1 /* Lower complex number operations to scalar operations.
2    Copyright (C) 2004-2016 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-dfa.h"
38 #include "tree-ssa.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
41 #include "cfgloop.h"
42 #include "cfganal.h"
43 
44 
45 /* For each complex ssa name, a lattice value.  We're interested in finding
46    out whether a complex number is degenerate in some way, having only real
47    or only complex parts.  */
48 
49 enum
50 {
51   UNINITIALIZED = 0,
52   ONLY_REAL = 1,
53   ONLY_IMAG = 2,
54   VARYING = 3
55 };
56 
57 /* The type complex_lattice_t holds combinations of the above
58    constants.  */
59 typedef int complex_lattice_t;
60 
61 #define PAIR(a, b)  ((a) << 2 | (b))
62 
63 
64 static vec<complex_lattice_t> complex_lattice_values;
65 
66 /* For each complex variable, a pair of variables for the components exists in
67    the hashtable.  */
68 static int_tree_htab_type *complex_variable_components;
69 
70 /* For each complex SSA_NAME, a pair of ssa names for the components.  */
71 static vec<tree> complex_ssa_name_components;
72 
73 /* Vector of PHI triplets (original complex PHI and corresponding real and
74    imag PHIs if real and/or imag PHIs contain temporarily
75    non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs.  */
76 static vec<gphi *> phis_to_revisit;
77 
78 /* Lookup UID in the complex_variable_components hashtable and return the
79    associated tree.  */
80 static tree
cvc_lookup(unsigned int uid)81 cvc_lookup (unsigned int uid)
82 {
83   struct int_tree_map in;
84   in.uid = uid;
85   return complex_variable_components->find_with_hash (in, uid).to;
86 }
87 
88 /* Insert the pair UID, TO into the complex_variable_components hashtable.  */
89 
90 static void
cvc_insert(unsigned int uid,tree to)91 cvc_insert (unsigned int uid, tree to)
92 {
93   int_tree_map h;
94   int_tree_map *loc;
95 
96   h.uid = uid;
97   loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
98   loc->uid = uid;
99   loc->to = to;
100 }
101 
102 /* Return true if T is not a zero constant.  In the case of real values,
103    we're only interested in +0.0.  */
104 
105 static int
some_nonzerop(tree t)106 some_nonzerop (tree t)
107 {
108   int zerop = false;
109 
110   /* Operations with real or imaginary part of a complex number zero
111      cannot be treated the same as operations with a real or imaginary
112      operand if we care about the signs of zeros in the result.  */
113   if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
114     zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
115   else if (TREE_CODE (t) == FIXED_CST)
116     zerop = fixed_zerop (t);
117   else if (TREE_CODE (t) == INTEGER_CST)
118     zerop = integer_zerop (t);
119 
120   return !zerop;
121 }
122 
123 
124 /* Compute a lattice value from the components of a complex type REAL
125    and IMAG.  */
126 
127 static complex_lattice_t
find_lattice_value_parts(tree real,tree imag)128 find_lattice_value_parts (tree real, tree imag)
129 {
130   int r, i;
131   complex_lattice_t ret;
132 
133   r = some_nonzerop (real);
134   i = some_nonzerop (imag);
135   ret = r * ONLY_REAL + i * ONLY_IMAG;
136 
137   /* ??? On occasion we could do better than mapping 0+0i to real, but we
138      certainly don't want to leave it UNINITIALIZED, which eventually gets
139      mapped to VARYING.  */
140   if (ret == UNINITIALIZED)
141     ret = ONLY_REAL;
142 
143   return ret;
144 }
145 
146 
147 /* Compute a lattice value from gimple_val T.  */
148 
149 static complex_lattice_t
find_lattice_value(tree t)150 find_lattice_value (tree t)
151 {
152   tree real, imag;
153 
154   switch (TREE_CODE (t))
155     {
156     case SSA_NAME:
157       return complex_lattice_values[SSA_NAME_VERSION (t)];
158 
159     case COMPLEX_CST:
160       real = TREE_REALPART (t);
161       imag = TREE_IMAGPART (t);
162       break;
163 
164     default:
165       gcc_unreachable ();
166     }
167 
168   return find_lattice_value_parts (real, imag);
169 }
170 
171 /* Determine if LHS is something for which we're interested in seeing
172    simulation results.  */
173 
174 static bool
is_complex_reg(tree lhs)175 is_complex_reg (tree lhs)
176 {
177   return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
178 }
179 
180 /* Mark the incoming parameters to the function as VARYING.  */
181 
182 static void
init_parameter_lattice_values(void)183 init_parameter_lattice_values (void)
184 {
185   tree parm, ssa_name;
186 
187   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
188     if (is_complex_reg (parm)
189 	&& (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
190       complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
191 }
192 
193 /* Initialize simulation state for each statement.  Return false if we
194    found no statements we want to simulate, and thus there's nothing
195    for the entire pass to do.  */
196 
197 static bool
init_dont_simulate_again(void)198 init_dont_simulate_again (void)
199 {
200   basic_block bb;
201   bool saw_a_complex_op = false;
202 
203   FOR_EACH_BB_FN (bb, cfun)
204     {
205       for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
206 	   gsi_next (&gsi))
207 	{
208 	  gphi *phi = gsi.phi ();
209 	  prop_set_simulate_again (phi,
210 				   is_complex_reg (gimple_phi_result (phi)));
211 	}
212 
213       for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
214 	   gsi_next (&gsi))
215 	{
216 	  gimple *stmt;
217 	  tree op0, op1;
218 	  bool sim_again_p;
219 
220 	  stmt = gsi_stmt (gsi);
221 	  op0 = op1 = NULL_TREE;
222 
223 	  /* Most control-altering statements must be initially
224 	     simulated, else we won't cover the entire cfg.  */
225 	  sim_again_p = stmt_ends_bb_p (stmt);
226 
227 	  switch (gimple_code (stmt))
228 	    {
229 	    case GIMPLE_CALL:
230 	      if (gimple_call_lhs (stmt))
231 	        sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
232 	      break;
233 
234 	    case GIMPLE_ASSIGN:
235 	      sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
236 	      if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
237 		  || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
238 		op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
239 	      else
240 		op0 = gimple_assign_rhs1 (stmt);
241 	      if (gimple_num_ops (stmt) > 2)
242 		op1 = gimple_assign_rhs2 (stmt);
243 	      break;
244 
245 	    case GIMPLE_COND:
246 	      op0 = gimple_cond_lhs (stmt);
247 	      op1 = gimple_cond_rhs (stmt);
248 	      break;
249 
250 	    default:
251 	      break;
252 	    }
253 
254 	  if (op0 || op1)
255 	    switch (gimple_expr_code (stmt))
256 	      {
257 	      case EQ_EXPR:
258 	      case NE_EXPR:
259 	      case PLUS_EXPR:
260 	      case MINUS_EXPR:
261 	      case MULT_EXPR:
262 	      case TRUNC_DIV_EXPR:
263 	      case CEIL_DIV_EXPR:
264 	      case FLOOR_DIV_EXPR:
265 	      case ROUND_DIV_EXPR:
266 	      case RDIV_EXPR:
267 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
268 		    || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
269 		  saw_a_complex_op = true;
270 		break;
271 
272 	      case NEGATE_EXPR:
273 	      case CONJ_EXPR:
274 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
275 		  saw_a_complex_op = true;
276 		break;
277 
278 	      case REALPART_EXPR:
279 	      case IMAGPART_EXPR:
280 		/* The total store transformation performed during
281 		  gimplification creates such uninitialized loads
282 		  and we need to lower the statement to be able
283 		  to fix things up.  */
284 		if (TREE_CODE (op0) == SSA_NAME
285 		    && ssa_undefined_value_p (op0))
286 		  saw_a_complex_op = true;
287 		break;
288 
289 	      default:
290 		break;
291 	      }
292 
293 	  prop_set_simulate_again (stmt, sim_again_p);
294 	}
295     }
296 
297   return saw_a_complex_op;
298 }
299 
300 
301 /* Evaluate statement STMT against the complex lattice defined above.  */
302 
303 static enum ssa_prop_result
complex_visit_stmt(gimple * stmt,edge * taken_edge_p ATTRIBUTE_UNUSED,tree * result_p)304 complex_visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
305 		    tree *result_p)
306 {
307   complex_lattice_t new_l, old_l, op1_l, op2_l;
308   unsigned int ver;
309   tree lhs;
310 
311   lhs = gimple_get_lhs (stmt);
312   /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs.  */
313   if (!lhs)
314     return SSA_PROP_VARYING;
315 
316   /* These conditions should be satisfied due to the initial filter
317      set up in init_dont_simulate_again.  */
318   gcc_assert (TREE_CODE (lhs) == SSA_NAME);
319   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
320 
321   *result_p = lhs;
322   ver = SSA_NAME_VERSION (lhs);
323   old_l = complex_lattice_values[ver];
324 
325   switch (gimple_expr_code (stmt))
326     {
327     case SSA_NAME:
328     case COMPLEX_CST:
329       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
330       break;
331 
332     case COMPLEX_EXPR:
333       new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
334 				        gimple_assign_rhs2 (stmt));
335       break;
336 
337     case PLUS_EXPR:
338     case MINUS_EXPR:
339       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
340       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
341 
342       /* We've set up the lattice values such that IOR neatly
343 	 models addition.  */
344       new_l = op1_l | op2_l;
345       break;
346 
347     case MULT_EXPR:
348     case RDIV_EXPR:
349     case TRUNC_DIV_EXPR:
350     case CEIL_DIV_EXPR:
351     case FLOOR_DIV_EXPR:
352     case ROUND_DIV_EXPR:
353       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
354       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
355 
356       /* Obviously, if either varies, so does the result.  */
357       if (op1_l == VARYING || op2_l == VARYING)
358 	new_l = VARYING;
359       /* Don't prematurely promote variables if we've not yet seen
360 	 their inputs.  */
361       else if (op1_l == UNINITIALIZED)
362 	new_l = op2_l;
363       else if (op2_l == UNINITIALIZED)
364 	new_l = op1_l;
365       else
366 	{
367 	  /* At this point both numbers have only one component. If the
368 	     numbers are of opposite kind, the result is imaginary,
369 	     otherwise the result is real. The add/subtract translates
370 	     the real/imag from/to 0/1; the ^ performs the comparison.  */
371 	  new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
372 
373 	  /* Don't allow the lattice value to flip-flop indefinitely.  */
374 	  new_l |= old_l;
375 	}
376       break;
377 
378     case NEGATE_EXPR:
379     case CONJ_EXPR:
380       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
381       break;
382 
383     default:
384       new_l = VARYING;
385       break;
386     }
387 
388   /* If nothing changed this round, let the propagator know.  */
389   if (new_l == old_l)
390     return SSA_PROP_NOT_INTERESTING;
391 
392   complex_lattice_values[ver] = new_l;
393   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
394 }
395 
396 /* Evaluate a PHI node against the complex lattice defined above.  */
397 
398 static enum ssa_prop_result
complex_visit_phi(gphi * phi)399 complex_visit_phi (gphi *phi)
400 {
401   complex_lattice_t new_l, old_l;
402   unsigned int ver;
403   tree lhs;
404   int i;
405 
406   lhs = gimple_phi_result (phi);
407 
408   /* This condition should be satisfied due to the initial filter
409      set up in init_dont_simulate_again.  */
410   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
411 
412   /* We've set up the lattice values such that IOR neatly models PHI meet.  */
413   new_l = UNINITIALIZED;
414   for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
415     new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
416 
417   ver = SSA_NAME_VERSION (lhs);
418   old_l = complex_lattice_values[ver];
419 
420   if (new_l == old_l)
421     return SSA_PROP_NOT_INTERESTING;
422 
423   complex_lattice_values[ver] = new_l;
424   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
425 }
426 
427 /* Create one backing variable for a complex component of ORIG.  */
428 
429 static tree
create_one_component_var(tree type,tree orig,const char * prefix,const char * suffix,enum tree_code code)430 create_one_component_var (tree type, tree orig, const char *prefix,
431 			  const char *suffix, enum tree_code code)
432 {
433   tree r = create_tmp_var (type, prefix);
434 
435   DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
436   DECL_ARTIFICIAL (r) = 1;
437 
438   if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
439     {
440       const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
441       name = ACONCAT ((name, suffix, NULL));
442       DECL_NAME (r) = get_identifier (name);
443 
444       SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
445       DECL_HAS_DEBUG_EXPR_P (r) = 1;
446       DECL_IGNORED_P (r) = 0;
447       TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
448     }
449   else
450     {
451       DECL_IGNORED_P (r) = 1;
452       TREE_NO_WARNING (r) = 1;
453     }
454 
455   return r;
456 }
457 
458 /* Retrieve a value for a complex component of VAR.  */
459 
460 static tree
get_component_var(tree var,bool imag_p)461 get_component_var (tree var, bool imag_p)
462 {
463   size_t decl_index = DECL_UID (var) * 2 + imag_p;
464   tree ret = cvc_lookup (decl_index);
465 
466   if (ret == NULL)
467     {
468       ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
469 				      imag_p ? "CI" : "CR",
470 				      imag_p ? "$imag" : "$real",
471 				      imag_p ? IMAGPART_EXPR : REALPART_EXPR);
472       cvc_insert (decl_index, ret);
473     }
474 
475   return ret;
476 }
477 
478 /* Retrieve a value for a complex component of SSA_NAME.  */
479 
480 static tree
get_component_ssa_name(tree ssa_name,bool imag_p)481 get_component_ssa_name (tree ssa_name, bool imag_p)
482 {
483   complex_lattice_t lattice = find_lattice_value (ssa_name);
484   size_t ssa_name_index;
485   tree ret;
486 
487   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
488     {
489       tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
490       if (SCALAR_FLOAT_TYPE_P (inner_type))
491 	return build_real (inner_type, dconst0);
492       else
493 	return build_int_cst (inner_type, 0);
494     }
495 
496   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
497   ret = complex_ssa_name_components[ssa_name_index];
498   if (ret == NULL)
499     {
500       if (SSA_NAME_VAR (ssa_name))
501 	ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
502       else
503 	ret = TREE_TYPE (TREE_TYPE (ssa_name));
504       ret = make_ssa_name (ret);
505 
506       /* Copy some properties from the original.  In particular, whether it
507 	 is used in an abnormal phi, and whether it's uninitialized.  */
508       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
509 	= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
510       if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
511 	  && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
512 	{
513 	  SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
514 	  set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
515 	}
516 
517       complex_ssa_name_components[ssa_name_index] = ret;
518     }
519 
520   return ret;
521 }
522 
523 /* Set a value for a complex component of SSA_NAME, return a
524    gimple_seq of stuff that needs doing.  */
525 
526 static gimple_seq
set_component_ssa_name(tree ssa_name,bool imag_p,tree value)527 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
528 {
529   complex_lattice_t lattice = find_lattice_value (ssa_name);
530   size_t ssa_name_index;
531   tree comp;
532   gimple *last;
533   gimple_seq list;
534 
535   /* We know the value must be zero, else there's a bug in our lattice
536      analysis.  But the value may well be a variable known to contain
537      zero.  We should be safe ignoring it.  */
538   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
539     return NULL;
540 
541   /* If we've already assigned an SSA_NAME to this component, then this
542      means that our walk of the basic blocks found a use before the set.
543      This is fine.  Now we should create an initialization for the value
544      we created earlier.  */
545   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
546   comp = complex_ssa_name_components[ssa_name_index];
547   if (comp)
548     ;
549 
550   /* If we've nothing assigned, and the value we're given is already stable,
551      then install that as the value for this SSA_NAME.  This preemptively
552      copy-propagates the value, which avoids unnecessary memory allocation.  */
553   else if (is_gimple_min_invariant (value)
554 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
555     {
556       complex_ssa_name_components[ssa_name_index] = value;
557       return NULL;
558     }
559   else if (TREE_CODE (value) == SSA_NAME
560 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
561     {
562       /* Replace an anonymous base value with the variable from cvc_lookup.
563 	 This should result in better debug info.  */
564       if (SSA_NAME_VAR (ssa_name)
565 	  && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
566 	  && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
567 	{
568 	  comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
569 	  replace_ssa_name_symbol (value, comp);
570 	}
571 
572       complex_ssa_name_components[ssa_name_index] = value;
573       return NULL;
574     }
575 
576   /* Finally, we need to stabilize the result by installing the value into
577      a new ssa name.  */
578   else
579     comp = get_component_ssa_name (ssa_name, imag_p);
580 
581   /* Do all the work to assign VALUE to COMP.  */
582   list = NULL;
583   value = force_gimple_operand (value, &list, false, NULL);
584   last =  gimple_build_assign (comp, value);
585   gimple_seq_add_stmt (&list, last);
586   gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
587 
588   return list;
589 }
590 
591 /* Extract the real or imaginary part of a complex variable or constant.
592    Make sure that it's a proper gimple_val and gimplify it if not.
593    Emit any new code before gsi.  */
594 
595 static tree
596 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
597 		   bool gimple_p, bool phiarg_p = false)
598 {
599   switch (TREE_CODE (t))
600     {
601     case COMPLEX_CST:
602       return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
603 
604     case COMPLEX_EXPR:
605       gcc_unreachable ();
606 
607     case VAR_DECL:
608     case RESULT_DECL:
609     case PARM_DECL:
610     case COMPONENT_REF:
611     case ARRAY_REF:
612     case VIEW_CONVERT_EXPR:
613     case MEM_REF:
614       {
615 	tree inner_type = TREE_TYPE (TREE_TYPE (t));
616 
617 	t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
618 		    inner_type, unshare_expr (t));
619 
620 	if (gimple_p)
621 	  t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
622                                         GSI_SAME_STMT);
623 
624 	return t;
625       }
626 
627     case SSA_NAME:
628       t = get_component_ssa_name (t, imagpart_p);
629       if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
630 	gcc_assert (phiarg_p);
631       return t;
632 
633     default:
634       gcc_unreachable ();
635     }
636 }
637 
638 /* Update the complex components of the ssa name on the lhs of STMT.  */
639 
640 static void
update_complex_components(gimple_stmt_iterator * gsi,gimple * stmt,tree r,tree i)641 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
642 			   tree i)
643 {
644   tree lhs;
645   gimple_seq list;
646 
647   lhs = gimple_get_lhs (stmt);
648 
649   list = set_component_ssa_name (lhs, false, r);
650   if (list)
651     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
652 
653   list = set_component_ssa_name (lhs, true, i);
654   if (list)
655     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
656 }
657 
658 static void
update_complex_components_on_edge(edge e,tree lhs,tree r,tree i)659 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
660 {
661   gimple_seq list;
662 
663   list = set_component_ssa_name (lhs, false, r);
664   if (list)
665     gsi_insert_seq_on_edge (e, list);
666 
667   list = set_component_ssa_name (lhs, true, i);
668   if (list)
669     gsi_insert_seq_on_edge (e, list);
670 }
671 
672 
673 /* Update an assignment to a complex variable in place.  */
674 
675 static void
update_complex_assignment(gimple_stmt_iterator * gsi,tree r,tree i)676 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
677 {
678   gimple *stmt;
679 
680   gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
681   stmt = gsi_stmt (*gsi);
682   update_stmt (stmt);
683   if (maybe_clean_eh_stmt (stmt))
684     gimple_purge_dead_eh_edges (gimple_bb (stmt));
685 
686   if (gimple_in_ssa_p (cfun))
687     update_complex_components (gsi, gsi_stmt (*gsi), r, i);
688 }
689 
690 
691 /* Generate code at the entry point of the function to initialize the
692    component variables for a complex parameter.  */
693 
694 static void
update_parameter_components(void)695 update_parameter_components (void)
696 {
697   edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
698   tree parm;
699 
700   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
701     {
702       tree type = TREE_TYPE (parm);
703       tree ssa_name, r, i;
704 
705       if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
706 	continue;
707 
708       type = TREE_TYPE (type);
709       ssa_name = ssa_default_def (cfun, parm);
710       if (!ssa_name)
711 	continue;
712 
713       r = build1 (REALPART_EXPR, type, ssa_name);
714       i = build1 (IMAGPART_EXPR, type, ssa_name);
715       update_complex_components_on_edge (entry_edge, ssa_name, r, i);
716     }
717 }
718 
719 /* Generate code to set the component variables of a complex variable
720    to match the PHI statements in block BB.  */
721 
722 static void
update_phi_components(basic_block bb)723 update_phi_components (basic_block bb)
724 {
725   gphi_iterator gsi;
726 
727   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
728     {
729       gphi *phi = gsi.phi ();
730 
731       if (is_complex_reg (gimple_phi_result (phi)))
732 	{
733 	  gphi *p[2] = { NULL, NULL };
734 	  unsigned int i, j, n;
735 	  bool revisit_phi = false;
736 
737 	  for (j = 0; j < 2; j++)
738 	    {
739 	      tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
740 	      if (TREE_CODE (l) == SSA_NAME)
741 		p[j] = create_phi_node (l, bb);
742 	    }
743 
744 	  for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
745 	    {
746 	      tree comp, arg = gimple_phi_arg_def (phi, i);
747 	      for (j = 0; j < 2; j++)
748 		if (p[j])
749 		  {
750 		    comp = extract_component (NULL, arg, j > 0, false, true);
751 		    if (TREE_CODE (comp) == SSA_NAME
752 			&& SSA_NAME_DEF_STMT (comp) == NULL)
753 		      {
754 			/* For the benefit of any gimple simplification during
755 			   this pass that might walk SSA_NAME def stmts,
756 			   don't add SSA_NAMEs without definitions into the
757 			   PHI arguments, but put a decl in there instead
758 			   temporarily, and revisit this PHI later on.  */
759 			if (SSA_NAME_VAR (comp))
760 			  comp = SSA_NAME_VAR (comp);
761 			else
762 			  comp = create_tmp_reg (TREE_TYPE (comp),
763 						 get_name (comp));
764 			revisit_phi = true;
765 		      }
766 		    SET_PHI_ARG_DEF (p[j], i, comp);
767 		  }
768 	    }
769 
770 	  if (revisit_phi)
771 	    {
772 	      phis_to_revisit.safe_push (phi);
773 	      phis_to_revisit.safe_push (p[0]);
774 	      phis_to_revisit.safe_push (p[1]);
775 	    }
776 	}
777     }
778 }
779 
780 /* Expand a complex move to scalars.  */
781 
782 static void
expand_complex_move(gimple_stmt_iterator * gsi,tree type)783 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
784 {
785   tree inner_type = TREE_TYPE (type);
786   tree r, i, lhs, rhs;
787   gimple *stmt = gsi_stmt (*gsi);
788 
789   if (is_gimple_assign (stmt))
790     {
791       lhs = gimple_assign_lhs (stmt);
792       if (gimple_num_ops (stmt) == 2)
793 	rhs = gimple_assign_rhs1 (stmt);
794       else
795 	rhs = NULL_TREE;
796     }
797   else if (is_gimple_call (stmt))
798     {
799       lhs = gimple_call_lhs (stmt);
800       rhs = NULL_TREE;
801     }
802   else
803     gcc_unreachable ();
804 
805   if (TREE_CODE (lhs) == SSA_NAME)
806     {
807       if (is_ctrl_altering_stmt (stmt))
808 	{
809 	  edge e;
810 
811 	  /* The value is not assigned on the exception edges, so we need not
812 	     concern ourselves there.  We do need to update on the fallthru
813 	     edge.  Find it.  */
814 	  e = find_fallthru_edge (gsi_bb (*gsi)->succs);
815 	  if (!e)
816 	    gcc_unreachable ();
817 
818 	  r = build1 (REALPART_EXPR, inner_type, lhs);
819 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
820 	  update_complex_components_on_edge (e, lhs, r, i);
821 	}
822       else if (is_gimple_call (stmt)
823 	       || gimple_has_side_effects (stmt)
824 	       || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
825 	{
826 	  r = build1 (REALPART_EXPR, inner_type, lhs);
827 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
828 	  update_complex_components (gsi, stmt, r, i);
829 	}
830       else
831 	{
832 	  if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
833 	    {
834 	      r = extract_component (gsi, rhs, 0, true);
835 	      i = extract_component (gsi, rhs, 1, true);
836 	    }
837 	  else
838 	    {
839 	      r = gimple_assign_rhs1 (stmt);
840 	      i = gimple_assign_rhs2 (stmt);
841 	    }
842 	  update_complex_assignment (gsi, r, i);
843 	}
844     }
845   else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
846     {
847       tree x;
848       gimple *t;
849       location_t loc;
850 
851       loc = gimple_location (stmt);
852       r = extract_component (gsi, rhs, 0, false);
853       i = extract_component (gsi, rhs, 1, false);
854 
855       x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
856       t = gimple_build_assign (x, r);
857       gimple_set_location (t, loc);
858       gsi_insert_before (gsi, t, GSI_SAME_STMT);
859 
860       if (stmt == gsi_stmt (*gsi))
861 	{
862 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
863 	  gimple_assign_set_lhs (stmt, x);
864 	  gimple_assign_set_rhs1 (stmt, i);
865 	}
866       else
867 	{
868 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
869 	  t = gimple_build_assign (x, i);
870 	  gimple_set_location (t, loc);
871 	  gsi_insert_before (gsi, t, GSI_SAME_STMT);
872 
873 	  stmt = gsi_stmt (*gsi);
874 	  gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
875 	  gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
876 	}
877 
878       update_stmt (stmt);
879     }
880 }
881 
882 /* Expand complex addition to scalars:
883 	a + b = (ar + br) + i(ai + bi)
884 	a - b = (ar - br) + i(ai + bi)
885 */
886 
887 static void
expand_complex_addition(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,enum tree_code code,complex_lattice_t al,complex_lattice_t bl)888 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
889 			 tree ar, tree ai, tree br, tree bi,
890 			 enum tree_code code,
891 			 complex_lattice_t al, complex_lattice_t bl)
892 {
893   tree rr, ri;
894 
895   switch (PAIR (al, bl))
896     {
897     case PAIR (ONLY_REAL, ONLY_REAL):
898       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
899       ri = ai;
900       break;
901 
902     case PAIR (ONLY_REAL, ONLY_IMAG):
903       rr = ar;
904       if (code == MINUS_EXPR)
905 	ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
906       else
907 	ri = bi;
908       break;
909 
910     case PAIR (ONLY_IMAG, ONLY_REAL):
911       if (code == MINUS_EXPR)
912 	rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
913       else
914 	rr = br;
915       ri = ai;
916       break;
917 
918     case PAIR (ONLY_IMAG, ONLY_IMAG):
919       rr = ar;
920       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
921       break;
922 
923     case PAIR (VARYING, ONLY_REAL):
924       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
925       ri = ai;
926       break;
927 
928     case PAIR (VARYING, ONLY_IMAG):
929       rr = ar;
930       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
931       break;
932 
933     case PAIR (ONLY_REAL, VARYING):
934       if (code == MINUS_EXPR)
935 	goto general;
936       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
937       ri = bi;
938       break;
939 
940     case PAIR (ONLY_IMAG, VARYING):
941       if (code == MINUS_EXPR)
942 	goto general;
943       rr = br;
944       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
945       break;
946 
947     case PAIR (VARYING, VARYING):
948     general:
949       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
950       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
951       break;
952 
953     default:
954       gcc_unreachable ();
955     }
956 
957   update_complex_assignment (gsi, rr, ri);
958 }
959 
960 /* Expand a complex multiplication or division to a libcall to the c99
961    compliant routines.  */
962 
963 static void
expand_complex_libcall(gimple_stmt_iterator * gsi,tree ar,tree ai,tree br,tree bi,enum tree_code code)964 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
965 			tree br, tree bi, enum tree_code code)
966 {
967   machine_mode mode;
968   enum built_in_function bcode;
969   tree fn, type, lhs;
970   gimple *old_stmt;
971   gcall *stmt;
972 
973   old_stmt = gsi_stmt (*gsi);
974   lhs = gimple_assign_lhs (old_stmt);
975   type = TREE_TYPE (lhs);
976 
977   mode = TYPE_MODE (type);
978   gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
979 
980   if (code == MULT_EXPR)
981     bcode = ((enum built_in_function)
982 	     (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
983   else if (code == RDIV_EXPR)
984     bcode = ((enum built_in_function)
985 	     (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
986   else
987     gcc_unreachable ();
988   fn = builtin_decl_explicit (bcode);
989 
990   stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
991   gimple_call_set_lhs (stmt, lhs);
992   update_stmt (stmt);
993   gsi_replace (gsi, stmt, false);
994 
995   if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
996     gimple_purge_dead_eh_edges (gsi_bb (*gsi));
997 
998   if (gimple_in_ssa_p (cfun))
999     {
1000       type = TREE_TYPE (type);
1001       update_complex_components (gsi, stmt,
1002 				 build1 (REALPART_EXPR, type, lhs),
1003 				 build1 (IMAGPART_EXPR, type, lhs));
1004       SSA_NAME_DEF_STMT (lhs) = stmt;
1005     }
1006 }
1007 
1008 /* Expand complex multiplication to scalars:
1009 	a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1010 */
1011 
1012 static void
expand_complex_multiplication(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,complex_lattice_t al,complex_lattice_t bl)1013 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
1014 			       tree ar, tree ai, tree br, tree bi,
1015 			       complex_lattice_t al, complex_lattice_t bl)
1016 {
1017   tree rr, ri;
1018 
1019   if (al < bl)
1020     {
1021       complex_lattice_t tl;
1022       rr = ar, ar = br, br = rr;
1023       ri = ai, ai = bi, bi = ri;
1024       tl = al, al = bl, bl = tl;
1025     }
1026 
1027   switch (PAIR (al, bl))
1028     {
1029     case PAIR (ONLY_REAL, ONLY_REAL):
1030       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1031       ri = ai;
1032       break;
1033 
1034     case PAIR (ONLY_IMAG, ONLY_REAL):
1035       rr = ar;
1036       if (TREE_CODE (ai) == REAL_CST
1037 	  && real_identical (&TREE_REAL_CST (ai), &dconst1))
1038 	ri = br;
1039       else
1040 	ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1041       break;
1042 
1043     case PAIR (ONLY_IMAG, ONLY_IMAG):
1044       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1045       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1046       ri = ar;
1047       break;
1048 
1049     case PAIR (VARYING, ONLY_REAL):
1050       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1051       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1052       break;
1053 
1054     case PAIR (VARYING, ONLY_IMAG):
1055       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1056       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1057       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1058       break;
1059 
1060     case PAIR (VARYING, VARYING):
1061       if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1062 	{
1063 	  expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1064 	  return;
1065 	}
1066       else
1067 	{
1068 	  tree t1, t2, t3, t4;
1069 
1070 	  t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1071 	  t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1072 	  t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1073 
1074 	  /* Avoid expanding redundant multiplication for the common
1075 	     case of squaring a complex number.  */
1076 	  if (ar == br && ai == bi)
1077 	    t4 = t3;
1078 	  else
1079 	    t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1080 
1081 	  rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1082 	  ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1083 	}
1084       break;
1085 
1086     default:
1087       gcc_unreachable ();
1088     }
1089 
1090   update_complex_assignment (gsi, rr, ri);
1091 }
1092 
1093 /* Keep this algorithm in sync with fold-const.c:const_binop().
1094 
1095    Expand complex division to scalars, straightforward algorithm.
1096 	a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1097 	    t = br*br + bi*bi
1098 */
1099 
1100 static void
expand_complex_div_straight(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,enum tree_code code)1101 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1102 			     tree ar, tree ai, tree br, tree bi,
1103 			     enum tree_code code)
1104 {
1105   tree rr, ri, div, t1, t2, t3;
1106 
1107   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1108   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1109   div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1110 
1111   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1112   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1113   t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1114   rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1115 
1116   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1117   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1118   t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1119   ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1120 
1121   update_complex_assignment (gsi, rr, ri);
1122 }
1123 
1124 /* Keep this algorithm in sync with fold-const.c:const_binop().
1125 
1126    Expand complex division to scalars, modified algorithm to minimize
1127    overflow with wide input ranges.  */
1128 
1129 static void
expand_complex_div_wide(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,enum tree_code code)1130 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1131 			 tree ar, tree ai, tree br, tree bi,
1132 			 enum tree_code code)
1133 {
1134   tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1135   basic_block bb_cond, bb_true, bb_false, bb_join;
1136   gimple *stmt;
1137 
1138   /* Examine |br| < |bi|, and branch.  */
1139   t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1140   t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1141   compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1142 			     LT_EXPR, boolean_type_node, t1, t2);
1143   STRIP_NOPS (compare);
1144 
1145   bb_cond = bb_true = bb_false = bb_join = NULL;
1146   rr = ri = tr = ti = NULL;
1147   if (TREE_CODE (compare) != INTEGER_CST)
1148     {
1149       edge e;
1150       gimple *stmt;
1151       tree cond, tmp;
1152 
1153       tmp = create_tmp_var (boolean_type_node);
1154       stmt = gimple_build_assign (tmp, compare);
1155       if (gimple_in_ssa_p (cfun))
1156 	{
1157 	  tmp = make_ssa_name (tmp, stmt);
1158 	  gimple_assign_set_lhs (stmt, tmp);
1159 	}
1160 
1161       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1162 
1163       cond = fold_build2_loc (gimple_location (stmt),
1164 			  EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1165       stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1166       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1167 
1168       /* Split the original block, and create the TRUE and FALSE blocks.  */
1169       e = split_block (gsi_bb (*gsi), stmt);
1170       bb_cond = e->src;
1171       bb_join = e->dest;
1172       bb_true = create_empty_bb (bb_cond);
1173       bb_false = create_empty_bb (bb_true);
1174 
1175       /* Wire the blocks together.  */
1176       e->flags = EDGE_TRUE_VALUE;
1177       redirect_edge_succ (e, bb_true);
1178       make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1179       make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1180       make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1181       add_bb_to_loop (bb_true, bb_cond->loop_father);
1182       add_bb_to_loop (bb_false, bb_cond->loop_father);
1183 
1184       /* Update dominance info.  Note that bb_join's data was
1185          updated by split_block.  */
1186       if (dom_info_available_p (CDI_DOMINATORS))
1187         {
1188           set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1189           set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1190         }
1191 
1192       rr = create_tmp_reg (inner_type);
1193       ri = create_tmp_reg (inner_type);
1194     }
1195 
1196   /* In the TRUE branch, we compute
1197       ratio = br/bi;
1198       div = (br * ratio) + bi;
1199       tr = (ar * ratio) + ai;
1200       ti = (ai * ratio) - ar;
1201       tr = tr / div;
1202       ti = ti / div;  */
1203   if (bb_true || integer_nonzerop (compare))
1204     {
1205       if (bb_true)
1206 	{
1207 	  *gsi = gsi_last_bb (bb_true);
1208 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1209 	}
1210 
1211       ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1212 
1213       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1214       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1215 
1216       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1217       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1218 
1219       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1220       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1221 
1222       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1223       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1224 
1225      if (bb_true)
1226        {
1227 	 stmt = gimple_build_assign (rr, tr);
1228 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1229 	 stmt = gimple_build_assign (ri, ti);
1230 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1231 	 gsi_remove (gsi, true);
1232        }
1233     }
1234 
1235   /* In the FALSE branch, we compute
1236       ratio = d/c;
1237       divisor = (d * ratio) + c;
1238       tr = (b * ratio) + a;
1239       ti = b - (a * ratio);
1240       tr = tr / div;
1241       ti = ti / div;  */
1242   if (bb_false || integer_zerop (compare))
1243     {
1244       if (bb_false)
1245 	{
1246 	  *gsi = gsi_last_bb (bb_false);
1247 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1248 	}
1249 
1250       ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1251 
1252       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1253       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1254 
1255       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1256       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1257 
1258       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1259       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1260 
1261       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1262       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1263 
1264      if (bb_false)
1265        {
1266 	 stmt = gimple_build_assign (rr, tr);
1267 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1268 	 stmt = gimple_build_assign (ri, ti);
1269 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1270 	 gsi_remove (gsi, true);
1271        }
1272     }
1273 
1274   if (bb_join)
1275     *gsi = gsi_start_bb (bb_join);
1276   else
1277     rr = tr, ri = ti;
1278 
1279   update_complex_assignment (gsi, rr, ri);
1280 }
1281 
1282 /* Expand complex division to scalars.  */
1283 
1284 static void
expand_complex_division(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,enum tree_code code,complex_lattice_t al,complex_lattice_t bl)1285 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1286 			 tree ar, tree ai, tree br, tree bi,
1287 			 enum tree_code code,
1288 			 complex_lattice_t al, complex_lattice_t bl)
1289 {
1290   tree rr, ri;
1291 
1292   switch (PAIR (al, bl))
1293     {
1294     case PAIR (ONLY_REAL, ONLY_REAL):
1295       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1296       ri = ai;
1297       break;
1298 
1299     case PAIR (ONLY_REAL, ONLY_IMAG):
1300       rr = ai;
1301       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1302       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1303       break;
1304 
1305     case PAIR (ONLY_IMAG, ONLY_REAL):
1306       rr = ar;
1307       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1308       break;
1309 
1310     case PAIR (ONLY_IMAG, ONLY_IMAG):
1311       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1312       ri = ar;
1313       break;
1314 
1315     case PAIR (VARYING, ONLY_REAL):
1316       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1317       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1318       break;
1319 
1320     case PAIR (VARYING, ONLY_IMAG):
1321       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1322       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1323       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1324 
1325     case PAIR (ONLY_REAL, VARYING):
1326     case PAIR (ONLY_IMAG, VARYING):
1327     case PAIR (VARYING, VARYING):
1328       switch (flag_complex_method)
1329 	{
1330 	case 0:
1331 	  /* straightforward implementation of complex divide acceptable.  */
1332 	  expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1333 	  break;
1334 
1335 	case 2:
1336 	  if (SCALAR_FLOAT_TYPE_P (inner_type))
1337 	    {
1338 	      expand_complex_libcall (gsi, ar, ai, br, bi, code);
1339 	      break;
1340 	    }
1341 	  /* FALLTHRU */
1342 
1343 	case 1:
1344 	  /* wide ranges of inputs must work for complex divide.  */
1345 	  expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1346 	  break;
1347 
1348 	default:
1349 	  gcc_unreachable ();
1350 	}
1351       return;
1352 
1353     default:
1354       gcc_unreachable ();
1355     }
1356 
1357   update_complex_assignment (gsi, rr, ri);
1358 }
1359 
1360 /* Expand complex negation to scalars:
1361 	-a = (-ar) + i(-ai)
1362 */
1363 
1364 static void
expand_complex_negation(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai)1365 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1366 			 tree ar, tree ai)
1367 {
1368   tree rr, ri;
1369 
1370   rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1371   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1372 
1373   update_complex_assignment (gsi, rr, ri);
1374 }
1375 
1376 /* Expand complex conjugate to scalars:
1377 	~a = (ar) + i(-ai)
1378 */
1379 
1380 static void
expand_complex_conjugate(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai)1381 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1382 			  tree ar, tree ai)
1383 {
1384   tree ri;
1385 
1386   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1387 
1388   update_complex_assignment (gsi, ar, ri);
1389 }
1390 
1391 /* Expand complex comparison (EQ or NE only).  */
1392 
1393 static void
expand_complex_comparison(gimple_stmt_iterator * gsi,tree ar,tree ai,tree br,tree bi,enum tree_code code)1394 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1395 			   tree br, tree bi, enum tree_code code)
1396 {
1397   tree cr, ci, cc, type;
1398   gimple *stmt;
1399 
1400   cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1401   ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1402   cc = gimplify_build2 (gsi,
1403 			(code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1404 			boolean_type_node, cr, ci);
1405 
1406   stmt = gsi_stmt (*gsi);
1407 
1408   switch (gimple_code (stmt))
1409     {
1410     case GIMPLE_RETURN:
1411       {
1412 	greturn *return_stmt = as_a <greturn *> (stmt);
1413 	type = TREE_TYPE (gimple_return_retval (return_stmt));
1414 	gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1415       }
1416       break;
1417 
1418     case GIMPLE_ASSIGN:
1419       type = TREE_TYPE (gimple_assign_lhs (stmt));
1420       gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1421       stmt = gsi_stmt (*gsi);
1422       break;
1423 
1424     case GIMPLE_COND:
1425       {
1426 	gcond *cond_stmt = as_a <gcond *> (stmt);
1427 	gimple_cond_set_code (cond_stmt, EQ_EXPR);
1428 	gimple_cond_set_lhs (cond_stmt, cc);
1429 	gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1430       }
1431       break;
1432 
1433     default:
1434       gcc_unreachable ();
1435     }
1436 
1437   update_stmt (stmt);
1438 }
1439 
1440 /* Expand inline asm that sets some complex SSA_NAMEs.  */
1441 
1442 static void
expand_complex_asm(gimple_stmt_iterator * gsi)1443 expand_complex_asm (gimple_stmt_iterator *gsi)
1444 {
1445   gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1446   unsigned int i;
1447 
1448   for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1449     {
1450       tree link = gimple_asm_output_op (stmt, i);
1451       tree op = TREE_VALUE (link);
1452       if (TREE_CODE (op) == SSA_NAME
1453 	  && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1454 	{
1455 	  tree type = TREE_TYPE (op);
1456 	  tree inner_type = TREE_TYPE (type);
1457 	  tree r = build1 (REALPART_EXPR, inner_type, op);
1458 	  tree i = build1 (IMAGPART_EXPR, inner_type, op);
1459 	  gimple_seq list = set_component_ssa_name (op, false, r);
1460 
1461 	  if (list)
1462 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1463 
1464 	  list = set_component_ssa_name (op, true, i);
1465 	  if (list)
1466 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1467 	}
1468     }
1469 }
1470 
1471 /* Process one statement.  If we identify a complex operation, expand it.  */
1472 
1473 static void
expand_complex_operations_1(gimple_stmt_iterator * gsi)1474 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1475 {
1476   gimple *stmt = gsi_stmt (*gsi);
1477   tree type, inner_type, lhs;
1478   tree ac, ar, ai, bc, br, bi;
1479   complex_lattice_t al, bl;
1480   enum tree_code code;
1481 
1482   if (gimple_code (stmt) == GIMPLE_ASM)
1483     {
1484       expand_complex_asm (gsi);
1485       return;
1486     }
1487 
1488   lhs = gimple_get_lhs (stmt);
1489   if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1490     return;
1491 
1492   type = TREE_TYPE (gimple_op (stmt, 0));
1493   code = gimple_expr_code (stmt);
1494 
1495   /* Initial filter for operations we handle.  */
1496   switch (code)
1497     {
1498     case PLUS_EXPR:
1499     case MINUS_EXPR:
1500     case MULT_EXPR:
1501     case TRUNC_DIV_EXPR:
1502     case CEIL_DIV_EXPR:
1503     case FLOOR_DIV_EXPR:
1504     case ROUND_DIV_EXPR:
1505     case RDIV_EXPR:
1506     case NEGATE_EXPR:
1507     case CONJ_EXPR:
1508       if (TREE_CODE (type) != COMPLEX_TYPE)
1509 	return;
1510       inner_type = TREE_TYPE (type);
1511       break;
1512 
1513     case EQ_EXPR:
1514     case NE_EXPR:
1515       /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1516 	 subcode, so we need to access the operands using gimple_op.  */
1517       inner_type = TREE_TYPE (gimple_op (stmt, 1));
1518       if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1519 	return;
1520       break;
1521 
1522     default:
1523       {
1524 	tree rhs;
1525 
1526 	/* GIMPLE_COND may also fallthru here, but we do not need to
1527 	   do anything with it.  */
1528 	if (gimple_code (stmt) == GIMPLE_COND)
1529 	  return;
1530 
1531 	if (TREE_CODE (type) == COMPLEX_TYPE)
1532 	  expand_complex_move (gsi, type);
1533 	else if (is_gimple_assign (stmt)
1534 		 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1535 		     || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1536 		 && TREE_CODE (lhs) == SSA_NAME)
1537 	  {
1538 	    rhs = gimple_assign_rhs1 (stmt);
1539 	    rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1540 		                     gimple_assign_rhs_code (stmt)
1541 				       == IMAGPART_EXPR,
1542 				     false);
1543 	    gimple_assign_set_rhs_from_tree (gsi, rhs);
1544 	    stmt = gsi_stmt (*gsi);
1545 	    update_stmt (stmt);
1546 	  }
1547       }
1548       return;
1549     }
1550 
1551   /* Extract the components of the two complex values.  Make sure and
1552      handle the common case of the same value used twice specially.  */
1553   if (is_gimple_assign (stmt))
1554     {
1555       ac = gimple_assign_rhs1 (stmt);
1556       bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1557     }
1558   /* GIMPLE_CALL can not get here.  */
1559   else
1560     {
1561       ac = gimple_cond_lhs (stmt);
1562       bc = gimple_cond_rhs (stmt);
1563     }
1564 
1565   ar = extract_component (gsi, ac, false, true);
1566   ai = extract_component (gsi, ac, true, true);
1567 
1568   if (ac == bc)
1569     br = ar, bi = ai;
1570   else if (bc)
1571     {
1572       br = extract_component (gsi, bc, 0, true);
1573       bi = extract_component (gsi, bc, 1, true);
1574     }
1575   else
1576     br = bi = NULL_TREE;
1577 
1578   if (gimple_in_ssa_p (cfun))
1579     {
1580       al = find_lattice_value (ac);
1581       if (al == UNINITIALIZED)
1582 	al = VARYING;
1583 
1584       if (TREE_CODE_CLASS (code) == tcc_unary)
1585 	bl = UNINITIALIZED;
1586       else if (ac == bc)
1587 	bl = al;
1588       else
1589 	{
1590 	  bl = find_lattice_value (bc);
1591 	  if (bl == UNINITIALIZED)
1592 	    bl = VARYING;
1593 	}
1594     }
1595   else
1596     al = bl = VARYING;
1597 
1598   switch (code)
1599     {
1600     case PLUS_EXPR:
1601     case MINUS_EXPR:
1602       expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1603       break;
1604 
1605     case MULT_EXPR:
1606       expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1607       break;
1608 
1609     case TRUNC_DIV_EXPR:
1610     case CEIL_DIV_EXPR:
1611     case FLOOR_DIV_EXPR:
1612     case ROUND_DIV_EXPR:
1613     case RDIV_EXPR:
1614       expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1615       break;
1616 
1617     case NEGATE_EXPR:
1618       expand_complex_negation (gsi, inner_type, ar, ai);
1619       break;
1620 
1621     case CONJ_EXPR:
1622       expand_complex_conjugate (gsi, inner_type, ar, ai);
1623       break;
1624 
1625     case EQ_EXPR:
1626     case NE_EXPR:
1627       expand_complex_comparison (gsi, ar, ai, br, bi, code);
1628       break;
1629 
1630     default:
1631       gcc_unreachable ();
1632     }
1633 }
1634 
1635 
1636 /* Entry point for complex operation lowering during optimization.  */
1637 
1638 static unsigned int
tree_lower_complex(void)1639 tree_lower_complex (void)
1640 {
1641   gimple_stmt_iterator gsi;
1642   basic_block bb;
1643   int n_bbs, i;
1644   int *rpo;
1645 
1646   if (!init_dont_simulate_again ())
1647     return 0;
1648 
1649   complex_lattice_values.create (num_ssa_names);
1650   complex_lattice_values.safe_grow_cleared (num_ssa_names);
1651 
1652   init_parameter_lattice_values ();
1653   ssa_propagate (complex_visit_stmt, complex_visit_phi);
1654 
1655   complex_variable_components = new int_tree_htab_type (10);
1656 
1657   complex_ssa_name_components.create (2 * num_ssa_names);
1658   complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1659 
1660   update_parameter_components ();
1661 
1662   rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1663   n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
1664   for (i = 0; i < n_bbs; i++)
1665     {
1666       bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
1667       update_phi_components (bb);
1668       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1669 	expand_complex_operations_1 (&gsi);
1670     }
1671 
1672   free (rpo);
1673 
1674   if (!phis_to_revisit.is_empty ())
1675     {
1676       unsigned int n = phis_to_revisit.length ();
1677       for (unsigned int j = 0; j < n; j += 3)
1678 	for (unsigned int k = 0; k < 2; k++)
1679 	  if (gphi *phi = phis_to_revisit[j + k + 1])
1680 	    {
1681 	      unsigned int m = gimple_phi_num_args (phi);
1682 	      for (unsigned int l = 0; l < m; ++l)
1683 		{
1684 		  tree op = gimple_phi_arg_def (phi, l);
1685 		  if (TREE_CODE (op) == SSA_NAME
1686 		      || is_gimple_min_invariant (op))
1687 		    continue;
1688 		  tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
1689 		  op = extract_component (NULL, arg, k > 0, false, false);
1690 		  SET_PHI_ARG_DEF (phi, l, op);
1691 		}
1692 	    }
1693       phis_to_revisit.release ();
1694     }
1695 
1696   gsi_commit_edge_inserts ();
1697 
1698   delete complex_variable_components;
1699   complex_variable_components = NULL;
1700   complex_ssa_name_components.release ();
1701   complex_lattice_values.release ();
1702   return 0;
1703 }
1704 
1705 namespace {
1706 
1707 const pass_data pass_data_lower_complex =
1708 {
1709   GIMPLE_PASS, /* type */
1710   "cplxlower", /* name */
1711   OPTGROUP_NONE, /* optinfo_flags */
1712   TV_NONE, /* tv_id */
1713   PROP_ssa, /* properties_required */
1714   PROP_gimple_lcx, /* properties_provided */
1715   0, /* properties_destroyed */
1716   0, /* todo_flags_start */
1717   TODO_update_ssa, /* todo_flags_finish */
1718 };
1719 
1720 class pass_lower_complex : public gimple_opt_pass
1721 {
1722 public:
pass_lower_complex(gcc::context * ctxt)1723   pass_lower_complex (gcc::context *ctxt)
1724     : gimple_opt_pass (pass_data_lower_complex, ctxt)
1725   {}
1726 
1727   /* opt_pass methods: */
clone()1728   opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
execute(function *)1729   virtual unsigned int execute (function *) { return tree_lower_complex (); }
1730 
1731 }; // class pass_lower_complex
1732 
1733 } // anon namespace
1734 
1735 gimple_opt_pass *
make_pass_lower_complex(gcc::context * ctxt)1736 make_pass_lower_complex (gcc::context *ctxt)
1737 {
1738   return new pass_lower_complex (ctxt);
1739 }
1740 
1741 
1742 namespace {
1743 
1744 const pass_data pass_data_lower_complex_O0 =
1745 {
1746   GIMPLE_PASS, /* type */
1747   "cplxlower0", /* name */
1748   OPTGROUP_NONE, /* optinfo_flags */
1749   TV_NONE, /* tv_id */
1750   PROP_cfg, /* properties_required */
1751   PROP_gimple_lcx, /* properties_provided */
1752   0, /* properties_destroyed */
1753   0, /* todo_flags_start */
1754   TODO_update_ssa, /* todo_flags_finish */
1755 };
1756 
1757 class pass_lower_complex_O0 : public gimple_opt_pass
1758 {
1759 public:
pass_lower_complex_O0(gcc::context * ctxt)1760   pass_lower_complex_O0 (gcc::context *ctxt)
1761     : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1762   {}
1763 
1764   /* opt_pass methods: */
gate(function * fun)1765   virtual bool gate (function *fun)
1766     {
1767       /* With errors, normal optimization passes are not run.  If we don't
1768 	 lower complex operations at all, rtl expansion will abort.  */
1769       return !(fun->curr_properties & PROP_gimple_lcx);
1770     }
1771 
execute(function *)1772   virtual unsigned int execute (function *) { return tree_lower_complex (); }
1773 
1774 }; // class pass_lower_complex_O0
1775 
1776 } // anon namespace
1777 
1778 gimple_opt_pass *
make_pass_lower_complex_O0(gcc::context * ctxt)1779 make_pass_lower_complex_O0 (gcc::context *ctxt)
1780 {
1781   return new pass_lower_complex_O0 (ctxt);
1782 }
1783