1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package math
6
7/*
8	Bessel function of the first and second kinds of order one.
9*/
10
11// The original C code and the long comment below are
12// from FreeBSD's /usr/src/lib/msun/src/e_j1.c and
13// came with this notice.  The go code is a simplified
14// version of the original C.
15//
16// ====================================================
17// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
18//
19// Developed at SunPro, a Sun Microsystems, Inc. business.
20// Permission to use, copy, modify, and distribute this
21// software is freely granted, provided that this notice
22// is preserved.
23// ====================================================
24//
25// __ieee754_j1(x), __ieee754_y1(x)
26// Bessel function of the first and second kinds of order one.
27// Method -- j1(x):
28//      1. For tiny x, we use j1(x) = x/2 - x**3/16 + x**5/384 - ...
29//      2. Reduce x to |x| since j1(x)=-j1(-x),  and
30//         for x in (0,2)
31//              j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
32//         (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
33//         for x in (2,inf)
34//              j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
35//              y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
36//         where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
37//         as follow:
38//              cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
39//                      =  1/sqrt(2) * (sin(x) - cos(x))
40//              sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
41//                      = -1/sqrt(2) * (sin(x) + cos(x))
42//         (To avoid cancelation, use
43//              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
44//         to compute the worse one.)
45//
46//      3 Special cases
47//              j1(nan)= nan
48//              j1(0) = 0
49//              j1(inf) = 0
50//
51// Method -- y1(x):
52//      1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
53//      2. For x<2.
54//         Since
55//              y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...)
56//         therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
57//         We use the following function to approximate y1,
58//              y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x**2
59//         where for x in [0,2] (abs err less than 2**-65.89)
60//              U(z) = U0[0] + U0[1]*z + ... + U0[4]*z**4
61//              V(z) = 1  + v0[0]*z + ... + v0[4]*z**5
62//         Note: For tiny x, 1/x dominate y1 and hence
63//              y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
64//      3. For x>=2.
65//               y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
66//         where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
67//         by method mentioned above.
68
69// J1 returns the order-one Bessel function of the first kind.
70//
71// Special cases are:
72//	J1(±Inf) = 0
73//	J1(NaN) = NaN
74func J1(x float64) float64 {
75	const (
76		TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
77		Two129 = 1 << 129        // 2**129 0x4800000000000000
78		// R0/S0 on [0, 2]
79		R00 = -6.25000000000000000000e-02 // 0xBFB0000000000000
80		R01 = 1.40705666955189706048e-03  // 0x3F570D9F98472C61
81		R02 = -1.59955631084035597520e-05 // 0xBEF0C5C6BA169668
82		R03 = 4.96727999609584448412e-08  // 0x3E6AAAFA46CA0BD9
83		S01 = 1.91537599538363460805e-02  // 0x3F939D0B12637E53
84		S02 = 1.85946785588630915560e-04  // 0x3F285F56B9CDF664
85		S03 = 1.17718464042623683263e-06  // 0x3EB3BFF8333F8498
86		S04 = 5.04636257076217042715e-09  // 0x3E35AC88C97DFF2C
87		S05 = 1.23542274426137913908e-11  // 0x3DAB2ACFCFB97ED8
88	)
89	// special cases
90	switch {
91	case IsNaN(x):
92		return x
93	case IsInf(x, 0) || x == 0:
94		return 0
95	}
96
97	sign := false
98	if x < 0 {
99		x = -x
100		sign = true
101	}
102	if x >= 2 {
103		s, c := Sincos(x)
104		ss := -s - c
105		cc := s - c
106
107		// make sure x+x does not overflow
108		if x < MaxFloat64/2 {
109			z := Cos(x + x)
110			if s*c > 0 {
111				cc = z / ss
112			} else {
113				ss = z / cc
114			}
115		}
116
117		// j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
118		// y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
119
120		var z float64
121		if x > Two129 {
122			z = (1 / SqrtPi) * cc / Sqrt(x)
123		} else {
124			u := pone(x)
125			v := qone(x)
126			z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
127		}
128		if sign {
129			return -z
130		}
131		return z
132	}
133	if x < TwoM27 { // |x|<2**-27
134		return 0.5 * x // inexact if x!=0 necessary
135	}
136	z := x * x
137	r := z * (R00 + z*(R01+z*(R02+z*R03)))
138	s := 1.0 + z*(S01+z*(S02+z*(S03+z*(S04+z*S05))))
139	r *= x
140	z = 0.5*x + r/s
141	if sign {
142		return -z
143	}
144	return z
145}
146
147// Y1 returns the order-one Bessel function of the second kind.
148//
149// Special cases are:
150//	Y1(+Inf) = 0
151//	Y1(0) = -Inf
152//	Y1(x < 0) = NaN
153//	Y1(NaN) = NaN
154func Y1(x float64) float64 {
155	const (
156		TwoM54 = 1.0 / (1 << 54)             // 2**-54 0x3c90000000000000
157		Two129 = 1 << 129                    // 2**129 0x4800000000000000
158		U00    = -1.96057090646238940668e-01 // 0xBFC91866143CBC8A
159		U01    = 5.04438716639811282616e-02  // 0x3FA9D3C776292CD1
160		U02    = -1.91256895875763547298e-03 // 0xBF5F55E54844F50F
161		U03    = 2.35252600561610495928e-05  // 0x3EF8AB038FA6B88E
162		U04    = -9.19099158039878874504e-08 // 0xBE78AC00569105B8
163		V00    = 1.99167318236649903973e-02  // 0x3F94650D3F4DA9F0
164		V01    = 2.02552581025135171496e-04  // 0x3F2A8C896C257764
165		V02    = 1.35608801097516229404e-06  // 0x3EB6C05A894E8CA6
166		V03    = 6.22741452364621501295e-09  // 0x3E3ABF1D5BA69A86
167		V04    = 1.66559246207992079114e-11  // 0x3DB25039DACA772A
168	)
169	// special cases
170	switch {
171	case x < 0 || IsNaN(x):
172		return NaN()
173	case IsInf(x, 1):
174		return 0
175	case x == 0:
176		return Inf(-1)
177	}
178
179	if x >= 2 {
180		s, c := Sincos(x)
181		ss := -s - c
182		cc := s - c
183
184		// make sure x+x does not overflow
185		if x < MaxFloat64/2 {
186			z := Cos(x + x)
187			if s*c > 0 {
188				cc = z / ss
189			} else {
190				ss = z / cc
191			}
192		}
193		// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
194		// where x0 = x-3pi/4
195		//     Better formula:
196		//         cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
197		//                 =  1/sqrt(2) * (sin(x) - cos(x))
198		//         sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
199		//                 = -1/sqrt(2) * (cos(x) + sin(x))
200		// To avoid cancelation, use
201		//     sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
202		// to compute the worse one.
203
204		var z float64
205		if x > Two129 {
206			z = (1 / SqrtPi) * ss / Sqrt(x)
207		} else {
208			u := pone(x)
209			v := qone(x)
210			z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
211		}
212		return z
213	}
214	if x <= TwoM54 { // x < 2**-54
215		return -(2 / Pi) / x
216	}
217	z := x * x
218	u := U00 + z*(U01+z*(U02+z*(U03+z*U04)))
219	v := 1 + z*(V00+z*(V01+z*(V02+z*(V03+z*V04))))
220	return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x)
221}
222
223// For x >= 8, the asymptotic expansions of pone is
224//      1 + 15/128 s**2 - 4725/2**15 s**4 - ..., where s = 1/x.
225// We approximate pone by
226//      pone(x) = 1 + (R/S)
227// where R = pr0 + pr1*s**2 + pr2*s**4 + ... + pr5*s**10
228//       S = 1 + ps0*s**2 + ... + ps4*s**10
229// and
230//      | pone(x)-1-R/S | <= 2**(-60.06)
231
232// for x in [inf, 8]=1/[0,0.125]
233var p1R8 = [6]float64{
234	0.00000000000000000000e+00, // 0x0000000000000000
235	1.17187499999988647970e-01, // 0x3FBDFFFFFFFFFCCE
236	1.32394806593073575129e+01, // 0x402A7A9D357F7FCE
237	4.12051854307378562225e+02, // 0x4079C0D4652EA590
238	3.87474538913960532227e+03, // 0x40AE457DA3A532CC
239	7.91447954031891731574e+03, // 0x40BEEA7AC32782DD
240}
241var p1S8 = [5]float64{
242	1.14207370375678408436e+02, // 0x405C8D458E656CAC
243	3.65093083420853463394e+03, // 0x40AC85DC964D274F
244	3.69562060269033463555e+04, // 0x40E20B8697C5BB7F
245	9.76027935934950801311e+04, // 0x40F7D42CB28F17BB
246	3.08042720627888811578e+04, // 0x40DE1511697A0B2D
247}
248
249// for x in [8,4.5454] = 1/[0.125,0.22001]
250var p1R5 = [6]float64{
251	1.31990519556243522749e-11, // 0x3DAD0667DAE1CA7D
252	1.17187493190614097638e-01, // 0x3FBDFFFFE2C10043
253	6.80275127868432871736e+00, // 0x401B36046E6315E3
254	1.08308182990189109773e+02, // 0x405B13B9452602ED
255	5.17636139533199752805e+02, // 0x40802D16D052D649
256	5.28715201363337541807e+02, // 0x408085B8BB7E0CB7
257}
258var p1S5 = [5]float64{
259	5.92805987221131331921e+01, // 0x404DA3EAA8AF633D
260	9.91401418733614377743e+02, // 0x408EFB361B066701
261	5.35326695291487976647e+03, // 0x40B4E9445706B6FB
262	7.84469031749551231769e+03, // 0x40BEA4B0B8A5BB15
263	1.50404688810361062679e+03, // 0x40978030036F5E51
264}
265
266// for x in[4.5453,2.8571] = 1/[0.2199,0.35001]
267var p1R3 = [6]float64{
268	3.02503916137373618024e-09, // 0x3E29FC21A7AD9EDD
269	1.17186865567253592491e-01, // 0x3FBDFFF55B21D17B
270	3.93297750033315640650e+00, // 0x400F76BCE85EAD8A
271	3.51194035591636932736e+01, // 0x40418F489DA6D129
272	9.10550110750781271918e+01, // 0x4056C3854D2C1837
273	4.85590685197364919645e+01, // 0x4048478F8EA83EE5
274}
275var p1S3 = [5]float64{
276	3.47913095001251519989e+01, // 0x40416549A134069C
277	3.36762458747825746741e+02, // 0x40750C3307F1A75F
278	1.04687139975775130551e+03, // 0x40905B7C5037D523
279	8.90811346398256432622e+02, // 0x408BD67DA32E31E9
280	1.03787932439639277504e+02, // 0x4059F26D7C2EED53
281}
282
283// for x in [2.8570,2] = 1/[0.3499,0.5]
284var p1R2 = [6]float64{
285	1.07710830106873743082e-07, // 0x3E7CE9D4F65544F4
286	1.17176219462683348094e-01, // 0x3FBDFF42BE760D83
287	2.36851496667608785174e+00, // 0x4002F2B7F98FAEC0
288	1.22426109148261232917e+01, // 0x40287C377F71A964
289	1.76939711271687727390e+01, // 0x4031B1A8177F8EE2
290	5.07352312588818499250e+00, // 0x40144B49A574C1FE
291}
292var p1S2 = [5]float64{
293	2.14364859363821409488e+01, // 0x40356FBD8AD5ECDC
294	1.25290227168402751090e+02, // 0x405F529314F92CD5
295	2.32276469057162813669e+02, // 0x406D08D8D5A2DBD9
296	1.17679373287147100768e+02, // 0x405D6B7ADA1884A9
297	8.36463893371618283368e+00, // 0x4020BAB1F44E5192
298}
299
300func pone(x float64) float64 {
301	var p [6]float64
302	var q [5]float64
303	if x >= 8 {
304		p = p1R8
305		q = p1S8
306	} else if x >= 4.5454 {
307		p = p1R5
308		q = p1S5
309	} else if x >= 2.8571 {
310		p = p1R3
311		q = p1S3
312	} else if x >= 2 {
313		p = p1R2
314		q = p1S2
315	}
316	z := 1 / (x * x)
317	r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
318	s := 1.0 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
319	return 1 + r/s
320}
321
322// For x >= 8, the asymptotic expansions of qone is
323//      3/8 s - 105/1024 s**3 - ..., where s = 1/x.
324// We approximate qone by
325//      qone(x) = s*(0.375 + (R/S))
326// where R = qr1*s**2 + qr2*s**4 + ... + qr5*s**10
327//       S = 1 + qs1*s**2 + ... + qs6*s**12
328// and
329//      | qone(x)/s -0.375-R/S | <= 2**(-61.13)
330
331// for x in [inf, 8] = 1/[0,0.125]
332var q1R8 = [6]float64{
333	0.00000000000000000000e+00,  // 0x0000000000000000
334	-1.02539062499992714161e-01, // 0xBFBA3FFFFFFFFDF3
335	-1.62717534544589987888e+01, // 0xC0304591A26779F7
336	-7.59601722513950107896e+02, // 0xC087BCD053E4B576
337	-1.18498066702429587167e+04, // 0xC0C724E740F87415
338	-4.84385124285750353010e+04, // 0xC0E7A6D065D09C6A
339}
340var q1S8 = [6]float64{
341	1.61395369700722909556e+02,  // 0x40642CA6DE5BCDE5
342	7.82538599923348465381e+03,  // 0x40BE9162D0D88419
343	1.33875336287249578163e+05,  // 0x4100579AB0B75E98
344	7.19657723683240939863e+05,  // 0x4125F65372869C19
345	6.66601232617776375264e+05,  // 0x412457D27719AD5C
346	-2.94490264303834643215e+05, // 0xC111F9690EA5AA18
347}
348
349// for x in [8,4.5454] = 1/[0.125,0.22001]
350var q1R5 = [6]float64{
351	-2.08979931141764104297e-11, // 0xBDB6FA431AA1A098
352	-1.02539050241375426231e-01, // 0xBFBA3FFFCB597FEF
353	-8.05644828123936029840e+00, // 0xC0201CE6CA03AD4B
354	-1.83669607474888380239e+02, // 0xC066F56D6CA7B9B0
355	-1.37319376065508163265e+03, // 0xC09574C66931734F
356	-2.61244440453215656817e+03, // 0xC0A468E388FDA79D
357}
358var q1S5 = [6]float64{
359	8.12765501384335777857e+01,  // 0x405451B2FF5A11B2
360	1.99179873460485964642e+03,  // 0x409F1F31E77BF839
361	1.74684851924908907677e+04,  // 0x40D10F1F0D64CE29
362	4.98514270910352279316e+04,  // 0x40E8576DAABAD197
363	2.79480751638918118260e+04,  // 0x40DB4B04CF7C364B
364	-4.71918354795128470869e+03, // 0xC0B26F2EFCFFA004
365}
366
367// for x in [4.5454,2.8571] = 1/[0.2199,0.35001] ???
368var q1R3 = [6]float64{
369	-5.07831226461766561369e-09, // 0xBE35CFA9D38FC84F
370	-1.02537829820837089745e-01, // 0xBFBA3FEB51AEED54
371	-4.61011581139473403113e+00, // 0xC01270C23302D9FF
372	-5.78472216562783643212e+01, // 0xC04CEC71C25D16DA
373	-2.28244540737631695038e+02, // 0xC06C87D34718D55F
374	-2.19210128478909325622e+02, // 0xC06B66B95F5C1BF6
375}
376var q1S3 = [6]float64{
377	4.76651550323729509273e+01,  // 0x4047D523CCD367E4
378	6.73865112676699709482e+02,  // 0x40850EEBC031EE3E
379	3.38015286679526343505e+03,  // 0x40AA684E448E7C9A
380	5.54772909720722782367e+03,  // 0x40B5ABBAA61D54A6
381	1.90311919338810798763e+03,  // 0x409DBC7A0DD4DF4B
382	-1.35201191444307340817e+02, // 0xC060E670290A311F
383}
384
385// for x in [2.8570,2] = 1/[0.3499,0.5]
386var q1R2 = [6]float64{
387	-1.78381727510958865572e-07, // 0xBE87F12644C626D2
388	-1.02517042607985553460e-01, // 0xBFBA3E8E9148B010
389	-2.75220568278187460720e+00, // 0xC006048469BB4EDA
390	-1.96636162643703720221e+01, // 0xC033A9E2C168907F
391	-4.23253133372830490089e+01, // 0xC04529A3DE104AAA
392	-2.13719211703704061733e+01, // 0xC0355F3639CF6E52
393}
394var q1S2 = [6]float64{
395	2.95333629060523854548e+01,  // 0x403D888A78AE64FF
396	2.52981549982190529136e+02,  // 0x406F9F68DB821CBA
397	7.57502834868645436472e+02,  // 0x4087AC05CE49A0F7
398	7.39393205320467245656e+02,  // 0x40871B2548D4C029
399	1.55949003336666123687e+02,  // 0x40637E5E3C3ED8D4
400	-4.95949898822628210127e+00, // 0xC013D686E71BE86B
401}
402
403func qone(x float64) float64 {
404	var p, q [6]float64
405	if x >= 8 {
406		p = q1R8
407		q = q1S8
408	} else if x >= 4.5454 {
409		p = q1R5
410		q = q1S5
411	} else if x >= 2.8571 {
412		p = q1R3
413		q = q1S3
414	} else if x >= 2 {
415		p = q1R2
416		q = q1S2
417	}
418	z := 1 / (x * x)
419	r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
420	s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
421	return (0.375 + r/s) / x
422}
423