 3115 return; 3116 end if; 3117 3118 Set_Is_Pure (Id, Is_Pure (Current_Scope)); 3119 3120 -- Process expression, replacing error by integer zero, to avoid 3121 -- cascaded errors or aborts further along in the processing 3122 3123 -- Replace Error by integer zero, which seems least likely to cause 3124 -- cascaded errors. 3125 3126 if E = Error then 3127 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0)); 3128 Set_Error_Posted (E); 3129 end if; 3130 3131 Analyze (E); 3132 3133 -- Verify that the expression is static and numeric. If 3134 -- the expression is overloaded, we apply the preference 3135 -- rule that favors root numeric types. 3136 3137 if not Is_Overloaded (E) then 3138 T := Etype (E); 3139 if Has_Dynamic_Predicate_Aspect (T) then 3140 Error_Msg_N 3141 ("subtype has dynamic predicate, " 3142 & "not allowed in number declaration", N); 3143 end if; 3144 3145 else 3146 T := Any_Type; 3147 3148 Get_First_Interp (E, Index, It); 3149 while Present (It.Typ) loop 3150 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ)) 3151 and then (Scope (Base_Type (It.Typ))) = Standard_Standard 3152 then 3153 if T = Any_Type then 3154 T := It.Typ; 3155 3156 elsif It.Typ = Universal_Real 3157 or else 3158 It.Typ = Universal_Integer 3159 then 3160 -- Choose universal interpretation over any other 3161 3162 T := It.Typ; 3163 exit; 3164 end if; 3165 end if; 3166 3167 Get_Next_Interp (Index, It); 3168 end loop; 3169 end if; 3170 3171 if Is_Integer_Type (T) then 3172 Resolve (E, T); 3173 Set_Etype (Id, Universal_Integer); 3174 Set_Ekind (Id, E_Named_Integer); 3175 3176 elsif Is_Real_Type (T) then 3177 3178 -- Because the real value is converted to universal_real, this is a 3179 -- legal context for a universal fixed expression. 3180 3181 if T = Universal_Fixed then 3182 declare 3183 Loc : constant Source_Ptr := Sloc (N); 3184 Conv : constant Node_Id := Make_Type_Conversion (Loc, 3185 Subtype_Mark => 3186 New_Occurrence_Of (Universal_Real, Loc), 3187 Expression => Relocate_Node (E)); 3188 3189 begin 3190 Rewrite (E, Conv); 3191 Analyze (E); 3192 end; 3193 3194 elsif T = Any_Fixed then 3195 Error_Msg_N ("illegal context for mixed mode operation", E); 3196 3197 -- Expression is of the form : universal_fixed * integer. Try to 3198 -- resolve as universal_real. 3199 3200 T := Universal_Real; 3201 Set_Etype (E, T); 3202 end if; 3203 3204 Resolve (E, T); 3205 Set_Etype (Id, Universal_Real); 3206 Set_Ekind (Id, E_Named_Real); 3207 3208 else 3209 Wrong_Type (E, Any_Numeric); 3210 Resolve (E, T); 3211 3212 Set_Etype (Id, T); 3213 Set_Ekind (Id, E_Constant); 3214 Set_Never_Set_In_Source (Id, True); 3215 Set_Is_True_Constant (Id, True); 3216 return; 3217 end if; 3218 3219 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then 3220 Set_Etype (E, Etype (Id)); 3221 end if; 3222 3223 if not Is_OK_Static_Expression (E) then 3224 Flag_Non_Static_Expr 3225 ("non-static expression used in number declaration!", E); 3226 Rewrite (E, Make_Integer_Literal (Sloc (N), 1)); 3227 Set_Etype (E, Any_Type); 3228 end if; 3229 3230 Analyze_Dimension (N); 3231 end Analyze_Number_Declaration; 3232 3233 -------------------------------- 3234 -- Analyze_Object_Declaration -- 3235 -------------------------------- 3236 3237 procedure Analyze_Object_Declaration (N : Node_Id) is 3238 Loc : constant Source_Ptr := Sloc (N); 3239 Id : constant Entity_Id := Defining_Identifier (N); 3240 Act_T : Entity_Id; 3241 T : Entity_Id; 3242 3243 E : Node_Id := Expression (N); 3244 -- E is set to Expression (N) throughout this routine. When 3245 -- Expression (N) is modified, E is changed accordingly. 3246 3247 Prev_Entity : Entity_Id := Empty; 3248 3249 function Count_Tasks (T : Entity_Id) return Uint; 3250 -- This function is called when a non-generic library level object of a 3251 -- task type is declared. Its function is to count the static number of 3252 -- tasks declared within the type (it is only called if Has_Task is set 3253 -- for T). As a side effect, if an array of tasks with non-static bounds 3254 -- or a variant record type is encountered, Check_Restriction is called 3255 -- indicating the count is unknown. 3256 3257 function Delayed_Aspect_Present return Boolean; 3258 -- If the declaration has an expression that is an aggregate, and it 3259 -- has aspects that require delayed analysis, the resolution of the 3260 -- aggregate must be deferred to the freeze point of the objet. This 3261 -- special processing was created for address clauses, but it must 3262 -- also apply to Alignment. This must be done before the aspect 3263 -- specifications are analyzed because we must handle the aggregate 3264 -- before the analysis of the object declaration is complete. 3265 3266 -- Any other relevant delayed aspects on object declarations ??? 3267 3268 ----------------- 3269 -- Count_Tasks -- 3270 ----------------- 3271 3272 function Count_Tasks (T : Entity_Id) return Uint is 3273 C : Entity_Id; 3274 X : Node_Id; 3275 V : Uint; 3276 3277 begin 3278 if Is_Task_Type (T) then 3279 return Uint_1; 3280 3281 elsif Is_Record_Type (T) then 3282 if Has_Discriminants (T) then 3283 Check_Restriction (Max_Tasks, N); 3284 return Uint_0; 3285 3286 else 3287 V := Uint_0; 3288 C := First_Component (T); 3289 while Present (C) loop 3290 V := V + Count_Tasks (Etype (C)); 3291 Next_Component (C); 3292 end loop; 3293 3294 return V; 3295 end if; 3296 3297 elsif Is_Array_Type (T) then 3298 X := First_Index (T); 3299 V := Count_Tasks (Component_Type (T)); 3300 while Present (X) loop 3301 C := Etype (X); 3302 3303 if not Is_OK_Static_Subtype (C) then 3304 Check_Restriction (Max_Tasks, N); 3305 return Uint_0; 3306 else 3307 V := V * (UI_Max (Uint_0, 3308 Expr_Value (Type_High_Bound (C)) - 3309 Expr_Value (Type_Low_Bound (C)) + Uint_1)); 3310 end if; 3311 3312 Next_Index (X); 3313 end loop; 3314 3315 return V; 3316 3317 else 3318 return Uint_0; 3319 end if; 3320 end Count_Tasks; 3321 3322 ---------------------------- 3323 -- Delayed_Aspect_Present -- 3324 ---------------------------- 3325 3326 function Delayed_Aspect_Present return Boolean is 3327 A : Node_Id; 3328 A_Id : Aspect_Id; 3329 3330 begin 3331 if Present (Aspect_Specifications (N)) then 3332 A := First (Aspect_Specifications (N)); 3333 A_Id := Get_Aspect_Id (Chars (Identifier (A))); 3334 while Present (A) loop 3335 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then 3336 return True; 3337 end if; 3338 3339 Next (A); 3340 end loop; 3341 end if; 3342 3343 return False; 3344 end Delayed_Aspect_Present; 3345 3346 -- Local variables 3347 3348 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode; 3349 Related_Id : Entity_Id; 3350 3351 -- Start of processing for Analyze_Object_Declaration 3352 3353 begin 3354 -- There are three kinds of implicit types generated by an 3355 -- object declaration: 3356 3357 -- 1. Those generated by the original Object Definition 3358 3359 -- 2. Those generated by the Expression 3360 3361 -- 3. Those used to constrain the Object Definition with the 3362 -- expression constraints when the definition is unconstrained. 3363 3364 -- They must be generated in this order to avoid order of elaboration 3365 -- issues. Thus the first step (after entering the name) is to analyze 3366 -- the object definition. 3367 3368 if Constant_Present (N) then 3369 Prev_Entity := Current_Entity_In_Scope (Id); 3370 3371 if Present (Prev_Entity) 3372 and then 3373 -- If the homograph is an implicit subprogram, it is overridden 3374 -- by the current declaration. 3375 3376 ((Is_Overloadable (Prev_Entity) 3377 and then Is_Inherited_Operation (Prev_Entity)) 3378 3379 -- The current object is a discriminal generated for an entry 3380 -- family index. Even though the index is a constant, in this 3381 -- particular context there is no true constant redeclaration. 3382 -- Enter_Name will handle the visibility. 3383 3384 or else 3385 (Is_Discriminal (Id) 3386 and then Ekind (Discriminal_Link (Id)) = 3387 E_Entry_Index_Parameter) 3388 3389 -- The current object is the renaming for a generic declared 3390 -- within the instance. 3391 3392 or else 3393 (Ekind (Prev_Entity) = E_Package 3394 and then Nkind (Parent (Prev_Entity)) = 3395 N_Package_Renaming_Declaration 3396 and then not Comes_From_Source (Prev_Entity) 3397 and then 3398 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))) 3399 then 3400 Prev_Entity := Empty; 3401 end if; 3402 end if; 3403 3404 -- The object declaration is Ghost when it is subject to pragma Ghost or 3405 -- completes a deferred Ghost constant. Set the mode now to ensure that 3406 -- any nodes generated during analysis and expansion are properly marked 3407 -- as Ghost. 3408 3409 Set_Ghost_Mode (N, Prev_Entity); 3410 3411 if Present (Prev_Entity) then 3412 Constant_Redeclaration (Id, N, T); 3413 3414 Generate_Reference (Prev_Entity, Id, 'c'); 3415 Set_Completion_Referenced (Id); 3416 3417 if Error_Posted (N) then 3418 3419 -- Type mismatch or illegal redeclaration, Do not analyze 3420 -- expression to avoid cascaded errors. 3421 3422 T := Find_Type_Of_Object (Object_Definition (N), N); 3423 Set_Etype (Id, T); 3424 Set_Ekind (Id, E_Variable); 3425 goto Leave; 3426 end if; 3427 3428 -- In the normal case, enter identifier at the start to catch premature 3429 -- usage in the initialization expression. 3430 3431 else 3432 Generate_Definition (Id); 3433 Enter_Name (Id); 3434 3435 Mark_Coextensions (N, Object_Definition (N)); 3436 3437 T := Find_Type_Of_Object (Object_Definition (N), N); 3438 3439 if Nkind (Object_Definition (N)) = N_Access_Definition 3440 and then Present 3441 (Access_To_Subprogram_Definition (Object_Definition (N))) 3442 and then Protected_Present 3443 (Access_To_Subprogram_Definition (Object_Definition (N))) 3444 then 3445 T := Replace_Anonymous_Access_To_Protected_Subprogram (N); 3446 end if; 3447 3448 if Error_Posted (Id) then 3449 Set_Etype (Id, T); 3450 Set_Ekind (Id, E_Variable); 3451 goto Leave; 3452 end if; 3453 end if; 3454 3455 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry 3456 -- out some static checks 3457 3458 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then 3459 3460 -- In case of aggregates we must also take care of the correct 3461 -- initialization of nested aggregates bug this is done at the 3462 -- point of the analysis of the aggregate (see sem_aggr.adb). 3463 3464 if Present (Expression (N)) 3465 and then Nkind (Expression (N)) = N_Aggregate 3466 then 3467 null; 3468 3469 else 3470 declare 3471 Save_Typ : constant Entity_Id := Etype (Id); 3472 begin 3473 Set_Etype (Id, T); -- Temp. decoration for static checks 3474 Null_Exclusion_Static_Checks (N); 3475 Set_Etype (Id, Save_Typ); 3476 end; 3477 end if; 3478 end if; 3479 3480 -- Object is marked pure if it is in a pure scope 3481 3482 Set_Is_Pure (Id, Is_Pure (Current_Scope)); 3483 3484 -- If deferred constant, make sure context is appropriate. We detect 3485 -- a deferred constant as a constant declaration with no expression. 3486 -- A deferred constant can appear in a package body if its completion 3487 -- is by means of an interface pragma. 3488 3489 if Constant_Present (N) and then No (E) then 3490 3491 -- A deferred constant may appear in the declarative part of the 3492 -- following constructs: 3493 3494 -- blocks 3495 -- entry bodies 3496 -- extended return statements 3497 -- package specs 3498 -- package bodies 3499 -- subprogram bodies 3500 -- task bodies 3501 3502 -- When declared inside a package spec, a deferred constant must be 3503 -- completed by a full constant declaration or pragma Import. In all 3504 -- other cases, the only proper completion is pragma Import. Extended 3505 -- return statements are flagged as invalid contexts because they do 3506 -- not have a declarative part and so cannot accommodate the pragma. 3507 3508 if Ekind (Current_Scope) = E_Return_Statement then 3509 Error_Msg_N 3510 ("invalid context for deferred constant declaration (RM 7.4)", 3511 N); 3512 Error_Msg_N 3513 ("\declaration requires an initialization expression", 3514 N); 3515 Set_Constant_Present (N, False); 3516 3517 -- In Ada 83, deferred constant must be of private type 3518 3519 elsif not Is_Private_Type (T) then 3520 if Ada_Version = Ada_83 and then Comes_From_Source (N) then 3521 Error_Msg_N 3522 ("(Ada 83) deferred constant must be private type", N); 3523 end if; 3524 end if; 3525 3526 -- If not a deferred constant, then the object declaration freezes 3527 -- its type, unless the object is of an anonymous type and has delayed 3528 -- aspects. In that case the type is frozen when the object itself is. 3529 3530 else 3531 Check_Fully_Declared (T, N); 3532 3533 if Has_Delayed_Aspects (Id) 3534 and then Is_Array_Type (T) 3535 and then Is_Itype (T) 3536 then 3537 Set_Has_Delayed_Freeze (T); 3538 else 3539 Freeze_Before (N, T); 3540 end if; 3541 end if; 3542 3543 -- If the object was created by a constrained array definition, then 3544 -- set the link in both the anonymous base type and anonymous subtype 3545 -- that are built to represent the array type to point to the object. 3546 3547 if Nkind (Object_Definition (Declaration_Node (Id))) = 3548 N_Constrained_Array_Definition 3549 then 3550 Set_Related_Array_Object (T, Id); 3551 Set_Related_Array_Object (Base_Type (T), Id); 3552 end if; 3553 3554 -- Special checks for protected objects not at library level 3555 3556 if Is_Protected_Type (T) 3557 and then not Is_Library_Level_Entity (Id) 3558 then 3559 Check_Restriction (No_Local_Protected_Objects, Id); 3560 3561 -- Protected objects with interrupt handlers must be at library level 3562 3563 -- Ada 2005: This test is not needed (and the corresponding clause 3564 -- in the RM is removed) because accessibility checks are sufficient 3565 -- to make handlers not at the library level illegal. 3566 3567 -- AI05-0303: The AI is in fact a binding interpretation, and thus 3568 -- applies to the '95 version of the language as well. 3569 3570 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then 3571 Error_Msg_N 3572 ("interrupt object can only be declared at library level", Id); 3573 end if; 3574 end if; 3575 3576 -- The actual subtype of the object is the nominal subtype, unless 3577 -- the nominal one is unconstrained and obtained from the expression. 3578 3579 Act_T := T; 3580 3581 -- These checks should be performed before the initialization expression 3582 -- is considered, so that the Object_Definition node is still the same 3583 -- as in source code. 3584 3585 -- In SPARK, the nominal subtype is always given by a subtype mark 3586 -- and must not be unconstrained. (The only exception to this is the 3587 -- acceptance of declarations of constants of type String.) 3588 3589 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier) 3590 then 3591 Check_SPARK_05_Restriction 3592 ("subtype mark required", Object_Definition (N)); 3593 3594 elsif Is_Array_Type (T) 3595 and then not Is_Constrained (T) 3596 and then T /= Standard_String 3597 then 3598 Check_SPARK_05_Restriction 3599 ("subtype mark of constrained type expected", 3600 Object_Definition (N)); 3601 end if; 3602 3603 -- There are no aliased objects in SPARK 3604 3605 if Aliased_Present (N) then 3606 Check_SPARK_05_Restriction ("aliased object is not allowed", N); 3607 end if; 3608 3609 -- Process initialization expression if present and not in error 3610 3611 if Present (E) and then E /= Error then 3612 3613 -- Generate an error in case of CPP class-wide object initialization. 3614 -- Required because otherwise the expansion of the class-wide 3615 -- assignment would try to use 'size to initialize the object 3616 -- (primitive that is not available in CPP tagged types). 3617 3618 if Is_Class_Wide_Type (Act_T) 3619 and then 3620 (Is_CPP_Class (Root_Type (Etype (Act_T))) 3621 or else 3622 (Present (Full_View (Root_Type (Etype (Act_T)))) 3623 and then 3624 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T)))))) 3625 then 3626 Error_Msg_N 3627 ("predefined assignment not available for 'C'P'P tagged types", 3628 E); 3629 end if; 3630 3631 Mark_Coextensions (N, E); 3632 Analyze (E); 3633 3634 -- In case of errors detected in the analysis of the expression, 3635 -- decorate it with the expected type to avoid cascaded errors 3636 3637 if No (Etype (E)) then 3638 Set_Etype (E, T); 3639 end if; 3640 3641 -- If an initialization expression is present, then we set the 3642 -- Is_True_Constant flag. It will be reset if this is a variable 3643 -- and it is indeed modified. 3644 3645 Set_Is_True_Constant (Id, True); 3646 3647 -- If we are analyzing a constant declaration, set its completion 3648 -- flag after analyzing and resolving the expression. 3649 3650 if Constant_Present (N) then 3651 Set_Has_Completion (Id); 3652 end if; 3653 3654 -- Set type and resolve (type may be overridden later on). Note: 3655 -- Ekind (Id) must still be E_Void at this point so that incorrect 3656 -- early usage within E is properly diagnosed. 3657 3658 Set_Etype (Id, T); 3659 3660 -- If the expression is an aggregate we must look ahead to detect 3661 -- the possible presence of an address clause, and defer resolution 3662 -- and expansion of the aggregate to the freeze point of the entity. 3663 3664 -- This is not always legal because the aggregate may contain other 3665 -- references that need freezing, e.g. references to other entities 3666 -- with address clauses. In any case, when compiling with -gnatI the 3667 -- presence of the address clause must be ignored. 3668 3669 if Comes_From_Source (N) 3670 and then Expander_Active 3671 and then Nkind (E) = N_Aggregate 3672 and then 3673 ((Present (Following_Address_Clause (N)) 3674 and then not Ignore_Rep_Clauses) 3675 or else Delayed_Aspect_Present) 3676 then 3677 Set_Etype (E, T); 3678 3679 else 3680 Resolve (E, T); 3681 end if; 3682 3683 -- No further action needed if E is a call to an inlined function 3684 -- which returns an unconstrained type and it has been expanded into 3685 -- a procedure call. In that case N has been replaced by an object 3686 -- declaration without initializing expression and it has been 3687 -- analyzed (see Expand_Inlined_Call). 3688 3689 if Back_End_Inlining 3690 and then Expander_Active 3691 and then Nkind (E) = N_Function_Call 3692 and then Nkind (Name (E)) in N_Has_Entity 3693 and then Is_Inlined (Entity (Name (E))) 3694 and then not Is_Constrained (Etype (E)) 3695 and then Analyzed (N) 3696 and then No (Expression (N)) 3697 then 3698 Ghost_Mode := Save_Ghost_Mode; 3699 return; 3700 end if; 3701 3702 -- If E is null and has been replaced by an N_Raise_Constraint_Error 3703 -- node (which was marked already-analyzed), we need to set the type 3704 -- to something other than Any_Access in order to keep gigi happy. 3705 3706 if Etype (E) = Any_Access then 3707 Set_Etype (E, T); 3708 end if; 3709 3710 -- If the object is an access to variable, the initialization 3711 -- expression cannot be an access to constant. 3712 3713 if Is_Access_Type (T) 3714 and then not Is_Access_Constant (T) 3715 and then Is_Access_Type (Etype (E)) 3716 and then Is_Access_Constant (Etype (E)) 3717 then 3718 Error_Msg_N 3719 ("access to variable cannot be initialized with an " 3720 & "access-to-constant expression", E); 3721 end if; 3722 3723 if not Assignment_OK (N) then 3724 Check_Initialization (T, E); 3725 end if; 3726 3727 Check_Unset_Reference (E); 3728 3729 -- If this is a variable, then set current value. If this is a 3730 -- declared constant of a scalar type with a static expression, 3731 -- indicate that it is always valid. 3732 3733 if not Constant_Present (N) then 3734 if Compile_Time_Known_Value (E) then 3735 Set_Current_Value (Id, E); 3736 end if; 3737 3738 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then 3739 Set_Is_Known_Valid (Id); 3740 end if; 3741 3742 -- Deal with setting of null flags 3743 3744 if Is_Access_Type (T) then 3745 if Known_Non_Null (E) then 3746 Set_Is_Known_Non_Null (Id, True); 3747 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then 3748 Set_Is_Known_Null (Id, True); 3749 end if; 3750 end if; 3751 3752 -- Check incorrect use of dynamically tagged expressions 3753 3754 if Is_Tagged_Type (T) then 3755 Check_Dynamically_Tagged_Expression 3756 (Expr => E, 3757 Typ => T, 3758 Related_Nod => N); 3759 end if; 3760 3761 Apply_Scalar_Range_Check (E, T); 3762 Apply_Static_Length_Check (E, T); 3763 3764 if Nkind (Original_Node (N)) = N_Object_Declaration 3765 and then Comes_From_Source (Original_Node (N)) 3766 3767 -- Only call test if needed 3768 3769 and then Restriction_Check_Required (SPARK_05) 3770 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E)) 3771 then 3772 Check_SPARK_05_Restriction 3773 ("initialization expression is not appropriate", E); 3774 end if; 3775 3776 -- A formal parameter of a specific tagged type whose related 3777 -- subprogram is subject to pragma Extensions_Visible with value 3778 -- "False" cannot be implicitly converted to a class-wide type by 3779 -- means of an initialization expression (SPARK RM 6.1.7(3)). 3780 3781 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then 3782 Error_Msg_N 3783 ("formal parameter with Extensions_Visible False cannot be " 3784 & "implicitly converted to class-wide type", E); 3785 end if; 3786 end if; 3787 3788 -- If the No_Streams restriction is set, check that the type of the 3789 -- object is not, and does not contain, any subtype derived from 3790 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to 3791 -- Has_Stream just for efficiency reasons. There is no point in 3792 -- spending time on a Has_Stream check if the restriction is not set. 3793 3794 if Restriction_Check_Required (No_Streams) then 3795 if Has_Stream (T) then 3796 Check_Restriction (No_Streams, N); 3797 end if; 3798 end if; 3799 3800 -- Deal with predicate check before we start to do major rewriting. It 3801 -- is OK to initialize and then check the initialized value, since the 3802 -- object goes out of scope if we get a predicate failure. Note that we 3803 -- do this in the analyzer and not the expander because the analyzer 3804 -- does some substantial rewriting in some cases. 3805 3806 -- We need a predicate check if the type has predicates, and if either 3807 -- there is an initializing expression, or for default initialization 3808 -- when we have at least one case of an explicit default initial value 3809 -- and then this is not an internal declaration whose initialization 3810 -- comes later (as for an aggregate expansion). 3811 3812 if not Suppress_Assignment_Checks (N) 3813 and then Present (Predicate_Function (T)) 3814 and then not No_Initialization (N) 3815 and then 3816 (Present (E) 3817 or else 3818 Is_Partially_Initialized_Type (T, Include_Implicit => False)) 3819 then 3820 -- If the type has a static predicate and the expression is known at 3821 -- compile time, see if the expression satisfies the predicate. 3822 3823 if Present (E) then 3824 Check_Expression_Against_Static_Predicate (E, T); 3825 end if; 3826 3827 Insert_After (N, 3828 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc))); 3829 end if; 3830 3831 -- Case of unconstrained type 3832 3833 if not Is_Definite_Subtype (T) then 3834 3835 -- In SPARK, a declaration of unconstrained type is allowed 3836 -- only for constants of type string. 3837 3838 if Is_String_Type (T) and then not Constant_Present (N) then 3839 Check_SPARK_05_Restriction 3840 ("declaration of object of unconstrained type not allowed", N); 3841 end if; 3842 3843 -- Nothing to do in deferred constant case 3844 3845 if Constant_Present (N) and then No (E) then 3846 null; 3847 3848 -- Case of no initialization present 3849 3850 elsif No (E) then 3851 if No_Initialization (N) then 3852 null; 3853 3854 elsif Is_Class_Wide_Type (T) then 3855 Error_Msg_N 3856 ("initialization required in class-wide declaration ", N); 3857 3858 else 3859 Error_Msg_N 3860 ("unconstrained subtype not allowed (need initialization)", 3861 Object_Definition (N)); 3862 3863 if Is_Record_Type (T) and then Has_Discriminants (T) then 3864 Error_Msg_N 3865 ("\provide initial value or explicit discriminant values", 3866 Object_Definition (N)); 3867 3868 Error_Msg_NE 3869 ("\or give default discriminant values for type&", 3870 Object_Definition (N), T); 3871 3872 elsif Is_Array_Type (T) then 3873 Error_Msg_N 3874 ("\provide initial value or explicit array bounds", 3875 Object_Definition (N)); 3876 end if; 3877 end if; 3878 3879 -- Case of initialization present but in error. Set initial 3880 -- expression as absent (but do not make above complaints) 3881 3882 elsif E = Error then 3883 Set_Expression (N, Empty); 3884 E := Empty; 3885 3886 -- Case of initialization present 3887 3888 else 3889 -- Check restrictions in Ada 83 3890 3891 if not Constant_Present (N) then 3892 3893 -- Unconstrained variables not allowed in Ada 83 mode 3894 3895 if Ada_Version = Ada_83 3896 and then Comes_From_Source (Object_Definition (N)) 3897 then 3898 Error_Msg_N 3899 ("(Ada 83) unconstrained variable not allowed", 3900 Object_Definition (N)); 3901 end if; 3902 end if; 3903 3904 -- Now we constrain the variable from the initializing expression 3905 3906 -- If the expression is an aggregate, it has been expanded into 3907 -- individual assignments. Retrieve the actual type from the 3908 -- expanded construct. 3909 3910 if Is_Array_Type (T) 3911 and then No_Initialization (N) 3912 and then Nkind (Original_Node (E)) = N_Aggregate 3913 then 3914 Act_T := Etype (E); 3915 3916 -- In case of class-wide interface object declarations we delay 3917 -- the generation of the equivalent record type declarations until 3918 -- its expansion because there are cases in they are not required. 3919 3920 elsif Is_Interface (T) then 3921 null; 3922 3923 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus, 3924 -- we should prevent the generation of another Itype with the 3925 -- same name as the one already generated, or we end up with 3926 -- two identical types in GNATprove. 3927 3928 elsif GNATprove_Mode then 3929 null; 3930 3931 -- If the type is an unchecked union, no subtype can be built from 3932 -- the expression. Rewrite declaration as a renaming, which the 3933 -- back-end can handle properly. This is a rather unusual case, 3934 -- because most unchecked_union declarations have default values 3935 -- for discriminants and are thus not indefinite. 3936 3937 elsif Is_Unchecked_Union (T) then 3938 if Constant_Present (N) or else Nkind (E) = N_Function_Call then 3939 Set_Ekind (Id, E_Constant); 3940 else 3941 Set_Ekind (Id, E_Variable); 3942 end if; 3943 3944 -- An object declared within a Ghost region is automatically 3945 -- Ghost (SPARK RM 6.9(2)). 3946 3947 if Ghost_Mode > None then 3948 Set_Is_Ghost_Entity (Id); 3949 3950 -- The Ghost policy in effect at the point of declaration 3951 -- and at the point of completion must match 3952 -- (SPARK RM 6.9(14)). 3953 3954 if Present (Prev_Entity) 3955 and then Is_Ghost_Entity (Prev_Entity) 3956 then 3957 Check_Ghost_Completion (Prev_Entity, Id); 3958 end if; 3959 end if; 3960 3961 Rewrite (N, 3962 Make_Object_Renaming_Declaration (Loc, 3963 Defining_Identifier => Id, 3964 Subtype_Mark => New_Occurrence_Of (T, Loc), 3965 Name => E)); 3966 3967 Set_Renamed_Object (Id, E); 3968 Freeze_Before (N, T); 3969 Set_Is_Frozen (Id); 3970 3971 Ghost_Mode := Save_Ghost_Mode; 3972 return; 3973 3974 else 3975 -- Ensure that the generated subtype has a unique external name 3976 -- when the related object is public. This guarantees that the 3977 -- subtype and its bounds will not be affected by switches or 3978 -- pragmas that may offset the internal counter due to extra 3979 -- generated code. 3980 3981 if Is_Public (Id) then 3982 Related_Id := Id; 3983 else 3984 Related_Id := Empty; 3985 end if; 3986 3987 Expand_Subtype_From_Expr 3988 (N => N, 3989 Unc_Type => T, 3990 Subtype_Indic => Object_Definition (N), 3991 Exp => E, 3992 Related_Id => Related_Id); 3993 3994 Act_T := Find_Type_Of_Object (Object_Definition (N), N); 3995 end if; 3996 3997 Set_Is_Constr_Subt_For_U_Nominal (Act_T); 3998 3999 if Aliased_Present (N) then 4000 Set_Is_Constr_Subt_For_UN_Aliased (Act_T); 4001 end if; 4002 4003 Freeze_Before (N, Act_T); 4004 Freeze_Before (N, T); 4005 end if; 4006 4007 elsif Is_Array_Type (T) 4008 and then No_Initialization (N) 4009 and then Nkind (Original_Node (E)) = N_Aggregate 4010 then 4011 if not Is_Entity_Name (Object_Definition (N)) then 4012 Act_T := Etype (E); 4013 Check_Compile_Time_Size (Act_T); 4014 4015 if Aliased_Present (N) then 4016 Set_Is_Constr_Subt_For_UN_Aliased (Act_T); 4017 end if; 4018 end if; 4019 4020 -- When the given object definition and the aggregate are specified 4021 -- independently, and their lengths might differ do a length check. 4022 -- This cannot happen if the aggregate is of the form (others =>...) 4023 4024 if not Is_Constrained (T) then 4025 null; 4026 4027 elsif Nkind (E) = N_Raise_Constraint_Error then 4028 4029 -- Aggregate is statically illegal. Place back in declaration 4030 4031 Set_Expression (N, E); 4032 Set_No_Initialization (N, False); 4033 4034 elsif T = Etype (E) then 4035 null; 4036 4037 elsif Nkind (E) = N_Aggregate 4038 and then Present (Component_Associations (E)) 4039 and then Present (Choices (First (Component_Associations (E)))) 4040 and then Nkind (First 4041 (Choices (First (Component_Associations (E))))) = N_Others_Choice 4042 then 4043 null; 4044 4045 else 4046 Apply_Length_Check (E, T); 4047 end if; 4048 4049 -- If the type is limited unconstrained with defaulted discriminants and 4050 -- there is no expression, then the object is constrained by the 4051 -- defaults, so it is worthwhile building the corresponding subtype. 4052 4053 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T)) 4054 and then not Is_Constrained (T) 4055 and then Has_Discriminants (T) 4056 then 4057 if No (E) then 4058 Act_T := Build_Default_Subtype (T, N); 4059 else 4060 -- Ada 2005: A limited object may be initialized by means of an 4061 -- aggregate. If the type has default discriminants it has an 4062 -- unconstrained nominal type, Its actual subtype will be obtained 4063 -- from the aggregate, and not from the default discriminants. 4064 4065 Act_T := Etype (E); 4066 end if; 4067 4068 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc)); 4069 4070 elsif Nkind (E) = N_Function_Call 4071 and then Constant_Present (N) 4072 and then Has_Unconstrained_Elements (Etype (E)) 4073 then 4074 -- The back-end has problems with constants of a discriminated type 4075 -- with defaults, if the initial value is a function call. We 4076 -- generate an intermediate temporary that will receive a reference 4077 -- to the result of the call. The initialization expression then 4078 -- becomes a dereference of that temporary. 4079 4080 Remove_Side_Effects (E); 4081 4082 -- If this is a constant declaration of an unconstrained type and 4083 -- the initialization is an aggregate, we can use the subtype of the 4084 -- aggregate for the declared entity because it is immutable. 4085 4086 elsif not Is_Constrained (T) 4087 and then Has_Discriminants (T) 4088 and then Constant_Present (N) 4089 and then not Has_Unchecked_Union (T) 4090 and then Nkind (E) = N_Aggregate 4091 then 4092 Act_T := Etype (E); 4093 end if; 4094 4095 -- Check No_Wide_Characters restriction 4096 4097 Check_Wide_Character_Restriction (T, Object_Definition (N)); 4098 4099 -- Indicate this is not set in source. Certainly true for constants, and 4100 -- true for variables so far (will be reset for a variable if and when 4101 -- we encounter a modification in the source). 4102 4103 Set_Never_Set_In_Source (Id); 4104 4105 -- Now establish the proper kind and type of the object 4106 4107 if Constant_Present (N) then 4108 Set_Ekind (Id, E_Constant); 4109 Set_Is_True_Constant (Id); 4110 4111 else 4112 Set_Ekind (Id, E_Variable); 4113 4114 -- A variable is set as shared passive if it appears in a shared 4115 -- passive package, and is at the outer level. This is not done for 4116 -- entities generated during expansion, because those are always 4117 -- manipulated locally. 4118 4119 if Is_Shared_Passive (Current_Scope) 4120 and then Is_Library_Level_Entity (Id) 4121 and then Comes_From_Source (Id) 4122 then 4123 Set_Is_Shared_Passive (Id); 4124 Check_Shared_Var (Id, T, N); 4125 end if; 4126 4127 -- Set Has_Initial_Value if initializing expression present. Note 4128 -- that if there is no initializing expression, we leave the state 4129 -- of this flag unchanged (usually it will be False, but notably in 4130 -- the case of exception choice variables, it will already be true). 4131 4132 if Present (E) then 4133 Set_Has_Initial_Value (Id); 4134 end if; 4135 end if; 4136 4137 -- Initialize alignment and size and capture alignment setting 4138 4139 Init_Alignment (Id); 4140 Init_Esize (Id); 4141 Set_Optimize_Alignment_Flags (Id); 4142 4143 -- An object declared within a Ghost region is automatically Ghost 4144 -- (SPARK RM 6.9(2)). 4145 4146 if Ghost_Mode > None 4147 or else (Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity)) 4148 then 4149 Set_Is_Ghost_Entity (Id); 4150 4151 -- The Ghost policy in effect at the point of declaration and at the 4152 -- point of completion must match (SPARK RM 6.9(14)). 4153 4154 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then 4155 Check_Ghost_Completion (Prev_Entity, Id); 4156 end if; 4157 end if; 4158 4159 -- Deal with aliased case 4160 4161 if Aliased_Present (N) then 4162 Set_Is_Aliased (Id); 4163 4164 -- If the object is aliased and the type is unconstrained with 4165 -- defaulted discriminants and there is no expression, then the 4166 -- object is constrained by the defaults, so it is worthwhile 4167 -- building the corresponding subtype. 4168 4169 -- Ada 2005 (AI-363): If the aliased object is discriminated and 4170 -- unconstrained, then only establish an actual subtype if the 4171 -- nominal subtype is indefinite. In definite cases the object is 4172 -- unconstrained in Ada 2005. 4173 4174 if No (E) 4175 and then Is_Record_Type (T) 4176 and then not Is_Constrained (T) 4177 and then Has_Discriminants (T) 4178 and then (Ada_Version < Ada_2005 4179 or else not Is_Definite_Subtype (T)) 4180 then 4181 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N)); 4182 end if; 4183 end if; 4184 4185 -- Now we can set the type of the object 4186 4187 Set_Etype (Id, Act_T); 4188 4189 -- Non-constant object is marked to be treated as volatile if type is 4190 -- volatile and we clear the Current_Value setting that may have been 4191 -- set above. Doing so for constants isn't required and might interfere 4192 -- with possible uses of the object as a static expression in contexts 4193 -- incompatible with volatility (e.g. as a case-statement alternative). 4194 4195 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then 4196 Set_Treat_As_Volatile (Id); 4197 Set_Current_Value (Id, Empty); 4198 end if; 4199 4200 -- Deal with controlled types 4201 4202 if Has_Controlled_Component (Etype (Id)) 4203 or else Is_Controlled (Etype (Id)) 4204 then 4205 if not Is_Library_Level_Entity (Id) then 4206 Check_Restriction (No_Nested_Finalization, N); 4207 else 4208 Validate_Controlled_Object (Id); 4209 end if; 4210 end if; 4211 4212 if Has_Task (Etype (Id)) then 4213 Check_Restriction (No_Tasking, N); 4214 4215 -- Deal with counting max tasks 4216 4217 -- Nothing to do if inside a generic 4218 4219 if Inside_A_Generic then 4220 null; 4221 4222 -- If library level entity, then count tasks 4223 4224 elsif Is_Library_Level_Entity (Id) then 4225 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id))); 4226 4227 -- If not library level entity, then indicate we don't know max 4228 -- tasks and also check task hierarchy restriction and blocking 4229 -- operation (since starting a task is definitely blocking). 4230 4231 else 4232 Check_Restriction (Max_Tasks, N); 4233 Check_Restriction (No_Task_Hierarchy, N); 4234 Check_Potentially_Blocking_Operation (N); 4235 end if; 4236 4237 -- A rather specialized test. If we see two tasks being declared 4238 -- of the same type in the same object declaration, and the task 4239 -- has an entry with an address clause, we know that program error 4240 -- will be raised at run time since we can't have two tasks with 4241 -- entries at the same address. 4242 4243 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then 4244 declare 4245 E : Entity_Id; 4246 4247 begin 4248 E := First_Entity (Etype (Id)); 4249 while Present (E) loop 4250 if Ekind (E) = E_Entry 4251 and then Present (Get_Attribute_Definition_Clause 4252 (E, Attribute_Address)) 4253 then 4254 Error_Msg_Warn := SPARK_Mode /= On; 4255 Error_Msg_N 4256 ("more than one task with same entry address<<", N); 4257 Error_Msg_N ("\Program_Error [<<", N); 4258 Insert_Action (N, 4259 Make_Raise_Program_Error (Loc, 4260 Reason => PE_Duplicated_Entry_Address)); 4261 exit; 4262 end if; 4263 4264 Next_Entity (E); 4265 end loop; 4266 end; 4267 end if; 4268 end if; 4269 4270 -- Some simple constant-propagation: if the expression is a constant 4271 -- string initialized with a literal, share the literal. This avoids 4272 -- a run-time copy. 4273 4274 if Present (E) 4275 and then Is_Entity_Name (E) 4276 and then Ekind (Entity (E)) = E_Constant 4277 and then Base_Type (Etype (E)) = Standard_String 4278 then 4279 declare 4280 Val : constant Node_Id := Constant_Value (Entity (E)); 4281 begin 4282 if Present (Val) and then Nkind (Val) = N_String_Literal then 4283 Rewrite (E, New_Copy (Val)); 4284 end if; 4285 end; 4286 end if; 4287 4288 -- Another optimization: if the nominal subtype is unconstrained and 4289 -- the expression is a function call that returns an unconstrained 4290 -- type, rewrite the declaration as a renaming of the result of the 4291 -- call. The exceptions below are cases where the copy is expected, 4292 -- either by the back end (Aliased case) or by the semantics, as for 4293 -- initializing controlled types or copying tags for classwide types. 4294 4295 if Present (E) 4296 and then Nkind (E) = N_Explicit_Dereference 4297 and then Nkind (Original_Node (E)) = N_Function_Call 4298 and then not Is_Library_Level_Entity (Id) 4299 and then not Is_Constrained (Underlying_Type (T)) 4300 and then not Is_Aliased (Id) 4301 and then not Is_Class_Wide_Type (T) 4302 and then not Is_Controlled_Active (T) 4303 and then not Has_Controlled_Component (Base_Type (T)) 4304 and then Expander_Active 4305 then 4306 Rewrite (N, 4307 Make_Object_Renaming_Declaration (Loc, 4308 Defining_Identifier => Id, 4309 Access_Definition => Empty, 4310 Subtype_Mark => New_Occurrence_Of 4311 (Base_Type (Etype (Id)), Loc), 4312 Name => E)); 4313 4314 Set_Renamed_Object (Id, E); 4315 4316 -- Force generation of debugging information for the constant and for 4317 -- the renamed function call. 4318 4319 Set_Debug_Info_Needed (Id); 4320 Set_Debug_Info_Needed (Entity (Prefix (E))); 4321 end if; 4322 4323 if Present (Prev_Entity) 4324 and then Is_Frozen (Prev_Entity) 4325 and then not Error_Posted (Id) 4326 then 4327 Error_Msg_N ("full constant declaration appears too late", N); 4328 end if; 4329 4330 Check_Eliminated (Id); 4331 4332 -- Deal with setting In_Private_Part flag if in private part 4333 4334 if Ekind (Scope (Id)) = E_Package 4335 and then In_Private_Part (Scope (Id)) 4336 then 4337 Set_In_Private_Part (Id); 4338 end if; 4339 4340 -- Check for violation of No_Local_Timing_Events 4341 4342 if Restriction_Check_Required (No_Local_Timing_Events) 4343 and then not Is_Library_Level_Entity (Id) 4344 and then Is_RTE (Etype (Id), RE_Timing_Event) 4345 then 4346 Check_Restriction (No_Local_Timing_Events, N); 4347 end if; 4348 4349 <<Leave>> 4350 -- Initialize the refined state of a variable here because this is a 4351 -- common destination for legal and illegal object declarations. 4352 4353 if Ekind (Id) = E_Variable then 4354 Set_Encapsulating_State (Id, Empty); 4355 end if; 4356 4357 if Has_Aspects (N) then 4358 Analyze_Aspect_Specifications (N, Id); 4359 end if; 4360 4361 Analyze_Dimension (N); 4362 4363 -- Verify whether the object declaration introduces an illegal hidden 4364 -- state within a package subject to a null abstract state. 4365 4366 if Ekind (Id) = E_Variable then 4367 Check_No_Hidden_State (Id); 4368 end if; 4369 4370 Ghost_Mode := Save_Ghost_Mode; 4371 end Analyze_Object_Declaration; 4372 4373 --------------------------- 4374 -- Analyze_Others_Choice -- 4375 --------------------------- 4376 4377 -- Nothing to do for the others choice node itself, the semantic analysis 4378 -- of the others choice will occur as part of the processing of the parent 4379 4380 procedure Analyze_Others_Choice (N : Node_Id) is 4381 pragma Warnings (Off, N); 4382 begin 4383 null; 4384 end Analyze_Others_Choice; 4385 4386 ------------------------------------------- 4387 -- Analyze_Private_Extension_Declaration -- 4388 ------------------------------------------- 4389 4390 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is 4391 Indic : constant Node_Id := Subtype_Indication (N); 4392 T : constant Entity_Id := Defining_Identifier (N); 4393 Parent_Base : Entity_Id; 4394 Parent_Type : Entity_Id; 4395 4396 begin 4397 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces 4398 4399 if Is_Non_Empty_List (Interface_List (N)) then 4400 declare 4401 Intf : Node_Id; 4402 T : Entity_Id; 4403 4404 begin 4405 Intf := First (Interface_List (N)); 4406 while Present (Intf) loop 4407 T := Find_Type_Of_Subtype_Indic (Intf); 4408 4409 Diagnose_Interface (Intf, T); 4410 Next (Intf); 4411 end loop; 4412 end; 4413 end if; 4414 4415 Generate_Definition (T); 4416 4417 -- For other than Ada 2012, just enter the name in the current scope 4418 4419 if Ada_Version < Ada_2012 then 4420 Enter_Name (T); 4421 4422 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling 4423 -- case of private type that completes an incomplete type. 4424 4425 else 4426 declare 4427 Prev : Entity_Id; 4428 4429 begin 4430 Prev := Find_Type_Name (N); 4431 4432 pragma Assert (Prev = T 4433 or else (Ekind (Prev) = E_Incomplete_Type 4434 and then Present (Full_View (Prev)) 4435 and then Full_View (Prev) = T)); 4436 end; 4437 end if; 4438 4439 Parent_Type := Find_Type_Of_Subtype_Indic (Indic); 4440 Parent_Base := Base_Type (Parent_Type); 4441 4442 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then 4443 Set_Ekind (T, Ekind (Parent_Type)); 4444 Set_Etype (T, Any_Type); 4445 goto Leave; 4446 4447 elsif not Is_Tagged_Type (Parent_Type) then 4448 Error_Msg_N 4449 ("parent of type extension must be a tagged type ", Indic); 4450 goto Leave; 4451 4452 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then 4453 Error_Msg_N ("premature derivation of incomplete type", Indic); 4454 goto Leave; 4455 4456 elsif Is_Concurrent_Type (Parent_Type) then 4457 Error_Msg_N 4458 ("parent type of a private extension cannot be " 4459 & "a synchronized tagged type (RM 3.9.1 (3/1))", N); 4460 4461 Set_Etype (T, Any_Type); 4462 Set_Ekind (T, E_Limited_Private_Type); 4463 Set_Private_Dependents (T, New_Elmt_List); 4464 Set_Error_Posted (T); 4465 goto Leave; 4466 end if; 4467 4468 -- Perhaps the parent type should be changed to the class-wide type's 4469 -- specific type in this case to prevent cascading errors ??? 4470 4471 if Is_Class_Wide_Type (Parent_Type) then 4472 Error_Msg_N 4473 ("parent of type extension must not be a class-wide type", Indic); 4474 goto Leave; 4475 end if; 4476 4477 if (not Is_Package_Or_Generic_Package (Current_Scope) 4478 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration) 4479 or else In_Private_Part (Current_Scope) 4480 4481 then 4482 Error_Msg_N ("invalid context for private extension", N); 4483 end if; 4484 4485 -- Set common attributes 4486 4487 Set_Is_Pure (T, Is_Pure (Current_Scope)); 4488 Set_Scope (T, Current_Scope); 4489 Set_Ekind (T, E_Record_Type_With_Private); 4490 Init_Size_Align (T); 4491 Set_Default_SSO (T); 4492 4493 Set_Etype (T, Parent_Base); 4494 Set_Has_Task (T, Has_Task (Parent_Base)); 4495 Set_Has_Protected (T, Has_Task (Parent_Base)); 4496 4497 Set_Convention (T, Convention (Parent_Type)); 4498 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type)); 4499 Set_Is_First_Subtype (T); 4500 Make_Class_Wide_Type (T); 4501 4502 if Unknown_Discriminants_Present (N) then 4503 Set_Discriminant_Constraint (T, No_Elist); 4504 end if; 4505 4506 Build_Derived_Record_Type (N, Parent_Type, T); 4507 4508 -- Propagate inherited invariant information. The new type has 4509 -- invariants, if the parent type has inheritable invariants, 4510 -- and these invariants can in turn be inherited. 4511 4512 if Has_Inheritable_Invariants (Parent_Type) then 4513 Set_Has_Inheritable_Invariants (T); 4514 Set_Has_Invariants (T); 4515 end if; 4516 4517 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten 4518 -- synchronized formal derived type. 4519 4520 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then 4521 Set_Is_Limited_Record (T); 4522 4523 -- Formal derived type case 4524 4525 if Is_Generic_Type (T) then 4526 4527 -- The parent must be a tagged limited type or a synchronized 4528 -- interface. 4529 4530 if (not Is_Tagged_Type (Parent_Type) 4531 or else not Is_Limited_Type (Parent_Type)) 4532 and then 4533 (not Is_Interface (Parent_Type) 4534 or else not Is_Synchronized_Interface (Parent_Type)) 4535 then 4536 Error_Msg_NE ("parent type of & must be tagged limited " & 4537 "or synchronized", N, T); 4538 end if; 4539 4540 -- The progenitors (if any) must be limited or synchronized 4541 -- interfaces. 4542 4543 if Present (Interfaces (T)) then 4544 declare 4545 Iface : Entity_Id; 4546 Iface_Elmt : Elmt_Id; 4547 4548 begin 4549 Iface_Elmt := First_Elmt (Interfaces (T)); 4550 while Present (Iface_Elmt) loop 4551 Iface := Node (Iface_Elmt); 4552 4553 if not Is_Limited_Interface (Iface) 4554 and then not Is_Synchronized_Interface (Iface) 4555 then 4556 Error_Msg_NE ("progenitor & must be limited " & 4557 "or synchronized", N, Iface); 4558 end if; 4559 4560 Next_Elmt (Iface_Elmt); 4561 end loop; 4562 end; 4563 end if; 4564 4565 -- Regular derived extension, the parent must be a limited or 4566 -- synchronized interface. 4567 4568 else 4569 if not Is_Interface (Parent_Type) 4570 or else (not Is_Limited_Interface (Parent_Type) 4571 and then not Is_Synchronized_Interface (Parent_Type)) 4572 then 4573 Error_Msg_NE 4574 ("parent type of & must be limited interface", N, T); 4575 end if; 4576 end if; 4577 4578 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private 4579 -- extension with a synchronized parent must be explicitly declared 4580 -- synchronized, because the full view will be a synchronized type. 4581 -- This must be checked before the check for limited types below, 4582 -- to ensure that types declared limited are not allowed to extend 4583 -- synchronized interfaces. 4584 4585 elsif Is_Interface (Parent_Type) 4586 and then Is_Synchronized_Interface (Parent_Type) 4587 and then not Synchronized_Present (N) 4588 then 4589 Error_Msg_NE 4590 ("private extension of& must be explicitly synchronized", 4591 N, Parent_Type); 4592 4593 elsif Limited_Present (N) then 4594 Set_Is_Limited_Record (T); 4595 4596 if not Is_Limited_Type (Parent_Type) 4597 and then 4598 (not Is_Interface (Parent_Type) 4599 or else not Is_Limited_Interface (Parent_Type)) 4600 then 4601 Error_Msg_NE ("parent type& of limited extension must be limited", 4602 N, Parent_Type); 4603 end if; 4604 end if; 4605 4606 <<Leave>> 4607 if Has_Aspects (N) then 4608 Analyze_Aspect_Specifications (N, T); 4609 end if; 4610 end Analyze_Private_Extension_Declaration; 4611 4612 --------------------------------- 4613 -- Analyze_Subtype_Declaration -- 4614 --------------------------------- 4615 4616 procedure Analyze_Subtype_Declaration 4617 (N : Node_Id; 4618 Skip : Boolean := False) 4619 is 4620 Id : constant Entity_Id := Defining_Identifier (N); 4621 R_Checks : Check_Result; 4622 T : Entity_Id; 4623 4624 begin 4625 Generate_Definition (Id); 4626 Set_Is_Pure (Id, Is_Pure (Current_Scope)); 4627 Init_Size_Align (Id); 4628 4629 -- The following guard condition on Enter_Name is to handle cases where 4630 -- the defining identifier has already been entered into the scope but 4631 -- the declaration as a whole needs to be analyzed. 4632 4633 -- This case in particular happens for derived enumeration types. The 4634 -- derived enumeration type is processed as an inserted enumeration type 4635 -- declaration followed by a rewritten subtype declaration. The defining 4636 -- identifier, however, is entered into the name scope very early in the 4637 -- processing of the original type declaration and therefore needs to be 4638 -- avoided here, when the created subtype declaration is analyzed. (See 4639 -- Build_Derived_Types) 4640 4641 -- This also happens when the full view of a private type is derived 4642 -- type with constraints. In this case the entity has been introduced 4643 -- in the private declaration. 4644 4645 -- Finally this happens in some complex cases when validity checks are 4646 -- enabled, where the same subtype declaration may be analyzed twice. 4647 -- This can happen if the subtype is created by the pre-analysis of 4648 -- an attribute tht gives the range of a loop statement, and the loop 4649 -- itself appears within an if_statement that will be rewritten during 4650 -- expansion. 4651 4652 if Skip 4653 or else (Present (Etype (Id)) 4654 and then (Is_Private_Type (Etype (Id)) 4655 or else Is_Task_Type (Etype (Id)) 4656 or else Is_Rewrite_Substitution (N))) 4657 then 4658 null; 4659 4660 elsif Current_Entity (Id) = Id then 4661 null; 4662 4663 else 4664 Enter_Name (Id); 4665 end if; 4666 4667 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P'); 4668 4669 -- Class-wide equivalent types of records with unknown discriminants 4670 -- involve the generation of an itype which serves as the private view 4671 -- of a constrained record subtype. In such cases the base type of the 4672 -- current subtype we are processing is the private itype. Use the full 4673 -- of the private itype when decorating various attributes. 4674 4675 if Is_Itype (T) 4676 and then Is_Private_Type (T) 4677 and then Present (Full_View (T)) 4678 then 4679 T := Full_View (T); 4680 end if; 4681 4682 -- Inherit common attributes 4683 4684 Set_Is_Volatile (Id, Is_Volatile (T)); 4685 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T)); 4686 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T))); 4687 Set_Convention (Id, Convention (T)); 4688 4689 -- If ancestor has predicates then so does the subtype, and in addition 4690 -- we must delay the freeze to properly arrange predicate inheritance. 4691 4692 -- The Ancestor_Type test is really unpleasant, there seem to be cases 4693 -- in which T = ID, so the above tests and assignments do nothing??? 4694 4695 if Has_Predicates (T) 4696 or else (Present (Ancestor_Subtype (T)) 4697 and then Has_Predicates (Ancestor_Subtype (T))) 4698 then 4699 Set_Has_Predicates (Id); 4700 Set_Has_Delayed_Freeze (Id); 4701 end if; 4702 4703 -- Subtype of Boolean cannot have a constraint in SPARK 4704 4705 if Is_Boolean_Type (T) 4706 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication 4707 then 4708 Check_SPARK_05_Restriction 4709 ("subtype of Boolean cannot have constraint", N); 4710 end if; 4711 4712 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then 4713 declare 4714 Cstr : constant Node_Id := Constraint (Subtype_Indication (N)); 4715 One_Cstr : Node_Id; 4716 Low : Node_Id; 4717 High : Node_Id; 4718 4719 begin 4720 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then 4721 One_Cstr := First (Constraints (Cstr)); 4722 while Present (One_Cstr) loop 4723 4724 -- Index or discriminant constraint in SPARK must be a 4725 -- subtype mark. 4726 4727 if not 4728 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name) 4729 then 4730 Check_SPARK_05_Restriction 4731 ("subtype mark required", One_Cstr); 4732 4733 -- String subtype must have a lower bound of 1 in SPARK. 4734 -- Note that we do not need to test for the non-static case 4735 -- here, since that was already taken care of in 4736 -- Process_Range_Expr_In_Decl. 4737 4738 elsif Base_Type (T) = Standard_String then 4739 Get_Index_Bounds (One_Cstr, Low, High); 4740 4741 if Is_OK_Static_Expression (Low) 4742 and then Expr_Value (Low) /= 1 4743 then 4744 Check_SPARK_05_Restriction 4745 ("String subtype must have lower bound of 1", N); 4746 end if; 4747 end if; 4748 4749 Next (One_Cstr); 4750 end loop; 4751 end if; 4752 end; 4753 end if; 4754 4755 -- In the case where there is no constraint given in the subtype 4756 -- indication, Process_Subtype just returns the Subtype_Mark, so its 4757 -- semantic attributes must be established here. 4758 4759 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then 4760 Set_Etype (Id, Base_Type (T)); 4761 4762 -- Subtype of unconstrained array without constraint is not allowed 4763 -- in SPARK. 4764 4765 if Is_Array_Type (T) and then not Is_Constrained (T) then 4766 Check_SPARK_05_Restriction 4767 ("subtype of unconstrained array must have constraint", N); 4768 end if; 4769 4770 case Ekind (T) is 4771 when Array_Kind => 4772 Set_Ekind (Id, E_Array_Subtype); 4773 Copy_Array_Subtype_Attributes (Id, T); 4774 4775 when Decimal_Fixed_Point_Kind => 4776 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype); 4777 Set_Digits_Value (Id, Digits_Value (T)); 4778 Set_Delta_Value (Id, Delta_Value (T)); 4779 Set_Scale_Value (Id, Scale_Value (T)); 4780 Set_Small_Value (Id, Small_Value (T)); 4781 Set_Scalar_Range (Id, Scalar_Range (T)); 4782 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T)); 4783 Set_Is_Constrained (Id, Is_Constrained (T)); 4784 Set_Is_Known_Valid (Id, Is_Known_Valid (T)); 4785 Set_RM_Size (Id, RM_Size (T)); 4786 4787 when Enumeration_Kind => 4788 Set_Ekind (Id, E_Enumeration_Subtype); 4789 Set_First_Literal (Id, First_Literal (Base_Type (T))); 4790 Set_Scalar_Range (Id, Scalar_Range (T)); 4791 Set_Is_Character_Type (Id, Is_Character_Type (T)); 4792 Set_Is_Constrained (Id, Is_Constrained (T)); 4793 Set_Is_Known_Valid (Id, Is_Known_Valid (T)); 4794 Set_RM_Size (Id, RM_Size (T)); 4795 Inherit_Predicate_Flags (Id, T); 4796 4797 when Ordinary_Fixed_Point_Kind => 4798 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype); 4799 Set_Scalar_Range (Id, Scalar_Range (T)); 4800 Set_Small_Value (Id, Small_Value (T)); 4801 Set_Delta_Value (Id, Delta_Value (T)); 4802 Set_Is_Constrained (Id, Is_Constrained (T)); 4803 Set_Is_Known_Valid (Id, Is_Known_Valid (T)); 4804 Set_RM_Size (Id, RM_Size (T)); 4805 4806 when Float_Kind => 4807 Set_Ekind (Id, E_Floating_Point_Subtype); 4808 Set_Scalar_Range (Id, Scalar_Range (T)); 4809 Set_Digits_Value (Id, Digits_Value (T)); 4810 Set_Is_Constrained (Id, Is_Constrained (T)); 4811 4812 -- If the floating point type has dimensions, these will be 4813 -- inherited subsequently when Analyze_Dimensions is called. 4814 4815 when Signed_Integer_Kind => 4816 Set_Ekind (Id, E_Signed_Integer_Subtype); 4817 Set_Scalar_Range (Id, Scalar_Range (T)); 4818 Set_Is_Constrained (Id, Is_Constrained (T)); 4819 Set_Is_Known_Valid (Id, Is_Known_Valid (T)); 4820 Set_RM_Size (Id, RM_Size (T)); 4821 Inherit_Predicate_Flags (Id, T); 4822 4823 when Modular_Integer_Kind => 4824 Set_Ekind (Id, E_Modular_Integer_Subtype); 4825 Set_Scalar_Range (Id, Scalar_Range (T)); 4826 Set_Is_Constrained (Id, Is_Constrained (T)); 4827 Set_Is_Known_Valid (Id, Is_Known_Valid (T)); 4828 Set_RM_Size (Id, RM_Size (T)); 4829 Inherit_Predicate_Flags (Id, T); 4830 4831 when Class_Wide_Kind => 4832 Set_Ekind (Id, E_Class_Wide_Subtype); 4833 Set_Class_Wide_Type (Id, Class_Wide_Type (T)); 4834 Set_Cloned_Subtype (Id, T); 4835 Set_Is_Tagged_Type (Id, True); 4836 Set_Has_Unknown_Discriminants 4837 (Id, True); 4838 Set_No_Tagged_Streams_Pragma 4839 (Id, No_Tagged_Streams_Pragma (T)); 4840 4841 if Ekind (T) = E_Class_Wide_Subtype then 4842 Set_Equivalent_Type (Id, Equivalent_Type (T)); 4843 end if; 4844 4845 when E_Record_Type | E_Record_Subtype => 4846 Set_Ekind (Id, E_Record_Subtype); 4847 4848 if Ekind (T) = E_Record_Subtype 4849 and then Present (Cloned_Subtype (T)) 4850 then 4851 Set_Cloned_Subtype (Id, Cloned_Subtype (T)); 4852 else 4853 Set_Cloned_Subtype (Id, T); 4854 end if; 4855 4856 Set_First_Entity (Id, First_Entity (T)); 4857 Set_Last_Entity (Id, Last_Entity (T)); 4858 Set_Has_Discriminants (Id, Has_Discriminants (T)); 4859 Set_Is_Constrained (Id, Is_Constrained (T)); 4860 Set_Is_Limited_Record (Id, Is_Limited_Record (T)); 4861 Set_Has_Implicit_Dereference 4862 (Id, Has_Implicit_Dereference (T)); 4863 Set_Has_Unknown_Discriminants 4864 (Id, Has_Unknown_Discriminants (T)); 4865 4866 if Has_Discriminants (T) then 4867 Set_Discriminant_Constraint 4868 (Id, Discriminant_Constraint (T)); 4869 Set_Stored_Constraint_From_Discriminant_Constraint (Id); 4870 4871 elsif Has_Unknown_Discriminants (Id) then 4872 Set_Discriminant_Constraint (Id, No_Elist); 4873 end if; 4874 4875 if Is_Tagged_Type (T) then 4876 Set_Is_Tagged_Type (Id, True); 4877 Set_No_Tagged_Streams_Pragma 4878 (Id, No_Tagged_Streams_Pragma (T)); 4879 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T)); 4880 Set_Direct_Primitive_Operations 4881 (Id, Direct_Primitive_Operations (T)); 4882 Set_Class_Wide_Type (Id, Class_Wide_Type (T)); 4883 4884 if Is_Interface (T) then 4885 Set_Is_Interface (Id); 4886 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T)); 4887 end if; 4888 end if; 4889 4890 when Private_Kind => 4891 Set_Ekind (Id, Subtype_Kind (Ekind (T))); 4892 Set_Has_Discriminants (Id, Has_Discriminants (T)); 4893 Set_Is_Constrained (Id, Is_Constrained (T)); 4894 Set_First_Entity (Id, First_Entity (T)); 4895 Set_Last_Entity (Id, Last_Entity (T)); 4896 Set_Private_Dependents (Id, New_Elmt_List); 4897 Set_Is_Limited_Record (Id, Is_Limited_Record (T)); 4898 Set_Has_Implicit_Dereference 4899 (Id, Has_Implicit_Dereference (T)); 4900 Set_Has_Unknown_Discriminants 4901 (Id, Has_Unknown_Discriminants (T)); 4902 Set_Known_To_Have_Preelab_Init 4903 (Id, Known_To_Have_Preelab_Init (T)); 4904 4905 if Is_Tagged_Type (T) then 4906 Set_Is_Tagged_Type (Id); 4907 Set_No_Tagged_Streams_Pragma (Id, 4908 No_Tagged_Streams_Pragma (T)); 4909 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T)); 4910 Set_Class_Wide_Type (Id, Class_Wide_Type (T)); 4911 Set_Direct_Primitive_Operations (Id, 4912 Direct_Primitive_Operations (T)); 4913 end if; 4914 4915 -- In general the attributes of the subtype of a private type 4916 -- are the attributes of the partial view of parent. However, 4917 -- the full view may be a discriminated type, and the subtype 4918 -- must share the discriminant constraint to generate correct 4919 -- calls to initialization procedures. 4920 4921 if Has_Discriminants (T) then 4922 Set_Discriminant_Constraint 4923 (Id, Discriminant_Constraint (T)); 4924 Set_Stored_Constraint_From_Discriminant_Constraint (Id); 4925 4926 elsif Present (Full_View (T)) 4927 and then Has_Discriminants (Full_View (T)) 4928 then 4929 Set_Discriminant_Constraint 4930 (Id, Discriminant_Constraint (Full_View (T))); 4931 Set_Stored_Constraint_From_Discriminant_Constraint (Id); 4932 4933 -- This would seem semantically correct, but apparently 4934 -- generates spurious errors about missing components ??? 4935 4936 -- Set_Has_Discriminants (Id); 4937 end if; 4938 4939 Prepare_Private_Subtype_Completion (Id, N); 4940 4941 -- If this is the subtype of a constrained private type with 4942 -- discriminants that has got a full view and we also have 4943 -- built a completion just above, show that the completion 4944 -- is a clone of the full view to the back-end. 4945 4946 if Has_Discriminants (T) 4947 and then not Has_Unknown_Discriminants (T) 4948 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T)) 4949 and then Present (Full_View (T)) 4950 and then Present (Full_View (Id)) 4951 then 4952 Set_Cloned_Subtype (Full_View (Id), Full_View (T)); 4953 end if; 4954 4955 when Access_Kind => 4956 Set_Ekind (Id, E_Access_Subtype); 4957 Set_Is_Constrained (Id, Is_Constrained (T)); 4958 Set_Is_Access_Constant 4959 (Id, Is_Access_Constant (T)); 4960 Set_Directly_Designated_Type 4961 (Id, Designated_Type (T)); 4962 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T)); 4963 4964 -- A Pure library_item must not contain the declaration of a 4965 -- named access type, except within a subprogram, generic 4966 -- subprogram, task unit, or protected unit, or if it has 4967 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)). 4968 4969 if Comes_From_Source (Id) 4970 and then In_Pure_Unit 4971 and then not In_Subprogram_Task_Protected_Unit 4972 and then not No_Pool_Assigned (Id) 4973 then 4974 Error_Msg_N 4975 ("named access types not allowed in pure unit", N); 4976 end if; 4977 4978 when Concurrent_Kind => 4979 Set_Ekind (Id, Subtype_Kind (Ekind (T))); 4980 Set_Corresponding_Record_Type (Id, 4981 Corresponding_Record_Type (T)); 4982 Set_First_Entity (Id, First_Entity (T)); 4983 Set_First_Private_Entity (Id, First_Private_Entity (T)); 4984 Set_Has_Discriminants (Id, Has_Discriminants (T)); 4985 Set_Is_Constrained (Id, Is_Constrained (T)); 4986 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T)); 4987 Set_Last_Entity (Id, Last_Entity (T)); 4988 4989 if Is_Tagged_Type (T) then 4990 Set_No_Tagged_Streams_Pragma 4991 (Id, No_Tagged_Streams_Pragma (T)); 4992 end if; 4993 4994 if Has_Discriminants (T) then 4995 Set_Discriminant_Constraint 4996 (Id, Discriminant_Constraint (T)); 4997 Set_Stored_Constraint_From_Discriminant_Constraint (Id); 4998 end if; 4999 5000 when Incomplete_Kind => 5001 if Ada_Version >= Ada_2005 then 5002 5003 -- In Ada 2005 an incomplete type can be explicitly tagged: 5004 -- propagate indication. Note that we also have to include 5005 -- subtypes for Ada 2012 extended use of incomplete types. 5006 5007 Set_Ekind (Id, E_Incomplete_Subtype); 5008 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T)); 5009 Set_Private_Dependents (Id, New_Elmt_List); 5010 5011 if Is_Tagged_Type (Id) then 5012 Set_No_Tagged_Streams_Pragma 5013 (Id, No_Tagged_Streams_Pragma (T)); 5014 Set_Direct_Primitive_Operations (Id, New_Elmt_List); 5015 end if; 5016 5017 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an 5018 -- incomplete type visible through a limited with clause. 5019 5020 if From_Limited_With (T) 5021 and then Present (Non_Limited_View (T)) 5022 then 5023 Set_From_Limited_With (Id); 5024 Set_Non_Limited_View (Id, Non_Limited_View (T)); 5025 5026 -- Ada 2005 (AI-412): Add the regular incomplete subtype 5027 -- to the private dependents of the original incomplete 5028 -- type for future transformation. 5029 5030 else 5031 Append_Elmt (Id, Private_Dependents (T)); 5032 end if; 5033 5034 -- If the subtype name denotes an incomplete type an error 5035 -- was already reported by Process_Subtype. 5036 5037 else 5038 Set_Etype (Id, Any_Type); 5039 end if; 5040 5041 when others => 5042 raise Program_Error; 5043 end case; 5044 end if; 5045 5046 if Etype (Id) = Any_Type then 5047 goto Leave; 5048 end if; 5049 5050 -- Some common processing on all types 5051 5052 Set_Size_Info (Id, T); 5053 Set_First_Rep_Item (Id, First_Rep_Item (T)); 5054 5055 -- If the parent type is a generic actual, so is the subtype. This may 5056 -- happen in a nested instance. Why Comes_From_Source test??? 5057 5058 if not Comes_From_Source (N) then 5059 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T)); 5060 end if; 5061 5062 T := Etype (Id); 5063 5064 Set_Is_Immediately_Visible (Id, True); 5065 Set_Depends_On_Private (Id, Has_Private_Component (T)); 5066 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T)); 5067 5068 if Is_Interface (T) then 5069 Set_Is_Interface (Id); 5070 end if; 5071 5072 if Present (Generic_Parent_Type (N)) 5073 and then 5074 (Nkind (Parent (Generic_Parent_Type (N))) /= 5075 N_Formal_Type_Declaration 5076 or else Nkind (Formal_Type_Definition 5077 (Parent (Generic_Parent_Type (N)))) /= 5078 N_Formal_Private_Type_Definition) 5079 then 5080 if Is_Tagged_Type (Id) then 5081 5082 -- If this is a generic actual subtype for a synchronized type, 5083 -- the primitive operations are those of the corresponding record 5084 -- for which there is a separate subtype declaration. 5085 5086 if Is_Concurrent_Type (Id) then 5087 null; 5088 elsif Is_Class_Wide_Type (Id) then 5089 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T)); 5090 else 5091 Derive_Subprograms (Generic_Parent_Type (N), Id, T); 5092 end if; 5093 5094 elsif Scope (Etype (Id)) /= Standard_Standard then 5095 Derive_Subprograms (Generic_Parent_Type (N), Id); 5096 end if; 5097 end if; 5098 5099 if Is_Private_Type (T) and then Present (Full_View (T)) then 5100 Conditional_Delay (Id, Full_View (T)); 5101 5102 -- The subtypes of components or subcomponents of protected types 5103 -- do not need freeze nodes, which would otherwise appear in the 5104 -- wrong scope (before the freeze node for the protected type). The 5105 -- proper subtypes are those of the subcomponents of the corresponding 5106 -- record. 5107 5108 elsif Ekind (Scope (Id)) /= E_Protected_Type 5109 and then Present (Scope (Scope (Id))) -- error defense 5110 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type 5111 then 5112 Conditional_Delay (Id, T); 5113 end if; 5114 5115 -- Check that Constraint_Error is raised for a scalar subtype indication 5116 -- when the lower or upper bound of a non-null range lies outside the 5117 -- range of the type mark. 5118 5119 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then 5120 if Is_Scalar_Type (Etype (Id)) 5121 and then Scalar_Range (Id) /= 5122 Scalar_Range (Etype (Subtype_Mark 5123 (Subtype_Indication (N)))) 5124 then 5125 Apply_Range_Check 5126 (Scalar_Range (Id), 5127 Etype (Subtype_Mark (Subtype_Indication (N)))); 5128 5129 -- In the array case, check compatibility for each index 5130 5131 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id)) 5132 then 5133 -- This really should be a subprogram that finds the indications 5134 -- to check??? 5135 5136 declare 5137 Subt_Index : Node_Id := First_Index (Id); 5138 Target_Index : Node_Id := 5139 First_Index (Etype 5140 (Subtype_Mark (Subtype_Indication (N)))); 5141 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N); 5142 5143 begin 5144 while Present (Subt_Index) loop 5145 if ((Nkind (Subt_Index) = N_Identifier 5146 and then Ekind (Entity (Subt_Index)) in Scalar_Kind) 5147 or else Nkind (Subt_Index) = N_Subtype_Indication) 5148 and then 5149 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range 5150 then 5151 declare 5152 Target_Typ : constant Entity_Id := 5153 Etype (Target_Index); 5154 begin 5155 R_Checks := 5156 Get_Range_Checks 5157 (Scalar_Range (Etype (Subt_Index)), 5158 Target_Typ, 5159 Etype (Subt_Index), 5160 Defining_Identifier (N)); 5161 5162 -- Reset Has_Dynamic_Range_Check on the subtype to 5163 -- prevent elision of the index check due to a dynamic 5164 -- check generated for a preceding index (needed since 5165 -- Insert_Range_Checks tries to avoid generating 5166 -- redundant checks on a given declaration). 5167 5168 Set_Has_Dynamic_Range_Check (N, False); 5169 5170 Insert_Range_Checks 5171 (R_Checks, 5172 N, 5173 Target_Typ, 5174 Sloc (Defining_Identifier (N))); 5175 5176 -- Record whether this index involved a dynamic check 5177 5178 Has_Dyn_Chk := 5179 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N); 5180 end; 5181 end if; 5182 5183 Next_Index (Subt_Index); 5184 Next_Index (Target_Index); 5185 end loop; 5186 5187 -- Finally, mark whether the subtype involves dynamic checks 5188 5189 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk); 5190 end; 5191 end if; 5192 end if; 5193 5194 -- A type invariant applies to any subtype in its scope, in particular 5195 -- to a generic actual. 5196 5197 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then 5198 Set_Has_Invariants (Id); 5199 Set_Invariant_Procedure (Id, Invariant_Procedure (T)); 5200 end if; 5201 5202 -- Make sure that generic actual types are properly frozen. The subtype 5203 -- is marked as a generic actual type when the enclosing instance is 5204 -- analyzed, so here we identify the subtype from the tree structure. 5205 5206 if Expander_Active 5207 and then Is_Generic_Actual_Type (Id) 5208 and then In_Instance 5209 and then not Comes_From_Source (N) 5210 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication 5211 and then Is_Frozen (T) 5212 then 5213 Freeze_Before (N, Id); 5214 end if; 5215 5216 Set_Optimize_Alignment_Flags (Id); 5217 Check_Eliminated (Id); 5218 5219 <<Leave>> 5220 if Has_Aspects (N) then 5221 Analyze_Aspect_Specifications (N, Id); 5222 end if; 5223 5224 Analyze_Dimension (N); 5225 5226 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype 5227 -- indications on composite types where the constraints are dynamic. 5228 -- Note that object declarations and aggregates generate implicit 5229 -- subtype declarations, which this covers. One special case is that the 5230 -- implicitly generated "=" for discriminated types includes an 5231 -- offending subtype declaration, which is harmless, so we ignore it 5232 -- here. 5233 5234 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then 5235 declare 5236 Cstr : constant Node_Id := Constraint (Subtype_Indication (N)); 5237 begin 5238 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint 5239 and then not (Is_Internal (Id) 5240 and then Is_TSS (Scope (Id), 5241 TSS_Composite_Equality)) 5242 and then not Within_Init_Proc 5243 and then not All_Composite_Constraints_Static (Cstr) 5244 then 5245 Check_Restriction (No_Dynamic_Sized_Objects, Cstr); 5246 end if; 5247 end; 5248 end if; 5249 end Analyze_Subtype_Declaration; 5250 5251 -------------------------------- 5252 -- Analyze_Subtype_Indication -- 5253 -------------------------------- 5254 5255 procedure Analyze_Subtype_Indication (N : Node_Id) is 5256 T : constant Entity_Id := Subtype_Mark (N); 5257 R : constant Node_Id := Range_Expression (Constraint (N)); 5258 5259 begin 5260 Analyze (T); 5261 5262 if R /= Error then 5263 Analyze (R); 5264 Set_Etype (N, Etype (R)); 5265 Resolve (R, Entity (T)); 5266 else 5267 Set_Error_Posted (R); 5268 Set_Error_Posted (T); 5269 end if; 5270 end Analyze_Subtype_Indication; 5271 5272 -------------------------- 5273 -- Analyze_Variant_Part -- 5274 -------------------------- 5275 5276 procedure Analyze_Variant_Part (N : Node_Id) is 5277 Discr_Name : Node_Id; 5278 Discr_Type : Entity_Id; 5279 5280 procedure Process_Variant (A : Node_Id); 5281 -- Analyze declarations for a single variant 5282 5283 package Analyze_Variant_Choices is 5284 new Generic_Analyze_Choices (Process_Variant); 5285 use Analyze_Variant_Choices; 5286 5287 --------------------- 5288 -- Process_Variant -- 5289 --------------------- 5290 5291 procedure Process_Variant (A : Node_Id) is 5292 CL : constant Node_Id := Component_List (A); 5293 begin 5294 if not Null_Present (CL) then 5295 Analyze_Declarations (Component_Items (CL)); 5296 5297 if Present (Variant_Part (CL)) then 5298 Analyze (Variant_Part (CL)); 5299 end if; 5300 end if; 5301 end Process_Variant; 5302 5303 -- Start of processing for Analyze_Variant_Part 5304 5305 begin 5306 Discr_Name := Name (N); 5307 Analyze (Discr_Name); 5308 5309 -- If Discr_Name bad, get out (prevent cascaded errors) 5310 5311 if Etype (Discr_Name) = Any_Type then 5312 return; 5313 end if; 5314 5315 -- Check invalid discriminant in variant part 5316 5317 if Ekind (Entity (Discr_Name)) /= E_Discriminant then 5318 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name); 5319 end if; 5320 5321 Discr_Type := Etype (Entity (Discr_Name)); 5322 5323 if not Is_Discrete_Type (Discr_Type) then 5324 Error_Msg_N 5325 ("discriminant in a variant part must be of a discrete type", 5326 Name (N)); 5327 return; 5328 end if; 5329 5330 -- Now analyze the choices, which also analyzes the declarations that 5331 -- are associated with each choice. 5332 5333 Analyze_Choices (Variants (N), Discr_Type); 5334 5335 -- Note: we used to instantiate and call Check_Choices here to check 5336 -- that the choices covered the discriminant, but it's too early to do 5337 -- that because of statically predicated subtypes, whose analysis may 5338 -- be deferred to their freeze point which may be as late as the freeze 5339 -- point of the containing record. So this call is now to be found in 5340 -- Freeze_Record_Declaration. 5341 5342 end Analyze_Variant_Part; 5343 5344 ---------------------------- 5345 -- Array_Type_Declaration -- 5346 ---------------------------- 5347 5348 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is 5349 Component_Def : constant Node_Id := Component_Definition (Def); 5350 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def); 5351 Element_Type : Entity_Id; 5352 Implicit_Base : Entity_Id; 5353 Index : Node_Id; 5354 Related_Id : Entity_Id := Empty; 5355 Nb_Index : Nat; 5356 P : constant Node_Id := Parent (Def); 5357 Priv : Entity_Id; 5358 5359 begin 5360 if Nkind (Def) = N_Constrained_Array_Definition then 5361 Index := First (Discrete_Subtype_Definitions (Def)); 5362 else 5363 Index := First (Subtype_Marks (Def)); 5364 end if; 5365 5366 -- Find proper names for the implicit types which may be public. In case 5367 -- of anonymous arrays we use the name of the first object of that type 5368 -- as prefix. 5369 5370 if No (T) then 5371 Related_Id := Defining_Identifier (P); 5372 else 5373 Related_Id := T; 5374 end if; 5375 5376 Nb_Index := 1; 5377 while Present (Index) loop 5378 Analyze (Index); 5379 5380 -- Test for odd case of trying to index a type by the type itself 5381 5382 if Is_Entity_Name (Index) and then Entity (Index) = T then 5383 Error_Msg_N ("type& cannot be indexed by itself", Index); 5384 Set_Entity (Index, Standard_Boolean); 5385 Set_Etype (Index, Standard_Boolean); 5386 end if; 5387 5388 -- Check SPARK restriction requiring a subtype mark 5389 5390 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then 5391 Check_SPARK_05_Restriction ("subtype mark required", Index); 5392 end if; 5393 5394 -- Add a subtype declaration for each index of private array type 5395 -- declaration whose etype is also private. For example: 5396 5397 -- package Pkg is 5398 -- type Index is private; 5399 -- private 5400 -- type Table is array (Index) of ... 5401 -- end; 5402 5403 -- This is currently required by the expander for the internally 5404 -- generated equality subprogram of records with variant parts in 5405 -- which the etype of some component is such private type. 5406 5407 if Ekind (Current_Scope) = E_Package 5408 and then In_Private_Part (Current_Scope) 5409 and then Has_Private_Declaration (Etype (Index)) 5410 then 5411 declare 5412 Loc : constant Source_Ptr := Sloc (Def); 5413 New_E : Entity_Id; 5414 Decl : Entity_Id; 5415 5416 begin 5417 New_E := Make_Temporary (Loc, 'T'); 5418 Set_Is_Internal (New_E); 5419 5420 Decl := 5421 Make_Subtype_Declaration (Loc, 5422 Defining_Identifier => New_E, 5423 Subtype_Indication => 5424 New_Occurrence_Of (Etype (Index), Loc)); 5425 5426 Insert_Before (Parent (Def), Decl); 5427 Analyze (Decl); 5428 Set_Etype (Index, New_E); 5429 5430 -- If the index is a range the Entity attribute is not 5431 -- available. Example: 5432 5433 -- package Pkg is 5434 -- type T is private; 5435 -- private 5436 -- type T is new Natural; 5437 -- Table : array (T(1) .. T(10)) of Boolean; 5438 -- end Pkg; 5439 5440 if Nkind (Index) /= N_Range then 5441 Set_Entity (Index, New_E); 5442 end if; 5443 end; 5444 end if; 5445 5446 Make_Index (Index, P, Related_Id, Nb_Index); 5447 5448 -- Check error of subtype with predicate for index type 5449 5450 Bad_Predicated_Subtype_Use 5451 ("subtype& has predicate, not allowed as index subtype", 5452 Index, Etype (Index)); 5453 5454 -- Move to next index 5455 5456 Next_Index (Index); 5457 Nb_Index := Nb_Index + 1; 5458 end loop; 5459 5460 -- Process subtype indication if one is present 5461 5462 if Present (Component_Typ) then 5463 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C'); 5464 5465 Set_Etype (Component_Typ, Element_Type); 5466 5467 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then 5468 Check_SPARK_05_Restriction 5469 ("subtype mark required", Component_Typ); 5470 end if; 5471 5472 -- Ada 2005 (AI-230): Access Definition case 5473 5474 else pragma Assert (Present (Access_Definition (Component_Def))); 5475 5476 -- Indicate that the anonymous access type is created by the 5477 -- array type declaration. 5478 5479 Element_Type := Access_Definition 5480 (Related_Nod => P, 5481 N => Access_Definition (Component_Def)); 5482 Set_Is_Local_Anonymous_Access (Element_Type); 5483 5484 -- Propagate the parent. This field is needed if we have to generate 5485 -- the master_id associated with an anonymous access to task type 5486 -- component (see Expand_N_Full_Type_Declaration.Build_Master) 5487 5488 Set_Parent (Element_Type, Parent (T)); 5489 5490 -- Ada 2005 (AI-230): In case of components that are anonymous access 5491 -- types the level of accessibility depends on the enclosing type 5492 -- declaration 5493 5494 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230) 5495 5496 -- Ada 2005 (AI-254) 5497 5498 declare 5499 CD : constant Node_Id := 5500 Access_To_Subprogram_Definition 5501 (Access_Definition (Component_Def)); 5502 begin 5503 if Present (CD) and then Protected_Present (CD) then 5504 Element_Type := 5505 Replace_Anonymous_Access_To_Protected_Subprogram (Def); 5506 end if; 5507 end; 5508 end if; 5509 5510 -- Constrained array case 5511 5512 if No (T) then 5513 T := Create_Itype (E_Void, P, Related_Id, 'T'); 5514 end if; 5515 5516 if Nkind (Def) = N_Constrained_Array_Definition then 5517 5518 -- Establish Implicit_Base as unconstrained base type 5519 5520 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B'); 5521 5522 Set_Etype (Implicit_Base, Implicit_Base); 5523 Set_Scope (Implicit_Base, Current_Scope); 5524 Set_Has_Delayed_Freeze (Implicit_Base); 5525 Set_Default_SSO (Implicit_Base); 5526 5527 -- The constrained array type is a subtype of the unconstrained one 5528 5529 Set_Ekind (T, E_Array_Subtype); 5530 Init_Size_Align (T); 5531 Set_Etype (T, Implicit_Base); 5532 Set_Scope (T, Current_Scope); 5533 Set_Is_Constrained (T); 5534 Set_First_Index (T, 5535 First (Discrete_Subtype_Definitions (Def))); 5536 Set_Has_Delayed_Freeze (T); 5537 5538 -- Complete setup of implicit base type 5539 5540 Set_First_Index (Implicit_Base, First_Index (T)); 5541 Set_Component_Type (Implicit_Base, Element_Type); 5542 Set_Has_Task (Implicit_Base, Has_Task (Element_Type)); 5543 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type)); 5544 Set_Component_Size (Implicit_Base, Uint_0); 5545 Set_Packed_Array_Impl_Type (Implicit_Base, Empty); 5546 Set_Has_Controlled_Component (Implicit_Base, 5547 Has_Controlled_Component (Element_Type) 5548 or else Is_Controlled_Active (Element_Type)); 5549 Set_Finalize_Storage_Only (Implicit_Base, 5550 Finalize_Storage_Only (Element_Type)); 5551 5552 -- Inherit the "ghostness" from the constrained array type 5553 5554 if Ghost_Mode > None or else Is_Ghost_Entity (T) then 5555 Set_Is_Ghost_Entity (Implicit_Base); 5556 end if; 5557 5558 -- Unconstrained array case 5559 5560 else 5561 Set_Ekind (T, E_Array_Type); 5562 Init_Size_Align (T); 5563 Set_Etype (T, T); 5564 Set_Scope (T, Current_Scope); 5565 Set_Component_Size (T, Uint_0); 5566 Set_Is_Constrained (T, False); 5567 Set_First_Index (T, First (Subtype_Marks (Def))); 5568 Set_Has_Delayed_Freeze (T, True); 5569 Set_Has_Task (T, Has_Task (Element_Type)); 5570 Set_Has_Protected (T, Has_Protected (Element_Type)); 5571 Set_Has_Controlled_Component (T, Has_Controlled_Component 5572 (Element_Type) 5573 or else 5574 Is_Controlled_Active (Element_Type)); 5575 Set_Finalize_Storage_Only (T, Finalize_Storage_Only 5576 (Element_Type)); 5577 Set_Default_SSO (T); 5578 end if; 5579 5580 -- Common attributes for both cases 5581 5582 Set_Component_Type (Base_Type (T), Element_Type); 5583 Set_Packed_Array_Impl_Type (T, Empty); 5584 5585 if Aliased_Present (Component_Definition (Def)) then 5586 Check_SPARK_05_Restriction 5587 ("aliased is not allowed", Component_Definition (Def)); 5588 Set_Has_Aliased_Components (Etype (T)); 5589 end if; 5590 5591 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the 5592 -- array type to ensure that objects of this type are initialized. 5593 5594 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then 5595 Set_Can_Never_Be_Null (T); 5596 5597 if Null_Exclusion_Present (Component_Definition (Def)) 5598 5599 -- No need to check itypes because in their case this check was 5600 -- done at their point of creation 5601 5602 and then not Is_Itype (Element_Type) 5603 then 5604 Error_Msg_N 5605 ("`NOT NULL` not allowed (null already excluded)", 5606 Subtype_Indication (Component_Definition (Def))); 5607 end if; 5608 end if; 5609 5610 Priv := Private_Component (Element_Type); 5611 5612 if Present (Priv) then 5613 5614 -- Check for circular definitions 5615 5616 if Priv = Any_Type then 5617 Set_Component_Type (Etype (T), Any_Type); 5618 5619 -- There is a gap in the visibility of operations on the composite 5620 -- type only if the component type is defined in a different scope. 5621 5622 elsif Scope (Priv) = Current_Scope then 5623 null; 5624 5625 elsif Is_Limited_Type (Priv) then 5626 Set_Is_Limited_Composite (Etype (T)); 5627 Set_Is_Limited_Composite (T); 5628 else 5629 Set_Is_Private_Composite (Etype (T)); 5630 Set_Is_Private_Composite (T); 5631 end if; 5632 end if; 5633 5634 -- A syntax error in the declaration itself may lead to an empty index 5635 -- list, in which case do a minimal patch. 5636 5637 if No (First_Index (T)) then 5638 Error_Msg_N ("missing index definition in array type declaration", T); 5639 5640 declare 5641 Indexes : constant List_Id := 5642 New_List (New_Occurrence_Of (Any_Id, Sloc (T))); 5643 begin 5644 Set_Discrete_Subtype_Definitions (Def, Indexes); 5645 Set_First_Index (T, First (Indexes)); 5646 return; 5647 end; 5648 end if; 5649 5650 -- Create a concatenation operator for the new type. Internal array 5651 -- types created for packed entities do not need such, they are 5652 -- compatible with the user-defined type. 5653 5654 if Number_Dimensions (T) = 1 5655 and then not Is_Packed_Array_Impl_Type (T) 5656 then 5657 New_Concatenation_Op (T); 5658 end if; 5659 5660 -- In the case of an unconstrained array the parser has already verified 5661 -- that all the indexes are unconstrained but we still need to make sure 5662 -- that the element type is constrained. 5663 5664 if not Is_Definite_Subtype (Element_Type) then 5665 Error_Msg_N 5666 ("unconstrained element type in array declaration", 5667 Subtype_Indication (Component_Def)); 5668 5669 elsif Is_Abstract_Type (Element_Type) then 5670 Error_Msg_N 5671 ("the type of a component cannot be abstract", 5672 Subtype_Indication (Component_Def)); 5673 end if; 5674 5675 -- There may be an invariant declared for the component type, but 5676 -- the construction of the component invariant checking procedure 5677 -- takes place during expansion. 5678 end Array_Type_Declaration; 5679 5680 ------------------------------------------------------ 5681 -- Replace_Anonymous_Access_To_Protected_Subprogram -- 5682 ------------------------------------------------------ 5683 5684 function Replace_Anonymous_Access_To_Protected_Subprogram 5685 (N : Node_Id) return Entity_Id 5686 is 5687 Loc : constant Source_Ptr := Sloc (N); 5688 5689 Curr_Scope : constant Scope_Stack_Entry := 5690 Scope_Stack.Table (Scope_Stack.Last); 5691 5692 Anon : constant Entity_Id := Make_Temporary (Loc, 'S'); 5693 5694 Acc : Node_Id; 5695 -- Access definition in declaration 5696 5697 Comp : Node_Id; 5698 -- Object definition or formal definition with an access definition 5699 5700 Decl : Node_Id; 5701 -- Declaration of anonymous access to subprogram type 5702 5703 Spec : Node_Id; 5704 -- Original specification in access to subprogram 5705 5706 P : Node_Id; 5707 5708 begin 5709 Set_Is_Internal (Anon); 5710 5711 case Nkind (N) is 5712 when N_Component_Declaration | 5713 N_Unconstrained_Array_Definition | 5714 N_Constrained_Array_Definition => 5715 Comp := Component_Definition (N); 5716 Acc := Access_Definition (Comp); 5717 5718 when N_Discriminant_Specification => 5719 Comp := Discriminant_Type (N); 5720 Acc := Comp; 5721 5722 when N_Parameter_Specification => 5723 Comp := Parameter_Type (N); 5724 Acc := Comp; 5725 5726 when N_Access_Function_Definition => 5727 Comp := Result_Definition (N); 5728 Acc := Comp; 5729 5730 when N_Object_Declaration => 5731 Comp := Object_Definition (N); 5732 Acc := Comp; 5733 5734 when N_Function_Specification => 5735 Comp := Result_Definition (N); 5736 Acc := Comp; 5737 5738 when others => 5739 raise Program_Error; 5740 end case; 5741 5742 Spec := Access_To_Subprogram_Definition (Acc); 5743 5744 Decl := 5745 Make_Full_Type_Declaration (Loc, 5746 Defining_Identifier => Anon, 5747 Type_Definition => Copy_Separate_Tree (Spec)); 5748 5749 Mark_Rewrite_Insertion (Decl); 5750 5751 -- In ASIS mode, analyze the profile on the original node, because 5752 -- the separate copy does not provide enough links to recover the 5753 -- original tree. Analysis is limited to type annotations, within 5754 -- a temporary scope that serves as an anonymous subprogram to collect 5755 -- otherwise useless temporaries and itypes. 5756 5757 if ASIS_Mode then 5758 declare 5759 Typ : constant Entity_Id := Make_Temporary (Loc, 'S'); 5760 5761 begin 5762 if Nkind (Spec) = N_Access_Function_Definition then 5763 Set_Ekind (Typ, E_Function); 5764 else 5765 Set_Ekind (Typ, E_Procedure); 5766 end if; 5767 5768 Set_Parent (Typ, N); 5769 Set_Scope (Typ, Current_Scope); 5770 Push_Scope (Typ); 5771 5772 -- Nothing to do if procedure is parameterless 5773 5774 if Present (Parameter_Specifications (Spec)) then 5775 Process_Formals (Parameter_Specifications (Spec), Spec); 5776 end if; 5777 5778 if Nkind (Spec) = N_Access_Function_Definition then 5779 declare 5780 Def : constant Node_Id := Result_Definition (Spec); 5781 5782 begin 5783 -- The result might itself be an anonymous access type, so 5784 -- have to recurse. 5785 5786 if Nkind (Def) = N_Access_Definition then 5787 if Present (Access_To_Subprogram_Definition (Def)) then 5788 Set_Etype 5789 (Def, 5790 Replace_Anonymous_Access_To_Protected_Subprogram 5791 (Spec)); 5792 else 5793 Find_Type (Subtype_Mark (Def)); 5794 end if; 5795 5796 else 5797 Find_Type (Def); 5798 end if; 5799 end; 5800 end if; 5801 5802 End_Scope; 5803 end; 5804 end if; 5805 5806 -- Insert the new declaration in the nearest enclosing scope. If the 5807 -- node is a body and N is its return type, the declaration belongs in 5808 -- the enclosing scope. 5809 5810 P := Parent (N); 5811 5812 if Nkind (P) = N_Subprogram_Body 5813 and then Nkind (N) = N_Function_Specification 5814 then 5815 P := Parent (P); 5816 end if; 5817 5818 while Present (P) and then not Has_Declarations (P) loop 5819 P := Parent (P); 5820 end loop; 5821 5822 pragma Assert (Present (P)); 5823 5824 if Nkind (P) = N_Package_Specification then 5825 Prepend (Decl, Visible_Declarations (P)); 5826 else 5827 Prepend (Decl, Declarations (P)); 5828 end if; 5829 5830 -- Replace the anonymous type with an occurrence of the new declaration. 5831 -- In all cases the rewritten node does not have the null-exclusion 5832 -- attribute because (if present) it was already inherited by the 5833 -- anonymous entity (Anon). Thus, in case of components we do not 5834 -- inherit this attribute. 5835 5836 if Nkind (N) = N_Parameter_Specification then 5837 Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); 5838 Set_Etype (Defining_Identifier (N), Anon); 5839 Set_Null_Exclusion_Present (N, False); 5840 5841 elsif Nkind (N) = N_Object_Declaration then 5842 Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); 5843 Set_Etype (Defining_Identifier (N), Anon); 5844 5845 elsif Nkind (N) = N_Access_Function_Definition then 5846 Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); 5847 5848 elsif Nkind (N) = N_Function_Specification then 5849 Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); 5850 Set_Etype (Defining_Unit_Name (N), Anon); 5851 5852 else 5853 Rewrite (Comp, 5854 Make_Component_Definition (Loc, 5855 Subtype_Indication => New_Occurrence_Of (Anon, Loc))); 5856 end if; 5857 5858 Mark_Rewrite_Insertion (Comp); 5859 5860 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) 5861 or else (Nkind (Parent (N)) = N_Full_Type_Declaration 5862 and then not Is_Type (Current_Scope)) 5863 then 5864 5865 -- Declaration can be analyzed in the current scope. 5866 5867 Analyze (Decl); 5868 5869 else 5870 -- Temporarily remove the current scope (record or subprogram) from 5871 -- the stack to add the new declarations to the enclosing scope. 5872 -- The anonymous entity is an Itype with the proper attributes. 5873 5874 Scope_Stack.Decrement_Last; 5875 Analyze (Decl); 5876 Set_Is_Itype (Anon); 5877 Set_Associated_Node_For_Itype (Anon, N); 5878 Scope_Stack.Append (Curr_Scope); 5879 end if; 5880 5881 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type); 5882 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target); 5883 return Anon; 5884 end Replace_Anonymous_Access_To_Protected_Subprogram; 5885 5886 ------------------------------- 5887 -- Build_Derived_Access_Type -- 5888 ------------------------------- 5889 5890 procedure Build_Derived_Access_Type 5891 (N : Node_Id; 5892 Parent_Type : Entity_Id; 5893 Derived_Type : Entity_Id) 5894 is 5895 S : constant Node_Id := Subtype_Indication (Type_Definition (N)); 5896 5897 Desig_Type : Entity_Id; 5898 Discr : Entity_Id; 5899 Discr_Con_Elist : Elist_Id; 5900 Discr_Con_El : Elmt_Id; 5901 Subt : Entity_Id; 5902 5903 begin 5904 -- Set the designated type so it is available in case this is an access 5905 -- to a self-referential type, e.g. a standard list type with a next 5906 -- pointer. Will be reset after subtype is built. 5907 5908 Set_Directly_Designated_Type 5909 (Derived_Type, Designated_Type (Parent_Type)); 5910 5911 Subt := Process_Subtype (S, N); 5912 5913 if Nkind (S) /= N_Subtype_Indication 5914 and then Subt /= Base_Type (Subt) 5915 then 5916 Set_Ekind (Derived_Type, E_Access_Subtype); 5917 end if; 5918 5919 if Ekind (Derived_Type) = E_Access_Subtype then 5920 declare 5921 Pbase : constant Entity_Id := Base_Type (Parent_Type); 5922 Ibase : constant Entity_Id := 5923 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B'); 5924 Svg_Chars : constant Name_Id := Chars (Ibase); 5925 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase); 5926 5927 begin 5928 Copy_Node (Pbase, Ibase); 5929 5930 Set_Chars (Ibase, Svg_Chars); 5931 Set_Next_Entity (Ibase, Svg_Next_E); 5932 Set_Sloc (Ibase, Sloc (Derived_Type)); 5933 Set_Scope (Ibase, Scope (Derived_Type)); 5934 Set_Freeze_Node (Ibase, Empty); 5935 Set_Is_Frozen (Ibase, False); 5936 Set_Comes_From_Source (Ibase, False); 5937 Set_Is_First_Subtype (Ibase, False); 5938 5939 Set_Etype (Ibase, Pbase); 5940 Set_Etype (Derived_Type, Ibase); 5941 end; 5942 end if; 5943 5944 Set_Directly_Designated_Type 5945 (Derived_Type, Designated_Type (Subt)); 5946 5947 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt)); 5948 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type)); 5949 Set_Size_Info (Derived_Type, Parent_Type); 5950 Set_RM_Size (Derived_Type, RM_Size (Parent_Type)); 5951 Set_Depends_On_Private (Derived_Type, 5952 Has_Private_Component (Derived_Type)); 5953 Conditional_Delay (Derived_Type, Subt); 5954 5955 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify 5956 -- that it is not redundant. 5957 5958 if Null_Exclusion_Present (Type_Definition (N)) then 5959 Set_Can_Never_Be_Null (Derived_Type); 5960 5961 -- What is with the "AND THEN FALSE" here ??? 5962 5963 if Can_Never_Be_Null (Parent_Type) 5964 and then False 5965 then 5966 Error_Msg_NE 5967 ("`NOT NULL` not allowed (& already excludes null)", 5968 N, Parent_Type); 5969 end if; 5970 5971 elsif Can_Never_Be_Null (Parent_Type) then 5972 Set_Can_Never_Be_Null (Derived_Type); 5973 end if; 5974 5975 -- Note: we do not copy the Storage_Size_Variable, since we always go to 5976 -- the root type for this information. 5977 5978 -- Apply range checks to discriminants for derived record case 5979 -- ??? THIS CODE SHOULD NOT BE HERE REALLY. 5980 5981 Desig_Type := Designated_Type (Derived_Type); 5982 if Is_Composite_Type (Desig_Type) 5983 and then (not Is_Array_Type (Desig_Type)) 5984 and then Has_Discriminants (Desig_Type) 5985 and then Base_Type (Desig_Type) /= Desig_Type 5986 then 5987 Discr_Con_Elist := Discriminant_Constraint (Desig_Type); 5988 Discr_Con_El := First_Elmt (Discr_Con_Elist); 5989 5990 Discr := First_Discriminant (Base_Type (Desig_Type)); 5991 while Present (Discr_Con_El) loop 5992 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr)); 5993 Next_Elmt (Discr_Con_El); 5994 Next_Discriminant (Discr); 5995 end loop; 5996 end if; 5997 end Build_Derived_Access_Type; 5998 5999 ------------------------------ 6000 -- Build_Derived_Array_Type -- 6001 ------------------------------ 6002 6003 procedure Build_Derived_Array_Type 6004 (N : Node_Id; 6005 Parent_Type : Entity_Id; 6006 Derived_Type : Entity_Id) 6007 is 6008 Loc : constant Source_Ptr := Sloc (N); 6009 Tdef : constant Node_Id := Type_Definition (N); 6010 Indic : constant Node_Id := Subtype_Indication (Tdef); 6011 Parent_Base : constant Entity_Id := Base_Type (Parent_Type); 6012 Implicit_Base : Entity_Id; 6013 New_Indic : Node_Id; 6014 6015 procedure Make_Implicit_Base; 6016 -- If the parent subtype is constrained, the derived type is a subtype 6017 -- of an implicit base type derived from the parent base. 6018 6019 ------------------------ 6020 -- Make_Implicit_Base -- 6021 ------------------------ 6022 6023 procedure Make_Implicit_Base is 6024 begin 6025 Implicit_Base := 6026 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B'); 6027 6028 Set_Ekind (Implicit_Base, Ekind (Parent_Base)); 6029 Set_Etype (Implicit_Base, Parent_Base); 6030 6031 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base); 6032 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base); 6033 6034 Set_Has_Delayed_Freeze (Implicit_Base, True); 6035 6036 -- Inherit the "ghostness" from the parent base type 6037 6038 if Ghost_Mode > None or else Is_Ghost_Entity (Parent_Base) then 6039 Set_Is_Ghost_Entity (Implicit_Base); 6040 end if; 6041 end Make_Implicit_Base; 6042 6043 -- Start of processing for Build_Derived_Array_Type 6044 6045 begin 6046 if not Is_Constrained (Parent_Type) then 6047 if Nkind (Indic) /= N_Subtype_Indication then 6048 Set_Ekind (Derived_Type, E_Array_Type); 6049 6050 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type); 6051 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type); 6052 6053 Set_Has_Delayed_Freeze (Derived_Type, True); 6054 6055 else 6056 Make_Implicit_Base; 6057 Set_Etype (Derived_Type, Implicit_Base); 6058 6059 New_Indic := 6060 Make_Subtype_Declaration (Loc, 6061 Defining_Identifier => Derived_Type, 6062 Subtype_Indication => 6063 Make_Subtype_Indication (Loc, 6064 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc), 6065 Constraint => Constraint (Indic))); 6066 6067 Rewrite (N, New_Indic); 6068 Analyze (N); 6069 end if; 6070 6071 else 6072 if Nkind (Indic) /= N_Subtype_Indication then 6073 Make_Implicit_Base; 6074 6075 Set_Ekind (Derived_Type, Ekind (Parent_Type)); 6076 Set_Etype (Derived_Type, Implicit_Base); 6077 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type); 6078 6079 else 6080 Error_Msg_N ("illegal constraint on constrained type", Indic); 6081 end if; 6082 end if; 6083 6084 -- If parent type is not a derived type itself, and is declared in 6085 -- closed scope (e.g. a subprogram), then we must explicitly introduce 6086 -- the new type's concatenation operator since Derive_Subprograms 6087 -- will not inherit the parent's operator. If the parent type is 6088 -- unconstrained, the operator is of the unconstrained base type. 6089 6090 if Number_Dimensions (Parent_Type) = 1 6091 and then not Is_Limited_Type (Parent_Type) 6092 and then not Is_Derived_Type (Parent_Type) 6093 and then not Is_Package_Or_Generic_Package 6094 (Scope (Base_Type (Parent_Type))) 6095 then 6096 if not Is_Constrained (Parent_Type) 6097 and then Is_Constrained (Derived_Type) 6098 then 6099 New_Concatenation_Op (Implicit_Base); 6100 else 6101 New_Concatenation_Op (Derived_Type); 6102 end if; 6103 end if; 6104 end Build_Derived_Array_Type; 6105 6106 ----------------------------------- 6107 -- Build_Derived_Concurrent_Type -- 6108 ----------------------------------- 6109 6110 procedure Build_Derived_Concurrent_Type 6111 (N : Node_Id; 6112 Parent_Type : Entity_Id; 6113 Derived_Type : Entity_Id) 6114 is 6115 Loc : constant Source_Ptr := Sloc (N); 6116 6117 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C'); 6118 Corr_Decl : Node_Id; 6119 Corr_Decl_Needed : Boolean; 6120 -- If the derived type has fewer discriminants than its parent, the 6121 -- corresponding record is also a derived type, in order to account for 6122 -- the bound discriminants. We create a full type declaration for it in 6123 -- this case. 6124 6125 Constraint_Present : constant Boolean := 6126 Nkind (Subtype_Indication (Type_Definition (N))) = 6127 N_Subtype_Indication; 6128 6129 D_Constraint : Node_Id; 6130 New_Constraint : Elist_Id; 6131 Old_Disc : Entity_Id; 6132 New_Disc : Entity_Id; 6133 New_N : Node_Id; 6134 6135 begin 6136 Set_Stored_Constraint (Derived_Type, No_Elist); 6137 Corr_Decl_Needed := False; 6138 Old_Disc := Empty; 6139 6140 if Present (Discriminant_Specifications (N)) 6141 and then Constraint_Present 6142 then 6143 Old_Disc := First_Discriminant (Parent_Type); 6144 New_Disc := First (Discriminant_Specifications (N)); 6145 while Present (New_Disc) and then Present (Old_Disc) loop 6146 Next_Discriminant (Old_Disc); 6147 Next (New_Disc); 6148 end loop; 6149 end if; 6150 6151 if Present (Old_Disc) and then Expander_Active then 6152 6153 -- The new type has fewer discriminants, so we need to create a new 6154 -- corresponding record, which is derived from the corresponding 6155 -- record of the parent, and has a stored constraint that captures 6156 -- the values of the discriminant constraints. The corresponding 6157 -- record is needed only if expander is active and code generation is 6158 -- enabled. 6159 6160 -- The type declaration for the derived corresponding record has the 6161 -- same discriminant part and constraints as the current declaration. 6162 -- Copy the unanalyzed tree to build declaration. 6163 6164 Corr_Decl_Needed := True; 6165 New_N := Copy_Separate_Tree (N); 6166 6167 Corr_Decl := 6168 Make_Full_Type_Declaration (Loc, 6169 Defining_Identifier => Corr_Record, 6170 Discriminant_Specifications => 6171 Discriminant_Specifications (New_N), 6172 Type_Definition => 6173 Make_Derived_Type_Definition (Loc, 6174 Subtype_Indication => 6175 Make_Subtype_Indication (Loc, 6176 Subtype_Mark => 6177 New_Occurrence_Of 6178 (Corresponding_Record_Type (Parent_Type), Loc), 6179 Constraint => 6180 Constraint 6181 (Subtype_Indication (Type_Definition (New_N)))))); 6182 end if; 6183 6184 -- Copy Storage_Size and Relative_Deadline variables if task case 6185 6186 if Is_Task_Type (Parent_Type) then 6187 Set_Storage_Size_Variable (Derived_Type, 6188 Storage_Size_Variable (Parent_Type)); 6189 Set_Relative_Deadline_Variable (Derived_Type, 6190 Relative_Deadline_Variable (Parent_Type)); 6191 end if; 6192 6193 if Present (Discriminant_Specifications (N)) then 6194 Push_Scope (Derived_Type); 6195 Check_Or_Process_Discriminants (N, Derived_Type); 6196 6197 if Constraint_Present then 6198 New_Constraint := 6199 Expand_To_Stored_Constraint 6200 (Parent_Type, 6201 Build_Discriminant_Constraints 6202 (Parent_Type, 6203 Subtype_Indication (Type_Definition (N)), True)); 6204 end if; 6205 6206 End_Scope; 6207 6208 elsif Constraint_Present then 6209 6210 -- Build constrained subtype, copying the constraint, and derive 6211 -- from it to create a derived constrained type. 6212 6213 declare 6214 Loc : constant Source_Ptr := Sloc (N); 6215 Anon : constant Entity_Id := 6216 Make_Defining_Identifier (Loc, 6217 Chars => New_External_Name (Chars (Derived_Type), 'T')); 6218 Decl : Node_Id; 6219 6220 begin 6221 Decl := 6222 Make_Subtype_Declaration (Loc, 6223 Defining_Identifier => Anon, 6224 Subtype_Indication => 6225 New_Copy_Tree (Subtype_Indication (Type_Definition (N)))); 6226 Insert_Before (N, Decl); 6227 Analyze (Decl); 6228 6229 Rewrite (Subtype_Indication (Type_Definition (N)), 6230 New_Occurrence_Of (Anon, Loc)); 6231 Set_Analyzed (Derived_Type, False); 6232 Analyze (N); 6233 return; 6234 end; 6235 end if; 6236 6237 -- By default, operations and private data are inherited from parent. 6238 -- However, in the presence of bound discriminants, a new corresponding 6239 -- record will be created, see below. 6240 6241 Set_Has_Discriminants 6242 (Derived_Type, Has_Discriminants (Parent_Type)); 6243 Set_Corresponding_Record_Type 6244 (Derived_Type, Corresponding_Record_Type (Parent_Type)); 6245 6246 -- Is_Constrained is set according the parent subtype, but is set to 6247 -- False if the derived type is declared with new discriminants. 6248 6249 Set_Is_Constrained 6250 (Derived_Type, 6251 (Is_Constrained (Parent_Type) or else Constraint_Present) 6252 and then not Present (Discriminant_Specifications (N))); 6253 6254 if Constraint_Present then 6255 if not Has_Discriminants (Parent_Type) then 6256 Error_Msg_N ("untagged parent must have discriminants", N); 6257 6258 elsif Present (Discriminant_Specifications (N)) then 6259 6260 -- Verify that new discriminants are used to constrain old ones 6261 6262 D_Constraint := 6263 First 6264 (Constraints 6265 (Constraint (Subtype_Indication (Type_Definition (N))))); 6266 6267 Old_Disc := First_Discriminant (Parent_Type); 6268 6269 while Present (D_Constraint) loop 6270 if Nkind (D_Constraint) /= N_Discriminant_Association then 6271 6272 -- Positional constraint. If it is a reference to a new 6273 -- discriminant, it constrains the corresponding old one. 6274 6275 if Nkind (D_Constraint) = N_Identifier then 6276 New_Disc := First_Discriminant (Derived_Type); 6277 while Present (New_Disc) loop 6278 exit when Chars (New_Disc) = Chars (D_Constraint); 6279 Next_Discriminant (New_Disc); 6280 end loop; 6281 6282 if Present (New_Disc) then 6283 Set_Corresponding_Discriminant (New_Disc, Old_Disc); 6284 end if; 6285 end if; 6286 6287 Next_Discriminant (Old_Disc); 6288 6289 -- if this is a named constraint, search by name for the old 6290 -- discriminants constrained by the new one. 6291 6292 elsif Nkind (Expression (D_Constraint)) = N_Identifier then 6293 6294 -- Find new discriminant with that name 6295 6296 New_Disc := First_Discriminant (Derived_Type); 6297 while Present (New_Disc) loop 6298 exit when 6299 Chars (New_Disc) = Chars (Expression (D_Constraint)); 6300 Next_Discriminant (New_Disc); 6301 end loop; 6302 6303 if Present (New_Disc) then 6304 6305 -- Verify that new discriminant renames some discriminant 6306 -- of the parent type, and associate the new discriminant 6307 -- with one or more old ones that it renames. 6308 6309 declare 6310 Selector : Node_Id; 6311 6312 begin 6313 Selector := First (Selector_Names (D_Constraint)); 6314 while Present (Selector) loop 6315 Old_Disc := First_Discriminant (Parent_Type); 6316 while Present (Old_Disc) loop 6317 exit when Chars (Old_Disc) = Chars (Selector); 6318 Next_Discriminant (Old_Disc); 6319 end loop; 6320 6321 if Present (Old_Disc) then 6322 Set_Corresponding_Discriminant 6323 (New_Disc, Old_Disc); 6324 end if; 6325 6326 Next (Selector); 6327 end loop; 6328 end; 6329 end if; 6330 end if; 6331 6332 Next (D_Constraint); 6333 end loop; 6334 6335 New_Disc := First_Discriminant (Derived_Type); 6336 while Present (New_Disc) loop 6337 if No (Corresponding_Discriminant (New_Disc)) then 6338 Error_Msg_NE 6339 ("new discriminant& must constrain old one", N, New_Disc); 6340 6341 elsif not 6342 Subtypes_Statically_Compatible 6343 (Etype (New_Disc), 6344 Etype (Corresponding_Discriminant (New_Disc))) 6345 then 6346 Error_Msg_NE 6347 ("& not statically compatible with parent discriminant", 6348 N, New_Disc); 6349 end if; 6350 6351 Next_Discriminant (New_Disc); 6352 end loop; 6353 end if; 6354 6355 elsif Present (Discriminant_Specifications (N)) then 6356 Error_Msg_N 6357 ("missing discriminant constraint in untagged derivation", N); 6358 end if; 6359 6360 -- The entity chain of the derived type includes the new discriminants 6361 -- but shares operations with the parent. 6362 6363 if Present (Discriminant_Specifications (N)) then 6364 Old_Disc := First_Discriminant (Parent_Type); 6365 while Present (Old_Disc) loop 6366 if No (Next_Entity (Old_Disc)) 6367 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant 6368 then 6369 Set_Next_Entity 6370 (Last_Entity (Derived_Type), Next_Entity (Old_Disc)); 6371 exit; 6372 end if; 6373 6374 Next_Discriminant (Old_Disc); 6375 end loop; 6376 6377 else 6378 Set_First_Entity (Derived_Type, First_Entity (Parent_Type)); 6379 if Has_Discriminants (Parent_Type) then 6380 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type)); 6381 Set_Discriminant_Constraint ( 6382 Derived_Type, Discriminant_Constraint (Parent_Type)); 6383 end if; 6384 end if; 6385 6386 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type)); 6387 6388 Set_Has_Completion (Derived_Type); 6389 6390 if Corr_Decl_Needed then 6391 Set_Stored_Constraint (Derived_Type, New_Constraint); 6392 Insert_After (N, Corr_Decl); 6393 Analyze (Corr_Decl); 6394 Set_Corresponding_Record_Type (Derived_Type, Corr_Record); 6395 end if; 6396 end Build_Derived_Concurrent_Type; 6397 6398 ------------------------------------ 6399 -- Build_Derived_Enumeration_Type -- 6400 ------------------------------------ 6401 6402 procedure Build_Derived_Enumeration_Type 6403 (N : Node_Id; 6404 Parent_Type : Entity_Id; 6405 Derived_Type : Entity_Id) 6406 is 6407 Loc : constant Source_Ptr := Sloc (N); 6408 Def : constant Node_Id := Type_Definition (N); 6409 Indic : constant Node_Id := Subtype_Indication (Def); 6410 Implicit_Base : Entity_Id; 6411 Literal : Entity_Id; 6412 New_Lit : Entity_Id; 6413 Literals_List : List_Id; 6414 Type_Decl : Node_Id; 6415 Hi, Lo : Node_Id; 6416 Rang_Expr : Node_Id; 6417 6418 begin 6419 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do 6420 -- not have explicit literals lists we need to process types derived 6421 -- from them specially. This is handled by Derived_Standard_Character. 6422 -- If the parent type is a generic type, there are no literals either, 6423 -- and we construct the same skeletal representation as for the generic 6424 -- parent type. 6425 6426 if Is_Standard_Character_Type (Parent_Type) then 6427 Derived_Standard_Character (N, Parent_Type, Derived_Type); 6428 6429 elsif Is_Generic_Type (Root_Type (Parent_Type)) then 6430 declare 6431 Lo : Node_Id; 6432 Hi : Node_Id; 6433 6434 begin 6435 if Nkind (Indic) /= N_Subtype_Indication then 6436 Lo := 6437 Make_Attribute_Reference (Loc, 6438 Attribute_Name => Name_First, 6439 Prefix => New_Occurrence_Of (Derived_Type, Loc)); 6440 Set_Etype (Lo, Derived_Type); 6441 6442 Hi := 6443 Make_Attribute_Reference (Loc, 6444 Attribute_Name => Name_Last, 6445 Prefix => New_Occurrence_Of (Derived_Type, Loc)); 6446 Set_Etype (Hi, Derived_Type); 6447 6448 Set_Scalar_Range (Derived_Type, 6449 Make_Range (Loc, 6450 Low_Bound => Lo, 6451 High_Bound => Hi)); 6452 else 6453 6454 -- Analyze subtype indication and verify compatibility 6455 -- with parent type. 6456 6457 if Base_Type (Process_Subtype (Indic, N)) /= 6458 Base_Type (Parent_Type) 6459 then 6460 Error_Msg_N 6461 ("illegal constraint for formal discrete type", N); 6462 end if; 6463 end if; 6464 end; 6465 6466 else 6467 -- If a constraint is present, analyze the bounds to catch 6468 -- premature usage of the derived literals. 6469 6470 if Nkind (Indic) = N_Subtype_Indication 6471 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range 6472 then 6473 Analyze (Low_Bound (Range_Expression (Constraint (Indic)))); 6474 Analyze (High_Bound (Range_Expression (Constraint (Indic)))); 6475 end if; 6476 6477 -- Introduce an implicit base type for the derived type even if there 6478 -- is no constraint attached to it, since this seems closer to the 6479 -- Ada semantics. Build a full type declaration tree for the derived 6480 -- type using the implicit base type as the defining identifier. The 6481 -- build a subtype declaration tree which applies the constraint (if 6482 -- any) have it replace the derived type declaration. 6483 6484 Literal := First_Literal (Parent_Type); 6485 Literals_List := New_List; 6486 while Present (Literal) 6487 and then Ekind (Literal) = E_Enumeration_Literal 6488 loop 6489 -- Literals of the derived type have the same representation as 6490 -- those of the parent type, but this representation can be 6491 -- overridden by an explicit representation clause. Indicate 6492 -- that there is no explicit representation given yet. These 6493 -- derived literals are implicit operations of the new type, 6494 -- and can be overridden by explicit ones. 6495 6496 if Nkind (Literal) = N_Defining_Character_Literal then 6497 New_Lit := 6498 Make_Defining_Character_Literal (Loc, Chars (Literal)); 6499 else 6500 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal)); 6501 end if; 6502 6503 Set_Ekind (New_Lit, E_Enumeration_Literal); 6504 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal)); 6505 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal)); 6506 Set_Enumeration_Rep_Expr (New_Lit, Empty); 6507 Set_Alias (New_Lit, Literal); 6508 Set_Is_Known_Valid (New_Lit, True); 6509 6510 Append (New_Lit, Literals_List); 6511 Next_Literal (Literal); 6512 end loop; 6513 6514 Implicit_Base := 6515 Make_Defining_Identifier (Sloc (Derived_Type), 6516 Chars => New_External_Name (Chars (Derived_Type), 'B')); 6517 6518 -- Indicate the proper nature of the derived type. This must be done 6519 -- before analysis of the literals, to recognize cases when a literal 6520 -- may be hidden by a previous explicit function definition (cf. 6521 -- c83031a). 6522 6523 Set_Ekind (Derived_Type, E_Enumeration_Subtype); 6524 Set_Etype (Derived_Type, Implicit_Base); 6525 6526 Type_Decl := 6527 Make_Full_Type_Declaration (Loc, 6528 Defining_Identifier => Implicit_Base, 6529 Discriminant_Specifications => No_List, 6530 Type_Definition => 6531 Make_Enumeration_Type_Definition (Loc, Literals_List)); 6532 6533 Mark_Rewrite_Insertion (Type_Decl); 6534 Insert_Before (N, Type_Decl); 6535 Analyze (Type_Decl); 6536 6537 -- The anonymous base now has a full declaration, but this base 6538 -- is not a first subtype. 6539 6540 Set_Is_First_Subtype (Implicit_Base, False); 6541 6542 -- After the implicit base is analyzed its Etype needs to be changed 6543 -- to reflect the fact that it is derived from the parent type which 6544 -- was ignored during analysis. We also set the size at this point. 6545 6546 Set_Etype (Implicit_Base, Parent_Type); 6547 6548 Set_Size_Info (Implicit_Base, Parent_Type); 6549 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type)); 6550 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type)); 6551 6552 -- Copy other flags from parent type 6553 6554 Set_Has_Non_Standard_Rep 6555 (Implicit_Base, Has_Non_Standard_Rep 6556 (Parent_Type)); 6557 Set_Has_Pragma_Ordered 6558 (Implicit_Base, Has_Pragma_Ordered 6559 (Parent_Type)); 6560 Set_Has_Delayed_Freeze (Implicit_Base); 6561 6562 -- Process the subtype indication including a validation check on the 6563 -- constraint, if any. If a constraint is given, its bounds must be 6564 -- implicitly converted to the new type. 6565 6566 if Nkind (Indic) = N_Subtype_Indication then 6567 declare 6568 R : constant Node_Id := 6569 Range_Expression (Constraint (Indic)); 6570 6571 begin 6572 if Nkind (R) = N_Range then 6573 Hi := Build_Scalar_Bound 6574 (High_Bound (R), Parent_Type, Implicit_Base); 6575 Lo := Build_Scalar_Bound 6576 (Low_Bound (R), Parent_Type, Implicit_Base); 6577 6578 else 6579 -- Constraint is a Range attribute. Replace with explicit 6580 -- mention of the bounds of the prefix, which must be a 6581 -- subtype. 6582 6583 Analyze (Prefix (R)); 6584 Hi := 6585 Convert_To (Implicit_Base, 6586 Make_Attribute_Reference (Loc, 6587 Attribute_Name => Name_Last, 6588 Prefix => 6589 New_Occurrence_Of (Entity (Prefix (R)), Loc))); 6590 6591 Lo := 6592 Convert_To (Implicit_Base, 6593 Make_Attribute_Reference (Loc, 6594 Attribute_Name => Name_First, 6595 Prefix => 6596 New_Occurrence_Of (Entity (Prefix (R)), Loc))); 6597 end if; 6598 end; 6599 6600 else 6601 Hi := 6602 Build_Scalar_Bound 6603 (Type_High_Bound (Parent_Type), 6604 Parent_Type, Implicit_Base); 6605 Lo := 6606 Build_Scalar_Bound 6607 (Type_Low_Bound (Parent_Type), 6608 Parent_Type, Implicit_Base); 6609 end if; 6610 6611 Rang_Expr := 6612 Make_Range (Loc, 6613 Low_Bound => Lo, 6614 High_Bound => Hi); 6615 6616 -- If we constructed a default range for the case where no range 6617 -- was given, then the expressions in the range must not freeze 6618 -- since they do not correspond to expressions in the source. 6619 6620 if Nkind (Indic) /= N_Subtype_Indication then 6621 Set_Must_Not_Freeze (Lo); 6622 Set_Must_Not_Freeze (Hi); 6623 Set_Must_Not_Freeze (Rang_Expr); 6624 end if; 6625 6626 Rewrite (N, 6627 Make_Subtype_Declaration (Loc, 6628 Defining_Identifier => Derived_Type, 6629 Subtype_Indication => 6630 Make_Subtype_Indication (Loc, 6631 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc), 6632 Constraint => 6633 Make_Range_Constraint (Loc, 6634 Range_Expression => Rang_Expr)))); 6635 6636 Analyze (N); 6637 6638 -- Propagate the aspects from the original type declaration to the 6639 -- declaration of the implicit base. 6640 6641 Move_Aspects (From => Original_Node (N), To => Type_Decl); 6642 6643 -- Apply a range check. Since this range expression doesn't have an 6644 -- Etype, we have to specifically pass the Source_Typ parameter. Is 6645 -- this right??? 6646 6647 if Nkind (Indic) = N_Subtype_Indication then 6648 Apply_Range_Check 6649 (Range_Expression (Constraint (Indic)), Parent_Type, 6650 Source_Typ => Entity (Subtype_Mark (Indic))); 6651 end if; 6652 end if; 6653 end Build_Derived_Enumeration_Type; 6654 6655 -------------------------------- 6656 -- Build_Derived_Numeric_Type -- 6657 -------------------------------- 6658 6659 procedure Build_Derived_Numeric_Type 6660 (N : Node_Id; 6661 Parent_Type : Entity_Id; 6662 Derived_Type : Entity_Id) 6663 is 6664 Loc : constant Source_Ptr := Sloc (N); 6665 Tdef : constant Node_Id := Type_Definition (N); 6666 Indic : constant Node_Id := Subtype_Indication (Tdef); 6667 Parent_Base : constant Entity_Id := Base_Type (Parent_Type); 6668 No_Constraint : constant Boolean := Nkind (Indic) /= 6669 N_Subtype_Indication; 6670 Implicit_Base : Entity_Id; 6671 6672 Lo : Node_Id; 6673 Hi : Node_Id; 6674 6675 begin 6676 -- Process the subtype indication including a validation check on 6677 -- the constraint if any. 6678 6679 Discard_Node (Process_Subtype (Indic, N)); 6680 6681 -- Introduce an implicit base type for the derived type even if there 6682 -- is no constraint attached to it, since this seems closer to the Ada 6683 -- semantics. 6684 6685 Implicit_Base := 6686 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B'); 6687 6688 Set_Etype (Implicit_Base, Parent_Base); 6689 Set_Ekind (Implicit_Base, Ekind (Parent_Base)); 6690 Set_Size_Info (Implicit_Base, Parent_Base); 6691 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base)); 6692 Set_Parent (Implicit_Base, Parent (Derived_Type)); 6693 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base)); 6694 6695 -- Set RM Size for discrete type or decimal fixed-point type 6696 -- Ordinary fixed-point is excluded, why??? 6697 6698 if Is_Discrete_Type (Parent_Base) 6699 or else Is_Decimal_Fixed_Point_Type (Parent_Base) 6700 then 6701 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base)); 6702 end if; 6703 6704 Set_Has_Delayed_Freeze (Implicit_Base); 6705 6706 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base)); 6707 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base)); 6708 6709 Set_Scalar_Range (Implicit_Base, 6710 Make_Range (Loc, 6711 Low_Bound => Lo, 6712 High_Bound => Hi)); 6713 6714 if Has_Infinities (Parent_Base) then 6715 Set_Includes_Infinities (Scalar_Range (Implicit_Base)); 6716 end if; 6717 6718 -- The Derived_Type, which is the entity of the declaration, is a 6719 -- subtype of the implicit base. Its Ekind is a subtype, even in the 6720 -- absence of an explicit constraint. 6721 6722 Set_Etype (Derived_Type, Implicit_Base); 6723 6724 -- If we did not have a constraint, then the Ekind is set from the 6725 -- parent type (otherwise Process_Subtype has set the bounds) 6726 6727 if No_Constraint then 6728 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type))); 6729 end if; 6730 6731 -- If we did not have a range constraint, then set the range from the 6732 -- parent type. Otherwise, the Process_Subtype call has set the bounds. 6733 6734 if No_Constraint or else not Has_Range_Constraint (Indic) then 6735 Set_Scalar_Range (Derived_Type, 6736 Make_Range (Loc, 6737 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)), 6738 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type)))); 6739 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type)); 6740 6741 if Has_Infinities (Parent_Type) then 6742 Set_Includes_Infinities (Scalar_Range (Derived_Type)); 6743 end if; 6744 6745 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type)); 6746 end if; 6747 6748 Set_Is_Descendent_Of_Address (Derived_Type, 6749 Is_Descendent_Of_Address (Parent_Type)); 6750 Set_Is_Descendent_Of_Address (Implicit_Base, 6751 Is_Descendent_Of_Address (Parent_Type)); 6752 6753 -- Set remaining type-specific fields, depending on numeric type 6754 6755 if Is_Modular_Integer_Type (Parent_Type) then 6756 Set_Modulus (Implicit_Base, Modulus (Parent_Base)); 6757 6758 Set_Non_Binary_Modulus 6759 (Implicit_Base, Non_Binary_Modulus (Parent_Base)); 6760 6761 Set_Is_Known_Valid 6762 (Implicit_Base, Is_Known_Valid (Parent_Base)); 6763 6764 elsif Is_Floating_Point_Type (Parent_Type) then 6765 6766 -- Digits of base type is always copied from the digits value of 6767 -- the parent base type, but the digits of the derived type will 6768 -- already have been set if there was a constraint present. 6769 6770 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base)); 6771 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base)); 6772 6773 if No_Constraint then 6774 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type)); 6775 end if; 6776 6777 elsif Is_Fixed_Point_Type (Parent_Type) then 6778 6779 -- Small of base type and derived type are always copied from the 6780 -- parent base type, since smalls never change. The delta of the 6781 -- base type is also copied from the parent base type. However the 6782 -- delta of the derived type will have been set already if a 6783 -- constraint was present. 6784 6785 Set_Small_Value (Derived_Type, Small_Value (Parent_Base)); 6786 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base)); 6787 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base)); 6788 6789 if No_Constraint then 6790 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type)); 6791 end if; 6792 6793 -- The scale and machine radix in the decimal case are always 6794 -- copied from the parent base type. 6795 6796 if Is_Decimal_Fixed_Point_Type (Parent_Type) then 6797 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base)); 6798 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base)); 6799 6800 Set_Machine_Radix_10 6801 (Derived_Type, Machine_Radix_10 (Parent_Base)); 6802 Set_Machine_Radix_10 6803 (Implicit_Base, Machine_Radix_10 (Parent_Base)); 6804 6805 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base)); 6806 6807 if No_Constraint then 6808 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base)); 6809 6810 else 6811 -- the analysis of the subtype_indication sets the 6812 -- digits value of the derived type. 6813 6814 null; 6815 end if; 6816 end if; 6817 end if; 6818 6819 if Is_Integer_Type (Parent_Type) then 6820 Set_Has_Shift_Operator 6821 (Implicit_Base, Has_Shift_Operator (Parent_Type)); 6822 end if; 6823 6824 -- The type of the bounds is that of the parent type, and they 6825 -- must be converted to the derived type. 6826 6827 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc); 6828 6829 -- The implicit_base should be frozen when the derived type is frozen, 6830 -- but note that it is used in the conversions of the bounds. For fixed 6831 -- types we delay the determination of the bounds until the proper 6832 -- freezing point. For other numeric types this is rejected by GCC, for 6833 -- reasons that are currently unclear (???), so we choose to freeze the 6834 -- implicit base now. In the case of integers and floating point types 6835 -- this is harmless because subsequent representation clauses cannot 6836 -- affect anything, but it is still baffling that we cannot use the 6837 -- same mechanism for all derived numeric types. 6838 6839 -- There is a further complication: actually some representation 6840 -- clauses can affect the implicit base type. For example, attribute 6841 -- definition clauses for stream-oriented attributes need to set the 6842 -- corresponding TSS entries on the base type, and this normally 6843 -- cannot be done after the base type is frozen, so the circuitry in 6844 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility 6845 -- and not use Set_TSS in this case. 6846 6847 -- There are also consequences for the case of delayed representation 6848 -- aspects for some cases. For example, a Size aspect is delayed and 6849 -- should not be evaluated to the freeze point. This early freezing 6850 -- means that the size attribute evaluation happens too early??? 6851 6852 if Is_Fixed_Point_Type (Parent_Type) then 6853 Conditional_Delay (Implicit_Base, Parent_Type); 6854 else 6855 Freeze_Before (N, Implicit_Base); 6856 end if; 6857 end Build_Derived_Numeric_Type; 6858 6859 -------------------------------- 6860 -- Build_Derived_Private_Type -- 6861 -------------------------------- 6862 6863 procedure Build_Derived_Private_Type 6864 (N : Node_Id; 6865 Parent_Type : Entity_Id; 6866 Derived_Type : Entity_Id; 6867 Is_Completion : Boolean; 6868 Derive_Subps : Boolean := True) 6869 is 6870 Loc : constant Source_Ptr := Sloc (N); 6871 Par_Base : constant Entity_Id := Base_Type (Parent_Type); 6872 Par_Scope : constant Entity_Id := Scope (Par_Base); 6873 Full_N : constant Node_Id := New_Copy_Tree (N); 6874 Full_Der : Entity_Id := New_Copy (Derived_Type); 6875 Full_P : Entity_Id; 6876 6877 procedure Build_Full_Derivation; 6878 -- Build full derivation, i.e. derive from the full view 6879 6880 procedure Copy_And_Build; 6881 -- Copy derived type declaration, replace parent with its full view, 6882 -- and build derivation 6883 6884 --------------------------- 6885 -- Build_Full_Derivation -- 6886 --------------------------- 6887 6888 procedure Build_Full_Derivation is 6889 begin 6890 -- If parent scope is not open, install the declarations 6891 6892 if not In_Open_Scopes (Par_Scope) then 6893 Install_Private_Declarations (Par_Scope); 6894 Install_Visible_Declarations (Par_Scope); 6895 Copy_And_Build; 6896 Uninstall_Declarations (Par_Scope); 6897 6898 -- If parent scope is open and in another unit, and parent has a 6899 -- completion, then the derivation is taking place in the visible 6900 -- part of a child unit. In that case retrieve the full view of 6901 -- the parent momentarily. 6902 6903 elsif not In_Same_Source_Unit (N, Parent_Type) then 6904 Full_P := Full_View (Parent_Type); 6905 Exchange_Declarations (Parent_Type); 6906 Copy_And_Build; 6907 Exchange_Declarations (Full_P); 6908 6909 -- Otherwise it is a local derivation 6910 6911 else 6912 Copy_And_Build; 6913 end if; 6914 end Build_Full_Derivation; 6915 6916 -------------------- 6917 -- Copy_And_Build -- 6918 -------------------- 6919 6920 procedure Copy_And_Build is 6921 Full_Parent : Entity_Id := Parent_Type; 6922 6923 begin 6924 -- If the parent is itself derived from another private type, 6925 -- installing the private declarations has not affected its 6926 -- privacy status, so use its own full view explicitly. 6927 6928 if Is_Private_Type (Full_Parent) 6929 and then Present (Full_View (Full_Parent)) 6930 then 6931 Full_Parent := Full_View (Full_Parent); 6932 end if; 6933 6934 -- And its underlying full view if necessary 6935 6936 if Is_Private_Type (Full_Parent) 6937 and then Present (Underlying_Full_View (Full_Parent)) 6938 then 6939 Full_Parent := Underlying_Full_View (Full_Parent); 6940 end if; 6941 6942 -- For record, access and most enumeration types, derivation from 6943 -- the full view requires a fully-fledged declaration. In the other 6944 -- cases, just use an itype. 6945 6946 if Ekind (Full_Parent) in Record_Kind 6947 or else Ekind (Full_Parent) in Access_Kind 6948 or else 6949 (Ekind (Full_Parent) in Enumeration_Kind 6950 and then not Is_Standard_Character_Type (Full_Parent) 6951 and then not Is_Generic_Type (Root_Type (Full_Parent))) 6952 then 6953 -- Copy and adjust declaration to provide a completion for what 6954 -- is originally a private declaration. Indicate that full view 6955 -- is internally generated. 6956 6957 Set_Comes_From_Source (Full_N, False); 6958 Set_Comes_From_Source (Full_Der, False); 6959 Set_Parent (Full_Der, Full_N); 6960 Set_Defining_Identifier (Full_N, Full_Der); 6961 6962 -- If there are no constraints, adjust the subtype mark 6963 6964 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /= 6965 N_Subtype_Indication 6966 then 6967 Set_Subtype_Indication 6968 (Type_Definition (Full_N), 6969 New_Occurrence_Of (Full_Parent, Sloc (Full_N))); 6970 end if; 6971 6972 Insert_After (N, Full_N); 6973 6974 -- Build full view of derived type from full view of parent which 6975 -- is now installed. Subprograms have been derived on the partial 6976 -- view, the completion does not derive them anew. 6977 6978 if Ekind (Full_Parent) in Record_Kind then 6979 6980 -- If parent type is tagged, the completion inherits the proper 6981 -- primitive operations. 6982 6983 if Is_Tagged_Type (Parent_Type) then 6984 Build_Derived_Record_Type 6985 (Full_N, Full_Parent, Full_Der, Derive_Subps); 6986 else 6987 Build_Derived_Record_Type 6988 (Full_N, Full_Parent, Full_Der, Derive_Subps => False); 6989 end if; 6990 6991 else 6992 Build_Derived_Type 6993 (Full_N, Full_Parent, Full_Der, 6994 Is_Completion => False, Derive_Subps => False); 6995 end if; 6996 6997 -- The full declaration has been introduced into the tree and 6998 -- processed in the step above. It should not be analyzed again 6999 -- (when encountered later in the current list of declarations) 7000 -- to prevent spurious name conflicts. The full entity remains 7001 -- invisible. 7002 7003 Set_Analyzed (Full_N); 7004 7005 else 7006 Full_Der := 7007 Make_Defining_Identifier (Sloc (Derived_Type), 7008 Chars => Chars (Derived_Type)); 7009 Set_Is_Itype (Full_Der); 7010 Set_Associated_Node_For_Itype (Full_Der, N); 7011 Set_Parent (Full_Der, N); 7012 Build_Derived_Type 7013 (N, Full_Parent, Full_Der, 7014 Is_Completion => False, Derive_Subps => False); 7015 end if; 7016 7017 Set_Has_Private_Declaration (Full_Der); 7018 Set_Has_Private_Declaration (Derived_Type); 7019 7020 Set_Scope (Full_Der, Scope (Derived_Type)); 7021 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type)); 7022 Set_Has_Size_Clause (Full_Der, False); 7023 Set_Has_Alignment_Clause (Full_Der, False); 7024 Set_Has_Delayed_Freeze (Full_Der); 7025 Set_Is_Frozen (Full_Der, False); 7026 Set_Freeze_Node (Full_Der, Empty); 7027 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der)); 7028 Set_Is_Public (Full_Der, Is_Public (Derived_Type)); 7029 7030 -- The convention on the base type may be set in the private part 7031 -- and not propagated to the subtype until later, so we obtain the 7032 -- convention from the base type of the parent. 7033 7034 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent))); 7035 end Copy_And_Build; 7036 7037 -- Start of processing for Build_Derived_Private_Type 7038 7039 begin 7040 if Is_Tagged_Type (Parent_Type) then 7041 Full_P := Full_View (Parent_Type); 7042 7043 -- A type extension of a type with unknown discriminants is an 7044 -- indefinite type that the back-end cannot handle directly. 7045 -- We treat it as a private type, and build a completion that is 7046 -- derived from the full view of the parent, and hopefully has 7047 -- known discriminants. 7048 7049 -- If the full view of the parent type has an underlying record view, 7050 -- use it to generate the underlying record view of this derived type 7051 -- (required for chains of derivations with unknown discriminants). 7052 7053 -- Minor optimization: we avoid the generation of useless underlying 7054 -- record view entities if the private type declaration has unknown 7055 -- discriminants but its corresponding full view has no 7056 -- discriminants. 7057 7058 if Has_Unknown_Discriminants (Parent_Type) 7059 and then Present (Full_P) 7060 and then (Has_Discriminants (Full_P) 7061 or else Present (Underlying_Record_View (Full_P))) 7062 and then not In_Open_Scopes (Par_Scope) 7063 and then Expander_Active 7064 then 7065 declare 7066 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T'); 7067 New_Ext : constant Node_Id := 7068 Copy_Separate_Tree 7069 (Record_Extension_Part (Type_Definition (N))); 7070 Decl : Node_Id; 7071 7072 begin 7073 Build_Derived_Record_Type 7074 (N, Parent_Type, Derived_Type, Derive_Subps); 7075 7076 -- Build anonymous completion, as a derivation from the full 7077 -- view of the parent. This is not a completion in the usual 7078 -- sense, because the current type is not private. 7079 7080 Decl := 7081 Make_Full_Type_Declaration (Loc, 7082 Defining_Identifier => Full_Der, 7083 Type_Definition => 7084 Make_Derived_Type_Definition (Loc, 7085 Subtype_Indication => 7086 New_Copy_Tree 7087 (Subtype_Indication (Type_Definition (N))), 7088 Record_Extension_Part => New_Ext)); 7089 7090 -- If the parent type has an underlying record view, use it 7091 -- here to build the new underlying record view. 7092 7093 if Present (Underlying_Record_View (Full_P)) then 7094 pragma Assert 7095 (Nkind (Subtype_Indication (Type_Definition (Decl))) 7096 = N_Identifier); 7097 Set_Entity (Subtype_Indication (Type_Definition (Decl)), 7098 Underlying_Record_View (Full_P)); 7099 end if; 7100 7101 Install_Private_Declarations (Par_Scope); 7102 Install_Visible_Declarations (Par_Scope); 7103 Insert_Before (N, Decl); 7104 7105 -- Mark entity as an underlying record view before analysis, 7106 -- to avoid generating the list of its primitive operations 7107 -- (which is not really required for this entity) and thus 7108 -- prevent spurious errors associated with missing overriding 7109 -- of abstract primitives (overridden only for Derived_Type). 7110 7111 Set_Ekind (Full_Der, E_Record_Type); 7112 Set_Is_Underlying_Record_View (Full_Der); 7113 Set_Default_SSO (Full_Der); 7114 7115 Analyze (Decl); 7116 7117 pragma Assert (Has_Discriminants (Full_Der) 7118 and then not Has_Unknown_Discriminants (Full_Der)); 7119 7120 Uninstall_Declarations (Par_Scope); 7121 7122 -- Freeze the underlying record view, to prevent generation of 7123 -- useless dispatching information, which is simply shared with 7124 -- the real derived type. 7125 7126 Set_Is_Frozen (Full_Der); 7127 7128 -- If the derived type has access discriminants, create 7129 -- references to their anonymous types now, to prevent 7130 -- back-end problems when their first use is in generated 7131 -- bodies of primitives. 7132 7133 declare 7134 E : Entity_Id; 7135 7136 begin 7137 E := First_Entity (Full_Der); 7138 7139 while Present (E) loop 7140 if Ekind (E) = E_Discriminant 7141 and then Ekind (Etype (E)) = E_Anonymous_Access_Type 7142 then 7143 Build_Itype_Reference (Etype (E), Decl); 7144 end if; 7145 7146 Next_Entity (E); 7147 end loop; 7148 end; 7149 7150 -- Set up links between real entity and underlying record view 7151 7152 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der)); 7153 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type); 7154 end; 7155 7156 -- If discriminants are known, build derived record 7157 7158 else 7159 Build_Derived_Record_Type 7160 (N, Parent_Type, Derived_Type, Derive_Subps); 7161 end if; 7162 7163 return; 7164 7165 elsif Has_Discriminants (Parent_Type) then 7166 7167 -- Build partial view of derived type from partial view of parent. 7168 -- This must be done before building the full derivation because the 7169 -- second derivation will modify the discriminants of the first and 7170 -- the discriminants are chained with the rest of the components in 7171 -- the full derivation. 7172 7173 Build_Derived_Record_Type 7174 (N, Parent_Type, Derived_Type, Derive_Subps); 7175 7176 -- Build the full derivation if this is not the anonymous derived 7177 -- base type created by Build_Derived_Record_Type in the constrained 7178 -- case (see point 5. of its head comment) since we build it for the 7179 -- derived subtype. And skip it for protected types altogether, as 7180 -- gigi does not use these types directly. 7181 7182 if Present (Full_View (Parent_Type)) 7183 and then not Is_Itype (Derived_Type) 7184 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind) 7185 then 7186 declare 7187 Der_Base : constant Entity_Id := Base_Type (Derived_Type); 7188 Discr : Entity_Id; 7189 Last_Discr : Entity_Id; 7190 7191 begin 7192 -- If this is not a completion, construct the implicit full 7193 -- view by deriving from the full view of the parent type. 7194 -- But if this is a completion, the derived private type 7195 -- being built is a full view and the full derivation can 7196 -- only be its underlying full view. 7197 7198 Build_Full_Derivation; 7199 7200 if not Is_Completion then 7201 Set_Full_View (Derived_Type, Full_Der); 7202 else 7203 Set_Underlying_Full_View (Derived_Type, Full_Der); 7204 end if; 7205 7206 if not Is_Base_Type (Derived_Type) then 7207 Set_Full_View (Der_Base, Base_Type (Full_Der)); 7208 end if; 7209 7210 -- Copy the discriminant list from full view to the partial 7211 -- view (base type and its subtype). Gigi requires that the 7212 -- partial and full views have the same discriminants. 7213 7214 -- Note that since the partial view points to discriminants 7215 -- in the full view, their scope will be that of the full 7216 -- view. This might cause some front end problems and need 7217 -- adjustment??? 7218 7219 Discr := First_Discriminant (Base_Type (Full_Der)); 7220 Set_First_Entity (Der_Base, Discr); 7221 7222 loop 7223 Last_Discr := Discr; 7224 Next_Discriminant (Discr); 7225 exit when No (Discr); 7226 end loop; 7227 7228 Set_Last_Entity (Der_Base, Last_Discr); 7229 Set_First_Entity (Derived_Type, First_Entity (Der_Base)); 7230 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base)); 7231 7232 Set_Stored_Constraint 7233 (Full_Der, Stored_Constraint (Derived_Type)); 7234 end; 7235 end if; 7236 7237 elsif Present (Full_View (Parent_Type)) 7238 and then Has_Discriminants (Full_View (Parent_Type)) 7239 then 7240 if Has_Unknown_Discriminants (Parent_Type) 7241 and then Nkind (Subtype_Indication (Type_Definition (N))) = 7242 N_Subtype_Indication 7243 then 7244 Error_Msg_N 7245 ("cannot constrain type with unknown discriminants", 7246 Subtype_Indication (Type_Definition (N))); 7247 return; 7248 end if; 7249 7250 -- If this is not a completion, construct the implicit full view by 7251 -- deriving from the full view of the parent type. But if this is a 7252 -- completion, the derived private type being built is a full view 7253 -- and the full derivation can only be its underlying full view. 7254 7255 Build_Full_Derivation; 7256 7257 if not Is_Completion then 7258 Set_Full_View (Derived_Type, Full_Der); 7259 else 7260 Set_Underlying_Full_View (Derived_Type, Full_Der); 7261 end if; 7262 7263 -- In any case, the primitive operations are inherited from the 7264 -- parent type, not from the internal full view. 7265 7266 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type)); 7267 7268 if Derive_Subps then 7269 Derive_Subprograms (Parent_Type, Derived_Type); 7270 end if; 7271 7272 Set_Stored_Constraint (Derived_Type, No_Elist); 7273 Set_Is_Constrained 7274 (Derived_Type, Is_Constrained (Full_View (Parent_Type))); 7275 7276 else 7277 -- Untagged type, No discriminants on either view 7278 7279 if Nkind (Subtype_Indication (Type_Definition (N))) = 7280 N_Subtype_Indication 7281 then 7282 Error_Msg_N 7283 ("illegal constraint on type without discriminants", N); 7284 end if; 7285 7286 if Present (Discriminant_Specifications (N)) 7287 and then Present (Full_View (Parent_Type)) 7288 and then not Is_Tagged_Type (Full_View (Parent_Type)) 7289 then 7290 Error_Msg_N ("cannot add discriminants to untagged type", N); 7291 end if; 7292 7293 Set_Stored_Constraint (Derived_Type, No_Elist); 7294 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type)); 7295 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type)); 7296 Set_Disable_Controlled (Derived_Type, Disable_Controlled 7297 (Parent_Type)); 7298 Set_Has_Controlled_Component 7299 (Derived_Type, Has_Controlled_Component 7300 (Parent_Type)); 7301 7302 -- Direct controlled types do not inherit Finalize_Storage_Only flag 7303 7304 if not Is_Controlled_Active (Parent_Type) then 7305 Set_Finalize_Storage_Only 7306 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type)); 7307 end if; 7308 7309 -- If this is not a completion, construct the implicit full view by 7310 -- deriving from the full view of the parent type. 7311 7312 -- ??? If the parent is untagged private and its completion is 7313 -- tagged, this mechanism will not work because we cannot derive from 7314 -- the tagged full view unless we have an extension. 7315 7316 if Present (Full_View (Parent_Type)) 7317 and then not Is_Tagged_Type (Full_View (Parent_Type)) 7318 and then not Is_Completion 7319 then 7320 Build_Full_Derivation; 7321 Set_Full_View (Derived_Type, Full_Der); 7322 end if; 7323 end if; 7324 7325 Set_Has_Unknown_Discriminants (Derived_Type, 7326 Has_Unknown_Discriminants (Parent_Type)); 7327 7328 if Is_Private_Type (Derived_Type) then 7329 Set_Private_Dependents (Derived_Type, New_Elmt_List); 7330 end if; 7331 7332 -- If the parent base type is in scope, add the derived type to its 7333 -- list of private dependents, because its full view may become 7334 -- visible subsequently (in a nested private part, a body, or in a 7335 -- further child unit). 7336 7337 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then 7338 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type)); 7339 7340 -- Check for unusual case where a type completed by a private 7341 -- derivation occurs within a package nested in a child unit, and 7342 -- the parent is declared in an ancestor. 7343 7344 if Is_Child_Unit (Scope (Current_Scope)) 7345 and then Is_Completion 7346 and then In_Private_Part (Current_Scope) 7347 and then Scope (Parent_Type) /= Current_Scope 7348 7349 -- Note that if the parent has a completion in the private part, 7350 -- (which is itself a derivation from some other private type) 7351 -- it is that completion that is visible, there is no full view 7352 -- available, and no special processing is needed. 7353 7354 and then Present (Full_View (Parent_Type)) 7355 then 7356 -- In this case, the full view of the parent type will become 7357 -- visible in the body of the enclosing child, and only then will 7358 -- the current type be possibly non-private. Build an underlying 7359 -- full view that will be installed when the enclosing child body 7360 -- is compiled. 7361 7362 if Present (Underlying_Full_View (Derived_Type)) then 7363 Full_Der := Underlying_Full_View (Derived_Type); 7364 else 7365 Build_Full_Derivation; 7366 Set_Underlying_Full_View (Derived_Type, Full_Der); 7367 end if; 7368 7369 -- The full view will be used to swap entities on entry/exit to 7370 -- the body, and must appear in the entity list for the package. 7371 7372 Append_Entity (Full_Der, Scope (Derived_Type)); 7373 end if; 7374 end if; 7375 end Build_Derived_Private_Type; 7376 7377 ------------------------------- 7378 -- Build_Derived_Record_Type -- 7379 ------------------------------- 7380 7381 -- 1. INTRODUCTION 7382 7383 -- Ideally we would like to use the same model of type derivation for 7384 -- tagged and untagged record types. Unfortunately this is not quite 7385 -- possible because the semantics of representation clauses is different 7386 -- for tagged and untagged records under inheritance. Consider the 7387 -- following: 7388 7389 -- type R (...) is [tagged] record ... end record; 7390 -- type T (...) is new R (...) [with ...]; 7391 7392 -- The representation clauses for T can specify a completely different 7393 -- record layout from R's. Hence the same component can be placed in two 7394 -- very different positions in objects of type T and R. If R and T are 7395 -- tagged types, representation clauses for T can only specify the layout 7396 -- of non inherited components, thus components that are common in R and T 7397 -- have the same position in objects of type R and T. 7398 7399 -- This has two implications. The first is that the entire tree for R's 7400 -- declaration needs to be copied for T in the untagged case, so that T 7401 -- can be viewed as a record type of its own with its own representation 7402 -- clauses. The second implication is the way we handle discriminants. 7403 -- Specifically, in the untagged case we need a way to communicate to Gigi 7404 -- what are the real discriminants in the record, while for the semantics 7405 -- we need to consider those introduced by the user to rename the 7406 -- discriminants in the parent type. This is handled by introducing the 7407 -- notion of stored discriminants. See below for more. 7408 7409 -- Fortunately the way regular components are inherited can be handled in 7410 -- the same way in tagged and untagged types. 7411 7412 -- To complicate things a bit more the private view of a private extension 7413 -- cannot be handled in the same way as the full view (for one thing the 7414 -- semantic rules are somewhat different). We will explain what differs 7415 -- below. 7416 7417 -- 2. DISCRIMINANTS UNDER INHERITANCE 7418 7419 -- The semantic rules governing the discriminants of derived types are 7420 -- quite subtle. 7421 7422 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new 7423 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART] 7424 7425 -- If parent type has discriminants, then the discriminants that are 7426 -- declared in the derived type are [3.4 (11)]: 7427 7428 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if 7429 -- there is one; 7430 7431 -- o Otherwise, each discriminant of the parent type (implicitly declared 7432 -- in the same order with the same specifications). In this case, the 7433 -- discriminants are said to be "inherited", or if unknown in the parent 7434 -- are also unknown in the derived type. 7435 7436 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]: 7437 7438 -- o The parent subtype must be constrained; 7439 7440 -- o If the parent type is not a tagged type, then each discriminant of 7441 -- the derived type must be used in the constraint defining a parent 7442 -- subtype. [Implementation note: This ensures that the new discriminant 7443 -- can share storage with an existing discriminant.] 7444 7445 -- For the derived type each discriminant of the parent type is either 7446 -- inherited, constrained to equal some new discriminant of the derived 7447 -- type, or constrained to the value of an expression. 7448 7449 -- When inherited or constrained to equal some new discriminant, the 7450 -- parent discriminant and the discriminant of the derived type are said 7451 -- to "correspond". 7452 7453 -- If a discriminant of the parent type is constrained to a specific value 7454 -- in the derived type definition, then the discriminant is said to be 7455 -- "specified" by that derived type definition. 7456 7457 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES 7458 7459 -- We have spoken about stored discriminants in point 1 (introduction) 7460 -- above. There are two sort of stored discriminants: implicit and 7461 -- explicit. As long as the derived type inherits the same discriminants as 7462 -- the root record type, stored discriminants are the same as regular 7463 -- discriminants, and are said to be implicit. However, if any discriminant 7464 -- in the root type was renamed in the derived type, then the derived 7465 -- type will contain explicit stored discriminants. Explicit stored 7466 -- discriminants are discriminants in addition to the semantically visible 7467 -- discriminants defined for the derived type. Stored discriminants are 7468 -- used by Gigi to figure out what are the physical discriminants in 7469 -- objects of the derived type (see precise definition in einfo.ads). 7470 -- As an example, consider the following: 7471 7472 -- type R (D1, D2, D3 : Int) is record ... end record; 7473 -- type T1 is new R; 7474 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1); 7475 -- type T3 is new T2; 7476 -- type T4 (Y : Int) is new T3 (Y, 99); 7477 7478 -- The following table summarizes the discriminants and stored 7479 -- discriminants in R and T1 through T4. 7480 7481 -- Type Discrim Stored Discrim Comment 7482 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R 7483 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1 7484 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2 7485 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3 7486 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4 7487 7488 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to 7489 -- find the corresponding discriminant in the parent type, while 7490 -- Original_Record_Component (abbreviated ORC below), the actual physical 7491 -- component that is renamed. Finally the field Is_Completely_Hidden 7492 -- (abbreviated ICH below) is set for all explicit stored discriminants 7493 -- (see einfo.ads for more info). For the above example this gives: 7494 7495 -- Discrim CD ORC ICH 7496 -- ^^^^^^^ ^^ ^^^ ^^^ 7497 -- D1 in R empty itself no 7498 -- D2 in R empty itself no 7499 -- D3 in R empty itself no 7500 7501 -- D1 in T1 D1 in R itself no 7502 -- D2 in T1 D2 in R itself no 7503 -- D3 in T1 D3 in R itself no 7504 7505 -- X1 in T2 D3 in T1 D3 in T2 no 7506 -- X2 in T2 D1 in T1 D1 in T2 no 7507 -- D1 in T2 empty itself yes 7508 -- D2 in T2 empty itself yes 7509 -- D3 in T2 empty itself yes 7510 7511 -- X1 in T3 X1 in T2 D3 in T3 no 7512 -- X2 in T3 X2 in T2 D1 in T3 no 7513 -- D1 in T3 empty itself yes 7514 -- D2 in T3 empty itself yes 7515 -- D3 in T3 empty itself yes 7516 7517 -- Y in T4 X1 in T3 D3 in T3 no 7518 -- D1 in T3 empty itself yes 7519 -- D2 in T3 empty itself yes 7520 -- D3 in T3 empty itself yes 7521 7522 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES 7523 7524 -- Type derivation for tagged types is fairly straightforward. If no 7525 -- discriminants are specified by the derived type, these are inherited 7526 -- from the parent. No explicit stored discriminants are ever necessary. 7527 -- The only manipulation that is done to the tree is that of adding a 7528 -- _parent field with parent type and constrained to the same constraint 7529 -- specified for the parent in the derived type definition. For instance: 7530 7531 -- type R (D1, D2, D3 : Int) is tagged record ... end record; 7532 -- type T1 is new R with null record; 7533 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record; 7534 7535 -- are changed into: 7536 7537 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record 7538 -- _parent : R (D1, D2, D3); 7539 -- end record; 7540 7541 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record 7542 -- _parent : T1 (X2, 88, X1); 7543 -- end record; 7544 7545 -- The discriminants actually present in R, T1 and T2 as well as their CD, 7546 -- ORC and ICH fields are: 7547 7548 -- Discrim CD ORC ICH 7549 -- ^^^^^^^ ^^ ^^^ ^^^ 7550 -- D1 in R empty itself no 7551 -- D2 in R empty itself no 7552 -- D3 in R empty itself no 7553 7554 -- D1 in T1 D1 in R D1 in R no 7555 -- D2 in T1 D2 in R D2 in R no 7556 -- D3 in T1 D3 in R D3 in R no 7557 7558 -- X1 in T2 D3 in T1 D3 in R no 7559 -- X2 in T2 D1 in T1 D1 in R no 7560 7561 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS 7562 -- 7563 -- Regardless of whether we dealing with a tagged or untagged type 7564 -- we will transform all derived type declarations of the form 7565 -- 7566 -- type T is new R (...) [with ...]; 7567 -- or 7568 -- subtype S is R (...); 7569 -- type T is new S [with ...]; 7570 -- into 7571 -- type BT is new R [with ...]; 7572 -- subtype T is BT (...); 7573 -- 7574 -- That is, the base derived type is constrained only if it has no 7575 -- discriminants. The reason for doing this is that GNAT's semantic model 7576 -- assumes that a base type with discriminants is unconstrained. 7577 -- 7578 -- Note that, strictly speaking, the above transformation is not always 7579 -- correct. Consider for instance the following excerpt from ACVC b34011a: 7580 -- 7581 -- procedure B34011A is 7582 -- type REC (D : integer := 0) is record 7583 -- I : Integer; 7584 -- end record; 7585 7586 -- package P is 7587 -- type T6 is new Rec; 7588 -- function F return T6; 7589 -- end P; 7590 7591 -- use P; 7592 -- package Q6 is 7593 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F. 7594 -- end Q6; 7595 -- 7596 -- The definition of Q6.U is illegal. However transforming Q6.U into 7597 7598 -- type BaseU is new T6; 7599 -- subtype U is BaseU (Q6.F.I) 7600 7601 -- turns U into a legal subtype, which is incorrect. To avoid this problem 7602 -- we always analyze the constraint (in this case (Q6.F.I)) before applying 7603 -- the transformation described above. 7604 7605 -- There is another instance where the above transformation is incorrect. 7606 -- Consider: 7607 7608 -- package Pack is 7609 -- type Base (D : Integer) is tagged null record; 7610 -- procedure P (X : Base); 7611 7612 -- type Der is new Base (2) with null record; 7613 -- procedure P (X : Der); 7614 -- end Pack; 7615 7616 -- Then the above transformation turns this into 7617 7618 -- type Der_Base is new Base with null record; 7619 -- -- procedure P (X : Base) is implicitly inherited here 7620 -- -- as procedure P (X : Der_Base). 7621 7622 -- subtype Der is Der_Base (2); 7623 -- procedure P (X : Der); 7624 -- -- The overriding of P (X : Der_Base) is illegal since we 7625 -- -- have a parameter conformance problem. 7626 7627 -- To get around this problem, after having semantically processed Der_Base 7628 -- and the rewritten subtype declaration for Der, we copy Der_Base field 7629 -- Discriminant_Constraint from Der so that when parameter conformance is 7630 -- checked when P is overridden, no semantic errors are flagged. 7631 7632 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS 7633 7634 -- Regardless of whether we are dealing with a tagged or untagged type 7635 -- we will transform all derived type declarations of the form 7636 7637 -- type R (D1, .., Dn : ...) is [tagged] record ...; 7638 -- type T is new R [with ...]; 7639 -- into 7640 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...]; 7641 7642 -- The reason for such transformation is that it allows us to implement a 7643 -- very clean form of component inheritance as explained below. 7644 7645 -- Note that this transformation is not achieved by direct tree rewriting 7646 -- and manipulation, but rather by redoing the semantic actions that the 7647 -- above transformation will entail. This is done directly in routine 7648 -- Inherit_Components. 7649 7650 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE 7651 7652 -- In both tagged and untagged derived types, regular non discriminant 7653 -- components are inherited in the derived type from the parent type. In 7654 -- the absence of discriminants component, inheritance is straightforward 7655 -- as components can simply be copied from the parent. 7656 7657 -- If the parent has discriminants, inheriting components constrained with 7658 -- these discriminants requires caution. Consider the following example: 7659 7660 -- type R (D1, D2 : Positive) is [tagged] record 7661 -- S : String (D1 .. D2); 7662 -- end record; 7663 7664 -- type T1 is new R [with null record]; 7665 -- type T2 (X : positive) is new R (1, X) [with null record]; 7666 7667 -- As explained in 6. above, T1 is rewritten as 7668 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record]; 7669 -- which makes the treatment for T1 and T2 identical. 7670 7671 -- What we want when inheriting S, is that references to D1 and D2 in R are 7672 -- replaced with references to their correct constraints, i.e. D1 and D2 in 7673 -- T1 and 1 and X in T2. So all R's discriminant references are replaced 7674 -- with either discriminant references in the derived type or expressions. 7675 -- This replacement is achieved as follows: before inheriting R's 7676 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is 7677 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1 7678 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible). 7679 -- For T2, for instance, this has the effect of replacing String (D1 .. D2) 7680 -- by String (1 .. X). 7681 7682 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS 7683 7684 -- We explain here the rules governing private type extensions relevant to 7685 -- type derivation. These rules are explained on the following example: 7686 7687 -- type D [(...)] is new A [(...)] with private; <-- partial view 7688 -- type D [(...)] is new P [(...)] with null record; <-- full view 7689 7690 -- Type A is called the ancestor subtype of the private extension. 7691 -- Type P is the parent type of the full view of the private extension. It 7692 -- must be A or a type derived from A. 7693 7694 -- The rules concerning the discriminants of private type extensions are 7695 -- [7.3(10-13)]: 7696 7697 -- o If a private extension inherits known discriminants from the ancestor 7698 -- subtype, then the full view must also inherit its discriminants from 7699 -- the ancestor subtype and the parent subtype of the full view must be 7700 -- constrained if and only if the ancestor subtype is constrained. 7701 7702 -- o If a partial view has unknown discriminants, then the full view may 7703 -- define a definite or an indefinite subtype, with or without 7704 -- discriminants. 7705 7706 -- o If a partial view has neither known nor unknown discriminants, then 7707 -- the full view must define a definite subtype. 7708 7709 -- o If the ancestor subtype of a private extension has constrained 7710 -- discriminants, then the parent subtype of the full view must impose a 7711 -- statically matching constraint on those discriminants. 7712 7713 -- This means that only the following forms of private extensions are 7714 -- allowed: 7715 7716 -- type D is new A with private; <-- partial view 7717 -- type D is new P with null record; <-- full view 7718 7719 -- If A has no discriminants than P has no discriminants, otherwise P must 7720 -- inherit A's discriminants. 7721 7722 -- type D is new A (...) with private; <-- partial view 7723 -- type D is new P (:::) with null record; <-- full view 7724 7725 -- P must inherit A's discriminants and (...) and (:::) must statically 7726 -- match. 7727 7728 -- subtype A is R (...); 7729 -- type D is new A with private; <-- partial view 7730 -- type D is new P with null record; <-- full view 7731 7732 -- P must have inherited R's discriminants and must be derived from A or 7733 -- any of its subtypes. 7734 7735 -- type D (..) is new A with private; <-- partial view 7736 -- type D (..) is new P [(:::)] with null record; <-- full view 7737 7738 -- No specific constraints on P's discriminants or constraint (:::). 7739 -- Note that A can be unconstrained, but the parent subtype P must either 7740 -- be constrained or (:::) must be present. 7741 7742 -- type D (..) is new A [(...)] with private; <-- partial view 7743 -- type D (..) is new P [(:::)] with null record; <-- full view 7744 7745 -- P's constraints on A's discriminants must statically match those 7746 -- imposed by (...). 7747 7748 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS 7749 7750 -- The full view of a private extension is handled exactly as described 7751 -- above. The model chose for the private view of a private extension is 7752 -- the same for what concerns discriminants (i.e. they receive the same 7753 -- treatment as in the tagged case). However, the private view of the 7754 -- private extension always inherits the components of the parent base, 7755 -- without replacing any discriminant reference. Strictly speaking this is 7756 -- incorrect. However, Gigi never uses this view to generate code so this 7757 -- is a purely semantic issue. In theory, a set of transformations similar 7758 -- to those given in 5. and 6. above could be applied to private views of 7759 -- private extensions to have the same model of component inheritance as 7760 -- for non private extensions. However, this is not done because it would 7761 -- further complicate private type processing. Semantically speaking, this 7762 -- leaves us in an uncomfortable situation. As an example consider: 7763 7764 -- package Pack is 7765 -- type R (D : integer) is tagged record 7766 -- S : String (1 .. D); 7767 -- end record; 7768 -- procedure P (X : R); 7769 -- type T is new R (1) with private; 7770 -- private 7771 -- type T is new R (1) with null record; 7772 -- end; 7773 7774 -- This is transformed into: 7775 7776 -- package Pack is 7777 -- type R (D : integer) is tagged record 7778 -- S : String (1 .. D); 7779 -- end record; 7780 -- procedure P (X : R); 7781 -- type T is new R (1) with private; 7782 -- private 7783 -- type BaseT is new R with null record; 7784 -- subtype T is BaseT (1); 7785 -- end; 7786 7787 -- (strictly speaking the above is incorrect Ada) 7788 7789 -- From the semantic standpoint the private view of private extension T 7790 -- should be flagged as constrained since one can clearly have 7791 -- 7792 -- Obj : T; 7793 -- 7794 -- in a unit withing Pack. However, when deriving subprograms for the 7795 -- private view of private extension T, T must be seen as unconstrained 7796 -- since T has discriminants (this is a constraint of the current 7797 -- subprogram derivation model). Thus, when processing the private view of 7798 -- a private extension such as T, we first mark T as unconstrained, we 7799 -- process it, we perform program derivation and just before returning from 7800 -- Build_Derived_Record_Type we mark T as constrained. 7801 7802 -- ??? Are there are other uncomfortable cases that we will have to 7803 -- deal with. 7804 7805 -- 10. RECORD_TYPE_WITH_PRIVATE complications 7806 7807 -- Types that are derived from a visible record type and have a private 7808 -- extension present other peculiarities. They behave mostly like private 7809 -- types, but if they have primitive operations defined, these will not 7810 -- have the proper signatures for further inheritance, because other 7811 -- primitive operations will use the implicit base that we define for 7812 -- private derivations below. This affect subprogram inheritance (see 7813 -- Derive_Subprograms for details). We also derive the implicit base from 7814 -- the base type of the full view, so that the implicit base is a record 7815 -- type and not another private type, This avoids infinite loops. 7816 7817 procedure Build_Derived_Record_Type 7818 (N : Node_Id; 7819 Parent_Type : Entity_Id; 7820 Derived_Type : Entity_Id; 7821 Derive_Subps : Boolean := True) 7822 is 7823 Discriminant_Specs : constant Boolean := 7824 Present (Discriminant_Specifications (N)); 7825 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type); 7826 Loc : constant Source_Ptr := Sloc (N); 7827 Private_Extension : constant Boolean := 7828 Nkind (N) = N_Private_Extension_Declaration; 7829 Assoc_List : Elist_Id; 7830 Constraint_Present : Boolean; 7831 Constrs : Elist_Id; 7832 Discrim : Entity_Id; 7833 Indic : Node_Id; 7834 Inherit_Discrims : Boolean := False; 7835 Last_Discrim : Entity_Id; 7836 New_Base : Entity_Id; 7837 New_Decl : Node_Id; 7838 New_Discrs : Elist_Id; 7839 New_Indic : Node_Id; 7840 Parent_Base : Entity_Id; 7841 Save_Etype : Entity_Id; 7842 Save_Discr_Constr : Elist_Id; 7843 Save_Next_Entity : Entity_Id; 7844 Type_Def : Node_Id; 7845 7846 Discs : Elist_Id := New_Elmt_List; 7847 -- An empty Discs list means that there were no constraints in the 7848 -- subtype indication or that there was an error processing it. 7849 7850 begin 7851 if Ekind (Parent_Type) = E_Record_Type_With_Private 7852 and then Present (Full_View (Parent_Type)) 7853 and then Has_Discriminants (Parent_Type) 7854 then 7855 Parent_Base := Base_Type (Full_View (Parent_Type)); 7856 else 7857 Parent_Base := Base_Type (Parent_Type); 7858 end if; 7859 7860 -- AI05-0115 : if this is a derivation from a private type in some 7861 -- other scope that may lead to invisible components for the derived 7862 -- type, mark it accordingly. 7863 7864 if Is_Private_Type (Parent_Type) then 7865 if Scope (Parent_Type) = Scope (Derived_Type) then 7866 null; 7867 7868 elsif In_Open_Scopes (Scope (Parent_Type)) 7869 and then In_Private_Part (Scope (Parent_Type)) 7870 then 7871 null; 7872 7873 else 7874 Set_Has_Private_Ancestor (Derived_Type); 7875 end if; 7876 7877 else 7878 Set_Has_Private_Ancestor 7879 (Derived_Type, Has_Private_Ancestor (Parent_Type)); 7880 end if; 7881 7882 -- Before we start the previously documented transformations, here is 7883 -- little fix for size and alignment of tagged types. Normally when we 7884 -- derive type D from type P, we copy the size and alignment of P as the 7885 -- default for D, and in the absence of explicit representation clauses 7886 -- for D, the size and alignment are indeed the same as the parent. 7887 7888 -- But this is wrong for tagged types, since fields may be added, and 7889 -- the default size may need to be larger, and the default alignment may 7890 -- need to be larger. 7891 7892 -- We therefore reset the size and alignment fields in the tagged case. 7893 -- Note that the size and alignment will in any case be at least as 7894 -- large as the parent type (since the derived type has a copy of the 7895 -- parent type in the _parent field) 7896 7897 -- The type is also marked as being tagged here, which is needed when 7898 -- processing components with a self-referential anonymous access type 7899 -- in the call to Check_Anonymous_Access_Components below. Note that 7900 -- this flag is also set later on for completeness. 7901 7902 if Is_Tagged then 7903 Set_Is_Tagged_Type (Derived_Type); 7904 Init_Size_Align (Derived_Type); 7905 end if; 7906 7907 -- STEP 0a: figure out what kind of derived type declaration we have 7908 7909 if Private_Extension then 7910 Type_Def := N; 7911 Set_Ekind (Derived_Type, E_Record_Type_With_Private); 7912 Set_Default_SSO (Derived_Type); 7913 7914 else 7915 Type_Def := Type_Definition (N); 7916 7917 -- Ekind (Parent_Base) is not necessarily E_Record_Type since 7918 -- Parent_Base can be a private type or private extension. However, 7919 -- for tagged types with an extension the newly added fields are 7920 -- visible and hence the Derived_Type is always an E_Record_Type. 7921 -- (except that the parent may have its own private fields). 7922 -- For untagged types we preserve the Ekind of the Parent_Base. 7923 7924 if Present (Record_Extension_Part (Type_Def)) then 7925 Set_Ekind (Derived_Type, E_Record_Type); 7926 Set_Default_SSO (Derived_Type); 7927 7928 -- Create internal access types for components with anonymous 7929 -- access types. 7930 7931 if Ada_Version >= Ada_2005 then 7932 Check_Anonymous_Access_Components 7933 (N, Derived_Type, Derived_Type, 7934 Component_List (Record_Extension_Part (Type_Def))); 7935 end if; 7936 7937 else 7938 Set_Ekind (Derived_Type, Ekind (Parent_Base)); 7939 end if; 7940 end if; 7941 7942 -- Indic can either be an N_Identifier if the subtype indication 7943 -- contains no constraint or an N_Subtype_Indication if the subtype 7944 -- indication has a constraint. 7945 7946 Indic := Subtype_Indication (Type_Def); 7947 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication); 7948 7949 -- Check that the type has visible discriminants. The type may be 7950 -- a private type with unknown discriminants whose full view has 7951 -- discriminants which are invisible. 7952 7953 if Constraint_Present then 7954 if not Has_Discriminants (Parent_Base) 7955 or else 7956 (Has_Unknown_Discriminants (Parent_Base) 7957 and then Is_Private_Type (Parent_Base)) 7958 then 7959 Error_Msg_N 7960 ("invalid constraint: type has no discriminant", 7961 Constraint (Indic)); 7962 7963 Constraint_Present := False; 7964 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic))); 7965 7966 elsif Is_Constrained (Parent_Type) then 7967 Error_Msg_N 7968 ("invalid constraint: parent type is already constrained", 7969 Constraint (Indic)); 7970 7971 Constraint_Present := False; 7972 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic))); 7973 end if; 7974 end if; 7975 7976 -- STEP 0b: If needed, apply transformation given in point 5. above 7977 7978 if not Private_Extension 7979 and then Has_Discriminants (Parent_Type) 7980 and then not Discriminant_Specs 7981 and then (Is_Constrained (Parent_Type) or else Constraint_Present) 7982 then 7983 -- First, we must analyze the constraint (see comment in point 5.) 7984 -- The constraint may come from the subtype indication of the full 7985 -- declaration. 7986 7987 if Constraint_Present then 7988 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic); 7989 7990 -- If there is no explicit constraint, there might be one that is 7991 -- inherited from a constrained parent type. In that case verify that 7992 -- it conforms to the constraint in the partial view. In perverse 7993 -- cases the parent subtypes of the partial and full view can have 7994 -- different constraints. 7995 7996 elsif Present (Stored_Constraint (Parent_Type)) then 7997 New_Discrs := Stored_Constraint (Parent_Type); 7998 7999 else 8000 New_Discrs := No_Elist; 8001 end if; 8002 8003 if Has_Discriminants (Derived_Type) 8004 and then Has_Private_Declaration (Derived_Type) 8005 and then Present (Discriminant_Constraint (Derived_Type)) 8006 and then Present (New_Discrs) 8007 then 8008 -- Verify that constraints of the full view statically match 8009 -- those given in the partial view. 8010 8011 declare 8012 C1, C2 : Elmt_Id; 8013 8014 begin 8015 C1 := First_Elmt (New_Discrs); 8016 C2 := First_Elmt (Discriminant_Constraint (Derived_Type)); 8017 while Present (C1) and then Present (C2) loop 8018 if Fully_Conformant_Expressions (Node (C1), Node (C2)) 8019 or else 8020 (Is_OK_Static_Expression (Node (C1)) 8021 and then Is_OK_Static_Expression (Node (C2)) 8022 and then 8023 Expr_Value (Node (C1)) = Expr_Value (Node (C2))) 8024 then 8025 null; 8026 8027 else 8028 if Constraint_Present then 8029 Error_Msg_N 8030 ("constraint not conformant to previous declaration", 8031 Node (C1)); 8032 else 8033 Error_Msg_N 8034 ("constraint of full view is incompatible " 8035 & "with partial view", N); 8036 end if; 8037 end if; 8038 8039 Next_Elmt (C1); 8040 Next_Elmt (C2); 8041 end loop; 8042 end; 8043 end if; 8044 8045 -- Insert and analyze the declaration for the unconstrained base type 8046 8047 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B'); 8048 8049 New_Decl := 8050 Make_Full_Type_Declaration (Loc, 8051 Defining_Identifier => New_Base, 8052 Type_Definition => 8053 Make_Derived_Type_Definition (Loc, 8054 Abstract_Present => Abstract_Present (Type_Def), 8055 Limited_Present => Limited_Present (Type_Def), 8056 Subtype_Indication => 8057 New_Occurrence_Of (Parent_Base, Loc), 8058 Record_Extension_Part => 8059 Relocate_Node (Record_Extension_Part (Type_Def)), 8060 Interface_List => Interface_List (Type_Def))); 8061 8062 Set_Parent (New_Decl, Parent (N)); 8063 Mark_Rewrite_Insertion (New_Decl); 8064 Insert_Before (N, New_Decl); 8065 8066 -- In the extension case, make sure ancestor is frozen appropriately 8067 -- (see also non-discriminated case below). 8068 8069 if Present (Record_Extension_Part (Type_Def)) 8070 or else Is_Interface (Parent_Base) 8071 then 8072 Freeze_Before (New_Decl, Parent_Type); 8073 end if; 8074 8075 -- Note that this call passes False for the Derive_Subps parameter 8076 -- because subprogram derivation is deferred until after creating 8077 -- the subtype (see below). 8078 8079 Build_Derived_Type 8080 (New_Decl, Parent_Base, New_Base, 8081 Is_Completion => False, Derive_Subps => False); 8082 8083 -- ??? This needs re-examination to determine whether the 8084 -- above call can simply be replaced by a call to Analyze. 8085 8086 Set_Analyzed (New_Decl); 8087 8088 -- Insert and analyze the declaration for the constrained subtype 8089 8090 if Constraint_Present then 8091 New_Indic := 8092 Make_Subtype_Indication (Loc, 8093 Subtype_Mark => New_Occurrence_Of (New_Base, Loc), 8094 Constraint => Relocate_Node (Constraint (Indic))); 8095 8096 else 8097 declare 8098 Constr_List : constant List_Id := New_List; 8099 C : Elmt_Id; 8100 Expr : Node_Id; 8101 8102 begin 8103 C := First_Elmt (Discriminant_Constraint (Parent_Type)); 8104 while Present (C) loop 8105 Expr := Node (C); 8106 8107 -- It is safe here to call New_Copy_Tree since we called 8108 -- Force_Evaluation on each constraint previously 8109 -- in Build_Discriminant_Constraints. 8110 8111 Append (New_Copy_Tree (Expr), To => Constr_List); 8112 8113 Next_Elmt (C); 8114 end loop; 8115 8116 New_Indic := 8117 Make_Subtype_Indication (Loc, 8118 Subtype_Mark => New_Occurrence_Of (New_Base, Loc), 8119 Constraint => 8120 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List)); 8121 end; 8122 end if; 8123 8124 Rewrite (N, 8125 Make_Subtype_Declaration (Loc, 8126 Defining_Identifier => Derived_Type, 8127 Subtype_Indication => New_Indic)); 8128 8129 Analyze (N); 8130 8131 -- Derivation of subprograms must be delayed until the full subtype 8132 -- has been established, to ensure proper overriding of subprograms 8133 -- inherited by full types. If the derivations occurred as part of 8134 -- the call to Build_Derived_Type above, then the check for type 8135 -- conformance would fail because earlier primitive subprograms 8136 -- could still refer to the full type prior the change to the new 8137 -- subtype and hence would not match the new base type created here. 8138 -- Subprograms are not derived, however, when Derive_Subps is False 8139 -- (since otherwise there could be redundant derivations). 8140 8141 if Derive_Subps then 8142 Derive_Subprograms (Parent_Type, Derived_Type); 8143 end if; 8144 8145 -- For tagged types the Discriminant_Constraint of the new base itype 8146 -- is inherited from the first subtype so that no subtype conformance 8147 -- problem arise when the first subtype overrides primitive 8148 -- operations inherited by the implicit base type. 8149 8150 if Is_Tagged then 8151 Set_Discriminant_Constraint 8152 (New_Base, Discriminant_Constraint (Derived_Type)); 8153 end if; 8154 8155 return; 8156 end if; 8157 8158 -- If we get here Derived_Type will have no discriminants or it will be 8159 -- a discriminated unconstrained base type. 8160 8161 -- STEP 1a: perform preliminary actions/checks for derived tagged types 8162 8163 if Is_Tagged then 8164 8165 -- The parent type is frozen for non-private extensions (RM 13.14(7)) 8166 -- The declaration of a specific descendant of an interface type 8167 -- freezes the interface type (RM 13.14). 8168 8169 if not Private_Extension or else Is_Interface (Parent_Base) then 8170 Freeze_Before (N, Parent_Type); 8171 end if; 8172 8173 -- In Ada 2005 (AI-344), the restriction that a derived tagged type 8174 -- cannot be declared at a deeper level than its parent type is 8175 -- removed. The check on derivation within a generic body is also 8176 -- relaxed, but there's a restriction that a derived tagged type 8177 -- cannot be declared in a generic body if it's derived directly 8178 -- or indirectly from a formal type of that generic. 8179 8180 if Ada_Version >= Ada_2005 then 8181 if Present (Enclosing_Generic_Body (Derived_Type)) then 8182 declare 8183 Ancestor_Type : Entity_Id; 8184 8185 begin 8186 -- Check to see if any ancestor of the derived type is a 8187 -- formal type. 8188 8189 Ancestor_Type := Parent_Type; 8190 while not Is_Generic_Type (Ancestor_Type) 8191 and then Etype (Ancestor_Type) /= Ancestor_Type 8192 loop 8193 Ancestor_Type := Etype (Ancestor_Type); 8194 end loop; 8195 8196 -- If the derived type does have a formal type as an 8197 -- ancestor, then it's an error if the derived type is 8198 -- declared within the body of the generic unit that 8199 -- declares the formal type in its generic formal part. It's 8200 -- sufficient to check whether the ancestor type is declared 8201 -- inside the same generic body as the derived type (such as 8202 -- within a nested generic spec), in which case the 8203 -- derivation is legal. If the formal type is declared 8204 -- outside of that generic body, then it's guaranteed that 8205 -- the derived type is declared within the generic body of 8206 -- the generic unit declaring the formal type. 8207 8208 if Is_Generic_Type (Ancestor_Type) 8209 and then Enclosing_Generic_Body (Ancestor_Type) /= 8210 Enclosing_Generic_Body (Derived_Type) 8211 then 8212 Error_Msg_NE 8213 ("parent type of& must not be descendant of formal type" 8214 & " of an enclosing generic body", 8215 Indic, Derived_Type); 8216 end if; 8217 end; 8218 end if; 8219 8220 elsif Type_Access_Level (Derived_Type) /= 8221 Type_Access_Level (Parent_Type) 8222 and then not Is_Generic_Type (Derived_Type) 8223 then 8224 if Is_Controlled (Parent_Type) then 8225 Error_Msg_N 8226 ("controlled type must be declared at the library level", 8227 Indic); 8228 else 8229 Error_Msg_N 8230 ("type extension at deeper accessibility level than parent", 8231 Indic); 8232 end if; 8233 8234 else 8235 declare 8236 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type); 8237 begin 8238 if Present (GB) 8239 and then GB /= Enclosing_Generic_Body (Parent_Base) 8240 then 8241 Error_Msg_NE 8242 ("parent type of& must not be outside generic body" 8243 & " (RM 3.9.1(4))", 8244 Indic, Derived_Type); 8245 end if; 8246 end; 8247 end if; 8248 end if; 8249 8250 -- Ada 2005 (AI-251) 8251 8252 if Ada_Version >= Ada_2005 and then Is_Tagged then 8253 8254 -- "The declaration of a specific descendant of an interface type 8255 -- freezes the interface type" (RM 13.14). 8256 8257 declare 8258 Iface : Node_Id; 8259 begin 8260 if Is_Non_Empty_List (Interface_List (Type_Def)) then 8261 Iface := First (Interface_List (Type_Def)); 8262 while Present (Iface) loop 8263 Freeze_Before (N, Etype (Iface)); 8264 Next (Iface); 8265 end loop; 8266 end if; 8267 end; 8268 end if; 8269 8270 -- STEP 1b : preliminary cleanup of the full view of private types 8271 8272 -- If the type is already marked as having discriminants, then it's the 8273 -- completion of a private type or private extension and we need to 8274 -- retain the discriminants from the partial view if the current 8275 -- declaration has Discriminant_Specifications so that we can verify 8276 -- conformance. However, we must remove any existing components that 8277 -- were inherited from the parent (and attached in Copy_And_Swap) 8278 -- because the full type inherits all appropriate components anyway, and 8279 -- we do not want the partial view's components interfering. 8280 8281 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then 8282 Discrim := First_Discriminant (Derived_Type); 8283 loop 8284 Last_Discrim := Discrim; 8285 Next_Discriminant (Discrim); 8286 exit when No (Discrim); 8287 end loop; 8288 8289 Set_Last_Entity (Derived_Type, Last_Discrim); 8290 8291 -- In all other cases wipe out the list of inherited components (even 8292 -- inherited discriminants), it will be properly rebuilt here. 8293 8294 else 8295 Set_First_Entity (Derived_Type, Empty); 8296 Set_Last_Entity (Derived_Type, Empty); 8297 end if; 8298 8299 -- STEP 1c: Initialize some flags for the Derived_Type 8300 8301 -- The following flags must be initialized here so that 8302 -- Process_Discriminants can check that discriminants of tagged types do 8303 -- not have a default initial value and that access discriminants are 8304 -- only specified for limited records. For completeness, these flags are 8305 -- also initialized along with all the other flags below. 8306 8307 -- AI-419: Limitedness is not inherited from an interface parent, so to 8308 -- be limited in that case the type must be explicitly declared as 8309 -- limited. However, task and protected interfaces are always limited. 8310 8311 if Limited_Present (Type_Def) then 8312 Set_Is_Limited_Record (Derived_Type); 8313 8314 elsif Is_Limited_Record (Parent_Type) 8315 or else (Present (Full_View (Parent_Type)) 8316 and then Is_Limited_Record (Full_View (Parent_Type))) 8317 then 8318 if not Is_Interface (Parent_Type) 8319 or else Is_Synchronized_Interface (Parent_Type) 8320 or else Is_Protected_Interface (Parent_Type) 8321 or else Is_Task_Interface (Parent_Type) 8322 then 8323 Set_Is_Limited_Record (Derived_Type); 8324 end if; 8325 end if; 8326 8327 -- STEP 2a: process discriminants of derived type if any 8328 8329 Push_Scope (Derived_Type); 8330 8331 if Discriminant_Specs then 8332 Set_Has_Unknown_Discriminants (Derived_Type, False); 8333 8334 -- The following call initializes fields Has_Discriminants and 8335 -- Discriminant_Constraint, unless we are processing the completion 8336 -- of a private type declaration. 8337 8338 Check_Or_Process_Discriminants (N, Derived_Type); 8339 8340 -- For untagged types, the constraint on the Parent_Type must be 8341 -- present and is used to rename the discriminants. 8342 8343 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then 8344 Error_Msg_N ("untagged parent must have discriminants", Indic); 8345 8346 elsif not Is_Tagged and then not Constraint_Present then 8347 Error_Msg_N 8348 ("discriminant constraint needed for derived untagged records", 8349 Indic); 8350 8351 -- Otherwise the parent subtype must be constrained unless we have a 8352 -- private extension. 8353 8354 elsif not Constraint_Present 8355 and then not Private_Extension 8356 and then not Is_Constrained (Parent_Type) 8357 then 8358 Error_Msg_N 8359 ("unconstrained type not allowed in this context", Indic); 8360 8361 elsif Constraint_Present then 8362 -- The following call sets the field Corresponding_Discriminant 8363 -- for the discriminants in the Derived_Type. 8364 8365 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True); 8366 8367 -- For untagged types all new discriminants must rename 8368 -- discriminants in the parent. For private extensions new 8369 -- discriminants cannot rename old ones (implied by [7.3(13)]). 8370 8371 Discrim := First_Discriminant (Derived_Type); 8372 while Present (Discrim) loop 8373 if not Is_Tagged 8374 and then No (Corresponding_Discriminant (Discrim)) 8375 then 8376 Error_Msg_N 8377 ("new discriminants must constrain old ones", Discrim); 8378 8379 elsif Private_Extension 8380 and then Present (Corresponding_Discriminant (Discrim)) 8381 then 8382 Error_Msg_N 8383 ("only static constraints allowed for parent" 8384 & " discriminants in the partial view", Indic); 8385 exit; 8386 end if; 8387 8388 -- If a new discriminant is used in the constraint, then its 8389 -- subtype must be statically compatible with the parent 8390 -- discriminant's subtype (3.7(15)). 8391 8392 -- However, if the record contains an array constrained by 8393 -- the discriminant but with some different bound, the compiler 8394 -- attemps to create a smaller range for the discriminant type. 8395 -- (See exp_ch3.Adjust_Discriminants). In this case, where 8396 -- the discriminant type is a scalar type, the check must use 8397 -- the original discriminant type in the parent declaration. 8398 8399 declare 8400 Corr_Disc : constant Entity_Id := 8401 Corresponding_Discriminant (Discrim); 8402 Disc_Type : constant Entity_Id := Etype (Discrim); 8403 Corr_Type : Entity_Id; 8404 8405 begin 8406 if Present (Corr_Disc) then 8407 if Is_Scalar_Type (Disc_Type) then 8408 Corr_Type := 8409 Entity (Discriminant_Type (Parent (Corr_Disc))); 8410 else 8411 Corr_Type := Etype (Corr_Disc); 8412 end if; 8413 8414 if not 8415 Subtypes_Statically_Compatible (Disc_Type, Corr_Type) 8416 then 8417 Error_Msg_N 8418 ("subtype must be compatible " 8419 & "with parent discriminant", 8420 Discrim); 8421 end if; 8422 end if; 8423 end; 8424 8425 Next_Discriminant (Discrim); 8426 end loop; 8427 8428 -- Check whether the constraints of the full view statically 8429 -- match those imposed by the parent subtype [7.3(13)]. 8430 8431 if Present (Stored_Constraint (Derived_Type)) then 8432 declare 8433 C1, C2 : Elmt_Id; 8434 8435 begin 8436 C1 := First_Elmt (Discs); 8437 C2 := First_Elmt (Stored_Constraint (Derived_Type)); 8438 while Present (C1) and then Present (C2) loop 8439 if not 8440 Fully_Conformant_Expressions (Node (C1), Node (C2)) 8441 then 8442 Error_Msg_N 8443 ("not conformant with previous declaration", 8444 Node (C1)); 8445 end if; 8446 8447 Next_Elmt (C1); 8448 Next_Elmt (C2); 8449 end loop; 8450 end; 8451 end if; 8452 end if; 8453 8454 -- STEP 2b: No new discriminants, inherit discriminants if any 8455 8456 else 8457 if Private_Extension then 8458 Set_Has_Unknown_Discriminants 8459 (Derived_Type, 8460 Has_Unknown_Discriminants (Parent_Type) 8461 or else Unknown_Discriminants_Present (N)); 8462 8463 -- The partial view of the parent may have unknown discriminants, 8464 -- but if the full view has discriminants and the parent type is 8465 -- in scope they must be inherited. 8466 8467 elsif Has_Unknown_Discriminants (Parent_Type) 8468 and then 8469 (not Has_Discriminants (Parent_Type) 8470 or else not In_Open_Scopes (Scope (Parent_Type))) 8471 then 8472 Set_Has_Unknown_Discriminants (Derived_Type); 8473 end if; 8474 8475 if not Has_Unknown_Discriminants (Derived_Type) 8476 and then not Has_Unknown_Discriminants (Parent_Base) 8477 and then Has_Discriminants (Parent_Type) 8478 then 8479 Inherit_Discrims := True; 8480 Set_Has_Discriminants 8481 (Derived_Type, True); 8482 Set_Discriminant_Constraint 8483 (Derived_Type, Discriminant_Constraint (Parent_Base)); 8484 end if; 8485 8486 -- The following test is true for private types (remember 8487 -- transformation 5. is not applied to those) and in an error 8488 -- situation. 8489 8490 if Constraint_Present then 8491 Discs := Build_Discriminant_Constraints (Parent_Type, Indic); 8492 end if; 8493 8494 -- For now mark a new derived type as constrained only if it has no 8495 -- discriminants. At the end of Build_Derived_Record_Type we properly 8496 -- set this flag in the case of private extensions. See comments in 8497 -- point 9. just before body of Build_Derived_Record_Type. 8498 8499 Set_Is_Constrained 8500 (Derived_Type, 8501 not (Inherit_Discrims 8502 or else Has_Unknown_Discriminants (Derived_Type))); 8503 end if; 8504 8505 -- STEP 3: initialize fields of derived type 8506 8507 Set_Is_Tagged_Type (Derived_Type, Is_Tagged); 8508 Set_Stored_Constraint (Derived_Type, No_Elist); 8509 8510 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces 8511 -- but cannot be interfaces 8512 8513 if not Private_Extension 8514 and then Ekind (Derived_Type) /= E_Private_Type 8515 and then Ekind (Derived_Type) /= E_Limited_Private_Type 8516 then 8517 if Interface_Present (Type_Def) then 8518 Analyze_Interface_Declaration (Derived_Type, Type_Def); 8519 end if; 8520 8521 Set_Interfaces (Derived_Type, No_Elist); 8522 end if; 8523 8524 -- Fields inherited from the Parent_Type 8525 8526 Set_Has_Specified_Layout 8527 (Derived_Type, Has_Specified_Layout (Parent_Type)); 8528 Set_Is_Limited_Composite 8529 (Derived_Type, Is_Limited_Composite (Parent_Type)); 8530 Set_Is_Private_Composite 8531 (Derived_Type, Is_Private_Composite (Parent_Type)); 8532 8533 if Is_Tagged_Type (Parent_Type) then 8534 Set_No_Tagged_Streams_Pragma 8535 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type)); 8536 end if; 8537 8538 -- Fields inherited from the Parent_Base 8539 8540 Set_Has_Controlled_Component 8541 (Derived_Type, Has_Controlled_Component (Parent_Base)); 8542 Set_Has_Non_Standard_Rep 8543 (Derived_Type, Has_Non_Standard_Rep (Parent_Base)); 8544 Set_Has_Primitive_Operations 8545 (Derived_Type, Has_Primitive_Operations (Parent_Base)); 8546 8547 -- Fields inherited from the Parent_Base in the non-private case 8548 8549 if Ekind (Derived_Type) = E_Record_Type then 8550 Set_Has_Complex_Representation 8551 (Derived_Type, Has_Complex_Representation (Parent_Base)); 8552 end if; 8553 8554 -- Fields inherited from the Parent_Base for record types 8555 8556 if Is_Record_Type (Derived_Type) then 8557 declare 8558 Parent_Full : Entity_Id; 8559 8560 begin 8561 -- Ekind (Parent_Base) is not necessarily E_Record_Type since 8562 -- Parent_Base can be a private type or private extension. Go 8563 -- to the full view here to get the E_Record_Type specific flags. 8564 8565 if Present (Full_View (Parent_Base)) then 8566 Parent_Full := Full_View (Parent_Base); 8567 else 8568 Parent_Full := Parent_Base; 8569 end if; 8570 8571 Set_OK_To_Reorder_Components 8572 (Derived_Type, OK_To_Reorder_Components (Parent_Full)); 8573 end; 8574 end if; 8575 8576 -- Set fields for private derived types 8577 8578 if Is_Private_Type (Derived_Type) then 8579 Set_Depends_On_Private (Derived_Type, True); 8580 Set_Private_Dependents (Derived_Type, New_Elmt_List); 8581 8582 -- Inherit fields from non private record types. If this is the 8583 -- completion of a derivation from a private type, the parent itself 8584 -- is private, and the attributes come from its full view, which must 8585 -- be present. 8586 8587 else 8588 if Is_Private_Type (Parent_Base) 8589 and then not Is_Record_Type (Parent_Base) 8590 then 8591 Set_Component_Alignment 8592 (Derived_Type, Component_Alignment (Full_View (Parent_Base))); 8593 Set_C_Pass_By_Copy 8594 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base))); 8595 else 8596 Set_Component_Alignment 8597 (Derived_Type, Component_Alignment (Parent_Base)); 8598 Set_C_Pass_By_Copy 8599 (Derived_Type, C_Pass_By_Copy (Parent_Base)); 8600 end if; 8601 end if; 8602 8603 -- Set fields for tagged types 8604 8605 if Is_Tagged then 8606 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List); 8607 8608 -- All tagged types defined in Ada.Finalization are controlled 8609 8610 if Chars (Scope (Derived_Type)) = Name_Finalization 8611 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada 8612 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard 8613 then 8614 Set_Is_Controlled (Derived_Type); 8615 else 8616 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base)); 8617 end if; 8618 8619 -- Minor optimization: there is no need to generate the class-wide 8620 -- entity associated with an underlying record view. 8621 8622 if not Is_Underlying_Record_View (Derived_Type) then 8623 Make_Class_Wide_Type (Derived_Type); 8624 end if; 8625 8626 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def)); 8627 8628 if Has_Discriminants (Derived_Type) 8629 and then Constraint_Present 8630 then 8631 Set_Stored_Constraint 8632 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs)); 8633 end if; 8634 8635 if Ada_Version >= Ada_2005 then 8636 declare 8637 Ifaces_List : Elist_Id; 8638 8639 begin 8640 -- Checks rules 3.9.4 (13/2 and 14/2) 8641 8642 if Comes_From_Source (Derived_Type) 8643 and then not Is_Private_Type (Derived_Type) 8644 and then Is_Interface (Parent_Type) 8645 and then not Is_Interface (Derived_Type) 8646 then 8647 if Is_Task_Interface (Parent_Type) then 8648 Error_Msg_N 8649 ("(Ada 2005) task type required (RM 3.9.4 (13.2))", 8650 Derived_Type); 8651 8652 elsif Is_Protected_Interface (Parent_Type) then 8653 Error_Msg_N 8654 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))", 8655 Derived_Type); 8656 end if; 8657 end if; 8658 8659 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2) 8660 8661 Check_Interfaces (N, Type_Def); 8662 8663 -- Ada 2005 (AI-251): Collect the list of progenitors that are 8664 -- not already in the parents. 8665 8666 Collect_Interfaces 8667 (T => Derived_Type, 8668 Ifaces_List => Ifaces_List, 8669 Exclude_Parents => True); 8670 8671 Set_Interfaces (Derived_Type, Ifaces_List); 8672 8673 -- If the derived type is the anonymous type created for 8674 -- a declaration whose parent has a constraint, propagate 8675 -- the interface list to the source type. This must be done 8676 -- prior to the completion of the analysis of the source type 8677 -- because the components in the extension may contain current 8678 -- instances whose legality depends on some ancestor. 8679 8680 if Is_Itype (Derived_Type) then 8681 declare 8682 Def : constant Node_Id := 8683 Associated_Node_For_Itype (Derived_Type); 8684 begin 8685 if Present (Def) 8686 and then Nkind (Def) = N_Full_Type_Declaration 8687 then 8688 Set_Interfaces 8689 (Defining_Identifier (Def), Ifaces_List); 8690 end if; 8691 end; 8692 end if; 8693 8694 -- Propagate inherited invariant information of parents 8695 -- and progenitors 8696 8697 if Ada_Version >= Ada_2012 8698 and then not Is_Interface (Derived_Type) 8699 then 8700 if Has_Inheritable_Invariants (Parent_Type) then 8701 Set_Has_Invariants (Derived_Type); 8702 Set_Has_Inheritable_Invariants (Derived_Type); 8703 8704 elsif not Is_Empty_Elmt_List (Ifaces_List) then 8705 declare 8706 AI : Elmt_Id; 8707 8708 begin 8709 AI := First_Elmt (Ifaces_List); 8710 while Present (AI) loop 8711 if Has_Inheritable_Invariants (Node (AI)) then 8712 Set_Has_Invariants (Derived_Type); 8713 Set_Has_Inheritable_Invariants (Derived_Type); 8714 8715 exit; 8716 end if; 8717 8718 Next_Elmt (AI); 8719 end loop; 8720 end; 8721 end if; 8722 end if; 8723 8724 -- A type extension is automatically Ghost when one of its 8725 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is 8726 -- also inherited when the parent type is Ghost, but this is 8727 -- done in Build_Derived_Type as the mechanism also handles 8728 -- untagged derivations. 8729 8730 if Implements_Ghost_Interface (Derived_Type) then 8731 Set_Is_Ghost_Entity (Derived_Type); 8732 end if; 8733 end; 8734 end if; 8735 8736 else 8737 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base)); 8738 Set_Has_Non_Standard_Rep 8739 (Derived_Type, Has_Non_Standard_Rep (Parent_Base)); 8740 end if; 8741 8742 -- STEP 4: Inherit components from the parent base and constrain them. 8743 -- Apply the second transformation described in point 6. above. 8744 8745 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims) 8746 or else not Has_Discriminants (Parent_Type) 8747 or else not Is_Constrained (Parent_Type) 8748 then 8749 Constrs := Discs; 8750 else 8751 Constrs := Discriminant_Constraint (Parent_Type); 8752 end if; 8753 8754 Assoc_List := 8755 Inherit_Components 8756 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs); 8757 8758 -- STEP 5a: Copy the parent record declaration for untagged types 8759 8760 if not Is_Tagged then 8761 8762 -- Discriminant_Constraint (Derived_Type) has been properly 8763 -- constructed. Save it and temporarily set it to Empty because we 8764 -- do not want the call to New_Copy_Tree below to mess this list. 8765 8766 if Has_Discriminants (Derived_Type) then 8767 Save_Discr_Constr := Discriminant_Constraint (Derived_Type); 8768 Set_Discriminant_Constraint (Derived_Type, No_Elist); 8769 else 8770 Save_Discr_Constr := No_Elist; 8771 end if; 8772 8773 -- Save the Etype field of Derived_Type. It is correctly set now, 8774 -- but the call to New_Copy tree may remap it to point to itself, 8775 -- which is not what we want. Ditto for the Next_Entity field. 8776 8777 Save_Etype := Etype (Derived_Type); 8778 Save_Next_Entity := Next_Entity (Derived_Type); 8779 8780 -- Assoc_List maps all stored discriminants in the Parent_Base to 8781 -- stored discriminants in the Derived_Type. It is fundamental that 8782 -- no types or itypes with discriminants other than the stored 8783 -- discriminants appear in the entities declared inside 8784 -- Derived_Type, since the back end cannot deal with it. 8785 8786 New_Decl := 8787 New_Copy_Tree 8788 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc); 8789 8790 -- Restore the fields saved prior to the New_Copy_Tree call 8791 -- and compute the stored constraint. 8792 8793 Set_Etype (Derived_Type, Save_Etype); 8794 Set_Next_Entity (Derived_Type, Save_Next_Entity); 8795 8796 if Has_Discriminants (Derived_Type) then 8797 Set_Discriminant_Constraint 8798 (Derived_Type, Save_Discr_Constr); 8799 Set_Stored_Constraint 8800 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs)); 8801 Replace_Components (Derived_Type, New_Decl); 8802 Set_Has_Implicit_Dereference 8803 (Derived_Type, Has_Implicit_Dereference (Parent_Type)); 8804 end if; 8805 8806 -- Insert the new derived type declaration 8807 8808 Rewrite (N, New_Decl); 8809 8810 -- STEP 5b: Complete the processing for record extensions in generics 8811 8812 -- There is no completion for record extensions declared in the 8813 -- parameter part of a generic, so we need to complete processing for 8814 -- these generic record extensions here. The Record_Type_Definition call 8815 -- will change the Ekind of the components from E_Void to E_Component. 8816 8817 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then 8818 Record_Type_Definition (Empty, Derived_Type); 8819 8820 -- STEP 5c: Process the record extension for non private tagged types 8821 8822 elsif not Private_Extension then 8823 Expand_Record_Extension (Derived_Type, Type_Def); 8824 8825 -- Note : previously in ASIS mode we set the Parent_Subtype of the 8826 -- derived type to propagate some semantic information. This led 8827 -- to other ASIS failures and has been removed. 8828 8829 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the 8830 -- implemented interfaces if we are in expansion mode 8831 8832 if Expander_Active 8833 and then Has_Interfaces (Derived_Type) 8834 then 8835 Add_Interface_Tag_Components (N, Derived_Type); 8836 end if; 8837 8838 -- Analyze the record extension 8839 8840 Record_Type_Definition 8841 (Record_Extension_Part (Type_Def), Derived_Type); 8842 end if; 8843 8844 End_Scope; 8845 8846 -- Nothing else to do if there is an error in the derivation. 8847 -- An unusual case: the full view may be derived from a type in an 8848 -- instance, when the partial view was used illegally as an actual 8849 -- in that instance, leading to a circular definition. 8850 8851 if Etype (Derived_Type) = Any_Type 8852 or else Etype (Parent_Type) = Derived_Type 8853 then 8854 return; 8855 end if; 8856 8857 -- Set delayed freeze and then derive subprograms, we need to do 8858 -- this in this order so that derived subprograms inherit the 8859 -- derived freeze if necessary. 8860 8861 Set_Has_Delayed_Freeze (Derived_Type); 8862 8863 if Derive_Subps then 8864 Derive_Subprograms (Parent_Type, Derived_Type); 8865 end if; 8866 8867 -- If we have a private extension which defines a constrained derived 8868 -- type mark as constrained here after we have derived subprograms. See 8869 -- comment on point 9. just above the body of Build_Derived_Record_Type. 8870 8871 if Private_Extension and then Inherit_Discrims then 8872 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then 8873 Set_Is_Constrained (Derived_Type, True); 8874 Set_Discriminant_Constraint (Derived_Type, Discs); 8875 8876 elsif Is_Constrained (Parent_Type) then 8877 Set_Is_Constrained 8878 (Derived_Type, True); 8879 Set_Discriminant_Constraint 8880 (Derived_Type, Discriminant_Constraint (Parent_Type)); 8881 end if; 8882 end if; 8883 8884 -- Update the class-wide type, which shares the now-completed entity 8885 -- list with its specific type. In case of underlying record views, 8886 -- we do not generate the corresponding class wide entity. 8887 8888 if Is_Tagged 8889 and then not Is_Underlying_Record_View (Derived_Type) 8890 then 8891 Set_First_Entity 8892 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type)); 8893 Set_Last_Entity 8894 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type)); 8895 end if; 8896 8897 Check_Function_Writable_Actuals (N); 8898 end Build_Derived_Record_Type; 8899 8900 ------------------------ 8901 -- Build_Derived_Type -- 8902 ------------------------ 8903 8904 procedure Build_Derived_Type 8905 (N : Node_Id; 8906 Parent_Type : Entity_Id; 8907 Derived_Type : Entity_Id; 8908 Is_Completion : Boolean; 8909 Derive_Subps : Boolean := True) 8910 is 8911 Parent_Base : constant Entity_Id := Base_Type (Parent_Type); 8912 8913 begin 8914 -- Set common attributes 8915 8916 Set_Scope (Derived_Type, Current_Scope); 8917 8918 Set_Etype (Derived_Type, Parent_Base); 8919 Set_Ekind (Derived_Type, Ekind (Parent_Base)); 8920 Set_Has_Task (Derived_Type, Has_Task (Parent_Base)); 8921 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base)); 8922 8923 Set_Size_Info (Derived_Type, Parent_Type); 8924 Set_RM_Size (Derived_Type, RM_Size (Parent_Type)); 8925 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type)); 8926 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type)); 8927 8928 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type)); 8929 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type)); 8930 8931 if Is_Tagged_Type (Derived_Type) then 8932 Set_No_Tagged_Streams_Pragma 8933 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type)); 8934 end if; 8935 8936 -- If the parent has primitive routines, set the derived type link 8937 8938 if Has_Primitive_Operations (Parent_Type) then 8939 Set_Derived_Type_Link (Parent_Base, Derived_Type); 8940 end if; 8941 8942 -- If the parent type is a private subtype, the convention on the base 8943 -- type may be set in the private part, and not propagated to the 8944 -- subtype until later, so we obtain the convention from the base type. 8945 8946 Set_Convention (Derived_Type, Convention (Parent_Base)); 8947 8948 -- Set SSO default for record or array type 8949 8950 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type)) 8951 and then Is_Base_Type (Derived_Type) 8952 then 8953 Set_Default_SSO (Derived_Type); 8954 end if; 8955 8956 -- Propagate invariant information. The new type has invariants if 8957 -- they are inherited from the parent type, and these invariants can 8958 -- be further inherited, so both flags are set. 8959 8960 -- We similarly inherit predicates 8961 8962 if Has_Predicates (Parent_Type) then 8963 Set_Has_Predicates (Derived_Type); 8964 end if; 8965 8966 -- The derived type inherits the representation clauses of the parent 8967 8968 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type); 8969 8970 -- Propagate the attributes related to pragma Default_Initial_Condition 8971 -- from the parent type to the private extension. A derived type always 8972 -- inherits the default initial condition flag from the parent type. If 8973 -- the derived type carries its own Default_Initial_Condition pragma, 8974 -- the flag is later reset in Analyze_Pragma. Note that both flags are 8975 -- mutually exclusive. 8976 8977 Propagate_Default_Init_Cond_Attributes 8978 (From_Typ => Parent_Type, 8979 To_Typ => Derived_Type, 8980 Parent_To_Derivation => True); 8981 8982 -- If the parent type has delayed rep aspects, then mark the derived 8983 -- type as possibly inheriting a delayed rep aspect. 8984 8985 if Has_Delayed_Rep_Aspects (Parent_Type) then 8986 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type); 8987 end if; 8988 8989 -- Propagate the attributes related to pragma Ghost from the parent type 8990 -- to the derived type or type extension (SPARK RM 6.9(9)). 8991 8992 if Is_Ghost_Entity (Parent_Type) then 8993 Set_Is_Ghost_Entity (Derived_Type); 8994 end if; 8995 8996 -- Type dependent processing 8997 8998 case Ekind (Parent_Type) is 8999 when Numeric_Kind => 9000 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type); 9001 9002 when Array_Kind => 9003 Build_Derived_Array_Type (N, Parent_Type, Derived_Type); 9004 9005 when E_Record_Type 9006 | E_Record_Subtype 9007 | Class_Wide_Kind => 9008 Build_Derived_Record_Type 9009 (N, Parent_Type, Derived_Type, Derive_Subps); 9010 return; 9011 9012 when Enumeration_Kind => 9013 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type); 9014 9015 when Access_Kind => 9016 Build_Derived_Access_Type (N, Parent_Type, Derived_Type); 9017 9018 when Incomplete_Or_Private_Kind => 9019 Build_Derived_Private_Type 9020 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps); 9021 9022 -- For discriminated types, the derivation includes deriving 9023 -- primitive operations. For others it is done below. 9024 9025 if Is_Tagged_Type (Parent_Type) 9026 or else Has_Discriminants (Parent_Type) 9027 or else (Present (Full_View (Parent_Type)) 9028 and then Has_Discriminants (Full_View (Parent_Type))) 9029 then 9030 return; 9031 end if; 9032 9033 when Concurrent_Kind => 9034 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type); 9035 9036 when others => 9037 raise Program_Error; 9038 end case; 9039 9040 -- Nothing more to do if some error occurred 9041 9042 if Etype (Derived_Type) = Any_Type then 9043 return; 9044 end if; 9045 9046 -- Set delayed freeze and then derive subprograms, we need to do this 9047 -- in this order so that derived subprograms inherit the derived freeze 9048 -- if necessary. 9049 9050 Set_Has_Delayed_Freeze (Derived_Type); 9051 9052 if Derive_Subps then 9053 Derive_Subprograms (Parent_Type, Derived_Type); 9054 end if; 9055 9056 Set_Has_Primitive_Operations 9057 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type)); 9058 end Build_Derived_Type; 9059 9060 ----------------------- 9061 -- Build_Discriminal -- 9062 ----------------------- 9063 9064 procedure Build_Discriminal (Discrim : Entity_Id) is 9065 D_Minal : Entity_Id; 9066 CR_Disc : Entity_Id; 9067 9068 begin 9069 -- A discriminal has the same name as the discriminant 9070 9071 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim)); 9072 9073 Set_Ekind (D_Minal, E_In_Parameter); 9074 Set_Mechanism (D_Minal, Default_Mechanism); 9075 Set_Etype (D_Minal, Etype (Discrim)); 9076 Set_Scope (D_Minal, Current_Scope); 9077 9078 Set_Discriminal (Discrim, D_Minal); 9079 Set_Discriminal_Link (D_Minal, Discrim); 9080 9081 -- For task types, build at once the discriminants of the corresponding 9082 -- record, which are needed if discriminants are used in entry defaults 9083 -- and in family bounds. 9084 9085 if Is_Concurrent_Type (Current_Scope) 9086 or else 9087 Is_Limited_Type (Current_Scope) 9088 then 9089 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim)); 9090 9091 Set_Ekind (CR_Disc, E_In_Parameter); 9092 Set_Mechanism (CR_Disc, Default_Mechanism); 9093 Set_Etype (CR_Disc, Etype (Discrim)); 9094 Set_Scope (CR_Disc, Current_Scope); 9095 Set_Discriminal_Link (CR_Disc, Discrim); 9096 Set_CR_Discriminant (Discrim, CR_Disc); 9097 end if; 9098 end Build_Discriminal; 9099 9100 ------------------------------------ 9101 -- Build_Discriminant_Constraints -- 9102 ------------------------------------ 9103 9104 function Build_Discriminant_Constraints 9105 (T : Entity_Id; 9106 Def : Node_Id; 9107 Derived_Def : Boolean := False) return Elist_Id 9108 is 9109 C : constant Node_Id := Constraint (Def); 9110 Nb_Discr : constant Nat := Number_Discriminants (T); 9111 9112 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty); 9113 -- Saves the expression corresponding to a given discriminant in T 9114 9115 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat; 9116 -- Return the Position number within array Discr_Expr of a discriminant 9117 -- D within the discriminant list of the discriminated type T. 9118 9119 procedure Process_Discriminant_Expression 9120 (Expr : Node_Id; 9121 D : Entity_Id); 9122 -- If this is a discriminant constraint on a partial view, do not 9123 -- generate an overflow check on the discriminant expression. The check 9124 -- will be generated when constraining the full view. Otherwise the 9125 -- backend creates duplicate symbols for the temporaries corresponding 9126 -- to the expressions to be checked, causing spurious assembler errors. 9127 9128 ------------------ 9129 -- Pos_Of_Discr -- 9130 ------------------ 9131 9132 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is 9133 Disc : Entity_Id; 9134 9135 begin 9136 Disc := First_Discriminant (T); 9137 for J in Discr_Expr'Range loop 9138 if Disc = D then 9139 return J; 9140 end if; 9141 9142 Next_Discriminant (Disc); 9143 end loop; 9144 9145 -- Note: Since this function is called on discriminants that are 9146 -- known to belong to the discriminated type, falling through the 9147 -- loop with no match signals an internal compiler error. 9148 9149 raise Program_Error; 9150 end Pos_Of_Discr; 9151 9152 ------------------------------------- 9153 -- Process_Discriminant_Expression -- 9154 ------------------------------------- 9155 9156 procedure Process_Discriminant_Expression 9157 (Expr : Node_Id; 9158 D : Entity_Id) 9159 is 9160 BDT : constant Entity_Id := Base_Type (Etype (D)); 9161 9162 begin 9163 -- If this is a discriminant constraint on a partial view, do 9164 -- not generate an overflow on the discriminant expression. The 9165 -- check will be generated when constraining the full view. 9166 9167 if Is_Private_Type (T) 9168 and then Present (Full_View (T)) 9169 then 9170 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check); 9171 else 9172 Analyze_And_Resolve (Expr, BDT); 9173 end if; 9174 end Process_Discriminant_Expression; 9175 9176 -- Declarations local to Build_Discriminant_Constraints 9177 9178 Discr : Entity_Id; 9179 E : Entity_Id; 9180 Elist : constant Elist_Id := New_Elmt_List; 9181 9182 Constr : Node_Id; 9183 Expr : Node_Id; 9184 Id : Node_Id; 9185 Position : Nat; 9186 Found : Boolean; 9187 9188 Discrim_Present : Boolean := False; 9189 9190 -- Start of processing for Build_Discriminant_Constraints 9191 9192 begin 9193 -- The following loop will process positional associations only. 9194 -- For a positional association, the (single) discriminant is 9195 -- implicitly specified by position, in textual order (RM 3.7.2). 9196 9197 Discr := First_Discriminant (T); 9198 Constr := First (Constraints (C)); 9199 for D in Discr_Expr'Range loop 9200 exit when Nkind (Constr) = N_Discriminant_Association; 9201 9202 if No (Constr) then 9203 Error_Msg_N ("too few discriminants given in constraint", C); 9204 return New_Elmt_List; 9205 9206 elsif Nkind (Constr) = N_Range 9207 or else (Nkind (Constr) = N_Attribute_Reference 9208 and then Attribute_Name (Constr) = Name_Range) 9209 then 9210 Error_Msg_N 9211 ("a range is not a valid discriminant constraint", Constr); 9212 Discr_Expr (D) := Error; 9213 9214 else 9215 Process_Discriminant_Expression (Constr, Discr); 9216 Discr_Expr (D) := Constr; 9217 end if; 9218 9219 Next_Discriminant (Discr); 9220 Next (Constr); 9221 end loop; 9222 9223 if No (Discr) and then Present (Constr) then 9224 Error_Msg_N ("too many discriminants given in constraint", Constr); 9225 return New_Elmt_List; 9226 end if; 9227 9228 -- Named associations can be given in any order, but if both positional 9229 -- and named associations are used in the same discriminant constraint, 9230 -- then positional associations must occur first, at their normal 9231 -- position. Hence once a named association is used, the rest of the 9232 -- discriminant constraint must use only named associations. 9233 9234 while Present (Constr) loop 9235 9236 -- Positional association forbidden after a named association 9237 9238 if Nkind (Constr) /= N_Discriminant_Association then 9239 Error_Msg_N ("positional association follows named one", Constr); 9240 return New_Elmt_List; 9241 9242 -- Otherwise it is a named association 9243 9244 else 9245 -- E records the type of the discriminants in the named 9246 -- association. All the discriminants specified in the same name 9247 -- association must have the same type. 9248 9249 E := Empty; 9250 9251 -- Search the list of discriminants in T to see if the simple name 9252 -- given in the constraint matches any of them. 9253 9254 Id := First (Selector_Names (Constr)); 9255 while Present (Id) loop 9256 Found := False; 9257 9258 -- If Original_Discriminant is present, we are processing a 9259 -- generic instantiation and this is an instance node. We need 9260 -- to find the name of the corresponding discriminant in the 9261 -- actual record type T and not the name of the discriminant in 9262 -- the generic formal. Example: 9263 9264 -- generic 9265 -- type G (D : int) is private; 9266 -- package P is 9267 -- subtype W is G (D => 1); 9268 -- end package; 9269 -- type Rec (X : int) is record ... end record; 9270 -- package Q is new P (G => Rec); 9271 9272 -- At the point of the instantiation, formal type G is Rec 9273 -- and therefore when reanalyzing "subtype W is G (D => 1);" 9274 -- which really looks like "subtype W is Rec (D => 1);" at 9275 -- the point of instantiation, we want to find the discriminant 9276 -- that corresponds to D in Rec, i.e. X. 9277 9278 if Present (Original_Discriminant (Id)) 9279 and then In_Instance 9280 then 9281 Discr := Find_Corresponding_Discriminant (Id, T); 9282 Found := True; 9283 9284 else 9285 Discr := First_Discriminant (T); 9286 while Present (Discr) loop 9287 if Chars (Discr) = Chars (Id) then 9288 Found := True; 9289 exit; 9290 end if; 9291 9292 Next_Discriminant (Discr); 9293 end loop; 9294 9295 if not Found then 9296 Error_Msg_N ("& does not match any discriminant", Id); 9297 return New_Elmt_List; 9298 9299 -- If the parent type is a generic formal, preserve the 9300 -- name of the discriminant for subsequent instances. 9301 -- see comment at the beginning of this if statement. 9302 9303 elsif Is_Generic_Type (Root_Type (T)) then 9304 Set_Original_Discriminant (Id, Discr); 9305 end if; 9306 end if; 9307 9308 Position := Pos_Of_Discr (T, Discr); 9309 9310 if Present (Discr_Expr (Position)) then 9311 Error_Msg_N ("duplicate constraint for discriminant&", Id); 9312 9313 else 9314 -- Each discriminant specified in the same named association 9315 -- must be associated with a separate copy of the 9316 -- corresponding expression. 9317 9318 if Present (Next (Id)) then 9319 Expr := New_Copy_Tree (Expression (Constr)); 9320 Set_Parent (Expr, Parent (Expression (Constr))); 9321 else 9322 Expr := Expression (Constr); 9323 end if; 9324 9325 Discr_Expr (Position) := Expr; 9326 Process_Discriminant_Expression (Expr, Discr); 9327 end if; 9328 9329 -- A discriminant association with more than one discriminant 9330 -- name is only allowed if the named discriminants are all of 9331 -- the same type (RM 3.7.1(8)). 9332 9333 if E = Empty then 9334 E := Base_Type (Etype (Discr)); 9335 9336 elsif Base_Type (Etype (Discr)) /= E then 9337 Error_Msg_N 9338 ("all discriminants in an association " & 9339 "must have the same type", Id); 9340 end if; 9341 9342 Next (Id); 9343 end loop; 9344 end if; 9345 9346 Next (Constr); 9347 end loop; 9348 9349 -- A discriminant constraint must provide exactly one value for each 9350 -- discriminant of the type (RM 3.7.1(8)). 9351 9352 for J in Discr_Expr'Range loop 9353 if No (Discr_Expr (J)) then 9354 Error_Msg_N ("too few discriminants given in constraint", C); 9355 return New_Elmt_List; 9356 end if; 9357 end loop; 9358 9359 -- Determine if there are discriminant expressions in the constraint 9360 9361 for J in Discr_Expr'Range loop 9362 if Denotes_Discriminant 9363 (Discr_Expr (J), Check_Concurrent => True) 9364 then 9365 Discrim_Present := True; 9366 end if; 9367 end loop; 9368 9369 -- Build an element list consisting of the expressions given in the 9370 -- discriminant constraint and apply the appropriate checks. The list 9371 -- is constructed after resolving any named discriminant associations 9372 -- and therefore the expressions appear in the textual order of the 9373 -- discriminants. 9374 9375 Discr := First_Discriminant (T); 9376 for J in Discr_Expr'Range loop 9377 if Discr_Expr (J) /= Error then 9378 Append_Elmt (Discr_Expr (J), Elist); 9379 9380 -- If any of the discriminant constraints is given by a 9381 -- discriminant and we are in a derived type declaration we 9382 -- have a discriminant renaming. Establish link between new 9383 -- and old discriminant. 9384 9385 if Denotes_Discriminant (Discr_Expr (J)) then 9386 if Derived_Def then 9387 Set_Corresponding_Discriminant 9388 (Entity (Discr_Expr (J)), Discr); 9389 end if; 9390 9391 -- Force the evaluation of non-discriminant expressions. 9392 -- If we have found a discriminant in the constraint 3.4(26) 9393 -- and 3.8(18) demand that no range checks are performed are 9394 -- after evaluation. If the constraint is for a component 9395 -- definition that has a per-object constraint, expressions are 9396 -- evaluated but not checked either. In all other cases perform 9397 -- a range check. 9398 9399 else 9400 if Discrim_Present then 9401 null; 9402 9403 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration 9404 and then 9405 Has_Per_Object_Constraint 9406 (Defining_Identifier (Parent (Parent (Def)))) 9407 then 9408 null; 9409 9410 elsif Is_Access_Type (Etype (Discr)) then 9411 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr)); 9412 9413 else 9414 Apply_Range_Check (Discr_Expr (J), Etype (Discr)); 9415 end if; 9416 9417 Force_Evaluation (Discr_Expr (J)); 9418 end if; 9419 9420 -- Check that the designated type of an access discriminant's 9421 -- expression is not a class-wide type unless the discriminant's 9422 -- designated type is also class-wide. 9423 9424 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type 9425 and then not Is_Class_Wide_Type 9426 (Designated_Type (Etype (Discr))) 9427 and then Etype (Discr_Expr (J)) /= Any_Type 9428 and then Is_Class_Wide_Type 9429 (Designated_Type (Etype (Discr_Expr (J)))) 9430 then 9431 Wrong_Type (Discr_Expr (J), Etype (Discr)); 9432 9433 elsif Is_Access_Type (Etype (Discr)) 9434 and then not Is_Access_Constant (Etype (Discr)) 9435 and then Is_Access_Type (Etype (Discr_Expr (J))) 9436 and then Is_Access_Constant (Etype (Discr_Expr (J))) 9437 then 9438 Error_Msg_NE 9439 ("constraint for discriminant& must be access to variable", 9440 Def, Discr); 9441 end if; 9442 end if; 9443 9444 Next_Discriminant (Discr); 9445 end loop; 9446 9447 return Elist; 9448 end Build_Discriminant_Constraints; 9449 9450 --------------------------------- 9451 -- Build_Discriminated_Subtype -- 9452 --------------------------------- 9453 9454 procedure Build_Discriminated_Subtype 9455 (T : Entity_Id; 9456 Def_Id : Entity_Id; 9457 Elist : Elist_Id; 9458 Related_Nod : Node_Id; 9459 For_Access : Boolean := False) 9460 is 9461 Has_Discrs : constant Boolean := Has_Discriminants (T); 9462 Constrained : constant Boolean := 9463 (Has_Discrs 9464 and then not Is_Empty_Elmt_List (Elist) 9465 and then not Is_Class_Wide_Type (T)) 9466 or else Is_Constrained (T); 9467 9468 begin 9469 if Ekind (T) = E_Record_Type then 9470 if For_Access then 9471 Set_Ekind (Def_Id, E_Private_Subtype); 9472 Set_Is_For_Access_Subtype (Def_Id, True); 9473 else 9474 Set_Ekind (Def_Id, E_Record_Subtype); 9475 end if; 9476 9477 -- Inherit preelaboration flag from base, for types for which it 9478 -- may have been set: records, private types, protected types. 9479 9480 Set_Known_To_Have_Preelab_Init 9481 (Def_Id, Known_To_Have_Preelab_Init (T)); 9482 9483 elsif Ekind (T) = E_Task_Type then 9484 Set_Ekind (Def_Id, E_Task_Subtype); 9485 9486 elsif Ekind (T) = E_Protected_Type then 9487 Set_Ekind (Def_Id, E_Protected_Subtype); 9488 Set_Known_To_Have_Preelab_Init 9489 (Def_Id, Known_To_Have_Preelab_Init (T)); 9490 9491 elsif Is_Private_Type (T) then 9492 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T))); 9493 Set_Known_To_Have_Preelab_Init 9494 (Def_Id, Known_To_Have_Preelab_Init (T)); 9495 9496 -- Private subtypes may have private dependents 9497 9498 Set_Private_Dependents (Def_Id, New_Elmt_List); 9499 9500 elsif Is_Class_Wide_Type (T) then 9501 Set_Ekind (Def_Id, E_Class_Wide_Subtype); 9502 9503 else 9504 -- Incomplete type. Attach subtype to list of dependents, to be 9505 -- completed with full view of parent type, unless is it the 9506 -- designated subtype of a record component within an init_proc. 9507 -- This last case arises for a component of an access type whose 9508 -- designated type is incomplete (e.g. a Taft Amendment type). 9509 -- The designated subtype is within an inner scope, and needs no 9510 -- elaboration, because only the access type is needed in the 9511 -- initialization procedure. 9512 9513 Set_Ekind (Def_Id, Ekind (T)); 9514 9515 if For_Access and then Within_Init_Proc then 9516 null; 9517 else 9518 Append_Elmt (Def_Id, Private_Dependents (T)); 9519 end if; 9520 end if; 9521 9522 Set_Etype (Def_Id, T); 9523 Init_Size_Align (Def_Id); 9524 Set_Has_Discriminants (Def_Id, Has_Discrs); 9525 Set_Is_Constrained (Def_Id, Constrained); 9526 9527 Set_First_Entity (Def_Id, First_Entity (T)); 9528 Set_Last_Entity (Def_Id, Last_Entity (T)); 9529 Set_Has_Implicit_Dereference 9530 (Def_Id, Has_Implicit_Dereference (T)); 9531 9532 -- If the subtype is the completion of a private declaration, there may 9533 -- have been representation clauses for the partial view, and they must 9534 -- be preserved. Build_Derived_Type chains the inherited clauses with 9535 -- the ones appearing on the extension. If this comes from a subtype 9536 -- declaration, all clauses are inherited. 9537 9538 if No (First_Rep_Item (Def_Id)) then 9539 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 9540 end if; 9541 9542 if Is_Tagged_Type (T) then 9543 Set_Is_Tagged_Type (Def_Id); 9544 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T)); 9545 Make_Class_Wide_Type (Def_Id); 9546 end if; 9547 9548 Set_Stored_Constraint (Def_Id, No_Elist); 9549 9550 if Has_Discrs then 9551 Set_Discriminant_Constraint (Def_Id, Elist); 9552 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id); 9553 end if; 9554 9555 if Is_Tagged_Type (T) then 9556 9557 -- Ada 2005 (AI-251): In case of concurrent types we inherit the 9558 -- concurrent record type (which has the list of primitive 9559 -- operations). 9560 9561 if Ada_Version >= Ada_2005 9562 and then Is_Concurrent_Type (T) 9563 then 9564 Set_Corresponding_Record_Type (Def_Id, 9565 Corresponding_Record_Type (T)); 9566 else 9567 Set_Direct_Primitive_Operations (Def_Id, 9568 Direct_Primitive_Operations (T)); 9569 end if; 9570 9571 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T)); 9572 end if; 9573 9574 -- Subtypes introduced by component declarations do not need to be 9575 -- marked as delayed, and do not get freeze nodes, because the semantics 9576 -- verifies that the parents of the subtypes are frozen before the 9577 -- enclosing record is frozen. 9578 9579 if not Is_Type (Scope (Def_Id)) then 9580 Set_Depends_On_Private (Def_Id, Depends_On_Private (T)); 9581 9582 if Is_Private_Type (T) 9583 and then Present (Full_View (T)) 9584 then 9585 Conditional_Delay (Def_Id, Full_View (T)); 9586 else 9587 Conditional_Delay (Def_Id, T); 9588 end if; 9589 end if; 9590 9591 if Is_Record_Type (T) then 9592 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T)); 9593 9594 if Has_Discrs 9595 and then not Is_Empty_Elmt_List (Elist) 9596 and then not For_Access 9597 then 9598 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist); 9599 elsif not For_Access then 9600 Set_Cloned_Subtype (Def_Id, T); 9601 end if; 9602 end if; 9603 end Build_Discriminated_Subtype; 9604 9605 --------------------------- 9606 -- Build_Itype_Reference -- 9607 --------------------------- 9608 9609 procedure Build_Itype_Reference 9610 (Ityp : Entity_Id; 9611 Nod : Node_Id) 9612 is 9613 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod)); 9614 begin 9615 9616 -- Itype references are only created for use by the back-end 9617 9618 if Inside_A_Generic then 9619 return; 9620 else 9621 Set_Itype (IR, Ityp); 9622 Insert_After (Nod, IR); 9623 end if; 9624 end Build_Itype_Reference; 9625 9626 ------------------------ 9627 -- Build_Scalar_Bound -- 9628 ------------------------ 9629 9630 function Build_Scalar_Bound 9631 (Bound : Node_Id; 9632 Par_T : Entity_Id; 9633 Der_T : Entity_Id) return Node_Id 9634 is 9635 New_Bound : Entity_Id; 9636 9637 begin 9638 -- Note: not clear why this is needed, how can the original bound 9639 -- be unanalyzed at this point? and if it is, what business do we 9640 -- have messing around with it? and why is the base type of the 9641 -- parent type the right type for the resolution. It probably is 9642 -- not. It is OK for the new bound we are creating, but not for 9643 -- the old one??? Still if it never happens, no problem. 9644 9645 Analyze_And_Resolve (Bound, Base_Type (Par_T)); 9646 9647 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then 9648 New_Bound := New_Copy (Bound); 9649 Set_Etype (New_Bound, Der_T); 9650 Set_Analyzed (New_Bound); 9651 9652 elsif Is_Entity_Name (Bound) then 9653 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound)); 9654 9655 -- The following is almost certainly wrong. What business do we have 9656 -- relocating a node (Bound) that is presumably still attached to 9657 -- the tree elsewhere??? 9658 9659 else 9660 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound)); 9661 end if; 9662 9663 Set_Etype (New_Bound, Der_T); 9664 return New_Bound; 9665 end Build_Scalar_Bound; 9666 9667 -------------------------------- 9668 -- Build_Underlying_Full_View -- 9669 -------------------------------- 9670 9671 procedure Build_Underlying_Full_View 9672 (N : Node_Id; 9673 Typ : Entity_Id; 9674 Par : Entity_Id) 9675 is 9676 Loc : constant Source_Ptr := Sloc (N); 9677 Subt : constant Entity_Id := 9678 Make_Defining_Identifier 9679 (Loc, New_External_Name (Chars (Typ), 'S')); 9680 9681 Constr : Node_Id; 9682 Indic : Node_Id; 9683 C : Node_Id; 9684 Id : Node_Id; 9685 9686 procedure Set_Discriminant_Name (Id : Node_Id); 9687 -- If the derived type has discriminants, they may rename discriminants 9688 -- of the parent. When building the full view of the parent, we need to 9689 -- recover the names of the original discriminants if the constraint is 9690 -- given by named associations. 9691 9692 --------------------------- 9693 -- Set_Discriminant_Name -- 9694 --------------------------- 9695 9696 procedure Set_Discriminant_Name (Id : Node_Id) is 9697 Disc : Entity_Id; 9698 9699 begin 9700 Set_Original_Discriminant (Id, Empty); 9701 9702 if Has_Discriminants (Typ) then 9703 Disc := First_Discriminant (Typ); 9704 while Present (Disc) loop 9705 if Chars (Disc) = Chars (Id) 9706 and then Present (Corresponding_Discriminant (Disc)) 9707 then 9708 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc))); 9709 end if; 9710 Next_Discriminant (Disc); 9711 end loop; 9712 end if; 9713 end Set_Discriminant_Name; 9714 9715 -- Start of processing for Build_Underlying_Full_View 9716 9717 begin 9718 if Nkind (N) = N_Full_Type_Declaration then 9719 Constr := Constraint (Subtype_Indication (Type_Definition (N))); 9720 9721 elsif Nkind (N) = N_Subtype_Declaration then 9722 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N))); 9723 9724 elsif Nkind (N) = N_Component_Declaration then 9725 Constr := 9726 New_Copy_Tree 9727 (Constraint (Subtype_Indication (Component_Definition (N)))); 9728 9729 else 9730 raise Program_Error; 9731 end if; 9732 9733 C := First (Constraints (Constr)); 9734 while Present (C) loop 9735 if Nkind (C) = N_Discriminant_Association then 9736 Id := First (Selector_Names (C)); 9737 while Present (Id) loop 9738 Set_Discriminant_Name (Id); 9739 Next (Id); 9740 end loop; 9741 end if; 9742 9743 Next (C); 9744 end loop; 9745 9746 Indic := 9747 Make_Subtype_Declaration (Loc, 9748 Defining_Identifier => Subt, 9749 Subtype_Indication => 9750 Make_Subtype_Indication (Loc, 9751 Subtype_Mark => New_Occurrence_Of (Par, Loc), 9752 Constraint => New_Copy_Tree (Constr))); 9753 9754 -- If this is a component subtype for an outer itype, it is not 9755 -- a list member, so simply set the parent link for analysis: if 9756 -- the enclosing type does not need to be in a declarative list, 9757 -- neither do the components. 9758 9759 if Is_List_Member (N) 9760 and then Nkind (N) /= N_Component_Declaration 9761 then 9762 Insert_Before (N, Indic); 9763 else 9764 Set_Parent (Indic, Parent (N)); 9765 end if; 9766 9767 Analyze (Indic); 9768 Set_Underlying_Full_View (Typ, Full_View (Subt)); 9769 end Build_Underlying_Full_View; 9770 9771 ------------------------------- 9772 -- Check_Abstract_Overriding -- 9773 ------------------------------- 9774 9775 procedure Check_Abstract_Overriding (T : Entity_Id) is 9776 Alias_Subp : Entity_Id; 9777 Elmt : Elmt_Id; 9778 Op_List : Elist_Id; 9779 Subp : Entity_Id; 9780 Type_Def : Node_Id; 9781 9782 procedure Check_Pragma_Implemented (Subp : Entity_Id); 9783 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine 9784 -- which has pragma Implemented already set. Check whether Subp's entity 9785 -- kind conforms to the implementation kind of the overridden routine. 9786 9787 procedure Check_Pragma_Implemented 9788 (Subp : Entity_Id; 9789 Iface_Subp : Entity_Id); 9790 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine 9791 -- Iface_Subp and both entities have pragma Implemented already set on 9792 -- them. Check whether the two implementation kinds are conforming. 9793 9794 procedure Inherit_Pragma_Implemented 9795 (Subp : Entity_Id; 9796 Iface_Subp : Entity_Id); 9797 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface 9798 -- subprogram Iface_Subp which has been marked by pragma Implemented. 9799 -- Propagate the implementation kind of Iface_Subp to Subp. 9800 9801 ------------------------------ 9802 -- Check_Pragma_Implemented -- 9803 ------------------------------ 9804 9805 procedure Check_Pragma_Implemented (Subp : Entity_Id) is 9806 Iface_Alias : constant Entity_Id := Interface_Alias (Subp); 9807 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias); 9808 Subp_Alias : constant Entity_Id := Alias (Subp); 9809 Contr_Typ : Entity_Id; 9810 Impl_Subp : Entity_Id; 9811 9812 begin 9813 -- Subp must have an alias since it is a hidden entity used to link 9814 -- an interface subprogram to its overriding counterpart. 9815 9816 pragma Assert (Present (Subp_Alias)); 9817 9818 -- Handle aliases to synchronized wrappers 9819 9820 Impl_Subp := Subp_Alias; 9821 9822 if Is_Primitive_Wrapper (Impl_Subp) then 9823 Impl_Subp := Wrapped_Entity (Impl_Subp); 9824 end if; 9825 9826 -- Extract the type of the controlling formal 9827 9828 Contr_Typ := Etype (First_Formal (Subp_Alias)); 9829 9830 if Is_Concurrent_Record_Type (Contr_Typ) then 9831 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ); 9832 end if; 9833 9834 -- An interface subprogram whose implementation kind is By_Entry must 9835 -- be implemented by an entry. 9836 9837 if Impl_Kind = Name_By_Entry 9838 and then Ekind (Impl_Subp) /= E_Entry 9839 then 9840 Error_Msg_Node_2 := Iface_Alias; 9841 Error_Msg_NE 9842 ("type & must implement abstract subprogram & with an entry", 9843 Subp_Alias, Contr_Typ); 9844 9845 elsif Impl_Kind = Name_By_Protected_Procedure then 9846 9847 -- An interface subprogram whose implementation kind is By_ 9848 -- Protected_Procedure cannot be implemented by a primitive 9849 -- procedure of a task type. 9850 9851 if Ekind (Contr_Typ) /= E_Protected_Type then 9852 Error_Msg_Node_2 := Contr_Typ; 9853 Error_Msg_NE 9854 ("interface subprogram & cannot be implemented by a " & 9855 "primitive procedure of task type &", Subp_Alias, 9856 Iface_Alias); 9857 9858 -- An interface subprogram whose implementation kind is By_ 9859 -- Protected_Procedure must be implemented by a procedure. 9860 9861 elsif Ekind (Impl_Subp) /= E_Procedure then 9862 Error_Msg_Node_2 := Iface_Alias; 9863 Error_Msg_NE 9864 ("type & must implement abstract subprogram & with a " & 9865 "procedure", Subp_Alias, Contr_Typ); 9866 9867 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented)) 9868 and then Implementation_Kind (Impl_Subp) /= Impl_Kind 9869 then 9870 Error_Msg_Name_1 := Impl_Kind; 9871 Error_Msg_N 9872 ("overriding operation& must have synchronization%", 9873 Subp_Alias); 9874 end if; 9875 9876 -- If primitive has Optional synchronization, overriding operation 9877 -- must match if it has an explicit synchronization.. 9878 9879 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented)) 9880 and then Implementation_Kind (Impl_Subp) /= Impl_Kind 9881 then 9882 Error_Msg_Name_1 := Impl_Kind; 9883 Error_Msg_N 9884 ("overriding operation& must have syncrhonization%", 9885 Subp_Alias); 9886 end if; 9887 end Check_Pragma_Implemented; 9888 9889 ------------------------------ 9890 -- Check_Pragma_Implemented -- 9891 ------------------------------ 9892 9893 procedure Check_Pragma_Implemented 9894 (Subp : Entity_Id; 9895 Iface_Subp : Entity_Id) 9896 is 9897 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp); 9898 Subp_Kind : constant Name_Id := Implementation_Kind (Subp); 9899 9900 begin 9901 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden 9902 -- and overriding subprogram are different. In general this is an 9903 -- error except when the implementation kind of the overridden 9904 -- subprograms is By_Any or Optional. 9905 9906 if Iface_Kind /= Subp_Kind 9907 and then Iface_Kind /= Name_By_Any 9908 and then Iface_Kind /= Name_Optional 9909 then 9910 if Iface_Kind = Name_By_Entry then 9911 Error_Msg_N 9912 ("incompatible implementation kind, overridden subprogram " & 9913 "is marked By_Entry", Subp); 9914 else 9915 Error_Msg_N 9916 ("incompatible implementation kind, overridden subprogram " & 9917 "is marked By_Protected_Procedure", Subp); 9918 end if; 9919 end if; 9920 end Check_Pragma_Implemented; 9921 9922 -------------------------------- 9923 -- Inherit_Pragma_Implemented -- 9924 -------------------------------- 9925 9926 procedure Inherit_Pragma_Implemented 9927 (Subp : Entity_Id; 9928 Iface_Subp : Entity_Id) 9929 is 9930 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp); 9931 Loc : constant Source_Ptr := Sloc (Subp); 9932 Impl_Prag : Node_Id; 9933 9934 begin 9935 -- Since the implementation kind is stored as a representation item 9936 -- rather than a flag, create a pragma node. 9937 9938 Impl_Prag := 9939 Make_Pragma (Loc, 9940 Chars => Name_Implemented, 9941 Pragma_Argument_Associations => New_List ( 9942 Make_Pragma_Argument_Association (Loc, 9943 Expression => New_Occurrence_Of (Subp, Loc)), 9944 9945 Make_Pragma_Argument_Association (Loc, 9946 Expression => Make_Identifier (Loc, Iface_Kind)))); 9947 9948 -- The pragma doesn't need to be analyzed because it is internally 9949 -- built. It is safe to directly register it as a rep item since we 9950 -- are only interested in the characters of the implementation kind. 9951 9952 Record_Rep_Item (Subp, Impl_Prag); 9953 end Inherit_Pragma_Implemented; 9954 9955 -- Start of processing for Check_Abstract_Overriding 9956 9957 begin 9958 Op_List := Primitive_Operations (T); 9959 9960 -- Loop to check primitive operations 9961 9962 Elmt := First_Elmt (Op_List); 9963 while Present (Elmt) loop 9964 Subp := Node (Elmt); 9965 Alias_Subp := Alias (Subp); 9966 9967 -- Inherited subprograms are identified by the fact that they do not 9968 -- come from source, and the associated source location is the 9969 -- location of the first subtype of the derived type. 9970 9971 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for 9972 -- subprograms that "require overriding". 9973 9974 -- Special exception, do not complain about failure to override the 9975 -- stream routines _Input and _Output, as well as the primitive 9976 -- operations used in dispatching selects since we always provide 9977 -- automatic overridings for these subprograms. 9978 9979 -- The partial view of T may have been a private extension, for 9980 -- which inherited functions dispatching on result are abstract. 9981 -- If the full view is a null extension, there is no need for 9982 -- overriding in Ada 2005, but wrappers need to be built for them 9983 -- (see exp_ch3, Build_Controlling_Function_Wrappers). 9984 9985 if Is_Null_Extension (T) 9986 and then Has_Controlling_Result (Subp) 9987 and then Ada_Version >= Ada_2005 9988 and then Present (Alias_Subp) 9989 and then not Comes_From_Source (Subp) 9990 and then not Is_Abstract_Subprogram (Alias_Subp) 9991 and then not Is_Access_Type (Etype (Subp)) 9992 then 9993 null; 9994 9995 -- Ada 2005 (AI-251): Internal entities of interfaces need no 9996 -- processing because this check is done with the aliased 9997 -- entity 9998 9999 elsif Present (Interface_Alias (Subp)) then 10000 null; 10001 10002 elsif (Is_Abstract_Subprogram (Subp) 10003 or else Requires_Overriding (Subp) 10004 or else 10005 (Has_Controlling_Result (Subp) 10006 and then Present (Alias_Subp) 10007 and then not Comes_From_Source (Subp) 10008 and then Sloc (Subp) = Sloc (First_Subtype (T)))) 10009 and then not Is_TSS (Subp, TSS_Stream_Input) 10010 and then not Is_TSS (Subp, TSS_Stream_Output) 10011 and then not Is_Abstract_Type (T) 10012 and then not Is_Predefined_Interface_Primitive (Subp) 10013 10014 -- Ada 2005 (AI-251): Do not consider hidden entities associated 10015 -- with abstract interface types because the check will be done 10016 -- with the aliased entity (otherwise we generate a duplicated 10017 -- error message). 10018 10019 and then not Present (Interface_Alias (Subp)) 10020 then 10021 if Present (Alias_Subp) then 10022 10023 -- Only perform the check for a derived subprogram when the 10024 -- type has an explicit record extension. This avoids incorrect 10025 -- flagging of abstract subprograms for the case of a type 10026 -- without an extension that is derived from a formal type 10027 -- with a tagged actual (can occur within a private part). 10028 10029 -- Ada 2005 (AI-391): In the case of an inherited function with 10030 -- a controlling result of the type, the rule does not apply if 10031 -- the type is a null extension (unless the parent function 10032 -- itself is abstract, in which case the function must still be 10033 -- be overridden). The expander will generate an overriding 10034 -- wrapper function calling the parent subprogram (see 10035 -- Exp_Ch3.Make_Controlling_Wrapper_Functions). 10036 10037 Type_Def := Type_Definition (Parent (T)); 10038 10039 if Nkind (Type_Def) = N_Derived_Type_Definition 10040 and then Present (Record_Extension_Part (Type_Def)) 10041 and then 10042 (Ada_Version < Ada_2005 10043 or else not Is_Null_Extension (T) 10044 or else Ekind (Subp) = E_Procedure 10045 or else not Has_Controlling_Result (Subp) 10046 or else Is_Abstract_Subprogram (Alias_Subp) 10047 or else Requires_Overriding (Subp) 10048 or else Is_Access_Type (Etype (Subp))) 10049 then 10050 -- Avoid reporting error in case of abstract predefined 10051 -- primitive inherited from interface type because the 10052 -- body of internally generated predefined primitives 10053 -- of tagged types are generated later by Freeze_Type 10054 10055 if Is_Interface (Root_Type (T)) 10056 and then Is_Abstract_Subprogram (Subp) 10057 and then Is_Predefined_Dispatching_Operation (Subp) 10058 and then not Comes_From_Source (Ultimate_Alias (Subp)) 10059 then 10060 null; 10061 10062 -- A null extension is not obliged to override an inherited 10063 -- procedure subject to pragma Extensions_Visible with value 10064 -- False and at least one controlling OUT parameter 10065 -- (SPARK RM 6.1.7(6)). 10066 10067 elsif Is_Null_Extension (T) 10068 and then Is_EVF_Procedure (Subp) 10069 then 10070 null; 10071 10072 else 10073 Error_Msg_NE 10074 ("type must be declared abstract or & overridden", 10075 T, Subp); 10076 10077 -- Traverse the whole chain of aliased subprograms to 10078 -- complete the error notification. This is especially 10079 -- useful for traceability of the chain of entities when 10080 -- the subprogram corresponds with an interface 10081 -- subprogram (which may be defined in another package). 10082 10083 if Present (Alias_Subp) then 10084 declare 10085 E : Entity_Id; 10086 10087 begin 10088 E := Subp; 10089 while Present (Alias (E)) loop 10090 10091 -- Avoid reporting redundant errors on entities 10092 -- inherited from interfaces 10093 10094 if Sloc (E) /= Sloc (T) then 10095 Error_Msg_Sloc := Sloc (E); 10096 Error_Msg_NE 10097 ("\& has been inherited #", T, Subp); 10098 end if; 10099 10100 E := Alias (E); 10101 end loop; 10102 10103 Error_Msg_Sloc := Sloc (E); 10104 10105 -- AI05-0068: report if there is an overriding 10106 -- non-abstract subprogram that is invisible. 10107 10108 if Is_Hidden (E) 10109 and then not Is_Abstract_Subprogram (E) 10110 then 10111 Error_Msg_NE 10112 ("\& subprogram# is not visible", 10113 T, Subp); 10114 10115 -- Clarify the case where a non-null extension must 10116 -- override inherited procedure subject to pragma 10117 -- Extensions_Visible with value False and at least 10118 -- one controlling OUT param. 10119 10120 elsif Is_EVF_Procedure (E) then 10121 Error_Msg_NE 10122 ("\& # is subject to Extensions_Visible False", 10123 T, Subp); 10124 10125 else 10126 Error_Msg_NE 10127 ("\& has been inherited from subprogram #", 10128 T, Subp); 10129 end if; 10130 end; 10131 end if; 10132 end if; 10133 10134 -- Ada 2005 (AI-345): Protected or task type implementing 10135 -- abstract interfaces. 10136 10137 elsif Is_Concurrent_Record_Type (T) 10138 and then Present (Interfaces (T)) 10139 then 10140 -- There is no need to check here RM 9.4(11.9/3) since we 10141 -- are processing the corresponding record type and the 10142 -- mode of the overriding subprograms was verified by 10143 -- Check_Conformance when the corresponding concurrent 10144 -- type declaration was analyzed. 10145 10146 Error_Msg_NE 10147 ("interface subprogram & must be overridden", T, Subp); 10148 10149 -- Examine primitive operations of synchronized type to find 10150 -- homonyms that have the wrong profile. 10151 10152 declare 10153 Prim : Entity_Id; 10154 10155 begin 10156 Prim := First_Entity (Corresponding_Concurrent_Type (T)); 10157 while Present (Prim) loop 10158 if Chars (Prim) = Chars (Subp) then 10159 Error_Msg_NE 10160 ("profile is not type conformant with prefixed " 10161 & "view profile of inherited operation&", 10162 Prim, Subp); 10163 end if; 10164 10165 Next_Entity (Prim); 10166 end loop; 10167 end; 10168 end if; 10169 10170 else 10171 Error_Msg_Node_2 := T; 10172 Error_Msg_N 10173 ("abstract subprogram& not allowed for type&", Subp); 10174 10175 -- Also post unconditional warning on the type (unconditional 10176 -- so that if there are more than one of these cases, we get 10177 -- them all, and not just the first one). 10178 10179 Error_Msg_Node_2 := Subp; 10180 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T); 10181 end if; 10182 10183 -- A subprogram subject to pragma Extensions_Visible with value 10184 -- "True" cannot override a subprogram subject to the same pragma 10185 -- with value "False" (SPARK RM 6.1.7(5)). 10186 10187 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True 10188 and then Present (Overridden_Operation (Subp)) 10189 and then Extensions_Visible_Status (Overridden_Operation (Subp)) = 10190 Extensions_Visible_False 10191 then 10192 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp)); 10193 Error_Msg_N 10194 ("subprogram & with Extensions_Visible True cannot override " 10195 & "subprogram # with Extensions_Visible False", Subp); 10196 end if; 10197 10198 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented 10199 10200 -- Subp is an expander-generated procedure which maps an interface 10201 -- alias to a protected wrapper. The interface alias is flagged by 10202 -- pragma Implemented. Ensure that Subp is a procedure when the 10203 -- implementation kind is By_Protected_Procedure or an entry when 10204 -- By_Entry. 10205 10206 if Ada_Version >= Ada_2012 10207 and then Is_Hidden (Subp) 10208 and then Present (Interface_Alias (Subp)) 10209 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented) 10210 then 10211 Check_Pragma_Implemented (Subp); 10212 end if; 10213 10214 -- Subp is an interface primitive which overrides another interface 10215 -- primitive marked with pragma Implemented. 10216 10217 if Ada_Version >= Ada_2012 10218 and then Present (Overridden_Operation (Subp)) 10219 and then Has_Rep_Pragma 10220 (Overridden_Operation (Subp), Name_Implemented) 10221 then 10222 -- If the overriding routine is also marked by Implemented, check 10223 -- that the two implementation kinds are conforming. 10224 10225 if Has_Rep_Pragma (Subp, Name_Implemented) then 10226 Check_Pragma_Implemented 10227 (Subp => Subp, 10228 Iface_Subp => Overridden_Operation (Subp)); 10229 10230 -- Otherwise the overriding routine inherits the implementation 10231 -- kind from the overridden subprogram. 10232 10233 else 10234 Inherit_Pragma_Implemented 10235 (Subp => Subp, 10236 Iface_Subp => Overridden_Operation (Subp)); 10237 end if; 10238 end if; 10239 10240 -- If the operation is a wrapper for a synchronized primitive, it 10241 -- may be called indirectly through a dispatching select. We assume 10242 -- that it will be referenced elsewhere indirectly, and suppress 10243 -- warnings about an unused entity. 10244 10245 if Is_Primitive_Wrapper (Subp) 10246 and then Present (Wrapped_Entity (Subp)) 10247 then 10248 Set_Referenced (Wrapped_Entity (Subp)); 10249 end if; 10250 10251 Next_Elmt (Elmt); 10252 end loop; 10253 end Check_Abstract_Overriding; 10254 10255 ------------------------------------------------ 10256 -- Check_Access_Discriminant_Requires_Limited -- 10257 ------------------------------------------------ 10258 10259 procedure Check_Access_Discriminant_Requires_Limited 10260 (D : Node_Id; 10261 Loc : Node_Id) 10262 is 10263 begin 10264 -- A discriminant_specification for an access discriminant shall appear 10265 -- only in the declaration for a task or protected type, or for a type 10266 -- with the reserved word 'limited' in its definition or in one of its 10267 -- ancestors (RM 3.7(10)). 10268 10269 -- AI-0063: The proper condition is that type must be immutably limited, 10270 -- or else be a partial view. 10271 10272 if Nkind (Discriminant_Type (D)) = N_Access_Definition then 10273 if Is_Limited_View (Current_Scope) 10274 or else 10275 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration 10276 and then Limited_Present (Parent (Current_Scope))) 10277 then 10278 null; 10279 10280 else 10281 Error_Msg_N 10282 ("access discriminants allowed only for limited types", Loc); 10283 end if; 10284 end if; 10285 end Check_Access_Discriminant_Requires_Limited; 10286 10287 ----------------------------------- 10288 -- Check_Aliased_Component_Types -- 10289 ----------------------------------- 10290 10291 procedure Check_Aliased_Component_Types (T : Entity_Id) is 10292 C : Entity_Id; 10293 10294 begin 10295 -- ??? Also need to check components of record extensions, but not 10296 -- components of protected types (which are always limited). 10297 10298 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such 10299 -- types to be unconstrained. This is safe because it is illegal to 10300 -- create access subtypes to such types with explicit discriminant 10301 -- constraints. 10302 10303 if not Is_Limited_Type (T) then 10304 if Ekind (T) = E_Record_Type then 10305 C := First_Component (T); 10306 while Present (C) loop 10307 if Is_Aliased (C) 10308 and then Has_Discriminants (Etype (C)) 10309 and then not Is_Constrained (Etype (C)) 10310 and then not In_Instance_Body 10311 and then Ada_Version < Ada_2005 10312 then 10313 Error_Msg_N 10314 ("aliased component must be constrained (RM 3.6(11))", 10315 C); 10316 end if; 10317 10318 Next_Component (C); 10319 end loop; 10320 10321 elsif Ekind (T) = E_Array_Type then 10322 if Has_Aliased_Components (T) 10323 and then Has_Discriminants (Component_Type (T)) 10324 and then not Is_Constrained (Component_Type (T)) 10325 and then not In_Instance_Body 10326 and then Ada_Version < Ada_2005 10327 then 10328 Error_Msg_N 10329 ("aliased component type must be constrained (RM 3.6(11))", 10330 T); 10331 end if; 10332 end if; 10333 end if; 10334 end Check_Aliased_Component_Types; 10335 10336 --------------------------------------- 10337 -- Check_Anonymous_Access_Components -- 10338 --------------------------------------- 10339 10340 procedure Check_Anonymous_Access_Components 10341 (Typ_Decl : Node_Id; 10342 Typ : Entity_Id; 10343 Prev : Entity_Id; 10344 Comp_List : Node_Id) 10345 is 10346 Loc : constant Source_Ptr := Sloc (Typ_Decl); 10347 Anon_Access : Entity_Id; 10348 Acc_Def : Node_Id; 10349 Comp : Node_Id; 10350 Comp_Def : Node_Id; 10351 Decl : Node_Id; 10352 Type_Def : Node_Id; 10353 10354 procedure Build_Incomplete_Type_Declaration; 10355 -- If the record type contains components that include an access to the 10356 -- current record, then create an incomplete type declaration for the 10357 -- record, to be used as the designated type of the anonymous access. 10358 -- This is done only once, and only if there is no previous partial 10359 -- view of the type. 10360 10361 function Designates_T (Subt : Node_Id) return Boolean; 10362 -- Check whether a node designates the enclosing record type, or 'Class 10363 -- of that type 10364 10365 function Mentions_T (Acc_Def : Node_Id) return Boolean; 10366 -- Check whether an access definition includes a reference to 10367 -- the enclosing record type. The reference can be a subtype mark 10368 -- in the access definition itself, a 'Class attribute reference, or 10369 -- recursively a reference appearing in a parameter specification 10370 -- or result definition of an access_to_subprogram definition. 10371 10372 -------------------------------------- 10373 -- Build_Incomplete_Type_Declaration -- 10374 -------------------------------------- 10375 10376 procedure Build_Incomplete_Type_Declaration is 10377 Decl : Node_Id; 10378 Inc_T : Entity_Id; 10379 H : Entity_Id; 10380 10381 -- Is_Tagged indicates whether the type is tagged. It is tagged if 10382 -- it's "is new ... with record" or else "is tagged record ...". 10383 10384 Is_Tagged : constant Boolean := 10385 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition 10386 and then 10387 Present (Record_Extension_Part (Type_Definition (Typ_Decl)))) 10388 or else 10389 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition 10390 and then Tagged_Present (Type_Definition (Typ_Decl))); 10391 10392 begin 10393 -- If there is a previous partial view, no need to create a new one 10394 -- If the partial view, given by Prev, is incomplete, If Prev is 10395 -- a private declaration, full declaration is flagged accordingly. 10396 10397 if Prev /= Typ then 10398 if Is_Tagged then 10399 Make_Class_Wide_Type (Prev); 10400 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev)); 10401 Set_Etype (Class_Wide_Type (Typ), Typ); 10402 end if; 10403 10404 return; 10405 10406 elsif Has_Private_Declaration (Typ) then 10407 10408 -- If we refer to T'Class inside T, and T is the completion of a 10409 -- private type, then make sure the class-wide type exists. 10410 10411 if Is_Tagged then 10412 Make_Class_Wide_Type (Typ); 10413 end if; 10414 10415 return; 10416 10417 -- If there was a previous anonymous access type, the incomplete 10418 -- type declaration will have been created already. 10419 10420 elsif Present (Current_Entity (Typ)) 10421 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type 10422 and then Full_View (Current_Entity (Typ)) = Typ 10423 then 10424 if Is_Tagged 10425 and then Comes_From_Source (Current_Entity (Typ)) 10426 and then not Is_Tagged_Type (Current_Entity (Typ)) 10427 then 10428 Make_Class_Wide_Type (Typ); 10429 Error_Msg_N 10430 ("incomplete view of tagged type should be declared tagged??", 10431 Parent (Current_Entity (Typ))); 10432 end if; 10433 return; 10434 10435 else 10436 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ)); 10437 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T); 10438 10439 -- Type has already been inserted into the current scope. Remove 10440 -- it, and add incomplete declaration for type, so that subsequent 10441 -- anonymous access types can use it. The entity is unchained from 10442 -- the homonym list and from immediate visibility. After analysis, 10443 -- the entity in the incomplete declaration becomes immediately 10444 -- visible in the record declaration that follows. 10445 10446 H := Current_Entity (Typ); 10447 10448 if H = Typ then 10449 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ)); 10450 else 10451 while Present (H) 10452 and then Homonym (H) /= Typ 10453 loop 10454 H := Homonym (Typ); 10455 end loop; 10456 10457 Set_Homonym (H, Homonym (Typ)); 10458 end if; 10459 10460 Insert_Before (Typ_Decl, Decl); 10461 Analyze (Decl); 10462 Set_Full_View (Inc_T, Typ); 10463 10464 if Is_Tagged then 10465 10466 -- Create a common class-wide type for both views, and set the 10467 -- Etype of the class-wide type to the full view. 10468 10469 Make_Class_Wide_Type (Inc_T); 10470 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T)); 10471 Set_Etype (Class_Wide_Type (Typ), Typ); 10472 end if; 10473 end if; 10474 end Build_Incomplete_Type_Declaration; 10475 10476 ------------------ 10477 -- Designates_T -- 10478 ------------------ 10479 10480 function Designates_T (Subt : Node_Id) return Boolean is 10481 Type_Id : constant Name_Id := Chars (Typ); 10482 10483 function Names_T (Nam : Node_Id) return Boolean; 10484 -- The record type has not been introduced in the current scope 10485 -- yet, so we must examine the name of the type itself, either 10486 -- an identifier T, or an expanded name of the form P.T, where 10487 -- P denotes the current scope. 10488 10489 ------------- 10490 -- Names_T -- 10491 ------------- 10492 10493 function Names_T (Nam : Node_Id) return Boolean is 10494 begin 10495 if Nkind (Nam) = N_Identifier then 10496 return Chars (Nam) = Type_Id; 10497 10498 elsif Nkind (Nam) = N_Selected_Component then 10499 if Chars (Selector_Name (Nam)) = Type_Id then 10500 if Nkind (Prefix (Nam)) = N_Identifier then 10501 return Chars (Prefix (Nam)) = Chars (Current_Scope); 10502 10503 elsif Nkind (Prefix (Nam)) = N_Selected_Component then 10504 return Chars (Selector_Name (Prefix (Nam))) = 10505 Chars (Current_Scope); 10506 else 10507 return False; 10508 end if; 10509 10510 else 10511 return False; 10512 end if; 10513 10514 else 10515 return False; 10516 end if; 10517 end Names_T; 10518 10519 -- Start of processing for Designates_T 10520 10521 begin 10522 if Nkind (Subt) = N_Identifier then 10523 return Chars (Subt) = Type_Id; 10524 10525 -- Reference can be through an expanded name which has not been 10526 -- analyzed yet, and which designates enclosing scopes. 10527 10528 elsif Nkind (Subt) = N_Selected_Component then 10529 if Names_T (Subt) then 10530 return True; 10531 10532 -- Otherwise it must denote an entity that is already visible. 10533 -- The access definition may name a subtype of the enclosing 10534 -- type, if there is a previous incomplete declaration for it. 10535 10536 else 10537 Find_Selected_Component (Subt); 10538 return 10539 Is_Entity_Name (Subt) 10540 and then Scope (Entity (Subt)) = Current_Scope 10541 and then 10542 (Chars (Base_Type (Entity (Subt))) = Type_Id 10543 or else 10544 (Is_Class_Wide_Type (Entity (Subt)) 10545 and then 10546 Chars (Etype (Base_Type (Entity (Subt)))) = 10547 Type_Id)); 10548 end if; 10549 10550 -- A reference to the current type may appear as the prefix of 10551 -- a 'Class attribute. 10552 10553 elsif Nkind (Subt) = N_Attribute_Reference 10554 and then Attribute_Name (Subt) = Name_Class 10555 then 10556 return Names_T (Prefix (Subt)); 10557 10558 else 10559 return False; 10560 end if; 10561 end Designates_T; 10562 10563 ---------------- 10564 -- Mentions_T -- 10565 ---------------- 10566 10567 function Mentions_T (Acc_Def : Node_Id) return Boolean is 10568 Param_Spec : Node_Id; 10569 10570 Acc_Subprg : constant Node_Id := 10571 Access_To_Subprogram_Definition (Acc_Def); 10572 10573 begin 10574 if No (Acc_Subprg) then 10575 return Designates_T (Subtype_Mark (Acc_Def)); 10576 end if; 10577 10578 -- Component is an access_to_subprogram: examine its formals, 10579 -- and result definition in the case of an access_to_function. 10580 10581 Param_Spec := First (Parameter_Specifications (Acc_Subprg)); 10582 while Present (Param_Spec) loop 10583 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition 10584 and then Mentions_T (Parameter_Type (Param_Spec)) 10585 then 10586 return True; 10587 10588 elsif Designates_T (Parameter_Type (Param_Spec)) then 10589 return True; 10590 end if; 10591 10592 Next (Param_Spec); 10593 end loop; 10594 10595 if Nkind (Acc_Subprg) = N_Access_Function_Definition then 10596 if Nkind (Result_Definition (Acc_Subprg)) = 10597 N_Access_Definition 10598 then 10599 return Mentions_T (Result_Definition (Acc_Subprg)); 10600 else 10601 return Designates_T (Result_Definition (Acc_Subprg)); 10602 end if; 10603 end if; 10604 10605 return False; 10606 end Mentions_T; 10607 10608 -- Start of processing for Check_Anonymous_Access_Components 10609 10610 begin 10611 if No (Comp_List) then 10612 return; 10613 end if; 10614 10615 Comp := First (Component_Items (Comp_List)); 10616 while Present (Comp) loop 10617 if Nkind (Comp) = N_Component_Declaration 10618 and then Present 10619 (Access_Definition (Component_Definition (Comp))) 10620 and then 10621 Mentions_T (Access_Definition (Component_Definition (Comp))) 10622 then 10623 Comp_Def := Component_Definition (Comp); 10624 Acc_Def := 10625 Access_To_Subprogram_Definition (Access_Definition (Comp_Def)); 10626 10627 Build_Incomplete_Type_Declaration; 10628 Anon_Access := Make_Temporary (Loc, 'S'); 10629 10630 -- Create a declaration for the anonymous access type: either 10631 -- an access_to_object or an access_to_subprogram. 10632 10633 if Present (Acc_Def) then 10634 if Nkind (Acc_Def) = N_Access_Function_Definition then 10635 Type_Def := 10636 Make_Access_Function_Definition (Loc, 10637 Parameter_Specifications => 10638 Parameter_Specifications (Acc_Def), 10639 Result_Definition => Result_Definition (Acc_Def)); 10640 else 10641 Type_Def := 10642 Make_Access_Procedure_Definition (Loc, 10643 Parameter_Specifications => 10644 Parameter_Specifications (Acc_Def)); 10645 end if; 10646 10647 else 10648 Type_Def := 10649 Make_Access_To_Object_Definition (Loc, 10650 Subtype_Indication => 10651 Relocate_Node 10652 (Subtype_Mark (Access_Definition (Comp_Def)))); 10653 10654 Set_Constant_Present 10655 (Type_Def, Constant_Present (Access_Definition (Comp_Def))); 10656 Set_All_Present 10657 (Type_Def, All_Present (Access_Definition (Comp_Def))); 10658 end if; 10659 10660 Set_Null_Exclusion_Present 10661 (Type_Def, 10662 Null_Exclusion_Present (Access_Definition (Comp_Def))); 10663 10664 Decl := 10665 Make_Full_Type_Declaration (Loc, 10666 Defining_Identifier => Anon_Access, 10667 Type_Definition => Type_Def); 10668 10669 Insert_Before (Typ_Decl, Decl); 10670 Analyze (Decl); 10671 10672 -- If an access to subprogram, create the extra formals 10673 10674 if Present (Acc_Def) then 10675 Create_Extra_Formals (Designated_Type (Anon_Access)); 10676 10677 -- If an access to object, preserve entity of designated type, 10678 -- for ASIS use, before rewriting the component definition. 10679 10680 else 10681 declare 10682 Desig : Entity_Id; 10683 10684 begin 10685 Desig := Entity (Subtype_Indication (Type_Def)); 10686 10687 -- If the access definition is to the current record, 10688 -- the visible entity at this point is an incomplete 10689 -- type. Retrieve the full view to simplify ASIS queries 10690 10691 if Ekind (Desig) = E_Incomplete_Type then 10692 Desig := Full_View (Desig); 10693 end if; 10694 10695 Set_Entity 10696 (Subtype_Mark (Access_Definition (Comp_Def)), Desig); 10697 end; 10698 end if; 10699 10700 Rewrite (Comp_Def, 10701 Make_Component_Definition (Loc, 10702 Subtype_Indication => 10703 New_Occurrence_Of (Anon_Access, Loc))); 10704 10705 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then 10706 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type); 10707 else 10708 Set_Ekind (Anon_Access, E_Anonymous_Access_Type); 10709 end if; 10710 10711 Set_Is_Local_Anonymous_Access (Anon_Access); 10712 end if; 10713 10714 Next (Comp); 10715 end loop; 10716 10717 if Present (Variant_Part (Comp_List)) then 10718 declare 10719 V : Node_Id; 10720 begin 10721 V := First_Non_Pragma (Variants (Variant_Part (Comp_List))); 10722 while Present (V) loop 10723 Check_Anonymous_Access_Components 10724 (Typ_Decl, Typ, Prev, Component_List (V)); 10725 Next_Non_Pragma (V); 10726 end loop; 10727 end; 10728 end if; 10729 end Check_Anonymous_Access_Components; 10730 10731 ---------------------- 10732 -- Check_Completion -- 10733 ---------------------- 10734 10735 procedure Check_Completion (Body_Id : Node_Id := Empty) is 10736 E : Entity_Id; 10737 10738 procedure Post_Error; 10739 -- Post error message for lack of completion for entity E 10740 10741 ---------------- 10742 -- Post_Error -- 10743 ---------------- 10744 10745 procedure Post_Error is 10746 procedure Missing_Body; 10747 -- Output missing body message 10748 10749 ------------------ 10750 -- Missing_Body -- 10751 ------------------ 10752 10753 procedure Missing_Body is 10754 begin 10755 -- Spec is in same unit, so we can post on spec 10756 10757 if In_Same_Source_Unit (Body_Id, E) then 10758 Error_Msg_N ("missing body for &", E); 10759 10760 -- Spec is in a separate unit, so we have to post on the body 10761 10762 else 10763 Error_Msg_NE ("missing body for & declared#!", Body_Id, E); 10764 end if; 10765 end Missing_Body; 10766 10767 -- Start of processing for Post_Error 10768 10769 begin 10770 if not Comes_From_Source (E) then 10771 if Ekind_In (E, E_Task_Type, E_Protected_Type) then 10772 10773 -- It may be an anonymous protected type created for a 10774 -- single variable. Post error on variable, if present. 10775 10776 declare 10777 Var : Entity_Id; 10778 10779 begin 10780 Var := First_Entity (Current_Scope); 10781 while Present (Var) loop 10782 exit when Etype (Var) = E 10783 and then Comes_From_Source (Var); 10784 10785 Next_Entity (Var); 10786 end loop; 10787 10788 if Present (Var) then 10789 E := Var; 10790 end if; 10791 end; 10792 end if; 10793 end if; 10794 10795 -- If a generated entity has no completion, then either previous 10796 -- semantic errors have disabled the expansion phase, or else we had 10797 -- missing subunits, or else we are compiling without expansion, 10798 -- or else something is very wrong. 10799 10800 if not Comes_From_Source (E) then 10801 pragma Assert 10802 (Serious_Errors_Detected > 0 10803 or else Configurable_Run_Time_Violations > 0 10804 or else Subunits_Missing 10805 or else not Expander_Active); 10806 return; 10807 10808 -- Here for source entity 10809 10810 else 10811 -- Here if no body to post the error message, so we post the error 10812 -- on the declaration that has no completion. This is not really 10813 -- the right place to post it, think about this later ??? 10814 10815 if No (Body_Id) then 10816 if Is_Type (E) then 10817 Error_Msg_NE 10818 ("missing full declaration for }", Parent (E), E); 10819 else 10820 Error_Msg_NE ("missing body for &", Parent (E), E); 10821 end if; 10822 10823 -- Package body has no completion for a declaration that appears 10824 -- in the corresponding spec. Post error on the body, with a 10825 -- reference to the non-completed declaration. 10826 10827 else 10828 Error_Msg_Sloc := Sloc (E); 10829 10830 if Is_Type (E) then 10831 Error_Msg_NE ("missing full declaration for }!", Body_Id, E); 10832 10833 elsif Is_Overloadable (E) 10834 and then Current_Entity_In_Scope (E) /= E 10835 then 10836 -- It may be that the completion is mistyped and appears as 10837 -- a distinct overloading of the entity. 10838 10839 declare 10840 Candidate : constant Entity_Id := 10841 Current_Entity_In_Scope (E); 10842 Decl : constant Node_Id := 10843 Unit_Declaration_Node (Candidate); 10844 10845 begin 10846 if Is_Overloadable (Candidate) 10847 and then Ekind (Candidate) = Ekind (E) 10848 and then Nkind (Decl) = N_Subprogram_Body 10849 and then Acts_As_Spec (Decl) 10850 then 10851 Check_Type_Conformant (Candidate, E); 10852 10853 else 10854 Missing_Body; 10855 end if; 10856 end; 10857 10858 else 10859 Missing_Body; 10860 end if; 10861 end if; 10862 end if; 10863 end Post_Error; 10864 10865 -- Local variables 10866 10867 Pack_Id : constant Entity_Id := Current_Scope; 10868 10869 -- Start of processing for Check_Completion 10870 10871 begin 10872 E := First_Entity (Pack_Id); 10873 while Present (E) loop 10874 if Is_Intrinsic_Subprogram (E) then 10875 null; 10876 10877 -- The following situation requires special handling: a child unit 10878 -- that appears in the context clause of the body of its parent: 10879 10880 -- procedure Parent.Child (...); 10881 10882 -- with Parent.Child; 10883 -- package body Parent is 10884 10885 -- Here Parent.Child appears as a local entity, but should not be 10886 -- flagged as requiring completion, because it is a compilation 10887 -- unit. 10888 10889 -- Ignore missing completion for a subprogram that does not come from 10890 -- source (including the _Call primitive operation of RAS types, 10891 -- which has to have the flag Comes_From_Source for other purposes): 10892 -- we assume that the expander will provide the missing completion. 10893 -- In case of previous errors, other expansion actions that provide 10894 -- bodies for null procedures with not be invoked, so inhibit message 10895 -- in those cases. 10896 10897 -- Note that E_Operator is not in the list that follows, because 10898 -- this kind is reserved for predefined operators, that are 10899 -- intrinsic and do not need completion. 10900 10901 elsif Ekind_In (E, E_Function, 10902 E_Procedure, 10903 E_Generic_Function, 10904 E_Generic_Procedure) 10905 then 10906 if Has_Completion (E) then 10907 null; 10908 10909 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then 10910 null; 10911 10912 elsif Is_Subprogram (E) 10913 and then (not Comes_From_Source (E) 10914 or else Chars (E) = Name_uCall) 10915 then 10916 null; 10917 10918 elsif 10919 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit 10920 then 10921 null; 10922 10923 elsif Nkind (Parent (E)) = N_Procedure_Specification 10924 and then Null_Present (Parent (E)) 10925 and then Serious_Errors_Detected > 0 10926 then 10927 null; 10928 10929 else 10930 Post_Error; 10931 end if; 10932 10933 elsif Is_Entry (E) then 10934 if not Has_Completion (E) and then 10935 (Ekind (Scope (E)) = E_Protected_Object 10936 or else Ekind (Scope (E)) = E_Protected_Type) 10937 then 10938 Post_Error; 10939 end if; 10940 10941 elsif Is_Package_Or_Generic_Package (E) then 10942 if Unit_Requires_Body (E) then 10943 if not Has_Completion (E) 10944 and then Nkind (Parent (Unit_Declaration_Node (E))) /= 10945 N_Compilation_Unit 10946 then 10947 Post_Error; 10948 end if; 10949 10950 elsif not Is_Child_Unit (E) then 10951 May_Need_Implicit_Body (E); 10952 end if; 10953 10954 -- A formal incomplete type (Ada 2012) does not require a completion; 10955 -- other incomplete type declarations do. 10956 10957 elsif Ekind (E) = E_Incomplete_Type 10958 and then No (Underlying_Type (E)) 10959 and then not Is_Generic_Type (E) 10960 then 10961 Post_Error; 10962 10963 elsif Ekind_In (E, E_Task_Type, E_Protected_Type) 10964 and then not Has_Completion (E) 10965 then 10966 Post_Error; 10967 10968 -- A single task declared in the current scope is a constant, verify 10969 -- that the body of its anonymous type is in the same scope. If the 10970 -- task is defined elsewhere, this may be a renaming declaration for 10971 -- which no completion is needed. 10972 10973 elsif Ekind (E) = E_Constant 10974 and then Ekind (Etype (E)) = E_Task_Type 10975 and then not Has_Completion (Etype (E)) 10976 and then Scope (Etype (E)) = Current_Scope 10977 then 10978 Post_Error; 10979 10980 elsif Ekind (E) = E_Protected_Object 10981 and then not Has_Completion (Etype (E)) 10982 then 10983 Post_Error; 10984 10985 elsif Ekind (E) = E_Record_Type then 10986 if Is_Tagged_Type (E) then 10987 Check_Abstract_Overriding (E); 10988 Check_Conventions (E); 10989 end if; 10990 10991 Check_Aliased_Component_Types (E); 10992 10993 elsif Ekind (E) = E_Array_Type then 10994 Check_Aliased_Component_Types (E); 10995 10996 end if; 10997 10998 Next_Entity (E); 10999 end loop; 11000 end Check_Completion; 11001 11002 ------------------------------------ 11003 -- Check_CPP_Type_Has_No_Defaults -- 11004 ------------------------------------ 11005 11006 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is 11007 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T)); 11008 Clist : Node_Id; 11009 Comp : Node_Id; 11010 11011 begin 11012 -- Obtain the component list 11013 11014 if Nkind (Tdef) = N_Record_Definition then 11015 Clist := Component_List (Tdef); 11016 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition); 11017 Clist := Component_List (Record_Extension_Part (Tdef)); 11018 end if; 11019 11020 -- Check all components to ensure no default expressions 11021 11022 if Present (Clist) then 11023 Comp := First (Component_Items (Clist)); 11024 while Present (Comp) loop 11025 if Present (Expression (Comp)) then 11026 Error_Msg_N 11027 ("component of imported 'C'P'P type cannot have " 11028 & "default expression", Expression (Comp)); 11029 end if; 11030 11031 Next (Comp); 11032 end loop; 11033 end if; 11034 end Check_CPP_Type_Has_No_Defaults; 11035 11036 ---------------------------- 11037 -- Check_Delta_Expression -- 11038 ---------------------------- 11039 11040 procedure Check_Delta_Expression (E : Node_Id) is 11041 begin 11042 if not (Is_Real_Type (Etype (E))) then 11043 Wrong_Type (E, Any_Real); 11044 11045 elsif not Is_OK_Static_Expression (E) then 11046 Flag_Non_Static_Expr 11047 ("non-static expression used for delta value!", E); 11048 11049 elsif not UR_Is_Positive (Expr_Value_R (E)) then 11050 Error_Msg_N ("delta expression must be positive", E); 11051 11052 else 11053 return; 11054 end if; 11055 11056 -- If any of above errors occurred, then replace the incorrect 11057 -- expression by the real 0.1, which should prevent further errors. 11058 11059 Rewrite (E, 11060 Make_Real_Literal (Sloc (E), Ureal_Tenth)); 11061 Analyze_And_Resolve (E, Standard_Float); 11062 end Check_Delta_Expression; 11063 11064 ----------------------------- 11065 -- Check_Digits_Expression -- 11066 ----------------------------- 11067 11068 procedure Check_Digits_Expression (E : Node_Id) is 11069 begin 11070 if not (Is_Integer_Type (Etype (E))) then 11071 Wrong_Type (E, Any_Integer); 11072 11073 elsif not Is_OK_Static_Expression (E) then 11074 Flag_Non_Static_Expr 11075 ("non-static expression used for digits value!", E); 11076 11077 elsif Expr_Value (E) <= 0 then 11078 Error_Msg_N ("digits value must be greater than zero", E); 11079 11080 else 11081 return; 11082 end if; 11083 11084 -- If any of above errors occurred, then replace the incorrect 11085 -- expression by the integer 1, which should prevent further errors. 11086 11087 Rewrite (E, Make_Integer_Literal (Sloc (E), 1)); 11088 Analyze_And_Resolve (E, Standard_Integer); 11089 11090 end Check_Digits_Expression; 11091 11092 -------------------------- 11093 -- Check_Initialization -- 11094 -------------------------- 11095 11096 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is 11097 begin 11098 -- Special processing for limited types 11099 11100 if Is_Limited_Type (T) 11101 and then not In_Instance 11102 and then not In_Inlined_Body 11103 then 11104 if not OK_For_Limited_Init (T, Exp) then 11105 11106 -- In GNAT mode, this is just a warning, to allow it to be evilly 11107 -- turned off. Otherwise it is a real error. 11108 11109 if GNAT_Mode then 11110 Error_Msg_N 11111 ("??cannot initialize entities of limited type!", Exp); 11112 11113 elsif Ada_Version < Ada_2005 then 11114 11115 -- The side effect removal machinery may generate illegal Ada 11116 -- code to avoid the usage of access types and 'reference in 11117 -- SPARK mode. Since this is legal code with respect to theorem 11118 -- proving, do not emit the error. 11119 11120 if GNATprove_Mode 11121 and then Nkind (Exp) = N_Function_Call 11122 and then Nkind (Parent (Exp)) = N_Object_Declaration 11123 and then not Comes_From_Source 11124 (Defining_Identifier (Parent (Exp))) 11125 then 11126 null; 11127 11128 else 11129 Error_Msg_N 11130 ("cannot initialize entities of limited type", Exp); 11131 Explain_Limited_Type (T, Exp); 11132 end if; 11133 11134 else 11135 -- Specialize error message according to kind of illegal 11136 -- initial expression. 11137 11138 if Nkind (Exp) = N_Type_Conversion 11139 and then Nkind (Expression (Exp)) = N_Function_Call 11140 then 11141 Error_Msg_N 11142 ("illegal context for call" 11143 & " to function with limited result", Exp); 11144 11145 else 11146 Error_Msg_N 11147 ("initialization of limited object requires aggregate " 11148 & "or function call", Exp); 11149 end if; 11150 end if; 11151 end if; 11152 end if; 11153 11154 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets 11155 -- set unless we can be sure that no range check is required. 11156 11157 if (GNATprove_Mode or not Expander_Active) 11158 and then Is_Scalar_Type (T) 11159 and then not Is_In_Range (Exp, T, Assume_Valid => True) 11160 then 11161 Set_Do_Range_Check (Exp); 11162 end if; 11163 end Check_Initialization; 11164 11165 ---------------------- 11166 -- Check_Interfaces -- 11167 ---------------------- 11168 11169 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is 11170 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N)); 11171 11172 Iface : Node_Id; 11173 Iface_Def : Node_Id; 11174 Iface_Typ : Entity_Id; 11175 Parent_Node : Node_Id; 11176 11177 Is_Task : Boolean := False; 11178 -- Set True if parent type or any progenitor is a task interface 11179 11180 Is_Protected : Boolean := False; 11181 -- Set True if parent type or any progenitor is a protected interface 11182 11183 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id); 11184 -- Check that a progenitor is compatible with declaration. If an error 11185 -- message is output, it is posted on Error_Node. 11186 11187 ------------------ 11188 -- Check_Ifaces -- 11189 ------------------ 11190 11191 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is 11192 Iface_Id : constant Entity_Id := 11193 Defining_Identifier (Parent (Iface_Def)); 11194 Type_Def : Node_Id; 11195 11196 begin 11197 if Nkind (N) = N_Private_Extension_Declaration then 11198 Type_Def := N; 11199 else 11200 Type_Def := Type_Definition (N); 11201 end if; 11202 11203 if Is_Task_Interface (Iface_Id) then 11204 Is_Task := True; 11205 11206 elsif Is_Protected_Interface (Iface_Id) then 11207 Is_Protected := True; 11208 end if; 11209 11210 if Is_Synchronized_Interface (Iface_Id) then 11211 11212 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private 11213 -- extension derived from a synchronized interface must explicitly 11214 -- be declared synchronized, because the full view will be a 11215 -- synchronized type. 11216 11217 if Nkind (N) = N_Private_Extension_Declaration then 11218 if not Synchronized_Present (N) then 11219 Error_Msg_NE 11220 ("private extension of& must be explicitly synchronized", 11221 N, Iface_Id); 11222 end if; 11223 11224 -- However, by 3.9.4(16/2), a full type that is a record extension 11225 -- is never allowed to derive from a synchronized interface (note 11226 -- that interfaces must be excluded from this check, because those 11227 -- are represented by derived type definitions in some cases). 11228 11229 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition 11230 and then not Interface_Present (Type_Definition (N)) 11231 then 11232 Error_Msg_N ("record extension cannot derive from synchronized " 11233 & "interface", Error_Node); 11234 end if; 11235 end if; 11236 11237 -- Check that the characteristics of the progenitor are compatible 11238 -- with the explicit qualifier in the declaration. 11239 -- The check only applies to qualifiers that come from source. 11240 -- Limited_Present also appears in the declaration of corresponding 11241 -- records, and the check does not apply to them. 11242 11243 if Limited_Present (Type_Def) 11244 and then not 11245 Is_Concurrent_Record_Type (Defining_Identifier (N)) 11246 then 11247 if Is_Limited_Interface (Parent_Type) 11248 and then not Is_Limited_Interface (Iface_Id) 11249 then 11250 Error_Msg_NE 11251 ("progenitor & must be limited interface", 11252 Error_Node, Iface_Id); 11253 11254 elsif 11255 (Task_Present (Iface_Def) 11256 or else Protected_Present (Iface_Def) 11257 or else Synchronized_Present (Iface_Def)) 11258 and then Nkind (N) /= N_Private_Extension_Declaration 11259 and then not Error_Posted (N) 11260 then 11261 Error_Msg_NE 11262 ("progenitor & must be limited interface", 11263 Error_Node, Iface_Id); 11264 end if; 11265 11266 -- Protected interfaces can only inherit from limited, synchronized 11267 -- or protected interfaces. 11268 11269 elsif Nkind (N) = N_Full_Type_Declaration 11270 and then Protected_Present (Type_Def) 11271 then 11272 if Limited_Present (Iface_Def) 11273 or else Synchronized_Present (Iface_Def) 11274 or else Protected_Present (Iface_Def) 11275 then 11276 null; 11277 11278 elsif Task_Present (Iface_Def) then 11279 Error_Msg_N ("(Ada 2005) protected interface cannot inherit " 11280 & "from task interface", Error_Node); 11281 11282 else 11283 Error_Msg_N ("(Ada 2005) protected interface cannot inherit " 11284 & "from non-limited interface", Error_Node); 11285 end if; 11286 11287 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from 11288 -- limited and synchronized. 11289 11290 elsif Synchronized_Present (Type_Def) then 11291 if Limited_Present (Iface_Def) 11292 or else Synchronized_Present (Iface_Def) 11293 then 11294 null; 11295 11296 elsif Protected_Present (Iface_Def) 11297 and then Nkind (N) /= N_Private_Extension_Declaration 11298 then 11299 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit " 11300 & "from protected interface", Error_Node); 11301 11302 elsif Task_Present (Iface_Def) 11303 and then Nkind (N) /= N_Private_Extension_Declaration 11304 then 11305 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit " 11306 & "from task interface", Error_Node); 11307 11308 elsif not Is_Limited_Interface (Iface_Id) then 11309 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit " 11310 & "from non-limited interface", Error_Node); 11311 end if; 11312 11313 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited, 11314 -- synchronized or task interfaces. 11315 11316 elsif Nkind (N) = N_Full_Type_Declaration 11317 and then Task_Present (Type_Def) 11318 then 11319 if Limited_Present (Iface_Def) 11320 or else Synchronized_Present (Iface_Def) 11321 or else Task_Present (Iface_Def) 11322 then 11323 null; 11324 11325 elsif Protected_Present (Iface_Def) then 11326 Error_Msg_N ("(Ada 2005) task interface cannot inherit from " 11327 & "protected interface", Error_Node); 11328 11329 else 11330 Error_Msg_N ("(Ada 2005) task interface cannot inherit from " 11331 & "non-limited interface", Error_Node); 11332 end if; 11333 end if; 11334 end Check_Ifaces; 11335 11336 -- Start of processing for Check_Interfaces 11337 11338 begin 11339 if Is_Interface (Parent_Type) then 11340 if Is_Task_Interface (Parent_Type) then 11341 Is_Task := True; 11342 11343 elsif Is_Protected_Interface (Parent_Type) then 11344 Is_Protected := True; 11345 end if; 11346 end if; 11347 11348 if Nkind (N) = N_Private_Extension_Declaration then 11349 11350 -- Check that progenitors are compatible with declaration 11351 11352 Iface := First (Interface_List (Def)); 11353 while Present (Iface) loop 11354 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface); 11355 11356 Parent_Node := Parent (Base_Type (Iface_Typ)); 11357 Iface_Def := Type_Definition (Parent_Node); 11358 11359 if not Is_Interface (Iface_Typ) then 11360 Diagnose_Interface (Iface, Iface_Typ); 11361 else 11362 Check_Ifaces (Iface_Def, Iface); 11363 end if; 11364 11365 Next (Iface); 11366 end loop; 11367 11368 if Is_Task and Is_Protected then 11369 Error_Msg_N 11370 ("type cannot derive from task and protected interface", N); 11371 end if; 11372 11373 return; 11374 end if; 11375 11376 -- Full type declaration of derived type. 11377 -- Check compatibility with parent if it is interface type 11378 11379 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition 11380 and then Is_Interface (Parent_Type) 11381 then 11382 Parent_Node := Parent (Parent_Type); 11383 11384 -- More detailed checks for interface varieties 11385 11386 Check_Ifaces 11387 (Iface_Def => Type_Definition (Parent_Node), 11388 Error_Node => Subtype_Indication (Type_Definition (N))); 11389 end if; 11390 11391 Iface := First (Interface_List (Def)); 11392 while Present (Iface) loop 11393 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface); 11394 11395 Parent_Node := Parent (Base_Type (Iface_Typ)); 11396 Iface_Def := Type_Definition (Parent_Node); 11397 11398 if not Is_Interface (Iface_Typ) then 11399 Diagnose_Interface (Iface, Iface_Typ); 11400 11401 else 11402 -- "The declaration of a specific descendant of an interface 11403 -- type freezes the interface type" RM 13.14 11404 11405 Freeze_Before (N, Iface_Typ); 11406 Check_Ifaces (Iface_Def, Error_Node => Iface); 11407 end if; 11408 11409 Next (Iface); 11410 end loop; 11411 11412 if Is_Task and Is_Protected then 11413 Error_Msg_N 11414 ("type cannot derive from task and protected interface", N); 11415 end if; 11416 end Check_Interfaces; 11417 11418 ------------------------------------ 11419 -- Check_Or_Process_Discriminants -- 11420 ------------------------------------ 11421 11422 -- If an incomplete or private type declaration was already given for the 11423 -- type, the discriminants may have already been processed if they were 11424 -- present on the incomplete declaration. In this case a full conformance 11425 -- check has been performed in Find_Type_Name, and we then recheck here 11426 -- some properties that can't be checked on the partial view alone. 11427 -- Otherwise we call Process_Discriminants. 11428 11429 procedure Check_Or_Process_Discriminants 11430 (N : Node_Id; 11431 T : Entity_Id; 11432 Prev : Entity_Id := Empty) 11433 is 11434 begin 11435 if Has_Discriminants (T) then 11436 11437 -- Discriminants are already set on T if they were already present 11438 -- on the partial view. Make them visible to component declarations. 11439 11440 declare 11441 D : Entity_Id; 11442 -- Discriminant on T (full view) referencing expr on partial view 11443 11444 Prev_D : Entity_Id; 11445 -- Entity of corresponding discriminant on partial view 11446 11447 New_D : Node_Id; 11448 -- Discriminant specification for full view, expression is 11449 -- the syntactic copy on full view (which has been checked for 11450 -- conformance with partial view), only used here to post error 11451 -- message. 11452 11453 begin 11454 D := First_Discriminant (T); 11455 New_D := First (Discriminant_Specifications (N)); 11456 while Present (D) loop 11457 Prev_D := Current_Entity (D); 11458 Set_Current_Entity (D); 11459 Set_Is_Immediately_Visible (D); 11460 Set_Homonym (D, Prev_D); 11461 11462 -- Handle the case where there is an untagged partial view and 11463 -- the full view is tagged: must disallow discriminants with 11464 -- defaults, unless compiling for Ada 2012, which allows a 11465 -- limited tagged type to have defaulted discriminants (see 11466 -- AI05-0214). However, suppress error here if it was already 11467 -- reported on the default expression of the partial view. 11468 11469 if Is_Tagged_Type (T) 11470 and then Present (Expression (Parent (D))) 11471 and then (not Is_Limited_Type (Current_Scope) 11472 or else Ada_Version < Ada_2012) 11473 and then not Error_Posted (Expression (Parent (D))) 11474 then 11475 if Ada_Version >= Ada_2012 then 11476 Error_Msg_N 11477 ("discriminants of nonlimited tagged type cannot have " 11478 & "defaults", 11479 Expression (New_D)); 11480 else 11481 Error_Msg_N 11482 ("discriminants of tagged type cannot have defaults", 11483 Expression (New_D)); 11484 end if; 11485 end if; 11486 11487 -- Ada 2005 (AI-230): Access discriminant allowed in 11488 -- non-limited record types. 11489 11490 if Ada_Version < Ada_2005 then 11491 11492 -- This restriction gets applied to the full type here. It 11493 -- has already been applied earlier to the partial view. 11494 11495 Check_Access_Discriminant_Requires_Limited (Parent (D), N); 11496 end if; 11497 11498 Next_Discriminant (D); 11499 Next (New_D); 11500 end loop; 11501 end; 11502 11503 elsif Present (Discriminant_Specifications (N)) then 11504 Process_Discriminants (N, Prev); 11505 end if; 11506 end Check_Or_Process_Discriminants; 11507 11508 ---------------------- 11509 -- Check_Real_Bound -- 11510 ---------------------- 11511 11512 procedure Check_Real_Bound (Bound : Node_Id) is 11513 begin 11514 if not Is_Real_Type (Etype (Bound)) then 11515 Error_Msg_N 11516 ("bound in real type definition must be of real type", Bound); 11517 11518 elsif not Is_OK_Static_Expression (Bound) then 11519 Flag_Non_Static_Expr 11520 ("non-static expression used for real type bound!", Bound); 11521 11522 else 11523 return; 11524 end if; 11525 11526 Rewrite 11527 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0)); 11528 Analyze (Bound); 11529 Resolve (Bound, Standard_Float); 11530 end Check_Real_Bound; 11531 11532 ------------------------------ 11533 -- Complete_Private_Subtype -- 11534 ------------------------------ 11535 11536 procedure Complete_Private_Subtype 11537 (Priv : Entity_Id; 11538 Full : Entity_Id; 11539 Full_Base : Entity_Id; 11540 Related_Nod : Node_Id) 11541 is 11542 Save_Next_Entity : Entity_Id; 11543 Save_Homonym : Entity_Id; 11544 11545 begin 11546 -- Set semantic attributes for (implicit) private subtype completion. 11547 -- If the full type has no discriminants, then it is a copy of the 11548 -- full view of the base. Otherwise, it is a subtype of the base with 11549 -- a possible discriminant constraint. Save and restore the original 11550 -- Next_Entity field of full to ensure that the calls to Copy_Node do 11551 -- not corrupt the entity chain. 11552 11553 -- Note that the type of the full view is the same entity as the type 11554 -- of the partial view. In this fashion, the subtype has access to the 11555 -- correct view of the parent. 11556 11557 Save_Next_Entity := Next_Entity (Full); 11558 Save_Homonym := Homonym (Priv); 11559 11560 case Ekind (Full_Base) is 11561 when E_Record_Type | 11562 E_Record_Subtype | 11563 Class_Wide_Kind | 11564 Private_Kind | 11565 Task_Kind | 11566 Protected_Kind => 11567 Copy_Node (Priv, Full); 11568 11569 Set_Has_Discriminants 11570 (Full, Has_Discriminants (Full_Base)); 11571 Set_Has_Unknown_Discriminants 11572 (Full, Has_Unknown_Discriminants (Full_Base)); 11573 Set_First_Entity (Full, First_Entity (Full_Base)); 11574 Set_Last_Entity (Full, Last_Entity (Full_Base)); 11575 11576 -- If the underlying base type is constrained, we know that the 11577 -- full view of the subtype is constrained as well (the converse 11578 -- is not necessarily true). 11579 11580 if Is_Constrained (Full_Base) then 11581 Set_Is_Constrained (Full); 11582 end if; 11583 11584 when others => 11585 Copy_Node (Full_Base, Full); 11586 11587 Set_Chars (Full, Chars (Priv)); 11588 Conditional_Delay (Full, Priv); 11589 Set_Sloc (Full, Sloc (Priv)); 11590 end case; 11591 11592 Set_Next_Entity (Full, Save_Next_Entity); 11593 Set_Homonym (Full, Save_Homonym); 11594 Set_Associated_Node_For_Itype (Full, Related_Nod); 11595 11596 -- Set common attributes for all subtypes: kind, convention, etc. 11597 11598 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base))); 11599 Set_Convention (Full, Convention (Full_Base)); 11600 11601 -- The Etype of the full view is inconsistent. Gigi needs to see the 11602 -- structural full view, which is what the current scheme gives: the 11603 -- Etype of the full view is the etype of the full base. However, if the 11604 -- full base is a derived type, the full view then looks like a subtype 11605 -- of the parent, not a subtype of the full base. If instead we write: 11606 11607 -- Set_Etype (Full, Full_Base); 11608 11609 -- then we get inconsistencies in the front-end (confusion between 11610 -- views). Several outstanding bugs are related to this ??? 11611 11612 Set_Is_First_Subtype (Full, False); 11613 Set_Scope (Full, Scope (Priv)); 11614 Set_Size_Info (Full, Full_Base); 11615 Set_RM_Size (Full, RM_Size (Full_Base)); 11616 Set_Is_Itype (Full); 11617 11618 -- A subtype of a private-type-without-discriminants, whose full-view 11619 -- has discriminants with default expressions, is not constrained. 11620 11621 if not Has_Discriminants (Priv) then 11622 Set_Is_Constrained (Full, Is_Constrained (Full_Base)); 11623 11624 if Has_Discriminants (Full_Base) then 11625 Set_Discriminant_Constraint 11626 (Full, Discriminant_Constraint (Full_Base)); 11627 11628 -- The partial view may have been indefinite, the full view 11629 -- might not be. 11630 11631 Set_Has_Unknown_Discriminants 11632 (Full, Has_Unknown_Discriminants (Full_Base)); 11633 end if; 11634 end if; 11635 11636 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base)); 11637 Set_Depends_On_Private (Full, Has_Private_Component (Full)); 11638 11639 -- Freeze the private subtype entity if its parent is delayed, and not 11640 -- already frozen. We skip this processing if the type is an anonymous 11641 -- subtype of a record component, or is the corresponding record of a 11642 -- protected type, since these are processed when the enclosing type 11643 -- is frozen. 11644 11645 if not Is_Type (Scope (Full)) then 11646 Set_Has_Delayed_Freeze (Full, 11647 Has_Delayed_Freeze (Full_Base) 11648 and then (not Is_Frozen (Full_Base))); 11649 end if; 11650 11651 Set_Freeze_Node (Full, Empty); 11652 Set_Is_Frozen (Full, False); 11653 Set_Full_View (Priv, Full); 11654 11655 if Has_Discriminants (Full) then 11656 Set_Stored_Constraint_From_Discriminant_Constraint (Full); 11657 Set_Stored_Constraint (Priv, Stored_Constraint (Full)); 11658 11659 if Has_Unknown_Discriminants (Full) then 11660 Set_Discriminant_Constraint (Full, No_Elist); 11661 end if; 11662 end if; 11663 11664 if Ekind (Full_Base) = E_Record_Type 11665 and then Has_Discriminants (Full_Base) 11666 and then Has_Discriminants (Priv) -- might not, if errors 11667 and then not Has_Unknown_Discriminants (Priv) 11668 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv)) 11669 then 11670 Create_Constrained_Components 11671 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv)); 11672 11673 -- If the full base is itself derived from private, build a congruent 11674 -- subtype of its underlying type, for use by the back end. For a 11675 -- constrained record component, the declaration cannot be placed on 11676 -- the component list, but it must nevertheless be built an analyzed, to 11677 -- supply enough information for Gigi to compute the size of component. 11678 11679 elsif Ekind (Full_Base) in Private_Kind 11680 and then Is_Derived_Type (Full_Base) 11681 and then Has_Discriminants (Full_Base) 11682 and then (Ekind (Current_Scope) /= E_Record_Subtype) 11683 then 11684 if not Is_Itype (Priv) 11685 and then 11686 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication 11687 then 11688 Build_Underlying_Full_View 11689 (Parent (Priv), Full, Etype (Full_Base)); 11690 11691 elsif Nkind (Related_Nod) = N_Component_Declaration then 11692 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base)); 11693 end if; 11694 11695 elsif Is_Record_Type (Full_Base) then 11696 11697 -- Show Full is simply a renaming of Full_Base 11698 11699 Set_Cloned_Subtype (Full, Full_Base); 11700 end if; 11701 11702 -- It is unsafe to share the bounds of a scalar type, because the Itype 11703 -- is elaborated on demand, and if a bound is non-static then different 11704 -- orders of elaboration in different units will lead to different 11705 -- external symbols. 11706 11707 if Is_Scalar_Type (Full_Base) then 11708 Set_Scalar_Range (Full, 11709 Make_Range (Sloc (Related_Nod), 11710 Low_Bound => 11711 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)), 11712 High_Bound => 11713 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base)))); 11714 11715 -- This completion inherits the bounds of the full parent, but if 11716 -- the parent is an unconstrained floating point type, so is the 11717 -- completion. 11718 11719 if Is_Floating_Point_Type (Full_Base) then 11720 Set_Includes_Infinities 11721 (Scalar_Range (Full), Has_Infinities (Full_Base)); 11722 end if; 11723 end if; 11724 11725 -- ??? It seems that a lot of fields are missing that should be copied 11726 -- from Full_Base to Full. Here are some that are introduced in a 11727 -- non-disruptive way but a cleanup is necessary. 11728 11729 if Is_Tagged_Type (Full_Base) then 11730 Set_Is_Tagged_Type (Full); 11731 Set_Direct_Primitive_Operations 11732 (Full, Direct_Primitive_Operations (Full_Base)); 11733 Set_No_Tagged_Streams_Pragma 11734 (Full, No_Tagged_Streams_Pragma (Full_Base)); 11735 11736 -- Inherit class_wide type of full_base in case the partial view was 11737 -- not tagged. Otherwise it has already been created when the private 11738 -- subtype was analyzed. 11739 11740 if No (Class_Wide_Type (Full)) then 11741 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base)); 11742 end if; 11743 11744 -- If this is a subtype of a protected or task type, constrain its 11745 -- corresponding record, unless this is a subtype without constraints, 11746 -- i.e. a simple renaming as with an actual subtype in an instance. 11747 11748 elsif Is_Concurrent_Type (Full_Base) then 11749 if Has_Discriminants (Full) 11750 and then Present (Corresponding_Record_Type (Full_Base)) 11751 and then 11752 not Is_Empty_Elmt_List (Discriminant_Constraint (Full)) 11753 then 11754 Set_Corresponding_Record_Type (Full, 11755 Constrain_Corresponding_Record 11756 (Full, Corresponding_Record_Type (Full_Base), Related_Nod)); 11757 11758 else 11759 Set_Corresponding_Record_Type (Full, 11760 Corresponding_Record_Type (Full_Base)); 11761 end if; 11762 end if; 11763 11764 -- Link rep item chain, and also setting of Has_Predicates from private 11765 -- subtype to full subtype, since we will need these on the full subtype 11766 -- to create the predicate function. Note that the full subtype may 11767 -- already have rep items, inherited from the full view of the base 11768 -- type, so we must be sure not to overwrite these entries. 11769 11770 declare 11771 Append : Boolean; 11772 Item : Node_Id; 11773 Next_Item : Node_Id; 11774 11775 begin 11776 Item := First_Rep_Item (Full); 11777 11778 -- If no existing rep items on full type, we can just link directly 11779 -- to the list of items on the private type, if any exist.. Same if 11780 -- the rep items are only those inherited from the base 11781 11782 if (No (Item) 11783 or else Nkind (Item) /= N_Aspect_Specification 11784 or else Entity (Item) = Full_Base) 11785 and then Present (First_Rep_Item (Priv)) 11786 then 11787 Set_First_Rep_Item (Full, First_Rep_Item (Priv)); 11788 11789 -- Otherwise, search to the end of items currently linked to the full 11790 -- subtype and append the private items to the end. However, if Priv 11791 -- and Full already have the same list of rep items, then the append 11792 -- is not done, as that would create a circularity. 11793 11794 elsif Item /= First_Rep_Item (Priv) then 11795 Append := True; 11796 loop 11797 Next_Item := Next_Rep_Item (Item); 11798 exit when No (Next_Item); 11799 Item := Next_Item; 11800 11801 -- If the private view has aspect specifications, the full view 11802 -- inherits them. Since these aspects may already have been 11803 -- attached to the full view during derivation, do not append 11804 -- them if already present. 11805 11806 if Item = First_Rep_Item (Priv) then 11807 Append := False; 11808 exit; 11809 end if; 11810 end loop; 11811 11812 -- And link the private type items at the end of the chain 11813 11814 if Append then 11815 Set_Next_Rep_Item (Item, First_Rep_Item (Priv)); 11816 end if; 11817 end if; 11818 end; 11819 11820 -- Make sure Has_Predicates is set on full type if it is set on the 11821 -- private type. Note that it may already be set on the full type and 11822 -- if so, we don't want to unset it. Similarly, propagate information 11823 -- about delayed aspects, because the corresponding pragmas must be 11824 -- analyzed when one of the views is frozen. This last step is needed 11825 -- in particular when the full type is a scalar type for which an 11826 -- anonymous base type is constructed. 11827 11828 if Has_Predicates (Priv) then 11829 Set_Has_Predicates (Full); 11830 end if; 11831 11832 if Has_Delayed_Aspects (Priv) then 11833 Set_Has_Delayed_Aspects (Full); 11834 end if; 11835 end Complete_Private_Subtype; 11836 11837 ---------------------------- 11838 -- Constant_Redeclaration -- 11839 ---------------------------- 11840 11841 procedure Constant_Redeclaration 11842 (Id : Entity_Id; 11843 N : Node_Id; 11844 T : out Entity_Id) 11845 is 11846 Prev : constant Entity_Id := Current_Entity_In_Scope (Id); 11847 Obj_Def : constant Node_Id := Object_Definition (N); 11848 New_T : Entity_Id; 11849 11850 procedure Check_Possible_Deferred_Completion 11851 (Prev_Id : Entity_Id; 11852 Prev_Obj_Def : Node_Id; 11853 Curr_Obj_Def : Node_Id); 11854 -- Determine whether the two object definitions describe the partial 11855 -- and the full view of a constrained deferred constant. Generate 11856 -- a subtype for the full view and verify that it statically matches 11857 -- the subtype of the partial view. 11858 11859 procedure Check_Recursive_Declaration (Typ : Entity_Id); 11860 -- If deferred constant is an access type initialized with an allocator, 11861 -- check whether there is an illegal recursion in the definition, 11862 -- through a default value of some record subcomponent. This is normally 11863 -- detected when generating init procs, but requires this additional 11864 -- mechanism when expansion is disabled. 11865 11866 ---------------------------------------- 11867 -- Check_Possible_Deferred_Completion -- 11868 ---------------------------------------- 11869 11870 procedure Check_Possible_Deferred_Completion 11871 (Prev_Id : Entity_Id; 11872 Prev_Obj_Def : Node_Id; 11873 Curr_Obj_Def : Node_Id) 11874 is 11875 begin 11876 if Nkind (Prev_Obj_Def) = N_Subtype_Indication 11877 and then Present (Constraint (Prev_Obj_Def)) 11878 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication 11879 and then Present (Constraint (Curr_Obj_Def)) 11880 then 11881 declare 11882 Loc : constant Source_Ptr := Sloc (N); 11883 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S'); 11884 Decl : constant Node_Id := 11885 Make_Subtype_Declaration (Loc, 11886 Defining_Identifier => Def_Id, 11887 Subtype_Indication => 11888 Relocate_Node (Curr_Obj_Def)); 11889 11890 begin 11891 Insert_Before_And_Analyze (N, Decl); 11892 Set_Etype (Id, Def_Id); 11893 11894 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then 11895 Error_Msg_Sloc := Sloc (Prev_Id); 11896 Error_Msg_N ("subtype does not statically match deferred " 11897 & "declaration #", N); 11898 end if; 11899 end; 11900 end if; 11901 end Check_Possible_Deferred_Completion; 11902 11903 --------------------------------- 11904 -- Check_Recursive_Declaration -- 11905 --------------------------------- 11906 11907 procedure Check_Recursive_Declaration (Typ : Entity_Id) is 11908 Comp : Entity_Id; 11909 11910 begin 11911 if Is_Record_Type (Typ) then 11912 Comp := First_Component (Typ); 11913 while Present (Comp) loop 11914 if Comes_From_Source (Comp) then 11915 if Present (Expression (Parent (Comp))) 11916 and then Is_Entity_Name (Expression (Parent (Comp))) 11917 and then Entity (Expression (Parent (Comp))) = Prev 11918 then 11919 Error_Msg_Sloc := Sloc (Parent (Comp)); 11920 Error_Msg_NE 11921 ("illegal circularity with declaration for & #", 11922 N, Comp); 11923 return; 11924 11925 elsif Is_Record_Type (Etype (Comp)) then 11926 Check_Recursive_Declaration (Etype (Comp)); 11927 end if; 11928 end if; 11929 11930 Next_Component (Comp); 11931 end loop; 11932 end if; 11933 end Check_Recursive_Declaration; 11934 11935 -- Start of processing for Constant_Redeclaration 11936 11937 begin 11938 if Nkind (Parent (Prev)) = N_Object_Declaration then 11939 if Nkind (Object_Definition 11940 (Parent (Prev))) = N_Subtype_Indication 11941 then 11942 -- Find type of new declaration. The constraints of the two 11943 -- views must match statically, but there is no point in 11944 -- creating an itype for the full view. 11945 11946 if Nkind (Obj_Def) = N_Subtype_Indication then 11947 Find_Type (Subtype_Mark (Obj_Def)); 11948 New_T := Entity (Subtype_Mark (Obj_Def)); 11949 11950 else 11951 Find_Type (Obj_Def); 11952 New_T := Entity (Obj_Def); 11953 end if; 11954 11955 T := Etype (Prev); 11956 11957 else 11958 -- The full view may impose a constraint, even if the partial 11959 -- view does not, so construct the subtype. 11960 11961 New_T := Find_Type_Of_Object (Obj_Def, N); 11962 T := New_T; 11963 end if; 11964 11965 else 11966 -- Current declaration is illegal, diagnosed below in Enter_Name 11967 11968 T := Empty; 11969 New_T := Any_Type; 11970 end if; 11971 11972 -- If previous full declaration or a renaming declaration exists, or if 11973 -- a homograph is present, let Enter_Name handle it, either with an 11974 -- error or with the removal of an overridden implicit subprogram. 11975 -- The previous one is a full declaration if it has an expression 11976 -- (which in the case of an aggregate is indicated by the Init flag). 11977 11978 if Ekind (Prev) /= E_Constant 11979 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration 11980 or else Present (Expression (Parent (Prev))) 11981 or else Has_Init_Expression (Parent (Prev)) 11982 or else Present (Full_View (Prev)) 11983 then 11984 Enter_Name (Id); 11985 11986 -- Verify that types of both declarations match, or else that both types 11987 -- are anonymous access types whose designated subtypes statically match 11988 -- (as allowed in Ada 2005 by AI-385). 11989 11990 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T) 11991 and then 11992 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type 11993 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type 11994 or else Is_Access_Constant (Etype (New_T)) /= 11995 Is_Access_Constant (Etype (Prev)) 11996 or else Can_Never_Be_Null (Etype (New_T)) /= 11997 Can_Never_Be_Null (Etype (Prev)) 11998 or else Null_Exclusion_Present (Parent (Prev)) /= 11999 Null_Exclusion_Present (Parent (Id)) 12000 or else not Subtypes_Statically_Match 12001 (Designated_Type (Etype (Prev)), 12002 Designated_Type (Etype (New_T)))) 12003 then 12004 Error_Msg_Sloc := Sloc (Prev); 12005 Error_Msg_N ("type does not match declaration#", N); 12006 Set_Full_View (Prev, Id); 12007 Set_Etype (Id, Any_Type); 12008 12009 -- A deferred constant whose type is an anonymous array is always 12010 -- illegal (unless imported). A detailed error message might be 12011 -- helpful for Ada beginners. 12012 12013 if Nkind (Object_Definition (Parent (Prev))) 12014 = N_Constrained_Array_Definition 12015 and then Nkind (Object_Definition (N)) 12016 = N_Constrained_Array_Definition 12017 then 12018 Error_Msg_N ("\each anonymous array is a distinct type", N); 12019 Error_Msg_N ("a deferred constant must have a named type", 12020 Object_Definition (Parent (Prev))); 12021 end if; 12022 12023 elsif 12024 Null_Exclusion_Present (Parent (Prev)) 12025 and then not Null_Exclusion_Present (N) 12026 then 12027 Error_Msg_Sloc := Sloc (Prev); 12028 Error_Msg_N ("null-exclusion does not match declaration#", N); 12029 Set_Full_View (Prev, Id); 12030 Set_Etype (Id, Any_Type); 12031 12032 -- If so, process the full constant declaration 12033 12034 else 12035 -- RM 7.4 (6): If the subtype defined by the subtype_indication in 12036 -- the deferred declaration is constrained, then the subtype defined 12037 -- by the subtype_indication in the full declaration shall match it 12038 -- statically. 12039 12040 Check_Possible_Deferred_Completion 12041 (Prev_Id => Prev, 12042 Prev_Obj_Def => Object_Definition (Parent (Prev)), 12043 Curr_Obj_Def => Obj_Def); 12044 12045 Set_Full_View (Prev, Id); 12046 Set_Is_Public (Id, Is_Public (Prev)); 12047 Set_Is_Internal (Id); 12048 Append_Entity (Id, Current_Scope); 12049 12050 -- Check ALIASED present if present before (RM 7.4(7)) 12051 12052 if Is_Aliased (Prev) 12053 and then not Aliased_Present (N) 12054 then 12055 Error_Msg_Sloc := Sloc (Prev); 12056 Error_Msg_N ("ALIASED required (see declaration #)", N); 12057 end if; 12058 12059 -- Check that placement is in private part and that the incomplete 12060 -- declaration appeared in the visible part. 12061 12062 if Ekind (Current_Scope) = E_Package 12063 and then not In_Private_Part (Current_Scope) 12064 then 12065 Error_Msg_Sloc := Sloc (Prev); 12066 Error_Msg_N 12067 ("full constant for declaration # must be in private part", N); 12068 12069 elsif Ekind (Current_Scope) = E_Package 12070 and then 12071 List_Containing (Parent (Prev)) /= 12072 Visible_Declarations (Package_Specification (Current_Scope)) 12073 then 12074 Error_Msg_N 12075 ("deferred constant must be declared in visible part", 12076 Parent (Prev)); 12077 end if; 12078 12079 if Is_Access_Type (T) 12080 and then Nkind (Expression (N)) = N_Allocator 12081 then 12082 Check_Recursive_Declaration (Designated_Type (T)); 12083 end if; 12084 12085 -- A deferred constant is a visible entity. If type has invariants, 12086 -- verify that the initial value satisfies them. 12087 12088 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then 12089 Insert_After (N, 12090 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N)))); 12091 end if; 12092 end if; 12093 end Constant_Redeclaration; 12094 12095 ---------------------- 12096 -- Constrain_Access -- 12097 ---------------------- 12098 12099 procedure Constrain_Access 12100 (Def_Id : in out Entity_Id; 12101 S : Node_Id; 12102 Related_Nod : Node_Id) 12103 is 12104 T : constant Entity_Id := Entity (Subtype_Mark (S)); 12105 Desig_Type : constant Entity_Id := Designated_Type (T); 12106 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod); 12107 Constraint_OK : Boolean := True; 12108 12109 begin 12110 if Is_Array_Type (Desig_Type) then 12111 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P'); 12112 12113 elsif (Is_Record_Type (Desig_Type) 12114 or else Is_Incomplete_Or_Private_Type (Desig_Type)) 12115 and then not Is_Constrained (Desig_Type) 12116 then 12117 -- ??? The following code is a temporary bypass to ignore a 12118 -- discriminant constraint on access type if it is constraining 12119 -- the current record. Avoid creating the implicit subtype of the 12120 -- record we are currently compiling since right now, we cannot 12121 -- handle these. For now, just return the access type itself. 12122 12123 if Desig_Type = Current_Scope 12124 and then No (Def_Id) 12125 then 12126 Set_Ekind (Desig_Subtype, E_Record_Subtype); 12127 Def_Id := Entity (Subtype_Mark (S)); 12128 12129 -- This call added to ensure that the constraint is analyzed 12130 -- (needed for a B test). Note that we still return early from 12131 -- this procedure to avoid recursive processing. ??? 12132 12133 Constrain_Discriminated_Type 12134 (Desig_Subtype, S, Related_Nod, For_Access => True); 12135 return; 12136 end if; 12137 12138 -- Enforce rule that the constraint is illegal if there is an 12139 -- unconstrained view of the designated type. This means that the 12140 -- partial view (either a private type declaration or a derivation 12141 -- from a private type) has no discriminants. (Defect Report 12142 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001). 12143 12144 -- Rule updated for Ada 2005: The private type is said to have 12145 -- a constrained partial view, given that objects of the type 12146 -- can be declared. Furthermore, the rule applies to all access 12147 -- types, unlike the rule concerning default discriminants (see 12148 -- RM 3.7.1(7/3)) 12149 12150 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005) 12151 and then Has_Private_Declaration (Desig_Type) 12152 and then In_Open_Scopes (Scope (Desig_Type)) 12153 and then Has_Discriminants (Desig_Type) 12154 then 12155 declare 12156 Pack : constant Node_Id := 12157 Unit_Declaration_Node (Scope (Desig_Type)); 12158 Decls : List_Id; 12159 Decl : Node_Id; 12160 12161 begin 12162 if Nkind (Pack) = N_Package_Declaration then 12163 Decls := Visible_Declarations (Specification (Pack)); 12164 Decl := First (Decls); 12165 while Present (Decl) loop 12166 if (Nkind (Decl) = N_Private_Type_Declaration 12167 and then Chars (Defining_Identifier (Decl)) = 12168 Chars (Desig_Type)) 12169 12170 or else 12171 (Nkind (Decl) = N_Full_Type_Declaration 12172 and then 12173 Chars (Defining_Identifier (Decl)) = 12174 Chars (Desig_Type) 12175 and then Is_Derived_Type (Desig_Type) 12176 and then 12177 Has_Private_Declaration (Etype (Desig_Type))) 12178 then 12179 if No (Discriminant_Specifications (Decl)) then 12180 Error_Msg_N 12181 ("cannot constrain access type if designated " 12182 & "type has constrained partial view", S); 12183 end if; 12184 12185 exit; 12186 end if; 12187 12188 Next (Decl); 12189 end loop; 12190 end if; 12191 end; 12192 end if; 12193 12194 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod, 12195 For_Access => True); 12196 12197 elsif Is_Concurrent_Type (Desig_Type) 12198 and then not Is_Constrained (Desig_Type) 12199 then 12200 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' '); 12201 12202 else 12203 Error_Msg_N ("invalid constraint on access type", S); 12204 12205 -- We simply ignore an invalid constraint 12206 12207 Desig_Subtype := Desig_Type; 12208 Constraint_OK := False; 12209 end if; 12210 12211 if No (Def_Id) then 12212 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod); 12213 else 12214 Set_Ekind (Def_Id, E_Access_Subtype); 12215 end if; 12216 12217 if Constraint_OK then 12218 Set_Etype (Def_Id, Base_Type (T)); 12219 12220 if Is_Private_Type (Desig_Type) then 12221 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod); 12222 end if; 12223 else 12224 Set_Etype (Def_Id, Any_Type); 12225 end if; 12226 12227 Set_Size_Info (Def_Id, T); 12228 Set_Is_Constrained (Def_Id, Constraint_OK); 12229 Set_Directly_Designated_Type (Def_Id, Desig_Subtype); 12230 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id)); 12231 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T)); 12232 12233 Conditional_Delay (Def_Id, T); 12234 12235 -- AI-363 : Subtypes of general access types whose designated types have 12236 -- default discriminants are disallowed. In instances, the rule has to 12237 -- be checked against the actual, of which T is the subtype. In a 12238 -- generic body, the rule is checked assuming that the actual type has 12239 -- defaulted discriminants. 12240 12241 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then 12242 if Ekind (Base_Type (T)) = E_General_Access_Type 12243 and then Has_Defaulted_Discriminants (Desig_Type) 12244 then 12245 if Ada_Version < Ada_2005 then 12246 Error_Msg_N 12247 ("access subtype of general access type would not " & 12248 "be allowed in Ada 2005?y?", S); 12249 else 12250 Error_Msg_N 12251 ("access subtype of general access type not allowed", S); 12252 end if; 12253 12254 Error_Msg_N ("\discriminants have defaults", S); 12255 12256 elsif Is_Access_Type (T) 12257 and then Is_Generic_Type (Desig_Type) 12258 and then Has_Discriminants (Desig_Type) 12259 and then In_Package_Body (Current_Scope) 12260 then 12261 if Ada_Version < Ada_2005 then 12262 Error_Msg_N 12263 ("access subtype would not be allowed in generic body " 12264 & "in Ada 2005?y?", S); 12265 else 12266 Error_Msg_N 12267 ("access subtype not allowed in generic body", S); 12268 end if; 12269 12270 Error_Msg_N 12271 ("\designated type is a discriminated formal", S); 12272 end if; 12273 end if; 12274 end Constrain_Access; 12275 12276 --------------------- 12277 -- Constrain_Array -- 12278 --------------------- 12279 12280 procedure Constrain_Array 12281 (Def_Id : in out Entity_Id; 12282 SI : Node_Id; 12283 Related_Nod : Node_Id; 12284 Related_Id : Entity_Id; 12285 Suffix : Character) 12286 is 12287 C : constant Node_Id := Constraint (SI); 12288 Number_Of_Constraints : Nat := 0; 12289 Index : Node_Id; 12290 S, T : Entity_Id; 12291 Constraint_OK : Boolean := True; 12292 12293 begin 12294 T := Entity (Subtype_Mark (SI)); 12295 12296 if Is_Access_Type (T) then 12297 T := Designated_Type (T); 12298 end if; 12299 12300 -- If an index constraint follows a subtype mark in a subtype indication 12301 -- then the type or subtype denoted by the subtype mark must not already 12302 -- impose an index constraint. The subtype mark must denote either an 12303 -- unconstrained array type or an access type whose designated type 12304 -- is such an array type... (RM 3.6.1) 12305 12306 if Is_Constrained (T) then 12307 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI)); 12308 Constraint_OK := False; 12309 12310 else 12311 S := First (Constraints (C)); 12312 while Present (S) loop 12313 Number_Of_Constraints := Number_Of_Constraints + 1; 12314 Next (S); 12315 end loop; 12316 12317 -- In either case, the index constraint must provide a discrete 12318 -- range for each index of the array type and the type of each 12319 -- discrete range must be the same as that of the corresponding 12320 -- index. (RM 3.6.1) 12321 12322 if Number_Of_Constraints /= Number_Dimensions (T) then 12323 Error_Msg_NE ("incorrect number of index constraints for }", C, T); 12324 Constraint_OK := False; 12325 12326 else 12327 S := First (Constraints (C)); 12328 Index := First_Index (T); 12329 Analyze (Index); 12330 12331 -- Apply constraints to each index type 12332 12333 for J in 1 .. Number_Of_Constraints loop 12334 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J); 12335 Next (Index); 12336 Next (S); 12337 end loop; 12338 12339 end if; 12340 end if; 12341 12342 if No (Def_Id) then 12343 Def_Id := 12344 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix); 12345 Set_Parent (Def_Id, Related_Nod); 12346 12347 else 12348 Set_Ekind (Def_Id, E_Array_Subtype); 12349 end if; 12350 12351 Set_Size_Info (Def_Id, (T)); 12352 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 12353 Set_Etype (Def_Id, Base_Type (T)); 12354 12355 if Constraint_OK then 12356 Set_First_Index (Def_Id, First (Constraints (C))); 12357 else 12358 Set_First_Index (Def_Id, First_Index (T)); 12359 end if; 12360 12361 Set_Is_Constrained (Def_Id, True); 12362 Set_Is_Aliased (Def_Id, Is_Aliased (T)); 12363 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id)); 12364 12365 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T)); 12366 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T)); 12367 12368 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent. 12369 -- We need to initialize the attribute because if Def_Id is previously 12370 -- analyzed through a limited_with clause, it will have the attributes 12371 -- of an incomplete type, one of which is an Elist that overlaps the 12372 -- Packed_Array_Impl_Type field. 12373 12374 Set_Packed_Array_Impl_Type (Def_Id, Empty); 12375 12376 -- Build a freeze node if parent still needs one. Also make sure that 12377 -- the Depends_On_Private status is set because the subtype will need 12378 -- reprocessing at the time the base type does, and also we must set a 12379 -- conditional delay. 12380 12381 Set_Depends_On_Private (Def_Id, Depends_On_Private (T)); 12382 Conditional_Delay (Def_Id, T); 12383 end Constrain_Array; 12384 12385 ------------------------------ 12386 -- Constrain_Component_Type -- 12387 ------------------------------ 12388 12389 function Constrain_Component_Type 12390 (Comp : Entity_Id; 12391 Constrained_Typ : Entity_Id; 12392 Related_Node : Node_Id; 12393 Typ : Entity_Id; 12394 Constraints : Elist_Id) return Entity_Id 12395 is 12396 Loc : constant Source_Ptr := Sloc (Constrained_Typ); 12397 Compon_Type : constant Entity_Id := Etype (Comp); 12398 12399 function Build_Constrained_Array_Type 12400 (Old_Type : Entity_Id) return Entity_Id; 12401 -- If Old_Type is an array type, one of whose indexes is constrained 12402 -- by a discriminant, build an Itype whose constraint replaces the 12403 -- discriminant with its value in the constraint. 12404 12405 function Build_Constrained_Discriminated_Type 12406 (Old_Type : Entity_Id) return Entity_Id; 12407 -- Ditto for record components 12408 12409 function Build_Constrained_Access_Type 12410 (Old_Type : Entity_Id) return Entity_Id; 12411 -- Ditto for access types. Makes use of previous two functions, to 12412 -- constrain designated type. 12413 12414 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id; 12415 -- T is an array or discriminated type, C is a list of constraints 12416 -- that apply to T. This routine builds the constrained subtype. 12417 12418 function Is_Discriminant (Expr : Node_Id) return Boolean; 12419 -- Returns True if Expr is a discriminant 12420 12421 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id; 12422 -- Find the value of discriminant Discrim in Constraint 12423 12424 ----------------------------------- 12425 -- Build_Constrained_Access_Type -- 12426 ----------------------------------- 12427 12428 function Build_Constrained_Access_Type 12429 (Old_Type : Entity_Id) return Entity_Id 12430 is 12431 Desig_Type : constant Entity_Id := Designated_Type (Old_Type); 12432 Itype : Entity_Id; 12433 Desig_Subtype : Entity_Id; 12434 Scop : Entity_Id; 12435 12436 begin 12437 -- if the original access type was not embedded in the enclosing 12438 -- type definition, there is no need to produce a new access 12439 -- subtype. In fact every access type with an explicit constraint 12440 -- generates an itype whose scope is the enclosing record. 12441 12442 if not Is_Type (Scope (Old_Type)) then 12443 return Old_Type; 12444 12445 elsif Is_Array_Type (Desig_Type) then 12446 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type); 12447 12448 elsif Has_Discriminants (Desig_Type) then 12449 12450 -- This may be an access type to an enclosing record type for 12451 -- which we are constructing the constrained components. Return 12452 -- the enclosing record subtype. This is not always correct, 12453 -- but avoids infinite recursion. ??? 12454 12455 Desig_Subtype := Any_Type; 12456 12457 for J in reverse 0 .. Scope_Stack.Last loop 12458 Scop := Scope_Stack.Table (J).Entity; 12459 12460 if Is_Type (Scop) 12461 and then Base_Type (Scop) = Base_Type (Desig_Type) 12462 then 12463 Desig_Subtype := Scop; 12464 end if; 12465 12466 exit when not Is_Type (Scop); 12467 end loop; 12468 12469 if Desig_Subtype = Any_Type then 12470 Desig_Subtype := 12471 Build_Constrained_Discriminated_Type (Desig_Type); 12472 end if; 12473 12474 else 12475 return Old_Type; 12476 end if; 12477 12478 if Desig_Subtype /= Desig_Type then 12479 12480 -- The Related_Node better be here or else we won't be able 12481 -- to attach new itypes to a node in the tree. 12482 12483 pragma Assert (Present (Related_Node)); 12484 12485 Itype := Create_Itype (E_Access_Subtype, Related_Node); 12486 12487 Set_Etype (Itype, Base_Type (Old_Type)); 12488 Set_Size_Info (Itype, (Old_Type)); 12489 Set_Directly_Designated_Type (Itype, Desig_Subtype); 12490 Set_Depends_On_Private (Itype, Has_Private_Component 12491 (Old_Type)); 12492 Set_Is_Access_Constant (Itype, Is_Access_Constant 12493 (Old_Type)); 12494 12495 -- The new itype needs freezing when it depends on a not frozen 12496 -- type and the enclosing subtype needs freezing. 12497 12498 if Has_Delayed_Freeze (Constrained_Typ) 12499 and then not Is_Frozen (Constrained_Typ) 12500 then 12501 Conditional_Delay (Itype, Base_Type (Old_Type)); 12502 end if; 12503 12504 return Itype; 12505 12506 else 12507 return Old_Type; 12508 end if; 12509 end Build_Constrained_Access_Type; 12510 12511 ---------------------------------- 12512 -- Build_Constrained_Array_Type -- 12513 ---------------------------------- 12514 12515 function Build_Constrained_Array_Type 12516 (Old_Type : Entity_Id) return Entity_Id 12517 is 12518 Lo_Expr : Node_Id; 12519 Hi_Expr : Node_Id; 12520 Old_Index : Node_Id; 12521 Range_Node : Node_Id; 12522 Constr_List : List_Id; 12523 12524 Need_To_Create_Itype : Boolean := False; 12525 12526 begin 12527 Old_Index := First_Index (Old_Type); 12528 while Present (Old_Index) loop 12529 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr); 12530 12531 if Is_Discriminant (Lo_Expr) 12532 or else 12533 Is_Discriminant (Hi_Expr) 12534 then 12535 Need_To_Create_Itype := True; 12536 end if; 12537 12538 Next_Index (Old_Index); 12539 end loop; 12540 12541 if Need_To_Create_Itype then 12542 Constr_List := New_List; 12543 12544 Old_Index := First_Index (Old_Type); 12545 while Present (Old_Index) loop 12546 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr); 12547 12548 if Is_Discriminant (Lo_Expr) then 12549 Lo_Expr := Get_Discr_Value (Lo_Expr); 12550 end if; 12551 12552 if Is_Discriminant (Hi_Expr) then 12553 Hi_Expr := Get_Discr_Value (Hi_Expr); 12554 end if; 12555 12556 Range_Node := 12557 Make_Range 12558 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr)); 12559 12560 Append (Range_Node, To => Constr_List); 12561 12562 Next_Index (Old_Index); 12563 end loop; 12564 12565 return Build_Subtype (Old_Type, Constr_List); 12566 12567 else 12568 return Old_Type; 12569 end if; 12570 end Build_Constrained_Array_Type; 12571 12572 ------------------------------------------ 12573 -- Build_Constrained_Discriminated_Type -- 12574 ------------------------------------------ 12575 12576 function Build_Constrained_Discriminated_Type 12577 (Old_Type : Entity_Id) return Entity_Id 12578 is 12579 Expr : Node_Id; 12580 Constr_List : List_Id; 12581 Old_Constraint : Elmt_Id; 12582 12583 Need_To_Create_Itype : Boolean := False; 12584 12585 begin 12586 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type)); 12587 while Present (Old_Constraint) loop 12588 Expr := Node (Old_Constraint); 12589 12590 if Is_Discriminant (Expr) then 12591 Need_To_Create_Itype := True; 12592 end if; 12593 12594 Next_Elmt (Old_Constraint); 12595 end loop; 12596 12597 if Need_To_Create_Itype then 12598 Constr_List := New_List; 12599 12600 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type)); 12601 while Present (Old_Constraint) loop 12602 Expr := Node (Old_Constraint); 12603 12604 if Is_Discriminant (Expr) then 12605 Expr := Get_Discr_Value (Expr); 12606 end if; 12607 12608 Append (New_Copy_Tree (Expr), To => Constr_List); 12609 12610 Next_Elmt (Old_Constraint); 12611 end loop; 12612 12613 return Build_Subtype (Old_Type, Constr_List); 12614 12615 else 12616 return Old_Type; 12617 end if; 12618 end Build_Constrained_Discriminated_Type; 12619 12620 ------------------- 12621 -- Build_Subtype -- 12622 ------------------- 12623 12624 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is 12625 Indic : Node_Id; 12626 Subtyp_Decl : Node_Id; 12627 Def_Id : Entity_Id; 12628 Btyp : Entity_Id := Base_Type (T); 12629 12630 begin 12631 -- The Related_Node better be here or else we won't be able to 12632 -- attach new itypes to a node in the tree. 12633 12634 pragma Assert (Present (Related_Node)); 12635 12636 -- If the view of the component's type is incomplete or private 12637 -- with unknown discriminants, then the constraint must be applied 12638 -- to the full type. 12639 12640 if Has_Unknown_Discriminants (Btyp) 12641 and then Present (Underlying_Type (Btyp)) 12642 then 12643 Btyp := Underlying_Type (Btyp); 12644 end if; 12645 12646 Indic := 12647 Make_Subtype_Indication (Loc, 12648 Subtype_Mark => New_Occurrence_Of (Btyp, Loc), 12649 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C)); 12650 12651 Def_Id := Create_Itype (Ekind (T), Related_Node); 12652 12653 Subtyp_Decl := 12654 Make_Subtype_Declaration (Loc, 12655 Defining_Identifier => Def_Id, 12656 Subtype_Indication => Indic); 12657 12658 Set_Parent (Subtyp_Decl, Parent (Related_Node)); 12659 12660 -- Itypes must be analyzed with checks off (see package Itypes) 12661 12662 Analyze (Subtyp_Decl, Suppress => All_Checks); 12663 12664 return Def_Id; 12665 end Build_Subtype; 12666 12667 --------------------- 12668 -- Get_Discr_Value -- 12669 --------------------- 12670 12671 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is 12672 D : Entity_Id; 12673 E : Elmt_Id; 12674 12675 begin 12676 -- The discriminant may be declared for the type, in which case we 12677 -- find it by iterating over the list of discriminants. If the 12678 -- discriminant is inherited from a parent type, it appears as the 12679 -- corresponding discriminant of the current type. This will be the 12680 -- case when constraining an inherited component whose constraint is 12681 -- given by a discriminant of the parent. 12682 12683 D := First_Discriminant (Typ); 12684 E := First_Elmt (Constraints); 12685 12686 while Present (D) loop 12687 if D = Entity (Discrim) 12688 or else D = CR_Discriminant (Entity (Discrim)) 12689 or else Corresponding_Discriminant (D) = Entity (Discrim) 12690 then 12691 return Node (E); 12692 end if; 12693 12694 Next_Discriminant (D); 12695 Next_Elmt (E); 12696 end loop; 12697 12698 -- The Corresponding_Discriminant mechanism is incomplete, because 12699 -- the correspondence between new and old discriminants is not one 12700 -- to one: one new discriminant can constrain several old ones. In 12701 -- that case, scan sequentially the stored_constraint, the list of 12702 -- discriminants of the parents, and the constraints. 12703 12704 -- Previous code checked for the present of the Stored_Constraint 12705 -- list for the derived type, but did not use it at all. Should it 12706 -- be present when the component is a discriminated task type? 12707 12708 if Is_Derived_Type (Typ) 12709 and then Scope (Entity (Discrim)) = Etype (Typ) 12710 then 12711 D := First_Discriminant (Etype (Typ)); 12712 E := First_Elmt (Constraints); 12713 while Present (D) loop 12714 if D = Entity (Discrim) then 12715 return Node (E); 12716 end if; 12717 12718 Next_Discriminant (D); 12719 Next_Elmt (E); 12720 end loop; 12721 end if; 12722 12723 -- Something is wrong if we did not find the value 12724 12725 raise Program_Error; 12726 end Get_Discr_Value; 12727 12728 --------------------- 12729 -- Is_Discriminant -- 12730 --------------------- 12731 12732 function Is_Discriminant (Expr : Node_Id) return Boolean is 12733 Discrim_Scope : Entity_Id; 12734 12735 begin 12736 if Denotes_Discriminant (Expr) then 12737 Discrim_Scope := Scope (Entity (Expr)); 12738 12739 -- Either we have a reference to one of Typ's discriminants, 12740 12741 pragma Assert (Discrim_Scope = Typ 12742 12743 -- or to the discriminants of the parent type, in the case 12744 -- of a derivation of a tagged type with variants. 12745 12746 or else Discrim_Scope = Etype (Typ) 12747 or else Full_View (Discrim_Scope) = Etype (Typ) 12748 12749 -- or same as above for the case where the discriminants 12750 -- were declared in Typ's private view. 12751 12752 or else (Is_Private_Type (Discrim_Scope) 12753 and then Chars (Discrim_Scope) = Chars (Typ)) 12754 12755 -- or else we are deriving from the full view and the 12756 -- discriminant is declared in the private entity. 12757 12758 or else (Is_Private_Type (Typ) 12759 and then Chars (Discrim_Scope) = Chars (Typ)) 12760 12761 -- Or we are constrained the corresponding record of a 12762 -- synchronized type that completes a private declaration. 12763 12764 or else (Is_Concurrent_Record_Type (Typ) 12765 and then 12766 Corresponding_Concurrent_Type (Typ) = Discrim_Scope) 12767 12768 -- or we have a class-wide type, in which case make sure the 12769 -- discriminant found belongs to the root type. 12770 12771 or else (Is_Class_Wide_Type (Typ) 12772 and then Etype (Typ) = Discrim_Scope)); 12773 12774 return True; 12775 end if; 12776 12777 -- In all other cases we have something wrong 12778 12779 return False; 12780 end Is_Discriminant; 12781 12782 -- Start of processing for Constrain_Component_Type 12783 12784 begin 12785 if Nkind (Parent (Comp)) = N_Component_Declaration 12786 and then Comes_From_Source (Parent (Comp)) 12787 and then Comes_From_Source 12788 (Subtype_Indication (Component_Definition (Parent (Comp)))) 12789 and then 12790 Is_Entity_Name 12791 (Subtype_Indication (Component_Definition (Parent (Comp)))) 12792 then 12793 return Compon_Type; 12794 12795 elsif Is_Array_Type (Compon_Type) then 12796 return Build_Constrained_Array_Type (Compon_Type); 12797 12798 elsif Has_Discriminants (Compon_Type) then 12799 return Build_Constrained_Discriminated_Type (Compon_Type); 12800 12801 elsif Is_Access_Type (Compon_Type) then 12802 return Build_Constrained_Access_Type (Compon_Type); 12803 12804 else 12805 return Compon_Type; 12806 end if; 12807 end Constrain_Component_Type; 12808 12809 -------------------------- 12810 -- Constrain_Concurrent -- 12811 -------------------------- 12812 12813 -- For concurrent types, the associated record value type carries the same 12814 -- discriminants, so when we constrain a concurrent type, we must constrain 12815 -- the corresponding record type as well. 12816 12817 procedure Constrain_Concurrent 12818 (Def_Id : in out Entity_Id; 12819 SI : Node_Id; 12820 Related_Nod : Node_Id; 12821 Related_Id : Entity_Id; 12822 Suffix : Character) 12823 is 12824 -- Retrieve Base_Type to ensure getting to the concurrent type in the 12825 -- case of a private subtype (needed when only doing semantic analysis). 12826 12827 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI))); 12828 T_Val : Entity_Id; 12829 12830 begin 12831 if Is_Access_Type (T_Ent) then 12832 T_Ent := Designated_Type (T_Ent); 12833 end if; 12834 12835 T_Val := Corresponding_Record_Type (T_Ent); 12836 12837 if Present (T_Val) then 12838 12839 if No (Def_Id) then 12840 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix); 12841 12842 -- Elaborate itype now, as it may be used in a subsequent 12843 -- synchronized operation in another scope. 12844 12845 if Nkind (Related_Nod) = N_Full_Type_Declaration then 12846 Build_Itype_Reference (Def_Id, Related_Nod); 12847 end if; 12848 end if; 12849 12850 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod); 12851 12852 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id)); 12853 Set_Corresponding_Record_Type (Def_Id, 12854 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod)); 12855 12856 else 12857 -- If there is no associated record, expansion is disabled and this 12858 -- is a generic context. Create a subtype in any case, so that 12859 -- semantic analysis can proceed. 12860 12861 if No (Def_Id) then 12862 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix); 12863 end if; 12864 12865 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod); 12866 end if; 12867 end Constrain_Concurrent; 12868 12869 ------------------------------------ 12870 -- Constrain_Corresponding_Record -- 12871 ------------------------------------ 12872 12873 function Constrain_Corresponding_Record 12874 (Prot_Subt : Entity_Id; 12875 Corr_Rec : Entity_Id; 12876 Related_Nod : Node_Id) return Entity_Id 12877 is 12878 T_Sub : constant Entity_Id := 12879 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C'); 12880 12881 begin 12882 Set_Etype (T_Sub, Corr_Rec); 12883 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt)); 12884 Set_Is_Constrained (T_Sub, True); 12885 Set_First_Entity (T_Sub, First_Entity (Corr_Rec)); 12886 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec)); 12887 12888 if Has_Discriminants (Prot_Subt) then -- False only if errors. 12889 Set_Discriminant_Constraint 12890 (T_Sub, Discriminant_Constraint (Prot_Subt)); 12891 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub); 12892 Create_Constrained_Components 12893 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub)); 12894 end if; 12895 12896 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub)); 12897 12898 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then 12899 Conditional_Delay (T_Sub, Corr_Rec); 12900 12901 else 12902 -- This is a component subtype: it will be frozen in the context of 12903 -- the enclosing record's init_proc, so that discriminant references 12904 -- are resolved to discriminals. (Note: we used to skip freezing 12905 -- altogether in that case, which caused errors downstream for 12906 -- components of a bit packed array type). 12907 12908 Set_Has_Delayed_Freeze (T_Sub); 12909 end if; 12910 12911 return T_Sub; 12912 end Constrain_Corresponding_Record; 12913 12914 ----------------------- 12915 -- Constrain_Decimal -- 12916 ----------------------- 12917 12918 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is 12919 T : constant Entity_Id := Entity (Subtype_Mark (S)); 12920 C : constant Node_Id := Constraint (S); 12921 Loc : constant Source_Ptr := Sloc (C); 12922 Range_Expr : Node_Id; 12923 Digits_Expr : Node_Id; 12924 Digits_Val : Uint; 12925 Bound_Val : Ureal; 12926 12927 begin 12928 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype); 12929 12930 if Nkind (C) = N_Range_Constraint then 12931 Range_Expr := Range_Expression (C); 12932 Digits_Val := Digits_Value (T); 12933 12934 else 12935 pragma Assert (Nkind (C) = N_Digits_Constraint); 12936 12937 Check_SPARK_05_Restriction ("digits constraint is not allowed", S); 12938 12939 Digits_Expr := Digits_Expression (C); 12940 Analyze_And_Resolve (Digits_Expr, Any_Integer); 12941 12942 Check_Digits_Expression (Digits_Expr); 12943 Digits_Val := Expr_Value (Digits_Expr); 12944 12945 if Digits_Val > Digits_Value (T) then 12946 Error_Msg_N 12947 ("digits expression is incompatible with subtype", C); 12948 Digits_Val := Digits_Value (T); 12949 end if; 12950 12951 if Present (Range_Constraint (C)) then 12952 Range_Expr := Range_Expression (Range_Constraint (C)); 12953 else 12954 Range_Expr := Empty; 12955 end if; 12956 end if; 12957 12958 Set_Etype (Def_Id, Base_Type (T)); 12959 Set_Size_Info (Def_Id, (T)); 12960 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 12961 Set_Delta_Value (Def_Id, Delta_Value (T)); 12962 Set_Scale_Value (Def_Id, Scale_Value (T)); 12963 Set_Small_Value (Def_Id, Small_Value (T)); 12964 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T)); 12965 Set_Digits_Value (Def_Id, Digits_Val); 12966 12967 -- Manufacture range from given digits value if no range present 12968 12969 if No (Range_Expr) then 12970 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T); 12971 Range_Expr := 12972 Make_Range (Loc, 12973 Low_Bound => 12974 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))), 12975 High_Bound => 12976 Convert_To (T, Make_Real_Literal (Loc, Bound_Val))); 12977 end if; 12978 12979 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T); 12980 Set_Discrete_RM_Size (Def_Id); 12981 12982 -- Unconditionally delay the freeze, since we cannot set size 12983 -- information in all cases correctly until the freeze point. 12984 12985 Set_Has_Delayed_Freeze (Def_Id); 12986 end Constrain_Decimal; 12987 12988 ---------------------------------- 12989 -- Constrain_Discriminated_Type -- 12990 ---------------------------------- 12991 12992 procedure Constrain_Discriminated_Type 12993 (Def_Id : Entity_Id; 12994 S : Node_Id; 12995 Related_Nod : Node_Id; 12996 For_Access : Boolean := False) 12997 is 12998 E : constant Entity_Id := Entity (Subtype_Mark (S)); 12999 T : Entity_Id; 13000 C : Node_Id; 13001 Elist : Elist_Id := New_Elmt_List; 13002 13003 procedure Fixup_Bad_Constraint; 13004 -- This is called after finding a bad constraint, and after having 13005 -- posted an appropriate error message. The mission is to leave the 13006 -- entity T in as reasonable state as possible. 13007 13008 -------------------------- 13009 -- Fixup_Bad_Constraint -- 13010 -------------------------- 13011 13012 procedure Fixup_Bad_Constraint is 13013 begin 13014 -- Set a reasonable Ekind for the entity. For an incomplete type, 13015 -- we can't do much, but for other types, we can set the proper 13016 -- corresponding subtype kind. 13017 13018 if Ekind (T) = E_Incomplete_Type then 13019 Set_Ekind (Def_Id, Ekind (T)); 13020 else 13021 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T))); 13022 end if; 13023 13024 -- Set Etype to the known type, to reduce chances of cascaded errors 13025 13026 Set_Etype (Def_Id, E); 13027 Set_Error_Posted (Def_Id); 13028 end Fixup_Bad_Constraint; 13029 13030 -- Start of processing for Constrain_Discriminated_Type 13031 13032 begin 13033 C := Constraint (S); 13034 13035 -- A discriminant constraint is only allowed in a subtype indication, 13036 -- after a subtype mark. This subtype mark must denote either a type 13037 -- with discriminants, or an access type whose designated type is a 13038 -- type with discriminants. A discriminant constraint specifies the 13039 -- values of these discriminants (RM 3.7.2(5)). 13040 13041 T := Base_Type (Entity (Subtype_Mark (S))); 13042 13043 if Is_Access_Type (T) then 13044 T := Designated_Type (T); 13045 end if; 13046 13047 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. 13048 -- Avoid generating an error for access-to-incomplete subtypes. 13049 13050 if Ada_Version >= Ada_2005 13051 and then Ekind (T) = E_Incomplete_Type 13052 and then Nkind (Parent (S)) = N_Subtype_Declaration 13053 and then not Is_Itype (Def_Id) 13054 then 13055 -- A little sanity check, emit an error message if the type 13056 -- has discriminants to begin with. Type T may be a regular 13057 -- incomplete type or imported via a limited with clause. 13058 13059 if Has_Discriminants (T) 13060 or else (From_Limited_With (T) 13061 and then Present (Non_Limited_View (T)) 13062 and then Nkind (Parent (Non_Limited_View (T))) = 13063 N_Full_Type_Declaration 13064 and then Present (Discriminant_Specifications 13065 (Parent (Non_Limited_View (T))))) 13066 then 13067 Error_Msg_N 13068 ("(Ada 2005) incomplete subtype may not be constrained", C); 13069 else 13070 Error_Msg_N ("invalid constraint: type has no discriminant", C); 13071 end if; 13072 13073 Fixup_Bad_Constraint; 13074 return; 13075 13076 -- Check that the type has visible discriminants. The type may be 13077 -- a private type with unknown discriminants whose full view has 13078 -- discriminants which are invisible. 13079 13080 elsif not Has_Discriminants (T) 13081 or else 13082 (Has_Unknown_Discriminants (T) 13083 and then Is_Private_Type (T)) 13084 then 13085 Error_Msg_N ("invalid constraint: type has no discriminant", C); 13086 Fixup_Bad_Constraint; 13087 return; 13088 13089 elsif Is_Constrained (E) 13090 or else (Ekind (E) = E_Class_Wide_Subtype 13091 and then Present (Discriminant_Constraint (E))) 13092 then 13093 Error_Msg_N ("type is already constrained", Subtype_Mark (S)); 13094 Fixup_Bad_Constraint; 13095 return; 13096 end if; 13097 13098 -- T may be an unconstrained subtype (e.g. a generic actual). 13099 -- Constraint applies to the base type. 13100 13101 T := Base_Type (T); 13102 13103 Elist := Build_Discriminant_Constraints (T, S); 13104 13105 -- If the list returned was empty we had an error in building the 13106 -- discriminant constraint. We have also already signalled an error 13107 -- in the incomplete type case 13108 13109 if Is_Empty_Elmt_List (Elist) then 13110 Fixup_Bad_Constraint; 13111 return; 13112 end if; 13113 13114 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access); 13115 end Constrain_Discriminated_Type; 13116 13117 --------------------------- 13118 -- Constrain_Enumeration -- 13119 --------------------------- 13120 13121 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is 13122 T : constant Entity_Id := Entity (Subtype_Mark (S)); 13123 C : constant Node_Id := Constraint (S); 13124 13125 begin 13126 Set_Ekind (Def_Id, E_Enumeration_Subtype); 13127 13128 Set_First_Literal (Def_Id, First_Literal (Base_Type (T))); 13129 13130 Set_Etype (Def_Id, Base_Type (T)); 13131 Set_Size_Info (Def_Id, (T)); 13132 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 13133 Set_Is_Character_Type (Def_Id, Is_Character_Type (T)); 13134 13135 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); 13136 13137 Set_Discrete_RM_Size (Def_Id); 13138 end Constrain_Enumeration; 13139 13140 ---------------------- 13141 -- Constrain_Float -- 13142 ---------------------- 13143 13144 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is 13145 T : constant Entity_Id := Entity (Subtype_Mark (S)); 13146 C : Node_Id; 13147 D : Node_Id; 13148 Rais : Node_Id; 13149 13150 begin 13151 Set_Ekind (Def_Id, E_Floating_Point_Subtype); 13152 13153 Set_Etype (Def_Id, Base_Type (T)); 13154 Set_Size_Info (Def_Id, (T)); 13155 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 13156 13157 -- Process the constraint 13158 13159 C := Constraint (S); 13160 13161 -- Digits constraint present 13162 13163 if Nkind (C) = N_Digits_Constraint then 13164 13165 Check_SPARK_05_Restriction ("digits constraint is not allowed", S); 13166 Check_Restriction (No_Obsolescent_Features, C); 13167 13168 if Warn_On_Obsolescent_Feature then 13169 Error_Msg_N 13170 ("subtype digits constraint is an " & 13171 "obsolescent feature (RM J.3(8))?j?", C); 13172 end if; 13173 13174 D := Digits_Expression (C); 13175 Analyze_And_Resolve (D, Any_Integer); 13176 Check_Digits_Expression (D); 13177 Set_Digits_Value (Def_Id, Expr_Value (D)); 13178 13179 -- Check that digits value is in range. Obviously we can do this 13180 -- at compile time, but it is strictly a runtime check, and of 13181 -- course there is an ACVC test that checks this. 13182 13183 if Digits_Value (Def_Id) > Digits_Value (T) then 13184 Error_Msg_Uint_1 := Digits_Value (T); 13185 Error_Msg_N ("??digits value is too large, maximum is ^", D); 13186 Rais := 13187 Make_Raise_Constraint_Error (Sloc (D), 13188 Reason => CE_Range_Check_Failed); 13189 Insert_Action (Declaration_Node (Def_Id), Rais); 13190 end if; 13191 13192 C := Range_Constraint (C); 13193 13194 -- No digits constraint present 13195 13196 else 13197 Set_Digits_Value (Def_Id, Digits_Value (T)); 13198 end if; 13199 13200 -- Range constraint present 13201 13202 if Nkind (C) = N_Range_Constraint then 13203 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); 13204 13205 -- No range constraint present 13206 13207 else 13208 pragma Assert (No (C)); 13209 Set_Scalar_Range (Def_Id, Scalar_Range (T)); 13210 end if; 13211 13212 Set_Is_Constrained (Def_Id); 13213 end Constrain_Float; 13214 13215 --------------------- 13216 -- Constrain_Index -- 13217 --------------------- 13218 13219 procedure Constrain_Index 13220 (Index : Node_Id; 13221 S : Node_Id; 13222 Related_Nod : Node_Id; 13223 Related_Id : Entity_Id; 13224 Suffix : Character; 13225 Suffix_Index : Nat) 13226 is 13227 Def_Id : Entity_Id; 13228 R : Node_Id := Empty; 13229 T : constant Entity_Id := Etype (Index); 13230 13231 begin 13232 Def_Id := 13233 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index); 13234 Set_Etype (Def_Id, Base_Type (T)); 13235 13236 if Nkind (S) = N_Range 13237 or else 13238 (Nkind (S) = N_Attribute_Reference 13239 and then Attribute_Name (S) = Name_Range) 13240 then 13241 -- A Range attribute will be transformed into N_Range by Resolve 13242 13243 Analyze (S); 13244 Set_Etype (S, T); 13245 R := S; 13246 13247 Process_Range_Expr_In_Decl (R, T); 13248 13249 if not Error_Posted (S) 13250 and then 13251 (Nkind (S) /= N_Range 13252 or else not Covers (T, (Etype (Low_Bound (S)))) 13253 or else not Covers (T, (Etype (High_Bound (S))))) 13254 then 13255 if Base_Type (T) /= Any_Type 13256 and then Etype (Low_Bound (S)) /= Any_Type 13257 and then Etype (High_Bound (S)) /= Any_Type 13258 then 13259 Error_Msg_N ("range expected", S); 13260 end if; 13261 end if; 13262 13263 elsif Nkind (S) = N_Subtype_Indication then 13264 13265 -- The parser has verified that this is a discrete indication 13266 13267 Resolve_Discrete_Subtype_Indication (S, T); 13268 Bad_Predicated_Subtype_Use 13269 ("subtype& has predicate, not allowed in index constraint", 13270 S, Entity (Subtype_Mark (S))); 13271 13272 R := Range_Expression (Constraint (S)); 13273 13274 -- Capture values of bounds and generate temporaries for them if 13275 -- needed, since checks may cause duplication of the expressions 13276 -- which must not be reevaluated. 13277 13278 -- The forced evaluation removes side effects from expressions, which 13279 -- should occur also in GNATprove mode. Otherwise, we end up with 13280 -- unexpected insertions of actions at places where this is not 13281 -- supposed to occur, e.g. on default parameters of a call. 13282 13283 if Expander_Active or GNATprove_Mode then 13284 Force_Evaluation 13285 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True); 13286 Force_Evaluation 13287 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True); 13288 end if; 13289 13290 elsif Nkind (S) = N_Discriminant_Association then 13291 13292 -- Syntactically valid in subtype indication 13293 13294 Error_Msg_N ("invalid index constraint", S); 13295 Rewrite (S, New_Occurrence_Of (T, Sloc (S))); 13296 return; 13297 13298 -- Subtype_Mark case, no anonymous subtypes to construct 13299 13300 else 13301 Analyze (S); 13302 13303 if Is_Entity_Name (S) then 13304 if not Is_Type (Entity (S)) then 13305 Error_Msg_N ("expect subtype mark for index constraint", S); 13306 13307 elsif Base_Type (Entity (S)) /= Base_Type (T) then 13308 Wrong_Type (S, Base_Type (T)); 13309 13310 -- Check error of subtype with predicate in index constraint 13311 13312 else 13313 Bad_Predicated_Subtype_Use 13314 ("subtype& has predicate, not allowed in index constraint", 13315 S, Entity (S)); 13316 end if; 13317 13318 return; 13319 13320 else 13321 Error_Msg_N ("invalid index constraint", S); 13322 Rewrite (S, New_Occurrence_Of (T, Sloc (S))); 13323 return; 13324 end if; 13325 end if; 13326 13327 -- Complete construction of the Itype 13328 13329 if Is_Modular_Integer_Type (T) then 13330 Set_Ekind (Def_Id, E_Modular_Integer_Subtype); 13331 13332 elsif Is_Integer_Type (T) then 13333 Set_Ekind (Def_Id, E_Signed_Integer_Subtype); 13334 13335 else 13336 Set_Ekind (Def_Id, E_Enumeration_Subtype); 13337 Set_Is_Character_Type (Def_Id, Is_Character_Type (T)); 13338 Set_First_Literal (Def_Id, First_Literal (T)); 13339 end if; 13340 13341 Set_Size_Info (Def_Id, (T)); 13342 Set_RM_Size (Def_Id, RM_Size (T)); 13343 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 13344 13345 Set_Scalar_Range (Def_Id, R); 13346 13347 Set_Etype (S, Def_Id); 13348 Set_Discrete_RM_Size (Def_Id); 13349 end Constrain_Index; 13350 13351 ----------------------- 13352 -- Constrain_Integer -- 13353 ----------------------- 13354 13355 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is 13356 T : constant Entity_Id := Entity (Subtype_Mark (S)); 13357 C : constant Node_Id := Constraint (S); 13358 13359 begin 13360 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); 13361 13362 if Is_Modular_Integer_Type (T) then 13363 Set_Ekind (Def_Id, E_Modular_Integer_Subtype); 13364 else 13365 Set_Ekind (Def_Id, E_Signed_Integer_Subtype); 13366 end if; 13367 13368 Set_Etype (Def_Id, Base_Type (T)); 13369 Set_Size_Info (Def_Id, (T)); 13370 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 13371 Set_Discrete_RM_Size (Def_Id); 13372 end Constrain_Integer; 13373 13374 ------------------------------ 13375 -- Constrain_Ordinary_Fixed -- 13376 ------------------------------ 13377 13378 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is 13379 T : constant Entity_Id := Entity (Subtype_Mark (S)); 13380 C : Node_Id; 13381 D : Node_Id; 13382 Rais : Node_Id; 13383 13384 begin 13385 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype); 13386 Set_Etype (Def_Id, Base_Type (T)); 13387 Set_Size_Info (Def_Id, (T)); 13388 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 13389 Set_Small_Value (Def_Id, Small_Value (T)); 13390 13391 -- Process the constraint 13392 13393 C := Constraint (S); 13394 13395 -- Delta constraint present 13396 13397 if Nkind (C) = N_Delta_Constraint then 13398 13399 Check_SPARK_05_Restriction ("delta constraint is not allowed", S); 13400 Check_Restriction (No_Obsolescent_Features, C); 13401 13402 if Warn_On_Obsolescent_Feature then 13403 Error_Msg_S 13404 ("subtype delta constraint is an " & 13405 "obsolescent feature (RM J.3(7))?j?"); 13406 end if; 13407 13408 D := Delta_Expression (C); 13409 Analyze_And_Resolve (D, Any_Real); 13410 Check_Delta_Expression (D); 13411 Set_Delta_Value (Def_Id, Expr_Value_R (D)); 13412 13413 -- Check that delta value is in range. Obviously we can do this 13414 -- at compile time, but it is strictly a runtime check, and of 13415 -- course there is an ACVC test that checks this. 13416 13417 if Delta_Value (Def_Id) < Delta_Value (T) then 13418 Error_Msg_N ("??delta value is too small", D); 13419 Rais := 13420 Make_Raise_Constraint_Error (Sloc (D), 13421 Reason => CE_Range_Check_Failed); 13422 Insert_Action (Declaration_Node (Def_Id), Rais); 13423 end if; 13424 13425 C := Range_Constraint (C); 13426 13427 -- No delta constraint present 13428 13429 else 13430 Set_Delta_Value (Def_Id, Delta_Value (T)); 13431 end if; 13432 13433 -- Range constraint present 13434 13435 if Nkind (C) = N_Range_Constraint then 13436 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); 13437 13438 -- No range constraint present 13439 13440 else 13441 pragma Assert (No (C)); 13442 Set_Scalar_Range (Def_Id, Scalar_Range (T)); 13443 end if; 13444 13445 Set_Discrete_RM_Size (Def_Id); 13446 13447 -- Unconditionally delay the freeze, since we cannot set size 13448 -- information in all cases correctly until the freeze point. 13449 13450 Set_Has_Delayed_Freeze (Def_Id); 13451 end Constrain_Ordinary_Fixed; 13452 13453 ----------------------- 13454 -- Contain_Interface -- 13455 ----------------------- 13456 13457 function Contain_Interface 13458 (Iface : Entity_Id; 13459 Ifaces : Elist_Id) return Boolean 13460 is 13461 Iface_Elmt : Elmt_Id; 13462 13463 begin 13464 if Present (Ifaces) then 13465 Iface_Elmt := First_Elmt (Ifaces); 13466 while Present (Iface_Elmt) loop 13467 if Node (Iface_Elmt) = Iface then 13468 return True; 13469 end if; 13470 13471 Next_Elmt (Iface_Elmt); 13472 end loop; 13473 end if; 13474 13475 return False; 13476 end Contain_Interface; 13477 13478 --------------------------- 13479 -- Convert_Scalar_Bounds -- 13480 --------------------------- 13481 13482 procedure Convert_Scalar_Bounds 13483 (N : Node_Id; 13484 Parent_Type : Entity_Id; 13485 Derived_Type : Entity_Id; 13486 Loc : Source_Ptr) 13487 is 13488 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type); 13489 13490 Lo : Node_Id; 13491 Hi : Node_Id; 13492 Rng : Node_Id; 13493 13494 begin 13495 -- Defend against previous errors 13496 13497 if No (Scalar_Range (Derived_Type)) then 13498 Check_Error_Detected; 13499 return; 13500 end if; 13501 13502 Lo := Build_Scalar_Bound 13503 (Type_Low_Bound (Derived_Type), 13504 Parent_Type, Implicit_Base); 13505 13506 Hi := Build_Scalar_Bound 13507 (Type_High_Bound (Derived_Type), 13508 Parent_Type, Implicit_Base); 13509 13510 Rng := 13511 Make_Range (Loc, 13512 Low_Bound => Lo, 13513 High_Bound => Hi); 13514 13515 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type)); 13516 13517 Set_Parent (Rng, N); 13518 Set_Scalar_Range (Derived_Type, Rng); 13519 13520 -- Analyze the bounds 13521 13522 Analyze_And_Resolve (Lo, Implicit_Base); 13523 Analyze_And_Resolve (Hi, Implicit_Base); 13524 13525 -- Analyze the range itself, except that we do not analyze it if 13526 -- the bounds are real literals, and we have a fixed-point type. 13527 -- The reason for this is that we delay setting the bounds in this 13528 -- case till we know the final Small and Size values (see circuit 13529 -- in Freeze.Freeze_Fixed_Point_Type for further details). 13530 13531 if Is_Fixed_Point_Type (Parent_Type) 13532 and then Nkind (Lo) = N_Real_Literal 13533 and then Nkind (Hi) = N_Real_Literal 13534 then 13535 return; 13536 13537 -- Here we do the analysis of the range 13538 13539 -- Note: we do this manually, since if we do a normal Analyze and 13540 -- Resolve call, there are problems with the conversions used for 13541 -- the derived type range. 13542 13543 else 13544 Set_Etype (Rng, Implicit_Base); 13545 Set_Analyzed (Rng, True); 13546 end if; 13547 end Convert_Scalar_Bounds; 13548 13549 ------------------- 13550 -- Copy_And_Swap -- 13551 ------------------- 13552 13553 procedure Copy_And_Swap (Priv, Full : Entity_Id) is 13554 begin 13555 -- Initialize new full declaration entity by copying the pertinent 13556 -- fields of the corresponding private declaration entity. 13557 13558 -- We temporarily set Ekind to a value appropriate for a type to 13559 -- avoid assert failures in Einfo from checking for setting type 13560 -- attributes on something that is not a type. Ekind (Priv) is an 13561 -- appropriate choice, since it allowed the attributes to be set 13562 -- in the first place. This Ekind value will be modified later. 13563 13564 Set_Ekind (Full, Ekind (Priv)); 13565 13566 -- Also set Etype temporarily to Any_Type, again, in the absence 13567 -- of errors, it will be properly reset, and if there are errors, 13568 -- then we want a value of Any_Type to remain. 13569 13570 Set_Etype (Full, Any_Type); 13571 13572 -- Now start copying attributes 13573 13574 Set_Has_Discriminants (Full, Has_Discriminants (Priv)); 13575 13576 if Has_Discriminants (Full) then 13577 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv)); 13578 Set_Stored_Constraint (Full, Stored_Constraint (Priv)); 13579 end if; 13580 13581 Set_First_Rep_Item (Full, First_Rep_Item (Priv)); 13582 Set_Homonym (Full, Homonym (Priv)); 13583 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv)); 13584 Set_Is_Public (Full, Is_Public (Priv)); 13585 Set_Is_Pure (Full, Is_Pure (Priv)); 13586 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv)); 13587 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv)); 13588 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv)); 13589 Set_Has_Pragma_Unreferenced_Objects 13590 (Full, Has_Pragma_Unreferenced_Objects 13591 (Priv)); 13592 13593 Conditional_Delay (Full, Priv); 13594 13595 if Is_Tagged_Type (Full) then 13596 Set_Direct_Primitive_Operations 13597 (Full, Direct_Primitive_Operations (Priv)); 13598 Set_No_Tagged_Streams_Pragma 13599 (Full, No_Tagged_Streams_Pragma (Priv)); 13600 13601 if Is_Base_Type (Priv) then 13602 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv)); 13603 end if; 13604 end if; 13605 13606 Set_Is_Volatile (Full, Is_Volatile (Priv)); 13607 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv)); 13608 Set_Scope (Full, Scope (Priv)); 13609 Set_Next_Entity (Full, Next_Entity (Priv)); 13610 Set_First_Entity (Full, First_Entity (Priv)); 13611 Set_Last_Entity (Full, Last_Entity (Priv)); 13612 13613 -- If access types have been recorded for later handling, keep them in 13614 -- the full view so that they get handled when the full view freeze 13615 -- node is expanded. 13616 13617 if Present (Freeze_Node (Priv)) 13618 and then Present (Access_Types_To_Process (Freeze_Node (Priv))) 13619 then 13620 Ensure_Freeze_Node (Full); 13621 Set_Access_Types_To_Process 13622 (Freeze_Node (Full), 13623 Access_Types_To_Process (Freeze_Node (Priv))); 13624 end if; 13625 13626 -- Swap the two entities. Now Private is the full type entity and Full 13627 -- is the private one. They will be swapped back at the end of the 13628 -- private part. This swapping ensures that the entity that is visible 13629 -- in the private part is the full declaration. 13630 13631 Exchange_Entities (Priv, Full); 13632 Append_Entity (Full, Scope (Full)); 13633 end Copy_And_Swap; 13634 13635 ------------------------------------- 13636 -- Copy_Array_Base_Type_Attributes -- 13637 ------------------------------------- 13638 13639 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is 13640 begin 13641 Set_Component_Alignment (T1, Component_Alignment (T2)); 13642 Set_Component_Type (T1, Component_Type (T2)); 13643 Set_Component_Size (T1, Component_Size (T2)); 13644 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2)); 13645 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2)); 13646 Set_Has_Protected (T1, Has_Protected (T2)); 13647 Set_Has_Task (T1, Has_Task (T2)); 13648 Set_Is_Packed (T1, Is_Packed (T2)); 13649 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2)); 13650 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2)); 13651 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2)); 13652 end Copy_Array_Base_Type_Attributes; 13653 13654 ----------------------------------- 13655 -- Copy_Array_Subtype_Attributes -- 13656 ----------------------------------- 13657 13658 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is 13659 begin 13660 Set_Size_Info (T1, T2); 13661 13662 Set_First_Index (T1, First_Index (T2)); 13663 Set_Is_Aliased (T1, Is_Aliased (T2)); 13664 Set_Is_Volatile (T1, Is_Volatile (T2)); 13665 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2)); 13666 Set_Is_Constrained (T1, Is_Constrained (T2)); 13667 Set_Depends_On_Private (T1, Has_Private_Component (T2)); 13668 Inherit_Rep_Item_Chain (T1, T2); 13669 Set_Convention (T1, Convention (T2)); 13670 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2)); 13671 Set_Is_Private_Composite (T1, Is_Private_Composite (T2)); 13672 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2)); 13673 end Copy_Array_Subtype_Attributes; 13674 13675 ----------------------------------- 13676 -- Create_Constrained_Components -- 13677 ----------------------------------- 13678 13679 procedure Create_Constrained_Components 13680 (Subt : Entity_Id; 13681 Decl_Node : Node_Id; 13682 Typ : Entity_Id; 13683 Constraints : Elist_Id) 13684 is 13685 Loc : constant Source_Ptr := Sloc (Subt); 13686 Comp_List : constant Elist_Id := New_Elmt_List; 13687 Parent_Type : constant Entity_Id := Etype (Typ); 13688 Assoc_List : constant List_Id := New_List; 13689 Discr_Val : Elmt_Id; 13690 Errors : Boolean; 13691 New_C : Entity_Id; 13692 Old_C : Entity_Id; 13693 Is_Static : Boolean := True; 13694 13695 procedure Collect_Fixed_Components (Typ : Entity_Id); 13696 -- Collect parent type components that do not appear in a variant part 13697 13698 procedure Create_All_Components; 13699 -- Iterate over Comp_List to create the components of the subtype 13700 13701 function Create_Component (Old_Compon : Entity_Id) return Entity_Id; 13702 -- Creates a new component from Old_Compon, copying all the fields from 13703 -- it, including its Etype, inserts the new component in the Subt entity 13704 -- chain and returns the new component. 13705 13706 function Is_Variant_Record (T : Entity_Id) return Boolean; 13707 -- If true, and discriminants are static, collect only components from 13708 -- variants selected by discriminant values. 13709 13710 ------------------------------ 13711 -- Collect_Fixed_Components -- 13712 ------------------------------ 13713 13714 procedure Collect_Fixed_Components (Typ : Entity_Id) is 13715 begin 13716 -- Build association list for discriminants, and find components of the 13717 -- variant part selected by the values of the discriminants. 13718 13719 Old_C := First_Discriminant (Typ); 13720 Discr_Val := First_Elmt (Constraints); 13721 while Present (Old_C) loop 13722 Append_To (Assoc_List, 13723 Make_Component_Association (Loc, 13724 Choices => New_List (New_Occurrence_Of (Old_C, Loc)), 13725 Expression => New_Copy (Node (Discr_Val)))); 13726 13727 Next_Elmt (Discr_Val); 13728 Next_Discriminant (Old_C); 13729 end loop; 13730 13731 -- The tag and the possible parent component are unconditionally in 13732 -- the subtype. 13733 13734 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then 13735 Old_C := First_Component (Typ); 13736 while Present (Old_C) loop 13737 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then 13738 Append_Elmt (Old_C, Comp_List); 13739 end if; 13740 13741 Next_Component (Old_C); 13742 end loop; 13743 end if; 13744 end Collect_Fixed_Components; 13745 13746 --------------------------- 13747 -- Create_All_Components -- 13748 --------------------------- 13749 13750 procedure Create_All_Components is 13751 Comp : Elmt_Id; 13752 13753 begin 13754 Comp := First_Elmt (Comp_List); 13755 while Present (Comp) loop 13756 Old_C := Node (Comp); 13757 New_C := Create_Component (Old_C); 13758 13759 Set_Etype 13760 (New_C, 13761 Constrain_Component_Type 13762 (Old_C, Subt, Decl_Node, Typ, Constraints)); 13763 Set_Is_Public (New_C, Is_Public (Subt)); 13764 13765 Next_Elmt (Comp); 13766 end loop; 13767 end Create_All_Components; 13768 13769 ---------------------- 13770 -- Create_Component -- 13771 ---------------------- 13772 13773 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is 13774 New_Compon : constant Entity_Id := New_Copy (Old_Compon); 13775 13776 begin 13777 if Ekind (Old_Compon) = E_Discriminant 13778 and then Is_Completely_Hidden (Old_Compon) 13779 then 13780 -- This is a shadow discriminant created for a discriminant of 13781 -- the parent type, which needs to be present in the subtype. 13782 -- Give the shadow discriminant an internal name that cannot 13783 -- conflict with that of visible components. 13784 13785 Set_Chars (New_Compon, New_Internal_Name ('C')); 13786 end if; 13787 13788 -- Set the parent so we have a proper link for freezing etc. This is 13789 -- not a real parent pointer, since of course our parent does not own 13790 -- up to us and reference us, we are an illegitimate child of the 13791 -- original parent. 13792 13793 Set_Parent (New_Compon, Parent (Old_Compon)); 13794 13795 -- If the old component's Esize was already determined and is a 13796 -- static value, then the new component simply inherits it. Otherwise 13797 -- the old component's size may require run-time determination, but 13798 -- the new component's size still might be statically determinable 13799 -- (if, for example it has a static constraint). In that case we want 13800 -- Layout_Type to recompute the component's size, so we reset its 13801 -- size and positional fields. 13802 13803 if Frontend_Layout_On_Target 13804 and then not Known_Static_Esize (Old_Compon) 13805 then 13806 Set_Esize (New_Compon, Uint_0); 13807 Init_Normalized_First_Bit (New_Compon); 13808 Init_Normalized_Position (New_Compon); 13809 Init_Normalized_Position_Max (New_Compon); 13810 end if; 13811 13812 -- We do not want this node marked as Comes_From_Source, since 13813 -- otherwise it would get first class status and a separate cross- 13814 -- reference line would be generated. Illegitimate children do not 13815 -- rate such recognition. 13816 13817 Set_Comes_From_Source (New_Compon, False); 13818 13819 -- But it is a real entity, and a birth certificate must be properly 13820 -- registered by entering it into the entity list. 13821 13822 Enter_Name (New_Compon); 13823 13824 return New_Compon; 13825 end Create_Component; 13826 13827 ----------------------- 13828 -- Is_Variant_Record -- 13829 ----------------------- 13830 13831 function Is_Variant_Record (T : Entity_Id) return Boolean is 13832 begin 13833 return Nkind (Parent (T)) = N_Full_Type_Declaration 13834 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition 13835 and then Present (Component_List (Type_Definition (Parent (T)))) 13836 and then 13837 Present 13838 (Variant_Part (Component_List (Type_Definition (Parent (T))))); 13839 end Is_Variant_Record; 13840 13841 -- Start of processing for Create_Constrained_Components 13842 13843 begin 13844 pragma Assert (Subt /= Base_Type (Subt)); 13845 pragma Assert (Typ = Base_Type (Typ)); 13846 13847 Set_First_Entity (Subt, Empty); 13848 Set_Last_Entity (Subt, Empty); 13849 13850 -- Check whether constraint is fully static, in which case we can 13851 -- optimize the list of components. 13852 13853 Discr_Val := First_Elmt (Constraints); 13854 while Present (Discr_Val) loop 13855 if not Is_OK_Static_Expression (Node (Discr_Val)) then 13856 Is_Static := False; 13857 exit; 13858 end if; 13859 13860 Next_Elmt (Discr_Val); 13861 end loop; 13862 13863 Set_Has_Static_Discriminants (Subt, Is_Static); 13864 13865 Push_Scope (Subt); 13866 13867 -- Inherit the discriminants of the parent type 13868 13869 Add_Discriminants : declare 13870 Num_Disc : Int; 13871 Num_Gird : Int; 13872 13873 begin 13874 Num_Disc := 0; 13875 Old_C := First_Discriminant (Typ); 13876 13877 while Present (Old_C) loop 13878 Num_Disc := Num_Disc + 1; 13879 New_C := Create_Component (Old_C); 13880 Set_Is_Public (New_C, Is_Public (Subt)); 13881 Next_Discriminant (Old_C); 13882 end loop; 13883 13884 -- For an untagged derived subtype, the number of discriminants may 13885 -- be smaller than the number of inherited discriminants, because 13886 -- several of them may be renamed by a single new discriminant or 13887 -- constrained. In this case, add the hidden discriminants back into 13888 -- the subtype, because they need to be present if the optimizer of 13889 -- the GCC 4.x back-end decides to break apart assignments between 13890 -- objects using the parent view into member-wise assignments. 13891 13892 Num_Gird := 0; 13893 13894 if Is_Derived_Type (Typ) 13895 and then not Is_Tagged_Type (Typ) 13896 then 13897 Old_C := First_Stored_Discriminant (Typ); 13898 13899 while Present (Old_C) loop 13900 Num_Gird := Num_Gird + 1; 13901 Next_Stored_Discriminant (Old_C); 13902 end loop; 13903 end if; 13904 13905 if Num_Gird > Num_Disc then 13906 13907 -- Find out multiple uses of new discriminants, and add hidden 13908 -- components for the extra renamed discriminants. We recognize 13909 -- multiple uses through the Corresponding_Discriminant of a 13910 -- new discriminant: if it constrains several old discriminants, 13911 -- this field points to the last one in the parent type. The 13912 -- stored discriminants of the derived type have the same name 13913 -- as those of the parent. 13914 13915 declare 13916 Constr : Elmt_Id; 13917 New_Discr : Entity_Id; 13918 Old_Discr : Entity_Id; 13919 13920 begin 13921 Constr := First_Elmt (Stored_Constraint (Typ)); 13922 Old_Discr := First_Stored_Discriminant (Typ); 13923 while Present (Constr) loop 13924 if Is_Entity_Name (Node (Constr)) 13925 and then Ekind (Entity (Node (Constr))) = E_Discriminant 13926 then 13927 New_Discr := Entity (Node (Constr)); 13928 13929 if Chars (Corresponding_Discriminant (New_Discr)) /= 13930 Chars (Old_Discr) 13931 then 13932 -- The new discriminant has been used to rename a 13933 -- subsequent old discriminant. Introduce a shadow 13934 -- component for the current old discriminant. 13935 13936 New_C := Create_Component (Old_Discr); 13937 Set_Original_Record_Component (New_C, Old_Discr); 13938 end if; 13939 13940 else 13941 -- The constraint has eliminated the old discriminant. 13942 -- Introduce a shadow component. 13943 13944 New_C := Create_Component (Old_Discr); 13945 Set_Original_Record_Component (New_C, Old_Discr); 13946 end if; 13947 13948 Next_Elmt (Constr); 13949 Next_Stored_Discriminant (Old_Discr); 13950 end loop; 13951 end; 13952 end if; 13953 end Add_Discriminants; 13954 13955 if Is_Static 13956 and then Is_Variant_Record (Typ) 13957 then 13958 Collect_Fixed_Components (Typ); 13959 13960 Gather_Components ( 13961 Typ, 13962 Component_List (Type_Definition (Parent (Typ))), 13963 Governed_By => Assoc_List, 13964 Into => Comp_List, 13965 Report_Errors => Errors); 13966 pragma Assert (not Errors); 13967 13968 Create_All_Components; 13969 13970 -- If the subtype declaration is created for a tagged type derivation 13971 -- with constraints, we retrieve the record definition of the parent 13972 -- type to select the components of the proper variant. 13973 13974 elsif Is_Static 13975 and then Is_Tagged_Type (Typ) 13976 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration 13977 and then 13978 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition 13979 and then Is_Variant_Record (Parent_Type) 13980 then 13981 Collect_Fixed_Components (Typ); 13982 13983 Gather_Components 13984 (Typ, 13985 Component_List (Type_Definition (Parent (Parent_Type))), 13986 Governed_By => Assoc_List, 13987 Into => Comp_List, 13988 Report_Errors => Errors); 13989 13990 -- Note: previously there was a check at this point that no errors 13991 -- were detected. As a consequence of AI05-220 there may be an error 13992 -- if an inherited discriminant that controls a variant has a non- 13993 -- static constraint. 13994 13995 -- If the tagged derivation has a type extension, collect all the 13996 -- new components therein. 13997 13998 if Present (Record_Extension_Part (Type_Definition (Parent (Typ)))) 13999 then 14000 Old_C := First_Component (Typ); 14001 while Present (Old_C) loop 14002 if Original_Record_Component (Old_C) = Old_C 14003 and then Chars (Old_C) /= Name_uTag 14004 and then Chars (Old_C) /= Name_uParent 14005 then 14006 Append_Elmt (Old_C, Comp_List); 14007 end if; 14008 14009 Next_Component (Old_C); 14010 end loop; 14011 end if; 14012 14013 Create_All_Components; 14014 14015 else 14016 -- If discriminants are not static, or if this is a multi-level type 14017 -- extension, we have to include all components of the parent type. 14018 14019 Old_C := First_Component (Typ); 14020 while Present (Old_C) loop 14021 New_C := Create_Component (Old_C); 14022 14023 Set_Etype 14024 (New_C, 14025 Constrain_Component_Type 14026 (Old_C, Subt, Decl_Node, Typ, Constraints)); 14027 Set_Is_Public (New_C, Is_Public (Subt)); 14028 14029 Next_Component (Old_C); 14030 end loop; 14031 end if; 14032 14033 End_Scope; 14034 end Create_Constrained_Components; 14035 14036 ------------------------------------------ 14037 -- Decimal_Fixed_Point_Type_Declaration -- 14038 ------------------------------------------ 14039 14040 procedure Decimal_Fixed_Point_Type_Declaration 14041 (T : Entity_Id; 14042 Def : Node_Id) 14043 is 14044 Loc : constant Source_Ptr := Sloc (Def); 14045 Digs_Expr : constant Node_Id := Digits_Expression (Def); 14046 Delta_Expr : constant Node_Id := Delta_Expression (Def); 14047 Implicit_Base : Entity_Id; 14048 Digs_Val : Uint; 14049 Delta_Val : Ureal; 14050 Scale_Val : Uint; 14051 Bound_Val : Ureal; 14052 14053 begin 14054 Check_SPARK_05_Restriction 14055 ("decimal fixed point type is not allowed", Def); 14056 Check_Restriction (No_Fixed_Point, Def); 14057 14058 -- Create implicit base type 14059 14060 Implicit_Base := 14061 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B'); 14062 Set_Etype (Implicit_Base, Implicit_Base); 14063 14064 -- Analyze and process delta expression 14065 14066 Analyze_And_Resolve (Delta_Expr, Universal_Real); 14067 14068 Check_Delta_Expression (Delta_Expr); 14069 Delta_Val := Expr_Value_R (Delta_Expr); 14070 14071 -- Check delta is power of 10, and determine scale value from it 14072 14073 declare 14074 Val : Ureal; 14075 14076 begin 14077 Scale_Val := Uint_0; 14078 Val := Delta_Val; 14079 14080 if Val < Ureal_1 then 14081 while Val < Ureal_1 loop 14082 Val := Val * Ureal_10; 14083 Scale_Val := Scale_Val + 1; 14084 end loop; 14085 14086 if Scale_Val > 18 then 14087 Error_Msg_N ("scale exceeds maximum value of 18", Def); 14088 Scale_Val := UI_From_Int (+18); 14089 end if; 14090 14091 else 14092 while Val > Ureal_1 loop 14093 Val := Val / Ureal_10; 14094 Scale_Val := Scale_Val - 1; 14095 end loop; 14096 14097 if Scale_Val < -18 then 14098 Error_Msg_N ("scale is less than minimum value of -18", Def); 14099 Scale_Val := UI_From_Int (-18); 14100 end if; 14101 end if; 14102 14103 if Val /= Ureal_1 then 14104 Error_Msg_N ("delta expression must be a power of 10", Def); 14105 Delta_Val := Ureal_10 ** (-Scale_Val); 14106 end if; 14107 end; 14108 14109 -- Set delta, scale and small (small = delta for decimal type) 14110 14111 Set_Delta_Value (Implicit_Base, Delta_Val); 14112 Set_Scale_Value (Implicit_Base, Scale_Val); 14113 Set_Small_Value (Implicit_Base, Delta_Val); 14114 14115 -- Analyze and process digits expression 14116 14117 Analyze_And_Resolve (Digs_Expr, Any_Integer); 14118 Check_Digits_Expression (Digs_Expr); 14119 Digs_Val := Expr_Value (Digs_Expr); 14120 14121 if Digs_Val > 18 then 14122 Digs_Val := UI_From_Int (+18); 14123 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr); 14124 end if; 14125 14126 Set_Digits_Value (Implicit_Base, Digs_Val); 14127 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val; 14128 14129 -- Set range of base type from digits value for now. This will be 14130 -- expanded to represent the true underlying base range by Freeze. 14131 14132 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val); 14133 14134 -- Note: We leave size as zero for now, size will be set at freeze 14135 -- time. We have to do this for ordinary fixed-point, because the size 14136 -- depends on the specified small, and we might as well do the same for 14137 -- decimal fixed-point. 14138 14139 pragma Assert (Esize (Implicit_Base) = Uint_0); 14140 14141 -- If there are bounds given in the declaration use them as the 14142 -- bounds of the first named subtype. 14143 14144 if Present (Real_Range_Specification (Def)) then 14145 declare 14146 RRS : constant Node_Id := Real_Range_Specification (Def); 14147 Low : constant Node_Id := Low_Bound (RRS); 14148 High : constant Node_Id := High_Bound (RRS); 14149 Low_Val : Ureal; 14150 High_Val : Ureal; 14151 14152 begin 14153 Analyze_And_Resolve (Low, Any_Real); 14154 Analyze_And_Resolve (High, Any_Real); 14155 Check_Real_Bound (Low); 14156 Check_Real_Bound (High); 14157 Low_Val := Expr_Value_R (Low); 14158 High_Val := Expr_Value_R (High); 14159 14160 if Low_Val < (-Bound_Val) then 14161 Error_Msg_N 14162 ("range low bound too small for digits value", Low); 14163 Low_Val := -Bound_Val; 14164 end if; 14165 14166 if High_Val > Bound_Val then 14167 Error_Msg_N 14168 ("range high bound too large for digits value", High); 14169 High_Val := Bound_Val; 14170 end if; 14171 14172 Set_Fixed_Range (T, Loc, Low_Val, High_Val); 14173 end; 14174 14175 -- If no explicit range, use range that corresponds to given 14176 -- digits value. This will end up as the final range for the 14177 -- first subtype. 14178 14179 else 14180 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val); 14181 end if; 14182 14183 -- Complete entity for first subtype. The inheritance of the rep item 14184 -- chain ensures that SPARK-related pragmas are not clobbered when the 14185 -- decimal fixed point type acts as a full view of a private type. 14186 14187 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype); 14188 Set_Etype (T, Implicit_Base); 14189 Set_Size_Info (T, Implicit_Base); 14190 Inherit_Rep_Item_Chain (T, Implicit_Base); 14191 Set_Digits_Value (T, Digs_Val); 14192 Set_Delta_Value (T, Delta_Val); 14193 Set_Small_Value (T, Delta_Val); 14194 Set_Scale_Value (T, Scale_Val); 14195 Set_Is_Constrained (T); 14196 end Decimal_Fixed_Point_Type_Declaration; 14197 14198 ----------------------------------- 14199 -- Derive_Progenitor_Subprograms -- 14200 ----------------------------------- 14201 14202 procedure Derive_Progenitor_Subprograms 14203 (Parent_Type : Entity_Id; 14204 Tagged_Type : Entity_Id) 14205 is 14206 E : Entity_Id; 14207 Elmt : Elmt_Id; 14208 Iface : Entity_Id; 14209 Iface_Elmt : Elmt_Id; 14210 Iface_Subp : Entity_Id; 14211 New_Subp : Entity_Id := Empty; 14212 Prim_Elmt : Elmt_Id; 14213 Subp : Entity_Id; 14214 Typ : Entity_Id; 14215 14216 begin 14217 pragma Assert (Ada_Version >= Ada_2005 14218 and then Is_Record_Type (Tagged_Type) 14219 and then Is_Tagged_Type (Tagged_Type) 14220 and then Has_Interfaces (Tagged_Type)); 14221 14222 -- Step 1: Transfer to the full-view primitives associated with the 14223 -- partial-view that cover interface primitives. Conceptually this 14224 -- work should be done later by Process_Full_View; done here to 14225 -- simplify its implementation at later stages. It can be safely 14226 -- done here because interfaces must be visible in the partial and 14227 -- private view (RM 7.3(7.3/2)). 14228 14229 -- Small optimization: This work is only required if the parent may 14230 -- have entities whose Alias attribute reference an interface primitive. 14231 -- Such a situation may occur if the parent is an abstract type and the 14232 -- primitive has not been yet overridden or if the parent is a generic 14233 -- formal type covering interfaces. 14234 14235 -- If the tagged type is not abstract, it cannot have abstract 14236 -- primitives (the only entities in the list of primitives of 14237 -- non-abstract tagged types that can reference abstract primitives 14238 -- through its Alias attribute are the internal entities that have 14239 -- attribute Interface_Alias, and these entities are generated later 14240 -- by Add_Internal_Interface_Entities). 14241 14242 if In_Private_Part (Current_Scope) 14243 and then (Is_Abstract_Type (Parent_Type) 14244 or else 14245 Is_Generic_Type (Parent_Type)) 14246 then 14247 Elmt := First_Elmt (Primitive_Operations (Tagged_Type)); 14248 while Present (Elmt) loop 14249 Subp := Node (Elmt); 14250 14251 -- At this stage it is not possible to have entities in the list 14252 -- of primitives that have attribute Interface_Alias. 14253 14254 pragma Assert (No (Interface_Alias (Subp))); 14255 14256 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp)); 14257 14258 if Is_Interface (Typ) then 14259 E := Find_Primitive_Covering_Interface 14260 (Tagged_Type => Tagged_Type, 14261 Iface_Prim => Subp); 14262 14263 if Present (E) 14264 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ 14265 then 14266 Replace_Elmt (Elmt, E); 14267 Remove_Homonym (Subp); 14268 end if; 14269 end if; 14270 14271 Next_Elmt (Elmt); 14272 end loop; 14273 end if; 14274 14275 -- Step 2: Add primitives of progenitors that are not implemented by 14276 -- parents of Tagged_Type. 14277 14278 if Present (Interfaces (Base_Type (Tagged_Type))) then 14279 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type))); 14280 while Present (Iface_Elmt) loop 14281 Iface := Node (Iface_Elmt); 14282 14283 Prim_Elmt := First_Elmt (Primitive_Operations (Iface)); 14284 while Present (Prim_Elmt) loop 14285 Iface_Subp := Node (Prim_Elmt); 14286 14287 -- Exclude derivation of predefined primitives except those 14288 -- that come from source, or are inherited from one that comes 14289 -- from source. Required to catch declarations of equality 14290 -- operators of interfaces. For example: 14291 14292 -- type Iface is interface; 14293 -- function "=" (Left, Right : Iface) return Boolean; 14294 14295 if not Is_Predefined_Dispatching_Operation (Iface_Subp) 14296 or else Comes_From_Source (Ultimate_Alias (Iface_Subp)) 14297 then 14298 E := Find_Primitive_Covering_Interface 14299 (Tagged_Type => Tagged_Type, 14300 Iface_Prim => Iface_Subp); 14301 14302 -- If not found we derive a new primitive leaving its alias 14303 -- attribute referencing the interface primitive. 14304 14305 if No (E) then 14306 Derive_Subprogram 14307 (New_Subp, Iface_Subp, Tagged_Type, Iface); 14308 14309 -- Ada 2012 (AI05-0197): If the covering primitive's name 14310 -- differs from the name of the interface primitive then it 14311 -- is a private primitive inherited from a parent type. In 14312 -- such case, given that Tagged_Type covers the interface, 14313 -- the inherited private primitive becomes visible. For such 14314 -- purpose we add a new entity that renames the inherited 14315 -- private primitive. 14316 14317 elsif Chars (E) /= Chars (Iface_Subp) then 14318 pragma Assert (Has_Suffix (E, 'P')); 14319 Derive_Subprogram 14320 (New_Subp, Iface_Subp, Tagged_Type, Iface); 14321 Set_Alias (New_Subp, E); 14322 Set_Is_Abstract_Subprogram (New_Subp, 14323 Is_Abstract_Subprogram (E)); 14324 14325 -- Propagate to the full view interface entities associated 14326 -- with the partial view. 14327 14328 elsif In_Private_Part (Current_Scope) 14329 and then Present (Alias (E)) 14330 and then Alias (E) = Iface_Subp 14331 and then 14332 List_Containing (Parent (E)) /= 14333 Private_Declarations 14334 (Specification 14335 (Unit_Declaration_Node (Current_Scope))) 14336 then 14337 Append_Elmt (E, Primitive_Operations (Tagged_Type)); 14338 end if; 14339 end if; 14340 14341 Next_Elmt (Prim_Elmt); 14342 end loop; 14343 14344 Next_Elmt (Iface_Elmt); 14345 end loop; 14346 end if; 14347 end Derive_Progenitor_Subprograms; 14348 14349 ----------------------- 14350 -- Derive_Subprogram -- 14351 ----------------------- 14352 14353 procedure Derive_Subprogram 14354 (New_Subp : in out Entity_Id; 14355 Parent_Subp : Entity_Id; 14356 Derived_Type : Entity_Id; 14357 Parent_Type : Entity_Id; 14358 Actual_Subp : Entity_Id := Empty) 14359 is 14360 Formal : Entity_Id; 14361 -- Formal parameter of parent primitive operation 14362 14363 Formal_Of_Actual : Entity_Id; 14364 -- Formal parameter of actual operation, when the derivation is to 14365 -- create a renaming for a primitive operation of an actual in an 14366 -- instantiation. 14367 14368 New_Formal : Entity_Id; 14369 -- Formal of inherited operation 14370 14371 Visible_Subp : Entity_Id := Parent_Subp; 14372 14373 function Is_Private_Overriding return Boolean; 14374 -- If Subp is a private overriding of a visible operation, the inherited 14375 -- operation derives from the overridden op (even though its body is the 14376 -- overriding one) and the inherited operation is visible now. See 14377 -- sem_disp to see the full details of the handling of the overridden 14378 -- subprogram, which is removed from the list of primitive operations of 14379 -- the type. The overridden subprogram is saved locally in Visible_Subp, 14380 -- and used to diagnose abstract operations that need overriding in the 14381 -- derived type. 14382 14383 procedure Replace_Type (Id, New_Id : Entity_Id); 14384 -- When the type is an anonymous access type, create a new access type 14385 -- designating the derived type. 14386 14387 procedure Set_Derived_Name; 14388 -- This procedure sets the appropriate Chars name for New_Subp. This 14389 -- is normally just a copy of the parent name. An exception arises for 14390 -- type support subprograms, where the name is changed to reflect the 14391 -- name of the derived type, e.g. if type foo is derived from type bar, 14392 -- then a procedure barDA is derived with a name fooDA. 14393 14394 --------------------------- 14395 -- Is_Private_Overriding -- 14396 --------------------------- 14397 14398 function Is_Private_Overriding return Boolean is 14399 Prev : Entity_Id; 14400 14401 begin 14402 -- If the parent is not a dispatching operation there is no 14403 -- need to investigate overridings 14404 14405 if not Is_Dispatching_Operation (Parent_Subp) then 14406 return False; 14407 end if; 14408 14409 -- The visible operation that is overridden is a homonym of the 14410 -- parent subprogram. We scan the homonym chain to find the one 14411 -- whose alias is the subprogram we are deriving. 14412 14413 Prev := Current_Entity (Parent_Subp); 14414 while Present (Prev) loop 14415 if Ekind (Prev) = Ekind (Parent_Subp) 14416 and then Alias (Prev) = Parent_Subp 14417 and then Scope (Parent_Subp) = Scope (Prev) 14418 and then not Is_Hidden (Prev) 14419 then 14420 Visible_Subp := Prev; 14421 return True; 14422 end if; 14423 14424 Prev := Homonym (Prev); 14425 end loop; 14426 14427 return False; 14428 end Is_Private_Overriding; 14429 14430 ------------------ 14431 -- Replace_Type -- 14432 ------------------ 14433 14434 procedure Replace_Type (Id, New_Id : Entity_Id) is 14435 Id_Type : constant Entity_Id := Etype (Id); 14436 Acc_Type : Entity_Id; 14437 Par : constant Node_Id := Parent (Derived_Type); 14438 14439 begin 14440 -- When the type is an anonymous access type, create a new access 14441 -- type designating the derived type. This itype must be elaborated 14442 -- at the point of the derivation, not on subsequent calls that may 14443 -- be out of the proper scope for Gigi, so we insert a reference to 14444 -- it after the derivation. 14445 14446 if Ekind (Id_Type) = E_Anonymous_Access_Type then 14447 declare 14448 Desig_Typ : Entity_Id := Designated_Type (Id_Type); 14449 14450 begin 14451 if Ekind (Desig_Typ) = E_Record_Type_With_Private 14452 and then Present (Full_View (Desig_Typ)) 14453 and then not Is_Private_Type (Parent_Type) 14454 then 14455 Desig_Typ := Full_View (Desig_Typ); 14456 end if; 14457 14458 if Base_Type (Desig_Typ) = Base_Type (Parent_Type) 14459 14460 -- Ada 2005 (AI-251): Handle also derivations of abstract 14461 -- interface primitives. 14462 14463 or else (Is_Interface (Desig_Typ) 14464 and then not Is_Class_Wide_Type (Desig_Typ)) 14465 then 14466 Acc_Type := New_Copy (Id_Type); 14467 Set_Etype (Acc_Type, Acc_Type); 14468 Set_Scope (Acc_Type, New_Subp); 14469 14470 -- Set size of anonymous access type. If we have an access 14471 -- to an unconstrained array, this is a fat pointer, so it 14472 -- is sizes at twice addtress size. 14473 14474 if Is_Array_Type (Desig_Typ) 14475 and then not Is_Constrained (Desig_Typ) 14476 then 14477 Init_Size (Acc_Type, 2 * System_Address_Size); 14478 14479 -- Other cases use a thin pointer 14480 14481 else 14482 Init_Size (Acc_Type, System_Address_Size); 14483 end if; 14484 14485 -- Set remaining characterstics of anonymous access type 14486 14487 Init_Alignment (Acc_Type); 14488 Set_Directly_Designated_Type (Acc_Type, Derived_Type); 14489 14490 Set_Etype (New_Id, Acc_Type); 14491 Set_Scope (New_Id, New_Subp); 14492 14493 -- Create a reference to it 14494 14495 Build_Itype_Reference (Acc_Type, Parent (Derived_Type)); 14496 14497 else 14498 Set_Etype (New_Id, Id_Type); 14499 end if; 14500 end; 14501 14502 -- In Ada2012, a formal may have an incomplete type but the type 14503 -- derivation that inherits the primitive follows the full view. 14504 14505 elsif Base_Type (Id_Type) = Base_Type (Parent_Type) 14506 or else 14507 (Ekind (Id_Type) = E_Record_Type_With_Private 14508 and then Present (Full_View (Id_Type)) 14509 and then 14510 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type)) 14511 or else 14512 (Ada_Version >= Ada_2012 14513 and then Ekind (Id_Type) = E_Incomplete_Type 14514 and then Full_View (Id_Type) = Parent_Type) 14515 then 14516 -- Constraint checks on formals are generated during expansion, 14517 -- based on the signature of the original subprogram. The bounds 14518 -- of the derived type are not relevant, and thus we can use 14519 -- the base type for the formals. However, the return type may be 14520 -- used in a context that requires that the proper static bounds 14521 -- be used (a case statement, for example) and for those cases 14522 -- we must use the derived type (first subtype), not its base. 14523 14524 -- If the derived_type_definition has no constraints, we know that 14525 -- the derived type has the same constraints as the first subtype 14526 -- of the parent, and we can also use it rather than its base, 14527 -- which can lead to more efficient code. 14528 14529 if Etype (Id) = Parent_Type then 14530 if Is_Scalar_Type (Parent_Type) 14531 and then 14532 Subtypes_Statically_Compatible (Parent_Type, Derived_Type) 14533 then 14534 Set_Etype (New_Id, Derived_Type); 14535 14536 elsif Nkind (Par) = N_Full_Type_Declaration 14537 and then 14538 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition 14539 and then 14540 Is_Entity_Name 14541 (Subtype_Indication (Type_Definition (Par))) 14542 then 14543 Set_Etype (New_Id, Derived_Type); 14544 14545 else 14546 Set_Etype (New_Id, Base_Type (Derived_Type)); 14547 end if; 14548 14549 else 14550 Set_Etype (New_Id, Base_Type (Derived_Type)); 14551 end if; 14552 14553 else 14554 Set_Etype (New_Id, Etype (Id)); 14555 end if; 14556 end Replace_Type; 14557 14558 ---------------------- 14559 -- Set_Derived_Name -- 14560 ---------------------- 14561 14562 procedure Set_Derived_Name is 14563 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp); 14564 begin 14565 if Nm = TSS_Null then 14566 Set_Chars (New_Subp, Chars (Parent_Subp)); 14567 else 14568 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm)); 14569 end if; 14570 end Set_Derived_Name; 14571 14572 -- Start of processing for Derive_Subprogram 14573 14574 begin 14575 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type)); 14576 Set_Ekind (New_Subp, Ekind (Parent_Subp)); 14577 14578 -- Check whether the inherited subprogram is a private operation that 14579 -- should be inherited but not yet made visible. Such subprograms can 14580 -- become visible at a later point (e.g., the private part of a public 14581 -- child unit) via Declare_Inherited_Private_Subprograms. If the 14582 -- following predicate is true, then this is not such a private 14583 -- operation and the subprogram simply inherits the name of the parent 14584 -- subprogram. Note the special check for the names of controlled 14585 -- operations, which are currently exempted from being inherited with 14586 -- a hidden name because they must be findable for generation of 14587 -- implicit run-time calls. 14588 14589 if not Is_Hidden (Parent_Subp) 14590 or else Is_Internal (Parent_Subp) 14591 or else Is_Private_Overriding 14592 or else Is_Internal_Name (Chars (Parent_Subp)) 14593 or else Nam_In (Chars (Parent_Subp), Name_Initialize, 14594 Name_Adjust, 14595 Name_Finalize) 14596 then 14597 Set_Derived_Name; 14598 14599 -- An inherited dispatching equality will be overridden by an internally 14600 -- generated one, or by an explicit one, so preserve its name and thus 14601 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a 14602 -- private operation it may become invisible if the full view has 14603 -- progenitors, and the dispatch table will be malformed. 14604 -- We check that the type is limited to handle the anomalous declaration 14605 -- of Limited_Controlled, which is derived from a non-limited type, and 14606 -- which is handled specially elsewhere as well. 14607 14608 elsif Chars (Parent_Subp) = Name_Op_Eq 14609 and then Is_Dispatching_Operation (Parent_Subp) 14610 and then Etype (Parent_Subp) = Standard_Boolean 14611 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp))) 14612 and then 14613 Etype (First_Formal (Parent_Subp)) = 14614 Etype (Next_Formal (First_Formal (Parent_Subp))) 14615 then 14616 Set_Derived_Name; 14617 14618 -- If parent is hidden, this can be a regular derivation if the 14619 -- parent is immediately visible in a non-instantiating context, 14620 -- or if we are in the private part of an instance. This test 14621 -- should still be refined ??? 14622 14623 -- The test for In_Instance_Not_Visible avoids inheriting the derived 14624 -- operation as a non-visible operation in cases where the parent 14625 -- subprogram might not be visible now, but was visible within the 14626 -- original generic, so it would be wrong to make the inherited 14627 -- subprogram non-visible now. (Not clear if this test is fully 14628 -- correct; are there any cases where we should declare the inherited 14629 -- operation as not visible to avoid it being overridden, e.g., when 14630 -- the parent type is a generic actual with private primitives ???) 14631 14632 -- (they should be treated the same as other private inherited 14633 -- subprograms, but it's not clear how to do this cleanly). ??? 14634 14635 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type))) 14636 and then Is_Immediately_Visible (Parent_Subp) 14637 and then not In_Instance) 14638 or else In_Instance_Not_Visible 14639 then 14640 Set_Derived_Name; 14641 14642 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram 14643 -- overrides an interface primitive because interface primitives 14644 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2)) 14645 14646 elsif Ada_Version >= Ada_2005 14647 and then Is_Dispatching_Operation (Parent_Subp) 14648 and then Covers_Some_Interface (Parent_Subp) 14649 then 14650 Set_Derived_Name; 14651 14652 -- Otherwise, the type is inheriting a private operation, so enter 14653 -- it with a special name so it can't be overridden. 14654 14655 else 14656 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P')); 14657 end if; 14658 14659 Set_Parent (New_Subp, Parent (Derived_Type)); 14660 14661 if Present (Actual_Subp) then 14662 Replace_Type (Actual_Subp, New_Subp); 14663 else 14664 Replace_Type (Parent_Subp, New_Subp); 14665 end if; 14666 14667 Conditional_Delay (New_Subp, Parent_Subp); 14668 14669 -- If we are creating a renaming for a primitive operation of an 14670 -- actual of a generic derived type, we must examine the signature 14671 -- of the actual primitive, not that of the generic formal, which for 14672 -- example may be an interface. However the name and initial value 14673 -- of the inherited operation are those of the formal primitive. 14674 14675 Formal := First_Formal (Parent_Subp); 14676 14677 if Present (Actual_Subp) then 14678 Formal_Of_Actual := First_Formal (Actual_Subp); 14679 else 14680 Formal_Of_Actual := Empty; 14681 end if; 14682 14683 while Present (Formal) loop 14684 New_Formal := New_Copy (Formal); 14685 14686 -- Normally we do not go copying parents, but in the case of 14687 -- formals, we need to link up to the declaration (which is the 14688 -- parameter specification), and it is fine to link up to the 14689 -- original formal's parameter specification in this case. 14690 14691 Set_Parent (New_Formal, Parent (Formal)); 14692 Append_Entity (New_Formal, New_Subp); 14693 14694 if Present (Formal_Of_Actual) then 14695 Replace_Type (Formal_Of_Actual, New_Formal); 14696 Next_Formal (Formal_Of_Actual); 14697 else 14698 Replace_Type (Formal, New_Formal); 14699 end if; 14700 14701 Next_Formal (Formal); 14702 end loop; 14703 14704 -- If this derivation corresponds to a tagged generic actual, then 14705 -- primitive operations rename those of the actual. Otherwise the 14706 -- primitive operations rename those of the parent type, If the parent 14707 -- renames an intrinsic operator, so does the new subprogram. We except 14708 -- concatenation, which is always properly typed, and does not get 14709 -- expanded as other intrinsic operations. 14710 14711 if No (Actual_Subp) then 14712 if Is_Intrinsic_Subprogram (Parent_Subp) then 14713 Set_Is_Intrinsic_Subprogram (New_Subp); 14714 14715 if Present (Alias (Parent_Subp)) 14716 and then Chars (Parent_Subp) /= Name_Op_Concat 14717 then 14718 Set_Alias (New_Subp, Alias (Parent_Subp)); 14719 else 14720 Set_Alias (New_Subp, Parent_Subp); 14721 end if; 14722 14723 else 14724 Set_Alias (New_Subp, Parent_Subp); 14725 end if; 14726 14727 else 14728 Set_Alias (New_Subp, Actual_Subp); 14729 end if; 14730 14731 -- Inherit the "ghostness" from the parent subprogram 14732 14733 if Is_Ghost_Entity (Alias (New_Subp)) then 14734 Set_Is_Ghost_Entity (New_Subp); 14735 end if; 14736 14737 -- Derived subprograms of a tagged type must inherit the convention 14738 -- of the parent subprogram (a requirement of AI-117). Derived 14739 -- subprograms of untagged types simply get convention Ada by default. 14740 14741 -- If the derived type is a tagged generic formal type with unknown 14742 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)). 14743 14744 -- However, if the type is derived from a generic formal, the further 14745 -- inherited subprogram has the convention of the non-generic ancestor. 14746 -- Otherwise there would be no way to override the operation. 14747 -- (This is subject to forthcoming ARG discussions). 14748 14749 if Is_Tagged_Type (Derived_Type) then 14750 if Is_Generic_Type (Derived_Type) 14751 and then Has_Unknown_Discriminants (Derived_Type) 14752 then 14753 Set_Convention (New_Subp, Convention_Intrinsic); 14754 14755 else 14756 if Is_Generic_Type (Parent_Type) 14757 and then Has_Unknown_Discriminants (Parent_Type) 14758 then 14759 Set_Convention (New_Subp, Convention (Alias (Parent_Subp))); 14760 else 14761 Set_Convention (New_Subp, Convention (Parent_Subp)); 14762 end if; 14763 end if; 14764 end if; 14765 14766 -- Predefined controlled operations retain their name even if the parent 14767 -- is hidden (see above), but they are not primitive operations if the 14768 -- ancestor is not visible, for example if the parent is a private 14769 -- extension completed with a controlled extension. Note that a full 14770 -- type that is controlled can break privacy: the flag Is_Controlled is 14771 -- set on both views of the type. 14772 14773 if Is_Controlled (Parent_Type) 14774 and then Nam_In (Chars (Parent_Subp), Name_Initialize, 14775 Name_Adjust, 14776 Name_Finalize) 14777 and then Is_Hidden (Parent_Subp) 14778 and then not Is_Visibly_Controlled (Parent_Type) 14779 then 14780 Set_Is_Hidden (New_Subp); 14781 end if; 14782 14783 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp)); 14784 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp)); 14785 14786 if Ekind (Parent_Subp) = E_Procedure then 14787 Set_Is_Valued_Procedure 14788 (New_Subp, Is_Valued_Procedure (Parent_Subp)); 14789 else 14790 Set_Has_Controlling_Result 14791 (New_Subp, Has_Controlling_Result (Parent_Subp)); 14792 end if; 14793 14794 -- No_Return must be inherited properly. If this is overridden in the 14795 -- case of a dispatching operation, then a check is made in Sem_Disp 14796 -- that the overriding operation is also No_Return (no such check is 14797 -- required for the case of non-dispatching operation. 14798 14799 Set_No_Return (New_Subp, No_Return (Parent_Subp)); 14800 14801 -- A derived function with a controlling result is abstract. If the 14802 -- Derived_Type is a nonabstract formal generic derived type, then 14803 -- inherited operations are not abstract: the required check is done at 14804 -- instantiation time. If the derivation is for a generic actual, the 14805 -- function is not abstract unless the actual is. 14806 14807 if Is_Generic_Type (Derived_Type) 14808 and then not Is_Abstract_Type (Derived_Type) 14809 then 14810 null; 14811 14812 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract" 14813 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2). 14814 14815 -- A subprogram subject to pragma Extensions_Visible with value False 14816 -- requires overriding if the subprogram has at least one controlling 14817 -- OUT parameter (SPARK RM 6.1.7(6)). 14818 14819 elsif Ada_Version >= Ada_2005 14820 and then (Is_Abstract_Subprogram (Alias (New_Subp)) 14821 or else (Is_Tagged_Type (Derived_Type) 14822 and then Etype (New_Subp) = Derived_Type 14823 and then not Is_Null_Extension (Derived_Type)) 14824 or else (Is_Tagged_Type (Derived_Type) 14825 and then Ekind (Etype (New_Subp)) = 14826 E_Anonymous_Access_Type 14827 and then Designated_Type (Etype (New_Subp)) = 14828 Derived_Type 14829 and then not Is_Null_Extension (Derived_Type)) 14830 or else (Comes_From_Source (Alias (New_Subp)) 14831 and then Is_EVF_Procedure (Alias (New_Subp)))) 14832 and then No (Actual_Subp) 14833 then 14834 if not Is_Tagged_Type (Derived_Type) 14835 or else Is_Abstract_Type (Derived_Type) 14836 or else Is_Abstract_Subprogram (Alias (New_Subp)) 14837 then 14838 Set_Is_Abstract_Subprogram (New_Subp); 14839 else 14840 Set_Requires_Overriding (New_Subp); 14841 end if; 14842 14843 elsif Ada_Version < Ada_2005 14844 and then (Is_Abstract_Subprogram (Alias (New_Subp)) 14845 or else (Is_Tagged_Type (Derived_Type) 14846 and then Etype (New_Subp) = Derived_Type 14847 and then No (Actual_Subp))) 14848 then 14849 Set_Is_Abstract_Subprogram (New_Subp); 14850 14851 -- AI05-0097 : an inherited operation that dispatches on result is 14852 -- abstract if the derived type is abstract, even if the parent type 14853 -- is concrete and the derived type is a null extension. 14854 14855 elsif Has_Controlling_Result (Alias (New_Subp)) 14856 and then Is_Abstract_Type (Etype (New_Subp)) 14857 then 14858 Set_Is_Abstract_Subprogram (New_Subp); 14859 14860 -- Finally, if the parent type is abstract we must verify that all 14861 -- inherited operations are either non-abstract or overridden, or that 14862 -- the derived type itself is abstract (this check is performed at the 14863 -- end of a package declaration, in Check_Abstract_Overriding). A 14864 -- private overriding in the parent type will not be visible in the 14865 -- derivation if we are not in an inner package or in a child unit of 14866 -- the parent type, in which case the abstractness of the inherited 14867 -- operation is carried to the new subprogram. 14868 14869 elsif Is_Abstract_Type (Parent_Type) 14870 and then not In_Open_Scopes (Scope (Parent_Type)) 14871 and then Is_Private_Overriding 14872 and then Is_Abstract_Subprogram (Visible_Subp) 14873 then 14874 if No (Actual_Subp) then 14875 Set_Alias (New_Subp, Visible_Subp); 14876 Set_Is_Abstract_Subprogram (New_Subp, True); 14877 14878 else 14879 -- If this is a derivation for an instance of a formal derived 14880 -- type, abstractness comes from the primitive operation of the 14881 -- actual, not from the operation inherited from the ancestor. 14882 14883 Set_Is_Abstract_Subprogram 14884 (New_Subp, Is_Abstract_Subprogram (Actual_Subp)); 14885 end if; 14886 end if; 14887 14888 New_Overloaded_Entity (New_Subp, Derived_Type); 14889 14890 -- Check for case of a derived subprogram for the instantiation of a 14891 -- formal derived tagged type, if so mark the subprogram as dispatching 14892 -- and inherit the dispatching attributes of the actual subprogram. The 14893 -- derived subprogram is effectively renaming of the actual subprogram, 14894 -- so it needs to have the same attributes as the actual. 14895 14896 if Present (Actual_Subp) 14897 and then Is_Dispatching_Operation (Actual_Subp) 14898 then 14899 Set_Is_Dispatching_Operation (New_Subp); 14900 14901 if Present (DTC_Entity (Actual_Subp)) then 14902 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp)); 14903 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp)); 14904 end if; 14905 end if; 14906 14907 -- Indicate that a derived subprogram does not require a body and that 14908 -- it does not require processing of default expressions. 14909 14910 Set_Has_Completion (New_Subp); 14911 Set_Default_Expressions_Processed (New_Subp); 14912 14913 if Ekind (New_Subp) = E_Function then 14914 Set_Mechanism (New_Subp, Mechanism (Parent_Subp)); 14915 end if; 14916 end Derive_Subprogram; 14917 14918 ------------------------ 14919 -- Derive_Subprograms -- 14920 ------------------------ 14921 14922 procedure Derive_Subprograms 14923 (Parent_Type : Entity_Id; 14924 Derived_Type : Entity_Id; 14925 Generic_Actual : Entity_Id := Empty) 14926 is 14927 Op_List : constant Elist_Id := 14928 Collect_Primitive_Operations (Parent_Type); 14929 14930 function Check_Derived_Type return Boolean; 14931 -- Check that all the entities derived from Parent_Type are found in 14932 -- the list of primitives of Derived_Type exactly in the same order. 14933 14934 procedure Derive_Interface_Subprogram 14935 (New_Subp : in out Entity_Id; 14936 Subp : Entity_Id; 14937 Actual_Subp : Entity_Id); 14938 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp 14939 -- (which is an interface primitive). If Generic_Actual is present then 14940 -- Actual_Subp is the actual subprogram corresponding with the generic 14941 -- subprogram Subp. 14942 14943 function Check_Derived_Type return Boolean is 14944 E : Entity_Id; 14945 Elmt : Elmt_Id; 14946 List : Elist_Id; 14947 New_Subp : Entity_Id; 14948 Op_Elmt : Elmt_Id; 14949 Subp : Entity_Id; 14950 14951 begin 14952 -- Traverse list of entities in the current scope searching for 14953 -- an incomplete type whose full-view is derived type 14954 14955 E := First_Entity (Scope (Derived_Type)); 14956 while Present (E) and then E /= Derived_Type loop 14957 if Ekind (E) = E_Incomplete_Type 14958 and then Present (Full_View (E)) 14959 and then Full_View (E) = Derived_Type 14960 then 14961 -- Disable this test if Derived_Type completes an incomplete 14962 -- type because in such case more primitives can be added 14963 -- later to the list of primitives of Derived_Type by routine 14964 -- Process_Incomplete_Dependents 14965 14966 return True; 14967 end if; 14968 14969 E := Next_Entity (E); 14970 end loop; 14971 14972 List := Collect_Primitive_Operations (Derived_Type); 14973 Elmt := First_Elmt (List); 14974 14975 Op_Elmt := First_Elmt (Op_List); 14976 while Present (Op_Elmt) loop 14977 Subp := Node (Op_Elmt); 14978 New_Subp := Node (Elmt); 14979 14980 -- At this early stage Derived_Type has no entities with attribute 14981 -- Interface_Alias. In addition, such primitives are always 14982 -- located at the end of the list of primitives of Parent_Type. 14983 -- Therefore, if found we can safely stop processing pending 14984 -- entities. 14985 14986 exit when Present (Interface_Alias (Subp)); 14987 14988 -- Handle hidden entities 14989 14990 if not Is_Predefined_Dispatching_Operation (Subp) 14991 and then Is_Hidden (Subp) 14992 then 14993 if Present (New_Subp) 14994 and then Primitive_Names_Match (Subp, New_Subp) 14995 then 14996 Next_Elmt (Elmt); 14997 end if; 14998 14999 else 15000 if not Present (New_Subp) 15001 or else Ekind (Subp) /= Ekind (New_Subp) 15002 or else not Primitive_Names_Match (Subp, New_Subp) 15003 then 15004 return False; 15005 end if; 15006 15007 Next_Elmt (Elmt); 15008 end if; 15009 15010 Next_Elmt (Op_Elmt); 15011 end loop; 15012 15013 return True; 15014 end Check_Derived_Type; 15015 15016 --------------------------------- 15017 -- Derive_Interface_Subprogram -- 15018 --------------------------------- 15019 15020 procedure Derive_Interface_Subprogram 15021 (New_Subp : in out Entity_Id; 15022 Subp : Entity_Id; 15023 Actual_Subp : Entity_Id) 15024 is 15025 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp); 15026 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp); 15027 15028 begin 15029 pragma Assert (Is_Interface (Iface_Type)); 15030 15031 Derive_Subprogram 15032 (New_Subp => New_Subp, 15033 Parent_Subp => Iface_Subp, 15034 Derived_Type => Derived_Type, 15035 Parent_Type => Iface_Type, 15036 Actual_Subp => Actual_Subp); 15037 15038 -- Given that this new interface entity corresponds with a primitive 15039 -- of the parent that was not overridden we must leave it associated 15040 -- with its parent primitive to ensure that it will share the same 15041 -- dispatch table slot when overridden. We must set the Alias to Subp 15042 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram 15043 -- (in case we inherited Subp from Iface_Type via a nonabstract 15044 -- generic formal type). 15045 15046 if No (Actual_Subp) then 15047 Set_Alias (New_Subp, Subp); 15048 15049 declare 15050 T : Entity_Id := Find_Dispatching_Type (Subp); 15051 begin 15052 while Etype (T) /= T loop 15053 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then 15054 Set_Is_Abstract_Subprogram (New_Subp, False); 15055 exit; 15056 end if; 15057 15058 T := Etype (T); 15059 end loop; 15060 end; 15061 15062 -- For instantiations this is not needed since the previous call to 15063 -- Derive_Subprogram leaves the entity well decorated. 15064 15065 else 15066 pragma Assert (Alias (New_Subp) = Actual_Subp); 15067 null; 15068 end if; 15069 end Derive_Interface_Subprogram; 15070 15071 -- Local variables 15072 15073 Alias_Subp : Entity_Id; 15074 Act_List : Elist_Id; 15075 Act_Elmt : Elmt_Id; 15076 Act_Subp : Entity_Id := Empty; 15077 Elmt : Elmt_Id; 15078 Need_Search : Boolean := False; 15079 New_Subp : Entity_Id := Empty; 15080 Parent_Base : Entity_Id; 15081 Subp : Entity_Id; 15082 15083 -- Start of processing for Derive_Subprograms 15084 15085 begin 15086 if Ekind (Parent_Type) = E_Record_Type_With_Private 15087 and then Has_Discriminants (Parent_Type) 15088 and then Present (Full_View (Parent_Type)) 15089 then 15090 Parent_Base := Full_View (Parent_Type); 15091 else 15092 Parent_Base := Parent_Type; 15093 end if; 15094 15095 if Present (Generic_Actual) then 15096 Act_List := Collect_Primitive_Operations (Generic_Actual); 15097 Act_Elmt := First_Elmt (Act_List); 15098 else 15099 Act_List := No_Elist; 15100 Act_Elmt := No_Elmt; 15101 end if; 15102 15103 -- Derive primitives inherited from the parent. Note that if the generic 15104 -- actual is present, this is not really a type derivation, it is a 15105 -- completion within an instance. 15106 15107 -- Case 1: Derived_Type does not implement interfaces 15108 15109 if not Is_Tagged_Type (Derived_Type) 15110 or else (not Has_Interfaces (Derived_Type) 15111 and then not (Present (Generic_Actual) 15112 and then Has_Interfaces (Generic_Actual))) 15113 then 15114 Elmt := First_Elmt (Op_List); 15115 while Present (Elmt) loop 15116 Subp := Node (Elmt); 15117 15118 -- Literals are derived earlier in the process of building the 15119 -- derived type, and are skipped here. 15120 15121 if Ekind (Subp) = E_Enumeration_Literal then 15122 null; 15123 15124 -- The actual is a direct descendant and the common primitive 15125 -- operations appear in the same order. 15126 15127 -- If the generic parent type is present, the derived type is an 15128 -- instance of a formal derived type, and within the instance its 15129 -- operations are those of the actual. We derive from the formal 15130 -- type but make the inherited operations aliases of the 15131 -- corresponding operations of the actual. 15132 15133 else 15134 pragma Assert (No (Node (Act_Elmt)) 15135 or else (Primitive_Names_Match (Subp, Node (Act_Elmt)) 15136 and then 15137 Type_Conformant 15138 (Subp, Node (Act_Elmt), 15139 Skip_Controlling_Formals => True))); 15140 15141 Derive_Subprogram 15142 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt)); 15143 15144 if Present (Act_Elmt) then 15145 Next_Elmt (Act_Elmt); 15146 end if; 15147 end if; 15148 15149 Next_Elmt (Elmt); 15150 end loop; 15151 15152 -- Case 2: Derived_Type implements interfaces 15153 15154 else 15155 -- If the parent type has no predefined primitives we remove 15156 -- predefined primitives from the list of primitives of generic 15157 -- actual to simplify the complexity of this algorithm. 15158 15159 if Present (Generic_Actual) then 15160 declare 15161 Has_Predefined_Primitives : Boolean := False; 15162 15163 begin 15164 -- Check if the parent type has predefined primitives 15165 15166 Elmt := First_Elmt (Op_List); 15167 while Present (Elmt) loop 15168 Subp := Node (Elmt); 15169 15170 if Is_Predefined_Dispatching_Operation (Subp) 15171 and then not Comes_From_Source (Ultimate_Alias (Subp)) 15172 then 15173 Has_Predefined_Primitives := True; 15174 exit; 15175 end if; 15176 15177 Next_Elmt (Elmt); 15178 end loop; 15179 15180 -- Remove predefined primitives of Generic_Actual. We must use 15181 -- an auxiliary list because in case of tagged types the value 15182 -- returned by Collect_Primitive_Operations is the value stored 15183 -- in its Primitive_Operations attribute (and we don't want to 15184 -- modify its current contents). 15185 15186 if not Has_Predefined_Primitives then 15187 declare 15188 Aux_List : constant Elist_Id := New_Elmt_List; 15189 15190 begin 15191 Elmt := First_Elmt (Act_List); 15192 while Present (Elmt) loop 15193 Subp := Node (Elmt); 15194 15195 if not Is_Predefined_Dispatching_Operation (Subp) 15196 or else Comes_From_Source (Subp) 15197 then 15198 Append_Elmt (Subp, Aux_List); 15199 end if; 15200 15201 Next_Elmt (Elmt); 15202 end loop; 15203 15204 Act_List := Aux_List; 15205 end; 15206 end if; 15207 15208 Act_Elmt := First_Elmt (Act_List); 15209 Act_Subp := Node (Act_Elmt); 15210 end; 15211 end if; 15212 15213 -- Stage 1: If the generic actual is not present we derive the 15214 -- primitives inherited from the parent type. If the generic parent 15215 -- type is present, the derived type is an instance of a formal 15216 -- derived type, and within the instance its operations are those of 15217 -- the actual. We derive from the formal type but make the inherited 15218 -- operations aliases of the corresponding operations of the actual. 15219 15220 Elmt := First_Elmt (Op_List); 15221 while Present (Elmt) loop 15222 Subp := Node (Elmt); 15223 Alias_Subp := Ultimate_Alias (Subp); 15224 15225 -- Do not derive internal entities of the parent that link 15226 -- interface primitives with their covering primitive. These 15227 -- entities will be added to this type when frozen. 15228 15229 if Present (Interface_Alias (Subp)) then 15230 goto Continue; 15231 end if; 15232 15233 -- If the generic actual is present find the corresponding 15234 -- operation in the generic actual. If the parent type is a 15235 -- direct ancestor of the derived type then, even if it is an 15236 -- interface, the operations are inherited from the primary 15237 -- dispatch table and are in the proper order. If we detect here 15238 -- that primitives are not in the same order we traverse the list 15239 -- of primitive operations of the actual to find the one that 15240 -- implements the interface primitive. 15241 15242 if Need_Search 15243 or else 15244 (Present (Generic_Actual) 15245 and then Present (Act_Subp) 15246 and then not 15247 (Primitive_Names_Match (Subp, Act_Subp) 15248 and then 15249 Type_Conformant (Subp, Act_Subp, 15250 Skip_Controlling_Formals => True))) 15251 then 15252 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual, 15253 Use_Full_View => True)); 15254 15255 -- Remember that we need searching for all pending primitives 15256 15257 Need_Search := True; 15258 15259 -- Handle entities associated with interface primitives 15260 15261 if Present (Alias_Subp) 15262 and then Is_Interface (Find_Dispatching_Type (Alias_Subp)) 15263 and then not Is_Predefined_Dispatching_Operation (Subp) 15264 then 15265 -- Search for the primitive in the homonym chain 15266 15267 Act_Subp := 15268 Find_Primitive_Covering_Interface 15269 (Tagged_Type => Generic_Actual, 15270 Iface_Prim => Alias_Subp); 15271 15272 -- Previous search may not locate primitives covering 15273 -- interfaces defined in generics units or instantiations. 15274 -- (it fails if the covering primitive has formals whose 15275 -- type is also defined in generics or instantiations). 15276 -- In such case we search in the list of primitives of the 15277 -- generic actual for the internal entity that links the 15278 -- interface primitive and the covering primitive. 15279 15280 if No (Act_Subp) 15281 and then Is_Generic_Type (Parent_Type) 15282 then 15283 -- This code has been designed to handle only generic 15284 -- formals that implement interfaces that are defined 15285 -- in a generic unit or instantiation. If this code is 15286 -- needed for other cases we must review it because 15287 -- (given that it relies on Original_Location to locate 15288 -- the primitive of Generic_Actual that covers the 15289 -- interface) it could leave linked through attribute 15290 -- Alias entities of unrelated instantiations). 15291 15292 pragma Assert 15293 (Is_Generic_Unit 15294 (Scope (Find_Dispatching_Type (Alias_Subp))) 15295 or else 15296 Instantiation_Depth 15297 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0); 15298 15299 declare 15300 Iface_Prim_Loc : constant Source_Ptr := 15301 Original_Location (Sloc (Alias_Subp)); 15302 15303 Elmt : Elmt_Id; 15304 Prim : Entity_Id; 15305 15306 begin 15307 Elmt := 15308 First_Elmt (Primitive_Operations (Generic_Actual)); 15309 15310 Search : while Present (Elmt) loop 15311 Prim := Node (Elmt); 15312 15313 if Present (Interface_Alias (Prim)) 15314 and then Original_Location 15315 (Sloc (Interface_Alias (Prim))) = 15316 Iface_Prim_Loc 15317 then 15318 Act_Subp := Alias (Prim); 15319 exit Search; 15320 end if; 15321 15322 Next_Elmt (Elmt); 15323 end loop Search; 15324 end; 15325 end if; 15326 15327 pragma Assert (Present (Act_Subp) 15328 or else Is_Abstract_Type (Generic_Actual) 15329 or else Serious_Errors_Detected > 0); 15330 15331 -- Handle predefined primitives plus the rest of user-defined 15332 -- primitives 15333 15334 else 15335 Act_Elmt := First_Elmt (Act_List); 15336 while Present (Act_Elmt) loop 15337 Act_Subp := Node (Act_Elmt); 15338 15339 exit when Primitive_Names_Match (Subp, Act_Subp) 15340 and then Type_Conformant 15341 (Subp, Act_Subp, 15342 Skip_Controlling_Formals => True) 15343 and then No (Interface_Alias (Act_Subp)); 15344 15345 Next_Elmt (Act_Elmt); 15346 end loop; 15347 15348 if No (Act_Elmt) then 15349 Act_Subp := Empty; 15350 end if; 15351 end if; 15352 end if; 15353 15354 -- Case 1: If the parent is a limited interface then it has the 15355 -- predefined primitives of synchronized interfaces. However, the 15356 -- actual type may be a non-limited type and hence it does not 15357 -- have such primitives. 15358 15359 if Present (Generic_Actual) 15360 and then not Present (Act_Subp) 15361 and then Is_Limited_Interface (Parent_Base) 15362 and then Is_Predefined_Interface_Primitive (Subp) 15363 then 15364 null; 15365 15366 -- Case 2: Inherit entities associated with interfaces that were 15367 -- not covered by the parent type. We exclude here null interface 15368 -- primitives because they do not need special management. 15369 15370 -- We also exclude interface operations that are renamings. If the 15371 -- subprogram is an explicit renaming of an interface primitive, 15372 -- it is a regular primitive operation, and the presence of its 15373 -- alias is not relevant: it has to be derived like any other 15374 -- primitive. 15375 15376 elsif Present (Alias (Subp)) 15377 and then Nkind (Unit_Declaration_Node (Subp)) /= 15378 N_Subprogram_Renaming_Declaration 15379 and then Is_Interface (Find_Dispatching_Type (Alias_Subp)) 15380 and then not 15381 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification 15382 and then Null_Present (Parent (Alias_Subp))) 15383 then 15384 -- If this is an abstract private type then we transfer the 15385 -- derivation of the interface primitive from the partial view 15386 -- to the full view. This is safe because all the interfaces 15387 -- must be visible in the partial view. Done to avoid adding 15388 -- a new interface derivation to the private part of the 15389 -- enclosing package; otherwise this new derivation would be 15390 -- decorated as hidden when the analysis of the enclosing 15391 -- package completes. 15392 15393 if Is_Abstract_Type (Derived_Type) 15394 and then In_Private_Part (Current_Scope) 15395 and then Has_Private_Declaration (Derived_Type) 15396 then 15397 declare 15398 Partial_View : Entity_Id; 15399 Elmt : Elmt_Id; 15400 Ent : Entity_Id; 15401 15402 begin 15403 Partial_View := First_Entity (Current_Scope); 15404 loop 15405 exit when No (Partial_View) 15406 or else (Has_Private_Declaration (Partial_View) 15407 and then 15408 Full_View (Partial_View) = Derived_Type); 15409 15410 Next_Entity (Partial_View); 15411 end loop; 15412 15413 -- If the partial view was not found then the source code 15414 -- has errors and the derivation is not needed. 15415 15416 if Present (Partial_View) then 15417 Elmt := 15418 First_Elmt (Primitive_Operations (Partial_View)); 15419 while Present (Elmt) loop 15420 Ent := Node (Elmt); 15421 15422 if Present (Alias (Ent)) 15423 and then Ultimate_Alias (Ent) = Alias (Subp) 15424 then 15425 Append_Elmt 15426 (Ent, Primitive_Operations (Derived_Type)); 15427 exit; 15428 end if; 15429 15430 Next_Elmt (Elmt); 15431 end loop; 15432 15433 -- If the interface primitive was not found in the 15434 -- partial view then this interface primitive was 15435 -- overridden. We add a derivation to activate in 15436 -- Derive_Progenitor_Subprograms the machinery to 15437 -- search for it. 15438 15439 if No (Elmt) then 15440 Derive_Interface_Subprogram 15441 (New_Subp => New_Subp, 15442 Subp => Subp, 15443 Actual_Subp => Act_Subp); 15444 end if; 15445 end if; 15446 end; 15447 else 15448 Derive_Interface_Subprogram 15449 (New_Subp => New_Subp, 15450 Subp => Subp, 15451 Actual_Subp => Act_Subp); 15452 end if; 15453 15454 -- Case 3: Common derivation 15455 15456 else 15457 Derive_Subprogram 15458 (New_Subp => New_Subp, 15459 Parent_Subp => Subp, 15460 Derived_Type => Derived_Type, 15461 Parent_Type => Parent_Base, 15462 Actual_Subp => Act_Subp); 15463 end if; 15464 15465 -- No need to update Act_Elm if we must search for the 15466 -- corresponding operation in the generic actual 15467 15468 if not Need_Search 15469 and then Present (Act_Elmt) 15470 then 15471 Next_Elmt (Act_Elmt); 15472 Act_Subp := Node (Act_Elmt); 15473 end if; 15474 15475 <<Continue>> 15476 Next_Elmt (Elmt); 15477 end loop; 15478 15479 -- Inherit additional operations from progenitors. If the derived 15480 -- type is a generic actual, there are not new primitive operations 15481 -- for the type because it has those of the actual, and therefore 15482 -- nothing needs to be done. The renamings generated above are not 15483 -- primitive operations, and their purpose is simply to make the 15484 -- proper operations visible within an instantiation. 15485 15486 if No (Generic_Actual) then 15487 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type); 15488 end if; 15489 end if; 15490 15491 -- Final check: Direct descendants must have their primitives in the 15492 -- same order. We exclude from this test untagged types and instances 15493 -- of formal derived types. We skip this test if we have already 15494 -- reported serious errors in the sources. 15495 15496 pragma Assert (not Is_Tagged_Type (Derived_Type) 15497 or else Present (Generic_Actual) 15498 or else Serious_Errors_Detected > 0 15499 or else Check_Derived_Type); 15500 end Derive_Subprograms; 15501 15502 -------------------------------- 15503 -- Derived_Standard_Character -- 15504 -------------------------------- 15505 15506 procedure Derived_Standard_Character 15507 (N : Node_Id; 15508 Parent_Type : Entity_Id; 15509 Derived_Type : Entity_Id) 15510 is 15511 Loc : constant Source_Ptr := Sloc (N); 15512 Def : constant Node_Id := Type_Definition (N); 15513 Indic : constant Node_Id := Subtype_Indication (Def); 15514 Parent_Base : constant Entity_Id := Base_Type (Parent_Type); 15515 Implicit_Base : constant Entity_Id := 15516 Create_Itype 15517 (E_Enumeration_Type, N, Derived_Type, 'B'); 15518 15519 Lo : Node_Id; 15520 Hi : Node_Id; 15521 15522 begin 15523 Discard_Node (Process_Subtype (Indic, N)); 15524 15525 Set_Etype (Implicit_Base, Parent_Base); 15526 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type)); 15527 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type))); 15528 15529 Set_Is_Character_Type (Implicit_Base, True); 15530 Set_Has_Delayed_Freeze (Implicit_Base); 15531 15532 -- The bounds of the implicit base are the bounds of the parent base. 15533 -- Note that their type is the parent base. 15534 15535 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base)); 15536 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base)); 15537 15538 Set_Scalar_Range (Implicit_Base, 15539 Make_Range (Loc, 15540 Low_Bound => Lo, 15541 High_Bound => Hi)); 15542 15543 Conditional_Delay (Derived_Type, Parent_Type); 15544 15545 Set_Ekind (Derived_Type, E_Enumeration_Subtype); 15546 Set_Etype (Derived_Type, Implicit_Base); 15547 Set_Size_Info (Derived_Type, Parent_Type); 15548 15549 if Unknown_RM_Size (Derived_Type) then 15550 Set_RM_Size (Derived_Type, RM_Size (Parent_Type)); 15551 end if; 15552 15553 Set_Is_Character_Type (Derived_Type, True); 15554 15555 if Nkind (Indic) /= N_Subtype_Indication then 15556 15557 -- If no explicit constraint, the bounds are those 15558 -- of the parent type. 15559 15560 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type)); 15561 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type)); 15562 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi)); 15563 end if; 15564 15565 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc); 15566 15567 -- Because the implicit base is used in the conversion of the bounds, we 15568 -- have to freeze it now. This is similar to what is done for numeric 15569 -- types, and it equally suspicious, but otherwise a non-static bound 15570 -- will have a reference to an unfrozen type, which is rejected by Gigi 15571 -- (???). This requires specific care for definition of stream 15572 -- attributes. For details, see comments at the end of 15573 -- Build_Derived_Numeric_Type. 15574 15575 Freeze_Before (N, Implicit_Base); 15576 end Derived_Standard_Character; 15577 15578 ------------------------------ 15579 -- Derived_Type_Declaration -- 15580 ------------------------------ 15581 15582 procedure Derived_Type_Declaration 15583 (T : Entity_Id; 15584 N : Node_Id; 15585 Is_Completion : Boolean) 15586 is 15587 Parent_Type : Entity_Id; 15588 15589 function Comes_From_Generic (Typ : Entity_Id) return Boolean; 15590 -- Check whether the parent type is a generic formal, or derives 15591 -- directly or indirectly from one. 15592 15593 ------------------------ 15594 -- Comes_From_Generic -- 15595 ------------------------ 15596 15597 function Comes_From_Generic (Typ : Entity_Id) return Boolean is 15598 begin 15599 if Is_Generic_Type (Typ) then 15600 return True; 15601 15602 elsif Is_Generic_Type (Root_Type (Parent_Type)) then 15603 return True; 15604 15605 elsif Is_Private_Type (Typ) 15606 and then Present (Full_View (Typ)) 15607 and then Is_Generic_Type (Root_Type (Full_View (Typ))) 15608 then 15609 return True; 15610 15611 elsif Is_Generic_Actual_Type (Typ) then 15612 return True; 15613 15614 else 15615 return False; 15616 end if; 15617 end Comes_From_Generic; 15618 15619 -- Local variables 15620 15621 Def : constant Node_Id := Type_Definition (N); 15622 Iface_Def : Node_Id; 15623 Indic : constant Node_Id := Subtype_Indication (Def); 15624 Extension : constant Node_Id := Record_Extension_Part (Def); 15625 Parent_Node : Node_Id; 15626 Taggd : Boolean; 15627 15628 -- Start of processing for Derived_Type_Declaration 15629 15630 begin 15631 Parent_Type := Find_Type_Of_Subtype_Indic (Indic); 15632 15633 -- Ada 2005 (AI-251): In case of interface derivation check that the 15634 -- parent is also an interface. 15635 15636 if Interface_Present (Def) then 15637 Check_SPARK_05_Restriction ("interface is not allowed", Def); 15638 15639 if not Is_Interface (Parent_Type) then 15640 Diagnose_Interface (Indic, Parent_Type); 15641 15642 else 15643 Parent_Node := Parent (Base_Type (Parent_Type)); 15644 Iface_Def := Type_Definition (Parent_Node); 15645 15646 -- Ada 2005 (AI-251): Limited interfaces can only inherit from 15647 -- other limited interfaces. 15648 15649 if Limited_Present (Def) then 15650 if Limited_Present (Iface_Def) then 15651 null; 15652 15653 elsif Protected_Present (Iface_Def) then 15654 Error_Msg_NE 15655 ("descendant of & must be declared as a protected " 15656 & "interface", N, Parent_Type); 15657 15658 elsif Synchronized_Present (Iface_Def) then 15659 Error_Msg_NE 15660 ("descendant of & must be declared as a synchronized " 15661 & "interface", N, Parent_Type); 15662 15663 elsif Task_Present (Iface_Def) then 15664 Error_Msg_NE 15665 ("descendant of & must be declared as a task interface", 15666 N, Parent_Type); 15667 15668 else 15669 Error_Msg_N 15670 ("(Ada 2005) limited interface cannot inherit from " 15671 & "non-limited interface", Indic); 15672 end if; 15673 15674 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit 15675 -- from non-limited or limited interfaces. 15676 15677 elsif not Protected_Present (Def) 15678 and then not Synchronized_Present (Def) 15679 and then not Task_Present (Def) 15680 then 15681 if Limited_Present (Iface_Def) then 15682 null; 15683 15684 elsif Protected_Present (Iface_Def) then 15685 Error_Msg_NE 15686 ("descendant of & must be declared as a protected " 15687 & "interface", N, Parent_Type); 15688 15689 elsif Synchronized_Present (Iface_Def) then 15690 Error_Msg_NE 15691 ("descendant of & must be declared as a synchronized " 15692 & "interface", N, Parent_Type); 15693 15694 elsif Task_Present (Iface_Def) then 15695 Error_Msg_NE 15696 ("descendant of & must be declared as a task interface", 15697 N, Parent_Type); 15698 else 15699 null; 15700 end if; 15701 end if; 15702 end if; 15703 end if; 15704 15705 if Is_Tagged_Type (Parent_Type) 15706 and then Is_Concurrent_Type (Parent_Type) 15707 and then not Is_Interface (Parent_Type) 15708 then 15709 Error_Msg_N 15710 ("parent type of a record extension cannot be a synchronized " 15711 & "tagged type (RM 3.9.1 (3/1))", N); 15712 Set_Etype (T, Any_Type); 15713 return; 15714 end if; 15715 15716 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor 15717 -- interfaces 15718 15719 if Is_Tagged_Type (Parent_Type) 15720 and then Is_Non_Empty_List (Interface_List (Def)) 15721 then 15722 declare 15723 Intf : Node_Id; 15724 T : Entity_Id; 15725 15726 begin 15727 Intf := First (Interface_List (Def)); 15728 while Present (Intf) loop 15729 T := Find_Type_Of_Subtype_Indic (Intf); 15730 15731 if not Is_Interface (T) then 15732 Diagnose_Interface (Intf, T); 15733 15734 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow 15735 -- a limited type from having a nonlimited progenitor. 15736 15737 elsif (Limited_Present (Def) 15738 or else (not Is_Interface (Parent_Type) 15739 and then Is_Limited_Type (Parent_Type))) 15740 and then not Is_Limited_Interface (T) 15741 then 15742 Error_Msg_NE 15743 ("progenitor interface& of limited type must be limited", 15744 N, T); 15745 end if; 15746 15747 Next (Intf); 15748 end loop; 15749 end; 15750 end if; 15751 15752 if Parent_Type = Any_Type 15753 or else Etype (Parent_Type) = Any_Type 15754 or else (Is_Class_Wide_Type (Parent_Type) 15755 and then Etype (Parent_Type) = T) 15756 then 15757 -- If Parent_Type is undefined or illegal, make new type into a 15758 -- subtype of Any_Type, and set a few attributes to prevent cascaded 15759 -- errors. If this is a self-definition, emit error now. 15760 15761 if T = Parent_Type or else T = Etype (Parent_Type) then 15762 Error_Msg_N ("type cannot be used in its own definition", Indic); 15763 end if; 15764 15765 Set_Ekind (T, Ekind (Parent_Type)); 15766 Set_Etype (T, Any_Type); 15767 Set_Scalar_Range (T, Scalar_Range (Any_Type)); 15768 15769 if Is_Tagged_Type (T) 15770 and then Is_Record_Type (T) 15771 then 15772 Set_Direct_Primitive_Operations (T, New_Elmt_List); 15773 end if; 15774 15775 return; 15776 end if; 15777 15778 -- Ada 2005 (AI-251): The case in which the parent of the full-view is 15779 -- an interface is special because the list of interfaces in the full 15780 -- view can be given in any order. For example: 15781 15782 -- type A is interface; 15783 -- type B is interface and A; 15784 -- type D is new B with private; 15785 -- private 15786 -- type D is new A and B with null record; -- 1 -- 15787 15788 -- In this case we perform the following transformation of -1-: 15789 15790 -- type D is new B and A with null record; 15791 15792 -- If the parent of the full-view covers the parent of the partial-view 15793 -- we have two possible cases: 15794 15795 -- 1) They have the same parent 15796 -- 2) The parent of the full-view implements some further interfaces 15797 15798 -- In both cases we do not need to perform the transformation. In the 15799 -- first case the source program is correct and the transformation is 15800 -- not needed; in the second case the source program does not fulfill 15801 -- the no-hidden interfaces rule (AI-396) and the error will be reported 15802 -- later. 15803 15804 -- This transformation not only simplifies the rest of the analysis of 15805 -- this type declaration but also simplifies the correct generation of 15806 -- the object layout to the expander. 15807 15808 if In_Private_Part (Current_Scope) 15809 and then Is_Interface (Parent_Type) 15810 then 15811 declare 15812 Iface : Node_Id; 15813 Partial_View : Entity_Id; 15814 Partial_View_Parent : Entity_Id; 15815 New_Iface : Node_Id; 15816 15817 begin 15818 -- Look for the associated private type declaration 15819 15820 Partial_View := First_Entity (Current_Scope); 15821 loop 15822 exit when No (Partial_View) 15823 or else (Has_Private_Declaration (Partial_View) 15824 and then Full_View (Partial_View) = T); 15825 15826 Next_Entity (Partial_View); 15827 end loop; 15828 15829 -- If the partial view was not found then the source code has 15830 -- errors and the transformation is not needed. 15831 15832 if Present (Partial_View) then 15833 Partial_View_Parent := Etype (Partial_View); 15834 15835 -- If the parent of the full-view covers the parent of the 15836 -- partial-view we have nothing else to do. 15837 15838 if Interface_Present_In_Ancestor 15839 (Parent_Type, Partial_View_Parent) 15840 then 15841 null; 15842 15843 -- Traverse the list of interfaces of the full-view to look 15844 -- for the parent of the partial-view and perform the tree 15845 -- transformation. 15846 15847 else 15848 Iface := First (Interface_List (Def)); 15849 while Present (Iface) loop 15850 if Etype (Iface) = Etype (Partial_View) then 15851 Rewrite (Subtype_Indication (Def), 15852 New_Copy (Subtype_Indication 15853 (Parent (Partial_View)))); 15854 15855 New_Iface := 15856 Make_Identifier (Sloc (N), Chars (Parent_Type)); 15857 Append (New_Iface, Interface_List (Def)); 15858 15859 -- Analyze the transformed code 15860 15861 Derived_Type_Declaration (T, N, Is_Completion); 15862 return; 15863 end if; 15864 15865 Next (Iface); 15866 end loop; 15867 end if; 15868 end if; 15869 end; 15870 end if; 15871 15872 -- Only composite types other than array types are allowed to have 15873 -- discriminants. 15874 15875 if Present (Discriminant_Specifications (N)) then 15876 if (Is_Elementary_Type (Parent_Type) 15877 or else 15878 Is_Array_Type (Parent_Type)) 15879 and then not Error_Posted (N) 15880 then 15881 Error_Msg_N 15882 ("elementary or array type cannot have discriminants", 15883 Defining_Identifier (First (Discriminant_Specifications (N)))); 15884 Set_Has_Discriminants (T, False); 15885 15886 -- The type is allowed to have discriminants 15887 15888 else 15889 Check_SPARK_05_Restriction ("discriminant type is not allowed", N); 15890 end if; 15891 end if; 15892 15893 -- In Ada 83, a derived type defined in a package specification cannot 15894 -- be used for further derivation until the end of its visible part. 15895 -- Note that derivation in the private part of the package is allowed. 15896 15897 if Ada_Version = Ada_83 15898 and then Is_Derived_Type (Parent_Type) 15899 and then In_Visible_Part (Scope (Parent_Type)) 15900 then 15901 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then 15902 Error_Msg_N 15903 ("(Ada 83): premature use of type for derivation", Indic); 15904 end if; 15905 end if; 15906 15907 -- Check for early use of incomplete or private type 15908 15909 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then 15910 Error_Msg_N ("premature derivation of incomplete type", Indic); 15911 return; 15912 15913 elsif (Is_Incomplete_Or_Private_Type (Parent_Type) 15914 and then not Comes_From_Generic (Parent_Type)) 15915 or else Has_Private_Component (Parent_Type) 15916 then 15917 -- The ancestor type of a formal type can be incomplete, in which 15918 -- case only the operations of the partial view are available in the 15919 -- generic. Subsequent checks may be required when the full view is 15920 -- analyzed to verify that a derivation from a tagged type has an 15921 -- extension. 15922 15923 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then 15924 null; 15925 15926 elsif No (Underlying_Type (Parent_Type)) 15927 or else Has_Private_Component (Parent_Type) 15928 then 15929 Error_Msg_N 15930 ("premature derivation of derived or private type", Indic); 15931 15932 -- Flag the type itself as being in error, this prevents some 15933 -- nasty problems with subsequent uses of the malformed type. 15934 15935 Set_Error_Posted (T); 15936 15937 -- Check that within the immediate scope of an untagged partial 15938 -- view it's illegal to derive from the partial view if the 15939 -- full view is tagged. (7.3(7)) 15940 15941 -- We verify that the Parent_Type is a partial view by checking 15942 -- that it is not a Full_Type_Declaration (i.e. a private type or 15943 -- private extension declaration), to distinguish a partial view 15944 -- from a derivation from a private type which also appears as 15945 -- E_Private_Type. If the parent base type is not declared in an 15946 -- enclosing scope there is no need to check. 15947 15948 elsif Present (Full_View (Parent_Type)) 15949 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration 15950 and then not Is_Tagged_Type (Parent_Type) 15951 and then Is_Tagged_Type (Full_View (Parent_Type)) 15952 and then In_Open_Scopes (Scope (Base_Type (Parent_Type))) 15953 then 15954 Error_Msg_N 15955 ("premature derivation from type with tagged full view", 15956 Indic); 15957 end if; 15958 end if; 15959 15960 -- Check that form of derivation is appropriate 15961 15962 Taggd := Is_Tagged_Type (Parent_Type); 15963 15964 -- Set the parent type to the class-wide type's specific type in this 15965 -- case to prevent cascading errors 15966 15967 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then 15968 Error_Msg_N ("parent type must not be a class-wide type", Indic); 15969 Set_Etype (T, Etype (Parent_Type)); 15970 return; 15971 end if; 15972 15973 if Present (Extension) and then not Taggd then 15974 Error_Msg_N 15975 ("type derived from untagged type cannot have extension", Indic); 15976 15977 elsif No (Extension) and then Taggd then 15978 15979 -- If this declaration is within a private part (or body) of a 15980 -- generic instantiation then the derivation is allowed (the parent 15981 -- type can only appear tagged in this case if it's a generic actual 15982 -- type, since it would otherwise have been rejected in the analysis 15983 -- of the generic template). 15984 15985 if not Is_Generic_Actual_Type (Parent_Type) 15986 or else In_Visible_Part (Scope (Parent_Type)) 15987 then 15988 if Is_Class_Wide_Type (Parent_Type) then 15989 Error_Msg_N 15990 ("parent type must not be a class-wide type", Indic); 15991 15992 -- Use specific type to prevent cascaded errors. 15993 15994 Parent_Type := Etype (Parent_Type); 15995 15996 else 15997 Error_Msg_N 15998 ("type derived from tagged type must have extension", Indic); 15999 end if; 16000 end if; 16001 end if; 16002 16003 -- AI-443: Synchronized formal derived types require a private 16004 -- extension. There is no point in checking the ancestor type or 16005 -- the progenitors since the construct is wrong to begin with. 16006 16007 if Ada_Version >= Ada_2005 16008 and then Is_Generic_Type (T) 16009 and then Present (Original_Node (N)) 16010 then 16011 declare 16012 Decl : constant Node_Id := Original_Node (N); 16013 16014 begin 16015 if Nkind (Decl) = N_Formal_Type_Declaration 16016 and then Nkind (Formal_Type_Definition (Decl)) = 16017 N_Formal_Derived_Type_Definition 16018 and then Synchronized_Present (Formal_Type_Definition (Decl)) 16019 and then No (Extension) 16020 16021 -- Avoid emitting a duplicate error message 16022 16023 and then not Error_Posted (Indic) 16024 then 16025 Error_Msg_N 16026 ("synchronized derived type must have extension", N); 16027 end if; 16028 end; 16029 end if; 16030 16031 if Null_Exclusion_Present (Def) 16032 and then not Is_Access_Type (Parent_Type) 16033 then 16034 Error_Msg_N ("null exclusion can only apply to an access type", N); 16035 end if; 16036 16037 -- Avoid deriving parent primitives of underlying record views 16038 16039 Build_Derived_Type (N, Parent_Type, T, Is_Completion, 16040 Derive_Subps => not Is_Underlying_Record_View (T)); 16041 16042 -- AI-419: The parent type of an explicitly limited derived type must 16043 -- be a limited type or a limited interface. 16044 16045 if Limited_Present (Def) then 16046 Set_Is_Limited_Record (T); 16047 16048 if Is_Interface (T) then 16049 Set_Is_Limited_Interface (T); 16050 end if; 16051 16052 if not Is_Limited_Type (Parent_Type) 16053 and then 16054 (not Is_Interface (Parent_Type) 16055 or else not Is_Limited_Interface (Parent_Type)) 16056 then 16057 -- AI05-0096: a derivation in the private part of an instance is 16058 -- legal if the generic formal is untagged limited, and the actual 16059 -- is non-limited. 16060 16061 if Is_Generic_Actual_Type (Parent_Type) 16062 and then In_Private_Part (Current_Scope) 16063 and then 16064 not Is_Tagged_Type 16065 (Generic_Parent_Type (Parent (Parent_Type))) 16066 then 16067 null; 16068 16069 else 16070 Error_Msg_NE 16071 ("parent type& of limited type must be limited", 16072 N, Parent_Type); 16073 end if; 16074 end if; 16075 end if; 16076 16077 -- In SPARK, there are no derived type definitions other than type 16078 -- extensions of tagged record types. 16079 16080 if No (Extension) then 16081 Check_SPARK_05_Restriction 16082 ("derived type is not allowed", Original_Node (N)); 16083 end if; 16084 end Derived_Type_Declaration; 16085 16086 ------------------------ 16087 -- Diagnose_Interface -- 16088 ------------------------ 16089 16090 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is 16091 begin 16092 if not Is_Interface (E) and then E /= Any_Type then 16093 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E); 16094 end if; 16095 end Diagnose_Interface; 16096 16097 ---------------------------------- 16098 -- Enumeration_Type_Declaration -- 16099 ---------------------------------- 16100 16101 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is 16102 Ev : Uint; 16103 L : Node_Id; 16104 R_Node : Node_Id; 16105 B_Node : Node_Id; 16106 16107 begin 16108 -- Create identifier node representing lower bound 16109 16110 B_Node := New_Node (N_Identifier, Sloc (Def)); 16111 L := First (Literals (Def)); 16112 Set_Chars (B_Node, Chars (L)); 16113 Set_Entity (B_Node, L); 16114 Set_Etype (B_Node, T); 16115 Set_Is_Static_Expression (B_Node, True); 16116 16117 R_Node := New_Node (N_Range, Sloc (Def)); 16118 Set_Low_Bound (R_Node, B_Node); 16119 16120 Set_Ekind (T, E_Enumeration_Type); 16121 Set_First_Literal (T, L); 16122 Set_Etype (T, T); 16123 Set_Is_Constrained (T); 16124 16125 Ev := Uint_0; 16126 16127 -- Loop through literals of enumeration type setting pos and rep values 16128 -- except that if the Ekind is already set, then it means the literal 16129 -- was already constructed (case of a derived type declaration and we 16130 -- should not disturb the Pos and Rep values. 16131 16132 while Present (L) loop 16133 if Ekind (L) /= E_Enumeration_Literal then 16134 Set_Ekind (L, E_Enumeration_Literal); 16135 Set_Enumeration_Pos (L, Ev); 16136 Set_Enumeration_Rep (L, Ev); 16137 Set_Is_Known_Valid (L, True); 16138 end if; 16139 16140 Set_Etype (L, T); 16141 New_Overloaded_Entity (L); 16142 Generate_Definition (L); 16143 Set_Convention (L, Convention_Intrinsic); 16144 16145 -- Case of character literal 16146 16147 if Nkind (L) = N_Defining_Character_Literal then 16148 Set_Is_Character_Type (T, True); 16149 16150 -- Check violation of No_Wide_Characters 16151 16152 if Restriction_Check_Required (No_Wide_Characters) then 16153 Get_Name_String (Chars (L)); 16154 16155 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then 16156 Check_Restriction (No_Wide_Characters, L); 16157 end if; 16158 end if; 16159 end if; 16160 16161 Ev := Ev + 1; 16162 Next (L); 16163 end loop; 16164 16165 -- Now create a node representing upper bound 16166 16167 B_Node := New_Node (N_Identifier, Sloc (Def)); 16168 Set_Chars (B_Node, Chars (Last (Literals (Def)))); 16169 Set_Entity (B_Node, Last (Literals (Def))); 16170 Set_Etype (B_Node, T); 16171 Set_Is_Static_Expression (B_Node, True); 16172 16173 Set_High_Bound (R_Node, B_Node); 16174 16175 -- Initialize various fields of the type. Some of this information 16176 -- may be overwritten later through rep.clauses. 16177 16178 Set_Scalar_Range (T, R_Node); 16179 Set_RM_Size (T, UI_From_Int (Minimum_Size (T))); 16180 Set_Enum_Esize (T); 16181 Set_Enum_Pos_To_Rep (T, Empty); 16182 16183 -- Set Discard_Names if configuration pragma set, or if there is 16184 -- a parameterless pragma in the current declarative region 16185 16186 if Global_Discard_Names or else Discard_Names (Scope (T)) then 16187 Set_Discard_Names (T); 16188 end if; 16189 16190 -- Process end label if there is one 16191 16192 if Present (Def) then 16193 Process_End_Label (Def, 'e', T); 16194 end if; 16195 end Enumeration_Type_Declaration; 16196 16197 --------------------------------- 16198 -- Expand_To_Stored_Constraint -- 16199 --------------------------------- 16200 16201 function Expand_To_Stored_Constraint 16202 (Typ : Entity_Id; 16203 Constraint : Elist_Id) return Elist_Id 16204 is 16205 Explicitly_Discriminated_Type : Entity_Id; 16206 Expansion : Elist_Id; 16207 Discriminant : Entity_Id; 16208 16209 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id; 16210 -- Find the nearest type that actually specifies discriminants 16211 16212 --------------------------------- 16213 -- Type_With_Explicit_Discrims -- 16214 --------------------------------- 16215 16216 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is 16217 Typ : constant E := Base_Type (Id); 16218 16219 begin 16220 if Ekind (Typ) in Incomplete_Or_Private_Kind then 16221 if Present (Full_View (Typ)) then 16222 return Type_With_Explicit_Discrims (Full_View (Typ)); 16223 end if; 16224 16225 else 16226 if Has_Discriminants (Typ) then 16227 return Typ; 16228 end if; 16229 end if; 16230 16231 if Etype (Typ) = Typ then 16232 return Empty; 16233 elsif Has_Discriminants (Typ) then 16234 return Typ; 16235 else 16236 return Type_With_Explicit_Discrims (Etype (Typ)); 16237 end if; 16238 16239 end Type_With_Explicit_Discrims; 16240 16241 -- Start of processing for Expand_To_Stored_Constraint 16242 16243 begin 16244 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then 16245 return No_Elist; 16246 end if; 16247 16248 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ); 16249 16250 if No (Explicitly_Discriminated_Type) then 16251 return No_Elist; 16252 end if; 16253 16254 Expansion := New_Elmt_List; 16255 16256 Discriminant := 16257 First_Stored_Discriminant (Explicitly_Discriminated_Type); 16258 while Present (Discriminant) loop 16259 Append_Elmt 16260 (Get_Discriminant_Value 16261 (Discriminant, Explicitly_Discriminated_Type, Constraint), 16262 To => Expansion); 16263 Next_Stored_Discriminant (Discriminant); 16264 end loop; 16265 16266 return Expansion; 16267 end Expand_To_Stored_Constraint; 16268 16269 --------------------------- 16270 -- Find_Hidden_Interface -- 16271 --------------------------- 16272 16273 function Find_Hidden_Interface 16274 (Src : Elist_Id; 16275 Dest : Elist_Id) return Entity_Id 16276 is 16277 Iface : Entity_Id; 16278 Iface_Elmt : Elmt_Id; 16279 16280 begin 16281 if Present (Src) and then Present (Dest) then 16282 Iface_Elmt := First_Elmt (Src); 16283 while Present (Iface_Elmt) loop 16284 Iface := Node (Iface_Elmt); 16285 16286 if Is_Interface (Iface) 16287 and then not Contain_Interface (Iface, Dest) 16288 then 16289 return Iface; 16290 end if; 16291 16292 Next_Elmt (Iface_Elmt); 16293 end loop; 16294 end if; 16295 16296 return Empty; 16297 end Find_Hidden_Interface; 16298 16299 -------------------- 16300 -- Find_Type_Name -- 16301 -------------------- 16302 16303 function Find_Type_Name (N : Node_Id) return Entity_Id is 16304 Id : constant Entity_Id := Defining_Identifier (N); 16305 Prev : Entity_Id; 16306 New_Id : Entity_Id; 16307 Prev_Par : Node_Id; 16308 16309 procedure Check_Duplicate_Aspects; 16310 -- Check that aspects specified in a completion have not been specified 16311 -- already in the partial view. Type_Invariant and others can be 16312 -- specified on either view but never on both. 16313 16314 procedure Tag_Mismatch; 16315 -- Diagnose a tagged partial view whose full view is untagged. 16316 -- We post the message on the full view, with a reference to 16317 -- the previous partial view. The partial view can be private 16318 -- or incomplete, and these are handled in a different manner, 16319 -- so we determine the position of the error message from the 16320 -- respective slocs of both. 16321 16322 ----------------------------- 16323 -- Check_Duplicate_Aspects -- 16324 ----------------------------- 16325 16326 procedure Check_Duplicate_Aspects is 16327 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par); 16328 Full_Aspects : constant List_Id := Aspect_Specifications (N); 16329 F_Spec, P_Spec : Node_Id; 16330 16331 begin 16332 if Present (Full_Aspects) then 16333 F_Spec := First (Full_Aspects); 16334 while Present (F_Spec) loop 16335 if Present (Prev_Aspects) then 16336 P_Spec := First (Prev_Aspects); 16337 while Present (P_Spec) loop 16338 if Chars (Identifier (P_Spec)) = 16339 Chars (Identifier (F_Spec)) 16340 then 16341 Error_Msg_N 16342 ("aspect already specified in private declaration", 16343 F_Spec); 16344 Remove (F_Spec); 16345 return; 16346 end if; 16347 16348 Next (P_Spec); 16349 end loop; 16350 end if; 16351 16352 if Has_Discriminants (Prev) 16353 and then not Has_Unknown_Discriminants (Prev) 16354 and then Chars (Identifier (F_Spec)) = 16355 Name_Implicit_Dereference 16356 then 16357 Error_Msg_N ("cannot specify aspect " & 16358 "if partial view has known discriminants", F_Spec); 16359 end if; 16360 16361 Next (F_Spec); 16362 end loop; 16363 end if; 16364 end Check_Duplicate_Aspects; 16365 16366 ------------------ 16367 -- Tag_Mismatch -- 16368 ------------------ 16369 16370 procedure Tag_Mismatch is 16371 begin 16372 if Sloc (Prev) < Sloc (Id) then 16373 if Ada_Version >= Ada_2012 16374 and then Nkind (N) = N_Private_Type_Declaration 16375 then 16376 Error_Msg_NE 16377 ("declaration of private } must be a tagged type ", Id, Prev); 16378 else 16379 Error_Msg_NE 16380 ("full declaration of } must be a tagged type ", Id, Prev); 16381 end if; 16382 16383 else 16384 if Ada_Version >= Ada_2012 16385 and then Nkind (N) = N_Private_Type_Declaration 16386 then 16387 Error_Msg_NE 16388 ("declaration of private } must be a tagged type ", Prev, Id); 16389 else 16390 Error_Msg_NE 16391 ("full declaration of } must be a tagged type ", Prev, Id); 16392 end if; 16393 end if; 16394 end Tag_Mismatch; 16395 16396 -- Start of processing for Find_Type_Name 16397 16398 begin 16399 -- Find incomplete declaration, if one was given 16400 16401 Prev := Current_Entity_In_Scope (Id); 16402 16403 -- New type declaration 16404 16405 if No (Prev) then 16406 Enter_Name (Id); 16407 return Id; 16408 16409 -- Previous declaration exists 16410 16411 else 16412 Prev_Par := Parent (Prev); 16413 16414 -- Error if not incomplete/private case except if previous 16415 -- declaration is implicit, etc. Enter_Name will emit error if 16416 -- appropriate. 16417 16418 if not Is_Incomplete_Or_Private_Type (Prev) then 16419 Enter_Name (Id); 16420 New_Id := Id; 16421 16422 -- Check invalid completion of private or incomplete type 16423 16424 elsif not Nkind_In (N, N_Full_Type_Declaration, 16425 N_Task_Type_Declaration, 16426 N_Protected_Type_Declaration) 16427 and then 16428 (Ada_Version < Ada_2012 16429 or else not Is_Incomplete_Type (Prev) 16430 or else not Nkind_In (N, N_Private_Type_Declaration, 16431 N_Private_Extension_Declaration)) 16432 then 16433 -- Completion must be a full type declarations (RM 7.3(4)) 16434 16435 Error_Msg_Sloc := Sloc (Prev); 16436 Error_Msg_NE ("invalid completion of }", Id, Prev); 16437 16438 -- Set scope of Id to avoid cascaded errors. Entity is never 16439 -- examined again, except when saving globals in generics. 16440 16441 Set_Scope (Id, Current_Scope); 16442 New_Id := Id; 16443 16444 -- If this is a repeated incomplete declaration, no further 16445 -- checks are possible. 16446 16447 if Nkind (N) = N_Incomplete_Type_Declaration then 16448 return Prev; 16449 end if; 16450 16451 -- Case of full declaration of incomplete type 16452 16453 elsif Ekind (Prev) = E_Incomplete_Type 16454 and then (Ada_Version < Ada_2012 16455 or else No (Full_View (Prev)) 16456 or else not Is_Private_Type (Full_View (Prev))) 16457 then 16458 -- Indicate that the incomplete declaration has a matching full 16459 -- declaration. The defining occurrence of the incomplete 16460 -- declaration remains the visible one, and the procedure 16461 -- Get_Full_View dereferences it whenever the type is used. 16462 16463 if Present (Full_View (Prev)) then 16464 Error_Msg_NE ("invalid redeclaration of }", Id, Prev); 16465 end if; 16466 16467 Set_Full_View (Prev, Id); 16468 Append_Entity (Id, Current_Scope); 16469 Set_Is_Public (Id, Is_Public (Prev)); 16470 Set_Is_Internal (Id); 16471 New_Id := Prev; 16472 16473 -- If the incomplete view is tagged, a class_wide type has been 16474 -- created already. Use it for the private type as well, in order 16475 -- to prevent multiple incompatible class-wide types that may be 16476 -- created for self-referential anonymous access components. 16477 16478 if Is_Tagged_Type (Prev) 16479 and then Present (Class_Wide_Type (Prev)) 16480 then 16481 Set_Ekind (Id, Ekind (Prev)); -- will be reset later 16482 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev)); 16483 16484 -- The type of the classwide type is the current Id. Previously 16485 -- this was not done for private declarations because of order- 16486 -- of elaboration issues in the back-end, but gigi now handles 16487 -- this properly. 16488 16489 Set_Etype (Class_Wide_Type (Id), Id); 16490 end if; 16491 16492 -- Case of full declaration of private type 16493 16494 else 16495 -- If the private type was a completion of an incomplete type then 16496 -- update Prev to reference the private type 16497 16498 if Ada_Version >= Ada_2012 16499 and then Ekind (Prev) = E_Incomplete_Type 16500 and then Present (Full_View (Prev)) 16501 and then Is_Private_Type (Full_View (Prev)) 16502 then 16503 Prev := Full_View (Prev); 16504 Prev_Par := Parent (Prev); 16505 end if; 16506 16507 if Nkind (N) = N_Full_Type_Declaration 16508 and then Nkind_In 16509 (Type_Definition (N), N_Record_Definition, 16510 N_Derived_Type_Definition) 16511 and then Interface_Present (Type_Definition (N)) 16512 then 16513 Error_Msg_N 16514 ("completion of private type cannot be an interface", N); 16515 end if; 16516 16517 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then 16518 if Etype (Prev) /= Prev then 16519 16520 -- Prev is a private subtype or a derived type, and needs 16521 -- no completion. 16522 16523 Error_Msg_NE ("invalid redeclaration of }", Id, Prev); 16524 New_Id := Id; 16525 16526 elsif Ekind (Prev) = E_Private_Type 16527 and then Nkind_In (N, N_Task_Type_Declaration, 16528 N_Protected_Type_Declaration) 16529 then 16530 Error_Msg_N 16531 ("completion of nonlimited type cannot be limited", N); 16532 16533 elsif Ekind (Prev) = E_Record_Type_With_Private 16534 and then Nkind_In (N, N_Task_Type_Declaration, 16535 N_Protected_Type_Declaration) 16536 then 16537 if not Is_Limited_Record (Prev) then 16538 Error_Msg_N 16539 ("completion of nonlimited type cannot be limited", N); 16540 16541 elsif No (Interface_List (N)) then 16542 Error_Msg_N 16543 ("completion of tagged private type must be tagged", 16544 N); 16545 end if; 16546 end if; 16547 16548 -- Ada 2005 (AI-251): Private extension declaration of a task 16549 -- type or a protected type. This case arises when covering 16550 -- interface types. 16551 16552 elsif Nkind_In (N, N_Task_Type_Declaration, 16553 N_Protected_Type_Declaration) 16554 then 16555 null; 16556 16557 elsif Nkind (N) /= N_Full_Type_Declaration 16558 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition 16559 then 16560 Error_Msg_N 16561 ("full view of private extension must be an extension", N); 16562 16563 elsif not (Abstract_Present (Parent (Prev))) 16564 and then Abstract_Present (Type_Definition (N)) 16565 then 16566 Error_Msg_N 16567 ("full view of non-abstract extension cannot be abstract", N); 16568 end if; 16569 16570 if not In_Private_Part (Current_Scope) then 16571 Error_Msg_N 16572 ("declaration of full view must appear in private part", N); 16573 end if; 16574 16575 if Ada_Version >= Ada_2012 then 16576 Check_Duplicate_Aspects; 16577 end if; 16578 16579 Copy_And_Swap (Prev, Id); 16580 Set_Has_Private_Declaration (Prev); 16581 Set_Has_Private_Declaration (Id); 16582 16583 -- AI12-0133: Indicate whether we have a partial view with 16584 -- unknown discriminants, in which case initialization of objects 16585 -- of the type do not receive an invariant check. 16586 16587 Set_Partial_View_Has_Unknown_Discr 16588 (Prev, Has_Unknown_Discriminants (Id)); 16589 16590 -- Preserve aspect and iterator flags that may have been set on 16591 -- the partial view. 16592 16593 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id)); 16594 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id)); 16595 16596 -- If no error, propagate freeze_node from private to full view. 16597 -- It may have been generated for an early operational item. 16598 16599 if Present (Freeze_Node (Id)) 16600 and then Serious_Errors_Detected = 0 16601 and then No (Full_View (Id)) 16602 then 16603 Set_Freeze_Node (Prev, Freeze_Node (Id)); 16604 Set_Freeze_Node (Id, Empty); 16605 Set_First_Rep_Item (Prev, First_Rep_Item (Id)); 16606 end if; 16607 16608 Set_Full_View (Id, Prev); 16609 New_Id := Prev; 16610 end if; 16611 16612 -- Verify that full declaration conforms to partial one 16613 16614 if Is_Incomplete_Or_Private_Type (Prev) 16615 and then Present (Discriminant_Specifications (Prev_Par)) 16616 then 16617 if Present (Discriminant_Specifications (N)) then 16618 if Ekind (Prev) = E_Incomplete_Type then 16619 Check_Discriminant_Conformance (N, Prev, Prev); 16620 else 16621 Check_Discriminant_Conformance (N, Prev, Id); 16622 end if; 16623 16624 else 16625 Error_Msg_N 16626 ("missing discriminants in full type declaration", N); 16627 16628 -- To avoid cascaded errors on subsequent use, share the 16629 -- discriminants of the partial view. 16630 16631 Set_Discriminant_Specifications (N, 16632 Discriminant_Specifications (Prev_Par)); 16633 end if; 16634 end if; 16635 16636 -- A prior untagged partial view can have an associated class-wide 16637 -- type due to use of the class attribute, and in this case the full 16638 -- type must also be tagged. This Ada 95 usage is deprecated in favor 16639 -- of incomplete tagged declarations, but we check for it. 16640 16641 if Is_Type (Prev) 16642 and then (Is_Tagged_Type (Prev) 16643 or else Present (Class_Wide_Type (Prev))) 16644 then 16645 -- Ada 2012 (AI05-0162): A private type may be the completion of 16646 -- an incomplete type. 16647 16648 if Ada_Version >= Ada_2012 16649 and then Is_Incomplete_Type (Prev) 16650 and then Nkind_In (N, N_Private_Type_Declaration, 16651 N_Private_Extension_Declaration) 16652 then 16653 -- No need to check private extensions since they are tagged 16654 16655 if Nkind (N) = N_Private_Type_Declaration 16656 and then not Tagged_Present (N) 16657 then 16658 Tag_Mismatch; 16659 end if; 16660 16661 -- The full declaration is either a tagged type (including 16662 -- a synchronized type that implements interfaces) or a 16663 -- type extension, otherwise this is an error. 16664 16665 elsif Nkind_In (N, N_Task_Type_Declaration, 16666 N_Protected_Type_Declaration) 16667 then 16668 if No (Interface_List (N)) and then not Error_Posted (N) then 16669 Tag_Mismatch; 16670 end if; 16671 16672 elsif Nkind (Type_Definition (N)) = N_Record_Definition then 16673 16674 -- Indicate that the previous declaration (tagged incomplete 16675 -- or private declaration) requires the same on the full one. 16676 16677 if not Tagged_Present (Type_Definition (N)) then 16678 Tag_Mismatch; 16679 Set_Is_Tagged_Type (Id); 16680 end if; 16681 16682 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then 16683 if No (Record_Extension_Part (Type_Definition (N))) then 16684 Error_Msg_NE 16685 ("full declaration of } must be a record extension", 16686 Prev, Id); 16687 16688 -- Set some attributes to produce a usable full view 16689 16690 Set_Is_Tagged_Type (Id); 16691 end if; 16692 16693 else 16694 Tag_Mismatch; 16695 end if; 16696 end if; 16697 16698 if Present (Prev) 16699 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration 16700 and then Present (Premature_Use (Parent (Prev))) 16701 then 16702 Error_Msg_Sloc := Sloc (N); 16703 Error_Msg_N 16704 ("\full declaration #", Premature_Use (Parent (Prev))); 16705 end if; 16706 16707 return New_Id; 16708 end if; 16709 end Find_Type_Name; 16710 16711 ------------------------- 16712 -- Find_Type_Of_Object -- 16713 ------------------------- 16714 16715 function Find_Type_Of_Object 16716 (Obj_Def : Node_Id; 16717 Related_Nod : Node_Id) return Entity_Id 16718 is 16719 Def_Kind : constant Node_Kind := Nkind (Obj_Def); 16720 P : Node_Id := Parent (Obj_Def); 16721 T : Entity_Id; 16722 Nam : Name_Id; 16723 16724 begin 16725 -- If the parent is a component_definition node we climb to the 16726 -- component_declaration node 16727 16728 if Nkind (P) = N_Component_Definition then 16729 P := Parent (P); 16730 end if; 16731 16732 -- Case of an anonymous array subtype 16733 16734 if Nkind_In (Def_Kind, N_Constrained_Array_Definition, 16735 N_Unconstrained_Array_Definition) 16736 then 16737 T := Empty; 16738 Array_Type_Declaration (T, Obj_Def); 16739 16740 -- Create an explicit subtype whenever possible 16741 16742 elsif Nkind (P) /= N_Component_Declaration 16743 and then Def_Kind = N_Subtype_Indication 16744 then 16745 -- Base name of subtype on object name, which will be unique in 16746 -- the current scope. 16747 16748 -- If this is a duplicate declaration, return base type, to avoid 16749 -- generating duplicate anonymous types. 16750 16751 if Error_Posted (P) then 16752 Analyze (Subtype_Mark (Obj_Def)); 16753 return Entity (Subtype_Mark (Obj_Def)); 16754 end if; 16755 16756 Nam := 16757 New_External_Name 16758 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T'); 16759 16760 T := Make_Defining_Identifier (Sloc (P), Nam); 16761 16762 Insert_Action (Obj_Def, 16763 Make_Subtype_Declaration (Sloc (P), 16764 Defining_Identifier => T, 16765 Subtype_Indication => Relocate_Node (Obj_Def))); 16766 16767 -- This subtype may need freezing, and this will not be done 16768 -- automatically if the object declaration is not in declarative 16769 -- part. Since this is an object declaration, the type cannot always 16770 -- be frozen here. Deferred constants do not freeze their type 16771 -- (which often enough will be private). 16772 16773 if Nkind (P) = N_Object_Declaration 16774 and then Constant_Present (P) 16775 and then No (Expression (P)) 16776 then 16777 null; 16778 16779 -- Here we freeze the base type of object type to catch premature use 16780 -- of discriminated private type without a full view. 16781 16782 else 16783 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P)); 16784 end if; 16785 16786 -- Ada 2005 AI-406: the object definition in an object declaration 16787 -- can be an access definition. 16788 16789 elsif Def_Kind = N_Access_Definition then 16790 T := Access_Definition (Related_Nod, Obj_Def); 16791 16792 Set_Is_Local_Anonymous_Access 16793 (T, 16794 V => (Ada_Version < Ada_2012) 16795 or else (Nkind (P) /= N_Object_Declaration) 16796 or else Is_Library_Level_Entity (Defining_Identifier (P))); 16797 16798 -- Otherwise, the object definition is just a subtype_mark 16799 16800 else 16801 T := Process_Subtype (Obj_Def, Related_Nod); 16802 16803 -- If expansion is disabled an object definition that is an aggregate 16804 -- will not get expanded and may lead to scoping problems in the back 16805 -- end, if the object is referenced in an inner scope. In that case 16806 -- create an itype reference for the object definition now. This 16807 -- may be redundant in some cases, but harmless. 16808 16809 if Is_Itype (T) 16810 and then Nkind (Related_Nod) = N_Object_Declaration 16811 and then ASIS_Mode 16812 then 16813 Build_Itype_Reference (T, Related_Nod); 16814 end if; 16815 end if; 16816 16817 return T; 16818 end Find_Type_Of_Object; 16819 16820 -------------------------------- 16821 -- Find_Type_Of_Subtype_Indic -- 16822 -------------------------------- 16823 16824 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is 16825 Typ : Entity_Id; 16826 16827 begin 16828 -- Case of subtype mark with a constraint 16829 16830 if Nkind (S) = N_Subtype_Indication then 16831 Find_Type (Subtype_Mark (S)); 16832 Typ := Entity (Subtype_Mark (S)); 16833 16834 if not 16835 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S))) 16836 then 16837 Error_Msg_N 16838 ("incorrect constraint for this kind of type", Constraint (S)); 16839 Rewrite (S, New_Copy_Tree (Subtype_Mark (S))); 16840 end if; 16841 16842 -- Otherwise we have a subtype mark without a constraint 16843 16844 elsif Error_Posted (S) then 16845 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S))); 16846 return Any_Type; 16847 16848 else 16849 Find_Type (S); 16850 Typ := Entity (S); 16851 end if; 16852 16853 -- Check No_Wide_Characters restriction 16854 16855 Check_Wide_Character_Restriction (Typ, S); 16856 16857 return Typ; 16858 end Find_Type_Of_Subtype_Indic; 16859 16860 ------------------------------------- 16861 -- Floating_Point_Type_Declaration -- 16862 ------------------------------------- 16863 16864 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is 16865 Digs : constant Node_Id := Digits_Expression (Def); 16866 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float); 16867 Digs_Val : Uint; 16868 Base_Typ : Entity_Id; 16869 Implicit_Base : Entity_Id; 16870 Bound : Node_Id; 16871 16872 function Can_Derive_From (E : Entity_Id) return Boolean; 16873 -- Find if given digits value, and possibly a specified range, allows 16874 -- derivation from specified type 16875 16876 function Find_Base_Type return Entity_Id; 16877 -- Find a predefined base type that Def can derive from, or generate 16878 -- an error and substitute Long_Long_Float if none exists. 16879 16880 --------------------- 16881 -- Can_Derive_From -- 16882 --------------------- 16883 16884 function Can_Derive_From (E : Entity_Id) return Boolean is 16885 Spec : constant Entity_Id := Real_Range_Specification (Def); 16886 16887 begin 16888 -- Check specified "digits" constraint 16889 16890 if Digs_Val > Digits_Value (E) then 16891 return False; 16892 end if; 16893 16894 -- Check for matching range, if specified 16895 16896 if Present (Spec) then 16897 if Expr_Value_R (Type_Low_Bound (E)) > 16898 Expr_Value_R (Low_Bound (Spec)) 16899 then 16900 return False; 16901 end if; 16902 16903 if Expr_Value_R (Type_High_Bound (E)) < 16904 Expr_Value_R (High_Bound (Spec)) 16905 then 16906 return False; 16907 end if; 16908 end if; 16909 16910 return True; 16911 end Can_Derive_From; 16912 16913 -------------------- 16914 -- Find_Base_Type -- 16915 -------------------- 16916 16917 function Find_Base_Type return Entity_Id is 16918 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types); 16919 16920 begin 16921 -- Iterate over the predefined types in order, returning the first 16922 -- one that Def can derive from. 16923 16924 while Present (Choice) loop 16925 if Can_Derive_From (Node (Choice)) then 16926 return Node (Choice); 16927 end if; 16928 16929 Next_Elmt (Choice); 16930 end loop; 16931 16932 -- If we can't derive from any existing type, use Long_Long_Float 16933 -- and give appropriate message explaining the problem. 16934 16935 if Digs_Val > Max_Digs_Val then 16936 -- It might be the case that there is a type with the requested 16937 -- range, just not the combination of digits and range. 16938 16939 Error_Msg_N 16940 ("no predefined type has requested range and precision", 16941 Real_Range_Specification (Def)); 16942 16943 else 16944 Error_Msg_N 16945 ("range too large for any predefined type", 16946 Real_Range_Specification (Def)); 16947 end if; 16948 16949 return Standard_Long_Long_Float; 16950 end Find_Base_Type; 16951 16952 -- Start of processing for Floating_Point_Type_Declaration 16953 16954 begin 16955 Check_Restriction (No_Floating_Point, Def); 16956 16957 -- Create an implicit base type 16958 16959 Implicit_Base := 16960 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B'); 16961 16962 -- Analyze and verify digits value 16963 16964 Analyze_And_Resolve (Digs, Any_Integer); 16965 Check_Digits_Expression (Digs); 16966 Digs_Val := Expr_Value (Digs); 16967 16968 -- Process possible range spec and find correct type to derive from 16969 16970 Process_Real_Range_Specification (Def); 16971 16972 -- Check that requested number of digits is not too high. 16973 16974 if Digs_Val > Max_Digs_Val then 16975 16976 -- The check for Max_Base_Digits may be somewhat expensive, as it 16977 -- requires reading System, so only do it when necessary. 16978 16979 declare 16980 Max_Base_Digits : constant Uint := 16981 Expr_Value 16982 (Expression 16983 (Parent (RTE (RE_Max_Base_Digits)))); 16984 16985 begin 16986 if Digs_Val > Max_Base_Digits then 16987 Error_Msg_Uint_1 := Max_Base_Digits; 16988 Error_Msg_N ("digits value out of range, maximum is ^", Digs); 16989 16990 elsif No (Real_Range_Specification (Def)) then 16991 Error_Msg_Uint_1 := Max_Digs_Val; 16992 Error_Msg_N ("types with more than ^ digits need range spec " 16993 & "(RM 3.5.7(6))", Digs); 16994 end if; 16995 end; 16996 end if; 16997 16998 -- Find a suitable type to derive from or complain and use a substitute 16999 17000 Base_Typ := Find_Base_Type; 17001 17002 -- If there are bounds given in the declaration use them as the bounds 17003 -- of the type, otherwise use the bounds of the predefined base type 17004 -- that was chosen based on the Digits value. 17005 17006 if Present (Real_Range_Specification (Def)) then 17007 Set_Scalar_Range (T, Real_Range_Specification (Def)); 17008 Set_Is_Constrained (T); 17009 17010 -- The bounds of this range must be converted to machine numbers 17011 -- in accordance with RM 4.9(38). 17012 17013 Bound := Type_Low_Bound (T); 17014 17015 if Nkind (Bound) = N_Real_Literal then 17016 Set_Realval 17017 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound)); 17018 Set_Is_Machine_Number (Bound); 17019 end if; 17020 17021 Bound := Type_High_Bound (T); 17022 17023 if Nkind (Bound) = N_Real_Literal then 17024 Set_Realval 17025 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound)); 17026 Set_Is_Machine_Number (Bound); 17027 end if; 17028 17029 else 17030 Set_Scalar_Range (T, Scalar_Range (Base_Typ)); 17031 end if; 17032 17033 -- Complete definition of implicit base and declared first subtype. The 17034 -- inheritance of the rep item chain ensures that SPARK-related pragmas 17035 -- are not clobbered when the floating point type acts as a full view of 17036 -- a private type. 17037 17038 Set_Etype (Implicit_Base, Base_Typ); 17039 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ)); 17040 Set_Size_Info (Implicit_Base, Base_Typ); 17041 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ)); 17042 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ)); 17043 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ)); 17044 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ)); 17045 17046 Set_Ekind (T, E_Floating_Point_Subtype); 17047 Set_Etype (T, Implicit_Base); 17048 Set_Size_Info (T, Implicit_Base); 17049 Set_RM_Size (T, RM_Size (Implicit_Base)); 17050 Inherit_Rep_Item_Chain (T, Implicit_Base); 17051 Set_Digits_Value (T, Digs_Val); 17052 end Floating_Point_Type_Declaration; 17053 17054 ---------------------------- 17055 -- Get_Discriminant_Value -- 17056 ---------------------------- 17057 17058 -- This is the situation: 17059 17060 -- There is a non-derived type 17061 17062 -- type T0 (Dx, Dy, Dz...) 17063 17064 -- There are zero or more levels of derivation, with each derivation 17065 -- either purely inheriting the discriminants, or defining its own. 17066 17067 -- type Ti is new Ti-1 17068 -- or 17069 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y) 17070 -- or 17071 -- subtype Ti is ... 17072 17073 -- The subtype issue is avoided by the use of Original_Record_Component, 17074 -- and the fact that derived subtypes also derive the constraints. 17075 17076 -- This chain leads back from 17077 17078 -- Typ_For_Constraint 17079 17080 -- Typ_For_Constraint has discriminants, and the value for each 17081 -- discriminant is given by its corresponding Elmt of Constraints. 17082 17083 -- Discriminant is some discriminant in this hierarchy 17084 17085 -- We need to return its value 17086 17087 -- We do this by recursively searching each level, and looking for 17088 -- Discriminant. Once we get to the bottom, we start backing up 17089 -- returning the value for it which may in turn be a discriminant 17090 -- further up, so on the backup we continue the substitution. 17091 17092 function Get_Discriminant_Value 17093 (Discriminant : Entity_Id; 17094 Typ_For_Constraint : Entity_Id; 17095 Constraint : Elist_Id) return Node_Id 17096 is 17097 function Root_Corresponding_Discriminant 17098 (Discr : Entity_Id) return Entity_Id; 17099 -- Given a discriminant, traverse the chain of inherited discriminants 17100 -- and return the topmost discriminant. 17101 17102 function Search_Derivation_Levels 17103 (Ti : Entity_Id; 17104 Discrim_Values : Elist_Id; 17105 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id; 17106 -- This is the routine that performs the recursive search of levels 17107 -- as described above. 17108 17109 ------------------------------------- 17110 -- Root_Corresponding_Discriminant -- 17111 ------------------------------------- 17112 17113 function Root_Corresponding_Discriminant 17114 (Discr : Entity_Id) return Entity_Id 17115 is 17116 D : Entity_Id; 17117 17118 begin 17119 D := Discr; 17120 while Present (Corresponding_Discriminant (D)) loop 17121 D := Corresponding_Discriminant (D); 17122 end loop; 17123 17124 return D; 17125 end Root_Corresponding_Discriminant; 17126 17127 ------------------------------ 17128 -- Search_Derivation_Levels -- 17129 ------------------------------ 17130 17131 function Search_Derivation_Levels 17132 (Ti : Entity_Id; 17133 Discrim_Values : Elist_Id; 17134 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id 17135 is 17136 Assoc : Elmt_Id; 17137 Disc : Entity_Id; 17138 Result : Node_Or_Entity_Id; 17139 Result_Entity : Node_Id; 17140 17141 begin 17142 -- If inappropriate type, return Error, this happens only in 17143 -- cascaded error situations, and we want to avoid a blow up. 17144 17145 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then 17146 return Error; 17147 end if; 17148 17149 -- Look deeper if possible. Use Stored_Constraints only for 17150 -- untagged types. For tagged types use the given constraint. 17151 -- This asymmetry needs explanation??? 17152 17153 if not Stored_Discrim_Values 17154 and then Present (Stored_Constraint (Ti)) 17155 and then not Is_Tagged_Type (Ti) 17156 then 17157 Result := 17158 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True); 17159 else 17160 declare 17161 Td : constant Entity_Id := Etype (Ti); 17162 17163 begin 17164 if Td = Ti then 17165 Result := Discriminant; 17166 17167 else 17168 if Present (Stored_Constraint (Ti)) then 17169 Result := 17170 Search_Derivation_Levels 17171 (Td, Stored_Constraint (Ti), True); 17172 else 17173 Result := 17174 Search_Derivation_Levels 17175 (Td, Discrim_Values, Stored_Discrim_Values); 17176 end if; 17177 end if; 17178 end; 17179 end if; 17180 17181 -- Extra underlying places to search, if not found above. For 17182 -- concurrent types, the relevant discriminant appears in the 17183 -- corresponding record. For a type derived from a private type 17184 -- without discriminant, the full view inherits the discriminants 17185 -- of the full view of the parent. 17186 17187 if Result = Discriminant then 17188 if Is_Concurrent_Type (Ti) 17189 and then Present (Corresponding_Record_Type (Ti)) 17190 then 17191 Result := 17192 Search_Derivation_Levels ( 17193 Corresponding_Record_Type (Ti), 17194 Discrim_Values, 17195 Stored_Discrim_Values); 17196 17197 elsif Is_Private_Type (Ti) 17198 and then not Has_Discriminants (Ti) 17199 and then Present (Full_View (Ti)) 17200 and then Etype (Full_View (Ti)) /= Ti 17201 then 17202 Result := 17203 Search_Derivation_Levels ( 17204 Full_View (Ti), 17205 Discrim_Values, 17206 Stored_Discrim_Values); 17207 end if; 17208 end if; 17209 17210 -- If Result is not a (reference to a) discriminant, return it, 17211 -- otherwise set Result_Entity to the discriminant. 17212 17213 if Nkind (Result) = N_Defining_Identifier then 17214 pragma Assert (Result = Discriminant); 17215 Result_Entity := Result; 17216 17217 else 17218 if not Denotes_Discriminant (Result) then 17219 return Result; 17220 end if; 17221 17222 Result_Entity := Entity (Result); 17223 end if; 17224 17225 -- See if this level of derivation actually has discriminants because 17226 -- tagged derivations can add them, hence the lower levels need not 17227 -- have any. 17228 17229 if not Has_Discriminants (Ti) then 17230 return Result; 17231 end if; 17232 17233 -- Scan Ti's discriminants for Result_Entity, and return its 17234 -- corresponding value, if any. 17235 17236 Result_Entity := Original_Record_Component (Result_Entity); 17237 17238 Assoc := First_Elmt (Discrim_Values); 17239 17240 if Stored_Discrim_Values then 17241 Disc := First_Stored_Discriminant (Ti); 17242 else 17243 Disc := First_Discriminant (Ti); 17244 end if; 17245 17246 while Present (Disc) loop 17247 pragma Assert (Present (Assoc)); 17248 17249 if Original_Record_Component (Disc) = Result_Entity then 17250 return Node (Assoc); 17251 end if; 17252 17253 Next_Elmt (Assoc); 17254 17255 if Stored_Discrim_Values then 17256 Next_Stored_Discriminant (Disc); 17257 else 17258 Next_Discriminant (Disc); 17259 end if; 17260 end loop; 17261 17262 -- Could not find it 17263 17264 return Result; 17265 end Search_Derivation_Levels; 17266 17267 -- Local Variables 17268 17269 Result : Node_Or_Entity_Id; 17270 17271 -- Start of processing for Get_Discriminant_Value 17272 17273 begin 17274 -- ??? This routine is a gigantic mess and will be deleted. For the 17275 -- time being just test for the trivial case before calling recurse. 17276 17277 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then 17278 declare 17279 D : Entity_Id; 17280 E : Elmt_Id; 17281 17282 begin 17283 D := First_Discriminant (Typ_For_Constraint); 17284 E := First_Elmt (Constraint); 17285 while Present (D) loop 17286 if Chars (D) = Chars (Discriminant) then 17287 return Node (E); 17288 end if; 17289 17290 Next_Discriminant (D); 17291 Next_Elmt (E); 17292 end loop; 17293 end; 17294 end if; 17295 17296 Result := Search_Derivation_Levels 17297 (Typ_For_Constraint, Constraint, False); 17298 17299 -- ??? hack to disappear when this routine is gone 17300 17301 if Nkind (Result) = N_Defining_Identifier then 17302 declare 17303 D : Entity_Id; 17304 E : Elmt_Id; 17305 17306 begin 17307 D := First_Discriminant (Typ_For_Constraint); 17308 E := First_Elmt (Constraint); 17309 while Present (D) loop 17310 if Root_Corresponding_Discriminant (D) = Discriminant then 17311 return Node (E); 17312 end if; 17313 17314 Next_Discriminant (D); 17315 Next_Elmt (E); 17316 end loop; 17317 end; 17318 end if; 17319 17320 pragma Assert (Nkind (Result) /= N_Defining_Identifier); 17321 return Result; 17322 end Get_Discriminant_Value; 17323 17324 -------------------------- 17325 -- Has_Range_Constraint -- 17326 -------------------------- 17327 17328 function Has_Range_Constraint (N : Node_Id) return Boolean is 17329 C : constant Node_Id := Constraint (N); 17330 17331 begin 17332 if Nkind (C) = N_Range_Constraint then 17333 return True; 17334 17335 elsif Nkind (C) = N_Digits_Constraint then 17336 return 17337 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N))) 17338 or else Present (Range_Constraint (C)); 17339 17340 elsif Nkind (C) = N_Delta_Constraint then 17341 return Present (Range_Constraint (C)); 17342 17343 else 17344 return False; 17345 end if; 17346 end Has_Range_Constraint; 17347 17348 ------------------------ 17349 -- Inherit_Components -- 17350 ------------------------ 17351 17352 function Inherit_Components 17353 (N : Node_Id; 17354 Parent_Base : Entity_Id; 17355 Derived_Base : Entity_Id; 17356 Is_Tagged : Boolean; 17357 Inherit_Discr : Boolean; 17358 Discs : Elist_Id) return Elist_Id 17359 is 17360 Assoc_List : constant Elist_Id := New_Elmt_List; 17361 17362 procedure Inherit_Component 17363 (Old_C : Entity_Id; 17364 Plain_Discrim : Boolean := False; 17365 Stored_Discrim : Boolean := False); 17366 -- Inherits component Old_C from Parent_Base to the Derived_Base. If 17367 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is 17368 -- True, Old_C is a stored discriminant. If they are both false then 17369 -- Old_C is a regular component. 17370 17371 ----------------------- 17372 -- Inherit_Component -- 17373 ----------------------- 17374 17375 procedure Inherit_Component 17376 (Old_C : Entity_Id; 17377 Plain_Discrim : Boolean := False; 17378 Stored_Discrim : Boolean := False) 17379 is 17380 procedure Set_Anonymous_Type (Id : Entity_Id); 17381 -- Id denotes the entity of an access discriminant or anonymous 17382 -- access component. Set the type of Id to either the same type of 17383 -- Old_C or create a new one depending on whether the parent and 17384 -- the child types are in the same scope. 17385 17386 ------------------------ 17387 -- Set_Anonymous_Type -- 17388 ------------------------ 17389 17390 procedure Set_Anonymous_Type (Id : Entity_Id) is 17391 Old_Typ : constant Entity_Id := Etype (Old_C); 17392 17393 begin 17394 if Scope (Parent_Base) = Scope (Derived_Base) then 17395 Set_Etype (Id, Old_Typ); 17396 17397 -- The parent and the derived type are in two different scopes. 17398 -- Reuse the type of the original discriminant / component by 17399 -- copying it in order to preserve all attributes. 17400 17401 else 17402 declare 17403 Typ : constant Entity_Id := New_Copy (Old_Typ); 17404 17405 begin 17406 Set_Etype (Id, Typ); 17407 17408 -- Since we do not generate component declarations for 17409 -- inherited components, associate the itype with the 17410 -- derived type. 17411 17412 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base)); 17413 Set_Scope (Typ, Derived_Base); 17414 end; 17415 end if; 17416 end Set_Anonymous_Type; 17417 17418 -- Local variables and constants 17419 17420 New_C : constant Entity_Id := New_Copy (Old_C); 17421 17422 Corr_Discrim : Entity_Id; 17423 Discrim : Entity_Id; 17424 17425 -- Start of processing for Inherit_Component 17426 17427 begin 17428 pragma Assert (not Is_Tagged or not Stored_Discrim); 17429 17430 Set_Parent (New_C, Parent (Old_C)); 17431 17432 -- Regular discriminants and components must be inserted in the scope 17433 -- of the Derived_Base. Do it here. 17434 17435 if not Stored_Discrim then 17436 Enter_Name (New_C); 17437 end if; 17438 17439 -- For tagged types the Original_Record_Component must point to 17440 -- whatever this field was pointing to in the parent type. This has 17441 -- already been achieved by the call to New_Copy above. 17442 17443 if not Is_Tagged then 17444 Set_Original_Record_Component (New_C, New_C); 17445 end if; 17446 17447 -- Set the proper type of an access discriminant 17448 17449 if Ekind (New_C) = E_Discriminant 17450 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type 17451 then 17452 Set_Anonymous_Type (New_C); 17453 end if; 17454 17455 -- If we have inherited a component then see if its Etype contains 17456 -- references to Parent_Base discriminants. In this case, replace 17457 -- these references with the constraints given in Discs. We do not 17458 -- do this for the partial view of private types because this is 17459 -- not needed (only the components of the full view will be used 17460 -- for code generation) and cause problem. We also avoid this 17461 -- transformation in some error situations. 17462 17463 if Ekind (New_C) = E_Component then 17464 17465 -- Set the proper type of an anonymous access component 17466 17467 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then 17468 Set_Anonymous_Type (New_C); 17469 17470 elsif (Is_Private_Type (Derived_Base) 17471 and then not Is_Generic_Type (Derived_Base)) 17472 or else (Is_Empty_Elmt_List (Discs) 17473 and then not Expander_Active) 17474 then 17475 Set_Etype (New_C, Etype (Old_C)); 17476 17477 else 17478 -- The current component introduces a circularity of the 17479 -- following kind: 17480 17481 -- limited with Pack_2; 17482 -- package Pack_1 is 17483 -- type T_1 is tagged record 17484 -- Comp : access Pack_2.T_2; 17485 -- ... 17486 -- end record; 17487 -- end Pack_1; 17488 17489 -- with Pack_1; 17490 -- package Pack_2 is 17491 -- type T_2 is new Pack_1.T_1 with ...; 17492 -- end Pack_2; 17493 17494 Set_Etype 17495 (New_C, 17496 Constrain_Component_Type 17497 (Old_C, Derived_Base, N, Parent_Base, Discs)); 17498 end if; 17499 end if; 17500 17501 -- In derived tagged types it is illegal to reference a non 17502 -- discriminant component in the parent type. To catch this, mark 17503 -- these components with an Ekind of E_Void. This will be reset in 17504 -- Record_Type_Definition after processing the record extension of 17505 -- the derived type. 17506 17507 -- If the declaration is a private extension, there is no further 17508 -- record extension to process, and the components retain their 17509 -- current kind, because they are visible at this point. 17510 17511 if Is_Tagged and then Ekind (New_C) = E_Component 17512 and then Nkind (N) /= N_Private_Extension_Declaration 17513 then 17514 Set_Ekind (New_C, E_Void); 17515 end if; 17516 17517 if Plain_Discrim then 17518 Set_Corresponding_Discriminant (New_C, Old_C); 17519 Build_Discriminal (New_C); 17520 17521 -- If we are explicitly inheriting a stored discriminant it will be 17522 -- completely hidden. 17523 17524 elsif Stored_Discrim then 17525 Set_Corresponding_Discriminant (New_C, Empty); 17526 Set_Discriminal (New_C, Empty); 17527 Set_Is_Completely_Hidden (New_C); 17528 17529 -- Set the Original_Record_Component of each discriminant in the 17530 -- derived base to point to the corresponding stored that we just 17531 -- created. 17532 17533 Discrim := First_Discriminant (Derived_Base); 17534 while Present (Discrim) loop 17535 Corr_Discrim := Corresponding_Discriminant (Discrim); 17536 17537 -- Corr_Discrim could be missing in an error situation 17538 17539 if Present (Corr_Discrim) 17540 and then Original_Record_Component (Corr_Discrim) = Old_C 17541 then 17542 Set_Original_Record_Component (Discrim, New_C); 17543 end if; 17544 17545 Next_Discriminant (Discrim); 17546 end loop; 17547 17548 Append_Entity (New_C, Derived_Base); 17549 end if; 17550 17551 if not Is_Tagged then 17552 Append_Elmt (Old_C, Assoc_List); 17553 Append_Elmt (New_C, Assoc_List); 17554 end if; 17555 end Inherit_Component; 17556 17557 -- Variables local to Inherit_Component 17558 17559 Loc : constant Source_Ptr := Sloc (N); 17560 17561 Parent_Discrim : Entity_Id; 17562 Stored_Discrim : Entity_Id; 17563 D : Entity_Id; 17564 Component : Entity_Id; 17565 17566 -- Start of processing for Inherit_Components 17567 17568 begin 17569 if not Is_Tagged then 17570 Append_Elmt (Parent_Base, Assoc_List); 17571 Append_Elmt (Derived_Base, Assoc_List); 17572 end if; 17573 17574 -- Inherit parent discriminants if needed 17575 17576 if Inherit_Discr then 17577 Parent_Discrim := First_Discriminant (Parent_Base); 17578 while Present (Parent_Discrim) loop 17579 Inherit_Component (Parent_Discrim, Plain_Discrim => True); 17580 Next_Discriminant (Parent_Discrim); 17581 end loop; 17582 end if; 17583 17584 -- Create explicit stored discrims for untagged types when necessary 17585 17586 if not Has_Unknown_Discriminants (Derived_Base) 17587 and then Has_Discriminants (Parent_Base) 17588 and then not Is_Tagged 17589 and then 17590 (not Inherit_Discr 17591 or else First_Discriminant (Parent_Base) /= 17592 First_Stored_Discriminant (Parent_Base)) 17593 then 17594 Stored_Discrim := First_Stored_Discriminant (Parent_Base); 17595 while Present (Stored_Discrim) loop 17596 Inherit_Component (Stored_Discrim, Stored_Discrim => True); 17597 Next_Stored_Discriminant (Stored_Discrim); 17598 end loop; 17599 end if; 17600 17601 -- See if we can apply the second transformation for derived types, as 17602 -- explained in point 6. in the comments above Build_Derived_Record_Type 17603 -- This is achieved by appending Derived_Base discriminants into Discs, 17604 -- which has the side effect of returning a non empty Discs list to the 17605 -- caller of Inherit_Components, which is what we want. This must be 17606 -- done for private derived types if there are explicit stored 17607 -- discriminants, to ensure that we can retrieve the values of the 17608 -- constraints provided in the ancestors. 17609 17610 if Inherit_Discr 17611 and then Is_Empty_Elmt_List (Discs) 17612 and then Present (First_Discriminant (Derived_Base)) 17613 and then 17614 (not Is_Private_Type (Derived_Base) 17615 or else Is_Completely_Hidden 17616 (First_Stored_Discriminant (Derived_Base)) 17617 or else Is_Generic_Type (Derived_Base)) 17618 then 17619 D := First_Discriminant (Derived_Base); 17620 while Present (D) loop 17621 Append_Elmt (New_Occurrence_Of (D, Loc), Discs); 17622 Next_Discriminant (D); 17623 end loop; 17624 end if; 17625 17626 -- Finally, inherit non-discriminant components unless they are not 17627 -- visible because defined or inherited from the full view of the 17628 -- parent. Don't inherit the _parent field of the parent type. 17629 17630 Component := First_Entity (Parent_Base); 17631 while Present (Component) loop 17632 17633 -- Ada 2005 (AI-251): Do not inherit components associated with 17634 -- secondary tags of the parent. 17635 17636 if Ekind (Component) = E_Component 17637 and then Present (Related_Type (Component)) 17638 then 17639 null; 17640 17641 elsif Ekind (Component) /= E_Component 17642 or else Chars (Component) = Name_uParent 17643 then 17644 null; 17645 17646 -- If the derived type is within the parent type's declarative 17647 -- region, then the components can still be inherited even though 17648 -- they aren't visible at this point. This can occur for cases 17649 -- such as within public child units where the components must 17650 -- become visible upon entering the child unit's private part. 17651 17652 elsif not Is_Visible_Component (Component) 17653 and then not In_Open_Scopes (Scope (Parent_Base)) 17654 then 17655 null; 17656 17657 elsif Ekind_In (Derived_Base, E_Private_Type, 17658 E_Limited_Private_Type) 17659 then 17660 null; 17661 17662 else 17663 Inherit_Component (Component); 17664 end if; 17665 17666 Next_Entity (Component); 17667 end loop; 17668 17669 -- For tagged derived types, inherited discriminants cannot be used in 17670 -- component declarations of the record extension part. To achieve this 17671 -- we mark the inherited discriminants as not visible. 17672 17673 if Is_Tagged and then Inherit_Discr then 17674 D := First_Discriminant (Derived_Base); 17675 while Present (D) loop 17676 Set_Is_Immediately_Visible (D, False); 17677 Next_Discriminant (D); 17678 end loop; 17679 end if; 17680 17681 return Assoc_List; 17682 end Inherit_Components; 17683 17684 ----------------------------- 17685 -- Inherit_Predicate_Flags -- 17686 ----------------------------- 17687 17688 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is 17689 begin 17690 Set_Has_Predicates (Subt, Has_Predicates (Par)); 17691 Set_Has_Static_Predicate_Aspect 17692 (Subt, Has_Static_Predicate_Aspect (Par)); 17693 Set_Has_Dynamic_Predicate_Aspect 17694 (Subt, Has_Dynamic_Predicate_Aspect (Par)); 17695 end Inherit_Predicate_Flags; 17696 17697 ---------------------- 17698 -- Is_EVF_Procedure -- 17699 ---------------------- 17700 17701 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is 17702 Formal : Entity_Id; 17703 17704 begin 17705 -- Examine the formals of an Extensions_Visible False procedure looking 17706 -- for a controlling OUT parameter. 17707 17708 if Ekind (Subp) = E_Procedure 17709 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False 17710 then 17711 Formal := First_Formal (Subp); 17712 while Present (Formal) loop 17713 if Ekind (Formal) = E_Out_Parameter 17714 and then Is_Controlling_Formal (Formal) 17715 then 17716 return True; 17717 end if; 17718 17719 Next_Formal (Formal); 17720 end loop; 17721 end if; 17722 17723 return False; 17724 end Is_EVF_Procedure; 17725 17726 ----------------------- 17727 -- Is_Null_Extension -- 17728 ----------------------- 17729 17730 function Is_Null_Extension (T : Entity_Id) return Boolean is 17731 Type_Decl : constant Node_Id := Parent (Base_Type (T)); 17732 Comp_List : Node_Id; 17733 Comp : Node_Id; 17734 17735 begin 17736 if Nkind (Type_Decl) /= N_Full_Type_Declaration 17737 or else not Is_Tagged_Type (T) 17738 or else Nkind (Type_Definition (Type_Decl)) /= 17739 N_Derived_Type_Definition 17740 or else No (Record_Extension_Part (Type_Definition (Type_Decl))) 17741 then 17742 return False; 17743 end if; 17744 17745 Comp_List := 17746 Component_List (Record_Extension_Part (Type_Definition (Type_Decl))); 17747 17748 if Present (Discriminant_Specifications (Type_Decl)) then 17749 return False; 17750 17751 elsif Present (Comp_List) 17752 and then Is_Non_Empty_List (Component_Items (Comp_List)) 17753 then 17754 Comp := First (Component_Items (Comp_List)); 17755 17756 -- Only user-defined components are relevant. The component list 17757 -- may also contain a parent component and internal components 17758 -- corresponding to secondary tags, but these do not determine 17759 -- whether this is a null extension. 17760 17761 while Present (Comp) loop 17762 if Comes_From_Source (Comp) then 17763 return False; 17764 end if; 17765 17766 Next (Comp); 17767 end loop; 17768 17769 return True; 17770 17771 else 17772 return True; 17773 end if; 17774 end Is_Null_Extension; 17775 17776 ------------------------------ 17777 -- Is_Valid_Constraint_Kind -- 17778 ------------------------------ 17779 17780 function Is_Valid_Constraint_Kind 17781 (T_Kind : Type_Kind; 17782 Constraint_Kind : Node_Kind) return Boolean 17783 is 17784 begin 17785 case T_Kind is 17786 when Enumeration_Kind | 17787 Integer_Kind => 17788 return Constraint_Kind = N_Range_Constraint; 17789 17790 when Decimal_Fixed_Point_Kind => 17791 return Nkind_In (Constraint_Kind, N_Digits_Constraint, 17792 N_Range_Constraint); 17793 17794 when Ordinary_Fixed_Point_Kind => 17795 return Nkind_In (Constraint_Kind, N_Delta_Constraint, 17796 N_Range_Constraint); 17797 17798 when Float_Kind => 17799 return Nkind_In (Constraint_Kind, N_Digits_Constraint, 17800 N_Range_Constraint); 17801 17802 when Access_Kind | 17803 Array_Kind | 17804 E_Record_Type | 17805 E_Record_Subtype | 17806 Class_Wide_Kind | 17807 E_Incomplete_Type | 17808 Private_Kind | 17809 Concurrent_Kind => 17810 return Constraint_Kind = N_Index_Or_Discriminant_Constraint; 17811 17812 when others => 17813 return True; -- Error will be detected later 17814 end case; 17815 end Is_Valid_Constraint_Kind; 17816 17817 -------------------------- 17818 -- Is_Visible_Component -- 17819 -------------------------- 17820 17821 function Is_Visible_Component 17822 (C : Entity_Id; 17823 N : Node_Id := Empty) return Boolean 17824 is 17825 Original_Comp : Entity_Id := Empty; 17826 Original_Type : Entity_Id; 17827 Type_Scope : Entity_Id; 17828 17829 function Is_Local_Type (Typ : Entity_Id) return Boolean; 17830 -- Check whether parent type of inherited component is declared locally, 17831 -- possibly within a nested package or instance. The current scope is 17832 -- the derived record itself. 17833 17834 ------------------- 17835 -- Is_Local_Type -- 17836 ------------------- 17837 17838 function Is_Local_Type (Typ : Entity_Id) return Boolean is 17839 Scop : Entity_Id; 17840 17841 begin 17842 Scop := Scope (Typ); 17843 while Present (Scop) 17844 and then Scop /= Standard_Standard 17845 loop 17846 if Scop = Scope (Current_Scope) then 17847 return True; 17848 end if; 17849 17850 Scop := Scope (Scop); 17851 end loop; 17852 17853 return False; 17854 end Is_Local_Type; 17855 17856 -- Start of processing for Is_Visible_Component 17857 17858 begin 17859 if Ekind_In (C, E_Component, E_Discriminant) then 17860 Original_Comp := Original_Record_Component (C); 17861 end if; 17862 17863 if No (Original_Comp) then 17864 17865 -- Premature usage, or previous error 17866 17867 return False; 17868 17869 else 17870 Original_Type := Scope (Original_Comp); 17871 Type_Scope := Scope (Base_Type (Scope (C))); 17872 end if; 17873 17874 -- This test only concerns tagged types 17875 17876 if not Is_Tagged_Type (Original_Type) then 17877 return True; 17878 17879 -- If it is _Parent or _Tag, there is no visibility issue 17880 17881 elsif not Comes_From_Source (Original_Comp) then 17882 return True; 17883 17884 -- Discriminants are visible unless the (private) type has unknown 17885 -- discriminants. If the discriminant reference is inserted for a 17886 -- discriminant check on a full view it is also visible. 17887 17888 elsif Ekind (Original_Comp) = E_Discriminant 17889 and then 17890 (not Has_Unknown_Discriminants (Original_Type) 17891 or else (Present (N) 17892 and then Nkind (N) = N_Selected_Component 17893 and then Nkind (Prefix (N)) = N_Type_Conversion 17894 and then not Comes_From_Source (Prefix (N)))) 17895 then 17896 return True; 17897 17898 -- In the body of an instantiation, no need to check for the visibility 17899 -- of a component. 17900 17901 elsif In_Instance_Body then 17902 return True; 17903 17904 -- If the component has been declared in an ancestor which is currently 17905 -- a private type, then it is not visible. The same applies if the 17906 -- component's containing type is not in an open scope and the original 17907 -- component's enclosing type is a visible full view of a private type 17908 -- (which can occur in cases where an attempt is being made to reference 17909 -- a component in a sibling package that is inherited from a visible 17910 -- component of a type in an ancestor package; the component in the 17911 -- sibling package should not be visible even though the component it 17912 -- inherited from is visible). This does not apply however in the case 17913 -- where the scope of the type is a private child unit, or when the 17914 -- parent comes from a local package in which the ancestor is currently 17915 -- visible. The latter suppression of visibility is needed for cases 17916 -- that are tested in B730006. 17917 17918 elsif Is_Private_Type (Original_Type) 17919 or else 17920 (not Is_Private_Descendant (Type_Scope) 17921 and then not In_Open_Scopes (Type_Scope) 17922 and then Has_Private_Declaration (Original_Type)) 17923 then 17924 -- If the type derives from an entity in a formal package, there 17925 -- are no additional visible components. 17926 17927 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) = 17928 N_Formal_Package_Declaration 17929 then 17930 return False; 17931 17932 -- if we are not in the private part of the current package, there 17933 -- are no additional visible components. 17934 17935 elsif Ekind (Scope (Current_Scope)) = E_Package 17936 and then not In_Private_Part (Scope (Current_Scope)) 17937 then 17938 return False; 17939 else 17940 return 17941 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit)) 17942 and then In_Open_Scopes (Scope (Original_Type)) 17943 and then Is_Local_Type (Type_Scope); 17944 end if; 17945 17946 -- There is another weird way in which a component may be invisible when 17947 -- the private and the full view are not derived from the same ancestor. 17948 -- Here is an example : 17949 17950 -- type A1 is tagged record F1 : integer; end record; 17951 -- type A2 is new A1 with record F2 : integer; end record; 17952 -- type T is new A1 with private; 17953 -- private 17954 -- type T is new A2 with null record; 17955 17956 -- In this case, the full view of T inherits F1 and F2 but the private 17957 -- view inherits only F1 17958 17959 else 17960 declare 17961 Ancestor : Entity_Id := Scope (C); 17962 17963 begin 17964 loop 17965 if Ancestor = Original_Type then 17966 return True; 17967 17968 -- The ancestor may have a partial view of the original type, 17969 -- but if the full view is in scope, as in a child body, the 17970 -- component is visible. 17971 17972 elsif In_Private_Part (Scope (Original_Type)) 17973 and then Full_View (Ancestor) = Original_Type 17974 then 17975 return True; 17976 17977 elsif Ancestor = Etype (Ancestor) then 17978 17979 -- No further ancestors to examine 17980 17981 return False; 17982 end if; 17983 17984 Ancestor := Etype (Ancestor); 17985 end loop; 17986 end; 17987 end if; 17988 end Is_Visible_Component; 17989 17990 -------------------------- 17991 -- Make_Class_Wide_Type -- 17992 -------------------------- 17993 17994 procedure Make_Class_Wide_Type (T : Entity_Id) is 17995 CW_Type : Entity_Id; 17996 CW_Name : Name_Id; 17997 Next_E : Entity_Id; 17998 17999 begin 18000 if Present (Class_Wide_Type (T)) then 18001 18002 -- The class-wide type is a partially decorated entity created for a 18003 -- unanalyzed tagged type referenced through a limited with clause. 18004 -- When the tagged type is analyzed, its class-wide type needs to be 18005 -- redecorated. Note that we reuse the entity created by Decorate_ 18006 -- Tagged_Type in order to preserve all links. 18007 18008 if Materialize_Entity (Class_Wide_Type (T)) then 18009 CW_Type := Class_Wide_Type (T); 18010 Set_Materialize_Entity (CW_Type, False); 18011 18012 -- The class wide type can have been defined by the partial view, in 18013 -- which case everything is already done. 18014 18015 else 18016 return; 18017 end if; 18018 18019 -- Default case, we need to create a new class-wide type 18020 18021 else 18022 CW_Type := 18023 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T'); 18024 end if; 18025 18026 -- Inherit root type characteristics 18027 18028 CW_Name := Chars (CW_Type); 18029 Next_E := Next_Entity (CW_Type); 18030 Copy_Node (T, CW_Type); 18031 Set_Comes_From_Source (CW_Type, False); 18032 Set_Chars (CW_Type, CW_Name); 18033 Set_Parent (CW_Type, Parent (T)); 18034 Set_Next_Entity (CW_Type, Next_E); 18035 18036 -- Ensure we have a new freeze node for the class-wide type. The partial 18037 -- view may have freeze action of its own, requiring a proper freeze 18038 -- node, and the same freeze node cannot be shared between the two 18039 -- types. 18040 18041 Set_Has_Delayed_Freeze (CW_Type); 18042 Set_Freeze_Node (CW_Type, Empty); 18043 18044 -- Customize the class-wide type: It has no prim. op., it cannot be 18045 -- abstract and its Etype points back to the specific root type. 18046 18047 Set_Ekind (CW_Type, E_Class_Wide_Type); 18048 Set_Is_Tagged_Type (CW_Type, True); 18049 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List); 18050 Set_Is_Abstract_Type (CW_Type, False); 18051 Set_Is_Constrained (CW_Type, False); 18052 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T)); 18053 Set_Default_SSO (CW_Type); 18054 18055 if Ekind (T) = E_Class_Wide_Subtype then 18056 Set_Etype (CW_Type, Etype (Base_Type (T))); 18057 else 18058 Set_Etype (CW_Type, T); 18059 end if; 18060 18061 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams); 18062 18063 -- If this is the class_wide type of a constrained subtype, it does 18064 -- not have discriminants. 18065 18066 Set_Has_Discriminants (CW_Type, 18067 Has_Discriminants (T) and then not Is_Constrained (T)); 18068 18069 Set_Has_Unknown_Discriminants (CW_Type, True); 18070 Set_Class_Wide_Type (T, CW_Type); 18071 Set_Equivalent_Type (CW_Type, Empty); 18072 18073 -- The class-wide type of a class-wide type is itself (RM 3.9(14)) 18074 18075 Set_Class_Wide_Type (CW_Type, CW_Type); 18076 18077 -- Inherit the "ghostness" from the root tagged type 18078 18079 if Ghost_Mode > None or else Is_Ghost_Entity (T) then 18080 Set_Is_Ghost_Entity (CW_Type); 18081 end if; 18082 end Make_Class_Wide_Type; 18083 18084 ---------------- 18085 -- Make_Index -- 18086 ---------------- 18087 18088 procedure Make_Index 18089 (N : Node_Id; 18090 Related_Nod : Node_Id; 18091 Related_Id : Entity_Id := Empty; 18092 Suffix_Index : Nat := 1; 18093 In_Iter_Schm : Boolean := False) 18094 is 18095 R : Node_Id; 18096 T : Entity_Id; 18097 Def_Id : Entity_Id := Empty; 18098 Found : Boolean := False; 18099 18100 begin 18101 -- For a discrete range used in a constrained array definition and 18102 -- defined by a range, an implicit conversion to the predefined type 18103 -- INTEGER is assumed if each bound is either a numeric literal, a named 18104 -- number, or an attribute, and the type of both bounds (prior to the 18105 -- implicit conversion) is the type universal_integer. Otherwise, both 18106 -- bounds must be of the same discrete type, other than universal 18107 -- integer; this type must be determinable independently of the 18108 -- context, but using the fact that the type must be discrete and that 18109 -- both bounds must have the same type. 18110 18111 -- Character literals also have a universal type in the absence of 18112 -- of additional context, and are resolved to Standard_Character. 18113 18114 if Nkind (N) = N_Range then 18115 18116 -- The index is given by a range constraint. The bounds are known 18117 -- to be of a consistent type. 18118 18119 if not Is_Overloaded (N) then 18120 T := Etype (N); 18121 18122 -- For universal bounds, choose the specific predefined type 18123 18124 if T = Universal_Integer then 18125 T := Standard_Integer; 18126 18127 elsif T = Any_Character then 18128 Ambiguous_Character (Low_Bound (N)); 18129 18130 T := Standard_Character; 18131 end if; 18132 18133 -- The node may be overloaded because some user-defined operators 18134 -- are available, but if a universal interpretation exists it is 18135 -- also the selected one. 18136 18137 elsif Universal_Interpretation (N) = Universal_Integer then 18138 T := Standard_Integer; 18139 18140 else 18141 T := Any_Type; 18142 18143 declare 18144 Ind : Interp_Index; 18145 It : Interp; 18146 18147 begin 18148 Get_First_Interp (N, Ind, It); 18149 while Present (It.Typ) loop 18150 if Is_Discrete_Type (It.Typ) then 18151 18152 if Found 18153 and then not Covers (It.Typ, T) 18154 and then not Covers (T, It.Typ) 18155 then 18156 Error_Msg_N ("ambiguous bounds in discrete range", N); 18157 exit; 18158 else 18159 T := It.Typ; 18160 Found := True; 18161 end if; 18162 end if; 18163 18164 Get_Next_Interp (Ind, It); 18165 end loop; 18166 18167 if T = Any_Type then 18168 Error_Msg_N ("discrete type required for range", N); 18169 Set_Etype (N, Any_Type); 18170 return; 18171 18172 elsif T = Universal_Integer then 18173 T := Standard_Integer; 18174 end if; 18175 end; 18176 end if; 18177 18178 if not Is_Discrete_Type (T) then 18179 Error_Msg_N ("discrete type required for range", N); 18180 Set_Etype (N, Any_Type); 18181 return; 18182 end if; 18183 18184 if Nkind (Low_Bound (N)) = N_Attribute_Reference 18185 and then Attribute_Name (Low_Bound (N)) = Name_First 18186 and then Is_Entity_Name (Prefix (Low_Bound (N))) 18187 and then Is_Type (Entity (Prefix (Low_Bound (N)))) 18188 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N)))) 18189 then 18190 -- The type of the index will be the type of the prefix, as long 18191 -- as the upper bound is 'Last of the same type. 18192 18193 Def_Id := Entity (Prefix (Low_Bound (N))); 18194 18195 if Nkind (High_Bound (N)) /= N_Attribute_Reference 18196 or else Attribute_Name (High_Bound (N)) /= Name_Last 18197 or else not Is_Entity_Name (Prefix (High_Bound (N))) 18198 or else Entity (Prefix (High_Bound (N))) /= Def_Id 18199 then 18200 Def_Id := Empty; 18201 end if; 18202 end if; 18203 18204 R := N; 18205 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm); 18206 18207 elsif Nkind (N) = N_Subtype_Indication then 18208 18209 -- The index is given by a subtype with a range constraint 18210 18211 T := Base_Type (Entity (Subtype_Mark (N))); 18212 18213 if not Is_Discrete_Type (T) then 18214 Error_Msg_N ("discrete type required for range", N); 18215 Set_Etype (N, Any_Type); 18216 return; 18217 end if; 18218 18219 R := Range_Expression (Constraint (N)); 18220 18221 Resolve (R, T); 18222 Process_Range_Expr_In_Decl 18223 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm); 18224 18225 elsif Nkind (N) = N_Attribute_Reference then 18226 18227 -- Catch beginner's error (use of attribute other than 'Range) 18228 18229 if Attribute_Name (N) /= Name_Range then 18230 Error_Msg_N ("expect attribute ''Range", N); 18231 Set_Etype (N, Any_Type); 18232 return; 18233 end if; 18234 18235 -- If the node denotes the range of a type mark, that is also the 18236 -- resulting type, and we do not need to create an Itype for it. 18237 18238 if Is_Entity_Name (Prefix (N)) 18239 and then Comes_From_Source (N) 18240 and then Is_Type (Entity (Prefix (N))) 18241 and then Is_Discrete_Type (Entity (Prefix (N))) 18242 then 18243 Def_Id := Entity (Prefix (N)); 18244 end if; 18245 18246 Analyze_And_Resolve (N); 18247 T := Etype (N); 18248 R := N; 18249 18250 -- If none of the above, must be a subtype. We convert this to a 18251 -- range attribute reference because in the case of declared first 18252 -- named subtypes, the types in the range reference can be different 18253 -- from the type of the entity. A range attribute normalizes the 18254 -- reference and obtains the correct types for the bounds. 18255 18256 -- This transformation is in the nature of an expansion, is only 18257 -- done if expansion is active. In particular, it is not done on 18258 -- formal generic types, because we need to retain the name of the 18259 -- original index for instantiation purposes. 18260 18261 else 18262 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then 18263 Error_Msg_N ("invalid subtype mark in discrete range ", N); 18264 Set_Etype (N, Any_Integer); 18265 return; 18266 18267 else 18268 -- The type mark may be that of an incomplete type. It is only 18269 -- now that we can get the full view, previous analysis does 18270 -- not look specifically for a type mark. 18271 18272 Set_Entity (N, Get_Full_View (Entity (N))); 18273 Set_Etype (N, Entity (N)); 18274 Def_Id := Entity (N); 18275 18276 if not Is_Discrete_Type (Def_Id) then 18277 Error_Msg_N ("discrete type required for index", N); 18278 Set_Etype (N, Any_Type); 18279 return; 18280 end if; 18281 end if; 18282 18283 if Expander_Active then 18284 Rewrite (N, 18285 Make_Attribute_Reference (Sloc (N), 18286 Attribute_Name => Name_Range, 18287 Prefix => Relocate_Node (N))); 18288 18289 -- The original was a subtype mark that does not freeze. This 18290 -- means that the rewritten version must not freeze either. 18291 18292 Set_Must_Not_Freeze (N); 18293 Set_Must_Not_Freeze (Prefix (N)); 18294 Analyze_And_Resolve (N); 18295 T := Etype (N); 18296 R := N; 18297 18298 -- If expander is inactive, type is legal, nothing else to construct 18299 18300 else 18301 return; 18302 end if; 18303 end if; 18304 18305 if not Is_Discrete_Type (T) then 18306 Error_Msg_N ("discrete type required for range", N); 18307 Set_Etype (N, Any_Type); 18308 return; 18309 18310 elsif T = Any_Type then 18311 Set_Etype (N, Any_Type); 18312 return; 18313 end if; 18314 18315 -- We will now create the appropriate Itype to describe the range, but 18316 -- first a check. If we originally had a subtype, then we just label 18317 -- the range with this subtype. Not only is there no need to construct 18318 -- a new subtype, but it is wrong to do so for two reasons: 18319 18320 -- 1. A legality concern, if we have a subtype, it must not freeze, 18321 -- and the Itype would cause freezing incorrectly 18322 18323 -- 2. An efficiency concern, if we created an Itype, it would not be 18324 -- recognized as the same type for the purposes of eliminating 18325 -- checks in some circumstances. 18326 18327 -- We signal this case by setting the subtype entity in Def_Id 18328 18329 if No (Def_Id) then 18330 Def_Id := 18331 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index); 18332 Set_Etype (Def_Id, Base_Type (T)); 18333 18334 if Is_Signed_Integer_Type (T) then 18335 Set_Ekind (Def_Id, E_Signed_Integer_Subtype); 18336 18337 elsif Is_Modular_Integer_Type (T) then 18338 Set_Ekind (Def_Id, E_Modular_Integer_Subtype); 18339 18340 else 18341 Set_Ekind (Def_Id, E_Enumeration_Subtype); 18342 Set_Is_Character_Type (Def_Id, Is_Character_Type (T)); 18343 Set_First_Literal (Def_Id, First_Literal (T)); 18344 end if; 18345 18346 Set_Size_Info (Def_Id, (T)); 18347 Set_RM_Size (Def_Id, RM_Size (T)); 18348 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 18349 18350 Set_Scalar_Range (Def_Id, R); 18351 Conditional_Delay (Def_Id, T); 18352 18353 if Nkind (N) = N_Subtype_Indication then 18354 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N))); 18355 end if; 18356 18357 -- In the subtype indication case, if the immediate parent of the 18358 -- new subtype is non-static, then the subtype we create is non- 18359 -- static, even if its bounds are static. 18360 18361 if Nkind (N) = N_Subtype_Indication 18362 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N))) 18363 then 18364 Set_Is_Non_Static_Subtype (Def_Id); 18365 end if; 18366 end if; 18367 18368 -- Final step is to label the index with this constructed type 18369 18370 Set_Etype (N, Def_Id); 18371 end Make_Index; 18372 18373 ------------------------------ 18374 -- Modular_Type_Declaration -- 18375 ------------------------------ 18376 18377 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is 18378 Mod_Expr : constant Node_Id := Expression (Def); 18379 M_Val : Uint; 18380 18381 procedure Set_Modular_Size (Bits : Int); 18382 -- Sets RM_Size to Bits, and Esize to normal word size above this 18383 18384 ---------------------- 18385 -- Set_Modular_Size -- 18386 ---------------------- 18387 18388 procedure Set_Modular_Size (Bits : Int) is 18389 begin 18390 Set_RM_Size (T, UI_From_Int (Bits)); 18391 18392 if Bits <= 8 then 18393 Init_Esize (T, 8); 18394 18395 elsif Bits <= 16 then 18396 Init_Esize (T, 16); 18397 18398 elsif Bits <= 32 then 18399 Init_Esize (T, 32); 18400 18401 else 18402 Init_Esize (T, System_Max_Binary_Modulus_Power); 18403 end if; 18404 18405 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then 18406 Set_Is_Known_Valid (T); 18407 end if; 18408 end Set_Modular_Size; 18409 18410 -- Start of processing for Modular_Type_Declaration 18411 18412 begin 18413 -- If the mod expression is (exactly) 2 * literal, where literal is 18414 -- 64 or less,then almost certainly the * was meant to be **. Warn. 18415 18416 if Warn_On_Suspicious_Modulus_Value 18417 and then Nkind (Mod_Expr) = N_Op_Multiply 18418 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal 18419 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2 18420 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal 18421 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64 18422 then 18423 Error_Msg_N 18424 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr); 18425 end if; 18426 18427 -- Proceed with analysis of mod expression 18428 18429 Analyze_And_Resolve (Mod_Expr, Any_Integer); 18430 Set_Etype (T, T); 18431 Set_Ekind (T, E_Modular_Integer_Type); 18432 Init_Alignment (T); 18433 Set_Is_Constrained (T); 18434 18435 if not Is_OK_Static_Expression (Mod_Expr) then 18436 Flag_Non_Static_Expr 18437 ("non-static expression used for modular type bound!", Mod_Expr); 18438 M_Val := 2 ** System_Max_Binary_Modulus_Power; 18439 else 18440 M_Val := Expr_Value (Mod_Expr); 18441 end if; 18442 18443 if M_Val < 1 then 18444 Error_Msg_N ("modulus value must be positive", Mod_Expr); 18445 M_Val := 2 ** System_Max_Binary_Modulus_Power; 18446 end if; 18447 18448 if M_Val > 2 ** Standard_Long_Integer_Size then 18449 Check_Restriction (No_Long_Long_Integers, Mod_Expr); 18450 end if; 18451 18452 Set_Modulus (T, M_Val); 18453 18454 -- Create bounds for the modular type based on the modulus given in 18455 -- the type declaration and then analyze and resolve those bounds. 18456 18457 Set_Scalar_Range (T, 18458 Make_Range (Sloc (Mod_Expr), 18459 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0), 18460 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1))); 18461 18462 -- Properly analyze the literals for the range. We do this manually 18463 -- because we can't go calling Resolve, since we are resolving these 18464 -- bounds with the type, and this type is certainly not complete yet. 18465 18466 Set_Etype (Low_Bound (Scalar_Range (T)), T); 18467 Set_Etype (High_Bound (Scalar_Range (T)), T); 18468 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T))); 18469 Set_Is_Static_Expression (High_Bound (Scalar_Range (T))); 18470 18471 -- Loop through powers of two to find number of bits required 18472 18473 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop 18474 18475 -- Binary case 18476 18477 if M_Val = 2 ** Bits then 18478 Set_Modular_Size (Bits); 18479 return; 18480 18481 -- Nonbinary case 18482 18483 elsif M_Val < 2 ** Bits then 18484 Check_SPARK_05_Restriction ("modulus should be a power of 2", T); 18485 Set_Non_Binary_Modulus (T); 18486 18487 if Bits > System_Max_Nonbinary_Modulus_Power then 18488 Error_Msg_Uint_1 := 18489 UI_From_Int (System_Max_Nonbinary_Modulus_Power); 18490 Error_Msg_F 18491 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr); 18492 Set_Modular_Size (System_Max_Binary_Modulus_Power); 18493 return; 18494 18495 else 18496 -- In the nonbinary case, set size as per RM 13.3(55) 18497 18498 Set_Modular_Size (Bits); 18499 return; 18500 end if; 18501 end if; 18502 18503 end loop; 18504 18505 -- If we fall through, then the size exceed System.Max_Binary_Modulus 18506 -- so we just signal an error and set the maximum size. 18507 18508 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power); 18509 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr); 18510 18511 Set_Modular_Size (System_Max_Binary_Modulus_Power); 18512 Init_Alignment (T); 18513 18514 end Modular_Type_Declaration; 18515 18516 -------------------------- 18517 -- New_Concatenation_Op -- 18518 -------------------------- 18519 18520 procedure New_Concatenation_Op (Typ : Entity_Id) is 18521 Loc : constant Source_Ptr := Sloc (Typ); 18522 Op : Entity_Id; 18523 18524 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id; 18525 -- Create abbreviated declaration for the formal of a predefined 18526 -- Operator 'Op' of type 'Typ' 18527 18528 -------------------- 18529 -- Make_Op_Formal -- 18530 -------------------- 18531 18532 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is 18533 Formal : Entity_Id; 18534 begin 18535 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P'); 18536 Set_Etype (Formal, Typ); 18537 Set_Mechanism (Formal, Default_Mechanism); 18538 return Formal; 18539 end Make_Op_Formal; 18540 18541 -- Start of processing for New_Concatenation_Op 18542 18543 begin 18544 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat); 18545 18546 Set_Ekind (Op, E_Operator); 18547 Set_Scope (Op, Current_Scope); 18548 Set_Etype (Op, Typ); 18549 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat)); 18550 Set_Is_Immediately_Visible (Op); 18551 Set_Is_Intrinsic_Subprogram (Op); 18552 Set_Has_Completion (Op); 18553 Append_Entity (Op, Current_Scope); 18554 18555 Set_Name_Entity_Id (Name_Op_Concat, Op); 18556 18557 Append_Entity (Make_Op_Formal (Typ, Op), Op); 18558 Append_Entity (Make_Op_Formal (Typ, Op), Op); 18559 end New_Concatenation_Op; 18560 18561 ------------------------- 18562 -- OK_For_Limited_Init -- 18563 ------------------------- 18564 18565 -- ???Check all calls of this, and compare the conditions under which it's 18566 -- called. 18567 18568 function OK_For_Limited_Init 18569 (Typ : Entity_Id; 18570 Exp : Node_Id) return Boolean 18571 is 18572 begin 18573 return Is_CPP_Constructor_Call (Exp) 18574 or else (Ada_Version >= Ada_2005 18575 and then not Debug_Flag_Dot_L 18576 and then OK_For_Limited_Init_In_05 (Typ, Exp)); 18577 end OK_For_Limited_Init; 18578 18579 ------------------------------- 18580 -- OK_For_Limited_Init_In_05 -- 18581 ------------------------------- 18582 18583 function OK_For_Limited_Init_In_05 18584 (Typ : Entity_Id; 18585 Exp : Node_Id) return Boolean 18586 is 18587 begin 18588 -- An object of a limited interface type can be initialized with any 18589 -- expression of a nonlimited descendant type. 18590 18591 if Is_Class_Wide_Type (Typ) 18592 and then Is_Limited_Interface (Typ) 18593 and then not Is_Limited_Type (Etype (Exp)) 18594 then 18595 return True; 18596 end if; 18597 18598 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in 18599 -- case of limited aggregates (including extension aggregates), and 18600 -- function calls. The function call may have been given in prefixed 18601 -- notation, in which case the original node is an indexed component. 18602 -- If the function is parameterless, the original node was an explicit 18603 -- dereference. The function may also be parameterless, in which case 18604 -- the source node is just an identifier. 18605 18606 -- A branch of a conditional expression may have been removed if the 18607 -- condition is statically known. This happens during expansion, and 18608 -- thus will not happen if previous errors were encountered. The check 18609 -- will have been performed on the chosen branch, which replaces the 18610 -- original conditional expression. 18611 18612 if No (Exp) then 18613 return True; 18614 end if; 18615 18616 case Nkind (Original_Node (Exp)) is 18617 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op => 18618 return True; 18619 18620 when N_Identifier => 18621 return Present (Entity (Original_Node (Exp))) 18622 and then Ekind (Entity (Original_Node (Exp))) = E_Function; 18623 18624 when N_Qualified_Expression => 18625 return 18626 OK_For_Limited_Init_In_05 18627 (Typ, Expression (Original_Node (Exp))); 18628 18629 -- Ada 2005 (AI-251): If a class-wide interface object is initialized 18630 -- with a function call, the expander has rewritten the call into an 18631 -- N_Type_Conversion node to force displacement of the pointer to 18632 -- reference the component containing the secondary dispatch table. 18633 -- Otherwise a type conversion is not a legal context. 18634 -- A return statement for a build-in-place function returning a 18635 -- synchronized type also introduces an unchecked conversion. 18636 18637 when N_Type_Conversion | 18638 N_Unchecked_Type_Conversion => 18639 return not Comes_From_Source (Exp) 18640 and then 18641 OK_For_Limited_Init_In_05 18642 (Typ, Expression (Original_Node (Exp))); 18643 18644 when N_Indexed_Component | 18645 N_Selected_Component | 18646 N_Explicit_Dereference => 18647 return Nkind (Exp) = N_Function_Call; 18648 18649 -- A use of 'Input is a function call, hence allowed. Normally the 18650 -- attribute will be changed to a call, but the attribute by itself 18651 -- can occur with -gnatc. 18652 18653 when N_Attribute_Reference => 18654 return Attribute_Name (Original_Node (Exp)) = Name_Input; 18655 18656 -- For a case expression, all dependent expressions must be legal 18657 18658 when N_Case_Expression => 18659 declare 18660 Alt : Node_Id; 18661 18662 begin 18663 Alt := First (Alternatives (Original_Node (Exp))); 18664 while Present (Alt) loop 18665 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then 18666 return False; 18667 end if; 18668 18669 Next (Alt); 18670 end loop; 18671 18672 return True; 18673 end; 18674 18675 -- For an if expression, all dependent expressions must be legal 18676 18677 when N_If_Expression => 18678 declare 18679 Then_Expr : constant Node_Id := 18680 Next (First (Expressions (Original_Node (Exp)))); 18681 Else_Expr : constant Node_Id := Next (Then_Expr); 18682 begin 18683 return OK_For_Limited_Init_In_05 (Typ, Then_Expr) 18684 and then 18685 OK_For_Limited_Init_In_05 (Typ, Else_Expr); 18686 end; 18687 18688 when others => 18689 return False; 18690 end case; 18691 end OK_For_Limited_Init_In_05; 18692 18693 ------------------------------------------- 18694 -- Ordinary_Fixed_Point_Type_Declaration -- 18695 ------------------------------------------- 18696 18697 procedure Ordinary_Fixed_Point_Type_Declaration 18698 (T : Entity_Id; 18699 Def : Node_Id) 18700 is 18701 Loc : constant Source_Ptr := Sloc (Def); 18702 Delta_Expr : constant Node_Id := Delta_Expression (Def); 18703 RRS : constant Node_Id := Real_Range_Specification (Def); 18704 Implicit_Base : Entity_Id; 18705 Delta_Val : Ureal; 18706 Small_Val : Ureal; 18707 Low_Val : Ureal; 18708 High_Val : Ureal; 18709 18710 begin 18711 Check_Restriction (No_Fixed_Point, Def); 18712 18713 -- Create implicit base type 18714 18715 Implicit_Base := 18716 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B'); 18717 Set_Etype (Implicit_Base, Implicit_Base); 18718 18719 -- Analyze and process delta expression 18720 18721 Analyze_And_Resolve (Delta_Expr, Any_Real); 18722 18723 Check_Delta_Expression (Delta_Expr); 18724 Delta_Val := Expr_Value_R (Delta_Expr); 18725 18726 Set_Delta_Value (Implicit_Base, Delta_Val); 18727 18728 -- Compute default small from given delta, which is the largest power 18729 -- of two that does not exceed the given delta value. 18730 18731 declare 18732 Tmp : Ureal; 18733 Scale : Int; 18734 18735 begin 18736 Tmp := Ureal_1; 18737 Scale := 0; 18738 18739 if Delta_Val < Ureal_1 then 18740 while Delta_Val < Tmp loop 18741 Tmp := Tmp / Ureal_2; 18742 Scale := Scale + 1; 18743 end loop; 18744 18745 else 18746 loop 18747 Tmp := Tmp * Ureal_2; 18748 exit when Tmp > Delta_Val; 18749 Scale := Scale - 1; 18750 end loop; 18751 end if; 18752 18753 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2); 18754 end; 18755 18756 Set_Small_Value (Implicit_Base, Small_Val); 18757 18758 -- If no range was given, set a dummy range 18759 18760 if RRS <= Empty_Or_Error then 18761 Low_Val := -Small_Val; 18762 High_Val := Small_Val; 18763 18764 -- Otherwise analyze and process given range 18765 18766 else 18767 declare 18768 Low : constant Node_Id := Low_Bound (RRS); 18769 High : constant Node_Id := High_Bound (RRS); 18770 18771 begin 18772 Analyze_And_Resolve (Low, Any_Real); 18773 Analyze_And_Resolve (High, Any_Real); 18774 Check_Real_Bound (Low); 18775 Check_Real_Bound (High); 18776 18777 -- Obtain and set the range 18778 18779 Low_Val := Expr_Value_R (Low); 18780 High_Val := Expr_Value_R (High); 18781 18782 if Low_Val > High_Val then 18783 Error_Msg_NE ("??fixed point type& has null range", Def, T); 18784 end if; 18785 end; 18786 end if; 18787 18788 -- The range for both the implicit base and the declared first subtype 18789 -- cannot be set yet, so we use the special routine Set_Fixed_Range to 18790 -- set a temporary range in place. Note that the bounds of the base 18791 -- type will be widened to be symmetrical and to fill the available 18792 -- bits when the type is frozen. 18793 18794 -- We could do this with all discrete types, and probably should, but 18795 -- we absolutely have to do it for fixed-point, since the end-points 18796 -- of the range and the size are determined by the small value, which 18797 -- could be reset before the freeze point. 18798 18799 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val); 18800 Set_Fixed_Range (T, Loc, Low_Val, High_Val); 18801 18802 -- Complete definition of first subtype. The inheritance of the rep item 18803 -- chain ensures that SPARK-related pragmas are not clobbered when the 18804 -- ordinary fixed point type acts as a full view of a private type. 18805 18806 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype); 18807 Set_Etype (T, Implicit_Base); 18808 Init_Size_Align (T); 18809 Inherit_Rep_Item_Chain (T, Implicit_Base); 18810 Set_Small_Value (T, Small_Val); 18811 Set_Delta_Value (T, Delta_Val); 18812 Set_Is_Constrained (T); 18813 end Ordinary_Fixed_Point_Type_Declaration; 18814 18815 ---------------------------------- 18816 -- Preanalyze_Assert_Expression -- 18817 ---------------------------------- 18818 18819 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is 18820 begin 18821 In_Assertion_Expr := In_Assertion_Expr + 1; 18822 Preanalyze_Spec_Expression (N, T); 18823 In_Assertion_Expr := In_Assertion_Expr - 1; 18824 end Preanalyze_Assert_Expression; 18825 18826 ----------------------------------- 18827 -- Preanalyze_Default_Expression -- 18828 ----------------------------------- 18829 18830 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is 18831 Save_In_Default_Expr : constant Boolean := In_Default_Expr; 18832 begin 18833 In_Default_Expr := True; 18834 Preanalyze_Spec_Expression (N, T); 18835 In_Default_Expr := Save_In_Default_Expr; 18836 end Preanalyze_Default_Expression; 18837 18838 -------------------------------- 18839 -- Preanalyze_Spec_Expression -- 18840 -------------------------------- 18841 18842 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is 18843 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression; 18844 begin 18845 In_Spec_Expression := True; 18846 Preanalyze_And_Resolve (N, T); 18847 In_Spec_Expression := Save_In_Spec_Expression; 18848 end Preanalyze_Spec_Expression; 18849 18850 ---------------------------------------- 18851 -- Prepare_Private_Subtype_Completion -- 18852 ---------------------------------------- 18853 18854 procedure Prepare_Private_Subtype_Completion 18855 (Id : Entity_Id; 18856 Related_Nod : Node_Id) 18857 is 18858 Id_B : constant Entity_Id := Base_Type (Id); 18859 Full_B : Entity_Id := Full_View (Id_B); 18860 Full : Entity_Id; 18861 18862 begin 18863 if Present (Full_B) then 18864 18865 -- Get to the underlying full view if necessary 18866 18867 if Is_Private_Type (Full_B) 18868 and then Present (Underlying_Full_View (Full_B)) 18869 then 18870 Full_B := Underlying_Full_View (Full_B); 18871 end if; 18872 18873 -- The Base_Type is already completed, we can complete the subtype 18874 -- now. We have to create a new entity with the same name, Thus we 18875 -- can't use Create_Itype. 18876 18877 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id)); 18878 Set_Is_Itype (Full); 18879 Set_Associated_Node_For_Itype (Full, Related_Nod); 18880 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod); 18881 end if; 18882 18883 -- The parent subtype may be private, but the base might not, in some 18884 -- nested instances. In that case, the subtype does not need to be 18885 -- exchanged. It would still be nice to make private subtypes and their 18886 -- bases consistent at all times ??? 18887 18888 if Is_Private_Type (Id_B) then 18889 Append_Elmt (Id, Private_Dependents (Id_B)); 18890 end if; 18891 end Prepare_Private_Subtype_Completion; 18892 18893 --------------------------- 18894 -- Process_Discriminants -- 18895 --------------------------- 18896 18897 procedure Process_Discriminants 18898 (N : Node_Id; 18899 Prev : Entity_Id := Empty) 18900 is 18901 Elist : constant Elist_Id := New_Elmt_List; 18902 Id : Node_Id; 18903 Discr : Node_Id; 18904 Discr_Number : Uint; 18905 Discr_Type : Entity_Id; 18906 Default_Present : Boolean := False; 18907 Default_Not_Present : Boolean := False; 18908 18909 begin 18910 -- A composite type other than an array type can have discriminants. 18911 -- On entry, the current scope is the composite type. 18912 18913 -- The discriminants are initially entered into the scope of the type 18914 -- via Enter_Name with the default Ekind of E_Void to prevent premature 18915 -- use, as explained at the end of this procedure. 18916 18917 Discr := First (Discriminant_Specifications (N)); 18918 while Present (Discr) loop 18919 Enter_Name (Defining_Identifier (Discr)); 18920 18921 -- For navigation purposes we add a reference to the discriminant 18922 -- in the entity for the type. If the current declaration is a 18923 -- completion, place references on the partial view. Otherwise the 18924 -- type is the current scope. 18925 18926 if Present (Prev) then 18927 18928 -- The references go on the partial view, if present. If the 18929 -- partial view has discriminants, the references have been 18930 -- generated already. 18931 18932 if not Has_Discriminants (Prev) then 18933 Generate_Reference (Prev, Defining_Identifier (Discr), 'd'); 18934 end if; 18935 else 18936 Generate_Reference 18937 (Current_Scope, Defining_Identifier (Discr), 'd'); 18938 end if; 18939 18940 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then 18941 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr)); 18942 18943 -- Ada 2005 (AI-254) 18944 18945 if Present (Access_To_Subprogram_Definition 18946 (Discriminant_Type (Discr))) 18947 and then Protected_Present (Access_To_Subprogram_Definition 18948 (Discriminant_Type (Discr))) 18949 then 18950 Discr_Type := 18951 Replace_Anonymous_Access_To_Protected_Subprogram (Discr); 18952 end if; 18953 18954 else 18955 Find_Type (Discriminant_Type (Discr)); 18956 Discr_Type := Etype (Discriminant_Type (Discr)); 18957 18958 if Error_Posted (Discriminant_Type (Discr)) then 18959 Discr_Type := Any_Type; 18960 end if; 18961 end if; 18962 18963 -- Handling of discriminants that are access types 18964 18965 if Is_Access_Type (Discr_Type) then 18966 18967 -- Ada 2005 (AI-230): Access discriminant allowed in non- 18968 -- limited record types 18969 18970 if Ada_Version < Ada_2005 then 18971 Check_Access_Discriminant_Requires_Limited 18972 (Discr, Discriminant_Type (Discr)); 18973 end if; 18974 18975 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then 18976 Error_Msg_N 18977 ("(Ada 83) access discriminant not allowed", Discr); 18978 end if; 18979 18980 -- If not access type, must be a discrete type 18981 18982 elsif not Is_Discrete_Type (Discr_Type) then 18983 Error_Msg_N 18984 ("discriminants must have a discrete or access type", 18985 Discriminant_Type (Discr)); 18986 end if; 18987 18988 Set_Etype (Defining_Identifier (Discr), Discr_Type); 18989 18990 -- If a discriminant specification includes the assignment compound 18991 -- delimiter followed by an expression, the expression is the default 18992 -- expression of the discriminant; the default expression must be of 18993 -- the type of the discriminant. (RM 3.7.1) Since this expression is 18994 -- a default expression, we do the special preanalysis, since this 18995 -- expression does not freeze (see section "Handling of Default and 18996 -- Per-Object Expressions" in spec of package Sem). 18997 18998 if Present (Expression (Discr)) then 18999 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type); 19000 19001 -- Legaity checks 19002 19003 if Nkind (N) = N_Formal_Type_Declaration then 19004 Error_Msg_N 19005 ("discriminant defaults not allowed for formal type", 19006 Expression (Discr)); 19007 19008 -- Flag an error for a tagged type with defaulted discriminants, 19009 -- excluding limited tagged types when compiling for Ada 2012 19010 -- (see AI05-0214). 19011 19012 elsif Is_Tagged_Type (Current_Scope) 19013 and then (not Is_Limited_Type (Current_Scope) 19014 or else Ada_Version < Ada_2012) 19015 and then Comes_From_Source (N) 19016 then 19017 -- Note: see similar test in Check_Or_Process_Discriminants, to 19018 -- handle the (illegal) case of the completion of an untagged 19019 -- view with discriminants with defaults by a tagged full view. 19020 -- We skip the check if Discr does not come from source, to 19021 -- account for the case of an untagged derived type providing 19022 -- defaults for a renamed discriminant from a private untagged 19023 -- ancestor with a tagged full view (ACATS B460006). 19024 19025 if Ada_Version >= Ada_2012 then 19026 Error_Msg_N 19027 ("discriminants of nonlimited tagged type cannot have" 19028 & " defaults", 19029 Expression (Discr)); 19030 else 19031 Error_Msg_N 19032 ("discriminants of tagged type cannot have defaults", 19033 Expression (Discr)); 19034 end if; 19035 19036 else 19037 Default_Present := True; 19038 Append_Elmt (Expression (Discr), Elist); 19039 19040 -- Tag the defining identifiers for the discriminants with 19041 -- their corresponding default expressions from the tree. 19042 19043 Set_Discriminant_Default_Value 19044 (Defining_Identifier (Discr), Expression (Discr)); 19045 end if; 19046 19047 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag 19048 -- gets set unless we can be sure that no range check is required. 19049 19050 if (GNATprove_Mode or not Expander_Active) 19051 and then not 19052 Is_In_Range 19053 (Expression (Discr), Discr_Type, Assume_Valid => True) 19054 then 19055 Set_Do_Range_Check (Expression (Discr)); 19056 end if; 19057 19058 -- No default discriminant value given 19059 19060 else 19061 Default_Not_Present := True; 19062 end if; 19063 19064 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of 19065 -- Discr_Type but with the null-exclusion attribute 19066 19067 if Ada_Version >= Ada_2005 then 19068 19069 -- Ada 2005 (AI-231): Static checks 19070 19071 if Can_Never_Be_Null (Discr_Type) then 19072 Null_Exclusion_Static_Checks (Discr); 19073 19074 elsif Is_Access_Type (Discr_Type) 19075 and then Null_Exclusion_Present (Discr) 19076 19077 -- No need to check itypes because in their case this check 19078 -- was done at their point of creation 19079 19080 and then not Is_Itype (Discr_Type) 19081 then 19082 if Can_Never_Be_Null (Discr_Type) then 19083 Error_Msg_NE 19084 ("`NOT NULL` not allowed (& already excludes null)", 19085 Discr, 19086 Discr_Type); 19087 end if; 19088 19089 Set_Etype (Defining_Identifier (Discr), 19090 Create_Null_Excluding_Itype 19091 (T => Discr_Type, 19092 Related_Nod => Discr)); 19093 19094 -- Check for improper null exclusion if the type is otherwise 19095 -- legal for a discriminant. 19096 19097 elsif Null_Exclusion_Present (Discr) 19098 and then Is_Discrete_Type (Discr_Type) 19099 then 19100 Error_Msg_N 19101 ("null exclusion can only apply to an access type", Discr); 19102 end if; 19103 19104 -- Ada 2005 (AI-402): access discriminants of nonlimited types 19105 -- can't have defaults. Synchronized types, or types that are 19106 -- explicitly limited are fine, but special tests apply to derived 19107 -- types in generics: in a generic body we have to assume the 19108 -- worst, and therefore defaults are not allowed if the parent is 19109 -- a generic formal private type (see ACATS B370001). 19110 19111 if Is_Access_Type (Discr_Type) and then Default_Present then 19112 if Ekind (Discr_Type) /= E_Anonymous_Access_Type 19113 or else Is_Limited_Record (Current_Scope) 19114 or else Is_Concurrent_Type (Current_Scope) 19115 or else Is_Concurrent_Record_Type (Current_Scope) 19116 or else Ekind (Current_Scope) = E_Limited_Private_Type 19117 then 19118 if not Is_Derived_Type (Current_Scope) 19119 or else not Is_Generic_Type (Etype (Current_Scope)) 19120 or else not In_Package_Body (Scope (Etype (Current_Scope))) 19121 or else Limited_Present 19122 (Type_Definition (Parent (Current_Scope))) 19123 then 19124 null; 19125 19126 else 19127 Error_Msg_N 19128 ("access discriminants of nonlimited types cannot " 19129 & "have defaults", Expression (Discr)); 19130 end if; 19131 19132 elsif Present (Expression (Discr)) then 19133 Error_Msg_N 19134 ("(Ada 2005) access discriminants of nonlimited types " 19135 & "cannot have defaults", Expression (Discr)); 19136 end if; 19137 end if; 19138 end if; 19139 19140 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)). 19141 -- This check is relevant only when SPARK_Mode is on as it is not a 19142 -- standard Ada legality rule. 19143 19144 if SPARK_Mode = On 19145 and then Is_Effectively_Volatile (Defining_Identifier (Discr)) 19146 then 19147 Error_Msg_N ("discriminant cannot be volatile", Discr); 19148 end if; 19149 19150 Next (Discr); 19151 end loop; 19152 19153 -- An element list consisting of the default expressions of the 19154 -- discriminants is constructed in the above loop and used to set 19155 -- the Discriminant_Constraint attribute for the type. If an object 19156 -- is declared of this (record or task) type without any explicit 19157 -- discriminant constraint given, this element list will form the 19158 -- actual parameters for the corresponding initialization procedure 19159 -- for the type. 19160 19161 Set_Discriminant_Constraint (Current_Scope, Elist); 19162 Set_Stored_Constraint (Current_Scope, No_Elist); 19163 19164 -- Default expressions must be provided either for all or for none 19165 -- of the discriminants of a discriminant part. (RM 3.7.1) 19166 19167 if Default_Present and then Default_Not_Present then 19168 Error_Msg_N 19169 ("incomplete specification of defaults for discriminants", N); 19170 end if; 19171 19172 -- The use of the name of a discriminant is not allowed in default 19173 -- expressions of a discriminant part if the specification of the 19174 -- discriminant is itself given in the discriminant part. (RM 3.7.1) 19175 19176 -- To detect this, the discriminant names are entered initially with an 19177 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any 19178 -- attempt to use a void entity (for example in an expression that is 19179 -- type-checked) produces the error message: premature usage. Now after 19180 -- completing the semantic analysis of the discriminant part, we can set 19181 -- the Ekind of all the discriminants appropriately. 19182 19183 Discr := First (Discriminant_Specifications (N)); 19184 Discr_Number := Uint_1; 19185 while Present (Discr) loop 19186 Id := Defining_Identifier (Discr); 19187 Set_Ekind (Id, E_Discriminant); 19188 Init_Component_Location (Id); 19189 Init_Esize (Id); 19190 Set_Discriminant_Number (Id, Discr_Number); 19191 19192 -- Make sure this is always set, even in illegal programs 19193 19194 Set_Corresponding_Discriminant (Id, Empty); 19195 19196 -- Initialize the Original_Record_Component to the entity itself. 19197 -- Inherit_Components will propagate the right value to 19198 -- discriminants in derived record types. 19199 19200 Set_Original_Record_Component (Id, Id); 19201 19202 -- Create the discriminal for the discriminant 19203 19204 Build_Discriminal (Id); 19205 19206 Next (Discr); 19207 Discr_Number := Discr_Number + 1; 19208 end loop; 19209 19210 Set_Has_Discriminants (Current_Scope); 19211 end Process_Discriminants; 19212 19213 ----------------------- 19214 -- Process_Full_View -- 19215 ----------------------- 19216 19217 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is 19218 procedure Collect_Implemented_Interfaces 19219 (Typ : Entity_Id; 19220 Ifaces : Elist_Id); 19221 -- Ada 2005: Gather all the interfaces that Typ directly or 19222 -- inherently implements. Duplicate entries are not added to 19223 -- the list Ifaces. 19224 19225 ------------------------------------ 19226 -- Collect_Implemented_Interfaces -- 19227 ------------------------------------ 19228 19229 procedure Collect_Implemented_Interfaces 19230 (Typ : Entity_Id; 19231 Ifaces : Elist_Id) 19232 is 19233 Iface : Entity_Id; 19234 Iface_Elmt : Elmt_Id; 19235 19236 begin 19237 -- Abstract interfaces are only associated with tagged record types 19238 19239 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then 19240 return; 19241 end if; 19242 19243 -- Recursively climb to the ancestors 19244 19245 if Etype (Typ) /= Typ 19246 19247 -- Protect the frontend against wrong cyclic declarations like: 19248 19249 -- type B is new A with private; 19250 -- type C is new A with private; 19251 -- private 19252 -- type B is new C with null record; 19253 -- type C is new B with null record; 19254 19255 and then Etype (Typ) /= Priv_T 19256 and then Etype (Typ) /= Full_T 19257 then 19258 -- Keep separate the management of private type declarations 19259 19260 if Ekind (Typ) = E_Record_Type_With_Private then 19261 19262 -- Handle the following illegal usage: 19263 -- type Private_Type is tagged private; 19264 -- private 19265 -- type Private_Type is new Type_Implementing_Iface; 19266 19267 if Present (Full_View (Typ)) 19268 and then Etype (Typ) /= Full_View (Typ) 19269 then 19270 if Is_Interface (Etype (Typ)) then 19271 Append_Unique_Elmt (Etype (Typ), Ifaces); 19272 end if; 19273 19274 Collect_Implemented_Interfaces (Etype (Typ), Ifaces); 19275 end if; 19276 19277 -- Non-private types 19278 19279 else 19280 if Is_Interface (Etype (Typ)) then 19281 Append_Unique_Elmt (Etype (Typ), Ifaces); 19282 end if; 19283 19284 Collect_Implemented_Interfaces (Etype (Typ), Ifaces); 19285 end if; 19286 end if; 19287 19288 -- Handle entities in the list of abstract interfaces 19289 19290 if Present (Interfaces (Typ)) then 19291 Iface_Elmt := First_Elmt (Interfaces (Typ)); 19292 while Present (Iface_Elmt) loop 19293 Iface := Node (Iface_Elmt); 19294 19295 pragma Assert (Is_Interface (Iface)); 19296 19297 if not Contain_Interface (Iface, Ifaces) then 19298 Append_Elmt (Iface, Ifaces); 19299 Collect_Implemented_Interfaces (Iface, Ifaces); 19300 end if; 19301 19302 Next_Elmt (Iface_Elmt); 19303 end loop; 19304 end if; 19305 end Collect_Implemented_Interfaces; 19306 19307 -- Local variables 19308 19309 Full_Indic : Node_Id; 19310 Full_Parent : Entity_Id; 19311 Priv_Parent : Entity_Id; 19312 19313 -- Start of processing for Process_Full_View 19314 19315 begin 19316 -- First some sanity checks that must be done after semantic 19317 -- decoration of the full view and thus cannot be placed with other 19318 -- similar checks in Find_Type_Name 19319 19320 if not Is_Limited_Type (Priv_T) 19321 and then (Is_Limited_Type (Full_T) 19322 or else Is_Limited_Composite (Full_T)) 19323 then 19324 if In_Instance then 19325 null; 19326 else 19327 Error_Msg_N 19328 ("completion of nonlimited type cannot be limited", Full_T); 19329 Explain_Limited_Type (Full_T, Full_T); 19330 end if; 19331 19332 elsif Is_Abstract_Type (Full_T) 19333 and then not Is_Abstract_Type (Priv_T) 19334 then 19335 Error_Msg_N 19336 ("completion of nonabstract type cannot be abstract", Full_T); 19337 19338 elsif Is_Tagged_Type (Priv_T) 19339 and then Is_Limited_Type (Priv_T) 19340 and then not Is_Limited_Type (Full_T) 19341 then 19342 -- If pragma CPP_Class was applied to the private declaration 19343 -- propagate the limitedness to the full-view 19344 19345 if Is_CPP_Class (Priv_T) then 19346 Set_Is_Limited_Record (Full_T); 19347 19348 -- GNAT allow its own definition of Limited_Controlled to disobey 19349 -- this rule in order in ease the implementation. This test is safe 19350 -- because Root_Controlled is defined in a child of System that 19351 -- normal programs are not supposed to use. 19352 19353 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then 19354 Set_Is_Limited_Composite (Full_T); 19355 else 19356 Error_Msg_N 19357 ("completion of limited tagged type must be limited", Full_T); 19358 end if; 19359 19360 elsif Is_Generic_Type (Priv_T) then 19361 Error_Msg_N ("generic type cannot have a completion", Full_T); 19362 end if; 19363 19364 -- Check that ancestor interfaces of private and full views are 19365 -- consistent. We omit this check for synchronized types because 19366 -- they are performed on the corresponding record type when frozen. 19367 19368 if Ada_Version >= Ada_2005 19369 and then Is_Tagged_Type (Priv_T) 19370 and then Is_Tagged_Type (Full_T) 19371 and then not Is_Concurrent_Type (Full_T) 19372 then 19373 declare 19374 Iface : Entity_Id; 19375 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List; 19376 Full_T_Ifaces : constant Elist_Id := New_Elmt_List; 19377 19378 begin 19379 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces); 19380 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces); 19381 19382 -- Ada 2005 (AI-251): The partial view shall be a descendant of 19383 -- an interface type if and only if the full type is descendant 19384 -- of the interface type (AARM 7.3 (7.3/2)). 19385 19386 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces); 19387 19388 if Present (Iface) then 19389 Error_Msg_NE 19390 ("interface in partial view& not implemented by full type " 19391 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface); 19392 end if; 19393 19394 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces); 19395 19396 if Present (Iface) then 19397 Error_Msg_NE 19398 ("interface & not implemented by partial view " 19399 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface); 19400 end if; 19401 end; 19402 end if; 19403 19404 if Is_Tagged_Type (Priv_T) 19405 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration 19406 and then Is_Derived_Type (Full_T) 19407 then 19408 Priv_Parent := Etype (Priv_T); 19409 19410 -- The full view of a private extension may have been transformed 19411 -- into an unconstrained derived type declaration and a subtype 19412 -- declaration (see build_derived_record_type for details). 19413 19414 if Nkind (N) = N_Subtype_Declaration then 19415 Full_Indic := Subtype_Indication (N); 19416 Full_Parent := Etype (Base_Type (Full_T)); 19417 else 19418 Full_Indic := Subtype_Indication (Type_Definition (N)); 19419 Full_Parent := Etype (Full_T); 19420 end if; 19421 19422 -- Check that the parent type of the full type is a descendant of 19423 -- the ancestor subtype given in the private extension. If either 19424 -- entity has an Etype equal to Any_Type then we had some previous 19425 -- error situation [7.3(8)]. 19426 19427 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then 19428 return; 19429 19430 -- Ada 2005 (AI-251): Interfaces in the full type can be given in 19431 -- any order. Therefore we don't have to check that its parent must 19432 -- be a descendant of the parent of the private type declaration. 19433 19434 elsif Is_Interface (Priv_Parent) 19435 and then Is_Interface (Full_Parent) 19436 then 19437 null; 19438 19439 -- Ada 2005 (AI-251): If the parent of the private type declaration 19440 -- is an interface there is no need to check that it is an ancestor 19441 -- of the associated full type declaration. The required tests for 19442 -- this case are performed by Build_Derived_Record_Type. 19443 19444 elsif not Is_Interface (Base_Type (Priv_Parent)) 19445 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) 19446 then 19447 Error_Msg_N 19448 ("parent of full type must descend from parent" 19449 & " of private extension", Full_Indic); 19450 19451 -- First check a formal restriction, and then proceed with checking 19452 -- Ada rules. Since the formal restriction is not a serious error, we 19453 -- don't prevent further error detection for this check, hence the 19454 -- ELSE. 19455 19456 else 19457 -- In formal mode, when completing a private extension the type 19458 -- named in the private part must be exactly the same as that 19459 -- named in the visible part. 19460 19461 if Priv_Parent /= Full_Parent then 19462 Error_Msg_Name_1 := Chars (Priv_Parent); 19463 Check_SPARK_05_Restriction ("% expected", Full_Indic); 19464 end if; 19465 19466 -- Check the rules of 7.3(10): if the private extension inherits 19467 -- known discriminants, then the full type must also inherit those 19468 -- discriminants from the same (ancestor) type, and the parent 19469 -- subtype of the full type must be constrained if and only if 19470 -- the ancestor subtype of the private extension is constrained. 19471 19472 if No (Discriminant_Specifications (Parent (Priv_T))) 19473 and then not Has_Unknown_Discriminants (Priv_T) 19474 and then Has_Discriminants (Base_Type (Priv_Parent)) 19475 then 19476 declare 19477 Priv_Indic : constant Node_Id := 19478 Subtype_Indication (Parent (Priv_T)); 19479 19480 Priv_Constr : constant Boolean := 19481 Is_Constrained (Priv_Parent) 19482 or else 19483 Nkind (Priv_Indic) = N_Subtype_Indication 19484 or else 19485 Is_Constrained (Entity (Priv_Indic)); 19486 19487 Full_Constr : constant Boolean := 19488 Is_Constrained (Full_Parent) 19489 or else 19490 Nkind (Full_Indic) = N_Subtype_Indication 19491 or else 19492 Is_Constrained (Entity (Full_Indic)); 19493 19494 Priv_Discr : Entity_Id; 19495 Full_Discr : Entity_Id; 19496 19497 begin 19498 Priv_Discr := First_Discriminant (Priv_Parent); 19499 Full_Discr := First_Discriminant (Full_Parent); 19500 while Present (Priv_Discr) and then Present (Full_Discr) loop 19501 if Original_Record_Component (Priv_Discr) = 19502 Original_Record_Component (Full_Discr) 19503 or else 19504 Corresponding_Discriminant (Priv_Discr) = 19505 Corresponding_Discriminant (Full_Discr) 19506 then 19507 null; 19508 else 19509 exit; 19510 end if; 19511 19512 Next_Discriminant (Priv_Discr); 19513 Next_Discriminant (Full_Discr); 19514 end loop; 19515 19516 if Present (Priv_Discr) or else Present (Full_Discr) then 19517 Error_Msg_N 19518 ("full view must inherit discriminants of the parent" 19519 & " type used in the private extension", Full_Indic); 19520 19521 elsif Priv_Constr and then not Full_Constr then 19522 Error_Msg_N 19523 ("parent subtype of full type must be constrained", 19524 Full_Indic); 19525 19526 elsif Full_Constr and then not Priv_Constr then 19527 Error_Msg_N 19528 ("parent subtype of full type must be unconstrained", 19529 Full_Indic); 19530 end if; 19531 end; 19532 19533 -- Check the rules of 7.3(12): if a partial view has neither 19534 -- known or unknown discriminants, then the full type 19535 -- declaration shall define a definite subtype. 19536 19537 elsif not Has_Unknown_Discriminants (Priv_T) 19538 and then not Has_Discriminants (Priv_T) 19539 and then not Is_Constrained (Full_T) 19540 then 19541 Error_Msg_N 19542 ("full view must define a constrained type if partial view" 19543 & " has no discriminants", Full_T); 19544 end if; 19545 19546 -- ??????? Do we implement the following properly ????? 19547 -- If the ancestor subtype of a private extension has constrained 19548 -- discriminants, then the parent subtype of the full view shall 19549 -- impose a statically matching constraint on those discriminants 19550 -- [7.3(13)]. 19551 end if; 19552 19553 else 19554 -- For untagged types, verify that a type without discriminants is 19555 -- not completed with an unconstrained type. A separate error message 19556 -- is produced if the full type has defaulted discriminants. 19557 19558 if Is_Definite_Subtype (Priv_T) 19559 and then not Is_Definite_Subtype (Full_T) 19560 then 19561 Error_Msg_Sloc := Sloc (Parent (Priv_T)); 19562 Error_Msg_NE 19563 ("full view of& not compatible with declaration#", 19564 Full_T, Priv_T); 19565 19566 if not Is_Tagged_Type (Full_T) then 19567 Error_Msg_N 19568 ("\one is constrained, the other unconstrained", Full_T); 19569 end if; 19570 end if; 19571 end if; 19572 19573 -- AI-419: verify that the use of "limited" is consistent 19574 19575 declare 19576 Orig_Decl : constant Node_Id := Original_Node (N); 19577 19578 begin 19579 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration 19580 and then Nkind (Orig_Decl) = N_Full_Type_Declaration 19581 and then Nkind 19582 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition 19583 then 19584 if not Limited_Present (Parent (Priv_T)) 19585 and then not Synchronized_Present (Parent (Priv_T)) 19586 and then Limited_Present (Type_Definition (Orig_Decl)) 19587 then 19588 Error_Msg_N 19589 ("full view of non-limited extension cannot be limited", N); 19590 19591 -- Conversely, if the partial view carries the limited keyword, 19592 -- the full view must as well, even if it may be redundant. 19593 19594 elsif Limited_Present (Parent (Priv_T)) 19595 and then not Limited_Present (Type_Definition (Orig_Decl)) 19596 then 19597 Error_Msg_N 19598 ("full view of limited extension must be explicitly limited", 19599 N); 19600 end if; 19601 end if; 19602 end; 19603 19604 -- Ada 2005 (AI-443): A synchronized private extension must be 19605 -- completed by a task or protected type. 19606 19607 if Ada_Version >= Ada_2005 19608 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration 19609 and then Synchronized_Present (Parent (Priv_T)) 19610 and then not Is_Concurrent_Type (Full_T) 19611 then 19612 Error_Msg_N ("full view of synchronized extension must " & 19613 "be synchronized type", N); 19614 end if; 19615 19616 -- Ada 2005 AI-363: if the full view has discriminants with 19617 -- defaults, it is illegal to declare constrained access subtypes 19618 -- whose designated type is the current type. This allows objects 19619 -- of the type that are declared in the heap to be unconstrained. 19620 19621 if not Has_Unknown_Discriminants (Priv_T) 19622 and then not Has_Discriminants (Priv_T) 19623 and then Has_Discriminants (Full_T) 19624 and then 19625 Present (Discriminant_Default_Value (First_Discriminant (Full_T))) 19626 then 19627 Set_Has_Constrained_Partial_View (Full_T); 19628 Set_Has_Constrained_Partial_View (Priv_T); 19629 end if; 19630 19631 -- Create a full declaration for all its subtypes recorded in 19632 -- Private_Dependents and swap them similarly to the base type. These 19633 -- are subtypes that have been define before the full declaration of 19634 -- the private type. We also swap the entry in Private_Dependents list 19635 -- so we can properly restore the private view on exit from the scope. 19636 19637 declare 19638 Priv_Elmt : Elmt_Id; 19639 Priv_Scop : Entity_Id; 19640 Priv : Entity_Id; 19641 Full : Entity_Id; 19642 19643 begin 19644 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T)); 19645 while Present (Priv_Elmt) loop 19646 Priv := Node (Priv_Elmt); 19647 Priv_Scop := Scope (Priv); 19648 19649 if Ekind_In (Priv, E_Private_Subtype, 19650 E_Limited_Private_Subtype, 19651 E_Record_Subtype_With_Private) 19652 then 19653 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv)); 19654 Set_Is_Itype (Full); 19655 Set_Parent (Full, Parent (Priv)); 19656 Set_Associated_Node_For_Itype (Full, N); 19657 19658 -- Now we need to complete the private subtype, but since the 19659 -- base type has already been swapped, we must also swap the 19660 -- subtypes (and thus, reverse the arguments in the call to 19661 -- Complete_Private_Subtype). Also note that we may need to 19662 -- re-establish the scope of the private subtype. 19663 19664 Copy_And_Swap (Priv, Full); 19665 19666 if not In_Open_Scopes (Priv_Scop) then 19667 Push_Scope (Priv_Scop); 19668 19669 else 19670 -- Reset Priv_Scop to Empty to indicate no scope was pushed 19671 19672 Priv_Scop := Empty; 19673 end if; 19674 19675 Complete_Private_Subtype (Full, Priv, Full_T, N); 19676 19677 if Present (Priv_Scop) then 19678 Pop_Scope; 19679 end if; 19680 19681 Replace_Elmt (Priv_Elmt, Full); 19682 end if; 19683 19684 Next_Elmt (Priv_Elmt); 19685 end loop; 19686 end; 19687 19688 -- If the private view was tagged, copy the new primitive operations 19689 -- from the private view to the full view. 19690 19691 if Is_Tagged_Type (Full_T) then 19692 declare 19693 Disp_Typ : Entity_Id; 19694 Full_List : Elist_Id; 19695 Prim : Entity_Id; 19696 Prim_Elmt : Elmt_Id; 19697 Priv_List : Elist_Id; 19698 19699 function Contains 19700 (E : Entity_Id; 19701 L : Elist_Id) return Boolean; 19702 -- Determine whether list L contains element E 19703 19704 -------------- 19705 -- Contains -- 19706 -------------- 19707 19708 function Contains 19709 (E : Entity_Id; 19710 L : Elist_Id) return Boolean 19711 is 19712 List_Elmt : Elmt_Id; 19713 19714 begin 19715 List_Elmt := First_Elmt (L); 19716 while Present (List_Elmt) loop 19717 if Node (List_Elmt) = E then 19718 return True; 19719 end if; 19720 19721 Next_Elmt (List_Elmt); 19722 end loop; 19723 19724 return False; 19725 end Contains; 19726 19727 -- Start of processing 19728 19729 begin 19730 if Is_Tagged_Type (Priv_T) then 19731 Priv_List := Primitive_Operations (Priv_T); 19732 Prim_Elmt := First_Elmt (Priv_List); 19733 19734 -- In the case of a concurrent type completing a private tagged 19735 -- type, primitives may have been declared in between the two 19736 -- views. These subprograms need to be wrapped the same way 19737 -- entries and protected procedures are handled because they 19738 -- cannot be directly shared by the two views. 19739 19740 if Is_Concurrent_Type (Full_T) then 19741 declare 19742 Conc_Typ : constant Entity_Id := 19743 Corresponding_Record_Type (Full_T); 19744 Curr_Nod : Node_Id := Parent (Conc_Typ); 19745 Wrap_Spec : Node_Id; 19746 19747 begin 19748 while Present (Prim_Elmt) loop 19749 Prim := Node (Prim_Elmt); 19750 19751 if Comes_From_Source (Prim) 19752 and then not Is_Abstract_Subprogram (Prim) 19753 then 19754 Wrap_Spec := 19755 Make_Subprogram_Declaration (Sloc (Prim), 19756 Specification => 19757 Build_Wrapper_Spec 19758 (Subp_Id => Prim, 19759 Obj_Typ => Conc_Typ, 19760 Formals => 19761 Parameter_Specifications ( 19762 Parent (Prim)))); 19763 19764 Insert_After (Curr_Nod, Wrap_Spec); 19765 Curr_Nod := Wrap_Spec; 19766 19767 Analyze (Wrap_Spec); 19768 end if; 19769 19770 Next_Elmt (Prim_Elmt); 19771 end loop; 19772 19773 return; 19774 end; 19775 19776 -- For non-concurrent types, transfer explicit primitives, but 19777 -- omit those inherited from the parent of the private view 19778 -- since they will be re-inherited later on. 19779 19780 else 19781 Full_List := Primitive_Operations (Full_T); 19782 19783 while Present (Prim_Elmt) loop 19784 Prim := Node (Prim_Elmt); 19785 19786 if Comes_From_Source (Prim) 19787 and then not Contains (Prim, Full_List) 19788 then 19789 Append_Elmt (Prim, Full_List); 19790 end if; 19791 19792 Next_Elmt (Prim_Elmt); 19793 end loop; 19794 end if; 19795 19796 -- Untagged private view 19797 19798 else 19799 Full_List := Primitive_Operations (Full_T); 19800 19801 -- In this case the partial view is untagged, so here we locate 19802 -- all of the earlier primitives that need to be treated as 19803 -- dispatching (those that appear between the two views). Note 19804 -- that these additional operations must all be new operations 19805 -- (any earlier operations that override inherited operations 19806 -- of the full view will already have been inserted in the 19807 -- primitives list, marked by Check_Operation_From_Private_View 19808 -- as dispatching. Note that implicit "/=" operators are 19809 -- excluded from being added to the primitives list since they 19810 -- shouldn't be treated as dispatching (tagged "/=" is handled 19811 -- specially). 19812 19813 Prim := Next_Entity (Full_T); 19814 while Present (Prim) and then Prim /= Priv_T loop 19815 if Ekind_In (Prim, E_Procedure, E_Function) then 19816 Disp_Typ := Find_Dispatching_Type (Prim); 19817 19818 if Disp_Typ = Full_T 19819 and then (Chars (Prim) /= Name_Op_Ne 19820 or else Comes_From_Source (Prim)) 19821 then 19822 Check_Controlling_Formals (Full_T, Prim); 19823 19824 if not Is_Dispatching_Operation (Prim) then 19825 Append_Elmt (Prim, Full_List); 19826 Set_Is_Dispatching_Operation (Prim, True); 19827 Set_DT_Position_Value (Prim, No_Uint); 19828 end if; 19829 19830 elsif Is_Dispatching_Operation (Prim) 19831 and then Disp_Typ /= Full_T 19832 then 19833 19834 -- Verify that it is not otherwise controlled by a 19835 -- formal or a return value of type T. 19836 19837 Check_Controlling_Formals (Disp_Typ, Prim); 19838 end if; 19839 end if; 19840 19841 Next_Entity (Prim); 19842 end loop; 19843 end if; 19844 19845 -- For the tagged case, the two views can share the same primitive 19846 -- operations list and the same class-wide type. Update attributes 19847 -- of the class-wide type which depend on the full declaration. 19848 19849 if Is_Tagged_Type (Priv_T) then 19850 Set_Direct_Primitive_Operations (Priv_T, Full_List); 19851 Set_Class_Wide_Type 19852 (Base_Type (Full_T), Class_Wide_Type (Priv_T)); 19853 19854 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T)); 19855 Set_Has_Protected 19856 (Class_Wide_Type (Priv_T), Has_Protected (Full_T)); 19857 end if; 19858 end; 19859 end if; 19860 19861 -- Ada 2005 AI 161: Check preelaborable initialization consistency 19862 19863 if Known_To_Have_Preelab_Init (Priv_T) then 19864 19865 -- Case where there is a pragma Preelaborable_Initialization. We 19866 -- always allow this in predefined units, which is cheating a bit, 19867 -- but it means we don't have to struggle to meet the requirements in 19868 -- the RM for having Preelaborable Initialization. Otherwise we 19869 -- require that the type meets the RM rules. But we can't check that 19870 -- yet, because of the rule about overriding Initialize, so we simply 19871 -- set a flag that will be checked at freeze time. 19872 19873 if not In_Predefined_Unit (Full_T) then 19874 Set_Must_Have_Preelab_Init (Full_T); 19875 end if; 19876 end if; 19877 19878 -- If pragma CPP_Class was applied to the private type declaration, 19879 -- propagate it now to the full type declaration. 19880 19881 if Is_CPP_Class (Priv_T) then 19882 Set_Is_CPP_Class (Full_T); 19883 Set_Convention (Full_T, Convention_CPP); 19884 19885 -- Check that components of imported CPP types do not have default 19886 -- expressions. 19887 19888 Check_CPP_Type_Has_No_Defaults (Full_T); 19889 end if; 19890 19891 -- If the private view has user specified stream attributes, then so has 19892 -- the full view. 19893 19894 -- Why the test, how could these flags be already set in Full_T ??? 19895 19896 if Has_Specified_Stream_Read (Priv_T) then 19897 Set_Has_Specified_Stream_Read (Full_T); 19898 end if; 19899 19900 if Has_Specified_Stream_Write (Priv_T) then 19901 Set_Has_Specified_Stream_Write (Full_T); 19902 end if; 19903 19904 if Has_Specified_Stream_Input (Priv_T) then 19905 Set_Has_Specified_Stream_Input (Full_T); 19906 end if; 19907 19908 if Has_Specified_Stream_Output (Priv_T) then 19909 Set_Has_Specified_Stream_Output (Full_T); 19910 end if; 19911 19912 -- Propagate the attributes related to pragma Default_Initial_Condition 19913 -- from the private to the full view. Note that both flags are mutually 19914 -- exclusive. 19915 19916 if Has_Default_Init_Cond (Priv_T) 19917 or else Has_Inherited_Default_Init_Cond (Priv_T) 19918 then 19919 Propagate_Default_Init_Cond_Attributes 19920 (From_Typ => Priv_T, 19921 To_Typ => Full_T, 19922 Private_To_Full_View => True); 19923 19924 -- In the case where the full view is derived from another private type, 19925 -- the attributes related to pragma Default_Initial_Condition must be 19926 -- propagated from the full to the private view to maintain consistency 19927 -- of views. 19928 19929 -- package Pack is 19930 -- type Parent_Typ is private 19931 -- with Default_Initial_Condition ...; 19932 -- private 19933 -- type Parent_Typ is ...; 19934 -- end Pack; 19935 19936 -- with Pack; use Pack; 19937 -- package Pack_2 is 19938 -- type Deriv_Typ is private; -- must inherit 19939 -- private 19940 -- type Deriv_Typ is new Parent_Typ; -- must inherit 19941 -- end Pack_2; 19942 19943 elsif Has_Default_Init_Cond (Full_T) 19944 or else Has_Inherited_Default_Init_Cond (Full_T) 19945 then 19946 Propagate_Default_Init_Cond_Attributes 19947 (From_Typ => Full_T, 19948 To_Typ => Priv_T, 19949 Private_To_Full_View => True); 19950 end if; 19951 19952 if Is_Ghost_Entity (Priv_T) then 19953 19954 -- The Ghost policy in effect at the point of declaration and at the 19955 -- point of completion must match (SPARK RM 6.9(14)). 19956 19957 Check_Ghost_Completion (Priv_T, Full_T); 19958 19959 -- In the case where the private view of a tagged type lacks a parent 19960 -- type and is subject to pragma Ghost, ensure that the parent type 19961 -- specified by the full view is also Ghost (SPARK RM 6.9(9)). 19962 19963 if Is_Derived_Type (Full_T) then 19964 Check_Ghost_Derivation (Full_T); 19965 end if; 19966 19967 -- Propagate the attributes related to pragma Ghost from the private 19968 -- to the full view. 19969 19970 Mark_Full_View_As_Ghost (Priv_T, Full_T); 19971 end if; 19972 19973 -- Propagate invariants to full type 19974 19975 if Has_Invariants (Priv_T) then 19976 Set_Has_Invariants (Full_T); 19977 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T)); 19978 end if; 19979 19980 if Has_Inheritable_Invariants (Priv_T) then 19981 Set_Has_Inheritable_Invariants (Full_T); 19982 end if; 19983 19984 -- Check hidden inheritance of class-wide type invariants 19985 19986 if Ada_Version >= Ada_2012 19987 and then not Has_Inheritable_Invariants (Full_T) 19988 and then In_Private_Part (Current_Scope) 19989 and then Has_Interfaces (Full_T) 19990 then 19991 declare 19992 Ifaces : Elist_Id; 19993 AI : Elmt_Id; 19994 19995 begin 19996 Collect_Interfaces (Full_T, Ifaces, Exclude_Parents => True); 19997 19998 AI := First_Elmt (Ifaces); 19999 while Present (AI) loop 20000 if Has_Inheritable_Invariants (Node (AI)) then 20001 Error_Msg_N 20002 ("hidden inheritance of class-wide type invariants " & 20003 "not allowed", N); 20004 exit; 20005 end if; 20006 20007 Next_Elmt (AI); 20008 end loop; 20009 end; 20010 end if; 20011 20012 -- Propagate predicates to full type, and predicate function if already 20013 -- defined. It is not clear that this can actually happen? the partial 20014 -- view cannot be frozen yet, and the predicate function has not been 20015 -- built. Still it is a cheap check and seems safer to make it. 20016 20017 if Has_Predicates (Priv_T) then 20018 if Present (Predicate_Function (Priv_T)) then 20019 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T)); 20020 end if; 20021 20022 Set_Has_Predicates (Full_T); 20023 end if; 20024 end Process_Full_View; 20025 20026 ----------------------------------- 20027 -- Process_Incomplete_Dependents -- 20028 ----------------------------------- 20029 20030 procedure Process_Incomplete_Dependents 20031 (N : Node_Id; 20032 Full_T : Entity_Id; 20033 Inc_T : Entity_Id) 20034 is 20035 Inc_Elmt : Elmt_Id; 20036 Priv_Dep : Entity_Id; 20037 New_Subt : Entity_Id; 20038 20039 Disc_Constraint : Elist_Id; 20040 20041 begin 20042 if No (Private_Dependents (Inc_T)) then 20043 return; 20044 end if; 20045 20046 -- Itypes that may be generated by the completion of an incomplete 20047 -- subtype are not used by the back-end and not attached to the tree. 20048 -- They are created only for constraint-checking purposes. 20049 20050 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T)); 20051 while Present (Inc_Elmt) loop 20052 Priv_Dep := Node (Inc_Elmt); 20053 20054 if Ekind (Priv_Dep) = E_Subprogram_Type then 20055 20056 -- An Access_To_Subprogram type may have a return type or a 20057 -- parameter type that is incomplete. Replace with the full view. 20058 20059 if Etype (Priv_Dep) = Inc_T then 20060 Set_Etype (Priv_Dep, Full_T); 20061 end if; 20062 20063 declare 20064 Formal : Entity_Id; 20065 20066 begin 20067 Formal := First_Formal (Priv_Dep); 20068 while Present (Formal) loop 20069 if Etype (Formal) = Inc_T then 20070 Set_Etype (Formal, Full_T); 20071 end if; 20072 20073 Next_Formal (Formal); 20074 end loop; 20075 end; 20076 20077 elsif Is_Overloadable (Priv_Dep) then 20078 20079 -- If a subprogram in the incomplete dependents list is primitive 20080 -- for a tagged full type then mark it as a dispatching operation, 20081 -- check whether it overrides an inherited subprogram, and check 20082 -- restrictions on its controlling formals. Note that a protected 20083 -- operation is never dispatching: only its wrapper operation 20084 -- (which has convention Ada) is. 20085 20086 if Is_Tagged_Type (Full_T) 20087 and then Is_Primitive (Priv_Dep) 20088 and then Convention (Priv_Dep) /= Convention_Protected 20089 then 20090 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T); 20091 Set_Is_Dispatching_Operation (Priv_Dep); 20092 Check_Controlling_Formals (Full_T, Priv_Dep); 20093 end if; 20094 20095 elsif Ekind (Priv_Dep) = E_Subprogram_Body then 20096 20097 -- Can happen during processing of a body before the completion 20098 -- of a TA type. Ignore, because spec is also on dependent list. 20099 20100 return; 20101 20102 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a 20103 -- corresponding subtype of the full view. 20104 20105 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then 20106 Set_Subtype_Indication 20107 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep))); 20108 Set_Etype (Priv_Dep, Full_T); 20109 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T))); 20110 Set_Analyzed (Parent (Priv_Dep), False); 20111 20112 -- Reanalyze the declaration, suppressing the call to 20113 -- Enter_Name to avoid duplicate names. 20114 20115 Analyze_Subtype_Declaration 20116 (N => Parent (Priv_Dep), 20117 Skip => True); 20118 20119 -- Dependent is a subtype 20120 20121 else 20122 -- We build a new subtype indication using the full view of the 20123 -- incomplete parent. The discriminant constraints have been 20124 -- elaborated already at the point of the subtype declaration. 20125 20126 New_Subt := Create_Itype (E_Void, N); 20127 20128 if Has_Discriminants (Full_T) then 20129 Disc_Constraint := Discriminant_Constraint (Priv_Dep); 20130 else 20131 Disc_Constraint := No_Elist; 20132 end if; 20133 20134 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N); 20135 Set_Full_View (Priv_Dep, New_Subt); 20136 end if; 20137 20138 Next_Elmt (Inc_Elmt); 20139 end loop; 20140 end Process_Incomplete_Dependents; 20141 20142 -------------------------------- 20143 -- Process_Range_Expr_In_Decl -- 20144 -------------------------------- 20145 20146 procedure Process_Range_Expr_In_Decl 20147 (R : Node_Id; 20148 T : Entity_Id; 20149 Subtyp : Entity_Id := Empty; 20150 Check_List : List_Id := Empty_List; 20151 R_Check_Off : Boolean := False; 20152 In_Iter_Schm : Boolean := False) 20153 is 20154 Lo, Hi : Node_Id; 20155 R_Checks : Check_Result; 20156 Insert_Node : Node_Id; 20157 Def_Id : Entity_Id; 20158 20159 begin 20160 Analyze_And_Resolve (R, Base_Type (T)); 20161 20162 if Nkind (R) = N_Range then 20163 20164 -- In SPARK, all ranges should be static, with the exception of the 20165 -- discrete type definition of a loop parameter specification. 20166 20167 if not In_Iter_Schm 20168 and then not Is_OK_Static_Range (R) 20169 then 20170 Check_SPARK_05_Restriction ("range should be static", R); 20171 end if; 20172 20173 Lo := Low_Bound (R); 20174 Hi := High_Bound (R); 20175 20176 -- Validity checks on the range of a quantified expression are 20177 -- delayed until the construct is transformed into a loop. 20178 20179 if Nkind (Parent (R)) = N_Loop_Parameter_Specification 20180 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression 20181 then 20182 null; 20183 20184 -- We need to ensure validity of the bounds here, because if we 20185 -- go ahead and do the expansion, then the expanded code will get 20186 -- analyzed with range checks suppressed and we miss the check. 20187 20188 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and 20189 -- the temporaries generated by routine Remove_Side_Effects by means 20190 -- of validity checks must use the same names. When a range appears 20191 -- in the parent of a generic, the range is processed with checks 20192 -- disabled as part of the generic context and with checks enabled 20193 -- for code generation purposes. This leads to link issues as the 20194 -- generic contains references to xxx_FIRST/_LAST, but the inlined 20195 -- template sees the temporaries generated by Remove_Side_Effects. 20196 20197 else 20198 Validity_Check_Range (R, Subtyp); 20199 end if; 20200 20201 -- If there were errors in the declaration, try and patch up some 20202 -- common mistakes in the bounds. The cases handled are literals 20203 -- which are Integer where the expected type is Real and vice versa. 20204 -- These corrections allow the compilation process to proceed further 20205 -- along since some basic assumptions of the format of the bounds 20206 -- are guaranteed. 20207 20208 if Etype (R) = Any_Type then 20209 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then 20210 Rewrite (Lo, 20211 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo)))); 20212 20213 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then 20214 Rewrite (Hi, 20215 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi)))); 20216 20217 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then 20218 Rewrite (Lo, 20219 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo)))); 20220 20221 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then 20222 Rewrite (Hi, 20223 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi)))); 20224 end if; 20225 20226 Set_Etype (Lo, T); 20227 Set_Etype (Hi, T); 20228 end if; 20229 20230 -- If the bounds of the range have been mistakenly given as string 20231 -- literals (perhaps in place of character literals), then an error 20232 -- has already been reported, but we rewrite the string literal as a 20233 -- bound of the range's type to avoid blowups in later processing 20234 -- that looks at static values. 20235 20236 if Nkind (Lo) = N_String_Literal then 20237 Rewrite (Lo, 20238 Make_Attribute_Reference (Sloc (Lo), 20239 Prefix => New_Occurrence_Of (T, Sloc (Lo)), 20240 Attribute_Name => Name_First)); 20241 Analyze_And_Resolve (Lo); 20242 end if; 20243 20244 if Nkind (Hi) = N_String_Literal then 20245 Rewrite (Hi, 20246 Make_Attribute_Reference (Sloc (Hi), 20247 Prefix => New_Occurrence_Of (T, Sloc (Hi)), 20248 Attribute_Name => Name_First)); 20249 Analyze_And_Resolve (Hi); 20250 end if; 20251 20252 -- If bounds aren't scalar at this point then exit, avoiding 20253 -- problems with further processing of the range in this procedure. 20254 20255 if not Is_Scalar_Type (Etype (Lo)) then 20256 return; 20257 end if; 20258 20259 -- Resolve (actually Sem_Eval) has checked that the bounds are in 20260 -- then range of the base type. Here we check whether the bounds 20261 -- are in the range of the subtype itself. Note that if the bounds 20262 -- represent the null range the Constraint_Error exception should 20263 -- not be raised. 20264 20265 -- ??? The following code should be cleaned up as follows 20266 20267 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it 20268 -- is done in the call to Range_Check (R, T); below 20269 20270 -- 2. The use of R_Check_Off should be investigated and possibly 20271 -- removed, this would clean up things a bit. 20272 20273 if Is_Null_Range (Lo, Hi) then 20274 null; 20275 20276 else 20277 -- Capture values of bounds and generate temporaries for them 20278 -- if needed, before applying checks, since checks may cause 20279 -- duplication of the expression without forcing evaluation. 20280 20281 -- The forced evaluation removes side effects from expressions, 20282 -- which should occur also in GNATprove mode. Otherwise, we end up 20283 -- with unexpected insertions of actions at places where this is 20284 -- not supposed to occur, e.g. on default parameters of a call. 20285 20286 if Expander_Active or GNATprove_Mode then 20287 20288 -- Call Force_Evaluation to create declarations as needed to 20289 -- deal with side effects, and also create typ_FIRST/LAST 20290 -- entities for bounds if we have a subtype name. 20291 20292 -- Note: we do this transformation even if expansion is not 20293 -- active if we are in GNATprove_Mode since the transformation 20294 -- is in general required to ensure that the resulting tree has 20295 -- proper Ada semantics. 20296 20297 Force_Evaluation 20298 (Lo, Related_Id => Subtyp, Is_Low_Bound => True); 20299 Force_Evaluation 20300 (Hi, Related_Id => Subtyp, Is_High_Bound => True); 20301 end if; 20302 20303 -- We use a flag here instead of suppressing checks on the type 20304 -- because the type we check against isn't necessarily the place 20305 -- where we put the check. 20306 20307 if not R_Check_Off then 20308 R_Checks := Get_Range_Checks (R, T); 20309 20310 -- Look up tree to find an appropriate insertion point. We 20311 -- can't just use insert_actions because later processing 20312 -- depends on the insertion node. Prior to Ada 2012 the 20313 -- insertion point could only be a declaration or a loop, but 20314 -- quantified expressions can appear within any context in an 20315 -- expression, and the insertion point can be any statement, 20316 -- pragma, or declaration. 20317 20318 Insert_Node := Parent (R); 20319 while Present (Insert_Node) loop 20320 exit when 20321 Nkind (Insert_Node) in N_Declaration 20322 and then 20323 not Nkind_In 20324 (Insert_Node, N_Component_Declaration, 20325 N_Loop_Parameter_Specification, 20326 N_Function_Specification, 20327 N_Procedure_Specification); 20328 20329 exit when Nkind (Insert_Node) in N_Later_Decl_Item 20330 or else Nkind (Insert_Node) in 20331 N_Statement_Other_Than_Procedure_Call 20332 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement, 20333 N_Pragma); 20334 20335 Insert_Node := Parent (Insert_Node); 20336 end loop; 20337 20338 -- Why would Type_Decl not be present??? Without this test, 20339 -- short regression tests fail. 20340 20341 if Present (Insert_Node) then 20342 20343 -- Case of loop statement. Verify that the range is part 20344 -- of the subtype indication of the iteration scheme. 20345 20346 if Nkind (Insert_Node) = N_Loop_Statement then 20347 declare 20348 Indic : Node_Id; 20349 20350 begin 20351 Indic := Parent (R); 20352 while Present (Indic) 20353 and then Nkind (Indic) /= N_Subtype_Indication 20354 loop 20355 Indic := Parent (Indic); 20356 end loop; 20357 20358 if Present (Indic) then 20359 Def_Id := Etype (Subtype_Mark (Indic)); 20360 20361 Insert_Range_Checks 20362 (R_Checks, 20363 Insert_Node, 20364 Def_Id, 20365 Sloc (Insert_Node), 20366 R, 20367 Do_Before => True); 20368 end if; 20369 end; 20370 20371 -- Insertion before a declaration. If the declaration 20372 -- includes discriminants, the list of applicable checks 20373 -- is given by the caller. 20374 20375 elsif Nkind (Insert_Node) in N_Declaration then 20376 Def_Id := Defining_Identifier (Insert_Node); 20377 20378 if (Ekind (Def_Id) = E_Record_Type 20379 and then Depends_On_Discriminant (R)) 20380 or else 20381 (Ekind (Def_Id) = E_Protected_Type 20382 and then Has_Discriminants (Def_Id)) 20383 then 20384 Append_Range_Checks 20385 (R_Checks, 20386 Check_List, Def_Id, Sloc (Insert_Node), R); 20387 20388 else 20389 Insert_Range_Checks 20390 (R_Checks, 20391 Insert_Node, Def_Id, Sloc (Insert_Node), R); 20392 20393 end if; 20394 20395 -- Insertion before a statement. Range appears in the 20396 -- context of a quantified expression. Insertion will 20397 -- take place when expression is expanded. 20398 20399 else 20400 null; 20401 end if; 20402 end if; 20403 end if; 20404 end if; 20405 20406 -- Case of other than an explicit N_Range node 20407 20408 -- The forced evaluation removes side effects from expressions, which 20409 -- should occur also in GNATprove mode. Otherwise, we end up with 20410 -- unexpected insertions of actions at places where this is not 20411 -- supposed to occur, e.g. on default parameters of a call. 20412 20413 elsif Expander_Active or GNATprove_Mode then 20414 Get_Index_Bounds (R, Lo, Hi); 20415 Force_Evaluation (Lo); 20416 Force_Evaluation (Hi); 20417 end if; 20418 end Process_Range_Expr_In_Decl; 20419 20420 -------------------------------------- 20421 -- Process_Real_Range_Specification -- 20422 -------------------------------------- 20423 20424 procedure Process_Real_Range_Specification (Def : Node_Id) is 20425 Spec : constant Node_Id := Real_Range_Specification (Def); 20426 Lo : Node_Id; 20427 Hi : Node_Id; 20428 Err : Boolean := False; 20429 20430 procedure Analyze_Bound (N : Node_Id); 20431 -- Analyze and check one bound 20432 20433 ------------------- 20434 -- Analyze_Bound -- 20435 ------------------- 20436 20437 procedure Analyze_Bound (N : Node_Id) is 20438 begin 20439 Analyze_And_Resolve (N, Any_Real); 20440 20441 if not Is_OK_Static_Expression (N) then 20442 Flag_Non_Static_Expr 20443 ("bound in real type definition is not static!", N); 20444 Err := True; 20445 end if; 20446 end Analyze_Bound; 20447 20448 -- Start of processing for Process_Real_Range_Specification 20449 20450 begin 20451 if Present (Spec) then 20452 Lo := Low_Bound (Spec); 20453 Hi := High_Bound (Spec); 20454 Analyze_Bound (Lo); 20455 Analyze_Bound (Hi); 20456 20457 -- If error, clear away junk range specification 20458 20459 if Err then 20460 Set_Real_Range_Specification (Def, Empty); 20461 end if; 20462 end if; 20463 end Process_Real_Range_Specification; 20464 20465 --------------------- 20466 -- Process_Subtype -- 20467 --------------------- 20468 20469 function Process_Subtype 20470 (S : Node_Id; 20471 Related_Nod : Node_Id; 20472 Related_Id : Entity_Id := Empty; 20473 Suffix : Character := ' ') return Entity_Id 20474 is 20475 P : Node_Id; 20476 Def_Id : Entity_Id; 20477 Error_Node : Node_Id; 20478 Full_View_Id : Entity_Id; 20479 Subtype_Mark_Id : Entity_Id; 20480 20481 May_Have_Null_Exclusion : Boolean; 20482 20483 procedure Check_Incomplete (T : Entity_Id); 20484 -- Called to verify that an incomplete type is not used prematurely 20485 20486 ---------------------- 20487 -- Check_Incomplete -- 20488 ---------------------- 20489 20490 procedure Check_Incomplete (T : Entity_Id) is 20491 begin 20492 -- Ada 2005 (AI-412): Incomplete subtypes are legal 20493 20494 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type 20495 and then 20496 not (Ada_Version >= Ada_2005 20497 and then 20498 (Nkind (Parent (T)) = N_Subtype_Declaration 20499 or else (Nkind (Parent (T)) = N_Subtype_Indication 20500 and then Nkind (Parent (Parent (T))) = 20501 N_Subtype_Declaration))) 20502 then 20503 Error_Msg_N ("invalid use of type before its full declaration", T); 20504 end if; 20505 end Check_Incomplete; 20506 20507 -- Start of processing for Process_Subtype 20508 20509 begin 20510 -- Case of no constraints present 20511 20512 if Nkind (S) /= N_Subtype_Indication then 20513 Find_Type (S); 20514 Check_Incomplete (S); 20515 P := Parent (S); 20516 20517 -- Ada 2005 (AI-231): Static check 20518 20519 if Ada_Version >= Ada_2005 20520 and then Present (P) 20521 and then Null_Exclusion_Present (P) 20522 and then Nkind (P) /= N_Access_To_Object_Definition 20523 and then not Is_Access_Type (Entity (S)) 20524 then 20525 Error_Msg_N ("`NOT NULL` only allowed for an access type", S); 20526 end if; 20527 20528 -- The following is ugly, can't we have a range or even a flag??? 20529 20530 May_Have_Null_Exclusion := 20531 Nkind_In (P, N_Access_Definition, 20532 N_Access_Function_Definition, 20533 N_Access_Procedure_Definition, 20534 N_Access_To_Object_Definition, 20535 N_Allocator, 20536 N_Component_Definition) 20537 or else 20538 Nkind_In (P, N_Derived_Type_Definition, 20539 N_Discriminant_Specification, 20540 N_Formal_Object_Declaration, 20541 N_Object_Declaration, 20542 N_Object_Renaming_Declaration, 20543 N_Parameter_Specification, 20544 N_Subtype_Declaration); 20545 20546 -- Create an Itype that is a duplicate of Entity (S) but with the 20547 -- null-exclusion attribute. 20548 20549 if May_Have_Null_Exclusion 20550 and then Is_Access_Type (Entity (S)) 20551 and then Null_Exclusion_Present (P) 20552 20553 -- No need to check the case of an access to object definition. 20554 -- It is correct to define double not-null pointers. 20555 20556 -- Example: 20557 -- type Not_Null_Int_Ptr is not null access Integer; 20558 -- type Acc is not null access Not_Null_Int_Ptr; 20559 20560 and then Nkind (P) /= N_Access_To_Object_Definition 20561 then 20562 if Can_Never_Be_Null (Entity (S)) then 20563 case Nkind (Related_Nod) is 20564 when N_Full_Type_Declaration => 20565 if Nkind (Type_Definition (Related_Nod)) 20566 in N_Array_Type_Definition 20567 then 20568 Error_Node := 20569 Subtype_Indication 20570 (Component_Definition 20571 (Type_Definition (Related_Nod))); 20572 else 20573 Error_Node := 20574 Subtype_Indication (Type_Definition (Related_Nod)); 20575 end if; 20576 20577 when N_Subtype_Declaration => 20578 Error_Node := Subtype_Indication (Related_Nod); 20579 20580 when N_Object_Declaration => 20581 Error_Node := Object_Definition (Related_Nod); 20582 20583 when N_Component_Declaration => 20584 Error_Node := 20585 Subtype_Indication (Component_Definition (Related_Nod)); 20586 20587 when N_Allocator => 20588 Error_Node := Expression (Related_Nod); 20589 20590 when others => 20591 pragma Assert (False); 20592 Error_Node := Related_Nod; 20593 end case; 20594 20595 Error_Msg_NE 20596 ("`NOT NULL` not allowed (& already excludes null)", 20597 Error_Node, 20598 Entity (S)); 20599 end if; 20600 20601 Set_Etype (S, 20602 Create_Null_Excluding_Itype 20603 (T => Entity (S), 20604 Related_Nod => P)); 20605 Set_Entity (S, Etype (S)); 20606 end if; 20607 20608 return Entity (S); 20609 20610 -- Case of constraint present, so that we have an N_Subtype_Indication 20611 -- node (this node is created only if constraints are present). 20612 20613 else 20614 Find_Type (Subtype_Mark (S)); 20615 20616 if Nkind (Parent (S)) /= N_Access_To_Object_Definition 20617 and then not 20618 (Nkind (Parent (S)) = N_Subtype_Declaration 20619 and then Is_Itype (Defining_Identifier (Parent (S)))) 20620 then 20621 Check_Incomplete (Subtype_Mark (S)); 20622 end if; 20623 20624 P := Parent (S); 20625 Subtype_Mark_Id := Entity (Subtype_Mark (S)); 20626 20627 -- Explicit subtype declaration case 20628 20629 if Nkind (P) = N_Subtype_Declaration then 20630 Def_Id := Defining_Identifier (P); 20631 20632 -- Explicit derived type definition case 20633 20634 elsif Nkind (P) = N_Derived_Type_Definition then 20635 Def_Id := Defining_Identifier (Parent (P)); 20636 20637 -- Implicit case, the Def_Id must be created as an implicit type. 20638 -- The one exception arises in the case of concurrent types, array 20639 -- and access types, where other subsidiary implicit types may be 20640 -- created and must appear before the main implicit type. In these 20641 -- cases we leave Def_Id set to Empty as a signal that Create_Itype 20642 -- has not yet been called to create Def_Id. 20643 20644 else 20645 if Is_Array_Type (Subtype_Mark_Id) 20646 or else Is_Concurrent_Type (Subtype_Mark_Id) 20647 or else Is_Access_Type (Subtype_Mark_Id) 20648 then 20649 Def_Id := Empty; 20650 20651 -- For the other cases, we create a new unattached Itype, 20652 -- and set the indication to ensure it gets attached later. 20653 20654 else 20655 Def_Id := 20656 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix); 20657 end if; 20658 end if; 20659 20660 -- If the kind of constraint is invalid for this kind of type, 20661 -- then give an error, and then pretend no constraint was given. 20662 20663 if not Is_Valid_Constraint_Kind 20664 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S))) 20665 then 20666 Error_Msg_N 20667 ("incorrect constraint for this kind of type", Constraint (S)); 20668 20669 Rewrite (S, New_Copy_Tree (Subtype_Mark (S))); 20670 20671 -- Set Ekind of orphan itype, to prevent cascaded errors 20672 20673 if Present (Def_Id) then 20674 Set_Ekind (Def_Id, Ekind (Any_Type)); 20675 end if; 20676 20677 -- Make recursive call, having got rid of the bogus constraint 20678 20679 return Process_Subtype (S, Related_Nod, Related_Id, Suffix); 20680 end if; 20681 20682 -- Remaining processing depends on type. Select on Base_Type kind to 20683 -- ensure getting to the concrete type kind in the case of a private 20684 -- subtype (needed when only doing semantic analysis). 20685 20686 case Ekind (Base_Type (Subtype_Mark_Id)) is 20687 when Access_Kind => 20688 20689 -- If this is a constraint on a class-wide type, discard it. 20690 -- There is currently no way to express a partial discriminant 20691 -- constraint on a type with unknown discriminants. This is 20692 -- a pathology that the ACATS wisely decides not to test. 20693 20694 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then 20695 if Comes_From_Source (S) then 20696 Error_Msg_N 20697 ("constraint on class-wide type ignored??", 20698 Constraint (S)); 20699 end if; 20700 20701 if Nkind (P) = N_Subtype_Declaration then 20702 Set_Subtype_Indication (P, 20703 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S))); 20704 end if; 20705 20706 return Subtype_Mark_Id; 20707 end if; 20708 20709 Constrain_Access (Def_Id, S, Related_Nod); 20710 20711 if Expander_Active 20712 and then Is_Itype (Designated_Type (Def_Id)) 20713 and then Nkind (Related_Nod) = N_Subtype_Declaration 20714 and then not Is_Incomplete_Type (Designated_Type (Def_Id)) 20715 then 20716 Build_Itype_Reference 20717 (Designated_Type (Def_Id), Related_Nod); 20718 end if; 20719 20720 when Array_Kind => 20721 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix); 20722 20723 when Decimal_Fixed_Point_Kind => 20724 Constrain_Decimal (Def_Id, S); 20725 20726 when Enumeration_Kind => 20727 Constrain_Enumeration (Def_Id, S); 20728 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id); 20729 20730 when Ordinary_Fixed_Point_Kind => 20731 Constrain_Ordinary_Fixed (Def_Id, S); 20732 20733 when Float_Kind => 20734 Constrain_Float (Def_Id, S); 20735 20736 when Integer_Kind => 20737 Constrain_Integer (Def_Id, S); 20738 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id); 20739 20740 when E_Record_Type | 20741 E_Record_Subtype | 20742 Class_Wide_Kind | 20743 E_Incomplete_Type => 20744 Constrain_Discriminated_Type (Def_Id, S, Related_Nod); 20745 20746 if Ekind (Def_Id) = E_Incomplete_Type then 20747 Set_Private_Dependents (Def_Id, New_Elmt_List); 20748 end if; 20749 20750 when Private_Kind => 20751 Constrain_Discriminated_Type (Def_Id, S, Related_Nod); 20752 Set_Private_Dependents (Def_Id, New_Elmt_List); 20753 20754 -- In case of an invalid constraint prevent further processing 20755 -- since the type constructed is missing expected fields. 20756 20757 if Etype (Def_Id) = Any_Type then 20758 return Def_Id; 20759 end if; 20760 20761 -- If the full view is that of a task with discriminants, 20762 -- we must constrain both the concurrent type and its 20763 -- corresponding record type. Otherwise we will just propagate 20764 -- the constraint to the full view, if available. 20765 20766 if Present (Full_View (Subtype_Mark_Id)) 20767 and then Has_Discriminants (Subtype_Mark_Id) 20768 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id)) 20769 then 20770 Full_View_Id := 20771 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix); 20772 20773 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id)); 20774 Constrain_Concurrent (Full_View_Id, S, 20775 Related_Nod, Related_Id, Suffix); 20776 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id); 20777 Set_Full_View (Def_Id, Full_View_Id); 20778 20779 -- Introduce an explicit reference to the private subtype, 20780 -- to prevent scope anomalies in gigi if first use appears 20781 -- in a nested context, e.g. a later function body. 20782 -- Should this be generated in other contexts than a full 20783 -- type declaration? 20784 20785 if Is_Itype (Def_Id) 20786 and then 20787 Nkind (Parent (P)) = N_Full_Type_Declaration 20788 then 20789 Build_Itype_Reference (Def_Id, Parent (P)); 20790 end if; 20791 20792 else 20793 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod); 20794 end if; 20795 20796 when Concurrent_Kind => 20797 Constrain_Concurrent (Def_Id, S, 20798 Related_Nod, Related_Id, Suffix); 20799 20800 when others => 20801 Error_Msg_N ("invalid subtype mark in subtype indication", S); 20802 end case; 20803 20804 -- Size and Convention are always inherited from the base type 20805 20806 Set_Size_Info (Def_Id, (Subtype_Mark_Id)); 20807 Set_Convention (Def_Id, Convention (Subtype_Mark_Id)); 20808 20809 return Def_Id; 20810 end if; 20811 end Process_Subtype; 20812 20813 -------------------------------------------- 20814 -- Propagate_Default_Init_Cond_Attributes -- 20815 -------------------------------------------- 20816 20817 procedure Propagate_Default_Init_Cond_Attributes 20818 (From_Typ : Entity_Id; 20819 To_Typ : Entity_Id; 20820 Parent_To_Derivation : Boolean := False; 20821 Private_To_Full_View : Boolean := False) 20822 is 20823 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id); 20824 -- Remove the default initial procedure (if any) from the rep chain of 20825 -- type Typ. 20826 20827 ---------------------------------------- 20828 -- Remove_Default_Init_Cond_Procedure -- 20829 ---------------------------------------- 20830 20831 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is 20832 Found : Boolean := False; 20833 Prev : Entity_Id; 20834 Subp : Entity_Id; 20835 20836 begin 20837 Prev := Typ; 20838 Subp := Subprograms_For_Type (Typ); 20839 while Present (Subp) loop 20840 if Is_Default_Init_Cond_Procedure (Subp) then 20841 Found := True; 20842 exit; 20843 end if; 20844 20845 Prev := Subp; 20846 Subp := Subprograms_For_Type (Subp); 20847 end loop; 20848 20849 if Found then 20850 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp)); 20851 Set_Subprograms_For_Type (Subp, Empty); 20852 end if; 20853 end Remove_Default_Init_Cond_Procedure; 20854 20855 -- Local variables 20856 20857 Inherit_Procedure : Boolean := False; 20858 20859 -- Start of processing for Propagate_Default_Init_Cond_Attributes 20860 20861 begin 20862 if Has_Default_Init_Cond (From_Typ) then 20863 20864 -- A derived type inherits the attributes from its parent type 20865 20866 if Parent_To_Derivation then 20867 Set_Has_Inherited_Default_Init_Cond (To_Typ); 20868 20869 -- A full view shares the attributes with its private view 20870 20871 else 20872 Set_Has_Default_Init_Cond (To_Typ); 20873 end if; 20874 20875 Inherit_Procedure := True; 20876 20877 -- Due to the order of expansion, a derived private type is processed 20878 -- by two routines which both attempt to set the attributes related 20879 -- to pragma Default_Initial_Condition - Build_Derived_Type and then 20880 -- Process_Full_View. 20881 20882 -- package Pack is 20883 -- type Parent_Typ is private 20884 -- with Default_Initial_Condition ...; 20885 -- private 20886 -- type Parent_Typ is ...; 20887 -- end Pack; 20888 20889 -- with Pack; use Pack; 20890 -- package Pack_2 is 20891 -- type Deriv_Typ is private 20892 -- with Default_Initial_Condition ...; 20893 -- private 20894 -- type Deriv_Typ is new Parent_Typ; 20895 -- end Pack_2; 20896 20897 -- When Build_Derived_Type operates, it sets the attributes on the 20898 -- full view without taking into account that the private view may 20899 -- define its own default initial condition procedure. This becomes 20900 -- apparent in Process_Full_View which must undo some of the work by 20901 -- Build_Derived_Type and propagate the attributes from the private 20902 -- to the full view. 20903 20904 if Private_To_Full_View then 20905 Set_Has_Inherited_Default_Init_Cond (To_Typ, False); 20906 Remove_Default_Init_Cond_Procedure (To_Typ); 20907 end if; 20908 20909 -- A type must inherit the default initial condition procedure from a 20910 -- parent type when the parent itself is inheriting the procedure or 20911 -- when it is defining one. This circuitry is also used when dealing 20912 -- with the private / full view of a type. 20913 20914 elsif Has_Inherited_Default_Init_Cond (From_Typ) 20915 or (Parent_To_Derivation 20916 and Present (Get_Pragma 20917 (From_Typ, Pragma_Default_Initial_Condition))) 20918 then 20919 Set_Has_Inherited_Default_Init_Cond (To_Typ); 20920 Inherit_Procedure := True; 20921 end if; 20922 20923 if Inherit_Procedure 20924 and then No (Default_Init_Cond_Procedure (To_Typ)) 20925 then 20926 Set_Default_Init_Cond_Procedure 20927 (To_Typ, Default_Init_Cond_Procedure (From_Typ)); 20928 end if; 20929 end Propagate_Default_Init_Cond_Attributes; 20930 20931 ----------------------------- 20932 -- Record_Type_Declaration -- 20933 ----------------------------- 20934 20935 procedure Record_Type_Declaration 20936 (T : Entity_Id; 20937 N : Node_Id; 20938 Prev : Entity_Id) 20939 is 20940 Def : constant Node_Id := Type_Definition (N); 20941 Is_Tagged : Boolean; 20942 Tag_Comp : Entity_Id; 20943 20944 begin 20945 -- These flags must be initialized before calling Process_Discriminants 20946 -- because this routine makes use of them. 20947 20948 Set_Ekind (T, E_Record_Type); 20949 Set_Etype (T, T); 20950 Init_Size_Align (T); 20951 Set_Interfaces (T, No_Elist); 20952 Set_Stored_Constraint (T, No_Elist); 20953 Set_Default_SSO (T); 20954 20955 -- Normal case 20956 20957 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then 20958 if Limited_Present (Def) then 20959 Check_SPARK_05_Restriction ("limited is not allowed", N); 20960 end if; 20961 20962 if Abstract_Present (Def) then 20963 Check_SPARK_05_Restriction ("abstract is not allowed", N); 20964 end if; 20965 20966 -- The flag Is_Tagged_Type might have already been set by 20967 -- Find_Type_Name if it detected an error for declaration T. This 20968 -- arises in the case of private tagged types where the full view 20969 -- omits the word tagged. 20970 20971 Is_Tagged := 20972 Tagged_Present (Def) 20973 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T)); 20974 20975 Set_Is_Limited_Record (T, Limited_Present (Def)); 20976 20977 if Is_Tagged then 20978 Set_Is_Tagged_Type (T, True); 20979 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams); 20980 end if; 20981 20982 -- Type is abstract if full declaration carries keyword, or if 20983 -- previous partial view did. 20984 20985 Set_Is_Abstract_Type (T, Is_Abstract_Type (T) 20986 or else Abstract_Present (Def)); 20987 20988 else 20989 Check_SPARK_05_Restriction ("interface is not allowed", N); 20990 20991 Is_Tagged := True; 20992 Analyze_Interface_Declaration (T, Def); 20993 20994 if Present (Discriminant_Specifications (N)) then 20995 Error_Msg_N 20996 ("interface types cannot have discriminants", 20997 Defining_Identifier 20998 (First (Discriminant_Specifications (N)))); 20999 end if; 21000 end if; 21001 21002 -- First pass: if there are self-referential access components, 21003 -- create the required anonymous access type declarations, and if 21004 -- need be an incomplete type declaration for T itself. 21005 21006 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def)); 21007 21008 if Ada_Version >= Ada_2005 21009 and then Present (Interface_List (Def)) 21010 then 21011 Check_Interfaces (N, Def); 21012 21013 declare 21014 Ifaces_List : Elist_Id; 21015 21016 begin 21017 -- Ada 2005 (AI-251): Collect the list of progenitors that are not 21018 -- already in the parents. 21019 21020 Collect_Interfaces 21021 (T => T, 21022 Ifaces_List => Ifaces_List, 21023 Exclude_Parents => True); 21024 21025 Set_Interfaces (T, Ifaces_List); 21026 end; 21027 end if; 21028 21029 -- Records constitute a scope for the component declarations within. 21030 -- The scope is created prior to the processing of these declarations. 21031 -- Discriminants are processed first, so that they are visible when 21032 -- processing the other components. The Ekind of the record type itself 21033 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype). 21034 21035 -- Enter record scope 21036 21037 Push_Scope (T); 21038 21039 -- If an incomplete or private type declaration was already given for 21040 -- the type, then this scope already exists, and the discriminants have 21041 -- been declared within. We must verify that the full declaration 21042 -- matches the incomplete one. 21043 21044 Check_Or_Process_Discriminants (N, T, Prev); 21045 21046 Set_Is_Constrained (T, not Has_Discriminants (T)); 21047 Set_Has_Delayed_Freeze (T, True); 21048 21049 -- For tagged types add a manually analyzed component corresponding 21050 -- to the component _tag, the corresponding piece of tree will be 21051 -- expanded as part of the freezing actions if it is not a CPP_Class. 21052 21053 if Is_Tagged then 21054 21055 -- Do not add the tag unless we are in expansion mode 21056 21057 if Expander_Active then 21058 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag); 21059 Enter_Name (Tag_Comp); 21060 21061 Set_Ekind (Tag_Comp, E_Component); 21062 Set_Is_Tag (Tag_Comp); 21063 Set_Is_Aliased (Tag_Comp); 21064 Set_Etype (Tag_Comp, RTE (RE_Tag)); 21065 Set_DT_Entry_Count (Tag_Comp, No_Uint); 21066 Set_Original_Record_Component (Tag_Comp, Tag_Comp); 21067 Init_Component_Location (Tag_Comp); 21068 21069 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the 21070 -- implemented interfaces. 21071 21072 if Has_Interfaces (T) then 21073 Add_Interface_Tag_Components (N, T); 21074 end if; 21075 end if; 21076 21077 Make_Class_Wide_Type (T); 21078 Set_Direct_Primitive_Operations (T, New_Elmt_List); 21079 end if; 21080 21081 -- We must suppress range checks when processing record components in 21082 -- the presence of discriminants, since we don't want spurious checks to 21083 -- be generated during their analysis, but Suppress_Range_Checks flags 21084 -- must be reset the after processing the record definition. 21085 21086 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd, 21087 -- couldn't we just use the normal range check suppression method here. 21088 -- That would seem cleaner ??? 21089 21090 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then 21091 Set_Kill_Range_Checks (T, True); 21092 Record_Type_Definition (Def, Prev); 21093 Set_Kill_Range_Checks (T, False); 21094 else 21095 Record_Type_Definition (Def, Prev); 21096 end if; 21097 21098 -- Exit from record scope 21099 21100 End_Scope; 21101 21102 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all 21103 -- the implemented interfaces and associate them an aliased entity. 21104 21105 if Is_Tagged 21106 and then not Is_Empty_List (Interface_List (Def)) 21107 then 21108 Derive_Progenitor_Subprograms (T, T); 21109 end if; 21110 21111 Check_Function_Writable_Actuals (N); 21112 end Record_Type_Declaration; 21113 21114 ---------------------------- 21115 -- Record_Type_Definition -- 21116 ---------------------------- 21117 21118 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is 21119 Component : Entity_Id; 21120 Ctrl_Components : Boolean := False; 21121 Final_Storage_Only : Boolean; 21122 T : Entity_Id; 21123 21124 begin 21125 if Ekind (Prev_T) = E_Incomplete_Type then 21126 T := Full_View (Prev_T); 21127 else 21128 T := Prev_T; 21129 end if; 21130 21131 -- In SPARK, tagged types and type extensions may only be declared in 21132 -- the specification of library unit packages. 21133 21134 if Present (Def) and then Is_Tagged_Type (T) then 21135 declare 21136 Typ : Node_Id; 21137 Ctxt : Node_Id; 21138 21139 begin 21140 if Nkind (Parent (Def)) = N_Full_Type_Declaration then 21141 Typ := Parent (Def); 21142 else 21143 pragma Assert 21144 (Nkind (Parent (Def)) = N_Derived_Type_Definition); 21145 Typ := Parent (Parent (Def)); 21146 end if; 21147 21148 Ctxt := Parent (Typ); 21149 21150 if Nkind (Ctxt) = N_Package_Body 21151 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit 21152 then 21153 Check_SPARK_05_Restriction 21154 ("type should be defined in package specification", Typ); 21155 21156 elsif Nkind (Ctxt) /= N_Package_Specification 21157 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit 21158 then 21159 Check_SPARK_05_Restriction 21160 ("type should be defined in library unit package", Typ); 21161 end if; 21162 end; 21163 end if; 21164 21165 Final_Storage_Only := not Is_Controlled_Active (T); 21166 21167 -- Ada 2005: Check whether an explicit Limited is present in a derived 21168 -- type declaration. 21169 21170 if Nkind (Parent (Def)) = N_Derived_Type_Definition 21171 and then Limited_Present (Parent (Def)) 21172 then 21173 Set_Is_Limited_Record (T); 21174 end if; 21175 21176 -- If the component list of a record type is defined by the reserved 21177 -- word null and there is no discriminant part, then the record type has 21178 -- no components and all records of the type are null records (RM 3.7) 21179 -- This procedure is also called to process the extension part of a 21180 -- record extension, in which case the current scope may have inherited 21181 -- components. 21182 21183 if No (Def) 21184 or else No (Component_List (Def)) 21185 or else Null_Present (Component_List (Def)) 21186 then 21187 if not Is_Tagged_Type (T) then 21188 Check_SPARK_05_Restriction ("untagged record cannot be null", Def); 21189 end if; 21190 21191 else 21192 Analyze_Declarations (Component_Items (Component_List (Def))); 21193 21194 if Present (Variant_Part (Component_List (Def))) then 21195 Check_SPARK_05_Restriction ("variant part is not allowed", Def); 21196 Analyze (Variant_Part (Component_List (Def))); 21197 end if; 21198 end if; 21199 21200 -- After completing the semantic analysis of the record definition, 21201 -- record components, both new and inherited, are accessible. Set their 21202 -- kind accordingly. Exclude malformed itypes from illegal declarations, 21203 -- whose Ekind may be void. 21204 21205 Component := First_Entity (Current_Scope); 21206 while Present (Component) loop 21207 if Ekind (Component) = E_Void 21208 and then not Is_Itype (Component) 21209 then 21210 Set_Ekind (Component, E_Component); 21211 Init_Component_Location (Component); 21212 end if; 21213 21214 if Has_Task (Etype (Component)) then 21215 Set_Has_Task (T); 21216 end if; 21217 21218 if Has_Protected (Etype (Component)) then 21219 Set_Has_Protected (T); 21220 end if; 21221 21222 if Ekind (Component) /= E_Component then 21223 null; 21224 21225 -- Do not set Has_Controlled_Component on a class-wide equivalent 21226 -- type. See Make_CW_Equivalent_Type. 21227 21228 elsif not Is_Class_Wide_Equivalent_Type (T) 21229 and then (Has_Controlled_Component (Etype (Component)) 21230 or else (Chars (Component) /= Name_uParent 21231 and then Is_Controlled_Active 21232 (Etype (Component)))) 21233 then 21234 Set_Has_Controlled_Component (T, True); 21235 Final_Storage_Only := 21236 Final_Storage_Only 21237 and then Finalize_Storage_Only (Etype (Component)); 21238 Ctrl_Components := True; 21239 end if; 21240 21241 Next_Entity (Component); 21242 end loop; 21243 21244 -- A Type is Finalize_Storage_Only only if all its controlled components 21245 -- are also. 21246 21247 if Ctrl_Components then 21248 Set_Finalize_Storage_Only (T, Final_Storage_Only); 21249 end if; 21250 21251 -- Place reference to end record on the proper entity, which may 21252 -- be a partial view. 21253 21254 if Present (Def) then 21255 Process_End_Label (Def, 'e', Prev_T); 21256 end if; 21257 end Record_Type_Definition; 21258 21259 ------------------------ 21260 -- Replace_Components -- 21261 ------------------------ 21262 21263 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is 21264 function Process (N : Node_Id) return Traverse_Result; 21265 21266 ------------- 21267 -- Process -- 21268 ------------- 21269 21270 function Process (N : Node_Id) return Traverse_Result is 21271 Comp : Entity_Id; 21272 21273 begin 21274 if Nkind (N) = N_Discriminant_Specification then 21275 Comp := First_Discriminant (Typ); 21276 while Present (Comp) loop 21277 if Chars (Comp) = Chars (Defining_Identifier (N)) then 21278 Set_Defining_Identifier (N, Comp); 21279 exit; 21280 end if; 21281 21282 Next_Discriminant (Comp); 21283 end loop; 21284 21285 elsif Nkind (N) = N_Component_Declaration then 21286 Comp := First_Component (Typ); 21287 while Present (Comp) loop 21288 if Chars (Comp) = Chars (Defining_Identifier (N)) then 21289 Set_Defining_Identifier (N, Comp); 21290 exit; 21291 end if; 21292 21293 Next_Component (Comp); 21294 end loop; 21295 end if; 21296 21297 return OK; 21298 end Process; 21299 21300 procedure Replace is new Traverse_Proc (Process); 21301 21302 -- Start of processing for Replace_Components 21303 21304 begin 21305 Replace (Decl); 21306 end Replace_Components; 21307 21308 ------------------------------- 21309 -- Set_Completion_Referenced -- 21310 ------------------------------- 21311 21312 procedure Set_Completion_Referenced (E : Entity_Id) is 21313 begin 21314 -- If in main unit, mark entity that is a completion as referenced, 21315 -- warnings go on the partial view when needed. 21316 21317 if In_Extended_Main_Source_Unit (E) then 21318 Set_Referenced (E); 21319 end if; 21320 end Set_Completion_Referenced; 21321 21322 --------------------- 21323 -- Set_Default_SSO -- 21324 --------------------- 21325 21326 procedure Set_Default_SSO (T : Entity_Id) is 21327 begin 21328 case Opt.Default_SSO is 21329 when ' ' => 21330 null; 21331 when 'L' => 21332 Set_SSO_Set_Low_By_Default (T, True); 21333 when 'H' => 21334 Set_SSO_Set_High_By_Default (T, True); 21335 when others => 21336 raise Program_Error; 21337 end case; 21338 end Set_Default_SSO; 21339 21340 --------------------- 21341 -- Set_Fixed_Range -- 21342 --------------------- 21343 21344 -- The range for fixed-point types is complicated by the fact that we 21345 -- do not know the exact end points at the time of the declaration. This 21346 -- is true for three reasons: 21347 21348 -- A size clause may affect the fudging of the end-points. 21349 -- A small clause may affect the values of the end-points. 21350 -- We try to include the end-points if it does not affect the size. 21351 21352 -- This means that the actual end-points must be established at the 21353 -- point when the type is frozen. Meanwhile, we first narrow the range 21354 -- as permitted (so that it will fit if necessary in a small specified 21355 -- size), and then build a range subtree with these narrowed bounds. 21356 -- Set_Fixed_Range constructs the range from real literal values, and 21357 -- sets the range as the Scalar_Range of the given fixed-point type entity. 21358 21359 -- The parent of this range is set to point to the entity so that it is 21360 -- properly hooked into the tree (unlike normal Scalar_Range entries for 21361 -- other scalar types, which are just pointers to the range in the 21362 -- original tree, this would otherwise be an orphan). 21363 21364 -- The tree is left unanalyzed. When the type is frozen, the processing 21365 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not 21366 -- analyzed, and uses this as an indication that it should complete 21367 -- work on the range (it will know the final small and size values). 21368 21369 procedure Set_Fixed_Range 21370 (E : Entity_Id; 21371 Loc : Source_Ptr; 21372 Lo : Ureal; 21373 Hi : Ureal) 21374 is 21375 S : constant Node_Id := 21376 Make_Range (Loc, 21377 Low_Bound => Make_Real_Literal (Loc, Lo), 21378 High_Bound => Make_Real_Literal (Loc, Hi)); 21379 begin 21380 Set_Scalar_Range (E, S); 21381 Set_Parent (S, E); 21382 21383 -- Before the freeze point, the bounds of a fixed point are universal 21384 -- and carry the corresponding type. 21385 21386 Set_Etype (Low_Bound (S), Universal_Real); 21387 Set_Etype (High_Bound (S), Universal_Real); 21388 end Set_Fixed_Range; 21389 21390 ---------------------------------- 21391 -- Set_Scalar_Range_For_Subtype -- 21392 ---------------------------------- 21393 21394 procedure Set_Scalar_Range_For_Subtype 21395 (Def_Id : Entity_Id; 21396 R : Node_Id; 21397 Subt : Entity_Id) 21398 is 21399 Kind : constant Entity_Kind := Ekind (Def_Id); 21400 21401 begin 21402 -- Defend against previous error 21403 21404 if Nkind (R) = N_Error then 21405 return; 21406 end if; 21407 21408 Set_Scalar_Range (Def_Id, R); 21409 21410 -- We need to link the range into the tree before resolving it so 21411 -- that types that are referenced, including importantly the subtype 21412 -- itself, are properly frozen (Freeze_Expression requires that the 21413 -- expression be properly linked into the tree). Of course if it is 21414 -- already linked in, then we do not disturb the current link. 21415 21416 if No (Parent (R)) then 21417 Set_Parent (R, Def_Id); 21418 end if; 21419 21420 -- Reset the kind of the subtype during analysis of the range, to 21421 -- catch possible premature use in the bounds themselves. 21422 21423 Set_Ekind (Def_Id, E_Void); 21424 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id); 21425 Set_Ekind (Def_Id, Kind); 21426 end Set_Scalar_Range_For_Subtype; 21427 21428 -------------------------------------------------------- 21429 -- Set_Stored_Constraint_From_Discriminant_Constraint -- 21430 -------------------------------------------------------- 21431 21432 procedure Set_Stored_Constraint_From_Discriminant_Constraint 21433 (E : Entity_Id) 21434 is 21435 begin 21436 -- Make sure set if encountered during Expand_To_Stored_Constraint 21437 21438 Set_Stored_Constraint (E, No_Elist); 21439 21440 -- Give it the right value 21441 21442 if Is_Constrained (E) and then Has_Discriminants (E) then 21443 Set_Stored_Constraint (E, 21444 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E))); 21445 end if; 21446 end Set_Stored_Constraint_From_Discriminant_Constraint; 21447 21448 ------------------------------------- 21449 -- Signed_Integer_Type_Declaration -- 21450 ------------------------------------- 21451 21452 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is 21453 Implicit_Base : Entity_Id; 21454 Base_Typ : Entity_Id; 21455 Lo_Val : Uint; 21456 Hi_Val : Uint; 21457 Errs : Boolean := False; 21458 Lo : Node_Id; 21459 Hi : Node_Id; 21460 21461 function Can_Derive_From (E : Entity_Id) return Boolean; 21462 -- Determine whether given bounds allow derivation from specified type 21463 21464 procedure Check_Bound (Expr : Node_Id); 21465 -- Check bound to make sure it is integral and static. If not, post 21466 -- appropriate error message and set Errs flag 21467 21468 --------------------- 21469 -- Can_Derive_From -- 21470 --------------------- 21471 21472 -- Note we check both bounds against both end values, to deal with 21473 -- strange types like ones with a range of 0 .. -12341234. 21474 21475 function Can_Derive_From (E : Entity_Id) return Boolean is 21476 Lo : constant Uint := Expr_Value (Type_Low_Bound (E)); 21477 Hi : constant Uint := Expr_Value (Type_High_Bound (E)); 21478 begin 21479 return Lo <= Lo_Val and then Lo_Val <= Hi 21480 and then 21481 Lo <= Hi_Val and then Hi_Val <= Hi; 21482 end Can_Derive_From; 21483 21484 ----------------- 21485 -- Check_Bound -- 21486 ----------------- 21487 21488 procedure Check_Bound (Expr : Node_Id) is 21489 begin 21490 -- If a range constraint is used as an integer type definition, each 21491 -- bound of the range must be defined by a static expression of some 21492 -- integer type, but the two bounds need not have the same integer 21493 -- type (Negative bounds are allowed.) (RM 3.5.4) 21494 21495 if not Is_Integer_Type (Etype (Expr)) then 21496 Error_Msg_N 21497 ("integer type definition bounds must be of integer type", Expr); 21498 Errs := True; 21499 21500 elsif not Is_OK_Static_Expression (Expr) then 21501 Flag_Non_Static_Expr 21502 ("non-static expression used for integer type bound!", Expr); 21503 Errs := True; 21504 21505 -- The bounds are folded into literals, and we set their type to be 21506 -- universal, to avoid typing difficulties: we cannot set the type 21507 -- of the literal to the new type, because this would be a forward 21508 -- reference for the back end, and if the original type is user- 21509 -- defined this can lead to spurious semantic errors (e.g. 2928-003). 21510 21511 else 21512 if Is_Entity_Name (Expr) then 21513 Fold_Uint (Expr, Expr_Value (Expr), True); 21514 end if; 21515 21516 Set_Etype (Expr, Universal_Integer); 21517 end if; 21518 end Check_Bound; 21519 21520 -- Start of processing for Signed_Integer_Type_Declaration 21521 21522 begin 21523 -- Create an anonymous base type 21524 21525 Implicit_Base := 21526 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B'); 21527 21528 -- Analyze and check the bounds, they can be of any integer type 21529 21530 Lo := Low_Bound (Def); 21531 Hi := High_Bound (Def); 21532 21533 -- Arbitrarily use Integer as the type if either bound had an error 21534 21535 if Hi = Error or else Lo = Error then 21536 Base_Typ := Any_Integer; 21537 Set_Error_Posted (T, True); 21538 21539 -- Here both bounds are OK expressions 21540 21541 else 21542 Analyze_And_Resolve (Lo, Any_Integer); 21543 Analyze_And_Resolve (Hi, Any_Integer); 21544 21545 Check_Bound (Lo); 21546 Check_Bound (Hi); 21547 21548 if Errs then 21549 Hi := Type_High_Bound (Standard_Long_Long_Integer); 21550 Lo := Type_Low_Bound (Standard_Long_Long_Integer); 21551 end if; 21552 21553 -- Find type to derive from 21554 21555 Lo_Val := Expr_Value (Lo); 21556 Hi_Val := Expr_Value (Hi); 21557 21558 if Can_Derive_From (Standard_Short_Short_Integer) then 21559 Base_Typ := Base_Type (Standard_Short_Short_Integer); 21560 21561 elsif Can_Derive_From (Standard_Short_Integer) then 21562 Base_Typ := Base_Type (Standard_Short_Integer); 21563 21564 elsif Can_Derive_From (Standard_Integer) then 21565 Base_Typ := Base_Type (Standard_Integer); 21566 21567 elsif Can_Derive_From (Standard_Long_Integer) then 21568 Base_Typ := Base_Type (Standard_Long_Integer); 21569 21570 elsif Can_Derive_From (Standard_Long_Long_Integer) then 21571 Check_Restriction (No_Long_Long_Integers, Def); 21572 Base_Typ := Base_Type (Standard_Long_Long_Integer); 21573 21574 else 21575 Base_Typ := Base_Type (Standard_Long_Long_Integer); 21576 Error_Msg_N ("integer type definition bounds out of range", Def); 21577 Hi := Type_High_Bound (Standard_Long_Long_Integer); 21578 Lo := Type_Low_Bound (Standard_Long_Long_Integer); 21579 end if; 21580 end if; 21581 21582 -- Complete both implicit base and declared first subtype entities. The 21583 -- inheritance of the rep item chain ensures that SPARK-related pragmas 21584 -- are not clobbered when the signed integer type acts as a full view of 21585 -- a private type. 21586 21587 Set_Etype (Implicit_Base, Base_Typ); 21588 Set_Size_Info (Implicit_Base, Base_Typ); 21589 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ)); 21590 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ)); 21591 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ)); 21592 21593 Set_Ekind (T, E_Signed_Integer_Subtype); 21594 Set_Etype (T, Implicit_Base); 21595 Set_Size_Info (T, Implicit_Base); 21596 Inherit_Rep_Item_Chain (T, Implicit_Base); 21597 Set_Scalar_Range (T, Def); 21598 Set_RM_Size (T, UI_From_Int (Minimum_Size (T))); 21599 Set_Is_Constrained (T); 21600 end Signed_Integer_Type_Declaration; 21601 21602end Sem_Ch3; 21603