1 /* Subroutines used by or related to instruction recognition.
2    Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "insn-attr.h"
36 #include "addresses.h"
37 #include "cfgrtl.h"
38 #include "cfgbuild.h"
39 #include "cfgcleanup.h"
40 #include "reload.h"
41 #include "tree-pass.h"
42 
43 #ifndef STACK_POP_CODE
44 #if STACK_GROWS_DOWNWARD
45 #define STACK_POP_CODE POST_INC
46 #else
47 #define STACK_POP_CODE POST_DEC
48 #endif
49 #endif
50 
51 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
52 static void validate_replace_src_1 (rtx *, void *);
53 static rtx_insn *split_insn (rtx_insn *);
54 
55 struct target_recog default_target_recog;
56 #if SWITCHABLE_TARGET
57 struct target_recog *this_target_recog = &default_target_recog;
58 #endif
59 
60 /* Nonzero means allow operands to be volatile.
61    This should be 0 if you are generating rtl, such as if you are calling
62    the functions in optabs.c and expmed.c (most of the time).
63    This should be 1 if all valid insns need to be recognized,
64    such as in reginfo.c and final.c and reload.c.
65 
66    init_recog and init_recog_no_volatile are responsible for setting this.  */
67 
68 int volatile_ok;
69 
70 struct recog_data_d recog_data;
71 
72 /* Contains a vector of operand_alternative structures, such that
73    operand OP of alternative A is at index A * n_operands + OP.
74    Set up by preprocess_constraints.  */
75 const operand_alternative *recog_op_alt;
76 
77 /* Used to provide recog_op_alt for asms.  */
78 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
79 				      * MAX_RECOG_ALTERNATIVES];
80 
81 /* On return from `constrain_operands', indicate which alternative
82    was satisfied.  */
83 
84 int which_alternative;
85 
86 /* Nonzero after end of reload pass.
87    Set to 1 or 0 by toplev.c.
88    Controls the significance of (SUBREG (MEM)).  */
89 
90 int reload_completed;
91 
92 /* Nonzero after thread_prologue_and_epilogue_insns has run.  */
93 int epilogue_completed;
94 
95 /* Initialize data used by the function `recog'.
96    This must be called once in the compilation of a function
97    before any insn recognition may be done in the function.  */
98 
99 void
init_recog_no_volatile(void)100 init_recog_no_volatile (void)
101 {
102   volatile_ok = 0;
103 }
104 
105 void
init_recog(void)106 init_recog (void)
107 {
108   volatile_ok = 1;
109 }
110 
111 
112 /* Return true if labels in asm operands BODY are LABEL_REFs.  */
113 
114 static bool
asm_labels_ok(rtx body)115 asm_labels_ok (rtx body)
116 {
117   rtx asmop;
118   int i;
119 
120   asmop = extract_asm_operands (body);
121   if (asmop == NULL_RTX)
122     return true;
123 
124   for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
125     if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
126       return false;
127 
128   return true;
129 }
130 
131 /* Check that X is an insn-body for an `asm' with operands
132    and that the operands mentioned in it are legitimate.  */
133 
134 int
check_asm_operands(rtx x)135 check_asm_operands (rtx x)
136 {
137   int noperands;
138   rtx *operands;
139   const char **constraints;
140   int i;
141 
142   if (!asm_labels_ok (x))
143     return 0;
144 
145   /* Post-reload, be more strict with things.  */
146   if (reload_completed)
147     {
148       /* ??? Doh!  We've not got the wrapping insn.  Cook one up.  */
149       rtx_insn *insn = make_insn_raw (x);
150       extract_insn (insn);
151       constrain_operands (1, get_enabled_alternatives (insn));
152       return which_alternative >= 0;
153     }
154 
155   noperands = asm_noperands (x);
156   if (noperands < 0)
157     return 0;
158   if (noperands == 0)
159     return 1;
160 
161   operands = XALLOCAVEC (rtx, noperands);
162   constraints = XALLOCAVEC (const char *, noperands);
163 
164   decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
165 
166   for (i = 0; i < noperands; i++)
167     {
168       const char *c = constraints[i];
169       if (c[0] == '%')
170 	c++;
171       if (! asm_operand_ok (operands[i], c, constraints))
172 	return 0;
173     }
174 
175   return 1;
176 }
177 
178 /* Static data for the next two routines.  */
179 
180 struct change_t
181 {
182   rtx object;
183   int old_code;
184   rtx *loc;
185   rtx old;
186   bool unshare;
187 };
188 
189 static change_t *changes;
190 static int changes_allocated;
191 
192 static int num_changes = 0;
193 
194 /* Validate a proposed change to OBJECT.  LOC is the location in the rtl
195    at which NEW_RTX will be placed.  If OBJECT is zero, no validation is done,
196    the change is simply made.
197 
198    Two types of objects are supported:  If OBJECT is a MEM, memory_address_p
199    will be called with the address and mode as parameters.  If OBJECT is
200    an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
201    the change in place.
202 
203    IN_GROUP is nonzero if this is part of a group of changes that must be
204    performed as a group.  In that case, the changes will be stored.  The
205    function `apply_change_group' will validate and apply the changes.
206 
207    If IN_GROUP is zero, this is a single change.  Try to recognize the insn
208    or validate the memory reference with the change applied.  If the result
209    is not valid for the machine, suppress the change and return zero.
210    Otherwise, perform the change and return 1.  */
211 
212 static bool
validate_change_1(rtx object,rtx * loc,rtx new_rtx,bool in_group,bool unshare)213 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
214 {
215   rtx old = *loc;
216 
217   if (old == new_rtx || rtx_equal_p (old, new_rtx))
218     return 1;
219 
220   gcc_assert (in_group != 0 || num_changes == 0);
221 
222   *loc = new_rtx;
223 
224   /* Save the information describing this change.  */
225   if (num_changes >= changes_allocated)
226     {
227       if (changes_allocated == 0)
228 	/* This value allows for repeated substitutions inside complex
229 	   indexed addresses, or changes in up to 5 insns.  */
230 	changes_allocated = MAX_RECOG_OPERANDS * 5;
231       else
232 	changes_allocated *= 2;
233 
234       changes = XRESIZEVEC (change_t, changes, changes_allocated);
235     }
236 
237   changes[num_changes].object = object;
238   changes[num_changes].loc = loc;
239   changes[num_changes].old = old;
240   changes[num_changes].unshare = unshare;
241 
242   if (object && !MEM_P (object))
243     {
244       /* Set INSN_CODE to force rerecognition of insn.  Save old code in
245 	 case invalid.  */
246       changes[num_changes].old_code = INSN_CODE (object);
247       INSN_CODE (object) = -1;
248     }
249 
250   num_changes++;
251 
252   /* If we are making a group of changes, return 1.  Otherwise, validate the
253      change group we made.  */
254 
255   if (in_group)
256     return 1;
257   else
258     return apply_change_group ();
259 }
260 
261 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
262    UNSHARE to false.  */
263 
264 bool
validate_change(rtx object,rtx * loc,rtx new_rtx,bool in_group)265 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
266 {
267   return validate_change_1 (object, loc, new_rtx, in_group, false);
268 }
269 
270 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
271    UNSHARE to true.  */
272 
273 bool
validate_unshare_change(rtx object,rtx * loc,rtx new_rtx,bool in_group)274 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
275 {
276   return validate_change_1 (object, loc, new_rtx, in_group, true);
277 }
278 
279 
280 /* Keep X canonicalized if some changes have made it non-canonical; only
281    modifies the operands of X, not (for example) its code.  Simplifications
282    are not the job of this routine.
283 
284    Return true if anything was changed.  */
285 bool
canonicalize_change_group(rtx_insn * insn,rtx x)286 canonicalize_change_group (rtx_insn *insn, rtx x)
287 {
288   if (COMMUTATIVE_P (x)
289       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
290     {
291       /* Oops, the caller has made X no longer canonical.
292 	 Let's redo the changes in the correct order.  */
293       rtx tem = XEXP (x, 0);
294       validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
295       validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
296       return true;
297     }
298   else
299     return false;
300 }
301 
302 
303 /* This subroutine of apply_change_group verifies whether the changes to INSN
304    were valid; i.e. whether INSN can still be recognized.
305 
306    If IN_GROUP is true clobbers which have to be added in order to
307    match the instructions will be added to the current change group.
308    Otherwise the changes will take effect immediately.  */
309 
310 int
insn_invalid_p(rtx_insn * insn,bool in_group)311 insn_invalid_p (rtx_insn *insn, bool in_group)
312 {
313   rtx pat = PATTERN (insn);
314   int num_clobbers = 0;
315   /* If we are before reload and the pattern is a SET, see if we can add
316      clobbers.  */
317   int icode = recog (pat, insn,
318 		     (GET_CODE (pat) == SET
319 		      && ! reload_completed
320                       && ! reload_in_progress)
321 		     ? &num_clobbers : 0);
322   int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
323 
324 
325   /* If this is an asm and the operand aren't legal, then fail.  Likewise if
326      this is not an asm and the insn wasn't recognized.  */
327   if ((is_asm && ! check_asm_operands (PATTERN (insn)))
328       || (!is_asm && icode < 0))
329     return 1;
330 
331   /* If we have to add CLOBBERs, fail if we have to add ones that reference
332      hard registers since our callers can't know if they are live or not.
333      Otherwise, add them.  */
334   if (num_clobbers > 0)
335     {
336       rtx newpat;
337 
338       if (added_clobbers_hard_reg_p (icode))
339 	return 1;
340 
341       newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
342       XVECEXP (newpat, 0, 0) = pat;
343       add_clobbers (newpat, icode);
344       if (in_group)
345 	validate_change (insn, &PATTERN (insn), newpat, 1);
346       else
347 	PATTERN (insn) = pat = newpat;
348     }
349 
350   /* After reload, verify that all constraints are satisfied.  */
351   if (reload_completed)
352     {
353       extract_insn (insn);
354 
355       if (! constrain_operands (1, get_preferred_alternatives (insn)))
356 	return 1;
357     }
358 
359   INSN_CODE (insn) = icode;
360   return 0;
361 }
362 
363 /* Return number of changes made and not validated yet.  */
364 int
num_changes_pending(void)365 num_changes_pending (void)
366 {
367   return num_changes;
368 }
369 
370 /* Tentatively apply the changes numbered NUM and up.
371    Return 1 if all changes are valid, zero otherwise.  */
372 
373 int
verify_changes(int num)374 verify_changes (int num)
375 {
376   int i;
377   rtx last_validated = NULL_RTX;
378 
379   /* The changes have been applied and all INSN_CODEs have been reset to force
380      rerecognition.
381 
382      The changes are valid if we aren't given an object, or if we are
383      given a MEM and it still is a valid address, or if this is in insn
384      and it is recognized.  In the latter case, if reload has completed,
385      we also require that the operands meet the constraints for
386      the insn.  */
387 
388   for (i = num; i < num_changes; i++)
389     {
390       rtx object = changes[i].object;
391 
392       /* If there is no object to test or if it is the same as the one we
393          already tested, ignore it.  */
394       if (object == 0 || object == last_validated)
395 	continue;
396 
397       if (MEM_P (object))
398 	{
399 	  if (! memory_address_addr_space_p (GET_MODE (object),
400 					     XEXP (object, 0),
401 					     MEM_ADDR_SPACE (object)))
402 	    break;
403 	}
404       else if (/* changes[i].old might be zero, e.g. when putting a
405 	       REG_FRAME_RELATED_EXPR into a previously empty list.  */
406 	       changes[i].old
407 	       && REG_P (changes[i].old)
408 	       && asm_noperands (PATTERN (object)) > 0
409 	       && REG_EXPR (changes[i].old) != NULL_TREE
410 	       && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
411 	       && DECL_REGISTER (REG_EXPR (changes[i].old)))
412 	{
413 	  /* Don't allow changes of hard register operands to inline
414 	     assemblies if they have been defined as register asm ("x").  */
415 	  break;
416 	}
417       else if (DEBUG_INSN_P (object))
418 	continue;
419       else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
420 	{
421 	  rtx pat = PATTERN (object);
422 
423 	  /* Perhaps we couldn't recognize the insn because there were
424 	     extra CLOBBERs at the end.  If so, try to re-recognize
425 	     without the last CLOBBER (later iterations will cause each of
426 	     them to be eliminated, in turn).  But don't do this if we
427 	     have an ASM_OPERAND.  */
428 	  if (GET_CODE (pat) == PARALLEL
429 	      && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
430 	      && asm_noperands (PATTERN (object)) < 0)
431 	    {
432 	      rtx newpat;
433 
434 	      if (XVECLEN (pat, 0) == 2)
435 		newpat = XVECEXP (pat, 0, 0);
436 	      else
437 		{
438 		  int j;
439 
440 		  newpat
441 		    = gen_rtx_PARALLEL (VOIDmode,
442 					rtvec_alloc (XVECLEN (pat, 0) - 1));
443 		  for (j = 0; j < XVECLEN (newpat, 0); j++)
444 		    XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
445 		}
446 
447 	      /* Add a new change to this group to replace the pattern
448 		 with this new pattern.  Then consider this change
449 		 as having succeeded.  The change we added will
450 		 cause the entire call to fail if things remain invalid.
451 
452 		 Note that this can lose if a later change than the one
453 		 we are processing specified &XVECEXP (PATTERN (object), 0, X)
454 		 but this shouldn't occur.  */
455 
456 	      validate_change (object, &PATTERN (object), newpat, 1);
457 	      continue;
458 	    }
459 	  else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
460 		   || GET_CODE (pat) == VAR_LOCATION)
461 	    /* If this insn is a CLOBBER or USE, it is always valid, but is
462 	       never recognized.  */
463 	    continue;
464 	  else
465 	    break;
466 	}
467       last_validated = object;
468     }
469 
470   return (i == num_changes);
471 }
472 
473 /* A group of changes has previously been issued with validate_change
474    and verified with verify_changes.  Call df_insn_rescan for each of
475    the insn changed and clear num_changes.  */
476 
477 void
confirm_change_group(void)478 confirm_change_group (void)
479 {
480   int i;
481   rtx last_object = NULL;
482 
483   for (i = 0; i < num_changes; i++)
484     {
485       rtx object = changes[i].object;
486 
487       if (changes[i].unshare)
488 	*changes[i].loc = copy_rtx (*changes[i].loc);
489 
490       /* Avoid unnecessary rescanning when multiple changes to same instruction
491          are made.  */
492       if (object)
493 	{
494 	  if (object != last_object && last_object && INSN_P (last_object))
495 	    df_insn_rescan (as_a <rtx_insn *> (last_object));
496 	  last_object = object;
497 	}
498     }
499 
500   if (last_object && INSN_P (last_object))
501     df_insn_rescan (as_a <rtx_insn *> (last_object));
502   num_changes = 0;
503 }
504 
505 /* Apply a group of changes previously issued with `validate_change'.
506    If all changes are valid, call confirm_change_group and return 1,
507    otherwise, call cancel_changes and return 0.  */
508 
509 int
apply_change_group(void)510 apply_change_group (void)
511 {
512   if (verify_changes (0))
513     {
514       confirm_change_group ();
515       return 1;
516     }
517   else
518     {
519       cancel_changes (0);
520       return 0;
521     }
522 }
523 
524 
525 /* Return the number of changes so far in the current group.  */
526 
527 int
num_validated_changes(void)528 num_validated_changes (void)
529 {
530   return num_changes;
531 }
532 
533 /* Retract the changes numbered NUM and up.  */
534 
535 void
cancel_changes(int num)536 cancel_changes (int num)
537 {
538   int i;
539 
540   /* Back out all the changes.  Do this in the opposite order in which
541      they were made.  */
542   for (i = num_changes - 1; i >= num; i--)
543     {
544       *changes[i].loc = changes[i].old;
545       if (changes[i].object && !MEM_P (changes[i].object))
546 	INSN_CODE (changes[i].object) = changes[i].old_code;
547     }
548   num_changes = num;
549 }
550 
551 /* Reduce conditional compilation elsewhere.  */
552 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
553    rtx.  */
554 
555 static void
simplify_while_replacing(rtx * loc,rtx to,rtx_insn * object,machine_mode op0_mode)556 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
557                           machine_mode op0_mode)
558 {
559   rtx x = *loc;
560   enum rtx_code code = GET_CODE (x);
561   rtx new_rtx = NULL_RTX;
562 
563   if (SWAPPABLE_OPERANDS_P (x)
564       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
565     {
566       validate_unshare_change (object, loc,
567 			       gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
568 					       : swap_condition (code),
569 					       GET_MODE (x), XEXP (x, 1),
570 					       XEXP (x, 0)), 1);
571       x = *loc;
572       code = GET_CODE (x);
573     }
574 
575   /* Canonicalize arithmetics with all constant operands.  */
576   switch (GET_RTX_CLASS (code))
577     {
578     case RTX_UNARY:
579       if (CONSTANT_P (XEXP (x, 0)))
580 	new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
581 					    op0_mode);
582       break;
583     case RTX_COMM_ARITH:
584     case RTX_BIN_ARITH:
585       if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
586 	new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
587 					     XEXP (x, 1));
588       break;
589     case RTX_COMPARE:
590     case RTX_COMM_COMPARE:
591       if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
592 	new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
593 						 XEXP (x, 0), XEXP (x, 1));
594       break;
595     default:
596       break;
597     }
598   if (new_rtx)
599     {
600       validate_change (object, loc, new_rtx, 1);
601       return;
602     }
603 
604   switch (code)
605     {
606     case PLUS:
607       /* If we have a PLUS whose second operand is now a CONST_INT, use
608          simplify_gen_binary to try to simplify it.
609          ??? We may want later to remove this, once simplification is
610          separated from this function.  */
611       if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
612 	validate_change (object, loc,
613 			 simplify_gen_binary
614 			 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
615       break;
616     case MINUS:
617       if (CONST_SCALAR_INT_P (XEXP (x, 1)))
618 	validate_change (object, loc,
619 			 simplify_gen_binary
620 			 (PLUS, GET_MODE (x), XEXP (x, 0),
621 			  simplify_gen_unary (NEG,
622 					      GET_MODE (x), XEXP (x, 1),
623 					      GET_MODE (x))), 1);
624       break;
625     case ZERO_EXTEND:
626     case SIGN_EXTEND:
627       if (GET_MODE (XEXP (x, 0)) == VOIDmode)
628 	{
629 	  new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
630 				    op0_mode);
631 	  /* If any of the above failed, substitute in something that
632 	     we know won't be recognized.  */
633 	  if (!new_rtx)
634 	    new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
635 	  validate_change (object, loc, new_rtx, 1);
636 	}
637       break;
638     case SUBREG:
639       /* All subregs possible to simplify should be simplified.  */
640       new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
641 			     SUBREG_BYTE (x));
642 
643       /* Subregs of VOIDmode operands are incorrect.  */
644       if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
645 	new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
646       if (new_rtx)
647 	validate_change (object, loc, new_rtx, 1);
648       break;
649     case ZERO_EXTRACT:
650     case SIGN_EXTRACT:
651       /* If we are replacing a register with memory, try to change the memory
652          to be the mode required for memory in extract operations (this isn't
653          likely to be an insertion operation; if it was, nothing bad will
654          happen, we might just fail in some cases).  */
655 
656       if (MEM_P (XEXP (x, 0))
657 	  && CONST_INT_P (XEXP (x, 1))
658 	  && CONST_INT_P (XEXP (x, 2))
659 	  && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
660 					MEM_ADDR_SPACE (XEXP (x, 0)))
661 	  && !MEM_VOLATILE_P (XEXP (x, 0)))
662 	{
663 	  machine_mode wanted_mode = VOIDmode;
664 	  machine_mode is_mode = GET_MODE (XEXP (x, 0));
665 	  int pos = INTVAL (XEXP (x, 2));
666 
667 	  if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
668 	    {
669 	      wanted_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
670 	      if (wanted_mode == VOIDmode)
671 		wanted_mode = word_mode;
672 	    }
673 	  else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
674 	    {
675 	      wanted_mode = insn_data[targetm.code_for_extv].operand[1].mode;
676 	      if (wanted_mode == VOIDmode)
677 		wanted_mode = word_mode;
678 	    }
679 
680 	  /* If we have a narrower mode, we can do something.  */
681 	  if (wanted_mode != VOIDmode
682 	      && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
683 	    {
684 	      int offset = pos / BITS_PER_UNIT;
685 	      rtx newmem;
686 
687 	      /* If the bytes and bits are counted differently, we
688 	         must adjust the offset.  */
689 	      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
690 		offset =
691 		  (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
692 		   offset);
693 
694 	      gcc_assert (GET_MODE_PRECISION (wanted_mode)
695 			  == GET_MODE_BITSIZE (wanted_mode));
696 	      pos %= GET_MODE_BITSIZE (wanted_mode);
697 
698 	      newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
699 
700 	      validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
701 	      validate_change (object, &XEXP (x, 0), newmem, 1);
702 	    }
703 	}
704 
705       break;
706 
707     default:
708       break;
709     }
710 }
711 
712 /* Replace every occurrence of FROM in X with TO.  Mark each change with
713    validate_change passing OBJECT.  */
714 
715 static void
validate_replace_rtx_1(rtx * loc,rtx from,rtx to,rtx_insn * object,bool simplify)716 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
717                         bool simplify)
718 {
719   int i, j;
720   const char *fmt;
721   rtx x = *loc;
722   enum rtx_code code;
723   machine_mode op0_mode = VOIDmode;
724   int prev_changes = num_changes;
725 
726   if (!x)
727     return;
728 
729   code = GET_CODE (x);
730   fmt = GET_RTX_FORMAT (code);
731   if (fmt[0] == 'e')
732     op0_mode = GET_MODE (XEXP (x, 0));
733 
734   /* X matches FROM if it is the same rtx or they are both referring to the
735      same register in the same mode.  Avoid calling rtx_equal_p unless the
736      operands look similar.  */
737 
738   if (x == from
739       || (REG_P (x) && REG_P (from)
740 	  && GET_MODE (x) == GET_MODE (from)
741 	  && REGNO (x) == REGNO (from))
742       || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
743 	  && rtx_equal_p (x, from)))
744     {
745       validate_unshare_change (object, loc, to, 1);
746       return;
747     }
748 
749   /* Call ourself recursively to perform the replacements.
750      We must not replace inside already replaced expression, otherwise we
751      get infinite recursion for replacements like (reg X)->(subreg (reg X))
752      so we must special case shared ASM_OPERANDS.  */
753 
754   if (GET_CODE (x) == PARALLEL)
755     {
756       for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
757 	{
758 	  if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
759 	      && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
760 	    {
761 	      /* Verify that operands are really shared.  */
762 	      gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
763 			  == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
764 							      (x, 0, j))));
765 	      validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
766 				      from, to, object, simplify);
767 	    }
768 	  else
769 	    validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
770                                     simplify);
771 	}
772     }
773   else
774     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
775       {
776 	if (fmt[i] == 'e')
777 	  validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
778 	else if (fmt[i] == 'E')
779 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
780 	    validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
781                                     simplify);
782       }
783 
784   /* If we didn't substitute, there is nothing more to do.  */
785   if (num_changes == prev_changes)
786     return;
787 
788   /* ??? The regmove is no more, so is this aberration still necessary?  */
789   /* Allow substituted expression to have different mode.  This is used by
790      regmove to change mode of pseudo register.  */
791   if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
792     op0_mode = GET_MODE (XEXP (x, 0));
793 
794   /* Do changes needed to keep rtx consistent.  Don't do any other
795      simplifications, as it is not our job.  */
796   if (simplify)
797     simplify_while_replacing (loc, to, object, op0_mode);
798 }
799 
800 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
801    with TO.  After all changes have been made, validate by seeing
802    if INSN is still valid.  */
803 
804 int
validate_replace_rtx_subexp(rtx from,rtx to,rtx_insn * insn,rtx * loc)805 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
806 {
807   validate_replace_rtx_1 (loc, from, to, insn, true);
808   return apply_change_group ();
809 }
810 
811 /* Try replacing every occurrence of FROM in INSN with TO.  After all
812    changes have been made, validate by seeing if INSN is still valid.  */
813 
814 int
validate_replace_rtx(rtx from,rtx to,rtx_insn * insn)815 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
816 {
817   validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
818   return apply_change_group ();
819 }
820 
821 /* Try replacing every occurrence of FROM in WHERE with TO.  Assume that WHERE
822    is a part of INSN.  After all changes have been made, validate by seeing if
823    INSN is still valid.
824    validate_replace_rtx (from, to, insn) is equivalent to
825    validate_replace_rtx_part (from, to, &PATTERN (insn), insn).  */
826 
827 int
validate_replace_rtx_part(rtx from,rtx to,rtx * where,rtx_insn * insn)828 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
829 {
830   validate_replace_rtx_1 (where, from, to, insn, true);
831   return apply_change_group ();
832 }
833 
834 /* Same as above, but do not simplify rtx afterwards.  */
835 int
validate_replace_rtx_part_nosimplify(rtx from,rtx to,rtx * where,rtx_insn * insn)836 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
837 				      rtx_insn *insn)
838 {
839   validate_replace_rtx_1 (where, from, to, insn, false);
840   return apply_change_group ();
841 
842 }
843 
844 /* Try replacing every occurrence of FROM in INSN with TO.  This also
845    will replace in REG_EQUAL and REG_EQUIV notes.  */
846 
847 void
validate_replace_rtx_group(rtx from,rtx to,rtx_insn * insn)848 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
849 {
850   rtx note;
851   validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
852   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
853     if (REG_NOTE_KIND (note) == REG_EQUAL
854 	|| REG_NOTE_KIND (note) == REG_EQUIV)
855       validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
856 }
857 
858 /* Function called by note_uses to replace used subexpressions.  */
859 struct validate_replace_src_data
860 {
861   rtx from;			/* Old RTX */
862   rtx to;			/* New RTX */
863   rtx_insn *insn;			/* Insn in which substitution is occurring.  */
864 };
865 
866 static void
validate_replace_src_1(rtx * x,void * data)867 validate_replace_src_1 (rtx *x, void *data)
868 {
869   struct validate_replace_src_data *d
870     = (struct validate_replace_src_data *) data;
871 
872   validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
873 }
874 
875 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
876    SET_DESTs.  */
877 
878 void
validate_replace_src_group(rtx from,rtx to,rtx_insn * insn)879 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
880 {
881   struct validate_replace_src_data d;
882 
883   d.from = from;
884   d.to = to;
885   d.insn = insn;
886   note_uses (&PATTERN (insn), validate_replace_src_1, &d);
887 }
888 
889 /* Try simplify INSN.
890    Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
891    pattern and return true if something was simplified.  */
892 
893 bool
validate_simplify_insn(rtx_insn * insn)894 validate_simplify_insn (rtx_insn *insn)
895 {
896   int i;
897   rtx pat = NULL;
898   rtx newpat = NULL;
899 
900   pat = PATTERN (insn);
901 
902   if (GET_CODE (pat) == SET)
903     {
904       newpat = simplify_rtx (SET_SRC (pat));
905       if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
906 	validate_change (insn, &SET_SRC (pat), newpat, 1);
907       newpat = simplify_rtx (SET_DEST (pat));
908       if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
909 	validate_change (insn, &SET_DEST (pat), newpat, 1);
910     }
911   else if (GET_CODE (pat) == PARALLEL)
912     for (i = 0; i < XVECLEN (pat, 0); i++)
913       {
914 	rtx s = XVECEXP (pat, 0, i);
915 
916 	if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
917 	  {
918 	    newpat = simplify_rtx (SET_SRC (s));
919 	    if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
920 	      validate_change (insn, &SET_SRC (s), newpat, 1);
921 	    newpat = simplify_rtx (SET_DEST (s));
922 	    if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
923 	      validate_change (insn, &SET_DEST (s), newpat, 1);
924 	  }
925       }
926   return ((num_changes_pending () > 0) && (apply_change_group () > 0));
927 }
928 
929 /* Return 1 if the insn using CC0 set by INSN does not contain
930    any ordered tests applied to the condition codes.
931    EQ and NE tests do not count.  */
932 
933 int
next_insn_tests_no_inequality(rtx_insn * insn)934 next_insn_tests_no_inequality (rtx_insn *insn)
935 {
936   rtx_insn *next = next_cc0_user (insn);
937 
938   /* If there is no next insn, we have to take the conservative choice.  */
939   if (next == 0)
940     return 0;
941 
942   return (INSN_P (next)
943 	  && ! inequality_comparisons_p (PATTERN (next)));
944 }
945 
946 /* Return 1 if OP is a valid general operand for machine mode MODE.
947    This is either a register reference, a memory reference,
948    or a constant.  In the case of a memory reference, the address
949    is checked for general validity for the target machine.
950 
951    Register and memory references must have mode MODE in order to be valid,
952    but some constants have no machine mode and are valid for any mode.
953 
954    If MODE is VOIDmode, OP is checked for validity for whatever mode
955    it has.
956 
957    The main use of this function is as a predicate in match_operand
958    expressions in the machine description.  */
959 
960 int
general_operand(rtx op,machine_mode mode)961 general_operand (rtx op, machine_mode mode)
962 {
963   enum rtx_code code = GET_CODE (op);
964 
965   if (mode == VOIDmode)
966     mode = GET_MODE (op);
967 
968   /* Don't accept CONST_INT or anything similar
969      if the caller wants something floating.  */
970   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
971       && GET_MODE_CLASS (mode) != MODE_INT
972       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
973     return 0;
974 
975   if (CONST_INT_P (op)
976       && mode != VOIDmode
977       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
978     return 0;
979 
980   if (CONSTANT_P (op))
981     return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
982 	     || mode == VOIDmode)
983 	    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
984 	    && targetm.legitimate_constant_p (mode == VOIDmode
985 					      ? GET_MODE (op)
986 					      : mode, op));
987 
988   /* Except for certain constants with VOIDmode, already checked for,
989      OP's mode must match MODE if MODE specifies a mode.  */
990 
991   if (GET_MODE (op) != mode)
992     return 0;
993 
994   if (code == SUBREG)
995     {
996       rtx sub = SUBREG_REG (op);
997 
998 #ifdef INSN_SCHEDULING
999       /* On machines that have insn scheduling, we want all memory
1000 	 reference to be explicit, so outlaw paradoxical SUBREGs.
1001 	 However, we must allow them after reload so that they can
1002 	 get cleaned up by cleanup_subreg_operands.  */
1003       if (!reload_completed && MEM_P (sub)
1004 	  && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1005 	return 0;
1006 #endif
1007       /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1008          may result in incorrect reference.  We should simplify all valid
1009          subregs of MEM anyway.  But allow this after reload because we
1010 	 might be called from cleanup_subreg_operands.
1011 
1012 	 ??? This is a kludge.  */
1013       if (!reload_completed && SUBREG_BYTE (op) != 0
1014 	  && MEM_P (sub))
1015 	return 0;
1016 
1017 #ifdef CANNOT_CHANGE_MODE_CLASS
1018       if (REG_P (sub)
1019 	  && REGNO (sub) < FIRST_PSEUDO_REGISTER
1020 	  && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1021 	  && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1022 	  && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1023 	  /* LRA can generate some invalid SUBREGS just for matched
1024 	     operand reload presentation.  LRA needs to treat them as
1025 	     valid.  */
1026 	  && ! LRA_SUBREG_P (op))
1027 	return 0;
1028 #endif
1029 
1030       /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
1031 	 create such rtl, and we must reject it.  */
1032       if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1033 	  /* LRA can use subreg to store a floating point value in an
1034 	     integer mode.  Although the floating point and the
1035 	     integer modes need the same number of hard registers, the
1036 	     size of floating point mode can be less than the integer
1037 	     mode.  */
1038 	  && ! lra_in_progress
1039 	  && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1040 	return 0;
1041 
1042       op = sub;
1043       code = GET_CODE (op);
1044     }
1045 
1046   if (code == REG)
1047     return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1048 	    || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1049 
1050   if (code == MEM)
1051     {
1052       rtx y = XEXP (op, 0);
1053 
1054       if (! volatile_ok && MEM_VOLATILE_P (op))
1055 	return 0;
1056 
1057       /* Use the mem's mode, since it will be reloaded thus.  LRA can
1058 	 generate move insn with invalid addresses which is made valid
1059 	 and efficiently calculated by LRA through further numerous
1060 	 transformations.  */
1061       if (lra_in_progress
1062 	  || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1063 	return 1;
1064     }
1065 
1066   return 0;
1067 }
1068 
1069 /* Return 1 if OP is a valid memory address for a memory reference
1070    of mode MODE.
1071 
1072    The main use of this function is as a predicate in match_operand
1073    expressions in the machine description.  */
1074 
1075 int
address_operand(rtx op,machine_mode mode)1076 address_operand (rtx op, machine_mode mode)
1077 {
1078   return memory_address_p (mode, op);
1079 }
1080 
1081 /* Return 1 if OP is a register reference of mode MODE.
1082    If MODE is VOIDmode, accept a register in any mode.
1083 
1084    The main use of this function is as a predicate in match_operand
1085    expressions in the machine description.  */
1086 
1087 int
register_operand(rtx op,machine_mode mode)1088 register_operand (rtx op, machine_mode mode)
1089 {
1090   if (GET_CODE (op) == SUBREG)
1091     {
1092       rtx sub = SUBREG_REG (op);
1093 
1094       /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1095 	 because it is guaranteed to be reloaded into one.
1096 	 Just make sure the MEM is valid in itself.
1097 	 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1098 	 but currently it does result from (SUBREG (REG)...) where the
1099 	 reg went on the stack.)  */
1100       if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1101 	return 0;
1102     }
1103   else if (!REG_P (op))
1104     return 0;
1105   return general_operand (op, mode);
1106 }
1107 
1108 /* Return 1 for a register in Pmode; ignore the tested mode.  */
1109 
1110 int
pmode_register_operand(rtx op,machine_mode mode ATTRIBUTE_UNUSED)1111 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1112 {
1113   return register_operand (op, Pmode);
1114 }
1115 
1116 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1117    or a hard register.  */
1118 
1119 int
scratch_operand(rtx op,machine_mode mode)1120 scratch_operand (rtx op, machine_mode mode)
1121 {
1122   if (GET_MODE (op) != mode && mode != VOIDmode)
1123     return 0;
1124 
1125   return (GET_CODE (op) == SCRATCH
1126 	  || (REG_P (op)
1127 	      && (lra_in_progress
1128 		  || (REGNO (op) < FIRST_PSEUDO_REGISTER
1129 		      && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1130 }
1131 
1132 /* Return 1 if OP is a valid immediate operand for mode MODE.
1133 
1134    The main use of this function is as a predicate in match_operand
1135    expressions in the machine description.  */
1136 
1137 int
immediate_operand(rtx op,machine_mode mode)1138 immediate_operand (rtx op, machine_mode mode)
1139 {
1140   /* Don't accept CONST_INT or anything similar
1141      if the caller wants something floating.  */
1142   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1143       && GET_MODE_CLASS (mode) != MODE_INT
1144       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1145     return 0;
1146 
1147   if (CONST_INT_P (op)
1148       && mode != VOIDmode
1149       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1150     return 0;
1151 
1152   return (CONSTANT_P (op)
1153 	  && (GET_MODE (op) == mode || mode == VOIDmode
1154 	      || GET_MODE (op) == VOIDmode)
1155 	  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1156 	  && targetm.legitimate_constant_p (mode == VOIDmode
1157 					    ? GET_MODE (op)
1158 					    : mode, op));
1159 }
1160 
1161 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE.  */
1162 
1163 int
const_int_operand(rtx op,machine_mode mode)1164 const_int_operand (rtx op, machine_mode mode)
1165 {
1166   if (!CONST_INT_P (op))
1167     return 0;
1168 
1169   if (mode != VOIDmode
1170       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1171     return 0;
1172 
1173   return 1;
1174 }
1175 
1176 #if TARGET_SUPPORTS_WIDE_INT
1177 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1178    of mode MODE.  */
1179 int
const_scalar_int_operand(rtx op,machine_mode mode)1180 const_scalar_int_operand (rtx op, machine_mode mode)
1181 {
1182   if (!CONST_SCALAR_INT_P (op))
1183     return 0;
1184 
1185   if (CONST_INT_P (op))
1186     return const_int_operand (op, mode);
1187 
1188   if (mode != VOIDmode)
1189     {
1190       int prec = GET_MODE_PRECISION (mode);
1191       int bitsize = GET_MODE_BITSIZE (mode);
1192 
1193       if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1194 	return 0;
1195 
1196       if (prec == bitsize)
1197 	return 1;
1198       else
1199 	{
1200 	  /* Multiword partial int.  */
1201 	  HOST_WIDE_INT x
1202 	    = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1203 	  return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1204 	}
1205     }
1206   return 1;
1207 }
1208 
1209 /* Returns 1 if OP is an operand that is a constant integer or constant
1210    floating-point number of MODE.  */
1211 
1212 int
const_double_operand(rtx op,machine_mode mode)1213 const_double_operand (rtx op, machine_mode mode)
1214 {
1215   return (GET_CODE (op) == CONST_DOUBLE)
1216 	  && (GET_MODE (op) == mode || mode == VOIDmode);
1217 }
1218 #else
1219 /* Returns 1 if OP is an operand that is a constant integer or constant
1220    floating-point number of MODE.  */
1221 
1222 int
const_double_operand(rtx op,machine_mode mode)1223 const_double_operand (rtx op, machine_mode mode)
1224 {
1225   /* Don't accept CONST_INT or anything similar
1226      if the caller wants something floating.  */
1227   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1228       && GET_MODE_CLASS (mode) != MODE_INT
1229       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1230     return 0;
1231 
1232   return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1233 	  && (mode == VOIDmode || GET_MODE (op) == mode
1234 	      || GET_MODE (op) == VOIDmode));
1235 }
1236 #endif
1237 /* Return 1 if OP is a general operand that is not an immediate
1238    operand of mode MODE.  */
1239 
1240 int
nonimmediate_operand(rtx op,machine_mode mode)1241 nonimmediate_operand (rtx op, machine_mode mode)
1242 {
1243   return (general_operand (op, mode) && ! CONSTANT_P (op));
1244 }
1245 
1246 /* Return 1 if OP is a register reference or immediate value of mode MODE.  */
1247 
1248 int
nonmemory_operand(rtx op,machine_mode mode)1249 nonmemory_operand (rtx op, machine_mode mode)
1250 {
1251   if (CONSTANT_P (op))
1252     return immediate_operand (op, mode);
1253   return register_operand (op, mode);
1254 }
1255 
1256 /* Return 1 if OP is a valid operand that stands for pushing a
1257    value of mode MODE onto the stack.
1258 
1259    The main use of this function is as a predicate in match_operand
1260    expressions in the machine description.  */
1261 
1262 int
push_operand(rtx op,machine_mode mode)1263 push_operand (rtx op, machine_mode mode)
1264 {
1265   unsigned int rounded_size = GET_MODE_SIZE (mode);
1266 
1267 #ifdef PUSH_ROUNDING
1268   rounded_size = PUSH_ROUNDING (rounded_size);
1269 #endif
1270 
1271   if (!MEM_P (op))
1272     return 0;
1273 
1274   if (mode != VOIDmode && GET_MODE (op) != mode)
1275     return 0;
1276 
1277   op = XEXP (op, 0);
1278 
1279   if (rounded_size == GET_MODE_SIZE (mode))
1280     {
1281       if (GET_CODE (op) != STACK_PUSH_CODE)
1282 	return 0;
1283     }
1284   else
1285     {
1286       if (GET_CODE (op) != PRE_MODIFY
1287 	  || GET_CODE (XEXP (op, 1)) != PLUS
1288 	  || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1289 	  || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1290 	  || INTVAL (XEXP (XEXP (op, 1), 1))
1291 	     != ((STACK_GROWS_DOWNWARD ? -1 : 1) * (int) rounded_size))
1292 	return 0;
1293     }
1294 
1295   return XEXP (op, 0) == stack_pointer_rtx;
1296 }
1297 
1298 /* Return 1 if OP is a valid operand that stands for popping a
1299    value of mode MODE off the stack.
1300 
1301    The main use of this function is as a predicate in match_operand
1302    expressions in the machine description.  */
1303 
1304 int
pop_operand(rtx op,machine_mode mode)1305 pop_operand (rtx op, machine_mode mode)
1306 {
1307   if (!MEM_P (op))
1308     return 0;
1309 
1310   if (mode != VOIDmode && GET_MODE (op) != mode)
1311     return 0;
1312 
1313   op = XEXP (op, 0);
1314 
1315   if (GET_CODE (op) != STACK_POP_CODE)
1316     return 0;
1317 
1318   return XEXP (op, 0) == stack_pointer_rtx;
1319 }
1320 
1321 /* Return 1 if ADDR is a valid memory address
1322    for mode MODE in address space AS.  */
1323 
1324 int
memory_address_addr_space_p(machine_mode mode ATTRIBUTE_UNUSED,rtx addr,addr_space_t as)1325 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1326 			     rtx addr, addr_space_t as)
1327 {
1328 #ifdef GO_IF_LEGITIMATE_ADDRESS
1329   gcc_assert (ADDR_SPACE_GENERIC_P (as));
1330   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1331   return 0;
1332 
1333  win:
1334   return 1;
1335 #else
1336   return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1337 #endif
1338 }
1339 
1340 /* Return 1 if OP is a valid memory reference with mode MODE,
1341    including a valid address.
1342 
1343    The main use of this function is as a predicate in match_operand
1344    expressions in the machine description.  */
1345 
1346 int
memory_operand(rtx op,machine_mode mode)1347 memory_operand (rtx op, machine_mode mode)
1348 {
1349   rtx inner;
1350 
1351   if (! reload_completed)
1352     /* Note that no SUBREG is a memory operand before end of reload pass,
1353        because (SUBREG (MEM...)) forces reloading into a register.  */
1354     return MEM_P (op) && general_operand (op, mode);
1355 
1356   if (mode != VOIDmode && GET_MODE (op) != mode)
1357     return 0;
1358 
1359   inner = op;
1360   if (GET_CODE (inner) == SUBREG)
1361     inner = SUBREG_REG (inner);
1362 
1363   return (MEM_P (inner) && general_operand (op, mode));
1364 }
1365 
1366 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1367    that is, a memory reference whose address is a general_operand.  */
1368 
1369 int
indirect_operand(rtx op,machine_mode mode)1370 indirect_operand (rtx op, machine_mode mode)
1371 {
1372   /* Before reload, a SUBREG isn't in memory (see memory_operand, above).  */
1373   if (! reload_completed
1374       && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1375     {
1376       int offset = SUBREG_BYTE (op);
1377       rtx inner = SUBREG_REG (op);
1378 
1379       if (mode != VOIDmode && GET_MODE (op) != mode)
1380 	return 0;
1381 
1382       /* The only way that we can have a general_operand as the resulting
1383 	 address is if OFFSET is zero and the address already is an operand
1384 	 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1385 	 operand.  */
1386 
1387       return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1388 	      || (GET_CODE (XEXP (inner, 0)) == PLUS
1389 		  && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1390 		  && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1391 		  && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1392     }
1393 
1394   return (MEM_P (op)
1395 	  && memory_operand (op, mode)
1396 	  && general_operand (XEXP (op, 0), Pmode));
1397 }
1398 
1399 /* Return 1 if this is an ordered comparison operator (not including
1400    ORDERED and UNORDERED).  */
1401 
1402 int
ordered_comparison_operator(rtx op,machine_mode mode)1403 ordered_comparison_operator (rtx op, machine_mode mode)
1404 {
1405   if (mode != VOIDmode && GET_MODE (op) != mode)
1406     return false;
1407   switch (GET_CODE (op))
1408     {
1409     case EQ:
1410     case NE:
1411     case LT:
1412     case LTU:
1413     case LE:
1414     case LEU:
1415     case GT:
1416     case GTU:
1417     case GE:
1418     case GEU:
1419       return true;
1420     default:
1421       return false;
1422     }
1423 }
1424 
1425 /* Return 1 if this is a comparison operator.  This allows the use of
1426    MATCH_OPERATOR to recognize all the branch insns.  */
1427 
1428 int
comparison_operator(rtx op,machine_mode mode)1429 comparison_operator (rtx op, machine_mode mode)
1430 {
1431   return ((mode == VOIDmode || GET_MODE (op) == mode)
1432 	  && COMPARISON_P (op));
1433 }
1434 
1435 /* If BODY is an insn body that uses ASM_OPERANDS, return it.  */
1436 
1437 rtx
extract_asm_operands(rtx body)1438 extract_asm_operands (rtx body)
1439 {
1440   rtx tmp;
1441   switch (GET_CODE (body))
1442     {
1443     case ASM_OPERANDS:
1444       return body;
1445 
1446     case SET:
1447       /* Single output operand: BODY is (set OUTPUT (asm_operands ...)).  */
1448       tmp = SET_SRC (body);
1449       if (GET_CODE (tmp) == ASM_OPERANDS)
1450 	return tmp;
1451       break;
1452 
1453     case PARALLEL:
1454       tmp = XVECEXP (body, 0, 0);
1455       if (GET_CODE (tmp) == ASM_OPERANDS)
1456 	return tmp;
1457       if (GET_CODE (tmp) == SET)
1458 	{
1459 	  tmp = SET_SRC (tmp);
1460 	  if (GET_CODE (tmp) == ASM_OPERANDS)
1461 	    return tmp;
1462 	}
1463       break;
1464 
1465     default:
1466       break;
1467     }
1468   return NULL;
1469 }
1470 
1471 /* If BODY is an insn body that uses ASM_OPERANDS,
1472    return the number of operands (both input and output) in the insn.
1473    Otherwise return -1.  */
1474 
1475 int
asm_noperands(const_rtx body)1476 asm_noperands (const_rtx body)
1477 {
1478   rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1479   int n_sets = 0;
1480 
1481   if (asm_op == NULL)
1482     return -1;
1483 
1484   if (GET_CODE (body) == SET)
1485     n_sets = 1;
1486   else if (GET_CODE (body) == PARALLEL)
1487     {
1488       int i;
1489       if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1490 	{
1491 	  /* Multiple output operands, or 1 output plus some clobbers:
1492 	     body is
1493 	     [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...].  */
1494 	  /* Count backwards through CLOBBERs to determine number of SETs.  */
1495 	  for (i = XVECLEN (body, 0); i > 0; i--)
1496 	    {
1497 	      if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1498 		break;
1499 	      if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1500 		return -1;
1501 	    }
1502 
1503 	  /* N_SETS is now number of output operands.  */
1504 	  n_sets = i;
1505 
1506 	  /* Verify that all the SETs we have
1507 	     came from a single original asm_operands insn
1508 	     (so that invalid combinations are blocked).  */
1509 	  for (i = 0; i < n_sets; i++)
1510 	    {
1511 	      rtx elt = XVECEXP (body, 0, i);
1512 	      if (GET_CODE (elt) != SET)
1513 		return -1;
1514 	      if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1515 		return -1;
1516 	      /* If these ASM_OPERANDS rtx's came from different original insns
1517 	         then they aren't allowed together.  */
1518 	      if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1519 		  != ASM_OPERANDS_INPUT_VEC (asm_op))
1520 		return -1;
1521 	    }
1522 	}
1523       else
1524 	{
1525 	  /* 0 outputs, but some clobbers:
1526 	     body is [(asm_operands ...) (clobber (reg ...))...].  */
1527 	  /* Make sure all the other parallel things really are clobbers.  */
1528 	  for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1529 	    if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1530 	      return -1;
1531 	}
1532     }
1533 
1534   return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1535 	  + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1536 }
1537 
1538 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1539    copy its operands (both input and output) into the vector OPERANDS,
1540    the locations of the operands within the insn into the vector OPERAND_LOCS,
1541    and the constraints for the operands into CONSTRAINTS.
1542    Write the modes of the operands into MODES.
1543    Return the assembler-template.
1544 
1545    If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1546    we don't store that info.  */
1547 
1548 const char *
decode_asm_operands(rtx body,rtx * operands,rtx ** operand_locs,const char ** constraints,machine_mode * modes,location_t * loc)1549 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1550 		     const char **constraints, machine_mode *modes,
1551 		     location_t *loc)
1552 {
1553   int nbase = 0, n, i;
1554   rtx asmop;
1555 
1556   switch (GET_CODE (body))
1557     {
1558     case ASM_OPERANDS:
1559       /* Zero output asm: BODY is (asm_operands ...).  */
1560       asmop = body;
1561       break;
1562 
1563     case SET:
1564       /* Single output asm: BODY is (set OUTPUT (asm_operands ...)).  */
1565       asmop = SET_SRC (body);
1566 
1567       /* The output is in the SET.
1568 	 Its constraint is in the ASM_OPERANDS itself.  */
1569       if (operands)
1570 	operands[0] = SET_DEST (body);
1571       if (operand_locs)
1572 	operand_locs[0] = &SET_DEST (body);
1573       if (constraints)
1574 	constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1575       if (modes)
1576 	modes[0] = GET_MODE (SET_DEST (body));
1577       nbase = 1;
1578       break;
1579 
1580     case PARALLEL:
1581       {
1582 	int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs.  */
1583 
1584 	asmop = XVECEXP (body, 0, 0);
1585 	if (GET_CODE (asmop) == SET)
1586 	  {
1587 	    asmop = SET_SRC (asmop);
1588 
1589 	    /* At least one output, plus some CLOBBERs.  The outputs are in
1590 	       the SETs.  Their constraints are in the ASM_OPERANDS itself.  */
1591 	    for (i = 0; i < nparallel; i++)
1592 	      {
1593 		if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1594 		  break;		/* Past last SET */
1595 		if (operands)
1596 		  operands[i] = SET_DEST (XVECEXP (body, 0, i));
1597 		if (operand_locs)
1598 		  operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1599 		if (constraints)
1600 		  constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1601 		if (modes)
1602 		  modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1603 	      }
1604 	    nbase = i;
1605 	  }
1606 	break;
1607       }
1608 
1609     default:
1610       gcc_unreachable ();
1611     }
1612 
1613   n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1614   for (i = 0; i < n; i++)
1615     {
1616       if (operand_locs)
1617 	operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1618       if (operands)
1619 	operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1620       if (constraints)
1621 	constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1622       if (modes)
1623 	modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1624     }
1625   nbase += n;
1626 
1627   n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1628   for (i = 0; i < n; i++)
1629     {
1630       if (operand_locs)
1631 	operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1632       if (operands)
1633 	operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1634       if (constraints)
1635 	constraints[nbase + i] = "";
1636       if (modes)
1637 	modes[nbase + i] = Pmode;
1638     }
1639 
1640   if (loc)
1641     *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1642 
1643   return ASM_OPERANDS_TEMPLATE (asmop);
1644 }
1645 
1646 /* Parse inline assembly string STRING and determine which operands are
1647    referenced by % markers.  For the first NOPERANDS operands, set USED[I]
1648    to true if operand I is referenced.
1649 
1650    This is intended to distinguish barrier-like asms such as:
1651 
1652       asm ("" : "=m" (...));
1653 
1654    from real references such as:
1655 
1656       asm ("sw\t$0, %0" : "=m" (...));  */
1657 
1658 void
get_referenced_operands(const char * string,bool * used,unsigned int noperands)1659 get_referenced_operands (const char *string, bool *used,
1660 			 unsigned int noperands)
1661 {
1662   memset (used, 0, sizeof (bool) * noperands);
1663   const char *p = string;
1664   while (*p)
1665     switch (*p)
1666       {
1667       case '%':
1668 	p += 1;
1669 	/* A letter followed by a digit indicates an operand number.  */
1670 	if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1671 	  p += 1;
1672 	if (ISDIGIT (*p))
1673 	  {
1674 	    char *endptr;
1675 	    unsigned long opnum = strtoul (p, &endptr, 10);
1676 	    if (endptr != p && opnum < noperands)
1677 	      used[opnum] = true;
1678 	    p = endptr;
1679 	  }
1680 	else
1681 	  p += 1;
1682 	break;
1683 
1684       default:
1685 	p++;
1686 	break;
1687       }
1688 }
1689 
1690 /* Check if an asm_operand matches its constraints.
1691    Return > 0 if ok, = 0 if bad, < 0 if inconclusive.  */
1692 
1693 int
asm_operand_ok(rtx op,const char * constraint,const char ** constraints)1694 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1695 {
1696   int result = 0;
1697   bool incdec_ok = false;
1698 
1699   /* Use constrain_operands after reload.  */
1700   gcc_assert (!reload_completed);
1701 
1702   /* Empty constraint string is the same as "X,...,X", i.e. X for as
1703      many alternatives as required to match the other operands.  */
1704   if (*constraint == '\0')
1705     result = 1;
1706 
1707   while (*constraint)
1708     {
1709       enum constraint_num cn;
1710       char c = *constraint;
1711       int len;
1712       switch (c)
1713 	{
1714 	case ',':
1715 	  constraint++;
1716 	  continue;
1717 
1718 	case '0': case '1': case '2': case '3': case '4':
1719 	case '5': case '6': case '7': case '8': case '9':
1720 	  /* If caller provided constraints pointer, look up
1721 	     the matching constraint.  Otherwise, our caller should have
1722 	     given us the proper matching constraint, but we can't
1723 	     actually fail the check if they didn't.  Indicate that
1724 	     results are inconclusive.  */
1725 	  if (constraints)
1726 	    {
1727 	      char *end;
1728 	      unsigned long match;
1729 
1730 	      match = strtoul (constraint, &end, 10);
1731 	      if (!result)
1732 		result = asm_operand_ok (op, constraints[match], NULL);
1733 	      constraint = (const char *) end;
1734 	    }
1735 	  else
1736 	    {
1737 	      do
1738 		constraint++;
1739 	      while (ISDIGIT (*constraint));
1740 	      if (! result)
1741 		result = -1;
1742 	    }
1743 	  continue;
1744 
1745 	  /* The rest of the compiler assumes that reloading the address
1746 	     of a MEM into a register will make it fit an 'o' constraint.
1747 	     That is, if it sees a MEM operand for an 'o' constraint,
1748 	     it assumes that (mem (base-reg)) will fit.
1749 
1750 	     That assumption fails on targets that don't have offsettable
1751 	     addresses at all.  We therefore need to treat 'o' asm
1752 	     constraints as a special case and only accept operands that
1753 	     are already offsettable, thus proving that at least one
1754 	     offsettable address exists.  */
1755 	case 'o': /* offsettable */
1756 	  if (offsettable_nonstrict_memref_p (op))
1757 	    result = 1;
1758 	  break;
1759 
1760 	case 'g':
1761 	  if (general_operand (op, VOIDmode))
1762 	    result = 1;
1763 	  break;
1764 
1765 	case '<':
1766 	case '>':
1767 	  /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1768 	     to exist, excepting those that expand_call created.  Further,
1769 	     on some machines which do not have generalized auto inc/dec,
1770 	     an inc/dec is not a memory_operand.
1771 
1772 	     Match any memory and hope things are resolved after reload.  */
1773 	  incdec_ok = true;
1774 	default:
1775 	  cn = lookup_constraint (constraint);
1776 	  switch (get_constraint_type (cn))
1777 	    {
1778 	    case CT_REGISTER:
1779 	      if (!result
1780 		  && reg_class_for_constraint (cn) != NO_REGS
1781 		  && GET_MODE (op) != BLKmode
1782 		  && register_operand (op, VOIDmode))
1783 		result = 1;
1784 	      break;
1785 
1786 	    case CT_CONST_INT:
1787 	      if (!result
1788 		  && CONST_INT_P (op)
1789 		  && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1790 		result = 1;
1791 	      break;
1792 
1793 	    case CT_MEMORY:
1794 	    case CT_SPECIAL_MEMORY:
1795 	      /* Every memory operand can be reloaded to fit.  */
1796 	      result = result || memory_operand (op, VOIDmode);
1797 	      break;
1798 
1799 	    case CT_ADDRESS:
1800 	      /* Every address operand can be reloaded to fit.  */
1801 	      result = result || address_operand (op, VOIDmode);
1802 	      break;
1803 
1804 	    case CT_FIXED_FORM:
1805 	      result = result || constraint_satisfied_p (op, cn);
1806 	      break;
1807 	    }
1808 	  break;
1809 	}
1810       len = CONSTRAINT_LEN (c, constraint);
1811       do
1812 	constraint++;
1813       while (--len && *constraint);
1814       if (len)
1815 	return 0;
1816     }
1817 
1818   /* For operands without < or > constraints reject side-effects.  */
1819   if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1820     switch (GET_CODE (XEXP (op, 0)))
1821       {
1822       case PRE_INC:
1823       case POST_INC:
1824       case PRE_DEC:
1825       case POST_DEC:
1826       case PRE_MODIFY:
1827       case POST_MODIFY:
1828 	return 0;
1829       default:
1830 	break;
1831       }
1832 
1833   return result;
1834 }
1835 
1836 /* Given an rtx *P, if it is a sum containing an integer constant term,
1837    return the location (type rtx *) of the pointer to that constant term.
1838    Otherwise, return a null pointer.  */
1839 
1840 rtx *
find_constant_term_loc(rtx * p)1841 find_constant_term_loc (rtx *p)
1842 {
1843   rtx *tem;
1844   enum rtx_code code = GET_CODE (*p);
1845 
1846   /* If *P IS such a constant term, P is its location.  */
1847 
1848   if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1849       || code == CONST)
1850     return p;
1851 
1852   /* Otherwise, if not a sum, it has no constant term.  */
1853 
1854   if (GET_CODE (*p) != PLUS)
1855     return 0;
1856 
1857   /* If one of the summands is constant, return its location.  */
1858 
1859   if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1860       && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1861     return p;
1862 
1863   /* Otherwise, check each summand for containing a constant term.  */
1864 
1865   if (XEXP (*p, 0) != 0)
1866     {
1867       tem = find_constant_term_loc (&XEXP (*p, 0));
1868       if (tem != 0)
1869 	return tem;
1870     }
1871 
1872   if (XEXP (*p, 1) != 0)
1873     {
1874       tem = find_constant_term_loc (&XEXP (*p, 1));
1875       if (tem != 0)
1876 	return tem;
1877     }
1878 
1879   return 0;
1880 }
1881 
1882 /* Return 1 if OP is a memory reference
1883    whose address contains no side effects
1884    and remains valid after the addition
1885    of a positive integer less than the
1886    size of the object being referenced.
1887 
1888    We assume that the original address is valid and do not check it.
1889 
1890    This uses strict_memory_address_p as a subroutine, so
1891    don't use it before reload.  */
1892 
1893 int
offsettable_memref_p(rtx op)1894 offsettable_memref_p (rtx op)
1895 {
1896   return ((MEM_P (op))
1897 	  && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1898 					       MEM_ADDR_SPACE (op)));
1899 }
1900 
1901 /* Similar, but don't require a strictly valid mem ref:
1902    consider pseudo-regs valid as index or base regs.  */
1903 
1904 int
offsettable_nonstrict_memref_p(rtx op)1905 offsettable_nonstrict_memref_p (rtx op)
1906 {
1907   return ((MEM_P (op))
1908 	  && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1909 					       MEM_ADDR_SPACE (op)));
1910 }
1911 
1912 /* Return 1 if Y is a memory address which contains no side effects
1913    and would remain valid for address space AS after the addition of
1914    a positive integer less than the size of that mode.
1915 
1916    We assume that the original address is valid and do not check it.
1917    We do check that it is valid for narrower modes.
1918 
1919    If STRICTP is nonzero, we require a strictly valid address,
1920    for the sake of use in reload.c.  */
1921 
1922 int
offsettable_address_addr_space_p(int strictp,machine_mode mode,rtx y,addr_space_t as)1923 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1924 				  addr_space_t as)
1925 {
1926   enum rtx_code ycode = GET_CODE (y);
1927   rtx z;
1928   rtx y1 = y;
1929   rtx *y2;
1930   int (*addressp) (machine_mode, rtx, addr_space_t) =
1931     (strictp ? strict_memory_address_addr_space_p
1932 	     : memory_address_addr_space_p);
1933   unsigned int mode_sz = GET_MODE_SIZE (mode);
1934 
1935   if (CONSTANT_ADDRESS_P (y))
1936     return 1;
1937 
1938   /* Adjusting an offsettable address involves changing to a narrower mode.
1939      Make sure that's OK.  */
1940 
1941   if (mode_dependent_address_p (y, as))
1942     return 0;
1943 
1944   machine_mode address_mode = GET_MODE (y);
1945   if (address_mode == VOIDmode)
1946     address_mode = targetm.addr_space.address_mode (as);
1947 #ifdef POINTERS_EXTEND_UNSIGNED
1948   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1949 #endif
1950 
1951   /* ??? How much offset does an offsettable BLKmode reference need?
1952      Clearly that depends on the situation in which it's being used.
1953      However, the current situation in which we test 0xffffffff is
1954      less than ideal.  Caveat user.  */
1955   if (mode_sz == 0)
1956     mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1957 
1958   /* If the expression contains a constant term,
1959      see if it remains valid when max possible offset is added.  */
1960 
1961   if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1962     {
1963       int good;
1964 
1965       y1 = *y2;
1966       *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1967       /* Use QImode because an odd displacement may be automatically invalid
1968 	 for any wider mode.  But it should be valid for a single byte.  */
1969       good = (*addressp) (QImode, y, as);
1970 
1971       /* In any case, restore old contents of memory.  */
1972       *y2 = y1;
1973       return good;
1974     }
1975 
1976   if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1977     return 0;
1978 
1979   /* The offset added here is chosen as the maximum offset that
1980      any instruction could need to add when operating on something
1981      of the specified mode.  We assume that if Y and Y+c are
1982      valid addresses then so is Y+d for all 0<d<c.  adjust_address will
1983      go inside a LO_SUM here, so we do so as well.  */
1984   if (GET_CODE (y) == LO_SUM
1985       && mode != BLKmode
1986       && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1987     z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
1988 			plus_constant (address_mode, XEXP (y, 1),
1989 				       mode_sz - 1));
1990 #ifdef POINTERS_EXTEND_UNSIGNED
1991   /* Likewise for a ZERO_EXTEND from pointer_mode.  */
1992   else if (POINTERS_EXTEND_UNSIGNED > 0
1993 	   && GET_CODE (y) == ZERO_EXTEND
1994 	   && GET_MODE (XEXP (y, 0)) == pointer_mode)
1995     z = gen_rtx_ZERO_EXTEND (address_mode,
1996 			     plus_constant (pointer_mode, XEXP (y, 0),
1997 					    mode_sz - 1));
1998 #endif
1999   else
2000     z = plus_constant (address_mode, y, mode_sz - 1);
2001 
2002   /* Use QImode because an odd displacement may be automatically invalid
2003      for any wider mode.  But it should be valid for a single byte.  */
2004   return (*addressp) (QImode, z, as);
2005 }
2006 
2007 /* Return 1 if ADDR is an address-expression whose effect depends
2008    on the mode of the memory reference it is used in.
2009 
2010    ADDRSPACE is the address space associated with the address.
2011 
2012    Autoincrement addressing is a typical example of mode-dependence
2013    because the amount of the increment depends on the mode.  */
2014 
2015 bool
mode_dependent_address_p(rtx addr,addr_space_t addrspace)2016 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2017 {
2018   /* Auto-increment addressing with anything other than post_modify
2019      or pre_modify always introduces a mode dependency.  Catch such
2020      cases now instead of deferring to the target.  */
2021   if (GET_CODE (addr) == PRE_INC
2022       || GET_CODE (addr) == POST_INC
2023       || GET_CODE (addr) == PRE_DEC
2024       || GET_CODE (addr) == POST_DEC)
2025     return true;
2026 
2027   return targetm.mode_dependent_address_p (addr, addrspace);
2028 }
2029 
2030 /* Return true if boolean attribute ATTR is supported.  */
2031 
2032 static bool
have_bool_attr(bool_attr attr)2033 have_bool_attr (bool_attr attr)
2034 {
2035   switch (attr)
2036     {
2037     case BA_ENABLED:
2038       return HAVE_ATTR_enabled;
2039     case BA_PREFERRED_FOR_SIZE:
2040       return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2041     case BA_PREFERRED_FOR_SPEED:
2042       return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2043     }
2044   gcc_unreachable ();
2045 }
2046 
2047 /* Return the value of ATTR for instruction INSN.  */
2048 
2049 static bool
get_bool_attr(rtx_insn * insn,bool_attr attr)2050 get_bool_attr (rtx_insn *insn, bool_attr attr)
2051 {
2052   switch (attr)
2053     {
2054     case BA_ENABLED:
2055       return get_attr_enabled (insn);
2056     case BA_PREFERRED_FOR_SIZE:
2057       return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2058     case BA_PREFERRED_FOR_SPEED:
2059       return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2060     }
2061   gcc_unreachable ();
2062 }
2063 
2064 /* Like get_bool_attr_mask, but don't use the cache.  */
2065 
2066 static alternative_mask
get_bool_attr_mask_uncached(rtx_insn * insn,bool_attr attr)2067 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2068 {
2069   /* Temporarily install enough information for get_attr_<foo> to assume
2070      that the insn operands are already cached.  As above, the attribute
2071      mustn't depend on the values of operands, so we don't provide their
2072      real values here.  */
2073   rtx_insn *old_insn = recog_data.insn;
2074   int old_alternative = which_alternative;
2075 
2076   recog_data.insn = insn;
2077   alternative_mask mask = ALL_ALTERNATIVES;
2078   int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2079   for (int i = 0; i < n_alternatives; i++)
2080     {
2081       which_alternative = i;
2082       if (!get_bool_attr (insn, attr))
2083 	mask &= ~ALTERNATIVE_BIT (i);
2084     }
2085 
2086   recog_data.insn = old_insn;
2087   which_alternative = old_alternative;
2088   return mask;
2089 }
2090 
2091 /* Return the mask of operand alternatives that are allowed for INSN
2092    by boolean attribute ATTR.  This mask depends only on INSN and on
2093    the current target; it does not depend on things like the values of
2094    operands.  */
2095 
2096 static alternative_mask
get_bool_attr_mask(rtx_insn * insn,bool_attr attr)2097 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2098 {
2099   /* Quick exit for asms and for targets that don't use these attributes.  */
2100   int code = INSN_CODE (insn);
2101   if (code < 0 || !have_bool_attr (attr))
2102     return ALL_ALTERNATIVES;
2103 
2104   /* Calling get_attr_<foo> can be expensive, so cache the mask
2105      for speed.  */
2106   if (!this_target_recog->x_bool_attr_masks[code][attr])
2107     this_target_recog->x_bool_attr_masks[code][attr]
2108       = get_bool_attr_mask_uncached (insn, attr);
2109   return this_target_recog->x_bool_attr_masks[code][attr];
2110 }
2111 
2112 /* Return the set of alternatives of INSN that are allowed by the current
2113    target.  */
2114 
2115 alternative_mask
get_enabled_alternatives(rtx_insn * insn)2116 get_enabled_alternatives (rtx_insn *insn)
2117 {
2118   return get_bool_attr_mask (insn, BA_ENABLED);
2119 }
2120 
2121 /* Return the set of alternatives of INSN that are allowed by the current
2122    target and are preferred for the current size/speed optimization
2123    choice.  */
2124 
2125 alternative_mask
get_preferred_alternatives(rtx_insn * insn)2126 get_preferred_alternatives (rtx_insn *insn)
2127 {
2128   if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2129     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2130   else
2131     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2132 }
2133 
2134 /* Return the set of alternatives of INSN that are allowed by the current
2135    target and are preferred for the size/speed optimization choice
2136    associated with BB.  Passing a separate BB is useful if INSN has not
2137    been emitted yet or if we are considering moving it to a different
2138    block.  */
2139 
2140 alternative_mask
get_preferred_alternatives(rtx_insn * insn,basic_block bb)2141 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2142 {
2143   if (optimize_bb_for_speed_p (bb))
2144     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2145   else
2146     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2147 }
2148 
2149 /* Assert that the cached boolean attributes for INSN are still accurate.
2150    The backend is required to define these attributes in a way that only
2151    depends on the current target (rather than operands, compiler phase,
2152    etc.).  */
2153 
2154 bool
check_bool_attrs(rtx_insn * insn)2155 check_bool_attrs (rtx_insn *insn)
2156 {
2157   int code = INSN_CODE (insn);
2158   if (code >= 0)
2159     for (int i = 0; i <= BA_LAST; ++i)
2160       {
2161 	enum bool_attr attr = (enum bool_attr) i;
2162 	if (this_target_recog->x_bool_attr_masks[code][attr])
2163 	  gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2164 		      == get_bool_attr_mask_uncached (insn, attr));
2165       }
2166   return true;
2167 }
2168 
2169 /* Like extract_insn, but save insn extracted and don't extract again, when
2170    called again for the same insn expecting that recog_data still contain the
2171    valid information.  This is used primary by gen_attr infrastructure that
2172    often does extract insn again and again.  */
2173 void
extract_insn_cached(rtx_insn * insn)2174 extract_insn_cached (rtx_insn *insn)
2175 {
2176   if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2177     return;
2178   extract_insn (insn);
2179   recog_data.insn = insn;
2180 }
2181 
2182 /* Do uncached extract_insn, constrain_operands and complain about failures.
2183    This should be used when extracting a pre-existing constrained instruction
2184    if the caller wants to know which alternative was chosen.  */
2185 void
extract_constrain_insn(rtx_insn * insn)2186 extract_constrain_insn (rtx_insn *insn)
2187 {
2188   extract_insn (insn);
2189   if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2190     fatal_insn_not_found (insn);
2191 }
2192 
2193 /* Do cached extract_insn, constrain_operands and complain about failures.
2194    Used by insn_attrtab.  */
2195 void
extract_constrain_insn_cached(rtx_insn * insn)2196 extract_constrain_insn_cached (rtx_insn *insn)
2197 {
2198   extract_insn_cached (insn);
2199   if (which_alternative == -1
2200       && !constrain_operands (reload_completed,
2201 			      get_enabled_alternatives (insn)))
2202     fatal_insn_not_found (insn);
2203 }
2204 
2205 /* Do cached constrain_operands on INSN and complain about failures.  */
2206 int
constrain_operands_cached(rtx_insn * insn,int strict)2207 constrain_operands_cached (rtx_insn *insn, int strict)
2208 {
2209   if (which_alternative == -1)
2210     return constrain_operands (strict, get_enabled_alternatives (insn));
2211   else
2212     return 1;
2213 }
2214 
2215 /* Analyze INSN and fill in recog_data.  */
2216 
2217 void
extract_insn(rtx_insn * insn)2218 extract_insn (rtx_insn *insn)
2219 {
2220   int i;
2221   int icode;
2222   int noperands;
2223   rtx body = PATTERN (insn);
2224 
2225   recog_data.n_operands = 0;
2226   recog_data.n_alternatives = 0;
2227   recog_data.n_dups = 0;
2228   recog_data.is_asm = false;
2229 
2230   switch (GET_CODE (body))
2231     {
2232     case USE:
2233     case CLOBBER:
2234     case ASM_INPUT:
2235     case ADDR_VEC:
2236     case ADDR_DIFF_VEC:
2237     case VAR_LOCATION:
2238       return;
2239 
2240     case SET:
2241       if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2242 	goto asm_insn;
2243       else
2244 	goto normal_insn;
2245     case PARALLEL:
2246       if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2247 	   && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2248 	  || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2249 	goto asm_insn;
2250       else
2251 	goto normal_insn;
2252     case ASM_OPERANDS:
2253     asm_insn:
2254       recog_data.n_operands = noperands = asm_noperands (body);
2255       if (noperands >= 0)
2256 	{
2257 	  /* This insn is an `asm' with operands.  */
2258 
2259 	  /* expand_asm_operands makes sure there aren't too many operands.  */
2260 	  gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2261 
2262 	  /* Now get the operand values and constraints out of the insn.  */
2263 	  decode_asm_operands (body, recog_data.operand,
2264 			       recog_data.operand_loc,
2265 			       recog_data.constraints,
2266 			       recog_data.operand_mode, NULL);
2267 	  memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2268 	  if (noperands > 0)
2269 	    {
2270 	      const char *p =  recog_data.constraints[0];
2271 	      recog_data.n_alternatives = 1;
2272 	      while (*p)
2273 		recog_data.n_alternatives += (*p++ == ',');
2274 	    }
2275 	  recog_data.is_asm = true;
2276 	  break;
2277 	}
2278       fatal_insn_not_found (insn);
2279 
2280     default:
2281     normal_insn:
2282       /* Ordinary insn: recognize it, get the operands via insn_extract
2283 	 and get the constraints.  */
2284 
2285       icode = recog_memoized (insn);
2286       if (icode < 0)
2287 	fatal_insn_not_found (insn);
2288 
2289       recog_data.n_operands = noperands = insn_data[icode].n_operands;
2290       recog_data.n_alternatives = insn_data[icode].n_alternatives;
2291       recog_data.n_dups = insn_data[icode].n_dups;
2292 
2293       insn_extract (insn);
2294 
2295       for (i = 0; i < noperands; i++)
2296 	{
2297 	  recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2298 	  recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2299 	  recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2300 	  /* VOIDmode match_operands gets mode from their real operand.  */
2301 	  if (recog_data.operand_mode[i] == VOIDmode)
2302 	    recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2303 	}
2304     }
2305   for (i = 0; i < noperands; i++)
2306     recog_data.operand_type[i]
2307       = (recog_data.constraints[i][0] == '=' ? OP_OUT
2308 	 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2309 	 : OP_IN);
2310 
2311   gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2312 
2313   recog_data.insn = NULL;
2314   which_alternative = -1;
2315 }
2316 
2317 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2318    N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2319    OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2320    has N_OPERANDS entries.  */
2321 
2322 void
preprocess_constraints(int n_operands,int n_alternatives,const char ** constraints,operand_alternative * op_alt_base)2323 preprocess_constraints (int n_operands, int n_alternatives,
2324 			const char **constraints,
2325 			operand_alternative *op_alt_base)
2326 {
2327   for (int i = 0; i < n_operands; i++)
2328     {
2329       int j;
2330       struct operand_alternative *op_alt;
2331       const char *p = constraints[i];
2332 
2333       op_alt = op_alt_base;
2334 
2335       for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2336 	{
2337 	  op_alt[i].cl = NO_REGS;
2338 	  op_alt[i].constraint = p;
2339 	  op_alt[i].matches = -1;
2340 	  op_alt[i].matched = -1;
2341 
2342 	  if (*p == '\0' || *p == ',')
2343 	    {
2344 	      op_alt[i].anything_ok = 1;
2345 	      continue;
2346 	    }
2347 
2348 	  for (;;)
2349 	    {
2350 	      char c = *p;
2351 	      if (c == '#')
2352 		do
2353 		  c = *++p;
2354 		while (c != ',' && c != '\0');
2355 	      if (c == ',' || c == '\0')
2356 		{
2357 		  p++;
2358 		  break;
2359 		}
2360 
2361 	      switch (c)
2362 		{
2363 		case '?':
2364 		  op_alt[i].reject += 6;
2365 		  break;
2366 		case '!':
2367 		  op_alt[i].reject += 600;
2368 		  break;
2369 		case '&':
2370 		  op_alt[i].earlyclobber = 1;
2371 		  break;
2372 
2373 		case '0': case '1': case '2': case '3': case '4':
2374 		case '5': case '6': case '7': case '8': case '9':
2375 		  {
2376 		    char *end;
2377 		    op_alt[i].matches = strtoul (p, &end, 10);
2378 		    op_alt[op_alt[i].matches].matched = i;
2379 		    p = end;
2380 		  }
2381 		  continue;
2382 
2383 		case 'X':
2384 		  op_alt[i].anything_ok = 1;
2385 		  break;
2386 
2387 		case 'g':
2388 		  op_alt[i].cl =
2389 		   reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2390 		  break;
2391 
2392 		default:
2393 		  enum constraint_num cn = lookup_constraint (p);
2394 		  enum reg_class cl;
2395 		  switch (get_constraint_type (cn))
2396 		    {
2397 		    case CT_REGISTER:
2398 		      cl = reg_class_for_constraint (cn);
2399 		      if (cl != NO_REGS)
2400 			op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2401 		      break;
2402 
2403 		    case CT_CONST_INT:
2404 		      break;
2405 
2406 		    case CT_MEMORY:
2407 		    case CT_SPECIAL_MEMORY:
2408 		      op_alt[i].memory_ok = 1;
2409 		      break;
2410 
2411 		    case CT_ADDRESS:
2412 		      op_alt[i].is_address = 1;
2413 		      op_alt[i].cl
2414 			= (reg_class_subunion
2415 			   [(int) op_alt[i].cl]
2416 			   [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2417 						  ADDRESS, SCRATCH)]);
2418 		      break;
2419 
2420 		    case CT_FIXED_FORM:
2421 		      break;
2422 		    }
2423 		  break;
2424 		}
2425 	      p += CONSTRAINT_LEN (c, p);
2426 	    }
2427 	}
2428     }
2429 }
2430 
2431 /* Return an array of operand_alternative instructions for
2432    instruction ICODE.  */
2433 
2434 const operand_alternative *
preprocess_insn_constraints(unsigned int icode)2435 preprocess_insn_constraints (unsigned int icode)
2436 {
2437   gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2438   if (this_target_recog->x_op_alt[icode])
2439     return this_target_recog->x_op_alt[icode];
2440 
2441   int n_operands = insn_data[icode].n_operands;
2442   if (n_operands == 0)
2443     return 0;
2444   /* Always provide at least one alternative so that which_op_alt ()
2445      works correctly.  If the instruction has 0 alternatives (i.e. all
2446      constraint strings are empty) then each operand in this alternative
2447      will have anything_ok set.  */
2448   int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2449   int n_entries = n_operands * n_alternatives;
2450 
2451   operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2452   const char **constraints = XALLOCAVEC (const char *, n_operands);
2453 
2454   for (int i = 0; i < n_operands; ++i)
2455     constraints[i] = insn_data[icode].operand[i].constraint;
2456   preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);
2457 
2458   this_target_recog->x_op_alt[icode] = op_alt;
2459   return op_alt;
2460 }
2461 
2462 /* After calling extract_insn, you can use this function to extract some
2463    information from the constraint strings into a more usable form.
2464    The collected data is stored in recog_op_alt.  */
2465 
2466 void
preprocess_constraints(rtx_insn * insn)2467 preprocess_constraints (rtx_insn *insn)
2468 {
2469   int icode = INSN_CODE (insn);
2470   if (icode >= 0)
2471     recog_op_alt = preprocess_insn_constraints (icode);
2472   else
2473     {
2474       int n_operands = recog_data.n_operands;
2475       int n_alternatives = recog_data.n_alternatives;
2476       int n_entries = n_operands * n_alternatives;
2477       memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2478       preprocess_constraints (n_operands, n_alternatives,
2479 			      recog_data.constraints, asm_op_alt);
2480       recog_op_alt = asm_op_alt;
2481     }
2482 }
2483 
2484 /* Check the operands of an insn against the insn's operand constraints
2485    and return 1 if they match any of the alternatives in ALTERNATIVES.
2486 
2487    The information about the insn's operands, constraints, operand modes
2488    etc. is obtained from the global variables set up by extract_insn.
2489 
2490    WHICH_ALTERNATIVE is set to a number which indicates which
2491    alternative of constraints was matched: 0 for the first alternative,
2492    1 for the next, etc.
2493 
2494    In addition, when two operands are required to match
2495    and it happens that the output operand is (reg) while the
2496    input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2497    make the output operand look like the input.
2498    This is because the output operand is the one the template will print.
2499 
2500    This is used in final, just before printing the assembler code and by
2501    the routines that determine an insn's attribute.
2502 
2503    If STRICT is a positive nonzero value, it means that we have been
2504    called after reload has been completed.  In that case, we must
2505    do all checks strictly.  If it is zero, it means that we have been called
2506    before reload has completed.  In that case, we first try to see if we can
2507    find an alternative that matches strictly.  If not, we try again, this
2508    time assuming that reload will fix up the insn.  This provides a "best
2509    guess" for the alternative and is used to compute attributes of insns prior
2510    to reload.  A negative value of STRICT is used for this internal call.  */
2511 
2512 struct funny_match
2513 {
2514   int this_op, other;
2515 };
2516 
2517 int
constrain_operands(int strict,alternative_mask alternatives)2518 constrain_operands (int strict, alternative_mask alternatives)
2519 {
2520   const char *constraints[MAX_RECOG_OPERANDS];
2521   int matching_operands[MAX_RECOG_OPERANDS];
2522   int earlyclobber[MAX_RECOG_OPERANDS];
2523   int c;
2524 
2525   struct funny_match funny_match[MAX_RECOG_OPERANDS];
2526   int funny_match_index;
2527 
2528   which_alternative = 0;
2529   if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2530     return 1;
2531 
2532   for (c = 0; c < recog_data.n_operands; c++)
2533     {
2534       constraints[c] = recog_data.constraints[c];
2535       matching_operands[c] = -1;
2536     }
2537 
2538   do
2539     {
2540       int seen_earlyclobber_at = -1;
2541       int opno;
2542       int lose = 0;
2543       funny_match_index = 0;
2544 
2545       if (!TEST_BIT (alternatives, which_alternative))
2546 	{
2547 	  int i;
2548 
2549 	  for (i = 0; i < recog_data.n_operands; i++)
2550 	    constraints[i] = skip_alternative (constraints[i]);
2551 
2552 	  which_alternative++;
2553 	  continue;
2554 	}
2555 
2556       for (opno = 0; opno < recog_data.n_operands; opno++)
2557 	{
2558 	  rtx op = recog_data.operand[opno];
2559 	  machine_mode mode = GET_MODE (op);
2560 	  const char *p = constraints[opno];
2561 	  int offset = 0;
2562 	  int win = 0;
2563 	  int val;
2564 	  int len;
2565 
2566 	  earlyclobber[opno] = 0;
2567 
2568 	  /* A unary operator may be accepted by the predicate, but it
2569 	     is irrelevant for matching constraints.  */
2570 	  if (UNARY_P (op))
2571 	    op = XEXP (op, 0);
2572 
2573 	  if (GET_CODE (op) == SUBREG)
2574 	    {
2575 	      if (REG_P (SUBREG_REG (op))
2576 		  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2577 		offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2578 					      GET_MODE (SUBREG_REG (op)),
2579 					      SUBREG_BYTE (op),
2580 					      GET_MODE (op));
2581 	      op = SUBREG_REG (op);
2582 	    }
2583 
2584 	  /* An empty constraint or empty alternative
2585 	     allows anything which matched the pattern.  */
2586 	  if (*p == 0 || *p == ',')
2587 	    win = 1;
2588 
2589 	  do
2590 	    switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2591 	      {
2592 	      case '\0':
2593 		len = 0;
2594 		break;
2595 	      case ',':
2596 		c = '\0';
2597 		break;
2598 
2599 	      case '#':
2600 		/* Ignore rest of this alternative as far as
2601 		   constraint checking is concerned.  */
2602 		do
2603 		  p++;
2604 		while (*p && *p != ',');
2605 		len = 0;
2606 		break;
2607 
2608 	      case '&':
2609 		earlyclobber[opno] = 1;
2610 		if (seen_earlyclobber_at < 0)
2611 		  seen_earlyclobber_at = opno;
2612 		break;
2613 
2614 	      case '0':  case '1':  case '2':  case '3':  case '4':
2615 	      case '5':  case '6':  case '7':  case '8':  case '9':
2616 		{
2617 		  /* This operand must be the same as a previous one.
2618 		     This kind of constraint is used for instructions such
2619 		     as add when they take only two operands.
2620 
2621 		     Note that the lower-numbered operand is passed first.
2622 
2623 		     If we are not testing strictly, assume that this
2624 		     constraint will be satisfied.  */
2625 
2626 		  char *end;
2627 		  int match;
2628 
2629 		  match = strtoul (p, &end, 10);
2630 		  p = end;
2631 
2632 		  if (strict < 0)
2633 		    val = 1;
2634 		  else
2635 		    {
2636 		      rtx op1 = recog_data.operand[match];
2637 		      rtx op2 = recog_data.operand[opno];
2638 
2639 		      /* A unary operator may be accepted by the predicate,
2640 			 but it is irrelevant for matching constraints.  */
2641 		      if (UNARY_P (op1))
2642 			op1 = XEXP (op1, 0);
2643 		      if (UNARY_P (op2))
2644 			op2 = XEXP (op2, 0);
2645 
2646 		      val = operands_match_p (op1, op2);
2647 		    }
2648 
2649 		  matching_operands[opno] = match;
2650 		  matching_operands[match] = opno;
2651 
2652 		  if (val != 0)
2653 		    win = 1;
2654 
2655 		  /* If output is *x and input is *--x, arrange later
2656 		     to change the output to *--x as well, since the
2657 		     output op is the one that will be printed.  */
2658 		  if (val == 2 && strict > 0)
2659 		    {
2660 		      funny_match[funny_match_index].this_op = opno;
2661 		      funny_match[funny_match_index++].other = match;
2662 		    }
2663 		}
2664 		len = 0;
2665 		break;
2666 
2667 	      case 'p':
2668 		/* p is used for address_operands.  When we are called by
2669 		   gen_reload, no one will have checked that the address is
2670 		   strictly valid, i.e., that all pseudos requiring hard regs
2671 		   have gotten them.  */
2672 		if (strict <= 0
2673 		    || (strict_memory_address_p (recog_data.operand_mode[opno],
2674 						 op)))
2675 		  win = 1;
2676 		break;
2677 
2678 		/* No need to check general_operand again;
2679 		   it was done in insn-recog.c.  Well, except that reload
2680 		   doesn't check the validity of its replacements, but
2681 		   that should only matter when there's a bug.  */
2682 	      case 'g':
2683 		/* Anything goes unless it is a REG and really has a hard reg
2684 		   but the hard reg is not in the class GENERAL_REGS.  */
2685 		if (REG_P (op))
2686 		  {
2687 		    if (strict < 0
2688 			|| GENERAL_REGS == ALL_REGS
2689 			|| (reload_in_progress
2690 			    && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2691 			|| reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2692 		      win = 1;
2693 		  }
2694 		else if (strict < 0 || general_operand (op, mode))
2695 		  win = 1;
2696 		break;
2697 
2698 	      default:
2699 		{
2700 		  enum constraint_num cn = lookup_constraint (p);
2701 		  enum reg_class cl = reg_class_for_constraint (cn);
2702 		  if (cl != NO_REGS)
2703 		    {
2704 		      if (strict < 0
2705 			  || (strict == 0
2706 			      && REG_P (op)
2707 			      && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2708 			  || (strict == 0 && GET_CODE (op) == SCRATCH)
2709 			  || (REG_P (op)
2710 			      && reg_fits_class_p (op, cl, offset, mode)))
2711 		        win = 1;
2712 		    }
2713 
2714 		  else if (constraint_satisfied_p (op, cn))
2715 		    win = 1;
2716 
2717 		  else if (insn_extra_memory_constraint (cn)
2718 			   /* Every memory operand can be reloaded to fit.  */
2719 			   && ((strict < 0 && MEM_P (op))
2720 			       /* Before reload, accept what reload can turn
2721 				  into a mem.  */
2722 			       || (strict < 0 && CONSTANT_P (op))
2723 			       /* Before reload, accept a pseudo,
2724 				  since LRA can turn it into a mem.  */
2725 			       || (strict < 0 && targetm.lra_p () && REG_P (op)
2726 				   && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2727 			       /* During reload, accept a pseudo  */
2728 			       || (reload_in_progress && REG_P (op)
2729 				   && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2730 		    win = 1;
2731 		  else if (insn_extra_address_constraint (cn)
2732 			   /* Every address operand can be reloaded to fit.  */
2733 			   && strict < 0)
2734 		    win = 1;
2735 		  /* Cater to architectures like IA-64 that define extra memory
2736 		     constraints without using define_memory_constraint.  */
2737 		  else if (reload_in_progress
2738 			   && REG_P (op)
2739 			   && REGNO (op) >= FIRST_PSEUDO_REGISTER
2740 			   && reg_renumber[REGNO (op)] < 0
2741 			   && reg_equiv_mem (REGNO (op)) != 0
2742 			   && constraint_satisfied_p
2743 			      (reg_equiv_mem (REGNO (op)), cn))
2744 		    win = 1;
2745 		  break;
2746 		}
2747 	      }
2748 	  while (p += len, c);
2749 
2750 	  constraints[opno] = p;
2751 	  /* If this operand did not win somehow,
2752 	     this alternative loses.  */
2753 	  if (! win)
2754 	    lose = 1;
2755 	}
2756       /* This alternative won; the operands are ok.
2757 	 Change whichever operands this alternative says to change.  */
2758       if (! lose)
2759 	{
2760 	  int opno, eopno;
2761 
2762 	  /* See if any earlyclobber operand conflicts with some other
2763 	     operand.  */
2764 
2765 	  if (strict > 0  && seen_earlyclobber_at >= 0)
2766 	    for (eopno = seen_earlyclobber_at;
2767 		 eopno < recog_data.n_operands;
2768 		 eopno++)
2769 	      /* Ignore earlyclobber operands now in memory,
2770 		 because we would often report failure when we have
2771 		 two memory operands, one of which was formerly a REG.  */
2772 	      if (earlyclobber[eopno]
2773 		  && REG_P (recog_data.operand[eopno]))
2774 		for (opno = 0; opno < recog_data.n_operands; opno++)
2775 		  if ((MEM_P (recog_data.operand[opno])
2776 		       || recog_data.operand_type[opno] != OP_OUT)
2777 		      && opno != eopno
2778 		      /* Ignore things like match_operator operands.  */
2779 		      && *recog_data.constraints[opno] != 0
2780 		      && ! (matching_operands[opno] == eopno
2781 			    && operands_match_p (recog_data.operand[opno],
2782 						 recog_data.operand[eopno]))
2783 		      && ! safe_from_earlyclobber (recog_data.operand[opno],
2784 						   recog_data.operand[eopno]))
2785 		    lose = 1;
2786 
2787 	  if (! lose)
2788 	    {
2789 	      while (--funny_match_index >= 0)
2790 		{
2791 		  recog_data.operand[funny_match[funny_match_index].other]
2792 		    = recog_data.operand[funny_match[funny_match_index].this_op];
2793 		}
2794 
2795 	      /* For operands without < or > constraints reject side-effects.  */
2796 	      if (AUTO_INC_DEC && recog_data.is_asm)
2797 		{
2798 		  for (opno = 0; opno < recog_data.n_operands; opno++)
2799 		    if (MEM_P (recog_data.operand[opno]))
2800 		      switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2801 			{
2802 			case PRE_INC:
2803 			case POST_INC:
2804 			case PRE_DEC:
2805 			case POST_DEC:
2806 			case PRE_MODIFY:
2807 			case POST_MODIFY:
2808 			  if (strchr (recog_data.constraints[opno], '<') == NULL
2809 			      && strchr (recog_data.constraints[opno], '>')
2810 				 == NULL)
2811 			    return 0;
2812 			  break;
2813 			default:
2814 			  break;
2815 			}
2816 		}
2817 
2818 	      return 1;
2819 	    }
2820 	}
2821 
2822       which_alternative++;
2823     }
2824   while (which_alternative < recog_data.n_alternatives);
2825 
2826   which_alternative = -1;
2827   /* If we are about to reject this, but we are not to test strictly,
2828      try a very loose test.  Only return failure if it fails also.  */
2829   if (strict == 0)
2830     return constrain_operands (-1, alternatives);
2831   else
2832     return 0;
2833 }
2834 
2835 /* Return true iff OPERAND (assumed to be a REG rtx)
2836    is a hard reg in class CLASS when its regno is offset by OFFSET
2837    and changed to mode MODE.
2838    If REG occupies multiple hard regs, all of them must be in CLASS.  */
2839 
2840 bool
reg_fits_class_p(const_rtx operand,reg_class_t cl,int offset,machine_mode mode)2841 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2842 		  machine_mode mode)
2843 {
2844   unsigned int regno = REGNO (operand);
2845 
2846   if (cl == NO_REGS)
2847     return false;
2848 
2849   /* Regno must not be a pseudo register.  Offset may be negative.  */
2850   return (HARD_REGISTER_NUM_P (regno)
2851 	  && HARD_REGISTER_NUM_P (regno + offset)
2852 	  && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2853 				regno + offset));
2854 }
2855 
2856 /* Split single instruction.  Helper function for split_all_insns and
2857    split_all_insns_noflow.  Return last insn in the sequence if successful,
2858    or NULL if unsuccessful.  */
2859 
2860 static rtx_insn *
split_insn(rtx_insn * insn)2861 split_insn (rtx_insn *insn)
2862 {
2863   /* Split insns here to get max fine-grain parallelism.  */
2864   rtx_insn *first = PREV_INSN (insn);
2865   rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2866   rtx insn_set, last_set, note;
2867 
2868   if (last == insn)
2869     return NULL;
2870 
2871   /* If the original instruction was a single set that was known to be
2872      equivalent to a constant, see if we can say the same about the last
2873      instruction in the split sequence.  The two instructions must set
2874      the same destination.  */
2875   insn_set = single_set (insn);
2876   if (insn_set)
2877     {
2878       last_set = single_set (last);
2879       if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2880 	{
2881 	  note = find_reg_equal_equiv_note (insn);
2882 	  if (note && CONSTANT_P (XEXP (note, 0)))
2883 	    set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2884 	  else if (CONSTANT_P (SET_SRC (insn_set)))
2885 	    set_unique_reg_note (last, REG_EQUAL,
2886 				 copy_rtx (SET_SRC (insn_set)));
2887 	}
2888     }
2889 
2890   /* try_split returns the NOTE that INSN became.  */
2891   SET_INSN_DELETED (insn);
2892 
2893   /* ??? Coddle to md files that generate subregs in post-reload
2894      splitters instead of computing the proper hard register.  */
2895   if (reload_completed && first != last)
2896     {
2897       first = NEXT_INSN (first);
2898       for (;;)
2899 	{
2900 	  if (INSN_P (first))
2901 	    cleanup_subreg_operands (first);
2902 	  if (first == last)
2903 	    break;
2904 	  first = NEXT_INSN (first);
2905 	}
2906     }
2907 
2908   return last;
2909 }
2910 
2911 /* Split all insns in the function.  If UPD_LIFE, update life info after.  */
2912 
2913 void
split_all_insns(void)2914 split_all_insns (void)
2915 {
2916   sbitmap blocks;
2917   bool changed;
2918   basic_block bb;
2919 
2920   blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2921   bitmap_clear (blocks);
2922   changed = false;
2923 
2924   FOR_EACH_BB_REVERSE_FN (bb, cfun)
2925     {
2926       rtx_insn *insn, *next;
2927       bool finish = false;
2928 
2929       rtl_profile_for_bb (bb);
2930       for (insn = BB_HEAD (bb); !finish ; insn = next)
2931 	{
2932 	  /* Can't use `next_real_insn' because that might go across
2933 	     CODE_LABELS and short-out basic blocks.  */
2934 	  next = NEXT_INSN (insn);
2935 	  finish = (insn == BB_END (bb));
2936 	  if (INSN_P (insn))
2937 	    {
2938 	      rtx set = single_set (insn);
2939 
2940 	      /* Don't split no-op move insns.  These should silently
2941 		 disappear later in final.  Splitting such insns would
2942 		 break the code that handles LIBCALL blocks.  */
2943 	      if (set && set_noop_p (set))
2944 		{
2945 		  /* Nops get in the way while scheduling, so delete them
2946 		     now if register allocation has already been done.  It
2947 		     is too risky to try to do this before register
2948 		     allocation, and there are unlikely to be very many
2949 		     nops then anyways.  */
2950 		  if (reload_completed)
2951 		      delete_insn_and_edges (insn);
2952 		}
2953 	      else
2954 		{
2955 		  if (split_insn (insn))
2956 		    {
2957 		      bitmap_set_bit (blocks, bb->index);
2958 		      changed = true;
2959 		    }
2960 		}
2961 	    }
2962 	}
2963     }
2964 
2965   default_rtl_profile ();
2966   if (changed)
2967     find_many_sub_basic_blocks (blocks);
2968 
2969   checking_verify_flow_info ();
2970 
2971   sbitmap_free (blocks);
2972 }
2973 
2974 /* Same as split_all_insns, but do not expect CFG to be available.
2975    Used by machine dependent reorg passes.  */
2976 
2977 unsigned int
split_all_insns_noflow(void)2978 split_all_insns_noflow (void)
2979 {
2980   rtx_insn *next, *insn;
2981 
2982   for (insn = get_insns (); insn; insn = next)
2983     {
2984       next = NEXT_INSN (insn);
2985       if (INSN_P (insn))
2986 	{
2987 	  /* Don't split no-op move insns.  These should silently
2988 	     disappear later in final.  Splitting such insns would
2989 	     break the code that handles LIBCALL blocks.  */
2990 	  rtx set = single_set (insn);
2991 	  if (set && set_noop_p (set))
2992 	    {
2993 	      /* Nops get in the way while scheduling, so delete them
2994 		 now if register allocation has already been done.  It
2995 		 is too risky to try to do this before register
2996 		 allocation, and there are unlikely to be very many
2997 		 nops then anyways.
2998 
2999 		 ??? Should we use delete_insn when the CFG isn't valid?  */
3000 	      if (reload_completed)
3001 		delete_insn_and_edges (insn);
3002 	    }
3003 	  else
3004 	    split_insn (insn);
3005 	}
3006     }
3007   return 0;
3008 }
3009 
3010 struct peep2_insn_data
3011 {
3012   rtx_insn *insn;
3013   regset live_before;
3014 };
3015 
3016 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3017 static int peep2_current;
3018 
3019 static bool peep2_do_rebuild_jump_labels;
3020 static bool peep2_do_cleanup_cfg;
3021 
3022 /* The number of instructions available to match a peep2.  */
3023 int peep2_current_count;
3024 
3025 /* A marker indicating the last insn of the block.  The live_before regset
3026    for this element is correct, indicating DF_LIVE_OUT for the block.  */
3027 #define PEEP2_EOB invalid_insn_rtx
3028 
3029 /* Wrap N to fit into the peep2_insn_data buffer.  */
3030 
3031 static int
peep2_buf_position(int n)3032 peep2_buf_position (int n)
3033 {
3034   if (n >= MAX_INSNS_PER_PEEP2 + 1)
3035     n -= MAX_INSNS_PER_PEEP2 + 1;
3036   return n;
3037 }
3038 
3039 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3040    does not exist.  Used by the recognizer to find the next insn to match
3041    in a multi-insn pattern.  */
3042 
3043 rtx_insn *
peep2_next_insn(int n)3044 peep2_next_insn (int n)
3045 {
3046   gcc_assert (n <= peep2_current_count);
3047 
3048   n = peep2_buf_position (peep2_current + n);
3049 
3050   return peep2_insn_data[n].insn;
3051 }
3052 
3053 /* Return true if REGNO is dead before the Nth non-note insn
3054    after `current'.  */
3055 
3056 int
peep2_regno_dead_p(int ofs,int regno)3057 peep2_regno_dead_p (int ofs, int regno)
3058 {
3059   gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3060 
3061   ofs = peep2_buf_position (peep2_current + ofs);
3062 
3063   gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3064 
3065   return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3066 }
3067 
3068 /* Similarly for a REG.  */
3069 
3070 int
peep2_reg_dead_p(int ofs,rtx reg)3071 peep2_reg_dead_p (int ofs, rtx reg)
3072 {
3073   gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3074 
3075   ofs = peep2_buf_position (peep2_current + ofs);
3076 
3077   gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3078 
3079   unsigned int end_regno = END_REGNO (reg);
3080   for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3081     if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3082       return 0;
3083   return 1;
3084 }
3085 
3086 /* Regno offset to be used in the register search.  */
3087 static int search_ofs;
3088 
3089 /* Try to find a hard register of mode MODE, matching the register class in
3090    CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3091    remains available until the end of LAST_INSN.  LAST_INSN may be NULL_RTX,
3092    in which case the only condition is that the register must be available
3093    before CURRENT_INSN.
3094    Registers that already have bits set in REG_SET will not be considered.
3095 
3096    If an appropriate register is available, it will be returned and the
3097    corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3098    returned.  */
3099 
3100 rtx
peep2_find_free_register(int from,int to,const char * class_str,machine_mode mode,HARD_REG_SET * reg_set)3101 peep2_find_free_register (int from, int to, const char *class_str,
3102 			  machine_mode mode, HARD_REG_SET *reg_set)
3103 {
3104   enum reg_class cl;
3105   HARD_REG_SET live;
3106   df_ref def;
3107   int i;
3108 
3109   gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3110   gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3111 
3112   from = peep2_buf_position (peep2_current + from);
3113   to = peep2_buf_position (peep2_current + to);
3114 
3115   gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3116   REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3117 
3118   while (from != to)
3119     {
3120       gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3121 
3122       /* Don't use registers set or clobbered by the insn.  */
3123       FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3124 	SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3125 
3126       from = peep2_buf_position (from + 1);
3127     }
3128 
3129   cl = reg_class_for_constraint (lookup_constraint (class_str));
3130 
3131   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3132     {
3133       int raw_regno, regno, success, j;
3134 
3135       /* Distribute the free registers as much as possible.  */
3136       raw_regno = search_ofs + i;
3137       if (raw_regno >= FIRST_PSEUDO_REGISTER)
3138 	raw_regno -= FIRST_PSEUDO_REGISTER;
3139 #ifdef REG_ALLOC_ORDER
3140       regno = reg_alloc_order[raw_regno];
3141 #else
3142       regno = raw_regno;
3143 #endif
3144 
3145       /* Can it support the mode we need?  */
3146       if (! HARD_REGNO_MODE_OK (regno, mode))
3147 	continue;
3148 
3149       success = 1;
3150       for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3151 	{
3152 	  /* Don't allocate fixed registers.  */
3153 	  if (fixed_regs[regno + j])
3154 	    {
3155 	      success = 0;
3156 	      break;
3157 	    }
3158 	  /* Don't allocate global registers.  */
3159 	  if (global_regs[regno + j])
3160 	    {
3161 	      success = 0;
3162 	      break;
3163 	    }
3164 	  /* Make sure the register is of the right class.  */
3165 	  if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3166 	    {
3167 	      success = 0;
3168 	      break;
3169 	    }
3170 	  /* And that we don't create an extra save/restore.  */
3171 	  if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3172 	    {
3173 	      success = 0;
3174 	      break;
3175 	    }
3176 
3177 	  if (! targetm.hard_regno_scratch_ok (regno + j))
3178 	    {
3179 	      success = 0;
3180 	      break;
3181 	    }
3182 
3183 	  /* And we don't clobber traceback for noreturn functions.  */
3184 	  if ((regno + j == FRAME_POINTER_REGNUM
3185 	       || regno + j == HARD_FRAME_POINTER_REGNUM)
3186 	      && (! reload_completed || frame_pointer_needed))
3187 	    {
3188 	      success = 0;
3189 	      break;
3190 	    }
3191 
3192 	  if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3193 	      || TEST_HARD_REG_BIT (live, regno + j))
3194 	    {
3195 	      success = 0;
3196 	      break;
3197 	    }
3198 	}
3199 
3200       if (success)
3201 	{
3202 	  add_to_hard_reg_set (reg_set, mode, regno);
3203 
3204 	  /* Start the next search with the next register.  */
3205 	  if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3206 	    raw_regno = 0;
3207 	  search_ofs = raw_regno;
3208 
3209 	  return gen_rtx_REG (mode, regno);
3210 	}
3211     }
3212 
3213   search_ofs = 0;
3214   return NULL_RTX;
3215 }
3216 
3217 /* Forget all currently tracked instructions, only remember current
3218    LIVE regset.  */
3219 
3220 static void
peep2_reinit_state(regset live)3221 peep2_reinit_state (regset live)
3222 {
3223   int i;
3224 
3225   /* Indicate that all slots except the last holds invalid data.  */
3226   for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3227     peep2_insn_data[i].insn = NULL;
3228   peep2_current_count = 0;
3229 
3230   /* Indicate that the last slot contains live_after data.  */
3231   peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3232   peep2_current = MAX_INSNS_PER_PEEP2;
3233 
3234   COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3235 }
3236 
3237 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3238    starting at INSN.  Perform the replacement, removing the old insns and
3239    replacing them with ATTEMPT.  Returns the last insn emitted, or NULL
3240    if the replacement is rejected.  */
3241 
3242 static rtx_insn *
peep2_attempt(basic_block bb,rtx_insn * insn,int match_len,rtx_insn * attempt)3243 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3244 {
3245   int i;
3246   rtx_insn *last, *before_try, *x;
3247   rtx eh_note, as_note;
3248   rtx_insn *old_insn;
3249   rtx_insn *new_insn;
3250   bool was_call = false;
3251 
3252   /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3253      match more than one insn, or to be split into more than one insn.  */
3254   old_insn = peep2_insn_data[peep2_current].insn;
3255   if (RTX_FRAME_RELATED_P (old_insn))
3256     {
3257       bool any_note = false;
3258       rtx note;
3259 
3260       if (match_len != 0)
3261 	return NULL;
3262 
3263       /* Look for one "active" insn.  I.e. ignore any "clobber" insns that
3264 	 may be in the stream for the purpose of register allocation.  */
3265       if (active_insn_p (attempt))
3266 	new_insn = attempt;
3267       else
3268 	new_insn = next_active_insn (attempt);
3269       if (next_active_insn (new_insn))
3270 	return NULL;
3271 
3272       /* We have a 1-1 replacement.  Copy over any frame-related info.  */
3273       RTX_FRAME_RELATED_P (new_insn) = 1;
3274 
3275       /* Allow the backend to fill in a note during the split.  */
3276       for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3277 	switch (REG_NOTE_KIND (note))
3278 	  {
3279 	  case REG_FRAME_RELATED_EXPR:
3280 	  case REG_CFA_DEF_CFA:
3281 	  case REG_CFA_ADJUST_CFA:
3282 	  case REG_CFA_OFFSET:
3283 	  case REG_CFA_REGISTER:
3284 	  case REG_CFA_EXPRESSION:
3285 	  case REG_CFA_RESTORE:
3286 	  case REG_CFA_SET_VDRAP:
3287 	    any_note = true;
3288 	    break;
3289 	  default:
3290 	    break;
3291 	  }
3292 
3293       /* If the backend didn't supply a note, copy one over.  */
3294       if (!any_note)
3295         for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3296 	  switch (REG_NOTE_KIND (note))
3297 	    {
3298 	    case REG_FRAME_RELATED_EXPR:
3299 	    case REG_CFA_DEF_CFA:
3300 	    case REG_CFA_ADJUST_CFA:
3301 	    case REG_CFA_OFFSET:
3302 	    case REG_CFA_REGISTER:
3303 	    case REG_CFA_EXPRESSION:
3304 	    case REG_CFA_RESTORE:
3305 	    case REG_CFA_SET_VDRAP:
3306 	      add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3307 	      any_note = true;
3308 	      break;
3309 	    default:
3310 	      break;
3311 	    }
3312 
3313       /* If there still isn't a note, make sure the unwind info sees the
3314 	 same expression as before the split.  */
3315       if (!any_note)
3316 	{
3317 	  rtx old_set, new_set;
3318 
3319 	  /* The old insn had better have been simple, or annotated.  */
3320 	  old_set = single_set (old_insn);
3321 	  gcc_assert (old_set != NULL);
3322 
3323 	  new_set = single_set (new_insn);
3324 	  if (!new_set || !rtx_equal_p (new_set, old_set))
3325 	    add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3326 	}
3327 
3328       /* Copy prologue/epilogue status.  This is required in order to keep
3329 	 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state.  */
3330       maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3331     }
3332 
3333   /* If we are splitting a CALL_INSN, look for the CALL_INSN
3334      in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3335      cfg-related call notes.  */
3336   for (i = 0; i <= match_len; ++i)
3337     {
3338       int j;
3339       rtx note;
3340 
3341       j = peep2_buf_position (peep2_current + i);
3342       old_insn = peep2_insn_data[j].insn;
3343       if (!CALL_P (old_insn))
3344 	continue;
3345       was_call = true;
3346 
3347       new_insn = attempt;
3348       while (new_insn != NULL_RTX)
3349 	{
3350 	  if (CALL_P (new_insn))
3351 	    break;
3352 	  new_insn = NEXT_INSN (new_insn);
3353 	}
3354 
3355       gcc_assert (new_insn != NULL_RTX);
3356 
3357       CALL_INSN_FUNCTION_USAGE (new_insn)
3358 	= CALL_INSN_FUNCTION_USAGE (old_insn);
3359       SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3360 
3361       for (note = REG_NOTES (old_insn);
3362 	   note;
3363 	   note = XEXP (note, 1))
3364 	switch (REG_NOTE_KIND (note))
3365 	  {
3366 	  case REG_NORETURN:
3367 	  case REG_SETJMP:
3368 	  case REG_TM:
3369 	    add_reg_note (new_insn, REG_NOTE_KIND (note),
3370 			  XEXP (note, 0));
3371 	    break;
3372 	  default:
3373 	    /* Discard all other reg notes.  */
3374 	    break;
3375 	  }
3376 
3377       /* Croak if there is another call in the sequence.  */
3378       while (++i <= match_len)
3379 	{
3380 	  j = peep2_buf_position (peep2_current + i);
3381 	  old_insn = peep2_insn_data[j].insn;
3382 	  gcc_assert (!CALL_P (old_insn));
3383 	}
3384       break;
3385     }
3386 
3387   /* If we matched any instruction that had a REG_ARGS_SIZE, then
3388      move those notes over to the new sequence.  */
3389   as_note = NULL;
3390   for (i = match_len; i >= 0; --i)
3391     {
3392       int j = peep2_buf_position (peep2_current + i);
3393       old_insn = peep2_insn_data[j].insn;
3394 
3395       as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3396       if (as_note)
3397 	break;
3398     }
3399 
3400   i = peep2_buf_position (peep2_current + match_len);
3401   eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3402 
3403   /* Replace the old sequence with the new.  */
3404   rtx_insn *peepinsn = peep2_insn_data[i].insn;
3405   last = emit_insn_after_setloc (attempt,
3406 				 peep2_insn_data[i].insn,
3407 				 INSN_LOCATION (peepinsn));
3408   before_try = PREV_INSN (insn);
3409   delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3410 
3411   /* Re-insert the EH_REGION notes.  */
3412   if (eh_note || (was_call && nonlocal_goto_handler_labels))
3413     {
3414       edge eh_edge;
3415       edge_iterator ei;
3416 
3417       FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3418 	if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3419 	  break;
3420 
3421       if (eh_note)
3422 	copy_reg_eh_region_note_backward (eh_note, last, before_try);
3423 
3424       if (eh_edge)
3425 	for (x = last; x != before_try; x = PREV_INSN (x))
3426 	  if (x != BB_END (bb)
3427 	      && (can_throw_internal (x)
3428 		  || can_nonlocal_goto (x)))
3429 	    {
3430 	      edge nfte, nehe;
3431 	      int flags;
3432 
3433 	      nfte = split_block (bb, x);
3434 	      flags = (eh_edge->flags
3435 		       & (EDGE_EH | EDGE_ABNORMAL));
3436 	      if (CALL_P (x))
3437 		flags |= EDGE_ABNORMAL_CALL;
3438 	      nehe = make_edge (nfte->src, eh_edge->dest,
3439 				flags);
3440 
3441 	      nehe->probability = eh_edge->probability;
3442 	      nfte->probability
3443 		= REG_BR_PROB_BASE - nehe->probability;
3444 
3445 	      peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3446 	      bb = nfte->src;
3447 	      eh_edge = nehe;
3448 	    }
3449 
3450       /* Converting possibly trapping insn to non-trapping is
3451 	 possible.  Zap dummy outgoing edges.  */
3452       peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3453     }
3454 
3455   /* Re-insert the ARGS_SIZE notes.  */
3456   if (as_note)
3457     fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3458 
3459   /* If we generated a jump instruction, it won't have
3460      JUMP_LABEL set.  Recompute after we're done.  */
3461   for (x = last; x != before_try; x = PREV_INSN (x))
3462     if (JUMP_P (x))
3463       {
3464 	peep2_do_rebuild_jump_labels = true;
3465 	break;
3466       }
3467 
3468   return last;
3469 }
3470 
3471 /* After performing a replacement in basic block BB, fix up the life
3472    information in our buffer.  LAST is the last of the insns that we
3473    emitted as a replacement.  PREV is the insn before the start of
3474    the replacement.  MATCH_LEN is the number of instructions that were
3475    matched, and which now need to be replaced in the buffer.  */
3476 
3477 static void
peep2_update_life(basic_block bb,int match_len,rtx_insn * last,rtx_insn * prev)3478 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3479 		   rtx_insn *prev)
3480 {
3481   int i = peep2_buf_position (peep2_current + match_len + 1);
3482   rtx_insn *x;
3483   regset_head live;
3484 
3485   INIT_REG_SET (&live);
3486   COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3487 
3488   gcc_assert (peep2_current_count >= match_len + 1);
3489   peep2_current_count -= match_len + 1;
3490 
3491   x = last;
3492   do
3493     {
3494       if (INSN_P (x))
3495 	{
3496 	  df_insn_rescan (x);
3497 	  if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3498 	    {
3499 	      peep2_current_count++;
3500 	      if (--i < 0)
3501 		i = MAX_INSNS_PER_PEEP2;
3502 	      peep2_insn_data[i].insn = x;
3503 	      df_simulate_one_insn_backwards (bb, x, &live);
3504 	      COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3505 	    }
3506 	}
3507       x = PREV_INSN (x);
3508     }
3509   while (x != prev);
3510   CLEAR_REG_SET (&live);
3511 
3512   peep2_current = i;
3513 }
3514 
3515 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3516    Return true if we added it, false otherwise.  The caller will try to match
3517    peepholes against the buffer if we return false; otherwise it will try to
3518    add more instructions to the buffer.  */
3519 
3520 static bool
peep2_fill_buffer(basic_block bb,rtx_insn * insn,regset live)3521 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3522 {
3523   int pos;
3524 
3525   /* Once we have filled the maximum number of insns the buffer can hold,
3526      allow the caller to match the insns against peepholes.  We wait until
3527      the buffer is full in case the target has similar peepholes of different
3528      length; we always want to match the longest if possible.  */
3529   if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3530     return false;
3531 
3532   /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3533      any other pattern, lest it change the semantics of the frame info.  */
3534   if (RTX_FRAME_RELATED_P (insn))
3535     {
3536       /* Let the buffer drain first.  */
3537       if (peep2_current_count > 0)
3538 	return false;
3539       /* Now the insn will be the only thing in the buffer.  */
3540     }
3541 
3542   pos = peep2_buf_position (peep2_current + peep2_current_count);
3543   peep2_insn_data[pos].insn = insn;
3544   COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3545   peep2_current_count++;
3546 
3547   df_simulate_one_insn_forwards (bb, insn, live);
3548   return true;
3549 }
3550 
3551 /* Perform the peephole2 optimization pass.  */
3552 
3553 static void
peephole2_optimize(void)3554 peephole2_optimize (void)
3555 {
3556   rtx_insn *insn;
3557   bitmap live;
3558   int i;
3559   basic_block bb;
3560 
3561   peep2_do_cleanup_cfg = false;
3562   peep2_do_rebuild_jump_labels = false;
3563 
3564   df_set_flags (DF_LR_RUN_DCE);
3565   df_note_add_problem ();
3566   df_analyze ();
3567 
3568   /* Initialize the regsets we're going to use.  */
3569   for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3570     peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3571   search_ofs = 0;
3572   live = BITMAP_ALLOC (&reg_obstack);
3573 
3574   FOR_EACH_BB_REVERSE_FN (bb, cfun)
3575     {
3576       bool past_end = false;
3577       int pos;
3578 
3579       rtl_profile_for_bb (bb);
3580 
3581       /* Start up propagation.  */
3582       bitmap_copy (live, DF_LR_IN (bb));
3583       df_simulate_initialize_forwards (bb, live);
3584       peep2_reinit_state (live);
3585 
3586       insn = BB_HEAD (bb);
3587       for (;;)
3588 	{
3589 	  rtx_insn *attempt, *head;
3590 	  int match_len;
3591 
3592 	  if (!past_end && !NONDEBUG_INSN_P (insn))
3593 	    {
3594 	    next_insn:
3595 	      insn = NEXT_INSN (insn);
3596 	      if (insn == NEXT_INSN (BB_END (bb)))
3597 		past_end = true;
3598 	      continue;
3599 	    }
3600 	  if (!past_end && peep2_fill_buffer (bb, insn, live))
3601 	    goto next_insn;
3602 
3603 	  /* If we did not fill an empty buffer, it signals the end of the
3604 	     block.  */
3605 	  if (peep2_current_count == 0)
3606 	    break;
3607 
3608 	  /* The buffer filled to the current maximum, so try to match.  */
3609 
3610 	  pos = peep2_buf_position (peep2_current + peep2_current_count);
3611 	  peep2_insn_data[pos].insn = PEEP2_EOB;
3612 	  COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3613 
3614 	  /* Match the peephole.  */
3615 	  head = peep2_insn_data[peep2_current].insn;
3616 	  attempt = peephole2_insns (PATTERN (head), head, &match_len);
3617 	  if (attempt != NULL)
3618 	    {
3619 	      rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3620 	      if (last)
3621 		{
3622 		  peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3623 		  continue;
3624 		}
3625 	    }
3626 
3627 	  /* No match: advance the buffer by one insn.  */
3628 	  peep2_current = peep2_buf_position (peep2_current + 1);
3629 	  peep2_current_count--;
3630 	}
3631     }
3632 
3633   default_rtl_profile ();
3634   for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3635     BITMAP_FREE (peep2_insn_data[i].live_before);
3636   BITMAP_FREE (live);
3637   if (peep2_do_rebuild_jump_labels)
3638     rebuild_jump_labels (get_insns ());
3639   if (peep2_do_cleanup_cfg)
3640     cleanup_cfg (CLEANUP_CFG_CHANGED);
3641 }
3642 
3643 /* Common predicates for use with define_bypass.  */
3644 
3645 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3646    data not the address operand(s) of the store.  IN_INSN and OUT_INSN
3647    must be either a single_set or a PARALLEL with SETs inside.  */
3648 
3649 int
store_data_bypass_p(rtx_insn * out_insn,rtx_insn * in_insn)3650 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3651 {
3652   rtx out_set, in_set;
3653   rtx out_pat, in_pat;
3654   rtx out_exp, in_exp;
3655   int i, j;
3656 
3657   in_set = single_set (in_insn);
3658   if (in_set)
3659     {
3660       if (!MEM_P (SET_DEST (in_set)))
3661 	return false;
3662 
3663       out_set = single_set (out_insn);
3664       if (out_set)
3665         {
3666           if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3667             return false;
3668         }
3669       else
3670         {
3671           out_pat = PATTERN (out_insn);
3672 
3673 	  if (GET_CODE (out_pat) != PARALLEL)
3674 	    return false;
3675 
3676           for (i = 0; i < XVECLEN (out_pat, 0); i++)
3677           {
3678             out_exp = XVECEXP (out_pat, 0, i);
3679 
3680             if (GET_CODE (out_exp) == CLOBBER)
3681               continue;
3682 
3683             gcc_assert (GET_CODE (out_exp) == SET);
3684 
3685             if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3686               return false;
3687           }
3688       }
3689     }
3690   else
3691     {
3692       in_pat = PATTERN (in_insn);
3693       gcc_assert (GET_CODE (in_pat) == PARALLEL);
3694 
3695       for (i = 0; i < XVECLEN (in_pat, 0); i++)
3696 	{
3697 	  in_exp = XVECEXP (in_pat, 0, i);
3698 
3699 	  if (GET_CODE (in_exp) == CLOBBER)
3700 	    continue;
3701 
3702 	  gcc_assert (GET_CODE (in_exp) == SET);
3703 
3704 	  if (!MEM_P (SET_DEST (in_exp)))
3705 	    return false;
3706 
3707           out_set = single_set (out_insn);
3708           if (out_set)
3709             {
3710               if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3711                 return false;
3712             }
3713           else
3714             {
3715               out_pat = PATTERN (out_insn);
3716               gcc_assert (GET_CODE (out_pat) == PARALLEL);
3717 
3718               for (j = 0; j < XVECLEN (out_pat, 0); j++)
3719                 {
3720                   out_exp = XVECEXP (out_pat, 0, j);
3721 
3722                   if (GET_CODE (out_exp) == CLOBBER)
3723                     continue;
3724 
3725                   gcc_assert (GET_CODE (out_exp) == SET);
3726 
3727                   if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3728                     return false;
3729                 }
3730             }
3731         }
3732     }
3733 
3734   return true;
3735 }
3736 
3737 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3738    condition, and not the THEN or ELSE branch.  OUT_INSN may be either a single
3739    or multiple set; IN_INSN should be single_set for truth, but for convenience
3740    of insn categorization may be any JUMP or CALL insn.  */
3741 
3742 int
if_test_bypass_p(rtx_insn * out_insn,rtx_insn * in_insn)3743 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3744 {
3745   rtx out_set, in_set;
3746 
3747   in_set = single_set (in_insn);
3748   if (! in_set)
3749     {
3750       gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3751       return false;
3752     }
3753 
3754   if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3755     return false;
3756   in_set = SET_SRC (in_set);
3757 
3758   out_set = single_set (out_insn);
3759   if (out_set)
3760     {
3761       if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3762 	  || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3763 	return false;
3764     }
3765   else
3766     {
3767       rtx out_pat;
3768       int i;
3769 
3770       out_pat = PATTERN (out_insn);
3771       gcc_assert (GET_CODE (out_pat) == PARALLEL);
3772 
3773       for (i = 0; i < XVECLEN (out_pat, 0); i++)
3774 	{
3775 	  rtx exp = XVECEXP (out_pat, 0, i);
3776 
3777 	  if (GET_CODE (exp) == CLOBBER)
3778 	    continue;
3779 
3780 	  gcc_assert (GET_CODE (exp) == SET);
3781 
3782 	  if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3783 	      || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3784 	    return false;
3785 	}
3786     }
3787 
3788   return true;
3789 }
3790 
3791 static unsigned int
rest_of_handle_peephole2(void)3792 rest_of_handle_peephole2 (void)
3793 {
3794   if (HAVE_peephole2)
3795     peephole2_optimize ();
3796 
3797   return 0;
3798 }
3799 
3800 namespace {
3801 
3802 const pass_data pass_data_peephole2 =
3803 {
3804   RTL_PASS, /* type */
3805   "peephole2", /* name */
3806   OPTGROUP_NONE, /* optinfo_flags */
3807   TV_PEEPHOLE2, /* tv_id */
3808   0, /* properties_required */
3809   0, /* properties_provided */
3810   0, /* properties_destroyed */
3811   0, /* todo_flags_start */
3812   TODO_df_finish, /* todo_flags_finish */
3813 };
3814 
3815 class pass_peephole2 : public rtl_opt_pass
3816 {
3817 public:
pass_peephole2(gcc::context * ctxt)3818   pass_peephole2 (gcc::context *ctxt)
3819     : rtl_opt_pass (pass_data_peephole2, ctxt)
3820   {}
3821 
3822   /* opt_pass methods: */
3823   /* The epiphany backend creates a second instance of this pass, so we need
3824      a clone method.  */
clone()3825   opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
gate(function *)3826   virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
execute(function *)3827   virtual unsigned int execute (function *)
3828     {
3829       return rest_of_handle_peephole2 ();
3830     }
3831 
3832 }; // class pass_peephole2
3833 
3834 } // anon namespace
3835 
3836 rtl_opt_pass *
make_pass_peephole2(gcc::context * ctxt)3837 make_pass_peephole2 (gcc::context *ctxt)
3838 {
3839   return new pass_peephole2 (ctxt);
3840 }
3841 
3842 namespace {
3843 
3844 const pass_data pass_data_split_all_insns =
3845 {
3846   RTL_PASS, /* type */
3847   "split1", /* name */
3848   OPTGROUP_NONE, /* optinfo_flags */
3849   TV_NONE, /* tv_id */
3850   0, /* properties_required */
3851   0, /* properties_provided */
3852   0, /* properties_destroyed */
3853   0, /* todo_flags_start */
3854   0, /* todo_flags_finish */
3855 };
3856 
3857 class pass_split_all_insns : public rtl_opt_pass
3858 {
3859 public:
pass_split_all_insns(gcc::context * ctxt)3860   pass_split_all_insns (gcc::context *ctxt)
3861     : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3862   {}
3863 
3864   /* opt_pass methods: */
3865   /* The epiphany backend creates a second instance of this pass, so
3866      we need a clone method.  */
clone()3867   opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
execute(function *)3868   virtual unsigned int execute (function *)
3869     {
3870       split_all_insns ();
3871       return 0;
3872     }
3873 
3874 }; // class pass_split_all_insns
3875 
3876 } // anon namespace
3877 
3878 rtl_opt_pass *
make_pass_split_all_insns(gcc::context * ctxt)3879 make_pass_split_all_insns (gcc::context *ctxt)
3880 {
3881   return new pass_split_all_insns (ctxt);
3882 }
3883 
3884 static unsigned int
rest_of_handle_split_after_reload(void)3885 rest_of_handle_split_after_reload (void)
3886 {
3887   /* If optimizing, then go ahead and split insns now.  */
3888 #ifndef STACK_REGS
3889   if (optimize > 0)
3890 #endif
3891     split_all_insns ();
3892   return 0;
3893 }
3894 
3895 namespace {
3896 
3897 const pass_data pass_data_split_after_reload =
3898 {
3899   RTL_PASS, /* type */
3900   "split2", /* name */
3901   OPTGROUP_NONE, /* optinfo_flags */
3902   TV_NONE, /* tv_id */
3903   0, /* properties_required */
3904   0, /* properties_provided */
3905   0, /* properties_destroyed */
3906   0, /* todo_flags_start */
3907   0, /* todo_flags_finish */
3908 };
3909 
3910 class pass_split_after_reload : public rtl_opt_pass
3911 {
3912 public:
pass_split_after_reload(gcc::context * ctxt)3913   pass_split_after_reload (gcc::context *ctxt)
3914     : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3915   {}
3916 
3917   /* opt_pass methods: */
execute(function *)3918   virtual unsigned int execute (function *)
3919     {
3920       return rest_of_handle_split_after_reload ();
3921     }
3922 
3923 }; // class pass_split_after_reload
3924 
3925 } // anon namespace
3926 
3927 rtl_opt_pass *
make_pass_split_after_reload(gcc::context * ctxt)3928 make_pass_split_after_reload (gcc::context *ctxt)
3929 {
3930   return new pass_split_after_reload (ctxt);
3931 }
3932 
3933 namespace {
3934 
3935 const pass_data pass_data_split_before_regstack =
3936 {
3937   RTL_PASS, /* type */
3938   "split3", /* name */
3939   OPTGROUP_NONE, /* optinfo_flags */
3940   TV_NONE, /* tv_id */
3941   0, /* properties_required */
3942   0, /* properties_provided */
3943   0, /* properties_destroyed */
3944   0, /* todo_flags_start */
3945   0, /* todo_flags_finish */
3946 };
3947 
3948 class pass_split_before_regstack : public rtl_opt_pass
3949 {
3950 public:
pass_split_before_regstack(gcc::context * ctxt)3951   pass_split_before_regstack (gcc::context *ctxt)
3952     : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3953   {}
3954 
3955   /* opt_pass methods: */
3956   virtual bool gate (function *);
execute(function *)3957   virtual unsigned int execute (function *)
3958     {
3959       split_all_insns ();
3960       return 0;
3961     }
3962 
3963 }; // class pass_split_before_regstack
3964 
3965 bool
gate(function *)3966 pass_split_before_regstack::gate (function *)
3967 {
3968 #if HAVE_ATTR_length && defined (STACK_REGS)
3969   /* If flow2 creates new instructions which need splitting
3970      and scheduling after reload is not done, they might not be
3971      split until final which doesn't allow splitting
3972      if HAVE_ATTR_length.  */
3973 # ifdef INSN_SCHEDULING
3974   return (optimize && !flag_schedule_insns_after_reload);
3975 # else
3976   return (optimize);
3977 # endif
3978 #else
3979   return 0;
3980 #endif
3981 }
3982 
3983 } // anon namespace
3984 
3985 rtl_opt_pass *
make_pass_split_before_regstack(gcc::context * ctxt)3986 make_pass_split_before_regstack (gcc::context *ctxt)
3987 {
3988   return new pass_split_before_regstack (ctxt);
3989 }
3990 
3991 static unsigned int
rest_of_handle_split_before_sched2(void)3992 rest_of_handle_split_before_sched2 (void)
3993 {
3994 #ifdef INSN_SCHEDULING
3995   split_all_insns ();
3996 #endif
3997   return 0;
3998 }
3999 
4000 namespace {
4001 
4002 const pass_data pass_data_split_before_sched2 =
4003 {
4004   RTL_PASS, /* type */
4005   "split4", /* name */
4006   OPTGROUP_NONE, /* optinfo_flags */
4007   TV_NONE, /* tv_id */
4008   0, /* properties_required */
4009   0, /* properties_provided */
4010   0, /* properties_destroyed */
4011   0, /* todo_flags_start */
4012   0, /* todo_flags_finish */
4013 };
4014 
4015 class pass_split_before_sched2 : public rtl_opt_pass
4016 {
4017 public:
pass_split_before_sched2(gcc::context * ctxt)4018   pass_split_before_sched2 (gcc::context *ctxt)
4019     : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4020   {}
4021 
4022   /* opt_pass methods: */
gate(function *)4023   virtual bool gate (function *)
4024     {
4025 #ifdef INSN_SCHEDULING
4026       return optimize > 0 && flag_schedule_insns_after_reload;
4027 #else
4028       return false;
4029 #endif
4030     }
4031 
execute(function *)4032   virtual unsigned int execute (function *)
4033     {
4034       return rest_of_handle_split_before_sched2 ();
4035     }
4036 
4037 }; // class pass_split_before_sched2
4038 
4039 } // anon namespace
4040 
4041 rtl_opt_pass *
make_pass_split_before_sched2(gcc::context * ctxt)4042 make_pass_split_before_sched2 (gcc::context *ctxt)
4043 {
4044   return new pass_split_before_sched2 (ctxt);
4045 }
4046 
4047 namespace {
4048 
4049 const pass_data pass_data_split_for_shorten_branches =
4050 {
4051   RTL_PASS, /* type */
4052   "split5", /* name */
4053   OPTGROUP_NONE, /* optinfo_flags */
4054   TV_NONE, /* tv_id */
4055   0, /* properties_required */
4056   0, /* properties_provided */
4057   0, /* properties_destroyed */
4058   0, /* todo_flags_start */
4059   0, /* todo_flags_finish */
4060 };
4061 
4062 class pass_split_for_shorten_branches : public rtl_opt_pass
4063 {
4064 public:
pass_split_for_shorten_branches(gcc::context * ctxt)4065   pass_split_for_shorten_branches (gcc::context *ctxt)
4066     : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4067   {}
4068 
4069   /* opt_pass methods: */
gate(function *)4070   virtual bool gate (function *)
4071     {
4072       /* The placement of the splitting that we do for shorten_branches
4073 	 depends on whether regstack is used by the target or not.  */
4074 #if HAVE_ATTR_length && !defined (STACK_REGS)
4075       return true;
4076 #else
4077       return false;
4078 #endif
4079     }
4080 
execute(function *)4081   virtual unsigned int execute (function *)
4082     {
4083       return split_all_insns_noflow ();
4084     }
4085 
4086 }; // class pass_split_for_shorten_branches
4087 
4088 } // anon namespace
4089 
4090 rtl_opt_pass *
make_pass_split_for_shorten_branches(gcc::context * ctxt)4091 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4092 {
4093   return new pass_split_for_shorten_branches (ctxt);
4094 }
4095 
4096 /* (Re)initialize the target information after a change in target.  */
4097 
4098 void
recog_init()4099 recog_init ()
4100 {
4101   /* The information is zero-initialized, so we don't need to do anything
4102      first time round.  */
4103   if (!this_target_recog->x_initialized)
4104     {
4105       this_target_recog->x_initialized = true;
4106       return;
4107     }
4108   memset (this_target_recog->x_bool_attr_masks, 0,
4109 	  sizeof (this_target_recog->x_bool_attr_masks));
4110   for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4111     if (this_target_recog->x_op_alt[i])
4112       {
4113 	free (this_target_recog->x_op_alt[i]);
4114 	this_target_recog->x_op_alt[i] = 0;
4115       }
4116 }
4117