1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2016 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41
42
43 /* All the tuples have their operand vector (if present) at the very bottom
44 of the structure. Therefore, the offset required to find the
45 operands vector the size of the structure minus the size of the 1
46 element tree array at the end (see gimple_ops). */
47 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
48 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
49 EXPORTED_CONST size_t gimple_ops_offset_[] = {
50 #include "gsstruct.def"
51 };
52 #undef DEFGSSTRUCT
53
54 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
55 static const size_t gsstruct_code_size[] = {
56 #include "gsstruct.def"
57 };
58 #undef DEFGSSTRUCT
59
60 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
61 const char *const gimple_code_name[] = {
62 #include "gimple.def"
63 };
64 #undef DEFGSCODE
65
66 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
67 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
68 #include "gimple.def"
69 };
70 #undef DEFGSCODE
71
72 /* Gimple stats. */
73
74 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
75 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
76
77 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
78 static const char * const gimple_alloc_kind_names[] = {
79 "assignments",
80 "phi nodes",
81 "conditionals",
82 "everything else"
83 };
84
85 /* Static gimple tuple members. */
86 const enum gimple_code gassign::code_;
87 const enum gimple_code gcall::code_;
88 const enum gimple_code gcond::code_;
89
90
91 /* Gimple tuple constructors.
92 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
93 be passed a NULL to start with an empty sequence. */
94
95 /* Set the code for statement G to CODE. */
96
97 static inline void
gimple_set_code(gimple * g,enum gimple_code code)98 gimple_set_code (gimple *g, enum gimple_code code)
99 {
100 g->code = code;
101 }
102
103 /* Return the number of bytes needed to hold a GIMPLE statement with
104 code CODE. */
105
106 static inline size_t
gimple_size(enum gimple_code code)107 gimple_size (enum gimple_code code)
108 {
109 return gsstruct_code_size[gss_for_code (code)];
110 }
111
112 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
113 operands. */
114
115 gimple *
gimple_alloc_stat(enum gimple_code code,unsigned num_ops MEM_STAT_DECL)116 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
117 {
118 size_t size;
119 gimple *stmt;
120
121 size = gimple_size (code);
122 if (num_ops > 0)
123 size += sizeof (tree) * (num_ops - 1);
124
125 if (GATHER_STATISTICS)
126 {
127 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
128 gimple_alloc_counts[(int) kind]++;
129 gimple_alloc_sizes[(int) kind] += size;
130 }
131
132 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
133 gimple_set_code (stmt, code);
134 gimple_set_num_ops (stmt, num_ops);
135
136 /* Do not call gimple_set_modified here as it has other side
137 effects and this tuple is still not completely built. */
138 stmt->modified = 1;
139 gimple_init_singleton (stmt);
140
141 return stmt;
142 }
143
144 /* Set SUBCODE to be the code of the expression computed by statement G. */
145
146 static inline void
gimple_set_subcode(gimple * g,unsigned subcode)147 gimple_set_subcode (gimple *g, unsigned subcode)
148 {
149 /* We only have 16 bits for the RHS code. Assert that we are not
150 overflowing it. */
151 gcc_assert (subcode < (1 << 16));
152 g->subcode = subcode;
153 }
154
155
156
157 /* Build a tuple with operands. CODE is the statement to build (which
158 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
159 for the new tuple. NUM_OPS is the number of operands to allocate. */
160
161 #define gimple_build_with_ops(c, s, n) \
162 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
163
164 static gimple *
gimple_build_with_ops_stat(enum gimple_code code,unsigned subcode,unsigned num_ops MEM_STAT_DECL)165 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
166 unsigned num_ops MEM_STAT_DECL)
167 {
168 gimple *s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
169 gimple_set_subcode (s, subcode);
170
171 return s;
172 }
173
174
175 /* Build a GIMPLE_RETURN statement returning RETVAL. */
176
177 greturn *
gimple_build_return(tree retval)178 gimple_build_return (tree retval)
179 {
180 greturn *s
181 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
182 2));
183 if (retval)
184 gimple_return_set_retval (s, retval);
185 return s;
186 }
187
188 /* Reset alias information on call S. */
189
190 void
gimple_call_reset_alias_info(gcall * s)191 gimple_call_reset_alias_info (gcall *s)
192 {
193 if (gimple_call_flags (s) & ECF_CONST)
194 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
195 else
196 pt_solution_reset (gimple_call_use_set (s));
197 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
198 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
199 else
200 pt_solution_reset (gimple_call_clobber_set (s));
201 }
202
203 /* Helper for gimple_build_call, gimple_build_call_valist,
204 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
205 components of a GIMPLE_CALL statement to function FN with NARGS
206 arguments. */
207
208 static inline gcall *
gimple_build_call_1(tree fn,unsigned nargs)209 gimple_build_call_1 (tree fn, unsigned nargs)
210 {
211 gcall *s
212 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
213 nargs + 3));
214 if (TREE_CODE (fn) == FUNCTION_DECL)
215 fn = build_fold_addr_expr (fn);
216 gimple_set_op (s, 1, fn);
217 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
218 gimple_call_reset_alias_info (s);
219 return s;
220 }
221
222
223 /* Build a GIMPLE_CALL statement to function FN with the arguments
224 specified in vector ARGS. */
225
226 gcall *
gimple_build_call_vec(tree fn,vec<tree> args)227 gimple_build_call_vec (tree fn, vec<tree> args)
228 {
229 unsigned i;
230 unsigned nargs = args.length ();
231 gcall *call = gimple_build_call_1 (fn, nargs);
232
233 for (i = 0; i < nargs; i++)
234 gimple_call_set_arg (call, i, args[i]);
235
236 return call;
237 }
238
239
240 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
241 arguments. The ... are the arguments. */
242
243 gcall *
gimple_build_call(tree fn,unsigned nargs,...)244 gimple_build_call (tree fn, unsigned nargs, ...)
245 {
246 va_list ap;
247 gcall *call;
248 unsigned i;
249
250 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
251
252 call = gimple_build_call_1 (fn, nargs);
253
254 va_start (ap, nargs);
255 for (i = 0; i < nargs; i++)
256 gimple_call_set_arg (call, i, va_arg (ap, tree));
257 va_end (ap);
258
259 return call;
260 }
261
262
263 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
264 arguments. AP contains the arguments. */
265
266 gcall *
gimple_build_call_valist(tree fn,unsigned nargs,va_list ap)267 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
268 {
269 gcall *call;
270 unsigned i;
271
272 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
273
274 call = gimple_build_call_1 (fn, nargs);
275
276 for (i = 0; i < nargs; i++)
277 gimple_call_set_arg (call, i, va_arg (ap, tree));
278
279 return call;
280 }
281
282
283 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
284 Build the basic components of a GIMPLE_CALL statement to internal
285 function FN with NARGS arguments. */
286
287 static inline gcall *
gimple_build_call_internal_1(enum internal_fn fn,unsigned nargs)288 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
289 {
290 gcall *s
291 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
292 nargs + 3));
293 s->subcode |= GF_CALL_INTERNAL;
294 gimple_call_set_internal_fn (s, fn);
295 gimple_call_reset_alias_info (s);
296 return s;
297 }
298
299
300 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
301 the number of arguments. The ... are the arguments. */
302
303 gcall *
gimple_build_call_internal(enum internal_fn fn,unsigned nargs,...)304 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
305 {
306 va_list ap;
307 gcall *call;
308 unsigned i;
309
310 call = gimple_build_call_internal_1 (fn, nargs);
311 va_start (ap, nargs);
312 for (i = 0; i < nargs; i++)
313 gimple_call_set_arg (call, i, va_arg (ap, tree));
314 va_end (ap);
315
316 return call;
317 }
318
319
320 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
321 specified in vector ARGS. */
322
323 gcall *
gimple_build_call_internal_vec(enum internal_fn fn,vec<tree> args)324 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
325 {
326 unsigned i, nargs;
327 gcall *call;
328
329 nargs = args.length ();
330 call = gimple_build_call_internal_1 (fn, nargs);
331 for (i = 0; i < nargs; i++)
332 gimple_call_set_arg (call, i, args[i]);
333
334 return call;
335 }
336
337
338 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
339 assumed to be in GIMPLE form already. Minimal checking is done of
340 this fact. */
341
342 gcall *
gimple_build_call_from_tree(tree t)343 gimple_build_call_from_tree (tree t)
344 {
345 unsigned i, nargs;
346 gcall *call;
347 tree fndecl = get_callee_fndecl (t);
348
349 gcc_assert (TREE_CODE (t) == CALL_EXPR);
350
351 nargs = call_expr_nargs (t);
352 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
353
354 for (i = 0; i < nargs; i++)
355 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
356
357 gimple_set_block (call, TREE_BLOCK (t));
358
359 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
360 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
361 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
362 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
363 if (fndecl
364 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
365 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
366 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
367 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
368 else
369 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
370 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
371 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
372 gimple_set_no_warning (call, TREE_NO_WARNING (t));
373 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
374
375 return call;
376 }
377
378
379 /* Build a GIMPLE_ASSIGN statement.
380
381 LHS of the assignment.
382 RHS of the assignment which can be unary or binary. */
383
384 gassign *
gimple_build_assign(tree lhs,tree rhs MEM_STAT_DECL)385 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
386 {
387 enum tree_code subcode;
388 tree op1, op2, op3;
389
390 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
391 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
392 }
393
394
395 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
396 OP1, OP2 and OP3. */
397
398 static inline gassign *
gimple_build_assign_1(tree lhs,enum tree_code subcode,tree op1,tree op2,tree op3 MEM_STAT_DECL)399 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
400 tree op2, tree op3 MEM_STAT_DECL)
401 {
402 unsigned num_ops;
403 gassign *p;
404
405 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
406 code). */
407 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
408
409 p = as_a <gassign *> (
410 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
411 PASS_MEM_STAT));
412 gimple_assign_set_lhs (p, lhs);
413 gimple_assign_set_rhs1 (p, op1);
414 if (op2)
415 {
416 gcc_assert (num_ops > 2);
417 gimple_assign_set_rhs2 (p, op2);
418 }
419
420 if (op3)
421 {
422 gcc_assert (num_ops > 3);
423 gimple_assign_set_rhs3 (p, op3);
424 }
425
426 return p;
427 }
428
429 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
430 OP1, OP2 and OP3. */
431
432 gassign *
gimple_build_assign(tree lhs,enum tree_code subcode,tree op1,tree op2,tree op3 MEM_STAT_DECL)433 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
434 tree op2, tree op3 MEM_STAT_DECL)
435 {
436 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
437 }
438
439 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
440 OP1 and OP2. */
441
442 gassign *
gimple_build_assign(tree lhs,enum tree_code subcode,tree op1,tree op2 MEM_STAT_DECL)443 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
444 tree op2 MEM_STAT_DECL)
445 {
446 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
447 PASS_MEM_STAT);
448 }
449
450 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
451
452 gassign *
gimple_build_assign(tree lhs,enum tree_code subcode,tree op1 MEM_STAT_DECL)453 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
454 {
455 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
456 PASS_MEM_STAT);
457 }
458
459
460 /* Build a GIMPLE_COND statement.
461
462 PRED is the condition used to compare LHS and the RHS.
463 T_LABEL is the label to jump to if the condition is true.
464 F_LABEL is the label to jump to otherwise. */
465
466 gcond *
gimple_build_cond(enum tree_code pred_code,tree lhs,tree rhs,tree t_label,tree f_label)467 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
468 tree t_label, tree f_label)
469 {
470 gcond *p;
471
472 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
473 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
474 gimple_cond_set_lhs (p, lhs);
475 gimple_cond_set_rhs (p, rhs);
476 gimple_cond_set_true_label (p, t_label);
477 gimple_cond_set_false_label (p, f_label);
478 return p;
479 }
480
481 /* Build a GIMPLE_COND statement from the conditional expression tree
482 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
483
484 gcond *
gimple_build_cond_from_tree(tree cond,tree t_label,tree f_label)485 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
486 {
487 enum tree_code code;
488 tree lhs, rhs;
489
490 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
491 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
492 }
493
494 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
495 boolean expression tree COND. */
496
497 void
gimple_cond_set_condition_from_tree(gcond * stmt,tree cond)498 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
499 {
500 enum tree_code code;
501 tree lhs, rhs;
502
503 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
504 gimple_cond_set_condition (stmt, code, lhs, rhs);
505 }
506
507 /* Build a GIMPLE_LABEL statement for LABEL. */
508
509 glabel *
gimple_build_label(tree label)510 gimple_build_label (tree label)
511 {
512 glabel *p
513 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
514 gimple_label_set_label (p, label);
515 return p;
516 }
517
518 /* Build a GIMPLE_GOTO statement to label DEST. */
519
520 ggoto *
gimple_build_goto(tree dest)521 gimple_build_goto (tree dest)
522 {
523 ggoto *p
524 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
525 gimple_goto_set_dest (p, dest);
526 return p;
527 }
528
529
530 /* Build a GIMPLE_NOP statement. */
531
532 gimple *
gimple_build_nop(void)533 gimple_build_nop (void)
534 {
535 return gimple_alloc (GIMPLE_NOP, 0);
536 }
537
538
539 /* Build a GIMPLE_BIND statement.
540 VARS are the variables in BODY.
541 BLOCK is the containing block. */
542
543 gbind *
gimple_build_bind(tree vars,gimple_seq body,tree block)544 gimple_build_bind (tree vars, gimple_seq body, tree block)
545 {
546 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
547 gimple_bind_set_vars (p, vars);
548 if (body)
549 gimple_bind_set_body (p, body);
550 if (block)
551 gimple_bind_set_block (p, block);
552 return p;
553 }
554
555 /* Helper function to set the simple fields of a asm stmt.
556
557 STRING is a pointer to a string that is the asm blocks assembly code.
558 NINPUT is the number of register inputs.
559 NOUTPUT is the number of register outputs.
560 NCLOBBERS is the number of clobbered registers.
561 */
562
563 static inline gasm *
gimple_build_asm_1(const char * string,unsigned ninputs,unsigned noutputs,unsigned nclobbers,unsigned nlabels)564 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
565 unsigned nclobbers, unsigned nlabels)
566 {
567 gasm *p;
568 int size = strlen (string);
569
570 /* ASMs with labels cannot have outputs. This should have been
571 enforced by the front end. */
572 gcc_assert (nlabels == 0 || noutputs == 0);
573
574 p = as_a <gasm *> (
575 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
576 ninputs + noutputs + nclobbers + nlabels));
577
578 p->ni = ninputs;
579 p->no = noutputs;
580 p->nc = nclobbers;
581 p->nl = nlabels;
582 p->string = ggc_alloc_string (string, size);
583
584 if (GATHER_STATISTICS)
585 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
586
587 return p;
588 }
589
590 /* Build a GIMPLE_ASM statement.
591
592 STRING is the assembly code.
593 NINPUT is the number of register inputs.
594 NOUTPUT is the number of register outputs.
595 NCLOBBERS is the number of clobbered registers.
596 INPUTS is a vector of the input register parameters.
597 OUTPUTS is a vector of the output register parameters.
598 CLOBBERS is a vector of the clobbered register parameters.
599 LABELS is a vector of destination labels. */
600
601 gasm *
gimple_build_asm_vec(const char * string,vec<tree,va_gc> * inputs,vec<tree,va_gc> * outputs,vec<tree,va_gc> * clobbers,vec<tree,va_gc> * labels)602 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
603 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
604 vec<tree, va_gc> *labels)
605 {
606 gasm *p;
607 unsigned i;
608
609 p = gimple_build_asm_1 (string,
610 vec_safe_length (inputs),
611 vec_safe_length (outputs),
612 vec_safe_length (clobbers),
613 vec_safe_length (labels));
614
615 for (i = 0; i < vec_safe_length (inputs); i++)
616 gimple_asm_set_input_op (p, i, (*inputs)[i]);
617
618 for (i = 0; i < vec_safe_length (outputs); i++)
619 gimple_asm_set_output_op (p, i, (*outputs)[i]);
620
621 for (i = 0; i < vec_safe_length (clobbers); i++)
622 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
623
624 for (i = 0; i < vec_safe_length (labels); i++)
625 gimple_asm_set_label_op (p, i, (*labels)[i]);
626
627 return p;
628 }
629
630 /* Build a GIMPLE_CATCH statement.
631
632 TYPES are the catch types.
633 HANDLER is the exception handler. */
634
635 gcatch *
gimple_build_catch(tree types,gimple_seq handler)636 gimple_build_catch (tree types, gimple_seq handler)
637 {
638 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
639 gimple_catch_set_types (p, types);
640 if (handler)
641 gimple_catch_set_handler (p, handler);
642
643 return p;
644 }
645
646 /* Build a GIMPLE_EH_FILTER statement.
647
648 TYPES are the filter's types.
649 FAILURE is the filter's failure action. */
650
651 geh_filter *
gimple_build_eh_filter(tree types,gimple_seq failure)652 gimple_build_eh_filter (tree types, gimple_seq failure)
653 {
654 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
655 gimple_eh_filter_set_types (p, types);
656 if (failure)
657 gimple_eh_filter_set_failure (p, failure);
658
659 return p;
660 }
661
662 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
663
664 geh_mnt *
gimple_build_eh_must_not_throw(tree decl)665 gimple_build_eh_must_not_throw (tree decl)
666 {
667 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
668
669 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
670 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
671 gimple_eh_must_not_throw_set_fndecl (p, decl);
672
673 return p;
674 }
675
676 /* Build a GIMPLE_EH_ELSE statement. */
677
678 geh_else *
gimple_build_eh_else(gimple_seq n_body,gimple_seq e_body)679 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
680 {
681 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
682 gimple_eh_else_set_n_body (p, n_body);
683 gimple_eh_else_set_e_body (p, e_body);
684 return p;
685 }
686
687 /* Build a GIMPLE_TRY statement.
688
689 EVAL is the expression to evaluate.
690 CLEANUP is the cleanup expression.
691 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
692 whether this is a try/catch or a try/finally respectively. */
693
694 gtry *
gimple_build_try(gimple_seq eval,gimple_seq cleanup,enum gimple_try_flags kind)695 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
696 enum gimple_try_flags kind)
697 {
698 gtry *p;
699
700 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
701 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
702 gimple_set_subcode (p, kind);
703 if (eval)
704 gimple_try_set_eval (p, eval);
705 if (cleanup)
706 gimple_try_set_cleanup (p, cleanup);
707
708 return p;
709 }
710
711 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
712
713 CLEANUP is the cleanup expression. */
714
715 gimple *
gimple_build_wce(gimple_seq cleanup)716 gimple_build_wce (gimple_seq cleanup)
717 {
718 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
719 if (cleanup)
720 gimple_wce_set_cleanup (p, cleanup);
721
722 return p;
723 }
724
725
726 /* Build a GIMPLE_RESX statement. */
727
728 gresx *
gimple_build_resx(int region)729 gimple_build_resx (int region)
730 {
731 gresx *p
732 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
733 p->region = region;
734 return p;
735 }
736
737
738 /* The helper for constructing a gimple switch statement.
739 INDEX is the switch's index.
740 NLABELS is the number of labels in the switch excluding the default.
741 DEFAULT_LABEL is the default label for the switch statement. */
742
743 gswitch *
gimple_build_switch_nlabels(unsigned nlabels,tree index,tree default_label)744 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
745 {
746 /* nlabels + 1 default label + 1 index. */
747 gcc_checking_assert (default_label);
748 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
749 ERROR_MARK,
750 1 + 1 + nlabels));
751 gimple_switch_set_index (p, index);
752 gimple_switch_set_default_label (p, default_label);
753 return p;
754 }
755
756 /* Build a GIMPLE_SWITCH statement.
757
758 INDEX is the switch's index.
759 DEFAULT_LABEL is the default label
760 ARGS is a vector of labels excluding the default. */
761
762 gswitch *
gimple_build_switch(tree index,tree default_label,vec<tree> args)763 gimple_build_switch (tree index, tree default_label, vec<tree> args)
764 {
765 unsigned i, nlabels = args.length ();
766
767 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
768
769 /* Copy the labels from the vector to the switch statement. */
770 for (i = 0; i < nlabels; i++)
771 gimple_switch_set_label (p, i + 1, args[i]);
772
773 return p;
774 }
775
776 /* Build a GIMPLE_EH_DISPATCH statement. */
777
778 geh_dispatch *
gimple_build_eh_dispatch(int region)779 gimple_build_eh_dispatch (int region)
780 {
781 geh_dispatch *p
782 = as_a <geh_dispatch *> (
783 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
784 p->region = region;
785 return p;
786 }
787
788 /* Build a new GIMPLE_DEBUG_BIND statement.
789
790 VAR is bound to VALUE; block and location are taken from STMT. */
791
792 gdebug *
gimple_build_debug_bind_stat(tree var,tree value,gimple * stmt MEM_STAT_DECL)793 gimple_build_debug_bind_stat (tree var, tree value, gimple *stmt MEM_STAT_DECL)
794 {
795 gdebug *p
796 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
797 (unsigned)GIMPLE_DEBUG_BIND, 2
798 PASS_MEM_STAT));
799 gimple_debug_bind_set_var (p, var);
800 gimple_debug_bind_set_value (p, value);
801 if (stmt)
802 gimple_set_location (p, gimple_location (stmt));
803
804 return p;
805 }
806
807
808 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
809
810 VAR is bound to VALUE; block and location are taken from STMT. */
811
812 gdebug *
gimple_build_debug_source_bind_stat(tree var,tree value,gimple * stmt MEM_STAT_DECL)813 gimple_build_debug_source_bind_stat (tree var, tree value,
814 gimple *stmt MEM_STAT_DECL)
815 {
816 gdebug *p
817 = as_a <gdebug *> (
818 gimple_build_with_ops_stat (GIMPLE_DEBUG,
819 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
820 PASS_MEM_STAT));
821
822 gimple_debug_source_bind_set_var (p, var);
823 gimple_debug_source_bind_set_value (p, value);
824 if (stmt)
825 gimple_set_location (p, gimple_location (stmt));
826
827 return p;
828 }
829
830
831 /* Build a GIMPLE_OMP_CRITICAL statement.
832
833 BODY is the sequence of statements for which only one thread can execute.
834 NAME is optional identifier for this critical block.
835 CLAUSES are clauses for this critical block. */
836
837 gomp_critical *
gimple_build_omp_critical(gimple_seq body,tree name,tree clauses)838 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
839 {
840 gomp_critical *p
841 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
842 gimple_omp_critical_set_name (p, name);
843 gimple_omp_critical_set_clauses (p, clauses);
844 if (body)
845 gimple_omp_set_body (p, body);
846
847 return p;
848 }
849
850 /* Build a GIMPLE_OMP_FOR statement.
851
852 BODY is sequence of statements inside the for loop.
853 KIND is the `for' variant.
854 CLAUSES, are any of the construct's clauses.
855 COLLAPSE is the collapse count.
856 PRE_BODY is the sequence of statements that are loop invariant. */
857
858 gomp_for *
gimple_build_omp_for(gimple_seq body,int kind,tree clauses,size_t collapse,gimple_seq pre_body)859 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
860 gimple_seq pre_body)
861 {
862 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
863 if (body)
864 gimple_omp_set_body (p, body);
865 gimple_omp_for_set_clauses (p, clauses);
866 gimple_omp_for_set_kind (p, kind);
867 p->collapse = collapse;
868 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
869
870 if (pre_body)
871 gimple_omp_for_set_pre_body (p, pre_body);
872
873 return p;
874 }
875
876
877 /* Build a GIMPLE_OMP_PARALLEL statement.
878
879 BODY is sequence of statements which are executed in parallel.
880 CLAUSES, are the OMP parallel construct's clauses.
881 CHILD_FN is the function created for the parallel threads to execute.
882 DATA_ARG are the shared data argument(s). */
883
884 gomp_parallel *
gimple_build_omp_parallel(gimple_seq body,tree clauses,tree child_fn,tree data_arg)885 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
886 tree data_arg)
887 {
888 gomp_parallel *p
889 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
890 if (body)
891 gimple_omp_set_body (p, body);
892 gimple_omp_parallel_set_clauses (p, clauses);
893 gimple_omp_parallel_set_child_fn (p, child_fn);
894 gimple_omp_parallel_set_data_arg (p, data_arg);
895
896 return p;
897 }
898
899
900 /* Build a GIMPLE_OMP_TASK statement.
901
902 BODY is sequence of statements which are executed by the explicit task.
903 CLAUSES, are the OMP parallel construct's clauses.
904 CHILD_FN is the function created for the parallel threads to execute.
905 DATA_ARG are the shared data argument(s).
906 COPY_FN is the optional function for firstprivate initialization.
907 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
908
909 gomp_task *
gimple_build_omp_task(gimple_seq body,tree clauses,tree child_fn,tree data_arg,tree copy_fn,tree arg_size,tree arg_align)910 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
911 tree data_arg, tree copy_fn, tree arg_size,
912 tree arg_align)
913 {
914 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
915 if (body)
916 gimple_omp_set_body (p, body);
917 gimple_omp_task_set_clauses (p, clauses);
918 gimple_omp_task_set_child_fn (p, child_fn);
919 gimple_omp_task_set_data_arg (p, data_arg);
920 gimple_omp_task_set_copy_fn (p, copy_fn);
921 gimple_omp_task_set_arg_size (p, arg_size);
922 gimple_omp_task_set_arg_align (p, arg_align);
923
924 return p;
925 }
926
927
928 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
929
930 BODY is the sequence of statements in the section. */
931
932 gimple *
gimple_build_omp_section(gimple_seq body)933 gimple_build_omp_section (gimple_seq body)
934 {
935 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
936 if (body)
937 gimple_omp_set_body (p, body);
938
939 return p;
940 }
941
942
943 /* Build a GIMPLE_OMP_MASTER statement.
944
945 BODY is the sequence of statements to be executed by just the master. */
946
947 gimple *
gimple_build_omp_master(gimple_seq body)948 gimple_build_omp_master (gimple_seq body)
949 {
950 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
951 if (body)
952 gimple_omp_set_body (p, body);
953
954 return p;
955 }
956
957 /* Build a GIMPLE_OMP_GRID_BODY statement.
958
959 BODY is the sequence of statements to be executed by the kernel. */
960
961 gimple *
gimple_build_omp_grid_body(gimple_seq body)962 gimple_build_omp_grid_body (gimple_seq body)
963 {
964 gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
965 if (body)
966 gimple_omp_set_body (p, body);
967
968 return p;
969 }
970
971 /* Build a GIMPLE_OMP_TASKGROUP statement.
972
973 BODY is the sequence of statements to be executed by the taskgroup
974 construct. */
975
976 gimple *
gimple_build_omp_taskgroup(gimple_seq body)977 gimple_build_omp_taskgroup (gimple_seq body)
978 {
979 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
980 if (body)
981 gimple_omp_set_body (p, body);
982
983 return p;
984 }
985
986
987 /* Build a GIMPLE_OMP_CONTINUE statement.
988
989 CONTROL_DEF is the definition of the control variable.
990 CONTROL_USE is the use of the control variable. */
991
992 gomp_continue *
gimple_build_omp_continue(tree control_def,tree control_use)993 gimple_build_omp_continue (tree control_def, tree control_use)
994 {
995 gomp_continue *p
996 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
997 gimple_omp_continue_set_control_def (p, control_def);
998 gimple_omp_continue_set_control_use (p, control_use);
999 return p;
1000 }
1001
1002 /* Build a GIMPLE_OMP_ORDERED statement.
1003
1004 BODY is the sequence of statements inside a loop that will executed in
1005 sequence.
1006 CLAUSES are clauses for this statement. */
1007
1008 gomp_ordered *
gimple_build_omp_ordered(gimple_seq body,tree clauses)1009 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1010 {
1011 gomp_ordered *p
1012 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1013 gimple_omp_ordered_set_clauses (p, clauses);
1014 if (body)
1015 gimple_omp_set_body (p, body);
1016
1017 return p;
1018 }
1019
1020
1021 /* Build a GIMPLE_OMP_RETURN statement.
1022 WAIT_P is true if this is a non-waiting return. */
1023
1024 gimple *
gimple_build_omp_return(bool wait_p)1025 gimple_build_omp_return (bool wait_p)
1026 {
1027 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1028 if (wait_p)
1029 gimple_omp_return_set_nowait (p);
1030
1031 return p;
1032 }
1033
1034
1035 /* Build a GIMPLE_OMP_SECTIONS statement.
1036
1037 BODY is a sequence of section statements.
1038 CLAUSES are any of the OMP sections contsruct's clauses: private,
1039 firstprivate, lastprivate, reduction, and nowait. */
1040
1041 gomp_sections *
gimple_build_omp_sections(gimple_seq body,tree clauses)1042 gimple_build_omp_sections (gimple_seq body, tree clauses)
1043 {
1044 gomp_sections *p
1045 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1046 if (body)
1047 gimple_omp_set_body (p, body);
1048 gimple_omp_sections_set_clauses (p, clauses);
1049
1050 return p;
1051 }
1052
1053
1054 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1055
1056 gimple *
gimple_build_omp_sections_switch(void)1057 gimple_build_omp_sections_switch (void)
1058 {
1059 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1060 }
1061
1062
1063 /* Build a GIMPLE_OMP_SINGLE statement.
1064
1065 BODY is the sequence of statements that will be executed once.
1066 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1067 copyprivate, nowait. */
1068
1069 gomp_single *
gimple_build_omp_single(gimple_seq body,tree clauses)1070 gimple_build_omp_single (gimple_seq body, tree clauses)
1071 {
1072 gomp_single *p
1073 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1074 if (body)
1075 gimple_omp_set_body (p, body);
1076 gimple_omp_single_set_clauses (p, clauses);
1077
1078 return p;
1079 }
1080
1081
1082 /* Build a GIMPLE_OMP_TARGET statement.
1083
1084 BODY is the sequence of statements that will be executed.
1085 KIND is the kind of the region.
1086 CLAUSES are any of the construct's clauses. */
1087
1088 gomp_target *
gimple_build_omp_target(gimple_seq body,int kind,tree clauses)1089 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1090 {
1091 gomp_target *p
1092 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1093 if (body)
1094 gimple_omp_set_body (p, body);
1095 gimple_omp_target_set_clauses (p, clauses);
1096 gimple_omp_target_set_kind (p, kind);
1097
1098 return p;
1099 }
1100
1101
1102 /* Build a GIMPLE_OMP_TEAMS statement.
1103
1104 BODY is the sequence of statements that will be executed.
1105 CLAUSES are any of the OMP teams construct's clauses. */
1106
1107 gomp_teams *
gimple_build_omp_teams(gimple_seq body,tree clauses)1108 gimple_build_omp_teams (gimple_seq body, tree clauses)
1109 {
1110 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1111 if (body)
1112 gimple_omp_set_body (p, body);
1113 gimple_omp_teams_set_clauses (p, clauses);
1114
1115 return p;
1116 }
1117
1118
1119 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1120
1121 gomp_atomic_load *
gimple_build_omp_atomic_load(tree lhs,tree rhs)1122 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1123 {
1124 gomp_atomic_load *p
1125 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1126 gimple_omp_atomic_load_set_lhs (p, lhs);
1127 gimple_omp_atomic_load_set_rhs (p, rhs);
1128 return p;
1129 }
1130
1131 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1132
1133 VAL is the value we are storing. */
1134
1135 gomp_atomic_store *
gimple_build_omp_atomic_store(tree val)1136 gimple_build_omp_atomic_store (tree val)
1137 {
1138 gomp_atomic_store *p
1139 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1140 gimple_omp_atomic_store_set_val (p, val);
1141 return p;
1142 }
1143
1144 /* Build a GIMPLE_TRANSACTION statement. */
1145
1146 gtransaction *
gimple_build_transaction(gimple_seq body)1147 gimple_build_transaction (gimple_seq body)
1148 {
1149 gtransaction *p
1150 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1151 gimple_transaction_set_body (p, body);
1152 gimple_transaction_set_label_norm (p, 0);
1153 gimple_transaction_set_label_uninst (p, 0);
1154 gimple_transaction_set_label_over (p, 0);
1155 return p;
1156 }
1157
1158 #if defined ENABLE_GIMPLE_CHECKING
1159 /* Complain of a gimple type mismatch and die. */
1160
1161 void
gimple_check_failed(const gimple * gs,const char * file,int line,const char * function,enum gimple_code code,enum tree_code subcode)1162 gimple_check_failed (const gimple *gs, const char *file, int line,
1163 const char *function, enum gimple_code code,
1164 enum tree_code subcode)
1165 {
1166 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1167 gimple_code_name[code],
1168 get_tree_code_name (subcode),
1169 gimple_code_name[gimple_code (gs)],
1170 gs->subcode > 0
1171 ? get_tree_code_name ((enum tree_code) gs->subcode)
1172 : "",
1173 function, trim_filename (file), line);
1174 }
1175 #endif /* ENABLE_GIMPLE_CHECKING */
1176
1177
1178 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1179 *SEQ_P is NULL, a new sequence is allocated. */
1180
1181 void
gimple_seq_add_stmt(gimple_seq * seq_p,gimple * gs)1182 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1183 {
1184 gimple_stmt_iterator si;
1185 if (gs == NULL)
1186 return;
1187
1188 si = gsi_last (*seq_p);
1189 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1190 }
1191
1192 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1193 *SEQ_P is NULL, a new sequence is allocated. This function is
1194 similar to gimple_seq_add_stmt, but does not scan the operands.
1195 During gimplification, we need to manipulate statement sequences
1196 before the def/use vectors have been constructed. */
1197
1198 void
gimple_seq_add_stmt_without_update(gimple_seq * seq_p,gimple * gs)1199 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1200 {
1201 gimple_stmt_iterator si;
1202
1203 if (gs == NULL)
1204 return;
1205
1206 si = gsi_last (*seq_p);
1207 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1208 }
1209
1210 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1211 NULL, a new sequence is allocated. */
1212
1213 void
gimple_seq_add_seq(gimple_seq * dst_p,gimple_seq src)1214 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1215 {
1216 gimple_stmt_iterator si;
1217 if (src == NULL)
1218 return;
1219
1220 si = gsi_last (*dst_p);
1221 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1222 }
1223
1224 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1225 NULL, a new sequence is allocated. This function is
1226 similar to gimple_seq_add_seq, but does not scan the operands. */
1227
1228 void
gimple_seq_add_seq_without_update(gimple_seq * dst_p,gimple_seq src)1229 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1230 {
1231 gimple_stmt_iterator si;
1232 if (src == NULL)
1233 return;
1234
1235 si = gsi_last (*dst_p);
1236 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1237 }
1238
1239 /* Determine whether to assign a location to the statement GS. */
1240
1241 static bool
should_carry_location_p(gimple * gs)1242 should_carry_location_p (gimple *gs)
1243 {
1244 /* Don't emit a line note for a label. We particularly don't want to
1245 emit one for the break label, since it doesn't actually correspond
1246 to the beginning of the loop/switch. */
1247 if (gimple_code (gs) == GIMPLE_LABEL)
1248 return false;
1249
1250 return true;
1251 }
1252
1253 /* Set the location for gimple statement GS to LOCATION. */
1254
1255 static void
annotate_one_with_location(gimple * gs,location_t location)1256 annotate_one_with_location (gimple *gs, location_t location)
1257 {
1258 if (!gimple_has_location (gs)
1259 && !gimple_do_not_emit_location_p (gs)
1260 && should_carry_location_p (gs))
1261 gimple_set_location (gs, location);
1262 }
1263
1264 /* Set LOCATION for all the statements after iterator GSI in sequence
1265 SEQ. If GSI is pointing to the end of the sequence, start with the
1266 first statement in SEQ. */
1267
1268 void
annotate_all_with_location_after(gimple_seq seq,gimple_stmt_iterator gsi,location_t location)1269 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1270 location_t location)
1271 {
1272 if (gsi_end_p (gsi))
1273 gsi = gsi_start (seq);
1274 else
1275 gsi_next (&gsi);
1276
1277 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1278 annotate_one_with_location (gsi_stmt (gsi), location);
1279 }
1280
1281 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1282
1283 void
annotate_all_with_location(gimple_seq stmt_p,location_t location)1284 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1285 {
1286 gimple_stmt_iterator i;
1287
1288 if (gimple_seq_empty_p (stmt_p))
1289 return;
1290
1291 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1292 {
1293 gimple *gs = gsi_stmt (i);
1294 annotate_one_with_location (gs, location);
1295 }
1296 }
1297
1298 /* Helper function of empty_body_p. Return true if STMT is an empty
1299 statement. */
1300
1301 static bool
empty_stmt_p(gimple * stmt)1302 empty_stmt_p (gimple *stmt)
1303 {
1304 if (gimple_code (stmt) == GIMPLE_NOP)
1305 return true;
1306 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1307 return empty_body_p (gimple_bind_body (bind_stmt));
1308 return false;
1309 }
1310
1311
1312 /* Return true if BODY contains nothing but empty statements. */
1313
1314 bool
empty_body_p(gimple_seq body)1315 empty_body_p (gimple_seq body)
1316 {
1317 gimple_stmt_iterator i;
1318
1319 if (gimple_seq_empty_p (body))
1320 return true;
1321 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1322 if (!empty_stmt_p (gsi_stmt (i))
1323 && !is_gimple_debug (gsi_stmt (i)))
1324 return false;
1325
1326 return true;
1327 }
1328
1329
1330 /* Perform a deep copy of sequence SRC and return the result. */
1331
1332 gimple_seq
gimple_seq_copy(gimple_seq src)1333 gimple_seq_copy (gimple_seq src)
1334 {
1335 gimple_stmt_iterator gsi;
1336 gimple_seq new_seq = NULL;
1337 gimple *stmt;
1338
1339 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1340 {
1341 stmt = gimple_copy (gsi_stmt (gsi));
1342 gimple_seq_add_stmt (&new_seq, stmt);
1343 }
1344
1345 return new_seq;
1346 }
1347
1348
1349
1350 /* Return true if calls C1 and C2 are known to go to the same function. */
1351
1352 bool
gimple_call_same_target_p(const gimple * c1,const gimple * c2)1353 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1354 {
1355 if (gimple_call_internal_p (c1))
1356 return (gimple_call_internal_p (c2)
1357 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1358 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1359 || c1 == c2));
1360 else
1361 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1362 || (gimple_call_fndecl (c1)
1363 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1364 }
1365
1366 /* Detect flags from a GIMPLE_CALL. This is just like
1367 call_expr_flags, but for gimple tuples. */
1368
1369 int
gimple_call_flags(const gimple * stmt)1370 gimple_call_flags (const gimple *stmt)
1371 {
1372 int flags;
1373 tree decl = gimple_call_fndecl (stmt);
1374
1375 if (decl)
1376 flags = flags_from_decl_or_type (decl);
1377 else if (gimple_call_internal_p (stmt))
1378 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1379 else
1380 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1381
1382 if (stmt->subcode & GF_CALL_NOTHROW)
1383 flags |= ECF_NOTHROW;
1384
1385 return flags;
1386 }
1387
1388 /* Return the "fn spec" string for call STMT. */
1389
1390 static const_tree
gimple_call_fnspec(const gcall * stmt)1391 gimple_call_fnspec (const gcall *stmt)
1392 {
1393 tree type, attr;
1394
1395 if (gimple_call_internal_p (stmt))
1396 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1397
1398 type = gimple_call_fntype (stmt);
1399 if (!type)
1400 return NULL_TREE;
1401
1402 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1403 if (!attr)
1404 return NULL_TREE;
1405
1406 return TREE_VALUE (TREE_VALUE (attr));
1407 }
1408
1409 /* Detects argument flags for argument number ARG on call STMT. */
1410
1411 int
gimple_call_arg_flags(const gcall * stmt,unsigned arg)1412 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1413 {
1414 const_tree attr = gimple_call_fnspec (stmt);
1415
1416 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1417 return 0;
1418
1419 switch (TREE_STRING_POINTER (attr)[1 + arg])
1420 {
1421 case 'x':
1422 case 'X':
1423 return EAF_UNUSED;
1424
1425 case 'R':
1426 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1427
1428 case 'r':
1429 return EAF_NOCLOBBER | EAF_NOESCAPE;
1430
1431 case 'W':
1432 return EAF_DIRECT | EAF_NOESCAPE;
1433
1434 case 'w':
1435 return EAF_NOESCAPE;
1436
1437 case '.':
1438 default:
1439 return 0;
1440 }
1441 }
1442
1443 /* Detects return flags for the call STMT. */
1444
1445 int
gimple_call_return_flags(const gcall * stmt)1446 gimple_call_return_flags (const gcall *stmt)
1447 {
1448 const_tree attr;
1449
1450 if (gimple_call_flags (stmt) & ECF_MALLOC)
1451 return ERF_NOALIAS;
1452
1453 attr = gimple_call_fnspec (stmt);
1454 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1455 return 0;
1456
1457 switch (TREE_STRING_POINTER (attr)[0])
1458 {
1459 case '1':
1460 case '2':
1461 case '3':
1462 case '4':
1463 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1464
1465 case 'm':
1466 return ERF_NOALIAS;
1467
1468 case '.':
1469 default:
1470 return 0;
1471 }
1472 }
1473
1474
1475 /* Return true if GS is a copy assignment. */
1476
1477 bool
gimple_assign_copy_p(gimple * gs)1478 gimple_assign_copy_p (gimple *gs)
1479 {
1480 return (gimple_assign_single_p (gs)
1481 && is_gimple_val (gimple_op (gs, 1)));
1482 }
1483
1484
1485 /* Return true if GS is a SSA_NAME copy assignment. */
1486
1487 bool
gimple_assign_ssa_name_copy_p(gimple * gs)1488 gimple_assign_ssa_name_copy_p (gimple *gs)
1489 {
1490 return (gimple_assign_single_p (gs)
1491 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1492 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1493 }
1494
1495
1496 /* Return true if GS is an assignment with a unary RHS, but the
1497 operator has no effect on the assigned value. The logic is adapted
1498 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1499 instances in which STRIP_NOPS was previously applied to the RHS of
1500 an assignment.
1501
1502 NOTE: In the use cases that led to the creation of this function
1503 and of gimple_assign_single_p, it is typical to test for either
1504 condition and to proceed in the same manner. In each case, the
1505 assigned value is represented by the single RHS operand of the
1506 assignment. I suspect there may be cases where gimple_assign_copy_p,
1507 gimple_assign_single_p, or equivalent logic is used where a similar
1508 treatment of unary NOPs is appropriate. */
1509
1510 bool
gimple_assign_unary_nop_p(gimple * gs)1511 gimple_assign_unary_nop_p (gimple *gs)
1512 {
1513 return (is_gimple_assign (gs)
1514 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1515 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1516 && gimple_assign_rhs1 (gs) != error_mark_node
1517 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1518 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1519 }
1520
1521 /* Set BB to be the basic block holding G. */
1522
1523 void
gimple_set_bb(gimple * stmt,basic_block bb)1524 gimple_set_bb (gimple *stmt, basic_block bb)
1525 {
1526 stmt->bb = bb;
1527
1528 if (gimple_code (stmt) != GIMPLE_LABEL)
1529 return;
1530
1531 /* If the statement is a label, add the label to block-to-labels map
1532 so that we can speed up edge creation for GIMPLE_GOTOs. */
1533 if (cfun->cfg)
1534 {
1535 tree t;
1536 int uid;
1537
1538 t = gimple_label_label (as_a <glabel *> (stmt));
1539 uid = LABEL_DECL_UID (t);
1540 if (uid == -1)
1541 {
1542 unsigned old_len =
1543 vec_safe_length (label_to_block_map_for_fn (cfun));
1544 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1545 if (old_len <= (unsigned) uid)
1546 {
1547 unsigned new_len = 3 * uid / 2 + 1;
1548
1549 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1550 new_len);
1551 }
1552 }
1553
1554 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1555 }
1556 }
1557
1558
1559 /* Modify the RHS of the assignment pointed-to by GSI using the
1560 operands in the expression tree EXPR.
1561
1562 NOTE: The statement pointed-to by GSI may be reallocated if it
1563 did not have enough operand slots.
1564
1565 This function is useful to convert an existing tree expression into
1566 the flat representation used for the RHS of a GIMPLE assignment.
1567 It will reallocate memory as needed to expand or shrink the number
1568 of operand slots needed to represent EXPR.
1569
1570 NOTE: If you find yourself building a tree and then calling this
1571 function, you are most certainly doing it the slow way. It is much
1572 better to build a new assignment or to use the function
1573 gimple_assign_set_rhs_with_ops, which does not require an
1574 expression tree to be built. */
1575
1576 void
gimple_assign_set_rhs_from_tree(gimple_stmt_iterator * gsi,tree expr)1577 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1578 {
1579 enum tree_code subcode;
1580 tree op1, op2, op3;
1581
1582 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1583 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1584 }
1585
1586
1587 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1588 operands OP1, OP2 and OP3.
1589
1590 NOTE: The statement pointed-to by GSI may be reallocated if it
1591 did not have enough operand slots. */
1592
1593 void
gimple_assign_set_rhs_with_ops(gimple_stmt_iterator * gsi,enum tree_code code,tree op1,tree op2,tree op3)1594 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1595 tree op1, tree op2, tree op3)
1596 {
1597 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1598 gimple *stmt = gsi_stmt (*gsi);
1599
1600 /* If the new CODE needs more operands, allocate a new statement. */
1601 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1602 {
1603 tree lhs = gimple_assign_lhs (stmt);
1604 gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1605 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1606 gimple_init_singleton (new_stmt);
1607 gsi_replace (gsi, new_stmt, true);
1608 stmt = new_stmt;
1609
1610 /* The LHS needs to be reset as this also changes the SSA name
1611 on the LHS. */
1612 gimple_assign_set_lhs (stmt, lhs);
1613 }
1614
1615 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1616 gimple_set_subcode (stmt, code);
1617 gimple_assign_set_rhs1 (stmt, op1);
1618 if (new_rhs_ops > 1)
1619 gimple_assign_set_rhs2 (stmt, op2);
1620 if (new_rhs_ops > 2)
1621 gimple_assign_set_rhs3 (stmt, op3);
1622 }
1623
1624
1625 /* Return the LHS of a statement that performs an assignment,
1626 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1627 for a call to a function that returns no value, or for a
1628 statement other than an assignment or a call. */
1629
1630 tree
gimple_get_lhs(const gimple * stmt)1631 gimple_get_lhs (const gimple *stmt)
1632 {
1633 enum gimple_code code = gimple_code (stmt);
1634
1635 if (code == GIMPLE_ASSIGN)
1636 return gimple_assign_lhs (stmt);
1637 else if (code == GIMPLE_CALL)
1638 return gimple_call_lhs (stmt);
1639 else
1640 return NULL_TREE;
1641 }
1642
1643
1644 /* Set the LHS of a statement that performs an assignment,
1645 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1646
1647 void
gimple_set_lhs(gimple * stmt,tree lhs)1648 gimple_set_lhs (gimple *stmt, tree lhs)
1649 {
1650 enum gimple_code code = gimple_code (stmt);
1651
1652 if (code == GIMPLE_ASSIGN)
1653 gimple_assign_set_lhs (stmt, lhs);
1654 else if (code == GIMPLE_CALL)
1655 gimple_call_set_lhs (stmt, lhs);
1656 else
1657 gcc_unreachable ();
1658 }
1659
1660
1661 /* Return a deep copy of statement STMT. All the operands from STMT
1662 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1663 and VUSE operand arrays are set to empty in the new copy. The new
1664 copy isn't part of any sequence. */
1665
1666 gimple *
gimple_copy(gimple * stmt)1667 gimple_copy (gimple *stmt)
1668 {
1669 enum gimple_code code = gimple_code (stmt);
1670 unsigned num_ops = gimple_num_ops (stmt);
1671 gimple *copy = gimple_alloc (code, num_ops);
1672 unsigned i;
1673
1674 /* Shallow copy all the fields from STMT. */
1675 memcpy (copy, stmt, gimple_size (code));
1676 gimple_init_singleton (copy);
1677
1678 /* If STMT has sub-statements, deep-copy them as well. */
1679 if (gimple_has_substatements (stmt))
1680 {
1681 gimple_seq new_seq;
1682 tree t;
1683
1684 switch (gimple_code (stmt))
1685 {
1686 case GIMPLE_BIND:
1687 {
1688 gbind *bind_stmt = as_a <gbind *> (stmt);
1689 gbind *bind_copy = as_a <gbind *> (copy);
1690 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1691 gimple_bind_set_body (bind_copy, new_seq);
1692 gimple_bind_set_vars (bind_copy,
1693 unshare_expr (gimple_bind_vars (bind_stmt)));
1694 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1695 }
1696 break;
1697
1698 case GIMPLE_CATCH:
1699 {
1700 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1701 gcatch *catch_copy = as_a <gcatch *> (copy);
1702 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1703 gimple_catch_set_handler (catch_copy, new_seq);
1704 t = unshare_expr (gimple_catch_types (catch_stmt));
1705 gimple_catch_set_types (catch_copy, t);
1706 }
1707 break;
1708
1709 case GIMPLE_EH_FILTER:
1710 {
1711 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1712 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1713 new_seq
1714 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1715 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1716 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1717 gimple_eh_filter_set_types (eh_filter_copy, t);
1718 }
1719 break;
1720
1721 case GIMPLE_EH_ELSE:
1722 {
1723 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1724 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1725 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1726 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1727 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1728 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1729 }
1730 break;
1731
1732 case GIMPLE_TRY:
1733 {
1734 gtry *try_stmt = as_a <gtry *> (stmt);
1735 gtry *try_copy = as_a <gtry *> (copy);
1736 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1737 gimple_try_set_eval (try_copy, new_seq);
1738 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1739 gimple_try_set_cleanup (try_copy, new_seq);
1740 }
1741 break;
1742
1743 case GIMPLE_OMP_FOR:
1744 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1745 gimple_omp_for_set_pre_body (copy, new_seq);
1746 t = unshare_expr (gimple_omp_for_clauses (stmt));
1747 gimple_omp_for_set_clauses (copy, t);
1748 {
1749 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1750 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1751 ( gimple_omp_for_collapse (stmt));
1752 }
1753 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1754 {
1755 gimple_omp_for_set_cond (copy, i,
1756 gimple_omp_for_cond (stmt, i));
1757 gimple_omp_for_set_index (copy, i,
1758 gimple_omp_for_index (stmt, i));
1759 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1760 gimple_omp_for_set_initial (copy, i, t);
1761 t = unshare_expr (gimple_omp_for_final (stmt, i));
1762 gimple_omp_for_set_final (copy, i, t);
1763 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1764 gimple_omp_for_set_incr (copy, i, t);
1765 }
1766 goto copy_omp_body;
1767
1768 case GIMPLE_OMP_PARALLEL:
1769 {
1770 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1771 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1772 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1773 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1774 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1775 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1776 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1777 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1778 }
1779 goto copy_omp_body;
1780
1781 case GIMPLE_OMP_TASK:
1782 t = unshare_expr (gimple_omp_task_clauses (stmt));
1783 gimple_omp_task_set_clauses (copy, t);
1784 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1785 gimple_omp_task_set_child_fn (copy, t);
1786 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1787 gimple_omp_task_set_data_arg (copy, t);
1788 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1789 gimple_omp_task_set_copy_fn (copy, t);
1790 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1791 gimple_omp_task_set_arg_size (copy, t);
1792 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1793 gimple_omp_task_set_arg_align (copy, t);
1794 goto copy_omp_body;
1795
1796 case GIMPLE_OMP_CRITICAL:
1797 t = unshare_expr (gimple_omp_critical_name
1798 (as_a <gomp_critical *> (stmt)));
1799 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1800 t = unshare_expr (gimple_omp_critical_clauses
1801 (as_a <gomp_critical *> (stmt)));
1802 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1803 goto copy_omp_body;
1804
1805 case GIMPLE_OMP_ORDERED:
1806 t = unshare_expr (gimple_omp_ordered_clauses
1807 (as_a <gomp_ordered *> (stmt)));
1808 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1809 goto copy_omp_body;
1810
1811 case GIMPLE_OMP_SECTIONS:
1812 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1813 gimple_omp_sections_set_clauses (copy, t);
1814 t = unshare_expr (gimple_omp_sections_control (stmt));
1815 gimple_omp_sections_set_control (copy, t);
1816 /* FALLTHRU */
1817
1818 case GIMPLE_OMP_SINGLE:
1819 case GIMPLE_OMP_TARGET:
1820 case GIMPLE_OMP_TEAMS:
1821 case GIMPLE_OMP_SECTION:
1822 case GIMPLE_OMP_MASTER:
1823 case GIMPLE_OMP_TASKGROUP:
1824 case GIMPLE_OMP_GRID_BODY:
1825 copy_omp_body:
1826 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1827 gimple_omp_set_body (copy, new_seq);
1828 break;
1829
1830 case GIMPLE_TRANSACTION:
1831 new_seq = gimple_seq_copy (gimple_transaction_body (
1832 as_a <gtransaction *> (stmt)));
1833 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1834 new_seq);
1835 break;
1836
1837 case GIMPLE_WITH_CLEANUP_EXPR:
1838 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1839 gimple_wce_set_cleanup (copy, new_seq);
1840 break;
1841
1842 default:
1843 gcc_unreachable ();
1844 }
1845 }
1846
1847 /* Make copy of operands. */
1848 for (i = 0; i < num_ops; i++)
1849 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1850
1851 if (gimple_has_mem_ops (stmt))
1852 {
1853 gimple_set_vdef (copy, gimple_vdef (stmt));
1854 gimple_set_vuse (copy, gimple_vuse (stmt));
1855 }
1856
1857 /* Clear out SSA operand vectors on COPY. */
1858 if (gimple_has_ops (stmt))
1859 {
1860 gimple_set_use_ops (copy, NULL);
1861
1862 /* SSA operands need to be updated. */
1863 gimple_set_modified (copy, true);
1864 }
1865
1866 return copy;
1867 }
1868
1869
1870 /* Return true if statement S has side-effects. We consider a
1871 statement to have side effects if:
1872
1873 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1874 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1875
1876 bool
gimple_has_side_effects(const gimple * s)1877 gimple_has_side_effects (const gimple *s)
1878 {
1879 if (is_gimple_debug (s))
1880 return false;
1881
1882 /* We don't have to scan the arguments to check for
1883 volatile arguments, though, at present, we still
1884 do a scan to check for TREE_SIDE_EFFECTS. */
1885 if (gimple_has_volatile_ops (s))
1886 return true;
1887
1888 if (gimple_code (s) == GIMPLE_ASM
1889 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1890 return true;
1891
1892 if (is_gimple_call (s))
1893 {
1894 int flags = gimple_call_flags (s);
1895
1896 /* An infinite loop is considered a side effect. */
1897 if (!(flags & (ECF_CONST | ECF_PURE))
1898 || (flags & ECF_LOOPING_CONST_OR_PURE))
1899 return true;
1900
1901 return false;
1902 }
1903
1904 return false;
1905 }
1906
1907 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1908 Return true if S can trap. When INCLUDE_MEM is true, check whether
1909 the memory operations could trap. When INCLUDE_STORES is true and
1910 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1911
1912 bool
gimple_could_trap_p_1(gimple * s,bool include_mem,bool include_stores)1913 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
1914 {
1915 tree t, div = NULL_TREE;
1916 enum tree_code op;
1917
1918 if (include_mem)
1919 {
1920 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1921
1922 for (i = start; i < gimple_num_ops (s); i++)
1923 if (tree_could_trap_p (gimple_op (s, i)))
1924 return true;
1925 }
1926
1927 switch (gimple_code (s))
1928 {
1929 case GIMPLE_ASM:
1930 return gimple_asm_volatile_p (as_a <gasm *> (s));
1931
1932 case GIMPLE_CALL:
1933 t = gimple_call_fndecl (s);
1934 /* Assume that calls to weak functions may trap. */
1935 if (!t || !DECL_P (t) || DECL_WEAK (t))
1936 return true;
1937 return false;
1938
1939 case GIMPLE_ASSIGN:
1940 t = gimple_expr_type (s);
1941 op = gimple_assign_rhs_code (s);
1942 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1943 div = gimple_assign_rhs2 (s);
1944 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1945 (INTEGRAL_TYPE_P (t)
1946 && TYPE_OVERFLOW_TRAPS (t)),
1947 div));
1948
1949 case GIMPLE_COND:
1950 t = TREE_TYPE (gimple_cond_lhs (s));
1951 return operation_could_trap_p (gimple_cond_code (s),
1952 FLOAT_TYPE_P (t), false, NULL_TREE);
1953
1954 default:
1955 break;
1956 }
1957
1958 return false;
1959 }
1960
1961 /* Return true if statement S can trap. */
1962
1963 bool
gimple_could_trap_p(gimple * s)1964 gimple_could_trap_p (gimple *s)
1965 {
1966 return gimple_could_trap_p_1 (s, true, true);
1967 }
1968
1969 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1970
1971 bool
gimple_assign_rhs_could_trap_p(gimple * s)1972 gimple_assign_rhs_could_trap_p (gimple *s)
1973 {
1974 gcc_assert (is_gimple_assign (s));
1975 return gimple_could_trap_p_1 (s, true, false);
1976 }
1977
1978
1979 /* Print debugging information for gimple stmts generated. */
1980
1981 void
dump_gimple_statistics(void)1982 dump_gimple_statistics (void)
1983 {
1984 int i, total_tuples = 0, total_bytes = 0;
1985
1986 if (! GATHER_STATISTICS)
1987 {
1988 fprintf (stderr, "No gimple statistics\n");
1989 return;
1990 }
1991
1992 fprintf (stderr, "\nGIMPLE statements\n");
1993 fprintf (stderr, "Kind Stmts Bytes\n");
1994 fprintf (stderr, "---------------------------------------\n");
1995 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1996 {
1997 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1998 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1999 total_tuples += gimple_alloc_counts[i];
2000 total_bytes += gimple_alloc_sizes[i];
2001 }
2002 fprintf (stderr, "---------------------------------------\n");
2003 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2004 fprintf (stderr, "---------------------------------------\n");
2005 }
2006
2007
2008 /* Return the number of operands needed on the RHS of a GIMPLE
2009 assignment for an expression with tree code CODE. */
2010
2011 unsigned
get_gimple_rhs_num_ops(enum tree_code code)2012 get_gimple_rhs_num_ops (enum tree_code code)
2013 {
2014 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2015
2016 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2017 return 1;
2018 else if (rhs_class == GIMPLE_BINARY_RHS)
2019 return 2;
2020 else if (rhs_class == GIMPLE_TERNARY_RHS)
2021 return 3;
2022 else
2023 gcc_unreachable ();
2024 }
2025
2026 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2027 (unsigned char) \
2028 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2029 : ((TYPE) == tcc_binary \
2030 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2031 : ((TYPE) == tcc_constant \
2032 || (TYPE) == tcc_declaration \
2033 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2034 : ((SYM) == TRUTH_AND_EXPR \
2035 || (SYM) == TRUTH_OR_EXPR \
2036 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2037 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2038 : ((SYM) == COND_EXPR \
2039 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2040 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2041 || (SYM) == DOT_PROD_EXPR \
2042 || (SYM) == SAD_EXPR \
2043 || (SYM) == REALIGN_LOAD_EXPR \
2044 || (SYM) == VEC_COND_EXPR \
2045 || (SYM) == VEC_PERM_EXPR \
2046 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2047 : ((SYM) == CONSTRUCTOR \
2048 || (SYM) == OBJ_TYPE_REF \
2049 || (SYM) == ASSERT_EXPR \
2050 || (SYM) == ADDR_EXPR \
2051 || (SYM) == WITH_SIZE_EXPR \
2052 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2053 : GIMPLE_INVALID_RHS),
2054 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2055
2056 const unsigned char gimple_rhs_class_table[] = {
2057 #include "all-tree.def"
2058 };
2059
2060 #undef DEFTREECODE
2061 #undef END_OF_BASE_TREE_CODES
2062
2063 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2064 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2065 we failed to create one. */
2066
2067 tree
canonicalize_cond_expr_cond(tree t)2068 canonicalize_cond_expr_cond (tree t)
2069 {
2070 /* Strip conversions around boolean operations. */
2071 if (CONVERT_EXPR_P (t)
2072 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2073 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2074 == BOOLEAN_TYPE))
2075 t = TREE_OPERAND (t, 0);
2076
2077 /* For !x use x == 0. */
2078 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2079 {
2080 tree top0 = TREE_OPERAND (t, 0);
2081 t = build2 (EQ_EXPR, TREE_TYPE (t),
2082 top0, build_int_cst (TREE_TYPE (top0), 0));
2083 }
2084 /* For cmp ? 1 : 0 use cmp. */
2085 else if (TREE_CODE (t) == COND_EXPR
2086 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2087 && integer_onep (TREE_OPERAND (t, 1))
2088 && integer_zerop (TREE_OPERAND (t, 2)))
2089 {
2090 tree top0 = TREE_OPERAND (t, 0);
2091 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2092 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2093 }
2094 /* For x ^ y use x != y. */
2095 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2096 t = build2 (NE_EXPR, TREE_TYPE (t),
2097 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2098
2099 if (is_gimple_condexpr (t))
2100 return t;
2101
2102 return NULL_TREE;
2103 }
2104
2105 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2106 the positions marked by the set ARGS_TO_SKIP. */
2107
2108 gcall *
gimple_call_copy_skip_args(gcall * stmt,bitmap args_to_skip)2109 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2110 {
2111 int i;
2112 int nargs = gimple_call_num_args (stmt);
2113 auto_vec<tree> vargs (nargs);
2114 gcall *new_stmt;
2115
2116 for (i = 0; i < nargs; i++)
2117 if (!bitmap_bit_p (args_to_skip, i))
2118 vargs.quick_push (gimple_call_arg (stmt, i));
2119
2120 if (gimple_call_internal_p (stmt))
2121 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2122 vargs);
2123 else
2124 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2125
2126 if (gimple_call_lhs (stmt))
2127 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2128
2129 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2130 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2131
2132 if (gimple_has_location (stmt))
2133 gimple_set_location (new_stmt, gimple_location (stmt));
2134 gimple_call_copy_flags (new_stmt, stmt);
2135 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2136
2137 gimple_set_modified (new_stmt, true);
2138
2139 return new_stmt;
2140 }
2141
2142
2143
2144 /* Return true if the field decls F1 and F2 are at the same offset.
2145
2146 This is intended to be used on GIMPLE types only. */
2147
2148 bool
gimple_compare_field_offset(tree f1,tree f2)2149 gimple_compare_field_offset (tree f1, tree f2)
2150 {
2151 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2152 {
2153 tree offset1 = DECL_FIELD_OFFSET (f1);
2154 tree offset2 = DECL_FIELD_OFFSET (f2);
2155 return ((offset1 == offset2
2156 /* Once gimplification is done, self-referential offsets are
2157 instantiated as operand #2 of the COMPONENT_REF built for
2158 each access and reset. Therefore, they are not relevant
2159 anymore and fields are interchangeable provided that they
2160 represent the same access. */
2161 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2162 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2163 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2164 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2165 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2166 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2167 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2168 || operand_equal_p (offset1, offset2, 0))
2169 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2170 DECL_FIELD_BIT_OFFSET (f2)));
2171 }
2172
2173 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2174 should be, so handle differing ones specially by decomposing
2175 the offset into a byte and bit offset manually. */
2176 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2177 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2178 {
2179 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2180 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2181 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2182 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2183 + bit_offset1 / BITS_PER_UNIT);
2184 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2185 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2186 + bit_offset2 / BITS_PER_UNIT);
2187 if (byte_offset1 != byte_offset2)
2188 return false;
2189 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2190 }
2191
2192 return false;
2193 }
2194
2195
2196 /* Return a type the same as TYPE except unsigned or
2197 signed according to UNSIGNEDP. */
2198
2199 static tree
gimple_signed_or_unsigned_type(bool unsignedp,tree type)2200 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2201 {
2202 tree type1;
2203 int i;
2204
2205 type1 = TYPE_MAIN_VARIANT (type);
2206 if (type1 == signed_char_type_node
2207 || type1 == char_type_node
2208 || type1 == unsigned_char_type_node)
2209 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2210 if (type1 == integer_type_node || type1 == unsigned_type_node)
2211 return unsignedp ? unsigned_type_node : integer_type_node;
2212 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2213 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2214 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2215 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2216 if (type1 == long_long_integer_type_node
2217 || type1 == long_long_unsigned_type_node)
2218 return unsignedp
2219 ? long_long_unsigned_type_node
2220 : long_long_integer_type_node;
2221
2222 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2223 if (int_n_enabled_p[i]
2224 && (type1 == int_n_trees[i].unsigned_type
2225 || type1 == int_n_trees[i].signed_type))
2226 return unsignedp
2227 ? int_n_trees[i].unsigned_type
2228 : int_n_trees[i].signed_type;
2229
2230 #if HOST_BITS_PER_WIDE_INT >= 64
2231 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2232 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2233 #endif
2234 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2235 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2236 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2237 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2238 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2239 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2240 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2241 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2242
2243 #define GIMPLE_FIXED_TYPES(NAME) \
2244 if (type1 == short_ ## NAME ## _type_node \
2245 || type1 == unsigned_short_ ## NAME ## _type_node) \
2246 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2247 : short_ ## NAME ## _type_node; \
2248 if (type1 == NAME ## _type_node \
2249 || type1 == unsigned_ ## NAME ## _type_node) \
2250 return unsignedp ? unsigned_ ## NAME ## _type_node \
2251 : NAME ## _type_node; \
2252 if (type1 == long_ ## NAME ## _type_node \
2253 || type1 == unsigned_long_ ## NAME ## _type_node) \
2254 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2255 : long_ ## NAME ## _type_node; \
2256 if (type1 == long_long_ ## NAME ## _type_node \
2257 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2258 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2259 : long_long_ ## NAME ## _type_node;
2260
2261 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2262 if (type1 == NAME ## _type_node \
2263 || type1 == u ## NAME ## _type_node) \
2264 return unsignedp ? u ## NAME ## _type_node \
2265 : NAME ## _type_node;
2266
2267 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2268 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2269 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2270 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2271 : sat_ ## short_ ## NAME ## _type_node; \
2272 if (type1 == sat_ ## NAME ## _type_node \
2273 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2274 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2275 : sat_ ## NAME ## _type_node; \
2276 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2277 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2278 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2279 : sat_ ## long_ ## NAME ## _type_node; \
2280 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2281 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2282 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2283 : sat_ ## long_long_ ## NAME ## _type_node;
2284
2285 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2286 if (type1 == sat_ ## NAME ## _type_node \
2287 || type1 == sat_ ## u ## NAME ## _type_node) \
2288 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2289 : sat_ ## NAME ## _type_node;
2290
2291 GIMPLE_FIXED_TYPES (fract);
2292 GIMPLE_FIXED_TYPES_SAT (fract);
2293 GIMPLE_FIXED_TYPES (accum);
2294 GIMPLE_FIXED_TYPES_SAT (accum);
2295
2296 GIMPLE_FIXED_MODE_TYPES (qq);
2297 GIMPLE_FIXED_MODE_TYPES (hq);
2298 GIMPLE_FIXED_MODE_TYPES (sq);
2299 GIMPLE_FIXED_MODE_TYPES (dq);
2300 GIMPLE_FIXED_MODE_TYPES (tq);
2301 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2302 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2303 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2304 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2305 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2306 GIMPLE_FIXED_MODE_TYPES (ha);
2307 GIMPLE_FIXED_MODE_TYPES (sa);
2308 GIMPLE_FIXED_MODE_TYPES (da);
2309 GIMPLE_FIXED_MODE_TYPES (ta);
2310 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2311 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2312 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2313 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2314
2315 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2316 the precision; they have precision set to match their range, but
2317 may use a wider mode to match an ABI. If we change modes, we may
2318 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2319 the precision as well, so as to yield correct results for
2320 bit-field types. C++ does not have these separate bit-field
2321 types, and producing a signed or unsigned variant of an
2322 ENUMERAL_TYPE may cause other problems as well. */
2323 if (!INTEGRAL_TYPE_P (type)
2324 || TYPE_UNSIGNED (type) == unsignedp)
2325 return type;
2326
2327 #define TYPE_OK(node) \
2328 (TYPE_MODE (type) == TYPE_MODE (node) \
2329 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2330 if (TYPE_OK (signed_char_type_node))
2331 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2332 if (TYPE_OK (integer_type_node))
2333 return unsignedp ? unsigned_type_node : integer_type_node;
2334 if (TYPE_OK (short_integer_type_node))
2335 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2336 if (TYPE_OK (long_integer_type_node))
2337 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2338 if (TYPE_OK (long_long_integer_type_node))
2339 return (unsignedp
2340 ? long_long_unsigned_type_node
2341 : long_long_integer_type_node);
2342
2343 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2344 if (int_n_enabled_p[i]
2345 && TYPE_MODE (type) == int_n_data[i].m
2346 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2347 return unsignedp
2348 ? int_n_trees[i].unsigned_type
2349 : int_n_trees[i].signed_type;
2350
2351 #if HOST_BITS_PER_WIDE_INT >= 64
2352 if (TYPE_OK (intTI_type_node))
2353 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2354 #endif
2355 if (TYPE_OK (intDI_type_node))
2356 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2357 if (TYPE_OK (intSI_type_node))
2358 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2359 if (TYPE_OK (intHI_type_node))
2360 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2361 if (TYPE_OK (intQI_type_node))
2362 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2363
2364 #undef GIMPLE_FIXED_TYPES
2365 #undef GIMPLE_FIXED_MODE_TYPES
2366 #undef GIMPLE_FIXED_TYPES_SAT
2367 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2368 #undef TYPE_OK
2369
2370 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2371 }
2372
2373
2374 /* Return an unsigned type the same as TYPE in other respects. */
2375
2376 tree
gimple_unsigned_type(tree type)2377 gimple_unsigned_type (tree type)
2378 {
2379 return gimple_signed_or_unsigned_type (true, type);
2380 }
2381
2382
2383 /* Return a signed type the same as TYPE in other respects. */
2384
2385 tree
gimple_signed_type(tree type)2386 gimple_signed_type (tree type)
2387 {
2388 return gimple_signed_or_unsigned_type (false, type);
2389 }
2390
2391
2392 /* Return the typed-based alias set for T, which may be an expression
2393 or a type. Return -1 if we don't do anything special. */
2394
2395 alias_set_type
gimple_get_alias_set(tree t)2396 gimple_get_alias_set (tree t)
2397 {
2398 tree u;
2399
2400 /* Permit type-punning when accessing a union, provided the access
2401 is directly through the union. For example, this code does not
2402 permit taking the address of a union member and then storing
2403 through it. Even the type-punning allowed here is a GCC
2404 extension, albeit a common and useful one; the C standard says
2405 that such accesses have implementation-defined behavior. */
2406 for (u = t;
2407 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2408 u = TREE_OPERAND (u, 0))
2409 if (TREE_CODE (u) == COMPONENT_REF
2410 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2411 return 0;
2412
2413 /* That's all the expressions we handle specially. */
2414 if (!TYPE_P (t))
2415 return -1;
2416
2417 /* For convenience, follow the C standard when dealing with
2418 character types. Any object may be accessed via an lvalue that
2419 has character type. */
2420 if (t == char_type_node
2421 || t == signed_char_type_node
2422 || t == unsigned_char_type_node)
2423 return 0;
2424
2425 /* Allow aliasing between signed and unsigned variants of the same
2426 type. We treat the signed variant as canonical. */
2427 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2428 {
2429 tree t1 = gimple_signed_type (t);
2430
2431 /* t1 == t can happen for boolean nodes which are always unsigned. */
2432 if (t1 != t)
2433 return get_alias_set (t1);
2434 }
2435
2436 return -1;
2437 }
2438
2439
2440 /* Helper for gimple_ior_addresses_taken_1. */
2441
2442 static bool
gimple_ior_addresses_taken_1(gimple *,tree addr,tree,void * data)2443 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2444 {
2445 bitmap addresses_taken = (bitmap)data;
2446 addr = get_base_address (addr);
2447 if (addr
2448 && DECL_P (addr))
2449 {
2450 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2451 return true;
2452 }
2453 return false;
2454 }
2455
2456 /* Set the bit for the uid of all decls that have their address taken
2457 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2458 were any in this stmt. */
2459
2460 bool
gimple_ior_addresses_taken(bitmap addresses_taken,gimple * stmt)2461 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2462 {
2463 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2464 gimple_ior_addresses_taken_1);
2465 }
2466
2467
2468 /* Return true when STMTs arguments and return value match those of FNDECL,
2469 a decl of a builtin function. */
2470
2471 bool
gimple_builtin_call_types_compatible_p(const gimple * stmt,tree fndecl)2472 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2473 {
2474 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2475
2476 tree ret = gimple_call_lhs (stmt);
2477 if (ret
2478 && !useless_type_conversion_p (TREE_TYPE (ret),
2479 TREE_TYPE (TREE_TYPE (fndecl))))
2480 return false;
2481
2482 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2483 unsigned nargs = gimple_call_num_args (stmt);
2484 for (unsigned i = 0; i < nargs; ++i)
2485 {
2486 /* Variadic args follow. */
2487 if (!targs)
2488 return true;
2489 tree arg = gimple_call_arg (stmt, i);
2490 tree type = TREE_VALUE (targs);
2491 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2492 /* char/short integral arguments are promoted to int
2493 by several frontends if targetm.calls.promote_prototypes
2494 is true. Allow such promotion too. */
2495 && !(INTEGRAL_TYPE_P (type)
2496 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2497 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2498 && useless_type_conversion_p (integer_type_node,
2499 TREE_TYPE (arg))))
2500 return false;
2501 targs = TREE_CHAIN (targs);
2502 }
2503 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2504 return false;
2505 return true;
2506 }
2507
2508 /* Return true when STMT is builtins call. */
2509
2510 bool
gimple_call_builtin_p(const gimple * stmt)2511 gimple_call_builtin_p (const gimple *stmt)
2512 {
2513 tree fndecl;
2514 if (is_gimple_call (stmt)
2515 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2516 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2517 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2518 return false;
2519 }
2520
2521 /* Return true when STMT is builtins call to CLASS. */
2522
2523 bool
gimple_call_builtin_p(const gimple * stmt,enum built_in_class klass)2524 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2525 {
2526 tree fndecl;
2527 if (is_gimple_call (stmt)
2528 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2529 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2530 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2531 return false;
2532 }
2533
2534 /* Return true when STMT is builtins call to CODE of CLASS. */
2535
2536 bool
gimple_call_builtin_p(const gimple * stmt,enum built_in_function code)2537 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2538 {
2539 tree fndecl;
2540 if (is_gimple_call (stmt)
2541 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2542 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2543 && DECL_FUNCTION_CODE (fndecl) == code)
2544 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2545 return false;
2546 }
2547
2548 /* If CALL is a call to a combined_fn (i.e. an internal function or
2549 a normal built-in function), return its code, otherwise return
2550 CFN_LAST. */
2551
2552 combined_fn
gimple_call_combined_fn(const gimple * stmt)2553 gimple_call_combined_fn (const gimple *stmt)
2554 {
2555 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2556 {
2557 if (gimple_call_internal_p (call))
2558 return as_combined_fn (gimple_call_internal_fn (call));
2559
2560 tree fndecl = gimple_call_fndecl (stmt);
2561 if (fndecl
2562 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2563 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2564 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2565 }
2566 return CFN_LAST;
2567 }
2568
2569 /* Return true if STMT clobbers memory. STMT is required to be a
2570 GIMPLE_ASM. */
2571
2572 bool
gimple_asm_clobbers_memory_p(const gasm * stmt)2573 gimple_asm_clobbers_memory_p (const gasm *stmt)
2574 {
2575 unsigned i;
2576
2577 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2578 {
2579 tree op = gimple_asm_clobber_op (stmt, i);
2580 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2581 return true;
2582 }
2583
2584 return false;
2585 }
2586
2587 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2588
2589 void
dump_decl_set(FILE * file,bitmap set)2590 dump_decl_set (FILE *file, bitmap set)
2591 {
2592 if (set)
2593 {
2594 bitmap_iterator bi;
2595 unsigned i;
2596
2597 fprintf (file, "{ ");
2598
2599 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2600 {
2601 fprintf (file, "D.%u", i);
2602 fprintf (file, " ");
2603 }
2604
2605 fprintf (file, "}");
2606 }
2607 else
2608 fprintf (file, "NIL");
2609 }
2610
2611 /* Return true when CALL is a call stmt that definitely doesn't
2612 free any memory or makes it unavailable otherwise. */
2613 bool
nonfreeing_call_p(gimple * call)2614 nonfreeing_call_p (gimple *call)
2615 {
2616 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2617 && gimple_call_flags (call) & ECF_LEAF)
2618 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2619 {
2620 /* Just in case these become ECF_LEAF in the future. */
2621 case BUILT_IN_FREE:
2622 case BUILT_IN_TM_FREE:
2623 case BUILT_IN_REALLOC:
2624 case BUILT_IN_STACK_RESTORE:
2625 return false;
2626 default:
2627 return true;
2628 }
2629 else if (gimple_call_internal_p (call))
2630 switch (gimple_call_internal_fn (call))
2631 {
2632 case IFN_ABNORMAL_DISPATCHER:
2633 return true;
2634 default:
2635 if (gimple_call_flags (call) & ECF_LEAF)
2636 return true;
2637 return false;
2638 }
2639
2640 tree fndecl = gimple_call_fndecl (call);
2641 if (!fndecl)
2642 return false;
2643 struct cgraph_node *n = cgraph_node::get (fndecl);
2644 if (!n)
2645 return false;
2646 enum availability availability;
2647 n = n->function_symbol (&availability);
2648 if (!n || availability <= AVAIL_INTERPOSABLE)
2649 return false;
2650 return n->nonfreeing_fn;
2651 }
2652
2653 /* Return true when CALL is a call stmt that definitely need not
2654 be considered to be a memory barrier. */
2655 bool
nonbarrier_call_p(gimple * call)2656 nonbarrier_call_p (gimple *call)
2657 {
2658 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2659 return true;
2660 /* Should extend this to have a nonbarrier_fn flag, just as above in
2661 the nonfreeing case. */
2662 return false;
2663 }
2664
2665 /* Callback for walk_stmt_load_store_ops.
2666
2667 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2668 otherwise.
2669
2670 This routine only makes a superficial check for a dereference. Thus
2671 it must only be used if it is safe to return a false negative. */
2672 static bool
check_loadstore(gimple *,tree op,tree,void * data)2673 check_loadstore (gimple *, tree op, tree, void *data)
2674 {
2675 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2676 {
2677 /* Some address spaces may legitimately dereference zero. */
2678 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2679 if (targetm.addr_space.zero_address_valid (as))
2680 return false;
2681
2682 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2683 }
2684 return false;
2685 }
2686
2687
2688 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2689 either by using a pointer dereference or attributes. */
2690 bool
infer_nonnull_range(gimple * stmt,tree op)2691 infer_nonnull_range (gimple *stmt, tree op)
2692 {
2693 return infer_nonnull_range_by_dereference (stmt, op)
2694 || infer_nonnull_range_by_attribute (stmt, op);
2695 }
2696
2697 /* Return true if OP can be inferred to be non-NULL after STMT
2698 executes by using a pointer dereference. */
2699 bool
infer_nonnull_range_by_dereference(gimple * stmt,tree op)2700 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2701 {
2702 /* We can only assume that a pointer dereference will yield
2703 non-NULL if -fdelete-null-pointer-checks is enabled. */
2704 if (!flag_delete_null_pointer_checks
2705 || !POINTER_TYPE_P (TREE_TYPE (op))
2706 || gimple_code (stmt) == GIMPLE_ASM)
2707 return false;
2708
2709 if (walk_stmt_load_store_ops (stmt, (void *)op,
2710 check_loadstore, check_loadstore))
2711 return true;
2712
2713 return false;
2714 }
2715
2716 /* Return true if OP can be inferred to be a non-NULL after STMT
2717 executes by using attributes. */
2718 bool
infer_nonnull_range_by_attribute(gimple * stmt,tree op)2719 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2720 {
2721 /* We can only assume that a pointer dereference will yield
2722 non-NULL if -fdelete-null-pointer-checks is enabled. */
2723 if (!flag_delete_null_pointer_checks
2724 || !POINTER_TYPE_P (TREE_TYPE (op))
2725 || gimple_code (stmt) == GIMPLE_ASM)
2726 return false;
2727
2728 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2729 {
2730 tree fntype = gimple_call_fntype (stmt);
2731 tree attrs = TYPE_ATTRIBUTES (fntype);
2732 for (; attrs; attrs = TREE_CHAIN (attrs))
2733 {
2734 attrs = lookup_attribute ("nonnull", attrs);
2735
2736 /* If "nonnull" wasn't specified, we know nothing about
2737 the argument. */
2738 if (attrs == NULL_TREE)
2739 return false;
2740
2741 /* If "nonnull" applies to all the arguments, then ARG
2742 is non-null if it's in the argument list. */
2743 if (TREE_VALUE (attrs) == NULL_TREE)
2744 {
2745 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2746 {
2747 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2748 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2749 return true;
2750 }
2751 return false;
2752 }
2753
2754 /* Now see if op appears in the nonnull list. */
2755 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2756 {
2757 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2758 if (idx < gimple_call_num_args (stmt))
2759 {
2760 tree arg = gimple_call_arg (stmt, idx);
2761 if (operand_equal_p (op, arg, 0))
2762 return true;
2763 }
2764 }
2765 }
2766 }
2767
2768 /* If this function is marked as returning non-null, then we can
2769 infer OP is non-null if it is used in the return statement. */
2770 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2771 if (gimple_return_retval (return_stmt)
2772 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2773 && lookup_attribute ("returns_nonnull",
2774 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2775 return true;
2776
2777 return false;
2778 }
2779
2780 /* Compare two case labels. Because the front end should already have
2781 made sure that case ranges do not overlap, it is enough to only compare
2782 the CASE_LOW values of each case label. */
2783
2784 static int
compare_case_labels(const void * p1,const void * p2)2785 compare_case_labels (const void *p1, const void *p2)
2786 {
2787 const_tree const case1 = *(const_tree const*)p1;
2788 const_tree const case2 = *(const_tree const*)p2;
2789
2790 /* The 'default' case label always goes first. */
2791 if (!CASE_LOW (case1))
2792 return -1;
2793 else if (!CASE_LOW (case2))
2794 return 1;
2795 else
2796 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2797 }
2798
2799 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2800
2801 void
sort_case_labels(vec<tree> label_vec)2802 sort_case_labels (vec<tree> label_vec)
2803 {
2804 label_vec.qsort (compare_case_labels);
2805 }
2806
2807 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2808
2809 LABELS is a vector that contains all case labels to look at.
2810
2811 INDEX_TYPE is the type of the switch index expression. Case labels
2812 in LABELS are discarded if their values are not in the value range
2813 covered by INDEX_TYPE. The remaining case label values are folded
2814 to INDEX_TYPE.
2815
2816 If a default case exists in LABELS, it is removed from LABELS and
2817 returned in DEFAULT_CASEP. If no default case exists, but the
2818 case labels already cover the whole range of INDEX_TYPE, a default
2819 case is returned pointing to one of the existing case labels.
2820 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2821
2822 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2823 apply and no action is taken regardless of whether a default case is
2824 found or not. */
2825
2826 void
preprocess_case_label_vec_for_gimple(vec<tree> labels,tree index_type,tree * default_casep)2827 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2828 tree index_type,
2829 tree *default_casep)
2830 {
2831 tree min_value, max_value;
2832 tree default_case = NULL_TREE;
2833 size_t i, len;
2834
2835 i = 0;
2836 min_value = TYPE_MIN_VALUE (index_type);
2837 max_value = TYPE_MAX_VALUE (index_type);
2838 while (i < labels.length ())
2839 {
2840 tree elt = labels[i];
2841 tree low = CASE_LOW (elt);
2842 tree high = CASE_HIGH (elt);
2843 bool remove_element = FALSE;
2844
2845 if (low)
2846 {
2847 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2848 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2849
2850 /* This is a non-default case label, i.e. it has a value.
2851
2852 See if the case label is reachable within the range of
2853 the index type. Remove out-of-range case values. Turn
2854 case ranges into a canonical form (high > low strictly)
2855 and convert the case label values to the index type.
2856
2857 NB: The type of gimple_switch_index() may be the promoted
2858 type, but the case labels retain the original type. */
2859
2860 if (high)
2861 {
2862 /* This is a case range. Discard empty ranges.
2863 If the bounds or the range are equal, turn this
2864 into a simple (one-value) case. */
2865 int cmp = tree_int_cst_compare (high, low);
2866 if (cmp < 0)
2867 remove_element = TRUE;
2868 else if (cmp == 0)
2869 high = NULL_TREE;
2870 }
2871
2872 if (! high)
2873 {
2874 /* If the simple case value is unreachable, ignore it. */
2875 if ((TREE_CODE (min_value) == INTEGER_CST
2876 && tree_int_cst_compare (low, min_value) < 0)
2877 || (TREE_CODE (max_value) == INTEGER_CST
2878 && tree_int_cst_compare (low, max_value) > 0))
2879 remove_element = TRUE;
2880 else
2881 low = fold_convert (index_type, low);
2882 }
2883 else
2884 {
2885 /* If the entire case range is unreachable, ignore it. */
2886 if ((TREE_CODE (min_value) == INTEGER_CST
2887 && tree_int_cst_compare (high, min_value) < 0)
2888 || (TREE_CODE (max_value) == INTEGER_CST
2889 && tree_int_cst_compare (low, max_value) > 0))
2890 remove_element = TRUE;
2891 else
2892 {
2893 /* If the lower bound is less than the index type's
2894 minimum value, truncate the range bounds. */
2895 if (TREE_CODE (min_value) == INTEGER_CST
2896 && tree_int_cst_compare (low, min_value) < 0)
2897 low = min_value;
2898 low = fold_convert (index_type, low);
2899
2900 /* If the upper bound is greater than the index type's
2901 maximum value, truncate the range bounds. */
2902 if (TREE_CODE (max_value) == INTEGER_CST
2903 && tree_int_cst_compare (high, max_value) > 0)
2904 high = max_value;
2905 high = fold_convert (index_type, high);
2906
2907 /* We may have folded a case range to a one-value case. */
2908 if (tree_int_cst_equal (low, high))
2909 high = NULL_TREE;
2910 }
2911 }
2912
2913 CASE_LOW (elt) = low;
2914 CASE_HIGH (elt) = high;
2915 }
2916 else
2917 {
2918 gcc_assert (!default_case);
2919 default_case = elt;
2920 /* The default case must be passed separately to the
2921 gimple_build_switch routine. But if DEFAULT_CASEP
2922 is NULL, we do not remove the default case (it would
2923 be completely lost). */
2924 if (default_casep)
2925 remove_element = TRUE;
2926 }
2927
2928 if (remove_element)
2929 labels.ordered_remove (i);
2930 else
2931 i++;
2932 }
2933 len = i;
2934
2935 if (!labels.is_empty ())
2936 sort_case_labels (labels);
2937
2938 if (default_casep && !default_case)
2939 {
2940 /* If the switch has no default label, add one, so that we jump
2941 around the switch body. If the labels already cover the whole
2942 range of the switch index_type, add the default label pointing
2943 to one of the existing labels. */
2944 if (len
2945 && TYPE_MIN_VALUE (index_type)
2946 && TYPE_MAX_VALUE (index_type)
2947 && tree_int_cst_equal (CASE_LOW (labels[0]),
2948 TYPE_MIN_VALUE (index_type)))
2949 {
2950 tree low, high = CASE_HIGH (labels[len - 1]);
2951 if (!high)
2952 high = CASE_LOW (labels[len - 1]);
2953 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2954 {
2955 for (i = 1; i < len; i++)
2956 {
2957 high = CASE_LOW (labels[i]);
2958 low = CASE_HIGH (labels[i - 1]);
2959 if (!low)
2960 low = CASE_LOW (labels[i - 1]);
2961 if (wi::add (low, 1) != high)
2962 break;
2963 }
2964 if (i == len)
2965 {
2966 tree label = CASE_LABEL (labels[0]);
2967 default_case = build_case_label (NULL_TREE, NULL_TREE,
2968 label);
2969 }
2970 }
2971 }
2972 }
2973
2974 if (default_casep)
2975 *default_casep = default_case;
2976 }
2977
2978 /* Set the location of all statements in SEQ to LOC. */
2979
2980 void
gimple_seq_set_location(gimple_seq seq,location_t loc)2981 gimple_seq_set_location (gimple_seq seq, location_t loc)
2982 {
2983 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2984 gimple_set_location (gsi_stmt (i), loc);
2985 }
2986
2987 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2988
2989 void
gimple_seq_discard(gimple_seq seq)2990 gimple_seq_discard (gimple_seq seq)
2991 {
2992 gimple_stmt_iterator gsi;
2993
2994 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2995 {
2996 gimple *stmt = gsi_stmt (gsi);
2997 gsi_remove (&gsi, true);
2998 release_defs (stmt);
2999 ggc_free (stmt);
3000 }
3001 }
3002
3003 /* See if STMT now calls function that takes no parameters and if so, drop
3004 call arguments. This is used when devirtualization machinery redirects
3005 to __builtiln_unreacahble or __cxa_pure_virutal. */
3006
3007 void
maybe_remove_unused_call_args(struct function * fn,gimple * stmt)3008 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3009 {
3010 tree decl = gimple_call_fndecl (stmt);
3011 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3012 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3013 && gimple_call_num_args (stmt))
3014 {
3015 gimple_set_num_ops (stmt, 3);
3016 update_stmt_fn (fn, stmt);
3017 }
3018 }
3019