1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "stringpool.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "cgraph.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "varasm.h"
37 #include "print-tree.h"
38 #include "langhooks.h"
39 #include "tree-inline.h"
40 #include "tree-dump.h"
41 #include "gimplify.h"
42 #include "debug.h"
43
44 /* Data type for the expressions representing sizes of data types.
45 It is the first integer type laid out. */
46 tree sizetype_tab[(int) stk_type_kind_last];
47
48 /* If nonzero, this is an upper limit on alignment of structure fields.
49 The value is measured in bits. */
50 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
51
52 static tree self_referential_size (tree);
53 static void finalize_record_size (record_layout_info);
54 static void finalize_type_size (tree);
55 static void place_union_field (record_layout_info, tree);
56 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
57 HOST_WIDE_INT, tree);
58 extern void debug_rli (record_layout_info);
59
60 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
61 to serve as the actual size-expression for a type or decl. */
62
63 tree
variable_size(tree size)64 variable_size (tree size)
65 {
66 /* Obviously. */
67 if (TREE_CONSTANT (size))
68 return size;
69
70 /* If the size is self-referential, we can't make a SAVE_EXPR (see
71 save_expr for the rationale). But we can do something else. */
72 if (CONTAINS_PLACEHOLDER_P (size))
73 return self_referential_size (size);
74
75 /* If we are in the global binding level, we can't make a SAVE_EXPR
76 since it may end up being shared across functions, so it is up
77 to the front-end to deal with this case. */
78 if (lang_hooks.decls.global_bindings_p ())
79 return size;
80
81 return save_expr (size);
82 }
83
84 /* An array of functions used for self-referential size computation. */
85 static GTY(()) vec<tree, va_gc> *size_functions;
86
87 /* Return true if T is a self-referential component reference. */
88
89 static bool
self_referential_component_ref_p(tree t)90 self_referential_component_ref_p (tree t)
91 {
92 if (TREE_CODE (t) != COMPONENT_REF)
93 return false;
94
95 while (REFERENCE_CLASS_P (t))
96 t = TREE_OPERAND (t, 0);
97
98 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
99 }
100
101 /* Similar to copy_tree_r but do not copy component references involving
102 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
103 and substituted in substitute_in_expr. */
104
105 static tree
copy_self_referential_tree_r(tree * tp,int * walk_subtrees,void * data)106 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
107 {
108 enum tree_code code = TREE_CODE (*tp);
109
110 /* Stop at types, decls, constants like copy_tree_r. */
111 if (TREE_CODE_CLASS (code) == tcc_type
112 || TREE_CODE_CLASS (code) == tcc_declaration
113 || TREE_CODE_CLASS (code) == tcc_constant)
114 {
115 *walk_subtrees = 0;
116 return NULL_TREE;
117 }
118
119 /* This is the pattern built in ada/make_aligning_type. */
120 else if (code == ADDR_EXPR
121 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
122 {
123 *walk_subtrees = 0;
124 return NULL_TREE;
125 }
126
127 /* Default case: the component reference. */
128 else if (self_referential_component_ref_p (*tp))
129 {
130 *walk_subtrees = 0;
131 return NULL_TREE;
132 }
133
134 /* We're not supposed to have them in self-referential size trees
135 because we wouldn't properly control when they are evaluated.
136 However, not creating superfluous SAVE_EXPRs requires accurate
137 tracking of readonly-ness all the way down to here, which we
138 cannot always guarantee in practice. So punt in this case. */
139 else if (code == SAVE_EXPR)
140 return error_mark_node;
141
142 else if (code == STATEMENT_LIST)
143 gcc_unreachable ();
144
145 return copy_tree_r (tp, walk_subtrees, data);
146 }
147
148 /* Given a SIZE expression that is self-referential, return an equivalent
149 expression to serve as the actual size expression for a type. */
150
151 static tree
self_referential_size(tree size)152 self_referential_size (tree size)
153 {
154 static unsigned HOST_WIDE_INT fnno = 0;
155 vec<tree> self_refs = vNULL;
156 tree param_type_list = NULL, param_decl_list = NULL;
157 tree t, ref, return_type, fntype, fnname, fndecl;
158 unsigned int i;
159 char buf[128];
160 vec<tree, va_gc> *args = NULL;
161
162 /* Do not factor out simple operations. */
163 t = skip_simple_constant_arithmetic (size);
164 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
165 return size;
166
167 /* Collect the list of self-references in the expression. */
168 find_placeholder_in_expr (size, &self_refs);
169 gcc_assert (self_refs.length () > 0);
170
171 /* Obtain a private copy of the expression. */
172 t = size;
173 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
174 return size;
175 size = t;
176
177 /* Build the parameter and argument lists in parallel; also
178 substitute the former for the latter in the expression. */
179 vec_alloc (args, self_refs.length ());
180 FOR_EACH_VEC_ELT (self_refs, i, ref)
181 {
182 tree subst, param_name, param_type, param_decl;
183
184 if (DECL_P (ref))
185 {
186 /* We shouldn't have true variables here. */
187 gcc_assert (TREE_READONLY (ref));
188 subst = ref;
189 }
190 /* This is the pattern built in ada/make_aligning_type. */
191 else if (TREE_CODE (ref) == ADDR_EXPR)
192 subst = ref;
193 /* Default case: the component reference. */
194 else
195 subst = TREE_OPERAND (ref, 1);
196
197 sprintf (buf, "p%d", i);
198 param_name = get_identifier (buf);
199 param_type = TREE_TYPE (ref);
200 param_decl
201 = build_decl (input_location, PARM_DECL, param_name, param_type);
202 DECL_ARG_TYPE (param_decl) = param_type;
203 DECL_ARTIFICIAL (param_decl) = 1;
204 TREE_READONLY (param_decl) = 1;
205
206 size = substitute_in_expr (size, subst, param_decl);
207
208 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
209 param_decl_list = chainon (param_decl, param_decl_list);
210 args->quick_push (ref);
211 }
212
213 self_refs.release ();
214
215 /* Append 'void' to indicate that the number of parameters is fixed. */
216 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
217
218 /* The 3 lists have been created in reverse order. */
219 param_type_list = nreverse (param_type_list);
220 param_decl_list = nreverse (param_decl_list);
221
222 /* Build the function type. */
223 return_type = TREE_TYPE (size);
224 fntype = build_function_type (return_type, param_type_list);
225
226 /* Build the function declaration. */
227 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
228 fnname = get_file_function_name (buf);
229 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
230 for (t = param_decl_list; t; t = DECL_CHAIN (t))
231 DECL_CONTEXT (t) = fndecl;
232 DECL_ARGUMENTS (fndecl) = param_decl_list;
233 DECL_RESULT (fndecl)
234 = build_decl (input_location, RESULT_DECL, 0, return_type);
235 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
236
237 /* The function has been created by the compiler and we don't
238 want to emit debug info for it. */
239 DECL_ARTIFICIAL (fndecl) = 1;
240 DECL_IGNORED_P (fndecl) = 1;
241
242 /* It is supposed to be "const" and never throw. */
243 TREE_READONLY (fndecl) = 1;
244 TREE_NOTHROW (fndecl) = 1;
245
246 /* We want it to be inlined when this is deemed profitable, as
247 well as discarded if every call has been integrated. */
248 DECL_DECLARED_INLINE_P (fndecl) = 1;
249
250 /* It is made up of a unique return statement. */
251 DECL_INITIAL (fndecl) = make_node (BLOCK);
252 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
253 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
254 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
255 TREE_STATIC (fndecl) = 1;
256
257 /* Put it onto the list of size functions. */
258 vec_safe_push (size_functions, fndecl);
259
260 /* Replace the original expression with a call to the size function. */
261 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
262 }
263
264 /* Take, queue and compile all the size functions. It is essential that
265 the size functions be gimplified at the very end of the compilation
266 in order to guarantee transparent handling of self-referential sizes.
267 Otherwise the GENERIC inliner would not be able to inline them back
268 at each of their call sites, thus creating artificial non-constant
269 size expressions which would trigger nasty problems later on. */
270
271 void
finalize_size_functions(void)272 finalize_size_functions (void)
273 {
274 unsigned int i;
275 tree fndecl;
276
277 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
278 {
279 allocate_struct_function (fndecl, false);
280 set_cfun (NULL);
281 dump_function (TDI_original, fndecl);
282
283 /* As these functions are used to describe the layout of variable-length
284 structures, debug info generation needs their implementation. */
285 debug_hooks->size_function (fndecl);
286 gimplify_function_tree (fndecl);
287 cgraph_node::finalize_function (fndecl, false);
288 }
289
290 vec_free (size_functions);
291 }
292
293 /* Return the machine mode to use for a nonscalar of SIZE bits. The
294 mode must be in class MCLASS, and have exactly that many value bits;
295 it may have padding as well. If LIMIT is nonzero, modes of wider
296 than MAX_FIXED_MODE_SIZE will not be used. */
297
298 machine_mode
mode_for_size(unsigned int size,enum mode_class mclass,int limit)299 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
300 {
301 machine_mode mode;
302 int i;
303
304 if (limit && size > MAX_FIXED_MODE_SIZE)
305 return BLKmode;
306
307 /* Get the first mode which has this size, in the specified class. */
308 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
309 mode = GET_MODE_WIDER_MODE (mode))
310 if (GET_MODE_PRECISION (mode) == size)
311 return mode;
312
313 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
314 for (i = 0; i < NUM_INT_N_ENTS; i ++)
315 if (int_n_data[i].bitsize == size
316 && int_n_enabled_p[i])
317 return int_n_data[i].m;
318
319 return BLKmode;
320 }
321
322 /* Similar, except passed a tree node. */
323
324 machine_mode
mode_for_size_tree(const_tree size,enum mode_class mclass,int limit)325 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
326 {
327 unsigned HOST_WIDE_INT uhwi;
328 unsigned int ui;
329
330 if (!tree_fits_uhwi_p (size))
331 return BLKmode;
332 uhwi = tree_to_uhwi (size);
333 ui = uhwi;
334 if (uhwi != ui)
335 return BLKmode;
336 return mode_for_size (ui, mclass, limit);
337 }
338
339 /* Similar, but never return BLKmode; return the narrowest mode that
340 contains at least the requested number of value bits. */
341
342 machine_mode
smallest_mode_for_size(unsigned int size,enum mode_class mclass)343 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
344 {
345 machine_mode mode = VOIDmode;
346 int i;
347
348 /* Get the first mode which has at least this size, in the
349 specified class. */
350 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
351 mode = GET_MODE_WIDER_MODE (mode))
352 if (GET_MODE_PRECISION (mode) >= size)
353 break;
354
355 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
356 for (i = 0; i < NUM_INT_N_ENTS; i ++)
357 if (int_n_data[i].bitsize >= size
358 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
359 && int_n_enabled_p[i])
360 mode = int_n_data[i].m;
361
362 if (mode == VOIDmode)
363 gcc_unreachable ();
364
365 return mode;
366 }
367
368 /* Find an integer mode of the exact same size, or BLKmode on failure. */
369
370 machine_mode
int_mode_for_mode(machine_mode mode)371 int_mode_for_mode (machine_mode mode)
372 {
373 switch (GET_MODE_CLASS (mode))
374 {
375 case MODE_INT:
376 case MODE_PARTIAL_INT:
377 break;
378
379 case MODE_COMPLEX_INT:
380 case MODE_COMPLEX_FLOAT:
381 case MODE_FLOAT:
382 case MODE_DECIMAL_FLOAT:
383 case MODE_VECTOR_INT:
384 case MODE_VECTOR_FLOAT:
385 case MODE_FRACT:
386 case MODE_ACCUM:
387 case MODE_UFRACT:
388 case MODE_UACCUM:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 case MODE_POINTER_BOUNDS:
394 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
395 break;
396
397 case MODE_RANDOM:
398 if (mode == BLKmode)
399 break;
400
401 /* ... fall through ... */
402
403 case MODE_CC:
404 default:
405 gcc_unreachable ();
406 }
407
408 return mode;
409 }
410
411 /* Find a mode that can be used for efficient bitwise operations on MODE.
412 Return BLKmode if no such mode exists. */
413
414 machine_mode
bitwise_mode_for_mode(machine_mode mode)415 bitwise_mode_for_mode (machine_mode mode)
416 {
417 /* Quick exit if we already have a suitable mode. */
418 unsigned int bitsize = GET_MODE_BITSIZE (mode);
419 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
420 return mode;
421
422 /* Reuse the sanity checks from int_mode_for_mode. */
423 gcc_checking_assert ((int_mode_for_mode (mode), true));
424
425 /* Try to replace complex modes with complex modes. In general we
426 expect both components to be processed independently, so we only
427 care whether there is a register for the inner mode. */
428 if (COMPLEX_MODE_P (mode))
429 {
430 machine_mode trial = mode;
431 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
432 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
433 if (trial != BLKmode
434 && have_regs_of_mode[GET_MODE_INNER (trial)])
435 return trial;
436 }
437
438 /* Try to replace vector modes with vector modes. Also try using vector
439 modes if an integer mode would be too big. */
440 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
441 {
442 machine_mode trial = mode;
443 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
444 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
445 if (trial != BLKmode
446 && have_regs_of_mode[trial]
447 && targetm.vector_mode_supported_p (trial))
448 return trial;
449 }
450
451 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
452 return mode_for_size (bitsize, MODE_INT, true);
453 }
454
455 /* Find a type that can be used for efficient bitwise operations on MODE.
456 Return null if no such mode exists. */
457
458 tree
bitwise_type_for_mode(machine_mode mode)459 bitwise_type_for_mode (machine_mode mode)
460 {
461 mode = bitwise_mode_for_mode (mode);
462 if (mode == BLKmode)
463 return NULL_TREE;
464
465 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
466 tree inner_type = build_nonstandard_integer_type (inner_size, true);
467
468 if (VECTOR_MODE_P (mode))
469 return build_vector_type_for_mode (inner_type, mode);
470
471 if (COMPLEX_MODE_P (mode))
472 return build_complex_type (inner_type);
473
474 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
475 return inner_type;
476 }
477
478 /* Find a mode that is suitable for representing a vector with
479 NUNITS elements of mode INNERMODE. Returns BLKmode if there
480 is no suitable mode. */
481
482 machine_mode
mode_for_vector(machine_mode innermode,unsigned nunits)483 mode_for_vector (machine_mode innermode, unsigned nunits)
484 {
485 machine_mode mode;
486
487 /* First, look for a supported vector type. */
488 if (SCALAR_FLOAT_MODE_P (innermode))
489 mode = MIN_MODE_VECTOR_FLOAT;
490 else if (SCALAR_FRACT_MODE_P (innermode))
491 mode = MIN_MODE_VECTOR_FRACT;
492 else if (SCALAR_UFRACT_MODE_P (innermode))
493 mode = MIN_MODE_VECTOR_UFRACT;
494 else if (SCALAR_ACCUM_MODE_P (innermode))
495 mode = MIN_MODE_VECTOR_ACCUM;
496 else if (SCALAR_UACCUM_MODE_P (innermode))
497 mode = MIN_MODE_VECTOR_UACCUM;
498 else
499 mode = MIN_MODE_VECTOR_INT;
500
501 /* Do not check vector_mode_supported_p here. We'll do that
502 later in vector_type_mode. */
503 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
504 if (GET_MODE_NUNITS (mode) == nunits
505 && GET_MODE_INNER (mode) == innermode)
506 break;
507
508 /* For integers, try mapping it to a same-sized scalar mode. */
509 if (mode == VOIDmode
510 && GET_MODE_CLASS (innermode) == MODE_INT)
511 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
512 MODE_INT, 0);
513
514 if (mode == VOIDmode
515 || (GET_MODE_CLASS (mode) == MODE_INT
516 && !have_regs_of_mode[mode]))
517 return BLKmode;
518
519 return mode;
520 }
521
522 /* Return the alignment of MODE. This will be bounded by 1 and
523 BIGGEST_ALIGNMENT. */
524
525 unsigned int
get_mode_alignment(machine_mode mode)526 get_mode_alignment (machine_mode mode)
527 {
528 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
529 }
530
531 /* Return the natural mode of an array, given that it is SIZE bytes in
532 total and has elements of type ELEM_TYPE. */
533
534 static machine_mode
mode_for_array(tree elem_type,tree size)535 mode_for_array (tree elem_type, tree size)
536 {
537 tree elem_size;
538 unsigned HOST_WIDE_INT int_size, int_elem_size;
539 bool limit_p;
540
541 /* One-element arrays get the component type's mode. */
542 elem_size = TYPE_SIZE (elem_type);
543 if (simple_cst_equal (size, elem_size))
544 return TYPE_MODE (elem_type);
545
546 limit_p = true;
547 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
548 {
549 int_size = tree_to_uhwi (size);
550 int_elem_size = tree_to_uhwi (elem_size);
551 if (int_elem_size > 0
552 && int_size % int_elem_size == 0
553 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
554 int_size / int_elem_size))
555 limit_p = false;
556 }
557 return mode_for_size_tree (size, MODE_INT, limit_p);
558 }
559
560 /* Subroutine of layout_decl: Force alignment required for the data type.
561 But if the decl itself wants greater alignment, don't override that. */
562
563 static inline void
do_type_align(tree type,tree decl)564 do_type_align (tree type, tree decl)
565 {
566 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
567 {
568 DECL_ALIGN (decl) = TYPE_ALIGN (type);
569 if (TREE_CODE (decl) == FIELD_DECL)
570 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
571 }
572 }
573
574 /* Set the size, mode and alignment of a ..._DECL node.
575 TYPE_DECL does need this for C++.
576 Note that LABEL_DECL and CONST_DECL nodes do not need this,
577 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
578 Don't call layout_decl for them.
579
580 KNOWN_ALIGN is the amount of alignment we can assume this
581 decl has with no special effort. It is relevant only for FIELD_DECLs
582 and depends on the previous fields.
583 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
584 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
585 the record will be aligned to suit. */
586
587 void
layout_decl(tree decl,unsigned int known_align)588 layout_decl (tree decl, unsigned int known_align)
589 {
590 tree type = TREE_TYPE (decl);
591 enum tree_code code = TREE_CODE (decl);
592 rtx rtl = NULL_RTX;
593 location_t loc = DECL_SOURCE_LOCATION (decl);
594
595 if (code == CONST_DECL)
596 return;
597
598 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
599 || code == TYPE_DECL ||code == FIELD_DECL);
600
601 rtl = DECL_RTL_IF_SET (decl);
602
603 if (type == error_mark_node)
604 type = void_type_node;
605
606 /* Usually the size and mode come from the data type without change,
607 however, the front-end may set the explicit width of the field, so its
608 size may not be the same as the size of its type. This happens with
609 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
610 also happens with other fields. For example, the C++ front-end creates
611 zero-sized fields corresponding to empty base classes, and depends on
612 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
613 size in bytes from the size in bits. If we have already set the mode,
614 don't set it again since we can be called twice for FIELD_DECLs. */
615
616 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
617 if (DECL_MODE (decl) == VOIDmode)
618 DECL_MODE (decl) = TYPE_MODE (type);
619
620 if (DECL_SIZE (decl) == 0)
621 {
622 DECL_SIZE (decl) = TYPE_SIZE (type);
623 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
624 }
625 else if (DECL_SIZE_UNIT (decl) == 0)
626 DECL_SIZE_UNIT (decl)
627 = fold_convert_loc (loc, sizetype,
628 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
629 bitsize_unit_node));
630
631 if (code != FIELD_DECL)
632 /* For non-fields, update the alignment from the type. */
633 do_type_align (type, decl);
634 else
635 /* For fields, it's a bit more complicated... */
636 {
637 bool old_user_align = DECL_USER_ALIGN (decl);
638 bool zero_bitfield = false;
639 bool packed_p = DECL_PACKED (decl);
640 unsigned int mfa;
641
642 if (DECL_BIT_FIELD (decl))
643 {
644 DECL_BIT_FIELD_TYPE (decl) = type;
645
646 /* A zero-length bit-field affects the alignment of the next
647 field. In essence such bit-fields are not influenced by
648 any packing due to #pragma pack or attribute packed. */
649 if (integer_zerop (DECL_SIZE (decl))
650 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
651 {
652 zero_bitfield = true;
653 packed_p = false;
654 if (PCC_BITFIELD_TYPE_MATTERS)
655 do_type_align (type, decl);
656 else
657 {
658 #ifdef EMPTY_FIELD_BOUNDARY
659 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
660 {
661 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
662 DECL_USER_ALIGN (decl) = 0;
663 }
664 #endif
665 }
666 }
667
668 /* See if we can use an ordinary integer mode for a bit-field.
669 Conditions are: a fixed size that is correct for another mode,
670 occupying a complete byte or bytes on proper boundary. */
671 if (TYPE_SIZE (type) != 0
672 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
673 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
674 {
675 machine_mode xmode
676 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
677 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
678
679 if (xmode != BLKmode
680 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
681 && (known_align == 0 || known_align >= xalign))
682 {
683 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
684 DECL_MODE (decl) = xmode;
685 DECL_BIT_FIELD (decl) = 0;
686 }
687 }
688
689 /* Turn off DECL_BIT_FIELD if we won't need it set. */
690 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
691 && known_align >= TYPE_ALIGN (type)
692 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
693 DECL_BIT_FIELD (decl) = 0;
694 }
695 else if (packed_p && DECL_USER_ALIGN (decl))
696 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
697 round up; we'll reduce it again below. We want packing to
698 supersede USER_ALIGN inherited from the type, but defer to
699 alignment explicitly specified on the field decl. */;
700 else
701 do_type_align (type, decl);
702
703 /* If the field is packed and not explicitly aligned, give it the
704 minimum alignment. Note that do_type_align may set
705 DECL_USER_ALIGN, so we need to check old_user_align instead. */
706 if (packed_p
707 && !old_user_align)
708 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
709
710 if (! packed_p && ! DECL_USER_ALIGN (decl))
711 {
712 /* Some targets (i.e. i386, VMS) limit struct field alignment
713 to a lower boundary than alignment of variables unless
714 it was overridden by attribute aligned. */
715 #ifdef BIGGEST_FIELD_ALIGNMENT
716 DECL_ALIGN (decl)
717 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
718 #endif
719 #ifdef ADJUST_FIELD_ALIGN
720 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
721 #endif
722 }
723
724 if (zero_bitfield)
725 mfa = initial_max_fld_align * BITS_PER_UNIT;
726 else
727 mfa = maximum_field_alignment;
728 /* Should this be controlled by DECL_USER_ALIGN, too? */
729 if (mfa != 0)
730 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
731 }
732
733 /* Evaluate nonconstant size only once, either now or as soon as safe. */
734 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
735 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
736 if (DECL_SIZE_UNIT (decl) != 0
737 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
738 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
739
740 /* If requested, warn about definitions of large data objects. */
741 if (warn_larger_than
742 && (code == VAR_DECL || code == PARM_DECL)
743 && ! DECL_EXTERNAL (decl))
744 {
745 tree size = DECL_SIZE_UNIT (decl);
746
747 if (size != 0 && TREE_CODE (size) == INTEGER_CST
748 && compare_tree_int (size, larger_than_size) > 0)
749 {
750 int size_as_int = TREE_INT_CST_LOW (size);
751
752 if (compare_tree_int (size, size_as_int) == 0)
753 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
754 else
755 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
756 decl, larger_than_size);
757 }
758 }
759
760 /* If the RTL was already set, update its mode and mem attributes. */
761 if (rtl)
762 {
763 PUT_MODE (rtl, DECL_MODE (decl));
764 SET_DECL_RTL (decl, 0);
765 if (MEM_P (rtl))
766 set_mem_attributes (rtl, decl, 1);
767 SET_DECL_RTL (decl, rtl);
768 }
769 }
770
771 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
772 a previous call to layout_decl and calls it again. */
773
774 void
relayout_decl(tree decl)775 relayout_decl (tree decl)
776 {
777 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
778 DECL_MODE (decl) = VOIDmode;
779 if (!DECL_USER_ALIGN (decl))
780 DECL_ALIGN (decl) = 0;
781 SET_DECL_RTL (decl, 0);
782
783 layout_decl (decl, 0);
784 }
785
786 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
787 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
788 is to be passed to all other layout functions for this record. It is the
789 responsibility of the caller to call `free' for the storage returned.
790 Note that garbage collection is not permitted until we finish laying
791 out the record. */
792
793 record_layout_info
start_record_layout(tree t)794 start_record_layout (tree t)
795 {
796 record_layout_info rli = XNEW (struct record_layout_info_s);
797
798 rli->t = t;
799
800 /* If the type has a minimum specified alignment (via an attribute
801 declaration, for example) use it -- otherwise, start with a
802 one-byte alignment. */
803 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
804 rli->unpacked_align = rli->record_align;
805 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
806
807 #ifdef STRUCTURE_SIZE_BOUNDARY
808 /* Packed structures don't need to have minimum size. */
809 if (! TYPE_PACKED (t))
810 {
811 unsigned tmp;
812
813 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
814 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
815 if (maximum_field_alignment != 0)
816 tmp = MIN (tmp, maximum_field_alignment);
817 rli->record_align = MAX (rli->record_align, tmp);
818 }
819 #endif
820
821 rli->offset = size_zero_node;
822 rli->bitpos = bitsize_zero_node;
823 rli->prev_field = 0;
824 rli->pending_statics = 0;
825 rli->packed_maybe_necessary = 0;
826 rli->remaining_in_alignment = 0;
827
828 return rli;
829 }
830
831 /* Return the combined bit position for the byte offset OFFSET and the
832 bit position BITPOS.
833
834 These functions operate on byte and bit positions present in FIELD_DECLs
835 and assume that these expressions result in no (intermediate) overflow.
836 This assumption is necessary to fold the expressions as much as possible,
837 so as to avoid creating artificially variable-sized types in languages
838 supporting variable-sized types like Ada. */
839
840 tree
bit_from_pos(tree offset,tree bitpos)841 bit_from_pos (tree offset, tree bitpos)
842 {
843 if (TREE_CODE (offset) == PLUS_EXPR)
844 offset = size_binop (PLUS_EXPR,
845 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
846 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
847 else
848 offset = fold_convert (bitsizetype, offset);
849 return size_binop (PLUS_EXPR, bitpos,
850 size_binop (MULT_EXPR, offset, bitsize_unit_node));
851 }
852
853 /* Return the combined truncated byte position for the byte offset OFFSET and
854 the bit position BITPOS. */
855
856 tree
byte_from_pos(tree offset,tree bitpos)857 byte_from_pos (tree offset, tree bitpos)
858 {
859 tree bytepos;
860 if (TREE_CODE (bitpos) == MULT_EXPR
861 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
862 bytepos = TREE_OPERAND (bitpos, 0);
863 else
864 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
865 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
866 }
867
868 /* Split the bit position POS into a byte offset *POFFSET and a bit
869 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
870
871 void
pos_from_bit(tree * poffset,tree * pbitpos,unsigned int off_align,tree pos)872 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
873 tree pos)
874 {
875 tree toff_align = bitsize_int (off_align);
876 if (TREE_CODE (pos) == MULT_EXPR
877 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
878 {
879 *poffset = size_binop (MULT_EXPR,
880 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
881 size_int (off_align / BITS_PER_UNIT));
882 *pbitpos = bitsize_zero_node;
883 }
884 else
885 {
886 *poffset = size_binop (MULT_EXPR,
887 fold_convert (sizetype,
888 size_binop (FLOOR_DIV_EXPR, pos,
889 toff_align)),
890 size_int (off_align / BITS_PER_UNIT));
891 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
892 }
893 }
894
895 /* Given a pointer to bit and byte offsets and an offset alignment,
896 normalize the offsets so they are within the alignment. */
897
898 void
normalize_offset(tree * poffset,tree * pbitpos,unsigned int off_align)899 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
900 {
901 /* If the bit position is now larger than it should be, adjust it
902 downwards. */
903 if (compare_tree_int (*pbitpos, off_align) >= 0)
904 {
905 tree offset, bitpos;
906 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
907 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
908 *pbitpos = bitpos;
909 }
910 }
911
912 /* Print debugging information about the information in RLI. */
913
914 DEBUG_FUNCTION void
debug_rli(record_layout_info rli)915 debug_rli (record_layout_info rli)
916 {
917 print_node_brief (stderr, "type", rli->t, 0);
918 print_node_brief (stderr, "\noffset", rli->offset, 0);
919 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
920
921 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
922 rli->record_align, rli->unpacked_align,
923 rli->offset_align);
924
925 /* The ms_struct code is the only that uses this. */
926 if (targetm.ms_bitfield_layout_p (rli->t))
927 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
928
929 if (rli->packed_maybe_necessary)
930 fprintf (stderr, "packed may be necessary\n");
931
932 if (!vec_safe_is_empty (rli->pending_statics))
933 {
934 fprintf (stderr, "pending statics:\n");
935 debug_vec_tree (rli->pending_statics);
936 }
937 }
938
939 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
940 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
941
942 void
normalize_rli(record_layout_info rli)943 normalize_rli (record_layout_info rli)
944 {
945 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
946 }
947
948 /* Returns the size in bytes allocated so far. */
949
950 tree
rli_size_unit_so_far(record_layout_info rli)951 rli_size_unit_so_far (record_layout_info rli)
952 {
953 return byte_from_pos (rli->offset, rli->bitpos);
954 }
955
956 /* Returns the size in bits allocated so far. */
957
958 tree
rli_size_so_far(record_layout_info rli)959 rli_size_so_far (record_layout_info rli)
960 {
961 return bit_from_pos (rli->offset, rli->bitpos);
962 }
963
964 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
965 the next available location within the record is given by KNOWN_ALIGN.
966 Update the variable alignment fields in RLI, and return the alignment
967 to give the FIELD. */
968
969 unsigned int
update_alignment_for_field(record_layout_info rli,tree field,unsigned int known_align)970 update_alignment_for_field (record_layout_info rli, tree field,
971 unsigned int known_align)
972 {
973 /* The alignment required for FIELD. */
974 unsigned int desired_align;
975 /* The type of this field. */
976 tree type = TREE_TYPE (field);
977 /* True if the field was explicitly aligned by the user. */
978 bool user_align;
979 bool is_bitfield;
980
981 /* Do not attempt to align an ERROR_MARK node */
982 if (TREE_CODE (type) == ERROR_MARK)
983 return 0;
984
985 /* Lay out the field so we know what alignment it needs. */
986 layout_decl (field, known_align);
987 desired_align = DECL_ALIGN (field);
988 user_align = DECL_USER_ALIGN (field);
989
990 is_bitfield = (type != error_mark_node
991 && DECL_BIT_FIELD_TYPE (field)
992 && ! integer_zerop (TYPE_SIZE (type)));
993
994 /* Record must have at least as much alignment as any field.
995 Otherwise, the alignment of the field within the record is
996 meaningless. */
997 if (targetm.ms_bitfield_layout_p (rli->t))
998 {
999 /* Here, the alignment of the underlying type of a bitfield can
1000 affect the alignment of a record; even a zero-sized field
1001 can do this. The alignment should be to the alignment of
1002 the type, except that for zero-size bitfields this only
1003 applies if there was an immediately prior, nonzero-size
1004 bitfield. (That's the way it is, experimentally.) */
1005 if ((!is_bitfield && !DECL_PACKED (field))
1006 || ((DECL_SIZE (field) == NULL_TREE
1007 || !integer_zerop (DECL_SIZE (field)))
1008 ? !DECL_PACKED (field)
1009 : (rli->prev_field
1010 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1011 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1012 {
1013 unsigned int type_align = TYPE_ALIGN (type);
1014 type_align = MAX (type_align, desired_align);
1015 if (maximum_field_alignment != 0)
1016 type_align = MIN (type_align, maximum_field_alignment);
1017 rli->record_align = MAX (rli->record_align, type_align);
1018 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1019 }
1020 }
1021 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1022 {
1023 /* Named bit-fields cause the entire structure to have the
1024 alignment implied by their type. Some targets also apply the same
1025 rules to unnamed bitfields. */
1026 if (DECL_NAME (field) != 0
1027 || targetm.align_anon_bitfield ())
1028 {
1029 unsigned int type_align = TYPE_ALIGN (type);
1030
1031 #ifdef ADJUST_FIELD_ALIGN
1032 if (! TYPE_USER_ALIGN (type))
1033 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1034 #endif
1035
1036 /* Targets might chose to handle unnamed and hence possibly
1037 zero-width bitfield. Those are not influenced by #pragmas
1038 or packed attributes. */
1039 if (integer_zerop (DECL_SIZE (field)))
1040 {
1041 if (initial_max_fld_align)
1042 type_align = MIN (type_align,
1043 initial_max_fld_align * BITS_PER_UNIT);
1044 }
1045 else if (maximum_field_alignment != 0)
1046 type_align = MIN (type_align, maximum_field_alignment);
1047 else if (DECL_PACKED (field))
1048 type_align = MIN (type_align, BITS_PER_UNIT);
1049
1050 /* The alignment of the record is increased to the maximum
1051 of the current alignment, the alignment indicated on the
1052 field (i.e., the alignment specified by an __aligned__
1053 attribute), and the alignment indicated by the type of
1054 the field. */
1055 rli->record_align = MAX (rli->record_align, desired_align);
1056 rli->record_align = MAX (rli->record_align, type_align);
1057
1058 if (warn_packed)
1059 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1060 user_align |= TYPE_USER_ALIGN (type);
1061 }
1062 }
1063 else
1064 {
1065 rli->record_align = MAX (rli->record_align, desired_align);
1066 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1067 }
1068
1069 TYPE_USER_ALIGN (rli->t) |= user_align;
1070
1071 return desired_align;
1072 }
1073
1074 /* Called from place_field to handle unions. */
1075
1076 static void
place_union_field(record_layout_info rli,tree field)1077 place_union_field (record_layout_info rli, tree field)
1078 {
1079 update_alignment_for_field (rli, field, /*known_align=*/0);
1080
1081 DECL_FIELD_OFFSET (field) = size_zero_node;
1082 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1083 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1084
1085 /* If this is an ERROR_MARK return *after* having set the
1086 field at the start of the union. This helps when parsing
1087 invalid fields. */
1088 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1089 return;
1090
1091 /* We assume the union's size will be a multiple of a byte so we don't
1092 bother with BITPOS. */
1093 if (TREE_CODE (rli->t) == UNION_TYPE)
1094 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1095 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1096 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1097 DECL_SIZE_UNIT (field), rli->offset);
1098 }
1099
1100 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1101 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1102 units of alignment than the underlying TYPE. */
1103 static int
excess_unit_span(HOST_WIDE_INT byte_offset,HOST_WIDE_INT bit_offset,HOST_WIDE_INT size,HOST_WIDE_INT align,tree type)1104 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1105 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1106 {
1107 /* Note that the calculation of OFFSET might overflow; we calculate it so
1108 that we still get the right result as long as ALIGN is a power of two. */
1109 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1110
1111 offset = offset % align;
1112 return ((offset + size + align - 1) / align
1113 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1114 }
1115
1116 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1117 is a FIELD_DECL to be added after those fields already present in
1118 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1119 callers that desire that behavior must manually perform that step.) */
1120
1121 void
place_field(record_layout_info rli,tree field)1122 place_field (record_layout_info rli, tree field)
1123 {
1124 /* The alignment required for FIELD. */
1125 unsigned int desired_align;
1126 /* The alignment FIELD would have if we just dropped it into the
1127 record as it presently stands. */
1128 unsigned int known_align;
1129 unsigned int actual_align;
1130 /* The type of this field. */
1131 tree type = TREE_TYPE (field);
1132
1133 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1134
1135 /* If FIELD is static, then treat it like a separate variable, not
1136 really like a structure field. If it is a FUNCTION_DECL, it's a
1137 method. In both cases, all we do is lay out the decl, and we do
1138 it *after* the record is laid out. */
1139 if (TREE_CODE (field) == VAR_DECL)
1140 {
1141 vec_safe_push (rli->pending_statics, field);
1142 return;
1143 }
1144
1145 /* Enumerators and enum types which are local to this class need not
1146 be laid out. Likewise for initialized constant fields. */
1147 else if (TREE_CODE (field) != FIELD_DECL)
1148 return;
1149
1150 /* Unions are laid out very differently than records, so split
1151 that code off to another function. */
1152 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1153 {
1154 place_union_field (rli, field);
1155 return;
1156 }
1157
1158 else if (TREE_CODE (type) == ERROR_MARK)
1159 {
1160 /* Place this field at the current allocation position, so we
1161 maintain monotonicity. */
1162 DECL_FIELD_OFFSET (field) = rli->offset;
1163 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1164 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1165 return;
1166 }
1167
1168 /* Work out the known alignment so far. Note that A & (-A) is the
1169 value of the least-significant bit in A that is one. */
1170 if (! integer_zerop (rli->bitpos))
1171 known_align = (tree_to_uhwi (rli->bitpos)
1172 & - tree_to_uhwi (rli->bitpos));
1173 else if (integer_zerop (rli->offset))
1174 known_align = 0;
1175 else if (tree_fits_uhwi_p (rli->offset))
1176 known_align = (BITS_PER_UNIT
1177 * (tree_to_uhwi (rli->offset)
1178 & - tree_to_uhwi (rli->offset)));
1179 else
1180 known_align = rli->offset_align;
1181
1182 desired_align = update_alignment_for_field (rli, field, known_align);
1183 if (known_align == 0)
1184 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1185
1186 if (warn_packed && DECL_PACKED (field))
1187 {
1188 if (known_align >= TYPE_ALIGN (type))
1189 {
1190 if (TYPE_ALIGN (type) > desired_align)
1191 {
1192 if (STRICT_ALIGNMENT)
1193 warning (OPT_Wattributes, "packed attribute causes "
1194 "inefficient alignment for %q+D", field);
1195 /* Don't warn if DECL_PACKED was set by the type. */
1196 else if (!TYPE_PACKED (rli->t))
1197 warning (OPT_Wattributes, "packed attribute is "
1198 "unnecessary for %q+D", field);
1199 }
1200 }
1201 else
1202 rli->packed_maybe_necessary = 1;
1203 }
1204
1205 /* Does this field automatically have alignment it needs by virtue
1206 of the fields that precede it and the record's own alignment? */
1207 if (known_align < desired_align)
1208 {
1209 /* No, we need to skip space before this field.
1210 Bump the cumulative size to multiple of field alignment. */
1211
1212 if (!targetm.ms_bitfield_layout_p (rli->t)
1213 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1214 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1215
1216 /* If the alignment is still within offset_align, just align
1217 the bit position. */
1218 if (desired_align < rli->offset_align)
1219 rli->bitpos = round_up (rli->bitpos, desired_align);
1220 else
1221 {
1222 /* First adjust OFFSET by the partial bits, then align. */
1223 rli->offset
1224 = size_binop (PLUS_EXPR, rli->offset,
1225 fold_convert (sizetype,
1226 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1227 bitsize_unit_node)));
1228 rli->bitpos = bitsize_zero_node;
1229
1230 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1231 }
1232
1233 if (! TREE_CONSTANT (rli->offset))
1234 rli->offset_align = desired_align;
1235 if (targetm.ms_bitfield_layout_p (rli->t))
1236 rli->prev_field = NULL;
1237 }
1238
1239 /* Handle compatibility with PCC. Note that if the record has any
1240 variable-sized fields, we need not worry about compatibility. */
1241 if (PCC_BITFIELD_TYPE_MATTERS
1242 && ! targetm.ms_bitfield_layout_p (rli->t)
1243 && TREE_CODE (field) == FIELD_DECL
1244 && type != error_mark_node
1245 && DECL_BIT_FIELD (field)
1246 && (! DECL_PACKED (field)
1247 /* Enter for these packed fields only to issue a warning. */
1248 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1249 && maximum_field_alignment == 0
1250 && ! integer_zerop (DECL_SIZE (field))
1251 && tree_fits_uhwi_p (DECL_SIZE (field))
1252 && tree_fits_uhwi_p (rli->offset)
1253 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1254 {
1255 unsigned int type_align = TYPE_ALIGN (type);
1256 tree dsize = DECL_SIZE (field);
1257 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1258 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1259 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1260
1261 #ifdef ADJUST_FIELD_ALIGN
1262 if (! TYPE_USER_ALIGN (type))
1263 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1264 #endif
1265
1266 /* A bit field may not span more units of alignment of its type
1267 than its type itself. Advance to next boundary if necessary. */
1268 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1269 {
1270 if (DECL_PACKED (field))
1271 {
1272 if (warn_packed_bitfield_compat == 1)
1273 inform
1274 (input_location,
1275 "offset of packed bit-field %qD has changed in GCC 4.4",
1276 field);
1277 }
1278 else
1279 rli->bitpos = round_up (rli->bitpos, type_align);
1280 }
1281
1282 if (! DECL_PACKED (field))
1283 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1284 }
1285
1286 #ifdef BITFIELD_NBYTES_LIMITED
1287 if (BITFIELD_NBYTES_LIMITED
1288 && ! targetm.ms_bitfield_layout_p (rli->t)
1289 && TREE_CODE (field) == FIELD_DECL
1290 && type != error_mark_node
1291 && DECL_BIT_FIELD_TYPE (field)
1292 && ! DECL_PACKED (field)
1293 && ! integer_zerop (DECL_SIZE (field))
1294 && tree_fits_uhwi_p (DECL_SIZE (field))
1295 && tree_fits_uhwi_p (rli->offset)
1296 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1297 {
1298 unsigned int type_align = TYPE_ALIGN (type);
1299 tree dsize = DECL_SIZE (field);
1300 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1301 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1302 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1303
1304 #ifdef ADJUST_FIELD_ALIGN
1305 if (! TYPE_USER_ALIGN (type))
1306 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1307 #endif
1308
1309 if (maximum_field_alignment != 0)
1310 type_align = MIN (type_align, maximum_field_alignment);
1311 /* ??? This test is opposite the test in the containing if
1312 statement, so this code is unreachable currently. */
1313 else if (DECL_PACKED (field))
1314 type_align = MIN (type_align, BITS_PER_UNIT);
1315
1316 /* A bit field may not span the unit of alignment of its type.
1317 Advance to next boundary if necessary. */
1318 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1319 rli->bitpos = round_up (rli->bitpos, type_align);
1320
1321 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1322 }
1323 #endif
1324
1325 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1326 A subtlety:
1327 When a bit field is inserted into a packed record, the whole
1328 size of the underlying type is used by one or more same-size
1329 adjacent bitfields. (That is, if its long:3, 32 bits is
1330 used in the record, and any additional adjacent long bitfields are
1331 packed into the same chunk of 32 bits. However, if the size
1332 changes, a new field of that size is allocated.) In an unpacked
1333 record, this is the same as using alignment, but not equivalent
1334 when packing.
1335
1336 Note: for compatibility, we use the type size, not the type alignment
1337 to determine alignment, since that matches the documentation */
1338
1339 if (targetm.ms_bitfield_layout_p (rli->t))
1340 {
1341 tree prev_saved = rli->prev_field;
1342 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1343
1344 /* This is a bitfield if it exists. */
1345 if (rli->prev_field)
1346 {
1347 /* If both are bitfields, nonzero, and the same size, this is
1348 the middle of a run. Zero declared size fields are special
1349 and handled as "end of run". (Note: it's nonzero declared
1350 size, but equal type sizes!) (Since we know that both
1351 the current and previous fields are bitfields by the
1352 time we check it, DECL_SIZE must be present for both.) */
1353 if (DECL_BIT_FIELD_TYPE (field)
1354 && !integer_zerop (DECL_SIZE (field))
1355 && !integer_zerop (DECL_SIZE (rli->prev_field))
1356 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1357 && tree_fits_uhwi_p (TYPE_SIZE (type))
1358 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1359 {
1360 /* We're in the middle of a run of equal type size fields; make
1361 sure we realign if we run out of bits. (Not decl size,
1362 type size!) */
1363 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1364
1365 if (rli->remaining_in_alignment < bitsize)
1366 {
1367 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1368
1369 /* out of bits; bump up to next 'word'. */
1370 rli->bitpos
1371 = size_binop (PLUS_EXPR, rli->bitpos,
1372 bitsize_int (rli->remaining_in_alignment));
1373 rli->prev_field = field;
1374 if (typesize < bitsize)
1375 rli->remaining_in_alignment = 0;
1376 else
1377 rli->remaining_in_alignment = typesize - bitsize;
1378 }
1379 else
1380 rli->remaining_in_alignment -= bitsize;
1381 }
1382 else
1383 {
1384 /* End of a run: if leaving a run of bitfields of the same type
1385 size, we have to "use up" the rest of the bits of the type
1386 size.
1387
1388 Compute the new position as the sum of the size for the prior
1389 type and where we first started working on that type.
1390 Note: since the beginning of the field was aligned then
1391 of course the end will be too. No round needed. */
1392
1393 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1394 {
1395 rli->bitpos
1396 = size_binop (PLUS_EXPR, rli->bitpos,
1397 bitsize_int (rli->remaining_in_alignment));
1398 }
1399 else
1400 /* We "use up" size zero fields; the code below should behave
1401 as if the prior field was not a bitfield. */
1402 prev_saved = NULL;
1403
1404 /* Cause a new bitfield to be captured, either this time (if
1405 currently a bitfield) or next time we see one. */
1406 if (!DECL_BIT_FIELD_TYPE (field)
1407 || integer_zerop (DECL_SIZE (field)))
1408 rli->prev_field = NULL;
1409 }
1410
1411 normalize_rli (rli);
1412 }
1413
1414 /* If we're starting a new run of same type size bitfields
1415 (or a run of non-bitfields), set up the "first of the run"
1416 fields.
1417
1418 That is, if the current field is not a bitfield, or if there
1419 was a prior bitfield the type sizes differ, or if there wasn't
1420 a prior bitfield the size of the current field is nonzero.
1421
1422 Note: we must be sure to test ONLY the type size if there was
1423 a prior bitfield and ONLY for the current field being zero if
1424 there wasn't. */
1425
1426 if (!DECL_BIT_FIELD_TYPE (field)
1427 || (prev_saved != NULL
1428 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1429 : !integer_zerop (DECL_SIZE (field)) ))
1430 {
1431 /* Never smaller than a byte for compatibility. */
1432 unsigned int type_align = BITS_PER_UNIT;
1433
1434 /* (When not a bitfield), we could be seeing a flex array (with
1435 no DECL_SIZE). Since we won't be using remaining_in_alignment
1436 until we see a bitfield (and come by here again) we just skip
1437 calculating it. */
1438 if (DECL_SIZE (field) != NULL
1439 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1440 && tree_fits_uhwi_p (DECL_SIZE (field)))
1441 {
1442 unsigned HOST_WIDE_INT bitsize
1443 = tree_to_uhwi (DECL_SIZE (field));
1444 unsigned HOST_WIDE_INT typesize
1445 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1446
1447 if (typesize < bitsize)
1448 rli->remaining_in_alignment = 0;
1449 else
1450 rli->remaining_in_alignment = typesize - bitsize;
1451 }
1452
1453 /* Now align (conventionally) for the new type. */
1454 type_align = TYPE_ALIGN (TREE_TYPE (field));
1455
1456 if (maximum_field_alignment != 0)
1457 type_align = MIN (type_align, maximum_field_alignment);
1458
1459 rli->bitpos = round_up (rli->bitpos, type_align);
1460
1461 /* If we really aligned, don't allow subsequent bitfields
1462 to undo that. */
1463 rli->prev_field = NULL;
1464 }
1465 }
1466
1467 /* Offset so far becomes the position of this field after normalizing. */
1468 normalize_rli (rli);
1469 DECL_FIELD_OFFSET (field) = rli->offset;
1470 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1471 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1472
1473 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1474 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1475 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1476
1477 /* If this field ended up more aligned than we thought it would be (we
1478 approximate this by seeing if its position changed), lay out the field
1479 again; perhaps we can use an integral mode for it now. */
1480 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1481 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1482 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1483 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1484 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1485 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1486 actual_align = (BITS_PER_UNIT
1487 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1488 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1489 else
1490 actual_align = DECL_OFFSET_ALIGN (field);
1491 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1492 store / extract bit field operations will check the alignment of the
1493 record against the mode of bit fields. */
1494
1495 if (known_align != actual_align)
1496 layout_decl (field, actual_align);
1497
1498 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1499 rli->prev_field = field;
1500
1501 /* Now add size of this field to the size of the record. If the size is
1502 not constant, treat the field as being a multiple of bytes and just
1503 adjust the offset, resetting the bit position. Otherwise, apportion the
1504 size amongst the bit position and offset. First handle the case of an
1505 unspecified size, which can happen when we have an invalid nested struct
1506 definition, such as struct j { struct j { int i; } }. The error message
1507 is printed in finish_struct. */
1508 if (DECL_SIZE (field) == 0)
1509 /* Do nothing. */;
1510 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1511 || TREE_OVERFLOW (DECL_SIZE (field)))
1512 {
1513 rli->offset
1514 = size_binop (PLUS_EXPR, rli->offset,
1515 fold_convert (sizetype,
1516 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1517 bitsize_unit_node)));
1518 rli->offset
1519 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1520 rli->bitpos = bitsize_zero_node;
1521 rli->offset_align = MIN (rli->offset_align, desired_align);
1522 }
1523 else if (targetm.ms_bitfield_layout_p (rli->t))
1524 {
1525 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1526
1527 /* If we ended a bitfield before the full length of the type then
1528 pad the struct out to the full length of the last type. */
1529 if ((DECL_CHAIN (field) == NULL
1530 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1531 && DECL_BIT_FIELD_TYPE (field)
1532 && !integer_zerop (DECL_SIZE (field)))
1533 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1534 bitsize_int (rli->remaining_in_alignment));
1535
1536 normalize_rli (rli);
1537 }
1538 else
1539 {
1540 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1541 normalize_rli (rli);
1542 }
1543 }
1544
1545 /* Assuming that all the fields have been laid out, this function uses
1546 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1547 indicated by RLI. */
1548
1549 static void
finalize_record_size(record_layout_info rli)1550 finalize_record_size (record_layout_info rli)
1551 {
1552 tree unpadded_size, unpadded_size_unit;
1553
1554 /* Now we want just byte and bit offsets, so set the offset alignment
1555 to be a byte and then normalize. */
1556 rli->offset_align = BITS_PER_UNIT;
1557 normalize_rli (rli);
1558
1559 /* Determine the desired alignment. */
1560 #ifdef ROUND_TYPE_ALIGN
1561 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1562 rli->record_align);
1563 #else
1564 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1565 #endif
1566
1567 /* Compute the size so far. Be sure to allow for extra bits in the
1568 size in bytes. We have guaranteed above that it will be no more
1569 than a single byte. */
1570 unpadded_size = rli_size_so_far (rli);
1571 unpadded_size_unit = rli_size_unit_so_far (rli);
1572 if (! integer_zerop (rli->bitpos))
1573 unpadded_size_unit
1574 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1575
1576 /* Round the size up to be a multiple of the required alignment. */
1577 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1578 TYPE_SIZE_UNIT (rli->t)
1579 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1580
1581 if (TREE_CONSTANT (unpadded_size)
1582 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1583 && input_location != BUILTINS_LOCATION)
1584 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1585
1586 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1587 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1588 && TREE_CONSTANT (unpadded_size))
1589 {
1590 tree unpacked_size;
1591
1592 #ifdef ROUND_TYPE_ALIGN
1593 rli->unpacked_align
1594 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1595 #else
1596 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1597 #endif
1598
1599 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1600 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1601 {
1602 if (TYPE_NAME (rli->t))
1603 {
1604 tree name;
1605
1606 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1607 name = TYPE_NAME (rli->t);
1608 else
1609 name = DECL_NAME (TYPE_NAME (rli->t));
1610
1611 if (STRICT_ALIGNMENT)
1612 warning (OPT_Wpacked, "packed attribute causes inefficient "
1613 "alignment for %qE", name);
1614 else
1615 warning (OPT_Wpacked,
1616 "packed attribute is unnecessary for %qE", name);
1617 }
1618 else
1619 {
1620 if (STRICT_ALIGNMENT)
1621 warning (OPT_Wpacked,
1622 "packed attribute causes inefficient alignment");
1623 else
1624 warning (OPT_Wpacked, "packed attribute is unnecessary");
1625 }
1626 }
1627 }
1628 }
1629
1630 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1631
1632 void
compute_record_mode(tree type)1633 compute_record_mode (tree type)
1634 {
1635 tree field;
1636 machine_mode mode = VOIDmode;
1637
1638 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1639 However, if possible, we use a mode that fits in a register
1640 instead, in order to allow for better optimization down the
1641 line. */
1642 SET_TYPE_MODE (type, BLKmode);
1643
1644 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1645 return;
1646
1647 /* A record which has any BLKmode members must itself be
1648 BLKmode; it can't go in a register. Unless the member is
1649 BLKmode only because it isn't aligned. */
1650 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1651 {
1652 if (TREE_CODE (field) != FIELD_DECL)
1653 continue;
1654
1655 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1656 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1657 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1658 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1659 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1660 || ! tree_fits_uhwi_p (bit_position (field))
1661 || DECL_SIZE (field) == 0
1662 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1663 return;
1664
1665 /* If this field is the whole struct, remember its mode so
1666 that, say, we can put a double in a class into a DF
1667 register instead of forcing it to live in the stack. */
1668 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1669 mode = DECL_MODE (field);
1670
1671 /* With some targets, it is sub-optimal to access an aligned
1672 BLKmode structure as a scalar. */
1673 if (targetm.member_type_forces_blk (field, mode))
1674 return;
1675 }
1676
1677 /* If we only have one real field; use its mode if that mode's size
1678 matches the type's size. This only applies to RECORD_TYPE. This
1679 does not apply to unions. */
1680 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1681 && tree_fits_uhwi_p (TYPE_SIZE (type))
1682 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1683 SET_TYPE_MODE (type, mode);
1684 else
1685 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1686
1687 /* If structure's known alignment is less than what the scalar
1688 mode would need, and it matters, then stick with BLKmode. */
1689 if (TYPE_MODE (type) != BLKmode
1690 && STRICT_ALIGNMENT
1691 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1692 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1693 {
1694 /* If this is the only reason this type is BLKmode, then
1695 don't force containing types to be BLKmode. */
1696 TYPE_NO_FORCE_BLK (type) = 1;
1697 SET_TYPE_MODE (type, BLKmode);
1698 }
1699 }
1700
1701 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1702 out. */
1703
1704 static void
finalize_type_size(tree type)1705 finalize_type_size (tree type)
1706 {
1707 /* Normally, use the alignment corresponding to the mode chosen.
1708 However, where strict alignment is not required, avoid
1709 over-aligning structures, since most compilers do not do this
1710 alignment. */
1711 if (TYPE_MODE (type) != BLKmode
1712 && TYPE_MODE (type) != VOIDmode
1713 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1714 {
1715 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1716
1717 /* Don't override a larger alignment requirement coming from a user
1718 alignment of one of the fields. */
1719 if (mode_align >= TYPE_ALIGN (type))
1720 {
1721 TYPE_ALIGN (type) = mode_align;
1722 TYPE_USER_ALIGN (type) = 0;
1723 }
1724 }
1725
1726 /* Do machine-dependent extra alignment. */
1727 #ifdef ROUND_TYPE_ALIGN
1728 TYPE_ALIGN (type)
1729 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1730 #endif
1731
1732 /* If we failed to find a simple way to calculate the unit size
1733 of the type, find it by division. */
1734 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1735 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1736 result will fit in sizetype. We will get more efficient code using
1737 sizetype, so we force a conversion. */
1738 TYPE_SIZE_UNIT (type)
1739 = fold_convert (sizetype,
1740 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1741 bitsize_unit_node));
1742
1743 if (TYPE_SIZE (type) != 0)
1744 {
1745 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1746 TYPE_SIZE_UNIT (type)
1747 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1748 }
1749
1750 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1751 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1752 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1753 if (TYPE_SIZE_UNIT (type) != 0
1754 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1755 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1756
1757 /* Also layout any other variants of the type. */
1758 if (TYPE_NEXT_VARIANT (type)
1759 || type != TYPE_MAIN_VARIANT (type))
1760 {
1761 tree variant;
1762 /* Record layout info of this variant. */
1763 tree size = TYPE_SIZE (type);
1764 tree size_unit = TYPE_SIZE_UNIT (type);
1765 unsigned int align = TYPE_ALIGN (type);
1766 unsigned int precision = TYPE_PRECISION (type);
1767 unsigned int user_align = TYPE_USER_ALIGN (type);
1768 machine_mode mode = TYPE_MODE (type);
1769
1770 /* Copy it into all variants. */
1771 for (variant = TYPE_MAIN_VARIANT (type);
1772 variant != 0;
1773 variant = TYPE_NEXT_VARIANT (variant))
1774 {
1775 TYPE_SIZE (variant) = size;
1776 TYPE_SIZE_UNIT (variant) = size_unit;
1777 unsigned valign = align;
1778 if (TYPE_USER_ALIGN (variant))
1779 valign = MAX (valign, TYPE_ALIGN (variant));
1780 else
1781 TYPE_USER_ALIGN (variant) = user_align;
1782 TYPE_ALIGN (variant) = valign;
1783 TYPE_PRECISION (variant) = precision;
1784 SET_TYPE_MODE (variant, mode);
1785 }
1786 }
1787 }
1788
1789 /* Return a new underlying object for a bitfield started with FIELD. */
1790
1791 static tree
start_bitfield_representative(tree field)1792 start_bitfield_representative (tree field)
1793 {
1794 tree repr = make_node (FIELD_DECL);
1795 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1796 /* Force the representative to begin at a BITS_PER_UNIT aligned
1797 boundary - C++ may use tail-padding of a base object to
1798 continue packing bits so the bitfield region does not start
1799 at bit zero (see g++.dg/abi/bitfield5.C for example).
1800 Unallocated bits may happen for other reasons as well,
1801 for example Ada which allows explicit bit-granular structure layout. */
1802 DECL_FIELD_BIT_OFFSET (repr)
1803 = size_binop (BIT_AND_EXPR,
1804 DECL_FIELD_BIT_OFFSET (field),
1805 bitsize_int (~(BITS_PER_UNIT - 1)));
1806 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1807 DECL_SIZE (repr) = DECL_SIZE (field);
1808 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1809 DECL_PACKED (repr) = DECL_PACKED (field);
1810 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1811 return repr;
1812 }
1813
1814 /* Finish up a bitfield group that was started by creating the underlying
1815 object REPR with the last field in the bitfield group FIELD. */
1816
1817 static void
finish_bitfield_representative(tree repr,tree field)1818 finish_bitfield_representative (tree repr, tree field)
1819 {
1820 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1821 machine_mode mode;
1822 tree nextf, size;
1823
1824 size = size_diffop (DECL_FIELD_OFFSET (field),
1825 DECL_FIELD_OFFSET (repr));
1826 while (TREE_CODE (size) == COMPOUND_EXPR)
1827 size = TREE_OPERAND (size, 1);
1828 gcc_assert (tree_fits_uhwi_p (size));
1829 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1830 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1831 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1832 + tree_to_uhwi (DECL_SIZE (field)));
1833
1834 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1835 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1836
1837 /* Now nothing tells us how to pad out bitsize ... */
1838 nextf = DECL_CHAIN (field);
1839 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1840 nextf = DECL_CHAIN (nextf);
1841 if (nextf)
1842 {
1843 tree maxsize;
1844 /* If there was an error, the field may be not laid out
1845 correctly. Don't bother to do anything. */
1846 if (TREE_TYPE (nextf) == error_mark_node)
1847 return;
1848 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1849 DECL_FIELD_OFFSET (repr));
1850 if (tree_fits_uhwi_p (maxsize))
1851 {
1852 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1853 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1854 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1855 /* If the group ends within a bitfield nextf does not need to be
1856 aligned to BITS_PER_UNIT. Thus round up. */
1857 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1858 }
1859 else
1860 maxbitsize = bitsize;
1861 }
1862 else
1863 {
1864 /* ??? If you consider that tail-padding of this struct might be
1865 re-used when deriving from it we cannot really do the following
1866 and thus need to set maxsize to bitsize? Also we cannot
1867 generally rely on maxsize to fold to an integer constant, so
1868 use bitsize as fallback for this case. */
1869 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1870 DECL_FIELD_OFFSET (repr));
1871 if (tree_fits_uhwi_p (maxsize))
1872 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1873 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1874 else
1875 maxbitsize = bitsize;
1876 }
1877
1878 /* Only if we don't artificially break up the representative in
1879 the middle of a large bitfield with different possibly
1880 overlapping representatives. And all representatives start
1881 at byte offset. */
1882 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1883
1884 /* Find the smallest nice mode to use. */
1885 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1886 mode = GET_MODE_WIDER_MODE (mode))
1887 if (GET_MODE_BITSIZE (mode) >= bitsize)
1888 break;
1889 if (mode != VOIDmode
1890 && (GET_MODE_BITSIZE (mode) > maxbitsize
1891 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1892 mode = VOIDmode;
1893
1894 if (mode == VOIDmode)
1895 {
1896 /* We really want a BLKmode representative only as a last resort,
1897 considering the member b in
1898 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1899 Otherwise we simply want to split the representative up
1900 allowing for overlaps within the bitfield region as required for
1901 struct { int a : 7; int b : 7;
1902 int c : 10; int d; } __attribute__((packed));
1903 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1904 DECL_SIZE (repr) = bitsize_int (bitsize);
1905 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1906 DECL_MODE (repr) = BLKmode;
1907 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1908 bitsize / BITS_PER_UNIT);
1909 }
1910 else
1911 {
1912 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1913 DECL_SIZE (repr) = bitsize_int (modesize);
1914 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1915 DECL_MODE (repr) = mode;
1916 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1917 }
1918
1919 /* Remember whether the bitfield group is at the end of the
1920 structure or not. */
1921 DECL_CHAIN (repr) = nextf;
1922 }
1923
1924 /* Compute and set FIELD_DECLs for the underlying objects we should
1925 use for bitfield access for the structure T. */
1926
1927 void
finish_bitfield_layout(tree t)1928 finish_bitfield_layout (tree t)
1929 {
1930 tree field, prev;
1931 tree repr = NULL_TREE;
1932
1933 /* Unions would be special, for the ease of type-punning optimizations
1934 we could use the underlying type as hint for the representative
1935 if the bitfield would fit and the representative would not exceed
1936 the union in size. */
1937 if (TREE_CODE (t) != RECORD_TYPE)
1938 return;
1939
1940 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1941 field; field = DECL_CHAIN (field))
1942 {
1943 if (TREE_CODE (field) != FIELD_DECL)
1944 continue;
1945
1946 /* In the C++ memory model, consecutive bit fields in a structure are
1947 considered one memory location and updating a memory location
1948 may not store into adjacent memory locations. */
1949 if (!repr
1950 && DECL_BIT_FIELD_TYPE (field))
1951 {
1952 /* Start new representative. */
1953 repr = start_bitfield_representative (field);
1954 }
1955 else if (repr
1956 && ! DECL_BIT_FIELD_TYPE (field))
1957 {
1958 /* Finish off new representative. */
1959 finish_bitfield_representative (repr, prev);
1960 repr = NULL_TREE;
1961 }
1962 else if (DECL_BIT_FIELD_TYPE (field))
1963 {
1964 gcc_assert (repr != NULL_TREE);
1965
1966 /* Zero-size bitfields finish off a representative and
1967 do not have a representative themselves. This is
1968 required by the C++ memory model. */
1969 if (integer_zerop (DECL_SIZE (field)))
1970 {
1971 finish_bitfield_representative (repr, prev);
1972 repr = NULL_TREE;
1973 }
1974
1975 /* We assume that either DECL_FIELD_OFFSET of the representative
1976 and each bitfield member is a constant or they are equal.
1977 This is because we need to be able to compute the bit-offset
1978 of each field relative to the representative in get_bit_range
1979 during RTL expansion.
1980 If these constraints are not met, simply force a new
1981 representative to be generated. That will at most
1982 generate worse code but still maintain correctness with
1983 respect to the C++ memory model. */
1984 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1985 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1986 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1987 DECL_FIELD_OFFSET (field), 0)))
1988 {
1989 finish_bitfield_representative (repr, prev);
1990 repr = start_bitfield_representative (field);
1991 }
1992 }
1993 else
1994 continue;
1995
1996 if (repr)
1997 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1998
1999 prev = field;
2000 }
2001
2002 if (repr)
2003 finish_bitfield_representative (repr, prev);
2004 }
2005
2006 /* Do all of the work required to layout the type indicated by RLI,
2007 once the fields have been laid out. This function will call `free'
2008 for RLI, unless FREE_P is false. Passing a value other than false
2009 for FREE_P is bad practice; this option only exists to support the
2010 G++ 3.2 ABI. */
2011
2012 void
finish_record_layout(record_layout_info rli,int free_p)2013 finish_record_layout (record_layout_info rli, int free_p)
2014 {
2015 tree variant;
2016
2017 /* Compute the final size. */
2018 finalize_record_size (rli);
2019
2020 /* Compute the TYPE_MODE for the record. */
2021 compute_record_mode (rli->t);
2022
2023 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2024 finalize_type_size (rli->t);
2025
2026 /* Compute bitfield representatives. */
2027 finish_bitfield_layout (rli->t);
2028
2029 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2030 With C++ templates, it is too early to do this when the attribute
2031 is being parsed. */
2032 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2033 variant = TYPE_NEXT_VARIANT (variant))
2034 {
2035 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2036 TYPE_REVERSE_STORAGE_ORDER (variant)
2037 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2038 }
2039
2040 /* Lay out any static members. This is done now because their type
2041 may use the record's type. */
2042 while (!vec_safe_is_empty (rli->pending_statics))
2043 layout_decl (rli->pending_statics->pop (), 0);
2044
2045 /* Clean up. */
2046 if (free_p)
2047 {
2048 vec_free (rli->pending_statics);
2049 free (rli);
2050 }
2051 }
2052
2053
2054 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2055 NAME, its fields are chained in reverse on FIELDS.
2056
2057 If ALIGN_TYPE is non-null, it is given the same alignment as
2058 ALIGN_TYPE. */
2059
2060 void
finish_builtin_struct(tree type,const char * name,tree fields,tree align_type)2061 finish_builtin_struct (tree type, const char *name, tree fields,
2062 tree align_type)
2063 {
2064 tree tail, next;
2065
2066 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2067 {
2068 DECL_FIELD_CONTEXT (fields) = type;
2069 next = DECL_CHAIN (fields);
2070 DECL_CHAIN (fields) = tail;
2071 }
2072 TYPE_FIELDS (type) = tail;
2073
2074 if (align_type)
2075 {
2076 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2077 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2078 }
2079
2080 layout_type (type);
2081 #if 0 /* not yet, should get fixed properly later */
2082 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2083 #else
2084 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2085 TYPE_DECL, get_identifier (name), type);
2086 #endif
2087 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2088 layout_decl (TYPE_NAME (type), 0);
2089 }
2090
2091 /* Calculate the mode, size, and alignment for TYPE.
2092 For an array type, calculate the element separation as well.
2093 Record TYPE on the chain of permanent or temporary types
2094 so that dbxout will find out about it.
2095
2096 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2097 layout_type does nothing on such a type.
2098
2099 If the type is incomplete, its TYPE_SIZE remains zero. */
2100
2101 void
layout_type(tree type)2102 layout_type (tree type)
2103 {
2104 gcc_assert (type);
2105
2106 if (type == error_mark_node)
2107 return;
2108
2109 /* We don't want finalize_type_size to copy an alignment attribute to
2110 variants that don't have it. */
2111 type = TYPE_MAIN_VARIANT (type);
2112
2113 /* Do nothing if type has been laid out before. */
2114 if (TYPE_SIZE (type))
2115 return;
2116
2117 switch (TREE_CODE (type))
2118 {
2119 case LANG_TYPE:
2120 /* This kind of type is the responsibility
2121 of the language-specific code. */
2122 gcc_unreachable ();
2123
2124 case BOOLEAN_TYPE:
2125 case INTEGER_TYPE:
2126 case ENUMERAL_TYPE:
2127 SET_TYPE_MODE (type,
2128 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2129 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2130 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2131 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2132 break;
2133
2134 case REAL_TYPE:
2135 SET_TYPE_MODE (type,
2136 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2137 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2138 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2139 break;
2140
2141 case FIXED_POINT_TYPE:
2142 /* TYPE_MODE (type) has been set already. */
2143 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2144 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2145 break;
2146
2147 case COMPLEX_TYPE:
2148 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2149 SET_TYPE_MODE (type,
2150 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2151
2152 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2153 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2154 break;
2155
2156 case VECTOR_TYPE:
2157 {
2158 int nunits = TYPE_VECTOR_SUBPARTS (type);
2159 tree innertype = TREE_TYPE (type);
2160
2161 gcc_assert (!(nunits & (nunits - 1)));
2162
2163 /* Find an appropriate mode for the vector type. */
2164 if (TYPE_MODE (type) == VOIDmode)
2165 SET_TYPE_MODE (type,
2166 mode_for_vector (TYPE_MODE (innertype), nunits));
2167
2168 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2169 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2170 /* Several boolean vector elements may fit in a single unit. */
2171 if (VECTOR_BOOLEAN_TYPE_P (type)
2172 && type->type_common.mode != BLKmode)
2173 TYPE_SIZE_UNIT (type)
2174 = size_int (GET_MODE_SIZE (type->type_common.mode));
2175 else
2176 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2177 TYPE_SIZE_UNIT (innertype),
2178 size_int (nunits));
2179 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2180 TYPE_SIZE (innertype),
2181 bitsize_int (nunits));
2182
2183 /* For vector types, we do not default to the mode's alignment.
2184 Instead, query a target hook, defaulting to natural alignment.
2185 This prevents ABI changes depending on whether or not native
2186 vector modes are supported. */
2187 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2188
2189 /* However, if the underlying mode requires a bigger alignment than
2190 what the target hook provides, we cannot use the mode. For now,
2191 simply reject that case. */
2192 gcc_assert (TYPE_ALIGN (type)
2193 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2194 break;
2195 }
2196
2197 case VOID_TYPE:
2198 /* This is an incomplete type and so doesn't have a size. */
2199 TYPE_ALIGN (type) = 1;
2200 TYPE_USER_ALIGN (type) = 0;
2201 SET_TYPE_MODE (type, VOIDmode);
2202 break;
2203
2204 case POINTER_BOUNDS_TYPE:
2205 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2206 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2207 break;
2208
2209 case OFFSET_TYPE:
2210 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2211 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2212 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2213 integral, which may be an __intN. */
2214 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2215 TYPE_PRECISION (type) = POINTER_SIZE;
2216 break;
2217
2218 case FUNCTION_TYPE:
2219 case METHOD_TYPE:
2220 /* It's hard to see what the mode and size of a function ought to
2221 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2222 make it consistent with that. */
2223 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2224 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2225 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2226 break;
2227
2228 case POINTER_TYPE:
2229 case REFERENCE_TYPE:
2230 {
2231 machine_mode mode = TYPE_MODE (type);
2232 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2233 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2234 TYPE_UNSIGNED (type) = 1;
2235 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2236 }
2237 break;
2238
2239 case ARRAY_TYPE:
2240 {
2241 tree index = TYPE_DOMAIN (type);
2242 tree element = TREE_TYPE (type);
2243
2244 build_pointer_type (element);
2245
2246 /* We need to know both bounds in order to compute the size. */
2247 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2248 && TYPE_SIZE (element))
2249 {
2250 tree ub = TYPE_MAX_VALUE (index);
2251 tree lb = TYPE_MIN_VALUE (index);
2252 tree element_size = TYPE_SIZE (element);
2253 tree length;
2254
2255 /* Make sure that an array of zero-sized element is zero-sized
2256 regardless of its extent. */
2257 if (integer_zerop (element_size))
2258 length = size_zero_node;
2259
2260 /* The computation should happen in the original signedness so
2261 that (possible) negative values are handled appropriately
2262 when determining overflow. */
2263 else
2264 {
2265 /* ??? When it is obvious that the range is signed
2266 represent it using ssizetype. */
2267 if (TREE_CODE (lb) == INTEGER_CST
2268 && TREE_CODE (ub) == INTEGER_CST
2269 && TYPE_UNSIGNED (TREE_TYPE (lb))
2270 && tree_int_cst_lt (ub, lb))
2271 {
2272 lb = wide_int_to_tree (ssizetype,
2273 offset_int::from (lb, SIGNED));
2274 ub = wide_int_to_tree (ssizetype,
2275 offset_int::from (ub, SIGNED));
2276 }
2277 length
2278 = fold_convert (sizetype,
2279 size_binop (PLUS_EXPR,
2280 build_int_cst (TREE_TYPE (lb), 1),
2281 size_binop (MINUS_EXPR, ub, lb)));
2282 }
2283
2284 /* ??? We have no way to distinguish a null-sized array from an
2285 array spanning the whole sizetype range, so we arbitrarily
2286 decide that [0, -1] is the only valid representation. */
2287 if (integer_zerop (length)
2288 && TREE_OVERFLOW (length)
2289 && integer_zerop (lb))
2290 length = size_zero_node;
2291
2292 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2293 fold_convert (bitsizetype,
2294 length));
2295
2296 /* If we know the size of the element, calculate the total size
2297 directly, rather than do some division thing below. This
2298 optimization helps Fortran assumed-size arrays (where the
2299 size of the array is determined at runtime) substantially. */
2300 if (TYPE_SIZE_UNIT (element))
2301 TYPE_SIZE_UNIT (type)
2302 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2303 }
2304
2305 /* Now round the alignment and size,
2306 using machine-dependent criteria if any. */
2307
2308 unsigned align = TYPE_ALIGN (element);
2309 if (TYPE_USER_ALIGN (type))
2310 align = MAX (align, TYPE_ALIGN (type));
2311 else
2312 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2313 #ifdef ROUND_TYPE_ALIGN
2314 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2315 #else
2316 align = MAX (align, BITS_PER_UNIT);
2317 #endif
2318 TYPE_ALIGN (type) = align;
2319 SET_TYPE_MODE (type, BLKmode);
2320 if (TYPE_SIZE (type) != 0
2321 && ! targetm.member_type_forces_blk (type, VOIDmode)
2322 /* BLKmode elements force BLKmode aggregate;
2323 else extract/store fields may lose. */
2324 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2325 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2326 {
2327 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2328 TYPE_SIZE (type)));
2329 if (TYPE_MODE (type) != BLKmode
2330 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2331 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2332 {
2333 TYPE_NO_FORCE_BLK (type) = 1;
2334 SET_TYPE_MODE (type, BLKmode);
2335 }
2336 }
2337 /* When the element size is constant, check that it is at least as
2338 large as the element alignment. */
2339 if (TYPE_SIZE_UNIT (element)
2340 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2341 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2342 TYPE_ALIGN_UNIT. */
2343 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2344 && !integer_zerop (TYPE_SIZE_UNIT (element))
2345 && compare_tree_int (TYPE_SIZE_UNIT (element),
2346 TYPE_ALIGN_UNIT (element)) < 0)
2347 error ("alignment of array elements is greater than element size");
2348 break;
2349 }
2350
2351 case RECORD_TYPE:
2352 case UNION_TYPE:
2353 case QUAL_UNION_TYPE:
2354 {
2355 tree field;
2356 record_layout_info rli;
2357
2358 /* Initialize the layout information. */
2359 rli = start_record_layout (type);
2360
2361 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2362 in the reverse order in building the COND_EXPR that denotes
2363 its size. We reverse them again later. */
2364 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2365 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2366
2367 /* Place all the fields. */
2368 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2369 place_field (rli, field);
2370
2371 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2372 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2373
2374 /* Finish laying out the record. */
2375 finish_record_layout (rli, /*free_p=*/true);
2376 }
2377 break;
2378
2379 default:
2380 gcc_unreachable ();
2381 }
2382
2383 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2384 records and unions, finish_record_layout already called this
2385 function. */
2386 if (!RECORD_OR_UNION_TYPE_P (type))
2387 finalize_type_size (type);
2388
2389 /* We should never see alias sets on incomplete aggregates. And we
2390 should not call layout_type on not incomplete aggregates. */
2391 if (AGGREGATE_TYPE_P (type))
2392 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2393 }
2394
2395 /* Return the least alignment required for type TYPE. */
2396
2397 unsigned int
min_align_of_type(tree type)2398 min_align_of_type (tree type)
2399 {
2400 unsigned int align = TYPE_ALIGN (type);
2401 if (!TYPE_USER_ALIGN (type))
2402 {
2403 align = MIN (align, BIGGEST_ALIGNMENT);
2404 #ifdef BIGGEST_FIELD_ALIGNMENT
2405 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2406 #endif
2407 unsigned int field_align = align;
2408 #ifdef ADJUST_FIELD_ALIGN
2409 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2410 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2411 ggc_free (field);
2412 #endif
2413 align = MIN (align, field_align);
2414 }
2415 return align / BITS_PER_UNIT;
2416 }
2417
2418 /* Vector types need to re-check the target flags each time we report
2419 the machine mode. We need to do this because attribute target can
2420 change the result of vector_mode_supported_p and have_regs_of_mode
2421 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2422 change on a per-function basis. */
2423 /* ??? Possibly a better solution is to run through all the types
2424 referenced by a function and re-compute the TYPE_MODE once, rather
2425 than make the TYPE_MODE macro call a function. */
2426
2427 machine_mode
vector_type_mode(const_tree t)2428 vector_type_mode (const_tree t)
2429 {
2430 machine_mode mode;
2431
2432 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2433
2434 mode = t->type_common.mode;
2435 if (VECTOR_MODE_P (mode)
2436 && (!targetm.vector_mode_supported_p (mode)
2437 || !have_regs_of_mode[mode]))
2438 {
2439 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2440
2441 /* For integers, try mapping it to a same-sized scalar mode. */
2442 if (GET_MODE_CLASS (innermode) == MODE_INT)
2443 {
2444 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2445 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2446
2447 if (mode != VOIDmode && have_regs_of_mode[mode])
2448 return mode;
2449 }
2450
2451 return BLKmode;
2452 }
2453
2454 return mode;
2455 }
2456
2457 /* Create and return a type for signed integers of PRECISION bits. */
2458
2459 tree
make_signed_type(int precision)2460 make_signed_type (int precision)
2461 {
2462 tree type = make_node (INTEGER_TYPE);
2463
2464 TYPE_PRECISION (type) = precision;
2465
2466 fixup_signed_type (type);
2467 return type;
2468 }
2469
2470 /* Create and return a type for unsigned integers of PRECISION bits. */
2471
2472 tree
make_unsigned_type(int precision)2473 make_unsigned_type (int precision)
2474 {
2475 tree type = make_node (INTEGER_TYPE);
2476
2477 TYPE_PRECISION (type) = precision;
2478
2479 fixup_unsigned_type (type);
2480 return type;
2481 }
2482
2483 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2484 and SATP. */
2485
2486 tree
make_fract_type(int precision,int unsignedp,int satp)2487 make_fract_type (int precision, int unsignedp, int satp)
2488 {
2489 tree type = make_node (FIXED_POINT_TYPE);
2490
2491 TYPE_PRECISION (type) = precision;
2492
2493 if (satp)
2494 TYPE_SATURATING (type) = 1;
2495
2496 /* Lay out the type: set its alignment, size, etc. */
2497 if (unsignedp)
2498 {
2499 TYPE_UNSIGNED (type) = 1;
2500 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2501 }
2502 else
2503 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2504 layout_type (type);
2505
2506 return type;
2507 }
2508
2509 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2510 and SATP. */
2511
2512 tree
make_accum_type(int precision,int unsignedp,int satp)2513 make_accum_type (int precision, int unsignedp, int satp)
2514 {
2515 tree type = make_node (FIXED_POINT_TYPE);
2516
2517 TYPE_PRECISION (type) = precision;
2518
2519 if (satp)
2520 TYPE_SATURATING (type) = 1;
2521
2522 /* Lay out the type: set its alignment, size, etc. */
2523 if (unsignedp)
2524 {
2525 TYPE_UNSIGNED (type) = 1;
2526 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2527 }
2528 else
2529 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2530 layout_type (type);
2531
2532 return type;
2533 }
2534
2535 /* Initialize sizetypes so layout_type can use them. */
2536
2537 void
initialize_sizetypes(void)2538 initialize_sizetypes (void)
2539 {
2540 int precision, bprecision;
2541
2542 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2543 if (strcmp (SIZETYPE, "unsigned int") == 0)
2544 precision = INT_TYPE_SIZE;
2545 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2546 precision = LONG_TYPE_SIZE;
2547 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2548 precision = LONG_LONG_TYPE_SIZE;
2549 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2550 precision = SHORT_TYPE_SIZE;
2551 else
2552 {
2553 int i;
2554
2555 precision = -1;
2556 for (i = 0; i < NUM_INT_N_ENTS; i++)
2557 if (int_n_enabled_p[i])
2558 {
2559 char name[50];
2560 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2561
2562 if (strcmp (name, SIZETYPE) == 0)
2563 {
2564 precision = int_n_data[i].bitsize;
2565 }
2566 }
2567 if (precision == -1)
2568 gcc_unreachable ();
2569 }
2570
2571 bprecision
2572 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2573 bprecision
2574 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2575 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2576 bprecision = HOST_BITS_PER_DOUBLE_INT;
2577
2578 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2579 sizetype = make_node (INTEGER_TYPE);
2580 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2581 TYPE_PRECISION (sizetype) = precision;
2582 TYPE_UNSIGNED (sizetype) = 1;
2583 bitsizetype = make_node (INTEGER_TYPE);
2584 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2585 TYPE_PRECISION (bitsizetype) = bprecision;
2586 TYPE_UNSIGNED (bitsizetype) = 1;
2587
2588 /* Now layout both types manually. */
2589 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2590 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2591 TYPE_SIZE (sizetype) = bitsize_int (precision);
2592 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2593 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2594
2595 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2596 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2597 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2598 TYPE_SIZE_UNIT (bitsizetype)
2599 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2600 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2601
2602 /* Create the signed variants of *sizetype. */
2603 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2604 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2605 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2606 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2607 }
2608
2609 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2610 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2611 for TYPE, based on the PRECISION and whether or not the TYPE
2612 IS_UNSIGNED. PRECISION need not correspond to a width supported
2613 natively by the hardware; for example, on a machine with 8-bit,
2614 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2615 61. */
2616
2617 void
set_min_and_max_values_for_integral_type(tree type,int precision,signop sgn)2618 set_min_and_max_values_for_integral_type (tree type,
2619 int precision,
2620 signop sgn)
2621 {
2622 /* For bitfields with zero width we end up creating integer types
2623 with zero precision. Don't assign any minimum/maximum values
2624 to those types, they don't have any valid value. */
2625 if (precision < 1)
2626 return;
2627
2628 TYPE_MIN_VALUE (type)
2629 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2630 TYPE_MAX_VALUE (type)
2631 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2632 }
2633
2634 /* Set the extreme values of TYPE based on its precision in bits,
2635 then lay it out. Used when make_signed_type won't do
2636 because the tree code is not INTEGER_TYPE.
2637 E.g. for Pascal, when the -fsigned-char option is given. */
2638
2639 void
fixup_signed_type(tree type)2640 fixup_signed_type (tree type)
2641 {
2642 int precision = TYPE_PRECISION (type);
2643
2644 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2645
2646 /* Lay out the type: set its alignment, size, etc. */
2647 layout_type (type);
2648 }
2649
2650 /* Set the extreme values of TYPE based on its precision in bits,
2651 then lay it out. This is used both in `make_unsigned_type'
2652 and for enumeral types. */
2653
2654 void
fixup_unsigned_type(tree type)2655 fixup_unsigned_type (tree type)
2656 {
2657 int precision = TYPE_PRECISION (type);
2658
2659 TYPE_UNSIGNED (type) = 1;
2660
2661 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2662
2663 /* Lay out the type: set its alignment, size, etc. */
2664 layout_type (type);
2665 }
2666
2667 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2668 starting at BITPOS.
2669
2670 BITREGION_START is the bit position of the first bit in this
2671 sequence of bit fields. BITREGION_END is the last bit in this
2672 sequence. If these two fields are non-zero, we should restrict the
2673 memory access to that range. Otherwise, we are allowed to touch
2674 any adjacent non bit-fields.
2675
2676 ALIGN is the alignment of the underlying object in bits.
2677 VOLATILEP says whether the bitfield is volatile. */
2678
2679 bit_field_mode_iterator
bit_field_mode_iterator(HOST_WIDE_INT bitsize,HOST_WIDE_INT bitpos,HOST_WIDE_INT bitregion_start,HOST_WIDE_INT bitregion_end,unsigned int align,bool volatilep)2680 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2681 HOST_WIDE_INT bitregion_start,
2682 HOST_WIDE_INT bitregion_end,
2683 unsigned int align, bool volatilep)
2684 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2685 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2686 m_bitregion_end (bitregion_end), m_align (align),
2687 m_volatilep (volatilep), m_count (0)
2688 {
2689 if (!m_bitregion_end)
2690 {
2691 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2692 the bitfield is mapped and won't trap, provided that ALIGN isn't
2693 too large. The cap is the biggest required alignment for data,
2694 or at least the word size. And force one such chunk at least. */
2695 unsigned HOST_WIDE_INT units
2696 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2697 if (bitsize <= 0)
2698 bitsize = 1;
2699 m_bitregion_end = bitpos + bitsize + units - 1;
2700 m_bitregion_end -= m_bitregion_end % units + 1;
2701 }
2702 }
2703
2704 /* Calls to this function return successively larger modes that can be used
2705 to represent the bitfield. Return true if another bitfield mode is
2706 available, storing it in *OUT_MODE if so. */
2707
2708 bool
next_mode(machine_mode * out_mode)2709 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2710 {
2711 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2712 {
2713 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2714
2715 /* Skip modes that don't have full precision. */
2716 if (unit != GET_MODE_PRECISION (m_mode))
2717 continue;
2718
2719 /* Stop if the mode is too wide to handle efficiently. */
2720 if (unit > MAX_FIXED_MODE_SIZE)
2721 break;
2722
2723 /* Don't deliver more than one multiword mode; the smallest one
2724 should be used. */
2725 if (m_count > 0 && unit > BITS_PER_WORD)
2726 break;
2727
2728 /* Skip modes that are too small. */
2729 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2730 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2731 if (subend > unit)
2732 continue;
2733
2734 /* Stop if the mode goes outside the bitregion. */
2735 HOST_WIDE_INT start = m_bitpos - substart;
2736 if (m_bitregion_start && start < m_bitregion_start)
2737 break;
2738 HOST_WIDE_INT end = start + unit;
2739 if (end > m_bitregion_end + 1)
2740 break;
2741
2742 /* Stop if the mode requires too much alignment. */
2743 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2744 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2745 break;
2746
2747 *out_mode = m_mode;
2748 m_mode = GET_MODE_WIDER_MODE (m_mode);
2749 m_count++;
2750 return true;
2751 }
2752 return false;
2753 }
2754
2755 /* Return true if smaller modes are generally preferred for this kind
2756 of bitfield. */
2757
2758 bool
prefer_smaller_modes()2759 bit_field_mode_iterator::prefer_smaller_modes ()
2760 {
2761 return (m_volatilep
2762 ? targetm.narrow_volatile_bitfield ()
2763 : !SLOW_BYTE_ACCESS);
2764 }
2765
2766 /* Find the best machine mode to use when referencing a bit field of length
2767 BITSIZE bits starting at BITPOS.
2768
2769 BITREGION_START is the bit position of the first bit in this
2770 sequence of bit fields. BITREGION_END is the last bit in this
2771 sequence. If these two fields are non-zero, we should restrict the
2772 memory access to that range. Otherwise, we are allowed to touch
2773 any adjacent non bit-fields.
2774
2775 The underlying object is known to be aligned to a boundary of ALIGN bits.
2776 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2777 larger than LARGEST_MODE (usually SImode).
2778
2779 If no mode meets all these conditions, we return VOIDmode.
2780
2781 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2782 smallest mode meeting these conditions.
2783
2784 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2785 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2786 all the conditions.
2787
2788 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2789 decide which of the above modes should be used. */
2790
2791 machine_mode
get_best_mode(int bitsize,int bitpos,unsigned HOST_WIDE_INT bitregion_start,unsigned HOST_WIDE_INT bitregion_end,unsigned int align,machine_mode largest_mode,bool volatilep)2792 get_best_mode (int bitsize, int bitpos,
2793 unsigned HOST_WIDE_INT bitregion_start,
2794 unsigned HOST_WIDE_INT bitregion_end,
2795 unsigned int align,
2796 machine_mode largest_mode, bool volatilep)
2797 {
2798 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2799 bitregion_end, align, volatilep);
2800 machine_mode widest_mode = VOIDmode;
2801 machine_mode mode;
2802 while (iter.next_mode (&mode)
2803 /* ??? For historical reasons, reject modes that would normally
2804 receive greater alignment, even if unaligned accesses are
2805 acceptable. This has both advantages and disadvantages.
2806 Removing this check means that something like:
2807
2808 struct s { unsigned int x; unsigned int y; };
2809 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2810
2811 can be implemented using a single load and compare on
2812 64-bit machines that have no alignment restrictions.
2813 For example, on powerpc64-linux-gnu, we would generate:
2814
2815 ld 3,0(3)
2816 cntlzd 3,3
2817 srdi 3,3,6
2818 blr
2819
2820 rather than:
2821
2822 lwz 9,0(3)
2823 cmpwi 7,9,0
2824 bne 7,.L3
2825 lwz 3,4(3)
2826 cntlzw 3,3
2827 srwi 3,3,5
2828 extsw 3,3
2829 blr
2830 .p2align 4,,15
2831 .L3:
2832 li 3,0
2833 blr
2834
2835 However, accessing more than one field can make life harder
2836 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2837 has a series of unsigned short copies followed by a series of
2838 unsigned short comparisons. With this check, both the copies
2839 and comparisons remain 16-bit accesses and FRE is able
2840 to eliminate the latter. Without the check, the comparisons
2841 can be done using 2 64-bit operations, which FRE isn't able
2842 to handle in the same way.
2843
2844 Either way, it would probably be worth disabling this check
2845 during expand. One particular example where removing the
2846 check would help is the get_best_mode call in store_bit_field.
2847 If we are given a memory bitregion of 128 bits that is aligned
2848 to a 64-bit boundary, and the bitfield we want to modify is
2849 in the second half of the bitregion, this check causes
2850 store_bitfield to turn the memory into a 64-bit reference
2851 to the _first_ half of the region. We later use
2852 adjust_bitfield_address to get a reference to the correct half,
2853 but doing so looks to adjust_bitfield_address as though we are
2854 moving past the end of the original object, so it drops the
2855 associated MEM_EXPR and MEM_OFFSET. Removing the check
2856 causes store_bit_field to keep a 128-bit memory reference,
2857 so that the final bitfield reference still has a MEM_EXPR
2858 and MEM_OFFSET. */
2859 && GET_MODE_ALIGNMENT (mode) <= align
2860 && (largest_mode == VOIDmode
2861 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2862 {
2863 widest_mode = mode;
2864 if (iter.prefer_smaller_modes ())
2865 break;
2866 }
2867 return widest_mode;
2868 }
2869
2870 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2871 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2872
2873 void
get_mode_bounds(machine_mode mode,int sign,machine_mode target_mode,rtx * mmin,rtx * mmax)2874 get_mode_bounds (machine_mode mode, int sign,
2875 machine_mode target_mode,
2876 rtx *mmin, rtx *mmax)
2877 {
2878 unsigned size = GET_MODE_PRECISION (mode);
2879 unsigned HOST_WIDE_INT min_val, max_val;
2880
2881 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2882
2883 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2884 if (mode == BImode)
2885 {
2886 if (STORE_FLAG_VALUE < 0)
2887 {
2888 min_val = STORE_FLAG_VALUE;
2889 max_val = 0;
2890 }
2891 else
2892 {
2893 min_val = 0;
2894 max_val = STORE_FLAG_VALUE;
2895 }
2896 }
2897 else if (sign)
2898 {
2899 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2900 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2901 }
2902 else
2903 {
2904 min_val = 0;
2905 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2906 }
2907
2908 *mmin = gen_int_mode (min_val, target_mode);
2909 *mmax = gen_int_mode (max_val, target_mode);
2910 }
2911
2912 #include "gt-stor-layout.h"
2913